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ABSTRACT
Fluids confined in nanopores exhibit several unique structural and dynamical characteristics that affect a number of applications in industry as
well as natural phenomena. Understanding and predicting the complex fluid behavior under nano-confinement is therefore of key importance,
and both experimental and computational approaches have been employed toward this goal. It is now feasible to employ both simulations
and theoretical methods, the results of which can be validated by cutting-edge experimental quantification. Nevertheless, predicting fluid
transport through heterogeneous pore networks at a scale large enough to be relevant for practical applications remains elusive because one
should account for a variety of fluid–rock interactions, a wide range of confined fluid states, as well as pore-edge effects and the existence of
preferential pathways, which, together with many other phenomena, affect the results. The aim of this Review is to overview the significance
of molecular phenomena on fluid transport in nanoporous media, the capability and shortcomings of both molecular and continuum fluid
modeling approaches, and recent progress in multiscale modeling of fluid transport. In our interpretation, a multiscale approach couples a
molecular picture for fluid interactions with solid surfaces at the single nanopore level with hierarchical transport analysis through realistic
heterogeneous pore networks to balance physical accuracy with computational expense. When possible, comparison against experiments is
provided as a guiding roadmap for selecting the appropriate computational methods. The appropriateness of an approach is certainly related
to the final application of interest, as different sectors will require different levels of precision in the predictions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0022481., s

INTRODUCTION

Fluid transport through heterogeneous pore matrices over
broadly different time and length scales is at the heart of many tech-
nological and environmental processes.1–10 Achieving a molecular-
level description of fluid–solid interactions and the correlated
interfacial dynamics as well as fluid diffusion through heteroge-
neous pore matrices would help to build quantitative functionality–
morphology–transport relationships to enable the manufacture of
more efficient and selective porous materials.11–16 Molecular sim-
ulations can provide molecular structure and dynamics within the
interfacial layers, where complex interactions between the porous
matrices and fluids occur.17–25 Such simulations, however, tend to
be limited to single nano- to meso-pores of simple geometry, which
falls short of accounting for the porous material complexity at larger
length scales. On the other hand, approaches accounting for the
latter must rely on a simplified picture of the confined fluid and

its transport properties.26–28 Achieving a balance between the two
approaches remains a challenge, especially because different appli-
cations require different levels of precision in the predictions, while
in most cases, it is preferable to obtain results at low to moderate
computational costs.

In what follows, we present the selected simulation results to
highlight the significant impact of the fluid structure on its dynam-
ical behavior in a single pore at the nanoscale and compare them
against experimental data at various length scales to assess the relia-
bility of various approaches, when possible. Convective motion and
molecular diffusion are the two main mechanisms responsible for
fluid dynamics in porous matrices. Molecular diffusion becomes
the dominant mechanism when fluids are confined in pores of
size comparable to the size of the confined fluid molecules (i.e., in
nanopores). The geometry of the nano-/meso-pores and their pore
apertures as well as pore connectivity play an important role in
regulating the amount of fluids that cross or enter natural porous
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media.29–31 Because many pores in the subsurface are in this size
regime,8 it is crucial to understand the mechanisms by which the
molecular diffusion occurs in nanopores, and when surfaces and
pore defects strongly affect the transport mechanisms. To illustrate
these concepts, we summarize the selected studies for fluid transport
in slit-shaped single nanopores primarily from our body of work,
produced by employing atomistic molecular dynamics (MD) sim-
ulations. It should be recognized that many groups contributed to
these investigations. The interested reader is referred to a few recent
reviews on this topic.18,32–34

Bridging the gaps between the results obtained within a sin-
gle pore, a few pores, a few hundreds of pores, and ultimately
within complex pore networks requires the development of sim-
ulation approaches with high computational efficiency. In princi-
ple, atomistic MD is able to describe molecular phenomena even
when they occur in large systems. However, it requires high com-
putational resources, and therefore, it can become inefficient and
sometimes impractical to study fluid transport through heteroge-
neous porous matrices at length and time scales larger than a few
nm and several hundreds of ns, respectively.35 When practical appli-
cations require modeling such conditions, continuum fluid mod-
els, such as the no-slip Hagen–Poiseuille flow equation or Darcy’s
law, are often employed, although they do not correctly character-
ize flow within complex nanoporous materials because in such sys-
tems, non-continuum flow phenomena arise due to the well-ordered
molecular structure near solid–liquid interfaces, inaccurate charac-
terization of the local viscosity, and interfacial slip.35 In Fig. 1, we

FIG. 1. Time and length scales in which atomistic MD simulations, lattice Boltz-
mann, kinetic Monte Carlo, macroscopic continuum fluid model, and multiple
modeling approaches are used. The approach identified as “multiscale” seeks to
reconcile the results from the different methods toward describing fluid transport
both precisely (e.g., taking into consideration molecular phenomena) and effec-
tively (e.g., achieving length scales relevant for the applications). Reproduced with
permission from Vlachos, “A review of multiscale Analysis: Examples from sys-
tems biology, materials engineering, and other fluid–surface interacting systems,”
Adv. Chem. Eng. 30, 1–61 (2004).36 Copyright 2005 Elsevier B.V.

summarize time and length scales in which atomistic MD simula-
tions as well as Monte Carlo, lattice Boltzmann (LB), Kinetic Monte
Carlo (KMC), macroscopic continuum fluid model, and multiple
modeling approaches are typically used. Developing a computa-
tional framework to couple all these techniques remains challeng-
ing but promises the ability to capture phenomena that occur at
the single-pore level (e.g., edge effects) with larger-scale phenomena
(e.g., preferential flow pathways) toward truly predicting fluid trans-
port through heterogeneous porous matrices. Note that in the short-
est time and length scales, one could implement quantum mechanics
methods to elucidate interactions between fluids and pore surfaces,
which could lead to reactivity.

We review in what follows some promising advances for
the development and implementation of multi-scale approaches
achieved by implementing non-equilibrium MD simulations, cou-
pling MD simulations with LB calculations, stochastic approaches
based on KMC, and improved continuum macroscopic flow mod-
els. We attempt to identify conditions under which each multiscale
approach is preferable, based on comparison against the available
experimental studies. The experimental tools considered include
pulsed field gradient nuclear magnetic resonance (NMR),37–39 quasi-
elastic neutron scattering (QENS),38–40 and microimaging,41–43

among others.
The remainder of this Review is organized as follows: In the

section titled Fluid transport in single nanopores, we present the
selected MD results for the fluid structure and transport behavior
in single nanopores and discuss the inaccuracy of the conventional
continuum fluid model owing to the dominance of non-continuum
flow phenomena. Then, in the section titled Fluid transport in hier-
archical pores, we present some multiscale approaches that address
the aforementioned challenges. We conclude presenting open ques-
tions and some emerging topics we consider promising testbeds for
future research.

FLUID TRANSPORT IN SINGLE NANOPORES
Fluid structure governs diffusion
enhancement/hindrance

Mounting evidence, albeit mostly from computational stud-
ies, suggests that confinement significantly affects almost all the
fluid properties related to interfacial interactions (adsorption and
solubility), thermophysical (phase behavior), dynamical (transla-
tional, rotational, and vibrational diffusions), and ultimately trans-
port properties of the confined species.8,47 Because understanding
the structural and dynamical properties of fluid species such as car-
bon dioxide (CO2) and methane (CH4) confined in nano- and meso-
pores in sedimentary rocks is of increasing interest, MD simulations
at reservoir composition48,49 have been used by Loganathan et al.44

to quantify the partitioning of CO2 and methane between bulk and
nano- and meso-pores bounded by the montmorillonite clay min-
eral. MD has been proven useful to study multi-component systems
described at the atomistic level. In MD, interactions between atoms
and molecules are described explicitly via appropriate atomic force
fields. The motion of such entities is described by solving numeri-
cally Newton’s equations of motion. The resultant molecular trajec-
tories, integrated over time, yield the macroscopic properties of such
systems via statistical mechanics analysis.50 For example, in Fig. 2(a)
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FIG. 2. (a) Left: density profiles of Na+ (orange), CCO2
(violet), and CCH4

(magenta) as a function of the distance z across the clay nano- (middle) and meso-pore (bottom).
Reproduced with permission from Loganathan et al., “Understanding methane/carbon dioxide partitioning in clay nano- and meso-pores with constant reservoir composition
molecular dynamics modeling,” Phys. Chem. Chem. Phys. 21(13), 6917–6924 (2019). Copyright 2019 PCCP Owner Societies. Right: self-diffusion coefficients estimated for
C2H6 in the presence of CO2 in silica pores from QENS experiments. Figures adapted with permission from Patankar et al., “Role of confinement on adsorption and dynamics
of ethane and an ethane–CO2 mixture in mesoporous CPG silica,” J. Phys. Chem. C 120(9), 4843–4853 (2016). Copyright 2016 American Chemical Society. (b) Left: atomic
density profiles of Ob (dark blue vertical), Na+ (orange), OH2O (red), HH2O (cyan), OCO2

(green), and CCO2
(violet) as a function of the distance z across the smectite clay

pores with the monolayer (left) and bilayer (right) hydration basal spacing at 348 K and 90 bars. Right: 1D self-diffusion coefficients estimated for propane confined in silica
pores at different water loadings. Figures adapted with permission from Loganathan et al., “Molecular dynamics study of CO2 and H2O intercalation in smectite clays: Effect
of temperature and pressure on interlayer structure and dynamics in hectorite,” J. Phys. Chem. C 121(44), 24527 (2017) and Le et al., “Propane-water mixtures confined
within cylindrical silica nanopores: Structural and dynamical properties probed by molecular dynamics,” Langmuir 33(42), 11310 (2017). Copyright 2017 American Chemical
Society.

(left), the results show the preferential adsorption of CO2 on clay
surfaces, suggesting that CO2 can effectively remove methane from
such pores, leading to enhanced oil recovery and shale gas produc-
tion. It is worth pointing out that the accumulation of fluids near
pore surfaces leads to more frequent fluid–fluid and fluid–pore col-
lisions, which reduce the mean free path (MFP) and the diffusion
coefficient, and that this effect is more and more pronounced as the
pores become narrower and narrower, e.g., micro-pores. By employ-
ing the Direct Simulation Monte Carlo (DSMC) method and MD
simulations, Xie and his co-workers51 showed that the MFP is spa-
tially dependent when both the intermolecular interactions between
gas molecules and collisions between gas molecules and wall atoms
are taken into consideration. The behavior of fluid confined within
larger meso-pores, on the other hand, may exhibit fluid–substrate
interfacial and bulk-like properties simultaneously, with the latter
becoming dominant as the pore width increases.45 To support sim-
ulation results such as those in Fig. 2, one could employ QENS. For
example, conducting QENS for ethane in mesoporous silica pores,
Patankar et al. found that the self-diffusion coefficient of ethane
confined in 11.1 nm and 41.5 nm pores was ∼4 times slower than

that observed in the bulk under otherwise similar conditions.45 If
these results are due to the enhanced fluid density near the pore
walls, it might be feasible to facilitate the fluid diffusion by adding a
second fluid that preferentially adsorbs on the solid substrate, as dis-
cussed previously. Indeed, one QENS experimental study45 reported
that the ethane diffusion in mesoporous silica increased in the pres-
ence of CO2 (27 mol. % CO2) by a factor of ∼2 compared to the
data obtained for pure ethane [see Fig. 2(a), right]. Le et al.23 con-
ducted MD simulations for systems containing butane and CO2 in
a ∼2 nm wide slit-shaped silica pore. The results also showed that
CO2 preferentially absorbed near the pore surfaces, consistent with
the results reported in Fig. 2(a) (left),44 enhanced diffusion of butane
occupied in the middle of the pore, via a “molecular lubrication”
mechanism, which is in good agreement with the prior experimen-
tal study.23 Others also observed that CO2 enhanced the diffusion of
hydrocarbons through different porous materials.52–54

The preferential adsorption of CO2 to the pore surfaces can
enhance hydrocarbon diffusion in nanopores, but one can ques-
tion whether it is possible to achieve similar results if another fluid
other than CO2, also preferentially attracted or even more strongly
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adsorbed to the pore surface, is used. Recently, Loganathan et al.46

employed Grand Canonical MD (GCMD) simulations to inves-
tigate the structure and dynamics of CO2–water mixtures in the
interlayers of the smectite clay, Na-hectorite, at geological temper-
atures and pressures. The GCMD algorithm is a hybrid MD-Monte
Carlo technique, which was introduced to maintain constant tem-
perature and chemical potential during the virtual experiment. The
approach assures that the number of particles and system energy
varies corresponding to the standard grand canonical probability
distribution.55 In the GCMD approach, it is possible to use the
grand canonical Monte Carlo algorithm to first establish and subse-
quently maintain a chemical potential gradient across a pore, while
MD allows one to study the transport of fluids across the pore in
response to the chemical potential gradient. Details of the GCMD
simulations can be found in the work of Boinepalli and Attard.55

In Fig. 2(b) (left), Loganathan et al. showed that water is more
strongly adsorbed on the clay surfaces than CO2, displacing CO2 to
the midplane of clay interlayers for the monolayer hydration struc-
ture (left) and closer to one of the basal surfaces for the bilayer
hydration structure (right). Coming back to the question whether
diffusion enhancement is observed if another fluid other than CO2,
e.g., water, is mixed with hydrocarbon, Gautam et al.56 used QENS
experiments to examine the diffusion of propane in silica-based,
cylindrical pores of diameter ∼1.5 nm in the presence of water. The
experimental results showed that water hampered, rather than facil-
itated, propane diffusion. To provide a molecular understanding
of these observations, Le et al.25 conducted MD simulations for a
system resembling the experimental one.56 The results showed that
although water molecules are strongly adsorbed on the pore surface
due to such a narrow pore diameter as well as to the strong water–
water interactions, water molecules can form molecular bridges
across the pore volume, which impedes propane diffusion. Le et al.25

quantitatively examined the decrease in propane diffusion upon the
increase in water loading inside the pore [as shown in Fig. 2(b),
right].

The approaches implemented to conduct these investigations
could be relevant for studying systems with extremely heterogeneous
pores of size comparable to that of the fluid molecules. When the
two or more fluids confined in a narrow pore are mixable, however,
the phenomena of interest could be different compared to those dis-
cussed so far, and the diffusion of a fluid dissolved within another
fluid, the latter confined in a pore, needs to be investigated.

Confined fluids regulate diffusion

The transport behavior of guest molecules inside narrow pores
in the presence of confined fluids is strongly dependent on the chem-
ical properties of mineral solid substrates, as well as on the chem-
ical nature of the fluid molecules in question. Bui et al.19 reported
that the self-diffusion coefficients estimated for methane confined
in water-filled pores carved out of common minerals can vary by
a factor of ∼4, although the simulations were conducted under the
same conditions (i.e., of the same pore width and temperature).
Very few experimental studies on the properties of methane in con-
fined water within nanopores have been conducted. However, Hu
et al.57 recently employed NMR to study the behavior of water and
methane within ZSM-22, MCM-41, and SBA-15 nanopores. These
materials contain mostly the two most common elements on the

Earth (O and Si) and possess uniform one-dimensional pore sizes
of ∼0.5 nm, 3 nm, and 6 nm, respectively, which enables the quan-
tification of pore size effects on transport. Hu et al. found that
the self-diffusion coefficients of methane in water-filled ZSM-22
pores with pore sizes of ∼0.5 nm have a similar order of magnitude
to those found in our previous simulation study21 (∼10−10 m2/s).
Additional insights into multicomponent interactions under nano-
confinement were recently achieved by simulations.58–60 For exam-
ple, Ho et al.58 showed that a thin supercritical CO2 layer formed
at water–solid interfaces could help accelerate water flow through a
rough hydrophilic nanochannel, acting as a molecular lubricant that
converts a stick-to-slip flow in nanopores.

While equilibrium MD simulations can be used to quantify
the structure of confined fluids and their diffusion properties, non-
equilibrium MD (NEMD) can be implemented to assess the trans-
port properties of fluids confined in narrow pores, although usually
in single pores because of the computational requirements.61–64 In
NEMD algorithms, the equations of motion are integrated numer-
ically as is the case of equilibrium MD, but an external field is
applied to impose, for example, a pressure gradient across a pore.
More details have been described in some previous works.61,65,66

Considering as an example the recent results from our group, Phan
et al.21 studied the transport properties of a gas mixture [ethane,
methane, and hydrogen sulfide (H2S)] through hydrated nanopores.
The results showed that H2S could permeate the hydrated pores
much faster than the other species and that ethane is too large
to transverse effectively the water-filled nanopores. This could
have significant implications in several applications, such as the
design of gas separation membranes and the shale gas sustainable
deployment.

One might ask whether a similar transport behavior in narrow
pores would be achieved when a fluid other than water, also strongly
adsorbed on the pore surface, was present. One such fluid could be
benzene, which could be a first approximation for aromatic hydro-
carbons trapped in sedimentary rocks. Employing the boundary-
driven NEMD (BD-NEMD) algorithm,61 Phan et al.67 studied the
transport properties of two fluid mixtures (CO2–methane and H2S–
methane) through amorphous silica nanopores filled with benzene.
The BD-NEMD simulations are implemented by applying a con-
stant force along the x axis, acting in the direction of the arrows
(see Fig. 3, top) to all CO2, H2S, and methane molecules located
in a thin slab (shaded region) of width dext = 20 Å within the per-
meate region of the simulation box. This external field establishes
and maintains a constant pressure difference across the pore net-
work and hence leads to a steady molar flux across the hierarchical
porous media. For mixtures, the transport diffusivity of each com-
ponent is estimated by dividing its permeability, estimated based on
the linear relationship between the permeated number of molecules
and time, by its solubility within the pore. The system considered
in Fig. 3 was built as an approximate representation of organic-rich
shale caprocks that contain a significant amount of organic car-
bon (>11.7 wt. %). Snapshots representing the simulated systems are
shown in Fig. 3 (top).68 Analysis of the simulation results shows that
both CO2 and H2S are favorably adsorbed inside the organic-filled
pore, in part, displacing benzene. Surprisingly, CO2/H2S adsorp-
tion facilitates methane transport, as illustrated in Fig. 3 (bottom),
because both fluids play a role as mobile carriers and possibly trig-
ger benzene swelling, creating favored traveling paths within the
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FIG. 3. Top: representative simulation snapshots for a filled pore exposed to the bulk reservoirs along the x direction. The amorphous silica nanopore is filled with 400
benzene molecules, providing a model for oil trapped in sedimentary rocks. Bottom: molar flux of methane in CO2–CH4 (blue) and H2S–CH4 (yellow) mixtures across the
benzene-filled silica nanopore as a function of CO2/H2S bulk mole fraction. Figures adapted with permission from Phan and Striolo, “Evidence of facilitated transport in
crowded nanopores,” J. Phys. Chem. Lett. 11(5), 1814–1821 (2020). Copyright 2020 American Chemical Society.

pore networks.67 Results such as those just summarized could help
to determine unanticipated transport mechanisms and building up
engineering approaches for CO2 capture and storage in caprocks,
albeit their effect on macroscopic transport needs to be quantified.

Related to shale gas, it remains of great interest to quantify how
hydrocarbons can be produced from the source rocks. Indeed, many
investigated how hydrocarbons escape from kerogen.2–4,8,18

Breakdown of continuum fluid models
at the nanoscale

Falk et al. employed MD to calculate hydrocarbon transport
in kerogen [see Fig. 4(a)] and statistical mechanics to analyze the
results.69 They reported that the continuum Darcy’s law, derived
from the Navier–Stokes equation,70 a fundamental principle for
computational fluid dynamics (CFD) studies, fails to predict hydro-
carbon permeability in shale nanoporous matrices—i.e., the kerogen
material. In particular, the permeability k (k = K × η with perme-
ance K and viscosity η), an elemental material characteristic, was
observed to depend not only on the adsorbed amount but also on
the fluid type [see Fig. 4(b)].69 The failure of the continuum flow
description is likely due to adsorption. Because of the drastic con-
finement in the nanopores present in kerogen, the physical state of
confined alkanes is remarkably different from their bulk counterpart
at the same temperature and pressure, changing from the gaseous
phase in the bulk to a condensed liquid-like phase under confine-
ment. These results demonstrate that calculating flow properties in

the nanopores using bulk viscosity can lead to inappropriate conclu-
sions. Falk et al.69 showed that also using the viscosities correspon-
dent to the confined alkane density would not yield permeability
predictions, using Darcy’s law, in agreement with the MD simulation
results [see the inset of Fig. 4(b)].

To alleviate the shortcomings of Darcy’s approach, many cor-
rections have been suggested, for example, by invoking slippage
in gas flow via the Klinkenberg effect.69 Some have attempted
to use MD data to correct the Hagen–Poiseuille (H–P) flow
equation, introducing a Navier slip boundary condition (BC) for
simulating flows in nanotubes with size of a few nm.71 For
example, Walther et al.72 modified the H–P equation with the
pressure correction proposed by Weissberg73 to take into con-
sideration the membrane-end losses. Nevertheless, these empiri-
cal corrections cannot completely account for the entirety of the
complex behavior of hydrocarbons in heterogeneous nano-porous
materials.

Atomistic MD is probably the most appropriate approach for
accounting for non-continuum flow inside nano-porous materi-
als.2–4,8,18 However, this technique requires enormous computa-
tional resources when it is desired to study flow through pores longer
and wider than a few tens of nanometers.74 On the other hand, non-
continuum effects ranging from molecular ordering to velocity slip
can inhibit the reliability of continuum fluid models such as CFD.74

Is it possible to achieve more reliable and computationally efficient
predictions toward gas transport in heterogeneous pore networks at
a larger scale? The challenge lies in upscaling the simulation results
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FIG. 4. (a) Hydrocarbons adsorbed in kerogen-like nanoporous carbon and zoom on one dodecane molecule (red) with its neighbors and the surrounding carbon structure.
(b) Permeability vs loading, showing the breakdown of the hydrodynamic prediction for the permeance: methane (black), propane (blue), hexane (green), nonane (yellow),
and dodecane (red). The viscosity is that of the bulk hydrocarbon at the corresponding pressure and temperature. Inset: The same plot with the bulk viscosity replaced by
the bulk viscosity calculated at the relevant pore density. For comparison, the dashed lines give the permeability of a cylindrical pore with diameter equal to the mean size
of the matrix pore-size distribution. Figures adapted with permission from Falk et al., “Subcontinuum mass transport of condensed hydrocarbons in nanoporous media,” Nat.
Commun. 6, 6949 (2015). Copyright 2015 Springer Nature.

achieved in a single pore, toward predicting flow transport through
a pore matrix, as different phenomena involved in such multiscale
porous matrices can affect the results.

FLUID TRANSPORT IN HIERARCHICAL PORES
Brute force non-equilibrium MD simulations
with predictive empirical relations

Fluid transport through heterogeneous pore networks is usu-
ally characterized through the tortuosity parameter τ (resistivity to
transport).75,76 This parameter relates the flux J to porosity ϕ and
flux in the absence of medium J0 through the following expression:
J = ϕ/τJ0. While porosity ϕ is estimated using adsorption experi-
ments, permeability/transport and NMR experiments can be used
to measure both J and J0 (and, therefore, extract τ).18 From a
numerical perspective, tortuosity can be assessed from x-ray tomog-
raphy experiments77 using, for example, random-walk (Brownian
motion) simulations where the tortuosity is estimated as the square
ratio between the walking path length and the length along the
longitudinal coordinate.

To replicate such experiments via a direct atomistic simula-
tion approach, Phan et al.17 employed the BD-NEMD algorithm61

(as mentioned above) to examine methane flow through hierarchical
amorphous silica porous materials. Note that for single component
systems, e.g., only methane through porous media, transport diffu-
sivity can be estimated from the pressure gradient and molar flux,
which were quantified by fitting the steady-state simulation results to
Fick’s first law. The pore networks considered in Fig. 5 were meant
to represent the simplified structure for some of those often found in
shale formations. By conducting simulations on “synthetic” model
porous media, the transport properties (e.g., permeability and diffu-
sivity) are collected and correlated with pore structure information.
In Fig. 5(a), the results show a strong dependence of the methane
permeability through the pores on the frameworks. Indeed, a linear

correlation was observed between methane permeability and a char-
acteristic parameter that accounts for porosity, constriction factor,
and tortuosity [see Fig. 5(b)]. The constriction factor, a geomet-
ric parameter that can become important when the fluid molecules
have size comparable to the pore size, was calculated as a function
of cross-sectional area A(x) of a porous medium along the direction
of transport and its length L. The simulation results suggest that the
correlation identified by Phan et al. applies for hierarchical porous
materials consisting of both micropores and mesopores. Ultimately,
Phan et al. found that the transport properties of methane through
porous media scale as a power-law function of porosity and constric-
tion factor [as shown in Fig. 5(c), left], which are descriptors that can
be determined experimentally. Phan et al. identified as exceptions
those porous systems that containing extremely strong blockages
[system 3 (green) or 8 (orange)]. These results suggest that when
characterization data are accessible, it is possible to forecast trans-
port properties for engineering and natural materials. For exam-
ple, a power law is also obtained for Fontainebleau sandstone [see
Fig. 5(c), right].78,79 The good agreement proposes that the method
employed is capable of quantifying molecular effects on fluid trans-
port as well as reliably predicting fluid transport properties through
shale rocks using macroscopic pore characterization data as a sole
input.

While important new insights can be achieved from the above
method, modeling and upscaling approaches for describing fluid
transport within realistic and more complex porous materials are
still missing, as NEMD cannot be implemented for systems much
larger than those considered in Fig. 5. To overcome the computa-
tional barriers, numerous computational and theoretical approaches
have been attempted, including coarse-grained MD simulations,80,81

LB calculations,82–84 stochastic KMC algorithms,85–87 random-walk
particle-tracking (RWPT) method, and modified macroscopic con-
tinuum flow model. Each method displays advantages and suffers
from limitations, relying upon the simulation time scale and the
size of the samples considered. The goal remains to access further
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FIG. 5. (a) Permeability as determined by BD-NEMD simulations for methane across the ten porous model systems. (b) Methane permeability as a function of the pore
characteristic parameter defined by the ratio of porosity to tortuosity and constriction factor on logarithmic plots. The insets provide representations for the data on
Cartesian plots. Results were obtained for all hierarchical pore model systems. (c) Correlation between permeability and the ratio of porosity to constriction factor. The
results from the simulations for hierarchical amorphous silica porous materials in this study,17 and those from micro-CT scan and experiments for the Fontainebleau
sandstone are shown in left and right panels, respectively. Figures adapted with permission from Phan and Striolo, “Methane transport through hierarchical silica micro-
mesoporous materials: From non-equilibrium atomistic simulations to phenomenological correlations,” Microporous Mesoporous Mater. 288, 109559 (2019). Copyright 2019
Elsevier B.V.

length and longer time scales while realistically accounting for hier-
archically complex porous materials, fluid–rock interactions, and
the wide range of confined fluid states.

Coupling MD and LB simulations

As already mentioned, in principle, MD simulations could
describe microscopic transport phenomena accurately, but their
applicability to large length scales (e.g., >100 nm) is drastically

restricted by the availability of computing resources.88,89 As an alter-
native, since the 1980s, the LB method has become attractive to over-
come the computational limitations that MD simulations entail.90

Compared to MD simulations, the virtue of the LB method is
its capability of mesoscale characterization of fluid transport and
fluid–solid interactions in porous media with complex boundary
geometries, which renders it a computationally affordable and rea-
sonably accurate alternative to model microscopic transport.91–93

The LB method considers fluid flow as a collection of hypothetical
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particles described by appropriate particle velocity distribution func-
tions. These particles, located on the lattice fluid nodes, exchange
and propagate velocity distribution values after their collision with
other particles, as well as with the walls, which are represented as
solid nodes.94 A typical LB implementation for microflow requires
the input of initial fluid density and momentum and the prescription
of BCs (e.g., fluid–solid interface and periodic boundaries), which
can be obtained from the correspondent MD models.84

During the past few decades, the LB approach has been exten-
sively developed and applied to study flow in confinement,95–99

from transport through T-/Y-junctions,100 near nanotubes,101 cor-
rugated surfaces,102,103 nano-/micro-channels,95,104–106 and nano-
/micro-porous complex media.107–109 Of interest for the present
overview is (1) how accurate the LB results can be at the microscale,
e.g., compared to their counterpart MD models, and (2) how MD
data can be mapped into LB implementations to improve the LB
predictions. In fact, MD simulation results are often used to bench-
mark and identify the applicability range of LB models:95,110–113

Myriad studies have shown that LB algorithms are capable of
reproducing MD results, except at the nano-scale interfaces114 or
under conditions of extreme confinement.115 These findings pro-
vide best practice approaches to couple MD onto LB to yield reliable
predictions.

Numerous coupling approaches have been developed to further
improve the LB accuracy.96,116,117 One such approach is the two-way
coupling of data (e.g., velocity) exchange at the overlapping regions
of the MD and LB domains during the simulation, which applies
to fluid–substrate interactions for confined single-phase transport
as well as to fluid–fluid interactions for multiphase transport.96,101

This coupling usually applies to the cases where nano-scale simula-
tions are needed regionally only, such as for the description of fluid
transport around a nanotube101 (where LB and MD are applied to
the continuum domain and around the nanotube, respectively) or
that of fluid transport through a nanochannel118 (where the bulk
region inside the nanochannel is described by the LB method, while
the interfacial phenomena, such as fluid slip, are described by MD
simulations).

The key to the success of this approach is the agreement
between LB and MD results in the overlapping domain or at the
interfacial BC between the two subdomains. An example data-
exchange protocol is the one in which the molecule velocity at the
interface in the MD model is reset to match a given distribution (e.g.,
Maxwellian) with mean and variance dictated by the LB results; in
contrast, the particle velocity distribution in the LB model is recon-
structed to match the homogenized MD results near the interface.96

While this approach is very promising, its computational efficiency
is limited by the need of securing convergence between MD and LB
methods in the interfacial region.

An alternative coupling approach, which is less computation-
ally demanding because it does not require synchronization between
MD and LB datasets, is the “one-way mapping” of the final MD
results into the implementations of larger-scale LB models. Suc-
cessful examples involve the mapping of slip length,119,120 fluid vis-
cosity,119 interfacial tension,121,122 adsorption layers,123 and velocity
profiles84 as obtained from MD simulations into the correspon-
dent LB models. An exemplar of the latter approach is the use of
MD velocity data to identify suitable BCs to be implemented in the
correspondent LB models.84,124,125 In this approach, velocity data

from MD simulations are often normalized by the bulk veloc-
ity.107,126,127 Once the normalized LB velocity results match the
correspondent MD data, the LB model is regarded as valid and
representative of the physics at the solid–gas interface. How-
ever, recent results84,128 suggest that this approach may not be
always accurate when using MD or DSMC data. For example,
one study128 showed that two LB models, which implemented
(1) the combined scheme of diffuse reflection and bounced-
back BCs and (2) discrete Maxwellian BCs, respectively, success-
fully predicted the normalized velocity from the DSMC; however,
only the former scheme reproduced the dimensionless flux, while
the latter overestimated the dimensionless flux in transition flow
regimes.

Similar observations were achieved in a comparative LB vs
MD study from our group.84 As shown in Fig. 6(a), four LB mod-
els implementing different BCs (denoted as BC1-4, details of BCs
are referred to as in the caption of Fig. 6) predict similarly agree-
able velocity profiles when compared to MD data; however, not
all LB models accurately predict the gas permeability correction
factor as observed from core-flooding experiments [see Fig. 6(e):
overestimation by implementing BC1 and BC3], which implies
that the normalized velocity in Fig. 6(a) may not be the proper
method to identify correct BCs for the LB calculations.84 It was
instead suggested that using the non-normalized axial velocity113

data from the correspondent MD models [Fig. 6(b)] can iden-
tify the correct BCs [i.e., see the good agreement of velocity pre-
dictions from the MD and LB results by implementing BC4 in
Figs. 6(b)–6(d)]. It was shown that by implementing the newly
identified BCs in the LB calculations, it is possible to reproduce
the permeability correction factor measured experimentally [see
Fig. 6(e)].

Slip boundary conditions in LB simulations

As indicated in Fig. 6, the choice of the BC strongly impacts
the LB predictions for properties such as permeability.135–137 When
using MD data to benchmark LB models, it is, therefore, crucial
to understand the applicability of different slip boundaries in the
LB method. MD has been used to identify slip BCs in a variety of
conditions, sometimes achieving the unexpected results.138

In LB calculations, the shape of the boundary segments embed-
ded in each lattice site is considered either planar or curved (non-
planar), reflecting the physical structure of porous media. The phys-
ical boundary is often approximated as zigzag segments, i.e., the
planar boundary. The drawback of this approximation is that it
decreases the resolution of images while depicting porous media,
and therefore, it can impact the accuracy of LB results; on the
other hand, if the image is converted into high-resolution pixeled
planar boundaries, the computational time of the subsequent LB
simulations can be long, as well as the efforts required to build
the model for the LB calculations themselves. The choice of spe-
cific BCs for describing gas slip over planar surfaces has been
extensively reviewed in the literature,94,99,130,139 including diffuse
reflection,140,141 specular reflection,142 the combined bounce-back
and specular reflection,143 and the combined diffuse reflection and
specular reflection,144 In contrast to planar boundaries, the curved
boundaries can better maintain the physical structure of the porous
media and can overcome the resolution limitations imposed by
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FIG. 6. Use of MD velocity data to identify suitable BCs for LB simulations.84 (a) Normalized axial velocity by the bulk velocity. (b) Axial velocity. Legends: MD results
(dots), LB results (lines): BC1 (classical bounce-back scheme), BC2 (improved bounce-back scheme), BC3 (the combined scheme of the classical bounce-back and specular
reflection), and BC4 (the combined scheme of the improved bounce-back and specular reflection). Compared to BC1, BC2 imposes an extra constraint on the velocity vectors
parallel to the fluid–solid interface (details of the algorithm are referred to Refs. 84 and 129). Axial velocity distribution obtained from (c) LB (by implementing BC4) and (d)
MD simulations of gas flow through a porous medium where p1–p8 denote connected pores. (e) Estimation of the permeability correction factor, i.e., the ratio of apparent
permeability to intrinsic permeability of the porous medium of the structure in (c). The results represented by the black dashed line are obtained by implementing BC1 for
intrinsic permeability and BC3 for apparent permeability. The results represented by the black solid line are obtained by implementing BC2 for intrinsic permeability and
BC4 for apparent permeability. Also presented are core-flooding measurement in nanoporous samples130–132 and the Beskok–Karniadakis–Civan’s (BKC) correlation133,134

reported in the literature. Figures adapted with permission from Fan et al., “Accurate permeability prediction in tight gas rocks via lattice Boltzmann simulations with an
improved boundary condition,” J. Nat. Gas Sci. Eng. 73, 103049 (2020). Copyright 2020 Elsevier B.V.

the planar approximation. However, accounting for the slip over
curved, and in general, non-planar boundaries has been a challeng-
ing task at the LB level.145,146 The common solution is to interpo-
late the local velocity distribution functions according to the rela-
tive distance between fluid node, solid node, and wall.125,147–149 The
relationships between the incoming and outgoing velocity distribu-
tion functions are then stipulated by the specific slip BCs, e.g., the
interpolated bounce-back,147 interpolated combined bounce-back
and diffuse reflection,125 interpolated combined bounce-back and
Maxwellian diffuse reflection,145,148 and multi-reflection scheme,149

which are adapted from planar BCs. Alternative solutions to describe
slip on curved boundaries may resort to changing the coordinate sys-
tem, e.g., to adopt a body fitted curvilinear coordinate system when
using the combined bounce-back and specular reflection scheme,150

or to reconstruct velocity BCs, e.g., using Navier’s slip length to
derive the velocity at the wall,151 or adopting a method that counter-
extrapolates slip velocity and non-equilibrium velocity distribution
function.152

Using LB, augmented when needed by MD results, it is now
possible to predict macroscopic transport properties (e.g., perme-
ability) for complex pore networks. The approach has been able
to predict quantities that can be measured experimentally and also
to predict the hydrocarbon productivity of a given formation or
the amount of CO2 that could be sequestered in a reservoir. When
rock formations are particularly heterogeneous, as is the case for
many shale formations, it might, however, be impractical to explic-
itly simulate extremely large rock samples, as for LB approaches to

succeed, it is necessary to explicitly simulate fluid transport through
pore networks large enough to represent the elementary pore
volume.

Coupling deterministic MD and stochastic KMC
simulations

When it is desired to estimate the transport properties of het-
erogeneous materials, it might be appropriate to implement stochas-
tic methods and estimate the properties of interest for many repre-
sentations of the pore media, provided that they share some well-
identified observables. For example, when porosity, pore size dis-
tributions, and mineralogy of a formation are known, one could
generate several pore networks with such given characteristics, esti-
mate the transport properties in each representation, and then use
appropriate averages for predicting the over-all property of the for-
mation. For such an approach to be feasible, a computationally
efficient approach must be available. It is within this scenario that
stochastic KMC methods become potentially useful. KMC simula-
tions are often used to stochastically describe transport phenom-
ena controlling various engineering and natural processes.153–157

They can access lengthy time scales (from ms to h) and wide spa-
tial dimensions (from nm to μm) at a relatively low computational
cost.158,159 Fundamentally, KMC takes into consideration state-to-
state transition rates to compute trajectories for a system that “wan-
ders” stochastically along the phase space.159 The KMC implemen-
tation requires rate constants that seize the probability per unit
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time of state-to-state transitions, which can be obtained from other
methods, including MD and LB simulations, and experiments. The
order of such transitions creates a sample path or trajectory whose
statistics follows the so-called Master equation that determines the
dynamics of the system.159 While the approach has been tested
successfully in catalysis,154,160–162 its implementation to study trans-
port, including models and algorithms, has been described at length
in prior contributions.85 KMC allows huge computational savings,
compared to MD, as it coarse-grains the molecular trajectories. The
energy barrier the system has to overcome in order to get from
one energy basin to another determines the waiting time before
one event occurs.159 In a multiscale approach such as represented
in Fig. 1, the information of energy barrier could be obtained via
atomistic MD studies.

For example, to study fluid transport through a porous
medium, Apostolopoulou et al.85 developed a lattice-based 1D KMC
model, which was able to reproduce the atomistic MD simula-
tions conducted by Phan et al.21 to quantify methane transport
through hydrated slit-shaped pores carved out of different solid sub-
strates. Quantitative agreement was achieved between KMC and MD
results. Because the KMC model is much more computationally effi-
cient than MD, once the necessary input parameters obtained from
MD were appropriately used as a KMC input, it was possible to
quantify the contribution of various pore network characteristics to
methane transport, including a systematic study on pore length, pore
connectivity, and pore width. To quantify the effect of pore width,

Apostolopoulou et al.87 extended the KMC model to 3D and pre-
dicted fluid diffusivity in mesoscale pores carved out of minerals
commonly found in shale rocks. The analytical solution of the dif-
fusion equation as well as against a set of atomistic MD results is
used to validate the 3D KMC model. Subsequently, the stochastic
3D KMC model was used to estimate the diffusion of pure methane
in pores of varying width. Albeit some, rather small deviations were
observed between MD and KMC results, the latter method allowed
for a systematic quantification of the effect of pore width on the
diffusion coefficient of methane, showing that the mineralogy of
slit-shaped pores can affect the transport properties of supercritical
methane only when the pores are smaller than ∼3 nm. When the slit
pores were wider than ∼5 nm, the bulk-like diffusion coefficients are
predicted for methane diffusing through all the materials considered
by Apostolopoulou et al.87

The lattice KMC model developed by Apostolopoulou et al.85

can be considered as a bottom-up approach for multi-scale stud-
ies. Any fabricated or natural networks can be examined, as long as
kinetic (diffusion constants) and thermodynamic (interfacial barri-
ers) properties are available. The latter can, in general, be obtained
accurately from MD simulations. It is likely that KMC approaches
such as the one just described will provide better insights into the
diffusion of multiple components in shale formations and possibly
aid the formulation of approaches to enhance the natural gas or oil
recovery through shale reservoirs, as well as the permeation of CO2
in geological formations for permanent sequestration.

FIG. 7. (a) SEM image of an Eagle Ford sample (left), reproduced with permission from Naraghi and Javadpour, “A stochastic permeability model for the shale-gas systems,”
Int. J. Coal Geol. 140, 111–124 (2015).Copyright 2015 Elsevier B.V. Dark gray regions correspond to organic matter and light gray to inorganic matter. Permeability map
collected on Eagle Ford samples. An example of the permeability distribution within the matrix networks (organic matter in the inorganic ones). (b) Permeability calculation
of the organic and inorganic matter, and the effective network permeability using the effective medium theory (EMT) and simplified renormalization and KMC methods. The
organic matter is the high-permeability component. Figures adapted with permission from Ref. 86. Copyright 2019 Elsevier B.V.
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To demonstrate the ability of KMC to predict macroscopic
quantities, Apostolopoulou et al.86 used a 2D version of the KMC
algorithm to evaluate the permeability of heterogeneous pore net-
works meant to replicate the properties of shale samples. They com-
pared the KMC approach to the results from the effective medium
theory (EMT)164 and simplified renormalization methods,163 which
are deterministic approaches often used in practical settings because,
in part, of their simplicity. For example, Bhatia and co-workers165,166

recently used the EMT to predict effective diffusivities in hierarchical
mesoporous zeolite materials. The EMT induces the famous Brugge-
man’s combination rule,167 which combines the self-diffusivities for
the different domains within the materials in a non-linear fash-
ion. Although the EMT is broadly used, it encounters a few draw-
backs, in particular, when many pore blockages exist, and the per-
colation threshold is approached.18 Apostolopoulou et al.86 showed
that KMC can accurately account for transitions from low- to high-
permeability domains within a material. The most valued character-
istic of KMC, compared to the two deterministic methods consid-
ered, is its ability to capture anisotropy.86 It is therefore expected
that KMC could be applicable to low-connectivity networks and

could evaluate the impact of small-scale heterogeneities in which low
connectivity exists locally.

When the KMC was used to estimate the permeability of an
Eagle Ford shale sample for which data on pore size distributions
and one SEM image were available163 [see Fig. 7(a)], a reason-
able agreement with experimental permeability was achieved using
ten stochastic realizations for the inorganic, organic, and dual-
permeability networks considered representative of the shale rock
[see Fig. 7(b)].168–170 While, as shown in Fig. 7, the KMC approach
yields results that are broadly consistent with those from EMT and
renormalization approaches, it is likely that more pronounced dif-
ferences will emerge between the three methods when samples more
heterogeneous than the one used by Apostolopoulou et al. are con-
sidered. It is worth noting that the precision of the KMC approach
can be enhanced by extending the analysis to more 2D SEM images
of a plug sample so that local heterogeneities, anisotropy, and poros-
ity are properly accounted for. It will be challenging to efficiently
employ the KMC approach to analyze the permeability of an entire
plug sample while taking into account realistic molecular phenom-
ena such as adsorption. The extension of the KMC model to 3D will

FIG. 8. Top: schematic of a multiscale approach coupling MD and random-walk particle-tracking (RWPT)—Brownian dynamics simulations for calculating bed diffusion
coefficients Dbed in hierarchically structured, macro/mesoporous materials. Bottom: surface-parallel diffusion coefficient (a) and number density profiles (b) for benzene from
MD simulations in the slit-pore model with a mobile phase of water/acetonitrile (solid lines) and from simulations using the RWPT approach (open circles). (c) Effective Dbed
(normalized by bulk diffusivities Dm) for benzene as a function of the ACN content of the mobile phase. Results were obtained from the presented RWPT approach (solid
squares), modified (open squares), and original Maxwell Garnett formula (open circles). Figures adapted with permission from Tallarek et al., “Multiscale simulation of diffusion
in porous media: From interfacial dynamics to hierarchical porosity,” J. Phys. Chem. C 123(24), 15099–15112 (2019). Copyright 2019 American Chemical Society.
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allow for the systematic quantification of the effect of a number of
features on the predicted permeability.171

It should be noted, however that it is difficult to obtain some
important information on complex pore matrices, such as the con-
nectivity of the 3D pores and some macroscopic properties from
2D SEM images. Newer techniques, e.g., focused ion-beam SEM
(FIB-SEM) have been applied to overcome these challenges. For

example, using tomography and FIB-SEM experiments, Botan
et al.172 developed a multiscale approach by employing statistical
mechanics to study adsorption/transport in porous media while
accounting for adsorption in various degrees of porosity. First,
a lattice model is built for a given porous solid based on 3D
FIB-SEM images with each site representing a porosity domain
type, e.g., micro-, meso-, macro-, and non-porous. Subsequently, the

FIG. 9. (a)–(d) Schematic of a multiscale method for modeling flows through laboratory-scale filtration membranes comprising aligned nanotubes. (e) Dependence of the
flow enhancement for long CNTs on diameter. Comparisons between the multiscale results (solid blue circles), the calibrated H–P–W equation (blue dashed line), and flow
experiments. Figures adapted with permission from Borg et al., “Multiscale simulation of water flow through laboratory-scale nanotube membranes,” J. Membr. Sci. 567,
115–126 (2018). Copyright 2018 Elsevier B.V.
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lattice is sketched onto 3D data and the multiscale simulation is con-
ducted to quantify fluid transport as a function of pressure gradient
applied across the sample. The advantage of this multiscale model
is to enable changes in adsorption and transport upon modifying
simulation parameters. In addition, this approach does not require
inferring any types of adsorption or flow so that the various phenom-
ena can be taken into consideration. Nevertheless, the extraordinar-
ily small size of samples and the costs for the use of the FIB-SEM
technique hinder the broad applicability of the FIB-SEM in charac-
terizing the porous media structure.173 Recently, Tahmasebi et al.174

suggested an effective stochastic approach that uses a few 2D images
and creates 3D models or realizations of a porous network. It appears
that the approach developed by Tahmasebi et al.174 can yield insights
into the complexity of shale reservoirs, as well as to other natural
porous media with hierarchical pore structures, which could help in
improving the accuracy of the KMC method. However, we point out
that the accuracy of the stochastic method proposed by Tahmesebi
et al. depends strongly on the availability of experimental data to
reduce the uncertainty in the realizations. Once a representative 3D
model is developed, both stochastic and deterministic approaches
could be implemented, as discussed in the section titled Coupling
MD and other deterministic simulation techniques.

Coupling MD and other deterministic simulation
techniques

Tallarek et al.175 presented an attractive bottom-up multiscale
simulation approach that is deterministic in nature. Similarly to the
work of Apostolopoulou et al.,87 Tallarek et al.175 derived the effec-
tive bed diffusion coefficient (Dbed) taking into account for the solute
dynamics as well as features such as solute properties, mobile-phase
elution strength, and surface chemistry obtained from atomistic MD
simulations. This information is incorporated into random-walk
particle-tracking (RWPT)176,177—Brownian dynamics (BD) simula-
tions used to extract the effective diffusion coefficient (see Fig. 8,
top). In BD simulations, only trajectories and interactions between
key particles are computed, while other components of the system
are not included explicitly in the simulations but affect indirectly the
dynamics of the Brownian particles via a random force. This reduces
the dimensionality of the problem, making BD more computation-
ally effective than the corresponding MD simulations.178 To validate
the accuracy of the RWPT approach, Tallarek et al.175 compared the
results of benzene diffusivity and density in a slit-pore model with a
mixture of water/acetonitrile achieved from MD simulations, show-
ing high levels of consistency. This suggests that the approach is
applicable for estimating diffusion in systems with spatially depen-
dent mobility [see Figs. 8(a) and 8(b), bottom]. To harmonize the
results of diffusion in hierarchical macro/mesoporosity, Tallarek
et al.175 employed the EMT164 and achieved excellent agreement
when comparing Dbed against the results from a modified Maxwell
Garnett formula developed by Kalnin et al.179 [see Fig. 8(c), bot-
tom]. Similar to the 3D KMC model discussed in the section titled
Coupling deterministic MD and stochastic KMC simulations, the
multiscale simulation approach proposed by Tallarek et al.175 could
strengthen predictive modeling attempts.

Other approaches exist. For example, Borg et al. proposed
a sequential multiscale simulation method to accurately quantify

macroscopic water flows through laboratory-scale carbon nanotube
(CNT) membranes at moderate computational costs.35 The mul-
tiscale simulation flow approach combines MD simulations with
a continuum fluid model. Figure 9(a) shows an ideal laboratory-
scale membrane of thickness L containing many, potentially billions,
parallel CNTs. Fluid flow through the membrane can be described
as follows: Δp = KmM , where K is the flow resistance through an
arbitrary CNT and mM is the steady state mass flow rate through
such CNT. The flow model through one CNT is decomposed into
three components: one perfect long channel, one entrance, and one
exit, as illustrated in Fig. 9(b). The flow resistance K is equivalent
to the sum of the three correspondent flow resistances [Fig. 9(c)].
Borg et al. conducted one MD simulation for the flow through the
combined entrance/exit regions (subdomain 1) and another for the
long developed-flow CNT region of length L′ (subdomain 2) via
applying periodic BCs, as shown in Fig. 9(d). The MD results were
then fed as input parameters to a continuum flow model based
on the Hagen–Poiseuille–Weissberg (H–P–W) equation.72 Subse-
quently, the generated data are used to correct the H–P–W equa-
tion. This approach is easy to implement but still incorporates
non-continuum fluid effects. Borg et al.35 compared the results of
the nanotube flow enhancement factor E as predicted from their
H–P–W description against a range of experimental data, as shown
in Fig. 9(e). The comparison shows that predictions of Borg
et al. agree pretty well with some,180–182 but not all the literature
results.183,184 Further studies are needed to resolve the discrepancy.
The multiscale computational approach proposed by Borg et al.35

appears to be applicable to complex membrane frameworks because
it overcomes the drawbacks of the conventional H–P–W formalism,
known to be not appropriate for non-ideal configurations.

SUMMARY, CONCLUSIONS, AND PERSPECTIVES
This Review focuses on multiscale fluid transport through het-

erogeneous porous matrices, with porosity ranging from the molec-
ular (nm) to the macroscopic scale (>micrometer). The increased
importance of such complex and multiscale porous materials has
raised novel challenges regarding the fundamental understanding
of fluid transport through them. In particular, the thermodynam-
ics and dynamics of fluids confined in hierarchical porous media
remain somewhat unclear. Among questions left unexplained are
the role of interfaces between porosity domains, the breakdown of
hydrodynamics at the nanoscale, and the interplay between adsorp-
tion and transport mechanisms at each pore scale. Addressing these
questions will enable the rational design of hierarchical porous solids
for many applications. We have discussed the applicability of each
multiscale approach as well with its limitations for modeling fluid
transport through heterogeneous porous matrices:

● Atomistic equilibrium/non-equilibrium molecular dynam-
ics (MD) simulations are an efficient technique that reveals
a wealth of molecular-detailed properties for confined flu-
ids. However, predicting the transport properties of fluids
in hierarchical porous materials consisting of thousands of
pores and ultimately within complex pore networks is at
present unattainable with MD approaches.

● Fluid transport properties in hierarchical porous
materials can be measured by employing appropriate
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experimental tools such as pulsed field gradient nuclear
magnetic resonance techniques and microimaging; notwith-
standing, describing transport in these solids with a gen-
eral framework remains challenging. Several models such
as effective medium theory and simplified renormalization
methods have been developed. However, despite significant
progress, crucial questions remain to be addressed such as
the role of surface energy barriers and the role of gas/liquid
interfaces. Such effects can lead to complex activated trans-
port mechanisms that remain poorly understood.

● Lattice Boltzmann (LB) simulations are effective in study-
ing fluid transport at intermediate length and time scales
(i.e., the mesoscale) at a modest computational cost. Recent
advancements in coupling MD and LB have focused on
improving the description of the fluid–substrate and fluid–
fluid interactions at the meso-scale.

● Coupling MD and stochastic approaches based on kinetic
Monte Carlo with strong connections to experimental char-
acterization of the porous network features have shown the
potential of correctly predicting fluid transport in meso- and
macro-pores at a large scale while taking into considera-
tion features relevant at different porosity scales, fluid–solid
interactions, etc.

● Other approaches based on Brownian dynamics and vari-
ations of the continuum Hagen–Poiseuille–Weissberg for-
malism appear promising for describing complex structures
and model membranes, respectively, once the atomistic MD
results are used to provide input parameters.

When transport in different porosity scales is well-understood
and robust homogenization techniques are developed, prediction of
flow through macroscopic pore networks will be achieved using only
simple parameters describing the structural features of the porous
solid derived using limited datasets and others representing the fluid
properties. Such understanding will launch applications in many
sectors from energy to catalysis and environmental remediation. It
should be stressed that the approach most fruitful for a given appli-
cation strongly depends on the application itself, as different levels
of accuracy are needed to predict, for example, the separation of
multicomponent mixtures through a porous membrane or the gas
permeability through a heterogeneous rock formation.
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