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Abstract

Aharoni and Berger conjectured that every collection of n matchings of size n+1
in a bipartite graph contains a rainbow matching of size n. This conjecture is related
to several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin
squares. There have been many recent partial results about the Aharoni-Berger
Conjecture. The conjecture is known to hold when the matchings are much larger
than n + 1. The best bound is currently due to Aharoni, Kotlar, and Ziv who
proved the conjecture when the matchings are of size at least 3n/2 + 1. When the
matchings are all edge-disjoint and perfect, the best result follows from a theorem
of Häggkvist and Johansson which implies the conjecture when the matchings have
size at least n+ o(n).

In this paper we show that the conjecture is true when the matchings have size
n + o(n) and are all edge-disjoint (but not necessarily perfect). We also give an
alternative argument to prove the conjecture when the matchings have size at least
φn+ o(n) where φ ≈ 1.618 is the Golden Ratio.

Our proofs involve studying connectedness in coloured, directed graphs. The
notion of connectedness that we introduce is new, and perhaps of independent in-
terest.

1 Introduction

A Latin square of order n is an n×n array filled with n different symbols, where no sym-
bol appears in the same row or column more than once. Latin squares arise in different
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branches of mathematics such as algebra (where Latin squares are exactly the multipli-
cation tables of quasigroups) and experimental design (where they give rise to designs
called Latin square designs). They also occur in recreational mathematics—for example
completed Sudoku puzzles are Latin squares.

In this paper we will look for transversals in Latin squares. A transversal in a Latin
square of order n is a set of n entries such that no two entries are in the same row, same
column, or have the same symbol. One reason transversals in Latin squares are interesting
is that a Latin square has an orthogonal mate if, and only if, it has a decomposition into
disjoint transversals. See [15] for a survey about transversals in Latin squares. It is easy
to see that not every Latin square has a transversal (for example the unique 2× 2 Latin
square has no transversal). However, it is possible that every Latin square contains a
large partial transversal. Here, a partial transversal of size m means a set of m entries
such that no two entries are in the same row, same column, or have the same symbol.

There are several closely related, old, and difficult conjectures which say that Latin
squares should have large partial transversals. The first of these is a conjecture of Ryser
that every Latin square of odd order contains a transversal [13]. Brualdi and Stein con-
jectured that every Latin square contains a partial transversal of size n− 1.

Conjecture 1.1 (Brualdi and Stein, [7, 14]). Every Latin square contains a partial
transversal of size n− 1.

There have been many partial results about this conjecture. It is known that every
Latin square has a partial transversal of size n−o(n)—Woolbright [16] and independently
Brower, de Vries and Wieringa [6] proved that every Latin square contains a partial
transversal of size n −

√
n. This has been improved by Hatami and Schor [11] to n −

O(log2 n). Häggkvist and Johansson proved a related result about Latin rectangles. For
m 6 n a m×n Latin rectangle is an m×n array of n symbols where no symbol appears in
the same row or column more than once. A transversal in a Latin rectangle is a set of m
entries no two of which are in the same row, column, or have the same symbol. Häggkvist
and Johansson proved the following.

Theorem 1.2 (Häggkvist and Johansson, [10]). For every ε, there is an m0 = m0(ε) such
that the following holds. For every n > (1 + ε)m > m0, every m× n Latin rectangle can
be decomposed into disjoint transversals.

This theorem is proved by a probabilistic argument, using a “random greedy process”
to construct the transversals. The above theorem gives yet another proof that every
sufficiently large n × n Latin square has a partial transversal of size n − o(n)—indeed if
we remove εn rows of a Latin square we obtain a Latin rectangle to which Theorem 1.2
can be applied.

In this paper we will look at a strengthening of Conjecture 1.1. The strengthening
we’ll look at is a conjecture due to Aharoni and Berger which takes place in a more general
setting than Latin squares—namely edge coloured bipartite graphs. To see how the two
settings are related, notice that there is a one-to-one correspondence between n×n Latin
squares and proper edge colourings of Kn,n with n colours—indeed to a Latin square S
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we associate the colouring of Kn,n with vertex set {x1, . . . , xn, y1, . . . , yn} where the edge
between xi and yj receives colour Si,j. Notice that this colouring is proper i.e. adjacent
edges receive different colours. Recall that a matching in a graph is a set of disjoint
edges. We call a matching rainbow if all of its edges have different colours. It is easy to
see that partial transversals in the Latin square S correspond to rainbow matchings in
the corresponding coloured Kn,n. Thus Conjecture 1.1 is equivalent to the statement that
“in any proper n-colouring of Kn,n, there is a rainbow matching of size n− 1.”

One could ask whether a large rainbow matching exists in other settings. Recall that
a simple graph is a graph which contains at most one edge between any pair of vertices.
A multigraph is a graph which may contain multiple edges between vertices. Aharoni and
Berger posed the following conjecture, which generalises Conjecture 1.1.

Conjecture 1.3 (Aharoni and Berger, [1]). Let G be a multigraph, properly edge coloured
by n colours, with at least n+1 edges of each colour. Then G contains a rainbow matching
with n edges.

This conjecture was first posed in a different form in [1] as a conjecture about matchings
in tripartite hypergraphs (Conjecture 2.4 in [1]). It was first stated as a conjecture about
rainbow matchings in [2].

The above conjecture has attracted a lot of attention recently, and there are many
partial results. Just like in Conjecture 1.1, one natural way of attacking Conjecture 1.3
is to prove approximate versions of it. As observed by Barat, Gyárfás, and Sárközy
[4], the arguments that Woolbright, Brower, de Vries, and Wieringa used to find partial
transversals of size size n−

√
n in Latin squares actually generalise to bipartite graphs to

give the following.

Theorem 1.4 (Woolbright, [16]; Brower, de Vries, and Wieringa, [6]; Barat, Gyárfás,
and Sárközy, [4]). Let G be a bipartite multigraph, properly edge coloured by n colours,
with at least n edges of each colour. Then G contains a rainbow matching with n −

√
n

edges.

Barat, Gyárfás, and Sárközy actually proved something a bit more general in [4]—for
every k, they gave an upper bound on the number of colours needed to find a rainbow
matching of size n− k.

Another approximate version of Conjecture 1.3 comes from Theorem 1.2. It is easy to
see that Theorem 1.2 is equivalent to the following “let G be a bipartite graph consisting
of n edge-disjoint perfect matchings, each with at least n + o(n) edges. Then G can be
decomposed into disjoint rainbow matchings of size n” (to see that this is equivalent to
Theorem 1.2, associate an m-edge coloured bipartite graph with any m×n Latin rectangle
by placing a colour k edge between i and j whenever (k, i) has symbol j in the rectangle).

The main result of this paper is an approximate version of Conjecture 1.3 in the case
when the matchings in G are disjoint, but not necessarily perfect.

Theorem 1.5. For all ε > 0, there exists an N = N(ε) = 1020ε−16ε
−1

such that the
following holds. Let G be a bipartite simple graph, properly edge coloured by n > N
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colours, with at least (1 + ε)n edges of each colour. Then G contains a rainbow matching
with n edges.

Unlike the proof of Theorem 1.2 which can be used to give a randomised process to
find a rainbow matching, the proof of Theorem 1.5 is algorithmic. In fact, it can be shown
that the matching guaranteed by Theorem 1.5 can be found in polynomial time.

Another very natural approach to Conjecture 1.3 is to to prove it when the matchings
have size much larger than n + 1. When the matchings have size 2n, the result becomes
trivial.

Lemma 1.6. Let G be a multigraph, properly edge coloured with n colours, each with at
least 2n edges of each colour. Then G contains a rainbow matching with n edges.

This lemma is proved by greedily choosing disjoint edges of different colours. We can
always choose n edges this way, since each colour class has 2n edges (one of which must
be disjoint from previously chosen edges).

There have been several improvements to the 2n bound in Lemma 1.6. Aharoni,
Charbit, and Howard [2] proved that matchings of size b7n/4c are sufficient to guarantee
a rainbow matching of size n. Kotlar and Ziv [12] improved this to b5n/3c. Clemens and
Ehrenmüller [8] further improved the constant to 3n/2 + o(n). Finally, Aharoni, Kotlar,
and Ziv improved the o(n) term to give the following.

Theorem 1.7 (Aharoni, Kotlar, and Ziv, [3]). Let G be a multigraph, properly coloured
with n colours, with at least d3n/2e+ 1 edges of each colour. Then G contains a rainbow
matching with n edges.

Though we won’t improve on this theorem, we give an alternative proof which gives a
weaker bound of φn+ o(n) where φ ≈ 1.618 is the Golden Ratio.

Theorem 1.8. Let G be a bipartite graph, properly coloured by n colours, with at least
φn+ 20n/ log n edges of each colour. Then G contains a rainbow matching with n edges.

Theorems 1.5 and 1.8 are proved by studying paths in auxiliary directed graphs. This
approach is new and the results we prove about directed graphs may be of independent
interest. In particular, we introduce a new notion of connectivity, which we call “rainbow
k-connectivity”. In the next section we give an informal sketch of the proof of Theorem 1.5.
In Section 2 we prove the results about a number of lemmas about directed graphs which
we will need. In Section 3 we prove Theorem 1.5. In Section 4 we prove Theorem 1.8. In
Section 5 we make some concluding remarks about the techniques used in this paper. For
all standard notation we follow [5].

Sketch of proofs

In this section we informally present the main ideas in our proof of Theorem 1.5. Let
G be a bipartite simple graph with bipartition classes X and Y properly coloured by n
colours and with at least (1 + ε)n edges of each colour. Let M be a maximum rainbow
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matching in G. Let X0 = X \ V (M) and Y0 = Y \ V (M). If G doesn’t satisfy the
conclusion of Theorem 1.5, then there is some colour, c∗, which is not present in M .
Previous approaches to the Aharoni-Berger Conjecture [2, 3, 8, 12] revolved around trying
to perform local manipulations on M until it can be extended to a larger matching. These
local manipulations have a similar flavour to “alternating paths” which are often used to
study matchings in uncoloured graphs. The following definition is a special case of the
kinds of manipulations we will use in the full proof of Theorem 1.5.

Definition 1.9. An X0-switching σ is a sequence of distinct edges σ = (e0, m1, e1, . . . ,
m`−1, e`−1, m`) such that mi ∈M , ei goes between X0 and mi+1 ∩ Y , and ei and mi have
the same colour.

If e0 has colour c0 and m` has colour c`, then we say that σ is an X0-switching from
c0 to c`. If σ is an X0-switching from the colour c∗ which is not present in M to some
other colour c`, then it is an easy exercise to show that the following is another rainbow
matching in G.

Mσ = M + e0 −m1 + e1 −m2 + e3 − · · · −m`−1 + e`−1 −m`.

In Section 3 we prove Lemma 3.3 which is a generalization of the statement of Mσ being
a rainbow matching. Furthermore Mσ is a rainbow matching of the same size as M and
missing c`, the colour of m`. Thus X0-switchings can be used to go between maximum
rainbow matchings with different missing colours. At a very high level, our proof can be
summarized as “we look for switchings in a graph until we find one which allows us to
find a matching bigger than M .”

The key idea of this paper is that switchings can be studied using auxiliary directed
graphs. The following is a special case of the directed graphs which we will use to study
switchings.

Definition 1.10. The directed graph DX0 is defined as follows.

• The vertex set of DX0 is the set of colours of edges in G.

• For two colours u and v ∈ V (DX0), there is a directed edge from u to v in DX0

whenever there is an x ∈ X0 such that there is a colour u edge from x to the vertex
mv ∩ Y in G, where mv is the colour v edge of M . In this case uv is coloured by
“x”.

What does the above definition have to do with X0-switchings? It is an easy exercise
to show that X0-switchings are in one-to-one corrospondance with rainbow paths in the
directed graph DX0 . Specifically, given an X0-switching σ = (e0,m1, e1, m2, e2, . . . ,m`−1,
e`−1,m`) from c to c′, then the set of edges of DX0 corresponding to e0, e1, . . . , e`−1 form a
rainbow path from c to c′. This correspondence is made precise in Lemma 3.6 in Section 3.
Thus studying X0-switchings is exactly the same as studying rainbow paths in DX0 . Since
rainbow paths are more familiar objects that X0-switchings, this opens up more powerful

the electronic journal of combinatorics 22 (2015), #P00 5



techniques to study them. For two vertices u, v ∈ DX0 , we use dR(u, v) to denote the
length of the shortest rainbow path from c∗ to v

The first observation one makes about DX0 is that any vertex v ∈ DX0 must have
d+(v) > εn− dR(c∗, v). This is a special case of Lemma 3.7 which we prove in Section 3.
The idea behind it’s proof is to consider an X0-switching σ corresponding to a minimal
length path from c∗ to v. If d+(v) > εn − dR(c∗, v) didn’t hold, then it is possible to
show that a colour v edge between X0 and Y0 can be added to Mσ in order to get a larger
matching, contradicting the maximality of the original matching M .

Thus we have that vertices close to c∗ in DX0 have linear degree. A large part of the
proof of Theorem 1.5 involves showing that such graphs have a large highly connected
subgraph. But how do we define connectivity of coloured graphs? The following definition
is new, and perhaps of independent interest.

Definition 1.11. An edge coloured directed graph G is said to be rainbow k-edge-connected
if for any set S of at most k−1 colours and any pair of vertices u and v, there is a rainbow
u to v path whose edges have no colours from S.

The above definition differs from usual notions of connectivity, since generally the
avoided set S is a set of edges rather than colours.

The key intermediate result we prove is that every properly edge coloured directed
graph D has a rainbow k-edge-connected subset C of size roughly δ+(D). Lemma 2.10
will make this precise. Since every vertex in DX0 has d+(v) > εn− dR(c∗, v), this can be
used to get a k-edge-connected subset C of size roughly εn− o(n) where the “o(n)” term
depends on k. How does such a highly connected subset help in the original problem of
finding a matching in G? Recall that the vertices of DX0 correspond to colours in G.
In particular all vertices v ∈ V (DX0) other that c∗ have a coresponding edge mv ∈ M
coloured by v. Given a k-connected subset C, let X1 = {mv ∩X : v ∈ C} ∪X0.

Now X1 is a subset of X which has some kind of “flexibility” property which comes
from the rainbow k-connectedness of C. In particular, given any small set S of vertices
in X1 it is possible to find an X0-switching σ corresponding to some rainbow path in C,
such that Mσ is disjoint from S. The precise notion of flexibility which we obtain is given
in Definition 3.2. Though far from obvious, it turns out that all the arguments in this
section can be repeated with X0 replaced by X1. This is made precise in Lemma 3.8.
Repeating all the arguments with X1 instead of X0 gives a new set X2 containing X1,
which still has a degree of “flexibility”. This process cannot go on forever since at each
iteration Xi is roughly εn bigger than Xi−1. The only way the process can terminate is by
finding a matching larger than M in the step during which we established that vertices
in DX0 have large out-degree. Thus, if the various parameters are chosen suitably, then
we obtain that the original matching M must have used every colour i.e. Theorem 1.5.

2 Paths in directed and coloured graphs

In this section we prove results about paths in various types of directed graphs. All graphs
in this section have no multiple edges, although we allow the same edge to appear twice
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in opposite directions. In directed graphs, “path” will always mean a sequence of vertices
x1, x2, . . . , xk such that xixi+1 is a directed edge for i = 1, . . . , k−1. The vertices x1 and xk
are called the endpoints of the path, and x2, . . . , xk−1 are called the internal vertices of the
path. We say that a path P internally avoids a set of vertices S if {x2, . . . , xk−1}∩S = ∅.
We will use additive notation for concatenating paths—for two paths P = p1 . . . pi and
Q = q1 . . . qj, P + Q denotes the path with vertex sequence p1 . . . piq1 . . . qj. Let N+

G (v)
denote the out-neighbourhood of a vertex v in a graph G i.e. the set of vertices x for
which vx is an edge in G. When the identity of G is clear from the context, we will
abbreviate this to N+(v). Let dG(u, v) denote the length of the shortest part from u to v
in a graph G.

We will look at coloured graphs. An edge colouring of a graph is an assignment of
colours to the edges of a graph. A total colouring is an assignment of colours to both the
vertices and edges of a graph. For any coloured graph we denote by c(v) and c(uv) the
colour assigned to a vertex or edge respectively.

An edge colouring is out-proper if for any vertex v, the outgoing edges from v all have
different colours. Similarly an edge colouring is in-proper if for any vertex v, the ingoing
edges from v all have different colours. We say that an edge colouring is proper if it is
both in and out-proper (notice that by this definition it is possible to have two edges with
the same colour at a vertex v—as long as one of the edges is oriented away from v and
one is oriented towards v). A total colouring is proper if the underlying edge colouring
and vertex colourings are proper and the colour of any vertex is different from the colour
of any edge containing it. A totally coloured graph is rainbow if all its vertices and edges
have different colours. For two vertices u and v in a coloured graph, dR(u, v) denotes the
length of the shortest rainbow path from u to v. We say that a graph is vertex-rainbow if
all its vertices have different colours.

This section will mostly be about finding highly connected subsets in directed graphs.
The following is the notion of connectivity that we will use.

Definition 2.1. Let A be a set of vertices in a digraph D. We say that A is (k, d)-
connected in D if, for any set of vertices S ⊆ V (D) with |S| 6 k − 1 and any vertices
x, y ∈ A \ S, there is an x to y path of length 6 d in D avoiding S.

Notice that a directed graph D is strongly k-connected if, and only if, V (D) is (k,∞)-
connected in D. Also notice that it is possible for a subset A ⊆ V (D) to be highly
connected without the induced subgraph D[A] being highly connected—indeed if D is a
bipartite graph with classes X and Y where all edges between X and Y are present in both
directions, then X is a (|Y |, 2)-connected subset of D, although the induced subgraph on
X has no edges.

We will also need a generalization this notion of connectivity to coloured graphs

Definition 2.2. Let A be a set of vertices in a coloured digraph D. We say that A is
(k, d)-rainbow connected in D if, for any set of at most k − 1 colours S and any vertices
x, y ∈ A, there is a rainbow x to y path of length 6 d in D internally avoiding colours in
S.
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Notice that in the above definition, we did not specify whether the colouring was a
edge colouring, vertex colouring, or total colouring. The definition makes sense in all
three cases. For edge colourings a path P “internally avoiding colours in S” means P not
having edges having colours in S. For vertex colourings a path P “internally avoiding
colours in S” means P not having vertices having colours in S (except possibly for the
vertices x and y). For total colourings a path P “internally avoiding colours in S” means
P having no edges or vertices with colours in S (except possibly for the vertices x and y).

Comparing the above definition to “rainbow k-edge-connectedness” defined in the
previous section we see that an edge coloured graph is rainbow k-connected exactly when
it is (k,∞)-rainbow connected.

We’ll need the following lemma which could be seen as a weak analogue of Menger’s
Theorem. It will allow us to find rainbow paths through prescribed vertices in a highly
connected set.

Lemma 2.3. Let D be a totally coloured digraph and A a (3kd, d)-rainbow connected
subset of D. Let S be a set of colours with |S| 6 k and a1, . . . , ak be vertices in A such
that no ai has a colour from S and a1, . . . , ak all have different colours.

Then there is a rainbow path P from a1 to ak of length at most kd which passes through
each of a1, . . . , ak and avoids S

Proof. Using the definition of (3kd, d)-rainbow connected, there is a rainbow path P1 from
a1 to a2 of length 6 d avoiding colours in S. Similarly for i 6 k, since the total number of
colours in S together with P1 + · · ·+Pi−1 is k+2d(i−1)+1 6 3kd there is a rainbow path
Pi from ai to ai+1 of length 6 d internally avoiding the k colours in S and the 2d(i−1)+1
colours in P1 + · · ·+ Pi−1. Joining the paths P1, . . . , Pk−1 gives the required path.

To every coloured directed graph we associate an uncoloured directed graph where
two vertices are joined whenever they have a lot of short paths between them.

Definition 2.4. Let D be a totally coloured digraph and m ∈ N. We define an uncoloured
directed graph Dm as follows. The vertex set of Dm is V (D), and xy is an edge of Dm

whenever there are m internally vertex disjoint paths P1, . . . , Pm, each of length 2 and
going from x to y such that P1 ∪ · · · ∪ Pm is rainbow.

It turns out that for properly coloured directed graphs D, the uncoloured graph Dm

has almost the same minimum degree as D. The following lemma will allow us to study
short rainbow paths in coloured graphs by first proving a result about short paths in
uncoloured graphs.

Lemma 2.5. For all ε > 0 and m ∈ N, there is an N = N(ε,m) = (5m+ 4)/ε2 such that
the following holds. Let D be a properly totally coloured vertex-rainbow directed graph on
at least N vertices. Then we have

δ+(Dm) > δ+(D)− ε|D|.
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Proof. Let v be an arbitrary vertex in Dm. It is sufficient to show that |N+
Dm

(v)| >
|δ+(D)| − ε|D|.

For w ∈ V (D), we define

rv(w) = #rainbow paths of length 2 from v to w.

Let W = {w : rv(w) > 5m}. The following claim shows that W is large.

Claim 2.6. |W | > δ+(D)− ε|D|.

Proof. For any u ∈ N+
D (v) we let

N ′(u) = N+
D (u) \ {x ∈ N+

D (u) : ux or x has the same colour as v or vu}.

Since D is properly coloured, and all the vertices in D have different colours, we have
that |{x ∈ N+(u) : ux or x has the same colour as v or vu}| 6 4. This implies that
|N ′(u)| > δ+(D)− 4.

Notice that for a vertex x, we have x ∈ N ′(u) if, and only if, the path vux is rainbow.
Indeed vu has a different colour from v and u since the colouring is proper. Similarly ux
has a different colour from u and x. Finally ux and x have different colours from v and
vu by the definition of N ′(u).

Therefore there are
∑

u∈N+
D(v) |N ′(u)| rainbow paths of length 2 starting at v i.e. we

have
∑

x∈V (D) rv(x) =
∑

u∈N+
D(v) |N ′(u)|. For any x ∈ D, we certainly have rv(x) 6

|N+(v)|. If x 6∈ W then we have rv(x) < 5m. Combining these we obtain

(|D| − |W |)5m+ |W ||N+
D (v)| >

∑
x∈V (D)

rv(x) =
∑

u∈N+(v)

|N ′(u)| > |N+
D (v)|(δ+(D)− 4).

The last inequality follows from |N ′(u)| > δ+(D)− 4 for all u ∈ N+
D (v). Rearranging we

obtain

|W | > |N
+
D (v)|(δ+(D)− 4)− 5m|D|

|N+
D (v)| − 5m

> δ+(D)− 5m|D|
|N+

D (v)|
− 4 > δ+(D)− (5m+ 4)

|D|
δ+(D)

.

If (5m+4)/δ+(D) 6 ε, then this implies the claim. Otherwise we have δ+(D) < (5m+4)/ε
which, since |D| > N0 = (5m + 4)/ε2, implies that δ+(D) 6 ε|D| which also implies the
claim.

The following claim shows that W is contained in N+
Dm

(v).

Claim 2.7. If w ∈ W , then we have vw ∈ E(Dm).

Proof. From the definition of W , we have 5m distinct rainbow paths P1, . . . , P5m from
v to w of length 2. Consider an auxiliary graph G with V (G) = {P1, . . . , P5m} and
PiPj ∈ E(G) whenever Pi ∪ Pj is rainbow.
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We claim that δ(G) > 5m − 4. Indeed if for i 6= j we have Pi = vxw and Pj = vyw,
then, using the fact that the colouring on D is proper and the vertex-rainbow, it is easy
to see that the only way Pi ∪ Pj could not be rainbow is if one of the following holds:

c(vx) = c(yw) c(vx) = c(y)

c(vy) = c(xw) c(vy) = c(x).

Thus if Pi = vxw had five non-neighbours vy1w, . . . , vy5w in G, then by the Pigeonhole
Principle for two distinct j and k we would have one of c(yjw) = c(ykw), c(yj) = c(yk),
or c(vyj) = c(vyk). But none of these can occur for distinct paths vyjw and vykw since
the colouring on D is proper and the vertex-rainbow. Therefore δ(G) > 5m− 4 holds.

It is easy to see that G has a clique of size at least |V (G)|/5 = m (for example by
Turán’s Theorem, or Brooks’ Theorem.) The union of the paths in this clique is rainbow,
showing that vw ∈ E(Dm).

Claim 2.7 shows that W ⊆ N+
Dm

(v), and so Claim 2.6 implies that |N+
Dm

(v)| > δ+(D)−
ε|D|. Since v was arbitrary, this implies the lemma.

The following lemma shows that every directed graph with high minimum degree
contains a large, highly connected subset.

Lemma 2.8. For all ε > 0 and k ∈ N, there is a d = d(ε) = 40ε−2 and N = N(ε, k) =
32kε−2 such that the following holds. Let D be a directed graph of order at least N . Then
there is a (k, d)-connected subset A ⊆ V (D) satisfying

|A| > δ+(D)− ε|D|.

Proof. We start with the following claim.

Claim 2.9. There is a set Ã ⊆ V (D) satisfying the following

• For all B ⊆ Ã with |B| > ε|D|/4 there is a vertex v ∈ Ã\B such that |N+(v)∩B| >
ε2|D|/16.

• δ+(D[Ã]) > δ+(D)− ε|D|/4.

Proof. Let A0 = V (D). We define A1, A2, . . . , AM recursively as follows.

• If Ai contains a set Bi such that |Bi| > ε|D|/4 and for all v ∈ Ai \ Bi we have
|N+(v) ∩Bi| < ε2|D|/16, then we let Ai+1 = Ai \Bi.

• Otherwise we stop with M = i.

We will show that that Ã = AM satisfies the conditions of the claim. Notice that by the
construction of AM , it certainly satisfies the first condition. Thus we just need to show
that δ+(D[AM ]) > δ+(D)− ε|D|/4.

From the definition of Ai+1 we have that δ+(D[Ai+1]) > δ+(D[Ai]) − ε2|D|/16 which
implies δ+(D[AM ]) > δ+(D)−Mε2|D|/16. Therefore it is sufficient to show that we stop
with M 6 4ε−1. This follows from the fact that the sets B0, . . . , BM−1 are all disjoint
subsets of V (D) with |Bi| > ε|D|/4.
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Let Ã be the set given by the above claim. Let A = {v ∈ Ã : |N−(v) ∩ Ã| > ε
2
|D|}.

We claim that A satisfies the conditions of the lemma.
To show that |A| > δ+(D)− ε|D|, notice that we have

ε

2
|D|(|Ã| − |A|) + |A||Ã| >

∑
v∈Ã

|N−(v) ∩ Ã| =
∑
v∈Ã

|N+(v) ∩ Ã| > |Ã|(δ+(D)− ε|D|/4).

The first inequality come from bounding |N−(v) ∩ Ã| by ε
2
|D| for v 6∈ A and by |Ã|

for v ∈ A. The second inequality follows from the second property of Ã in Claim 2.9.
Rearranging we obtain

|A| > |Ã|
|Ã| − ε|D|/2

(δ+(D)− 3ε|D|/4) > δ+(D)− ε|D|.

Now, we show that A is (k, d)-connected in D. As in Definition 2.1, let S be a subset
of V (D) with |S| 6 k − 1 and let x, y be two vertices in A \ S. We will find a path of
length 6 d from x to y in Ã \ S. Notice that since |D| > 32kε−2, we have |S| 6 ε2|D|/32.

Let N t(x) = {u ∈ Ã \S : dD[Ã\S](x, u) 6 t}. We claim that for all x ∈ Ã and t > 0 we
have

|N t+1(x)| > min(|Ã| − ε|D|/4, |N t(x)|+ ε2|D|/32).

For t = 0 this holds since we have |N1| = |Ã| > ε|D|/4. Indeed if |N t(x)| < |Ã| − ε|D|/4
holds for some t and x, then letting B = Ã\N t(x) we can apply the first property of Ã from
Claim 2.9 in order to find a vertex u ∈ N t(x) such that |N+(u)∩ (Ã\N t(x))| > ε2|D|/16.
Using |S| 6 ε2|D|/32 we get |(N+(u) \ S)∩ (Ã \N t(x))| > |N+(u)∩ (Ã \N t(x))| − |S| >
ε2|D|/32. Since (N+(u) ∩ Ã \ S) ∪ N t(x) ⊆ N t+1(x), we obtain |N t+1(x)| > |N t(x)| +
ε2|D|/32.

Thus we obtain that |N t(x)| > min(|Ã| − ε|D|/4, tε2|D|/32). Since (d− 1)ε2/32 > 1,
we have that |Nd−1(x)| > |Ã| − ε|D|/4. Recall that from the definition of A, we also have
also have |N−(y) ∩ Ã| > ε|D|/2. Together these imply that N−(y) ∩ Nd−1(x) 6= ∅ and
hence there is a x – y path of length 6 d in Ã \ S.

The following is a generalization of the previous lemma to coloured graphs. This is
the main intermediate lemma we need in the proof of Theorem 1.5.

Lemma 2.10. For all ε > 0 and k ∈ N, there is an d = d(ε) = 1280ε−2 and N =
N(ε, k) = 1800kε−4 such that the following holds.

Let D be a properly totally coloured vertex-rainbow directed graph on at least N vertices.
Then there is a (k, d)-rainbow connected subset A ⊆ V (D) satisfying

|A| > δ+(D)− ε|D|.

Proof. Set m = 9d + 3k, and consider the directed graph Dm as in Definition 2.4. Using
|D| > 1800kε−4, we can apply Lemma 2.5 with the constant ε/4 we have that δ+(Dm) >
δ+(D)− ε|D|/4.
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Apply Lemma 2.8 to Dm with the constants ε/4, and k. This gives us a (k, d/2)-
connected set A in Dm with |A| > δ+(Dm)− ε|Dm|/4 > δ+(D)− ε|D|/2. We claim that
A is (k, d)-rainbow connected in D. As in Definition 2.2, let S be a set of k colours and
x, y ∈ A. Let SV be the vertices of D with colours from S. Since D is vertex-rainbow,
we have |SV | 6 k. Since A is (k, d/2)-connected in Dm, there is a x – y path P in
(Dm \ SV ) + x+ y of length 6 d/2.

Using the property of Dm, for each edge uv ∈ P , there are at least m choices for a
triple of three distinct colours (c1, c2, c3) and a vertex y(uv) such that there is a path
uy(uv)v with c(uy(uv)) = c1, c(y(uv)) = c2, and c(y(uv)v) = c3. Since m > 9d + 3k >
6|E(P )|+ 3|V (P )|+ 3|S|, we can choose such a triple for every edge uv ∈ P such that for
two distinct edges in P , the triples assigned to them are disjoint, and also distinct from
the colours in S and colours of vertices of P .

Let the vertex sequence of P be u, x1, x2, . . . , xp, v. The following sequence of vertices
is a rainbow path from u to v of length 2|P | 6 d internally avoiding colours in S

P ′ = u, y(ux1), x1, y(x1x2), x2, y(x2x3), x3, . . . , xp−1, y(xp−1xp), xp, y(xpv), v.

To show that P ′ is a rainbow path we must show that all its vertices and edges have
different colours. The vertices all have different colours since the vertices in D all had
different colours. The edges of P ′ all have different colours from each other and the
vertices of P ′ by our choice of the vertices y(xixi+1) and the triples of colours associated
with them.

We’ll need the following simple lemma which says that for any vertex v there is a set
of vertices N t0 close to v with few edges going outside N t0 .

Lemma 2.11. Suppose we have ε > 0 and D a totally coloured directed graph. Let v be
a vertex in D and for t ∈ N, let N t(v) = {x : dR(v, x) 6 t}. There is a t0 6 ε−1 such that
we have

|N t0+1(v)| 6 |N t0(v)|+ ε|D|.

Proof. Notice that if |N t+1(v)| > |N t(v)|+ ε|D| held for all t 6 ε−1, then we would have
|N t(v)| > εt|D| for all t 6 ε−1. When t = ε−1 this gives |N ε−1

(v)| > |D|, which is a
contradiction.

A corollary of the above lemma is that for any vertex v in a properly coloured directed
graph, there is a subgraph of D close to v which has reasonably large minimum out-degree.

Lemma 2.12. Suppose we have ε > 0 and D a properly totally coloured vertex-rainbow
directed graph on > 2ε−2 vertices. Let v be a vertex in D and δ+ = minx:dR(v,x)6ε−1 d+(x).
Then there is a set N such that dR(v,N) 6 ε−1 and we have

δ+(D[N ]) > δ+ − 2ε|D|.

Proof. Apply Lemma 2.11 to D in order to obtain a number t0 6 ε−1 with |N t0+1(v)| 6
|N t0(v)|+ ε|D|. We claim that the set N = N t0(v) satisfies the conditions of the lemma.
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Suppose, for the sake of contradiction that there is a vertex x ∈ N t0(v) with |N+(x)∩
N t0(v)| < δ+ − 2ε|D|. Since δ+ 6 |N+(x)|, we have |N+(x) \ N t0(v)| > 2ε|D|. Let P
be a length 6 t0 path from v to x. Notice that since the colouring on D is proper and
all vertices in D have different colours, the path P + y is rainbow for all except at most
2|P | of the vertices y ∈ N+(x). Therefore we have |N+(x) \ N t0+1(v)| 6 2|P | 6 2ε−1.
Combining this with |D| > 2ε−2, this implies

|N t0+1(v)| > |N t0(v)|+ |N+(x) \N t0(v)| − |N+(x) \N t0+1(v)|
> |N t0(v)|+ 2ε|D| − 2ε−1

> |N t0(v)|+ ε|D|.

This contradicts the choice of t0 in Lemma 2.11.

3 Proof of Theorem 1.5

The goal of this section is to prove an approximate version of Conjecture 1.3 in the case
when all the matchings in G are disjoint. The proof will involve considering auxiliary
directed graphs to which Lemmas 2.10 and 2.12 will be applied.

We begin this section by proving a series of lemmas (Lemmas 3.3 – 3.8) about bipartite
graphs consisting of a union of n0 matchings. The set-up for these lemmas will always be
the same, and so we state it in the next paragraph to avoid rewriting it in the statement
of every lemma.

We will always have bipartite graph called “G” with bipartition classes X and Y
consisting of n+1 edge-disjoint matchings M1, . . . ,Mn+1. These matchings will be referred
to as colours, and the colour of an edge e means the matching e belongs to. There will
always be a rainbow matching called M of size n in G. We set X0 = X \ V (M) and
Y0 = Y \ V (M). The colour missing from M will denoted by c∗.

Notice that for any edge e, there is a special colour (the colour ce of the edge e) as well
as a special vertex in X (i.e. e ∩X) and in Y (i.e. e ∩ Y ). In what follows we will often
want to refer to the edge e, the colour ce, and the vertices e∩X and e∩Y interchangeably.
To this end we make a number of useful definitions:

• For an edge e, we let (e)C be the colour of e, (e)X = e ∩X, and (e)Y = e ∩ Y .

• For a vertex x ∈ X, we let (x)M be the edge of M passing through x (if it exists),
(x)C the colour of (x)M , and (x)Y the vertex (x)M ∩ Y . If there is no edge of M
passing through x, then (x)M , (x)C , and (x)Y are left undefined.

• For a vertex y ∈ Y , we let (y)M be the edge of M passing through y (if it exists),
(y)C the colour of (y)M , and (y)X the vertex (y)M ∩ X. If there is no edge of M
passing through y, then (y)M , (y)C , and (y)X are left undefined.

• For a colour c, we let (c)M be the colour c edge of M (if it exists), (c)X = (c)M ∩X,
and (c)Y = (c)M ∩ Y . For the colour c∗, we leave (c)M , (c)X , and (c)Y undefined.
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Y
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e0 e1 e2 e3

m1 m2 m3 m4

Figure 1: An X ′-switching of length 4. The solid lines represent edges of M and the
dashed lines represent edges not in M .

For a set S of colours, edges of M , or vertices, we let (S)M = {(s)M : s ∈ S}, (S)X =
{(s)X : s ∈ S}, (S)Y = {(s)Y : s ∈ S}, and (S)C = {(s)C : s ∈ S}. Here S is allowed
to contain colours/edges/vertices for which (∗)M/(∗)X/(∗)Y /(∗)C are undefined—in this
case (S)M is just the set of (s)M for s ∈ S where (s)M is defined (and similarly for
(S)X/(S)Y /(S)C . It is useful to observe that from the above definitions we get identities
such as (((S)X)C)M = S for a set S of edges of M .

We will now introduce two important and slightly complicated definitions. Both Defi-
nition 3.1 and 3.2 will apply in the setting of a bipartite graph G with bipartition X ∪ Y
consisting of n+ 1 edge-disjoint matchings, and a rainbow matching M of size n missing
colour c∗. The first definition is that of a switching—informally this should be thought of
as a sequence of edges of G \M which might be exchanged with a sequence of edges of
M in order to produce a new rainbow matching of size n. See Figure 1 for an illustration
of a switching.

Definition 3.1. Let X ′ ⊆ X. A sequence of edges, σ = (e0,m1, e1,m2, e2, . . . , e`−1, m`),
is an X ′-switching if the following hold.

(i) For all i, mi is an edge of M and ei is not an edge of M .

(ii) For all i, mi and ei have the same colour, ci.

(iii) For all i, ei−1 ∩mi = (mi)Y .

(iv) For all i 6= j, we have ei ∩ ej = ei−1 ∩mj = ∅ and also ci 6= cj.

(v) For all i, (ei)X ∈ X ′.

If σ is a switching defined as above, then we say that σ is a length ` switching from c0
to c`. Let e(σ) = {e0, . . . , e`−1} and m(σ) = {m1, . . . ,m`}. For a switching σ we define
(σ)X = (e(σ))X ∪ (m(σ))X .

The next definition is that of a free subset of X—informally a subset X ′ ⊂ X is free
if there are matchings M ′ which “look like” M , but avoid small subsets of X ′.
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Definition 3.2. Let X ′, T ⊆ X, k ∈ N, and c be a colour. We say that X ′ is (k, T, c)-free
if T ∩X ′ = ∅, c 6∈ (X ′ ∪ T )C, and the following holds:

Let A be any set of at most k edges in M \ ((T )M ∪ (c)M), B ⊆ X ′ any set of at most k
vertices such that (A)X ∩B = ∅. Then there is a rainbow matching M ′ of size n satisfying
the following:

• M ′ agrees with M on A.

• (M ′)X ∩B = ∅.

• M ′ misses the colour c.

In other words, M ′ replaces all edges touching B by edges not touching B, whilst
maintaining the edges of A and avoiding the colour c. It is worth noticing that X0 is
(n, ∅, c∗)-free (always taking the matching M ′ to be M in the definition).

The following lemma is crucial—it combines the preceding two definitions together
and says that if we have an X ′-switching σ for a free set X ′, then there is a new rainbow
matching of size n which avoids (m(σ))X .

Lemma 3.3. Suppose that X ′ is (2k, T, c)-free and σ = (e0,m1, e1, . . . , e`−1,m`) is an
X ′-switching from c to (m`)C of length ` 6 k. Let A be any set of at most k edges in
M − (c)M and let B be any subset of X ′ of order at most k. Suppose that the following
disjointness conditions hold.

(σ)X ∩ T = ∅ (σ)X ∩ (A)X = ∅ (σ)X ∩B = ∅
T ∩ (A)X = ∅ (A)X ∩B = ∅.

Then there is a rainbow matching M̃ of size n in G which misses colour (m`)C, agrees
with M on A, and has (M̃)X ∩ (m(σ))X = (M̃)X ∩B = ∅.

Proof. We let A′ = m(σ) ∪A and B′ = (e(σ))X ∪B. Notice that we have |A′|, |B′| 6 2k.
Also from the definition of “switching”, we have that for any i and j, the edges ei and
mj never intersect in X which together with (A)X ∩ (σ)X = ∅, B ∩ (σ)X = ∅, and
(A)X ∩ B = ∅ implies that (A′)X ∩ B′ = ∅. Also, (σ)X ∩ T = ∅ and (A)X ∩ T = ∅ imply
that A′ ∩ (T )M = ∅. Since σ is a switching starting at c we have A′ ⊆M \ ((T )M ∪ (c)M).
Finally, σ being an X ′-switching and B ⊆ X ′ imply that B′ ⊆ X ′.

Therefore we can invoke the definition of X ′ being (2k, T, c)-free in order to obtain a
rainbow matching M ′ of size n avoiding B′, agreeing with M on A′, and missing colour
c = (e0)C . We let

M̃ = (M ′ \m(σ)) ∪ e(σ) = M ′ + e0 −m1 + e1 −m2 + e2 − · · ·+ e`−1 −m`.

We claim that M̃ is a matching which satisfies all the conditions of the lemma.
Recall that B′ ⊇ (e(σ))X , A′ ⊇ m(σ), and (A′)X∩B′ = ∅. Since M ′ agreed with M on

A′ and was disjoint from B′, we get m(σ) ⊆M ′ and e(σ)∩ (M ′ \m(σ)) = ∅. This implies
that M̃ is a set of n edges and also that (M̃)X =

(
(M ′)X \ (m(σ))X

)
∪ (e(σ))X is a set of
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n vertices. Finally notice that since (ei)Y = (mi+1)Y we have (M̃)Y = (M ′)Y . Thus M̃ is
a set of n edges with n vertices in each of X and Y i.e. a matching. The matching M̃ is
clearly rainbow, missing the colour (m`)C since mi and ei always have the same colour.

To see that M̃ agrees with M on edges in A, notice that M ′ agreed with M on these
edges since we had A ⊆ A′. Since (σ)X ∩ (A)X = ∅ implies that σ contains no edges of
A, we obtain that M̃ agrees with M on A.

To see that M̃ ∩ (m(σ))X = ∅, recall that (M̃)X =
(
(M ′)X \ (m(σ))X

)
∪ (e(σ))X

and (m(σ))X ∩ (e(σ))X = ∅. Finally, M̃ ∩ B = ∅ follows from M ′ ∩ B = ∅, (M̃)X =(
(M ′)X \ (m(σ))X

)
∪ (e(σ))X , and B ∩ (σ)X = ∅.

We study X ′-switchings by looking at an auxiliary directed graph. For any X ′ ⊆ X,
we will define a directed, totally labelled graph DX′ . We call DX′ a “labelled” graph
rather than a “coloured” graph just to avoid confusion with the coloured graph G. Of
course the concepts of “coloured” and “labelled” graphs are equivalent, and we will freely
apply results from Section 2 to labelled graphs. The vertices and edges of DX′ will be
labelled by elements of the set X ∪ {∗}.

Definition 3.4. Let X ′ be a subset of X. The directed graph DX′ is defined as follows:

• The vertex set of DX′ is the set of colours of edges in G. For any colour v ∈ V (DX′)
present in M , v is labelled by “(v)X”. The colour c∗ is labelled by “∗”.

• For two colours u and v ∈ V (DX′), there is a directed edge from u to v in DX′

whenever there is an x ∈ X ′ such that there is a colour u edge from x to the vertex
(v)Y in G. In this case uv is labelled by “x”.

Notice that in the second part of this definition the labelling is well-defined since there
cannot be colour u edges from two distinct vertices x and x′ to (v)Y (since the colour u
edges form a matching in G).

Recall that a total labelling is proper if outgoing edges at a vertex always have differ-
ent labels, ingoing edges at a vertex always have different labels, adjacent vertices have
different labels, and an edge always has different labels from its endpoints. Using the fact
that the matchings in G are disjoint we can show that DX′ is always properly labelled.

Lemma 3.5. For any X ′ ⊆ X the total labelling on DX′ is always proper. In addition
DX′ is vertex-rainbow.

Proof. Suppose that uv and u′v′ are two distinct edges of DX′ with the same label x ∈ X ′.
By definition of DX′ they correspond to two edges x(v)Y and x(v′)Y of G having colours u
and u′ respectively. This implies that u and u′ are different since otherwise we would have
two edges of the same colour leaving x in G (which cannot happen since colour classes in
G are matchings). We also get that v and v′ are distinct since otherwise we would have
edges of colours both u and u′ between x and (v)Y in G (contradicting the matchings
forming G being disjoint).

Let uv be an edge of DX′ labelled by x and x(v)Y the corresponding colour u edge of
G. Then u cannot be labelled by “x” (since that would imply that the colour u edge at x
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would end at (u)Y rather than (v)Y ), and v cannot be labelled by “x” (since then there
would be edges from x to (v)Y in G of both colours u and v).

The fact that D′X is vertex-rainbow holds because M being a matching implies that
(c)X is distinct for any colour c.

Recall that a path in a totally labelled graph is defined to be rainbow whenever all its
vertices and edges have different colours. The reason we defined the directed graph DX′ is
that rainbow paths in DX′ correspond exactly to X ′-switchings in G. Let P = v0, . . . , v`
be a path in DX′ for some X ′. For each i = 0, . . . , `− 1 let ei be the colour vi edge of G
corresponding to the edge vivi+1 in DX′ . We define σP to be the sequence of edges (e0,
(v1)M , e1, (v2)M , e2, . . . , (v`−1)M , e`−1, (v`)M). Notice that (e(σP ))X is the set of labels of
edges in P , and (m(σP ))X is the set of labels of vertices in P − v0.

The following lemma shows that if P is rainbow then σP is a switching.

Lemma 3.6. Let P = v0, . . . , v` be a rainbow path in DX′ for some X ′ ⊆ X. Then σP is
an X ′-switching from v0 to v` of length `.

Proof. As in the definition of σP , let ei be the colour vi edge of G corresponding to the
edge vivi+1 in DX′ .

We need to check all the parts of the definition of “X ′-switching”. For part (i), notice
that (v1)M , . . . , (v`)M are edges of M by definition of (.)M , whereas ei cannot be the colour
vi matching edge (vi)M since (ei)Y = (vi+1)M ∩ Y which is distinct from (vi)M ∩ Y . Parts
(ii), (iii), and (v) follow immediately from the definition of ei and the graph DX′ .

Part (iv) follows from the fact that P is a rainbow path. Indeed to see that for i 6= j
we have ei ∩ ej = ∅, notice that ei ∩ ej ∩ X = ∅ since vivi+1 and vjvj+1 have different
labels in DX′ , and that ei ∩ ej ∩ Y = ∅ since (ei)Y ∈ (vi+1)M , (ej)Y ∈ (vj+1)M , and
(vi+1)M ∩ (vj+1)M = ∅. Similarly for i 6= j, ei−1 ∩ (vj)M ∩X = ∅ since vi−1vi and vj have
different labels in DX′ , and ei−1∩ (vj)M ∩Y = ∅ since (ei−1)Y ∈ (vi)M and (vi)M 6= (vj)M .
Finally, ci 6= cj since v0, . . . , v` are distinct.

Although it will not be used in our proof, it is worth noticing that the converse of
Lemma 3.6 holds i.e. to every X ′-switching σ there corresponds a unique rainbow path
P in DX′ such that σ = σP .

So far all our lemmas were true regardless whether the rainbow matching M was
maximum or not. Subsequent lemmas will assume that M is maximum. The following
lemma shows that for a free set X ′, vertices in DX′ have large out-degree.

Lemma 3.7. Suppose that G has at least (1 + ε)n edges of each colour and no rainbow
matching of size n + 1. Let X ′, T , k and c be such that X ′ is (2k, T, c)-free. Let D =
DX′ \ (T )C, v a vertex of D, and P a rainbow path in D from c to v of length at most k.
Then we have

|N+
D (v)| > (1 + ε)n+ |X ′| − |X| − 2|P | − |T |.

Proof. Notice that since P is contained in DX′ \ (T )C and since X ′ being (2k, T, c)-free
implies X ′ ∩ T = ∅, we can conclude that (σP )X ∩ T = ∅.
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Therefore, Lemma 3.3 applied with A = ∅ implies that for any B ⊆ X ′ with |B| 6 k
and B ∩ (σP )X = ∅, there is a rainbow matching M ′ of size n which is disjoint from B
and misses colour v. Since there are no rainbow matchings of size n+ 1 in G this means
that there are no colour v edges from X ′ \ (σP )X to Y0. Indeed if such an edge xy existed,
then we could apply Lemma 3.3 with B = {x} in order to obtain a rainbow matching
M ′ missing colour v and vertex x which can be extended to a rainbow n+ 1 matching by
adding the edge xy.

We claim that there are at least (1 + ε)n + |X ′| − |X| − 2|P | colour v edges from
X ′ \ (σP )X . Indeed out of the (1 + ε)n colour v edges in G at most |X|− |X ′| of them can
avoid X ′, and at most 2|P | of them can pass through (σP )X , leaving at least (1 + ε)n −
(|X| − |X ′|)− 2|P | colour v edges to pass through X ′ \ (σP )X . Since none of these edges
can touch Y0, each of them must give rise to an out-neighbour of v in DX′ . This shows
that |N+

DX′
(v)| > (1 + ε)n+ |X ′| − |X| − 2|P | which implies the result.

The following lemma is the essence of the proof of Theorem 1.5. It roughly says that
given a free set X1 containing X0, there is another free set X2 containing X0 such that X2

is much bigger than X1, but has worse parameter k. The proof of this lemma combines
everything in this section with Lemmas 2.3, 2.10 and 2.12 from Section 2.

Lemma 3.8. Let k1, n ∈ N, and ε ∈ [0, 1] be such that n > 1020ε−8k1 and k1 > 20ε−1. Set
k2 = 10−6ε2k1. Suppose that G has at least (1 + ε)n edges of each colour and no rainbow
matching of size n+ 1.

• Suppose that we have X1, T1 ⊆ X and a colour c1 such that X1 is (k1, T1, c1)-free
and we also have X0 ⊆ X1 ∪ T1 and |T1| 6 k1 − 30ε−1.

• Then there are X2, T2 ⊆ X and a colour c2 such that X2 is (k2, T2, c2)-free and we
also have X0 ⊆ X2 ∪ T2, |T2| 6 |T1|+ 30ε−1 and

|X2| > |X1|+
ε

2
n.

Proof. Set d = 105ε−2. Let D = DX1 \ (T1)C . Recall that Lemma 3.5 implies that D is
properly labelled and vertex-rainbow.

Lemma 3.7, together with n > 1020ε−8k1, k1 > 20ε−1, and |T1| 6 k1 imply that all
vertices in D within rainbow distance (10ε)−1 of c1 satisfy d+(v) > (1 + ε)n+ |X1|− |X|−
30ε−1 > (1 + 0.9ε)n+ |X1| − |X|.

Lemma 2.12 applied with ε = 0.1ε implies that there is a subgraph D′ in D satisfying
δ+(D′) > (1 + 0.7ε)n + |X1| − |X| and dR(c1, v) 6 10ε−1 for all v ∈ D′. Therefore, using
n > 1020ε−8k1, we can apply Lemma 2.10 to D′ with ε = 0.1ε and k = 9k2d in order to
find a set W with |W | > (1 + 0.6ε)n+ |X1| − |X| which is (9k2d, d)-rainbow connected in
D′.

Since W ⊆ D′, there is a path, Q, of length 6 10ε−1 from c1 to some q ∈ W .
Let c2 be any vertex in W with (c2)X 6∈ (σQ)X . Let T2 = T1 ∪ (σQ)X ∪ (c1)X . Let
X2 = ((W )X ∪X0) \ (T2 ∪ (c2)X). We claim that X2, T2, and c2 satisfy the conclusion of
the lemma.
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First we show that X2 is (k2, T2, c2)-free. The facts that T2 ∩ X2 = ∅ and c2 6∈
X2 ∪ T2 follow from the construction of X2, T2, and c2. Let A be any set of k2 edges of
M \ ((T2)M ∪ (c2)M), and B ⊆ X2 any set of k2 vertices such that (A)X ∩ B = ∅. Let
BX0 = B ∩X0 and BW = B ∩ (W )X = B \ BX0 . By Lemma 2.3, applied with k = 3k2,
d = d, A = W , {q, a1, . . . , ak, c2} = (BW )C , and S = (A)X ∪ (σQ)X ∪ BX0 , there is a
rainbow path P in D′ of length 6 3k2d from q to c2 which is disjoint from V (Q− q) and
(A)C , passes through every colour of (BW )C , and whose edges and vertices don’t have
labels in (A)X ∪ (σQ)X ∪BX0 \ (q)X . Notice that this means that Q+P is a rainbow path
from c1 to c2.

We apply Lemma 3.3 with X ′ = X1, T = T1, c = c1, σ = σQ+P , A = A, B = BX0 .
For this application notice that σQ+P is an X1-switching of length 6 k1/2, which holds
because of Lemma 3.6 and because 2|Q| + 2|P | 6 20ε−1 + 2k2d 6 k1/2. We also need to
check the various disjointness conditions—(A)X∩T1 = (A)X∩(σQ+P )X = (A)X∩BX0 = ∅
(which hold because (A)X was disjoint from T2, P , and B), (σQ+P )X ∩ T1 = ∅ (which
holds since vertices and edges in D have no labels from T1), and (σQ+P )X ∩ BX0 = ∅
(which holds since B was disjoint from T2 and P had no labels from BX0). Therefore
Lemma 3.3 produces a rainbow matching M ′ of size n which agrees with M on A, avoids
(m(σQ+P ))X ∪BX0 , and misses colour c2. Since P passes through every colour in (BW )C ,
we have BW ⊆ (m(σQ+P ))X and so M ′ avoids all of B. Since A and B were arbitrary, we
have shown that X2 is (k2, T2, c2)-free.

The containment X0 ⊆ X2 ∪ T2 holds because X0 ⊆ X1 ∪ T1 ⊆ X2 ∪ T2. Notice that
|T2| 6 |T1|+ 30ε−1 follows from |Q| 6 10ε−1.

Finally, |X2| > |X1|+ εn/2 holds because since (W )X was disjoint from X0 we have

|X2| > |X0|+ |W | > |X0|+ (1 + 0.6ε)n+ |X1| − |X| = |X1|+ 0.6εn.

We are finally ready to prove Theorem 1.5. The proof consists of starting with X0 and
applying Lemma 3.8 repeatedly, at each step finding a free set Xi which is εn/2 bigger
than Xi−1. This clearly cannot be performed more than 2ε−1 times (since otherwise it
would contradict |Xi| 6 |X| = |X0|+ n), and hence the “there is no rainbow matching in
G of size n+ 1” clause of Lemma 3.8 could not be true.

Proof of Theorem 1.5. Let G be a bipartite graph which is the union of n0 > N disjoint
matchings each of size at least (1+ε)n0. Let M be the largest rainbow matching in G and
c∗ the colour of any matching not used in M . Let n be the number of edges of M . Since
M is maximum, Lemma 1.6 tells us that n > N/2. Let X0 = X \M and Y0 = Y \M .
Suppose for the sake of contradiction that n < n0.

Let T0 = ∅, k0 = (10−6ε−2)2ε
−1

, and c0 = c∗. Notice that since X0 is (n, T0, c0)-
free and n > N/2 > k0 we get that X0 is (k0, T0, c0)-free. For i = 1, . . . , 2ε−1, we set
ki = 10−6ε2ki−1.

For i = 0, . . . , 2ε−1 we repeatedly apply Lemma 3.8 to Xi, ki, Ti, ci in order to
obtain sets Xi+1, Ti+1 ⊆ X and a colour ci+1 such that Xi+1 is (ki+1, Ti+1, ci+1)-free,
X0 ⊆ Xi+1 ∪ Ti+1, |Ti+1| 6 |Ti| + 30ε−1, and |Xi+1| > |Xi| + εn/2. To see that we can
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repeatedly apply Lemma 3.8 this way we only need to observe that there are no rainbow
n + 1 matchings in G, and that for i 6 2ε−1 we always have n > 1020ε−8ki, ki > 10ε−1,
and |Ti| 6 30ε−1i 6 ki − 30ε−1.

But now we obtain that |X2ε−1| > |X0|+ n = |X| which is a contradiction since Xi is
a subset of X.

4 Golden Ratio Theorem

In this section we prove Theorem 1.8. The proof uses Theorem 1.4 as well as Lemma 2.11.

Proof of Theorem 1.8. The proof is by induction on n. The case “n = 1” is trivial since
here G is simply a matching. Suppose that the theorem holds for all G which are unions
of < n matchings. Let G be a graph which is the union of n matchings each of size
φn+20n/ log n. Suppose that G has no rainbow matching of size n. Let M be a maximum
rainbow matching in G. By induction we can suppose that |M | = n − 1. Let c∗ be the
missing colour in M .

Let X0 = X \ V (M) and Y0 = Y \ V (M). Notice that for any colour c there are at
least (φ− 1)n+ 20n/ log n colour c edges from X0 to Y and at least (φ− 1)n+ 20n/ log n
colour c edges from Y0 to X. If n < 106, then this would give more than n colour c∗

edges from X0 to Y , one of which could be added to M to produce a larger matching.
Therefore, we have that n > 106.

We define an edge-labelled directed graph D whose vertices are the colours in G, and
whose edges are labelled by vertices from X0 ∪ Y0. We set cd an edge in D with label
v ∈ X0 ∪ Y0 whenever there is a colour c edge from v to the colour d edge of M . Notice
that D is out-proper—indeed if edges ux and uy ∈ E(D) had the same label v ∈ X0 ∪Y0,
then they would correspond to two colour u edges touching v in G (which cannot happen
since the colour classes of G are matchings).

Recall that dR(x, y) denotes the length of the shortest rainbow x to y path in D.
We’ll need the following two claims.

Claim 4.1. For every c ∈ V (D), there are at most dR(c∗, c) colour c edges between X0

and Y0.

Proof. Let P = c∗p1 . . . pkc be a rainbow path of length dR(c∗, c) from c∗ to c in D. For
each i, let mi be the colour pi edge of M , and let ei be the colour pi edge from the label
of pipi+1 to mi+1. Similarly, let ec∗ be the colour c∗ edge from the label of c∗p1 to m1,
and let mc be the colour c edge of M . If there are more than dR(c∗, c) colour c edges
between X0 and Y0, then there has to be at least one such edge, ec, which is disjoint from
ec∗ , e1, . . . , ek. Let

M ′ = M + ec∗ −m1 + e1 −m2 + e2 · · · −mk−1 + ek−1 −mc + ec.

The graph M ′ is clearly a rainbow graph with n edges. We claim that it is a matching.
Distinct edges ei and ej satisfy ei∩ej = ∅ since P is a rainbow path. The edge ei intersects
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V (M) only in one of the vertices of mi, which are not present in M ′. This means that M ′

is a rainbow matching of size n contradicting our assumption that M was maximum.

Claim 4.2. There is a set A ⊆ V (D) containing c∗ such that for all a ∈ A we have
|N+(a) \ A| 6 n/ log n and dR(c, a) 6 log n.

Proof. This follows by applying Lemma 2.11 to D with ε = (log n)−1.

Let A be the set of colours given by the above claim. Let M ′ be the submatching of
M consisting of the edges with colours not in A. Since c∗ ∈ A, we have |M ′|+ |A| = n.

Let AX be the subset of X spanned by edges of M with colours from A, and AY be
the subset of Y spanned by edges of M with colours from A. Claim 4.1 shows that for any
a ∈ A there are at most log n colour a edges between X0 and Y0. Therefore there are at
least (φ−1)n+20n/ log n− log n colour a edges from X0 to Y ∩(M)Y . Using the property
of A from Claim 4.2 we obtain that there are at least (φ−1)n+19n/ log n− log n colour a
edges fromX0 to AY . Similarly, for any a ∈ A we obtain at least (φ−1)n+19n/ log n−log n
colour a edges from Y0 to AX .

By applying Theorem 1.4 to the subgraph ofG consisting of the colour A edges between
X0 and AY we can find a subset A0 ⊆ A and a rainbow matching M0 between X0 and
AY using exactly the colours in A0 such that we have

|A0| > (φ− 1)n+ 19n/ log n− log n−
√

(φ− 1)n+ 19n/ log n− log n

> (φ− 1)n− 6
√
n

Let A1 = A\A0. We have |A1| 6 n−|A0| 6 (2−φ)n+6
√
n. Recall that for each a ∈ A1

there is a colour a matching between Y0 and AX of size at least (φ−1)n+19n/ log n−log n.
Notice that the following holds

(φ− 1)n+
19n

log n
− log n > φ((2− φ)n+ 6

√
n) +

20((2− φ)n+ 6
√
n)

log((2− φ)n+ 6
√
n)

> φ|A1|+
20|A1|
log |A1|

.

The first inequality follows from φ2−φ− 1 = 0 as well as some simple bounds on
√
n and

log n for n > 106. The second inequality holds since x/ log x is increasing.
By induction there is a rainbow matching M1 between Y0 and AX using exactly the

colours in A1. Now M ′ ∪M0 ∪M1 is a rainbow matching in G of size n.

5 Concluding remarks

Here we make some concluding remarks about the techniques used in this paper.
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Analogues of Menger’s Theorem for rainbow k-edge-connectedness

One would like to have a version of Menger’s Theorem for rainbow k-edge-connected
graphs as defined in the introduction. In this section we explain why the most natural
analogue fails to hold.

Consider the following two properties in an edge coloured directed graph D and a pair
of vertices u, v ∈ D.

(i) For any set of k − 1 colours S, there is a rainbow u to v path P avoiding colours in
S.

(ii) There are k edge-disjoint u to v paths P1, . . . , Pk such that P1 ∪ · · · ∪Pk is rainbow.

The most natural analogue of Menger’s Theorem for rainbow k-edge-connected graphs
would say that for any graph we have (i) ⇐⇒ (ii). One reason this would be a natural
analogue of Menger’s Theorem is that there is fractional analogue of the statement (i)
⇐⇒ (ii). We say that a rainbow path P contains a colour c if P has a colour c edge.

Proposition 5.1. Let D be a edge coloured directed graph, u and v two vertices in D,
and k a real number. The following are equivalent.

(a) For any assignment of non-negative real numbers yc to every colour c, satisfying∑
c a colour yc < k, there is a rainbow u to v path P with

∑
c contained in P yc < 1.

(b) We can assign a non-negative real number xP to every rainbow u to v path P , such that
for any colour c we have

∑
P contains c xP 6 1 and also

∑
P a rainbow u to v path xP > k.

Proof. Let ka be the minimum of
∑

c a colour yc over all choices of non-negative real numbers
yc satisfying

∑
c contained in P yc > 1 for all u to v paths P . Similarly, we let kb be the

maximum of
∑

P a rainbow u to v path xP over all choices of non-negative real numbers xP
satisfying

∑
P contains c xP 6 1 for all colours c.

It is easy to see that ka and kb are solutions of two linear programs which are dual to
each other. Therefore, by the strong duality theorem (see [9]) we have that ka = kb which
implies the proposition.

The reason we say that Proposition 5.1 is an analogue of the statement “(i) ⇐⇒
(ii)” is that if the real numbers yc and xP were all in {0, 1} then (a) would be equivalent
to (i) and (b) would be equivalent to (ii) (this is seen by letting S = {c : yc = 1} and
{P1, . . . , Pk} = {P : xP = 1}).

Unfortunately (i) does not imply (ii) in a very strong sense. In fact even if (ii) was
replaced by the weaker statement “there are k edge-disjoint rainbow u to v paths”, then
(i) would still not imply (ii).

Proposition 5.2. For any k there is a coloured directed graph Dk with two vertices u
and v such that the following hold.

(I) For any set of k colours S, there is a rainbow u to v path P avoiding colours in S.
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(II) Any pair P1, P2 of rainbow u to v paths have a common edge.

Proof. We will construct a multigraph having the above property. It is easy to modify
the construction to obtain a simple graph. Fix m > 2k + 1. The vertex set of D is
{x0, . . . , xm} with u = x0 and v = xm. For each i = 0, . . . ,m − 1, D has k + 1 copies of
the edge xixi+1 appearing with colours i, m + 1, m + 2, . . . , m + k. In other words G
is the union of k + 1 copies of the path x0x1 . . . xm one of which is rainbow, and the rest
monochromatic.

Notice that D satisfies (II). Indeed if P1 and P2 are u to v paths, then they must have
vertex sequence x0x1 . . . xm. Since there are only m+k colours in D both P1 and P2 must
have at least m− k edges with colours from {0, . . . ,m− 1}. By the Pigeonhole Principle,
since 2(m− k) > m, there is some colour i ∈ {0, . . . ,m} such that both P1 and P2 have a
colour i edge. But the only colour i edge in D is xixi+1 which must therefore be present
in both P1 and P2.

There is another, more subtle, reason why (i) does not imply (ii). Indeed if we had
“(i) =⇒ (ii)” then this would imply that every bipartite graph consisting of n matchings
of size n contains a rainbow matching of size n.

Indeed given a bipartite graph G with bipartition X ∪ Y consisting of n matchings
of size n construct an auxiliary graph G′ by adding two vertices u and v to G with all
edges from u to X and from Y to v present. These new edges all receive different colours
which were not in G. It is easy to see for any set S of n − 1 colours, there is a rainbow
u to v path in G′ i.e. (i) holds for this graph with k = n. In addition, for a set of paths
P1, . . . , Pt with P1 ∪ · · · ∪Pt rainbow, it is easy to see that {P1 ∩E(G), . . . , Pt ∩E(G)} is
a rainbow matching in G of size t.

Therefore if “(i) =⇒ (ii)” was true then we would have a rainbow matching in
G of size n. However, as noted in the introduction, there exist Latin squares without
transversals, and hence bipartite graphs consisting of n matchings of size n containing no
rainbow matching of size n.

The above discussion has hopefully convinced the reader that the natural analogue of
Menger’s Theorem for rainbow k-edge-connectedness is not true. Nevertheless, it would
be interesting to see if any statements about connectedness carry over to rainbow k-edge-
connected graphs.

Improving Theorem 1.5

One natural open problem is to improve the dependency of N on ε in Theorem 1.5.
Throughout our proof we made no real attempt to do this. However there is one interesting
modification which one can make in order to significantly improve the bound on N which
we mention here.

Notice that the directed graphs DX′ in Section 1.5 and the directed graph D in Sec-
tion 1.8 had one big difference in their definition—to define the graphs DX′ we only
considered edges starting in X, whereas to define the graph D, we considered edges start-
ing from both X0 and Y0. It is possible to modify the proof of Theorem 1.5 in order to
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deal with directed graphs closer to those we used in the proof of Theorem 1.8. There are
many nontrivial modifications which need to be made for this to work. However, the end
result seems to be that the analogue of Lemma 3.8 only needs to be iterated O(log ε−1)
many times (rather than O(ε−1) as in the proof of Theorem 1.5). This would lead to an
improved bound on N in Theorem 1.5 N = O

(
εC log ε

)
for some constant C. In the grand

scheme of things, this is still a very small improvement to bound in Theorem 1.5, and so
we do not include any further details here. It is likely that completely new ideas would
be needed for a major improvement in the bound in Theorem 1.5.

Another desirable improvement to Theorem 1.5 would be to remove the condition that
G is simple i.e. prove an approximate version of the Aharoni-Berger Conjecture. The
assumption that G is simple appears only once in the proof of Theorem 1.5—it appears
in the proof of Lemma 3.5. If G was a multigraph, then the labeling of the corresponding
directed graph DX′ would not necessarily be proper. To see an example of this, let G
be a graph with vertex set {x1, y1, . . . , xn, yn}, such that the edge xiyi appears n times,
once with each of the colours 1, . . . n. For X ′ = {x1, . . . , xn} and M a rainbow matching
of size n, the corresponding directad graph DX′ has vertex set {1, . . . , n} and ij an edge
labeled by xj for all i 6= j. Thile this directed graph DX′ is out-proper, it is not in-proper.
Moreover, it can be checked that this DX′ doesn’t have any rainbow k-edge-connected
subsets A with |A| > 2 and k > 1. This is a serious barrier to our proof strategy since
it stops most of the machinery from Section 2 from working. This barrier didn’t occur in
the proof of Theorem 1.8, since in that theorem we only used the fact that DX′ contains
a subgraph with high minimum degree, rather than a highly connected one.
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[4] J. Barát, A. Gyárfás, and G. Sárközy. Rainbow matchings in bipartite multigraphs.
Period. Math. Hungar., pages 1–4, 2016.

[5] B. Bollobás. Modern Graph Theory. Springer, 1998.

the electronic journal of combinatorics 22 (2015), #P00 24



[6] A. E. Brouwer, A. J. de Vries, and R. M. A. Wieringa. A lower bound for the length
of partial transversals in a Latin square. Nieuw Archief Voor Wiskunde, 26:330–332,
1978.

[7] R. A. Brualdi and H. J. Ryser. Combinatorial matrix theory. Cambridge University
Press, 1991.

[8] D. Clemens and J. Ehrenmüller. An improved bound on the sizes of matchings
guaranteeing a rainbow matching. Electron. J. Combin., 23, 2016.
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