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Abstract

Current genetic screening methods for inherited eye diseases are 

concentrated on the coding exons of known disease genes (gene 

panels, clinical exome). These tests have a variable and often 

limited diagnostic rate depending on the clinical presentation, 

size of the gene panel and our understanding of the inheritance 

of the disorder (with examples described in this issue). There 

are numerous possible explanations for the missing heritability 

of these cases including undetected variants within the relevant 

gene (intronic, up/down-stream and structural variants), 

variants harbored in genes outside the targeted panel, 

intergenic variants, variants undetectable by the applied 

technology, complex/non-Mendelian inheritance, and non-genetic 

phenocopies. In this manuscript we further explore and review 

methods to investigate these sources of missing heritability. 

Keywords: enhancer, regulatory, variant
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Inherited ocular disease represent a wide spectrum of 

conditions, from malformations to degeneration. These represent 

a significant health burden among rare diseases, with 

malformations occurring in 1:10,000 individuals and 

degenerations in 1:2,000-3,000. Despite knowledge of hundreds of 

disease-associated genes, genetic testing for these conditions 

varies widely, from 20% for anophthalmia/microphthalmia  

[Chassaing and otherts 2014], to nearly 70% for retinal 

degenerations [Carss and others 2017; Ellingford and others 

2016]. However, this largely relies on querying variants in 

coding sequences for previously mapped genes, which constitute 

1.5-2% of coding DNA. Here, we describe recent efforts in 

understanding the noncoding genomic space, in particular the 

pathogenesis of splicing, transcriptional, and regulatory 

elements, which will improve the yield of clinical molecular 

diagnostics to better match clinical diagnoses and reveal 

additional patterns of disease mechanisms.

Cryptic Splice Alteration and Ophthalmic Diseases.

Stargardt macular dystrophy (STGD1) is a well characterized 

autosomal recessive retinal dystrophy with the majority of 

disease caused by biallelic variants in the ABCA4 gene 

[Allikmets and others 1997].  However, up to 30% of cases remain 

unresolved or with a missing second allele following screening 

of the coding exons of the gene [Sangermano and others 2019]. 

Extra-exonic variants, in particular deep intronic cryptic 

splice variants, are now well characterized as a cause of STGD1, 

as demonstrated in the recent study by Khan and colleagues [Khan 

and others 2020] showing that 25% of STGD1 cases carried an 

intronic or structural variant in the ABCA4 gene. This example 
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highlights the importance of considering regions outside the 

coding exons in the pathogenesis of inherited diseases.

Historically, the introns of genes have been largely ignored in 

genetic testing due to their size, high frequency of variation 

and our poor knowledge of their function at the nucleotide 

level. This in combination with a paucity of population variant 

data meant that until recently, an intronic variation was 

difficult to interpret. However, examples of well characterized 

intronic variants in retinal diseases have long existed, 

identified through various strategies [den Hollander and others 

2006; Mayer and others 2016; Mayer and Aguilera 1990; van den 

Hurk and others 2003]. Now, with access to whole genome 

sequencing in research and clinical laboratories [Turnbull and 

others 2018; Turro and others 2020] and public availability of 

large population genome datasets such as gnomAD, researchers are 

beginning to apply similar variant rarity filtering strategies 

to non-coding variants as regularly performed in exome filtering 

pipelines to identify candidate-disease variants in rare 

diseases [Carss and others 2017; Cassini and others 2019; Khan 

and others 2017; Verdura and others 2020]. To date, the reports 

have broadly identified non-coding alleles in recessive retinal 

diseases (either homozygous non-coding alleles or a second non-

coding allele in an individual carrying a coding mutation) and 

non-coding variants that cause activation of a deep intronic 

splice site leading to pseudoexon incorporation in the 

transcript.

Effective, large-scale interpretation of non-coding variants 

remains to be achieved nevertheless, due to the larger variant 

number and lower conservation found in intronic compared to 

exonic regions, and our poor understanding of the function of 

Page 4 of 36

John Wiley & Sons

Wiley-Phase 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

introns. Therefore, key to unraveling pathogenic intronic 

mutations will be accurate tools to predict the effect of such 

variants. 

Recent advances in the application of machine learning for 

splice prediction [Cheng and others 2019; Jagadeesh and others 

2019; Jaganathan and others 2019; Lee and others 2017; Xiong and 

others 2015] mean that more accurate characterization of large-

scale variant data is possible (Ellingford et al., BioRXIV). 

Validation of high priority variants should still be performed 

with in vitro studies, such as transcript analysis from patient 

derived RNA or cells or in vitro gene splicing assays for genes 

with inaccessible tissue-specific expression.

Copy number and structural variant analysis

Many gene panel, exome and genome sequencing pipelines 

incorporate structural variant (SV) and/or copy number variant 

(CNV) surveillance tools including read depth analysis 

algorithms (examples: ExomeDepth for targeted panel and exome 

analysis, CANVAS for WGS analysis) and split read analysis 

algorithms (example: MANTA for WGS analysis, targeted panels and 

WES rarely capture the breakpoint/s of SV/CNVs). 

Simple deletions spanning one or more exons can be effectively 

detected using read depth-based approaches and gene panel/exome 

analysis [Ellingford and others 2017; Marchuk and others 2018; 

Patel and others 2019; Plagnol and others 2012; Rajagopalan and 

others 2020]. However, the ability to detect and characterize 

SV/CNVs is greatly enhanced with WGS due to the complete and 

even coverage of the genome (using PCR-free technology). This 

means that the dosage of the genome is preserved for effective 

analysis of loss/gains throughout. In addition, coverage of 
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breakpoint regions allows effective characterization of 

deletions, tandem duplications, translocations, and inversions, 

to the single nucleotide. This includes any additional loss/gain 

at the breakpoint and complex rearrangements by incorporating an 

algorithm to analyze split read data [Arno and others 2016; Ba-

Abbad and others 2016; Carss and others 2017; Sanchis-Juan and 

others 2018]. 

Standard paired-end read sequencing generates read pairs on the 

forward and reverse strand (approx. 70-200bp) flanking an 

unsequenced insert region (approx. 400bp). When mis-aligned to 

the reference genome due to the presence of an SV/CNV, this 

paired-end read structure will display a characteristic 

alteration in orientation, including altered insert size or read 

direction, specific for the SV/CNV type. This enables accurate 

characterization of rearrangements and easy visualization of the 

breakpoints using a genome viewer such as the Integrative 

Genomics Viewer (IGV, [Robinson and others 2011; Thorvaldsdottir 

and others 2013]).

It is estimated that SV/CNVs account for a significant 

proportion of the missing heritability in IRD [Carss and others 

2017; Ellingford and others 2016] and these methods represent 

effective tools to characterize them. However, it is more 

complicated to interpret SV/CNVs that do not directly impact a 

coding exon or known regulatory region of a gene; such entirely 

intronic or intergenic variants may indeed play an important 

role in gene regulation and Mendelian diseases. While the 

precise functional effects are often still elusive, recent 

research indicates that SV/CNVs can affect chromatin structures 

and epigenetic regulatory regions [Cipriani and others 2017].
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The addition of emerging technologies, such as long-read or 

single molecule sequencing, that allow sequencing of genomic DNA 

up to >100Kb in a single read, is an exciting prospect for 

molecular genetics (reviewed in [Mantere and others 2019]). 

These powerful technologies enable effective de novo assembly of 

an individual’s genome, read through of complex rearrangements 

[Sanchis-Juan and others 2018; Vache and others 2020] and the 

potential to read through regions intractable to current short-

read technologies.

Gene expression

Gene expression information is important evidence for 

prioritizing candidate disease-associated genes and variation. 

Exome and genome sequencing detect hundreds of thousands of 

coding variants and millions of noncoding variants. Even after 

filtering for frequency in the general population or gene 

constraint to missense or truncating variation in such databases 

as gnomAD, multiple candidate variants exist. A complementary 

strategy to prioritizing filtered variant sets is expression or 

lack thereof in ocular tissues. Vertebrate expression data is 

extremely valuable as gene identity is well-conserved across 

multiple animal model systems, including non-human primate, 

mouse, and zebrafish. Mouse expression databases, made possible 

by collating decades of publications using gene expression 

arrays and in situ hybridization experiments, are available at 

Mouse Genome Informatics. Murine homologue expression data is 

available for gene-by-gene queries. Similar expression data are 

available for zebrafish, frog, and fruit fly at different 

developmental and adult stages.
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Human gene expression datasets have been made available more 

recently. RNA-seq is a massive parallel sequencing technique 

which can be used for quantifiable comparisons of gene 

expression levels between tissues. The Genotype-Tissue 

Expression (GTEx) project compiles RNA-seq data from 54 non-

diseases human tissues from nearly 1000 donors. Notably, ocular 

tissues were not included in this dataset. To address this, 

investigators at the National Eye Institute (National Institutes 

of Health, United States) created eyeIntegration, a compilation 

of publicly deposited RNA-seq datasets from developing and adult 

human ocular tissues, and compared expression levels to non-

ocular tissues in GTEx. Subsequently, transcript-level data, de 

novo transcriptome data, and single cell data have been added to 

the website [Bryan and others 2018].

Importantly, tissue-specific transcripts exist for several genes 

implicated in retinal degeneration. RPGR (OMIM 312610) ORF15 is 

an open-reading frame with expression specifically in retinal 

cell types and harbors the majority of disease-associated 

alleles with this form of X-linked retinitis pigmentosa 

[Neidhardt and others 2007]. Similarly, several retina-enriched 

transcripts were described for RPGRIP1 (OMIM 605446), associated 

with autosomal recessive Leber congenital amaurosis and cone-rod 

dystrophy [Lu and Ferreira 2005], including causal noncoding 

variants that alter splicing. Notably, deep intronic alleles in 

several genes, including but not limited to ABCA4 (OMIM 601691), 

USH2A (608400), and CNGB3 (605080), were detected in patients 

with Stargardt disease, Usher syndrome, and achromatopsia, 

respectively, which subsequently revealed cryptic exons with 

functional implications for inherited retinal dystrophies 

[Bauwens and others 2019; Braun and others 2013; Sangermano and 

others 2019; Weisschuh and others 2020; Zernant and others 
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2014]. As such, ocular-specific transcripts and deep intronic 

alleles reveal a biological link between genetic variation and 

tissue-specific disease expression.

While expression of a gene during ocular development or 

postnatally is a priori evidence of involvement in these 

tissues, this does not infer that a gene is necessary or 

sufficient for the proposed function or disease. Expression data 

is also used to validate the impact of variants on gene 

expression, which correlates with partial or total loss-of-

function. Genome sequencing coupled to RNA-seq can be used to 

evaluate deep intronic and splicing changes genome-wide for 

deleterious variants causing exon skipping or inclusion of 

cryptic exons, and, in some studies, RNA-seq can be used alone 

to infer DNA-level variants altering splicing [Gonorazky and 

others 2016]. In this manner, RNA sequencing can be integrated 

into clinical molecular diagnostics for rare diseases.

Genome-wide association studies using single nucleotide 

polymorphism genotyping to compare thousands of cases versus 

controls to detect risk alleles for common disorders, such as 

age-related macular degeneration (AMD). Following detection of 

the first risk locus in the CFH gene (OMIM 134370), now 52 rare 

and common variants associated with AMD have been discovered 

[Klein and others 2005]. To correlate these phenotype-related 

variants with alterations of gene expression, transcriptome data 

from cases and controls can be directly compared to generate 

expression quantitative trait loci (eQTLs). In a recent study, 

over 4,000 eQTLs were detected in postmortem retinas from 

individuals with AMD compared to those without [Ratnapriya and 

others 2019]. These eQTLs correlated significantly with 6 of the 

previously reported AMD risk loci from GWAS studies, thereby 
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refining the functional implications of more than 10% of 

previously reported risk alleles.

Thus, expression data can be of value to prioritize candidate 

genes, detect splicing changes, and infer relationships between 

genomic variation and functional implications on transcriptional 

and splicing regulation.

Genomic approaches to discover regulatory regions of genes that 

cause eye diseases.

While molecular genetic studies of the coding regions of genes 

are now commonplace to discover variants associated with 

diseases, discovery of such variants within non-coding regions 

that influence, or control, gene expression is still in its 

infancy. Axenfeld-Rieger Syndrome can serve as an example of 

this approach. 

Identification of the genetic basis of Axenfeld-Rieger Syndrome 

(ARS) 

Axenfeld-Rieger Syndrome (ARS) is a rare autosomal dominant eye 

disease that affects 1/10,000-1/20,000 people, regardless of 

ethnicity [Seifi and Walter 2018]. Patients with ARS present 

with ocular features that can include iris hypoplasia, misplaced 

pupils, full thickness tears in the iris (polycoria), adhesions 

between the iris and the cornea, and a displaced Schwalbe line. 

Patients may also present with non-ocular malformations of the 

teeth, jaw and umbilicus, as well as cerebellar, hearing and 

heart defects [Chrystal and Walter 2019]. More than 50% of ARS 

patients present with glaucoma that is often recalcitrant to 

normally prescribed glaucoma medications [Strungaru and others 

2007]. Linkage analyses of large families in which ARS was 

segregating was used to map genes responsible for the disease in 
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these families [Gould and others 1997; Mears and others 1996; 

Semina and others 1996; Walter and others 1996]. Subsequently, 

mutations of PITX2 (pituitary homeobox protein 2; [Semina and 

others 1996b] and FOXC1 (forkhead box C1; [Mears and others 

1998; Mirzayans and others 2000; Nishimura and others 1998] were 

shown to cause ARS. Molecular characterizations have shown that 

mutations within the coding regions of either gene typically 

result in loss of protein functions which include impaired 

nuclear localization, DNA binding, protein-protein interactions, 

and transactivation capacity [Footz and others 2009; Kozlowski 

and Walter 2000; Lines and others 2004; Murphy and others 2004; 

Saleem and others 2001; Saleem and others 2003a; Saleem and 

others 2004; Saleem and others 2003b]. However, there are 

reports of PITX2 mutations resulting in a gain of function 

effect [Priston and others 2001; Saadi and others 2006]. Gene 

copy number changes, and insertions and deletions within the 

coding regions of PITX2 [Flomen and others 1997; Flomen and 

others 1998; Lines and others 2004; Semina and others 1996a] and 

FOXC1 gene [Chanda and others 2008; D'Haene and others 2011; 

Lehmann and others 2000] have also been found in ARS patients, 

consistent with the concept that too much or too little PITX2 or 

FOXC1 can result in ARS [Walter 2003]. However, only 40% of ARS 

patients have mutations involving the coding regions of PITX2 or 

FOXC1. To investigate the missing heredity, other candidate 

genes have been examined for additional ARS-associated disease-

causing mutations. Mutational screening of three candidate genes 

(FOXC2, P32, and PDP2) that encode proteins that interact with 

FOXC1 or PITX2 [Acharya and others 2011; Huang and others 2008; 

Strungaru and others 2011] did not detect mutations in ARS 

patients, suggesting that these genes do not contribute to the 

missing heredity of ARS. PAX6 deletions were initially reported 

to be associated with ARS [Riise and others 2001], but this 

Page 11 of 36

John Wiley & Sons

Wiley-Phase 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

observation was not reproduced upon further investigations by 

the same investigators using improved reagents [Riise and others 

2009]. Recently, mutations within the coding regions of two 

additional genes, PRDM5 and COL4A1 [Micheal and others 2016; 

Sibon and others 2007], have been suggested to result in a small 

fraction of ARS patients (less than 1%). Thus, despite expanded 

insertion/deletion investigations of the FOXC1 and PITX2 coding 

regions and mutation screening of additional candidate genes, 

the molecular defect in over half of ARS patients remains 

unknown. 

In an effort to discover additional sources of the missing ARS 

disease-associated heritability, researchers turned to 

investigations of the cis-regions that regulate the expression 

of PITX2 and FOXC1. However, like most human genes, the elements 

that regulate the expression of PITX2 and FOXC1 are largely 

unknown or are experimentally unverified. Volkmann and 

colleagues identified 13 regions potentially controlling PITX2 

expression, through comparison of the genomes of human and 

zebrafish [Volkmann and others 2011]. Investigation of these 

putative regulatory regions identified a group of patients with 

structural variants of subsets of these regions in ARS patients 

known to not have coding region changes of PITX2 or FOXC1 

[Protas and others 2017]. Subsequent deletion of some of these 

PITX2 regions in zebrafish, using CRISPR-Cas9 gene editing, 

yielded animals with phenotypes overlapping with those of ARS 

patients. These data are thus consistent with the hypothesis 

that deletion of upstream regulatory elements can cause ARS in 

patients with normal PITX2 coding regions [Volkmann and others 

2011, Protas and others 2017]. Importantly, these results also 

indicate that mutations of non-coding regions of known genes, 
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rather than mutations of unknown genes, could explain a 

substantial proportion of ARS patients with unknown etiology.

Tools and resources to discover structural variations associated 

with human ocular disease.

While the example of discovery that structural variation of 

regulatory elements can explain some of the missing heritability 

for ARS, detection and validation of such elements remains 

challenging. For PITX2, Volkmann’s approach was to inspect a 1.6 

Mb interval containing the PITX2 gene for conserved non-coding 

sequences with 80-90% identity between the human and zebrafish 

species. Further comparisons indicated that 12/13 elements 

detected in this manner also had high levels of sequence 

conservation in the chicken and mouse genomes, and that the 

elements were unlikely to be parts of transcripts since their 

sequences were absent from zebrafish or human expression 

databases. The ability of all thirteen elements to regulate 

expression was then tested by cloning each element upstream of a 

GFP promoter plasmid containing 1.9 kb of the basic PITX2 

promoter. Transient transfection of these reports in zebrafish 

embryos demonstrated GFP expression patterns that overlapped 

with that of endogenous PITX2. Importantly deletion of some of 

these elements using CRISPR-Cas9 produced animals with ARS-like 

features, providing reciprocal evidence of the key role of these 

elements in regulating PITX2 expression. This information was 

then used to support investigation of the role of these 

regulatory elements in ARS. The usefulness of the results of 

these time-consuming experiments to provide explanations for the 

missing heritability of ARS was then confirmed with the 

detection of non-coding structural variations involving these 
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elements in ARS patients [Protas and others 2017; Volkmann and 

others 2011].

Fortunately, resources have considerably advanced since the 

research of Volkmann and colleagues to discover and evaluate the 

regulatory regions of genes such as PITX2. As an example, we 

conducted an analysis to discover potential regulatory regions 

upstream of FOXC1. Analysis of such conserved elements, as was 

done for PITX2, could identify ARS-associated variation near 

FOXC1 that would be missed by regular DNA sequencing of coding 

regions. 

We used the NCBI Basic Local Alignment Search Tool (BLAST) for 

nucleotides to identify regions of similarity between DNA 

sequences of human and mouse. Our query was 1 megabase upstream 

of the FOXC1 gene within GRCh38 chromosome 6 at NC_000006.11: 

609,915-1,609,915. The database for this search was ‘Nucleotide 

collection (nr/nt)’ which we used to compare human sequences 

against the mouse DNA sequence database. BLAST default 

parameters were used. Regions of low compositional complexity 

were masked as these regions may cause spurious or misleading 

results. Results were manually filtered to eliminate hits 

corresponding to gene coding regions, and sequences that did not 

map to mouse chromosome 13 (syntenic to human chromosome 6p25). 

Using these criteria, 6 out of the total of 55 BLAST hits of 

homology between human and mouse databases were selected for 

further analyses (Figure 1). 

These six hits were genomic BAC clones mapped to mouse 

chromosome 13. Each BAC contained smaller regions of homology 

larger than 100 bp and varying in length between 158 and 1,662 

bp (Supplementary table 1), for a total of 45 conserved regions. 
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Sequences identified in our analysis have 78.46% - 85.47% 

homology between mouse and human. 

 

In preliminary investigations, we next determined if these 45 

conserved elements were associated with known structural 

variation of the human genome. Since ARS is rare, with a 

frequency of less than 1/100,000 in the population, we expect 

that any ARS-associated structural variations would also have 

low frequency. We therefore searched 1 megabase upstream of the 

FOXC1 gene within the NCBI dbVar database to identify human 

genomic structural variations larger than 50 bp from published 

studies (Figure 2). A total of 10 copy number variants (CNVs 

Table 1), reported with 1, 2, or 3 variant calls in dbVar, were 

found within the 1 megabase region upstream of FOXC1 that 

overlapped with any of the 45 conserved elements. Several other 

CNVs are known in the 1 megabase upstream region, however, these 

did not overlap with any of the conserved elements. CNVs that 

involve the FOXC1 coding region were excluded since these would 

be automatically considered pathogenic for an autosomal dominant 

disease such as ARS. 

For illustration, a 200 kb region is shown as an example in 

Figure 3. Five of the conserved elements (numbers 22-26 of 

Supplementary Table 1) are located in this region upstream of 

FOXC1. These five conserved elements are known to reside within 

several previously reported CNVs. Rare CNVs, such as esv3843471, 

reported once in the dbVar database (Table 1) might be 

associated with ARS. In contrast, esv3843472 (which does not 

overlap with any conserved element), is much less likely to be 

associated with a rare disease such as ARS since it was reported 

with more than 160 variant calls in dbVar. This information is 

useful for evaluation of the possible pathogenicity of CNVs 
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found in an ARS panel of patients involving these 45 conserved 

elements. For example, discovery of a CNV similar to esv3843472 

in this patient panel would likely be excluded from further 

investigation. In contrast, conserved elements discovered to be 

involved in CNVs within the patient panel, but which are unknown 

or with few variant calls in dbVar, could be prioritized for 

further investigations. 

Cautionary note regarding the general applicability of these 

approaches

Identification and validation of regulatory elements, 

nevertheless, remains a challenge. While structural variants are 

more disruptive than single nucleotide variation, common 

sequencing approaches (e.g., short-read sequencing) fail to 

detect most larger deletions and insertions and nearly all 

inversions [Turner and Eichler 2019]. As well, not all gene 

regions are easily analyzed using the in silico methods 

described above, due to the presence of large amounts of 

repetitive DNA sequences, low complexity DNA sequences, and 

neighboring gene rich regions. For example, analysis of FOXC1 in 

the manner described by Volkmann and colleagues [Volkmann and 

others 2011] did not result in the identification of non-coding, 

non-transcribed DNA sequences with high homology between humans 

and zebrafish (Rezaie and Walter, unpublished data). Thus, for 

some genes, brute force methods that analyze the consequence of 

expression of upstream regions, or the observation of 

deletions/duplications of regions not including the coding 

regions of genes, are still required at least currently.

 Future directions
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As our whole genome sequence databases become deeper, it will be 

possible to use additional new methods to detect regulatory 

elements. Comparisons of the distribution of mutations in non-

coding regions between large numbers of people in the general 

population could allow identification of non-coding regions 

under evolutionary constraints, some of which could be key cis-

acting regulatory regions. Improvements to the ability to 

predict transcription factor binding in the context of chromatin 

will also improve the detection of regulatory elements. Deeper 

eQTL and chromatin state data, from a substantially wider array 

of tissues and organisms, will also likely yield multiple new 

regulatory elements when combined with the data from the above 

methods. Nevertheless, validation of the functional role of 

these putative regulatory elements will continue to require in 

vitro and in vivo wet laboratory testing, at least for the 

foreseeable future. Even more importantly, we currently lack 

methods to combine the knowledge of rare coding and noncoding 

regulatory variants with environmental risk factors that 

together underlie complex polygenic traits. This ability will be 

essential to understand the basis of common disease.
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Figure Legends

Figure 1. The location and names of six mouse BAC clones 

containing non-coding genomic DNA sequences homologous to the 

human genome upstream of FOXC1. Vertical lines indicate 200 kb 

segments, which black horizontal lines indicate position of 

mouse BACs containing regions of similarly to human GRCh38 

chromosome 6 at NC_000006.11: 609,915-1,609,915. BAC clone names 

are identified below the horizontal lines.

Figure 2. Identification of known structural CNVs in the 1 

megabase region upstream of the FOXC1 gene. Figure is a screen 

capture of Sequence Viewer displaying CNVs reported in the NCBI 

dbVar database and the location of genes. The FOXC1 gene is 

circled in orange for orientation. 

Figure 3. Known CNVs within a 200 kb region upstream of FOXC1 

involving DNA sequences conserved between human and mouse. 

Figure is a screen capture of the output of Sequence Viewer 

showing CNVs reported in the dbVar database and location of 

genes. The locations of the five conserved elements are 

indicated below with black arrows. Three known CNVs that 

neighbor several of these conserved elements are circled in 

orange as examples. CNVs such as esv3843471, reported once in 

the dbVar database, might be associated with ARS. In contrast, 

esv3843472, reported more than 160 times, is much less likely to 

be associated with ARS.
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Table 1. List of the 10 copy number variants in the 1 megabase 

region upstream of FOXC1 that overlapped with any of the 45 

conserved elements. Indicated to the right are the numbers of 

variant calls in dbVar as reported from the 1000 Genome project.
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Figure 1. The location and names of six mouse BAC clones containing non-coding genomic DNA sequences 
homologous to the human genome upstream of FOXC1. Vertical lines indicate 200 kb segments, which black 

horizontal lines indicate position of mouse BACs containing regions of similarly to human GRCh38 
chromosome 6 at NC_000006.11: 609,915-1,609,915. BAC clone names are identified below the horizontal 

lines. 
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Figure 2. Identification of known structural CNVs in the 1 megabase region upstream of the FOXC1 gene. 
Figure is a screen capture of Sequence Viewer displaying CNVs reported in the NCBI dbVar database and the 

location of genes. The FOXC1 gene is circled in orange for orientation. 
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Figure 3. Known CNVs within a 200 kb region upstream of FOXC1 involving DNA sequences conserved 
between human and mouse. Figure is a screen capture of the output of Sequence Viewer showing CNVs 
reported in the dbVar database and location of genes. The locations of the five conserved elements are 

indicated below with black arrows. Three known CNVs that neighbor several of these conserved elements 
are circled in orange as examples. CNVs such as esv3843471, reported once in the dbVar database, might 
be associated with ARS. In contrast, esv3843472, reported more than 160 times, is much less likely to be 

associated with ARS. 

245x101mm (144 x 144 DPI) 

Page 36 of 36

John Wiley & Sons

Wiley-Phase 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


