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Abstract
A	striking	anecdotal	feature	of	the	Coronavirus	disease	2019	(COVID-19)	outbreak	is	the	difference	in

morbidity	and	mortality	between	the	sexes.	Here,	we	present	a	meta-analysis	of	206,	128	reported

cases	to	demonstrate	that	whilst	there	is	no	difference	in	the	proportion	of	males	and	females	with

confirmed	COVID-19,	male	patients	have	more	than	double	the	odds	of	requiring	intensive	treatment

unit	admission	(OR	2.5)	and	higher	odds	of	death	(OR	1.60)	when	compared	to	females.	We	review

data	revealing	how	previous	Coronavirus	outbreaks	have	demonstrated	a	similar	pattern.	Important

differences	in	the	immune	response	to	infection	exist	between	sexes,	which	are	likely	to	contribute	to

this	observation.	In	this	review,	we	discuss	these	differences	highlighting	that	females	have	a	more

robust	innate	antiviral	response	and	a	better	adaptive	immune	response	to	infection.	An	appreciation

of	how	sex	is	influencing	COVID-19	outcomes	will	have	important	implications	for	clinical

management	and	mitigation	strategies	for	this	disease.

Introduction
Anecdotal	bias	towards	male	sex	has	been	observed	globally	in	Coronavirus	disease	2019	(COVID–

19)1.	Sex	is	a	traditionally	under-appreciated	biological	variable	in	the	immune	response	to	infection,

with	emerging	data	highlighting	its	importance.	To	address	whether	the	anecdotal	bias	reported	is

validated	by	statistical	analysis,	we	have	collected	currently	available	case	data	and	present	a	meta-

analysis	to	investigate	sex	as	a	risk	factor	for	COVID–19	infection,	morbidity	and	mortality.	To	place

this	data	in	context,	we	have	also	provided	a	brief	review	of	the	role	of	sex	in	previous	Coronavirus

outbreaks,	and	more	generally	in	other	infections.	We	also	provide	a	brief	up	to	date	overview	of	the

literature	that	describes	the	difference	in	the	male	and	female	immune	systems,	which	lead	to

females	mounting	a	more	robust	innate	and	adaptive	immune	response	to	viral	antigens.	

Methods
Search	strategy	and	selection	criteria

A	google	search	was	performed	by	multiple	researchers	working	remotely	for	reports	on	COVID–19

cases	that	included	sex	as	a	variable	(Search	terms:	COVID–19/case/	sex/	country/

data/death/ICU/ITU).	Reports	were	translated	using	Google	translate	if	they	were	not	in	English.
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Specifically,	reports	were	included	if	they	contained	sex	as	a	variable	in	data	describing	case	number,

intensive	treatment	unit	(ITU)	admission	or	mortality.	Data	were	available	at	the	level	of	summary

data	representing	distinct	individuals	for	each	report	but	not	at	the	level	of	covariates	for	all

individuals	within	a	study.	Consequently,	covariates	such	as	lifestyle	and	comorbidities	could	not	be

controlled	for.	Data	are	available	in	Supplementary	Table	1.	

Data	analysis

Meta-analysis	was	performed	to	estimate	an	overall	proportion	of	male	infected	cases	with	95%

confidence	intervals	(CI).	This	meta-analysis	was	two-sided	and	tested	the	null	hypothesis	that	the

proportion	of	male	infected	cases	was	0.5.	For	this	analysis,	the	classic	inverse	variance	method	for

estimation	of	single	proportions	and	standard	errors	was	used,	which	uses	logit-transformed

proportions.	A	sensitivity	analysis	was	also	performed,	in	which	the	generalised	linear	mixed	model

(GLMM)	method	was	used	to	estimate	an	overall	proportion.	This	yielded	identical	results,	indicating

the	differing	assumptions	of	these	different	methods	were	inconsequential	for	these	data.	Meta-

analyses	were	also	performed	to	estimate	odds	ratios	(ORs)	with	95%	CI	associated	with	male	sex	for

ITU	admission	and	death	based	on	pooled	average	effect	measures	that	were	weighted	according	to

the	size	and	precision	of	each	report.	Both	of	these	meta-analyses	were	two-sided	and	tested	the	null

hypothesis	that	the	estimated	OR	was	1.	Fixed	and	random	effects	models	were	estimated	and	are

reported.	For	all	analyses,	where	parameters	and	p-values	differ	between	fixed	and	random	effects

models,	the	estimates	from	the	random	effects	model	are	preferred	as	these	do	not	assume

uniformity	across	reports	and	account	for	variance	between	reports.	Reports	that	did	not	contain	the

data	required	to	calculate	ORs	were	automatically	excluded	from	meta-analyses.	Meta-analyses	were

performed	using	R	version	3.6.1	and	the	“meta”	package	version	4.11–02,	code	available	in

supplementary	material.

Role	of	the	funding	source

The	funders	of	this	study	had	no	role	in	study	design,	data	collection,	data	analysis,	data

interpretation,	or	writing	of	the	report.	The	corresponding	author	had	full	access	to	all	the	data	in	the

study	and	had	final	responsibility	for	the	decision	to	submit	for	publication.
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Results
Forty	two	reports	were	found	from	across	the	world,	from	01.01.2020	up	until	30.3.2020	(Fig.	1).

Reports	were	excluded	if	they	did	not	report	the	total	number	of	infections	by	sex	(1	ITU	case	series

and	1	mortality	case	series).	One	report	was	excluded	as	it	contained	less	than	5	cases.	Thirty	nine

reports	remained.	There	were	multiple	reports	originating	from		China	which	were	carefully	examined

for	duplication.	For	the	analysis	of	case	numbers	by	sex,	12	reports	were	excluded	due	to	possible

duplication.	Of	the	39,	6	reports	included	ITU	admission	by	sex,	1	of	these	was	excluded	for	possible

duplication.	Of	the	39,	15	reports	included	mortality	by	sex,	and	3	of	these	were	excluded	for	possible

duplication.	Therefore,	altogether	29	reports	were	included	representing	206,128	cases3–31.	The

proportion	of	male	cases		with	COVID–19	in	these	reports	was	only	slightly	over	half	at	0.52	(95%	CI	=

0.52,0.53,	p	=	2.3e–97	for	fixed	effects	model;	95%	CI	=	0.50,0.53,	p	=	0.12	for	random	effects

model)	demonstrating	that	males	and	females	have	similar	numbers	of	infections	(Fig.	2).	Male	sex

associated	with	an	increased	risk	of	ITU	admission	(OR	=	2.50;	95%	CI	=	2.25,	2.78;	p	=	3.8e–64	and

7.3e–64		for	fixed	and	random	effects	models,	respectively;	n	=	43,075)	(Fig.	3).	Male	sex	also

associated	with	an	increased	risk	of	mortality	(OR	=	1.62,	95%	CI	=	1.54,	1.71,	p	=	5.5e–77	for	fixed

effect	model;	OR	=	1.60,	95%	CI	=	1.41,	1.82,	p	=	7.4e–13	for	random	effects	model;	n	=	170,983)

(Fig.	4).	

Discussion
These	data	show	no	difference	in	the	proportion	of	COVID–19	infected	cases	between	sexes,	but

highlight	that	male	sex	associates	significantly	with	morbidity	(ITU	admission	OR	2.50)	and	mortality

(OR	1.60).	Due	to	the	nature	of	these	rapidly	acquired	data,	the	age	and	comorbidity	for	individual

cases	are	not	available.	This	limits	our	ability	to	accurately	predict	the	role	of	sex	in	disease	without

adjusting	for	these	factors,	as	certain	comorbidities	might	associate	with	sex.	Once	more	data

become	available,	future	studies	will	be	able	to	adjust	for	additional	factors	using	techniques	such	as

mediation	analysis.	In	addition,	all	reports	did	not	use	the	same	COVID–19	tests	(with	differing

sensitivity	and	specificity)	and	different	population	groups	were	included	in	each	report	(e.g.	hospital

admissions	vs	community	cases).	Despite	these	limitations,	these	data	highlight	an	important	trend	in
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the	epidemiology	of	COVID–19,	with	male	sex	acting	as	a	risk	factor	for	severe	disease.	

Gendered	differences	in	social	activity	and	behaviours	could	contribute	to	the	sex	difference	seen	in

COVID–19	disease	severity.	In	China,	50.5%	of	men	versus	only	2.1%	of	women	smoke32,	although

smoking	has	not	yet	emerged	as	a	clear	risk	factor	for	severe	disease33.	Early	data	from	the	COVID–

19	outbreak	in	China	indicate	that	hypertension	and	diabetes	are	the	most	common	comorbidities	in

hospitalised	patients34.		Globally	from	age	45–54,	it	is	estimated	that	33%	of	women	compared	to

36%	of	men	are	hypertensive,	with	this	ratio	reversing	in	the	elderly	(>	75),	where	it	is	estimated	that

81%	of	women	and	73%	of	men	are	hypertensive35.	Similarly	in	diabetes,	it	is	estimated	that	globally

9.0%	of	women	and	9.6%	of	men	are	diabetic,	and	this	ratio	tends	to	increase	and	reverse	in	the

elderly36.	Men	are	less	likely	to	wash	their	hands	with	soap	after	entering	a	restroom37	and	in	many

cultures	men	may	be	more	likely	to	leave	the	house	and	enter	crowded	areas.	Our	data	however

shows	no	difference	in	the	numbers	of	infected	cases	between	the	sexes,	so	sex	difference	in	hygiene

behaviour	is	unlikely	to	explain	the	sex	difference	in	disease	severity.	There	may	be	non-

immunological	biological	differences	between	sexes	that	play	a	role.	For	example,	COVID–19	most

likely	binds	to	angiotensin	converting	enzyme	2	(ACE2)	receptors	facilitating	viral	entry	and	human	to

human	transmission	38.	Pre-print	studies	are	conflicting	as	to	whether	ACE2	expression	in	lung	tissue

is	different	between	sexes	39,40.	Therefore,	these	factors	are	unlikely	to	fully	explain	the	stark	sex

inequality	in	morbidity	and	mortality	associated	with	COVID–19.	Fundamental	differences	in	the

immune	response	to	infection	between	sexes	are	more	likely	to	contribute	to	this	phenomenon.

Below,	we	review	literature	pertaining	to	the	sex	differences	seen	in	previous	Coronavirus	outbreaks,

other	infections	and	the	known	sex	differences	in	the	immune	system.

Review	Of	Sex	Bias	In	Infection	And	Immunity
1.	SEX	DIFFERENCE	IN	PREVIOUS	CORONAVIRUS
OUTBREAKS
-HUMANS:	Severe	Acute	Respiratory	Syndrome	Coronavirus	1	(SARS-CoV–1)	showed	a	similar	sex

discrepancy	in	the	2003	epidemic.	In	Hong	Kong,	the	case	fatality	rate	was	13.2	%	for	females	(95	%
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CI	=	11.1,	15.3)	and	21.9	%	for	males	(95%	CI	=	19.0,	24.8),	with	an	age-adjusted	relative	mortality

risk	ratio	of	1.62	(95	%	CI	=	1.21,	2.16)	for	males	41.	In	a	study	in	Singapore	during	the	same

outbreak,	male	sex	associated	with	an	odds	ratio	of	3.10	(95	%	CI	=	1.64,	5.87;	p	=	<0.001)	for	ITU

admission	or	death	42.		A	retrospective	analysis	of	the	Saudi	Arabian	Middle	East	Respiratory

Syndrome	(MERS)	outbreak	in	2013	-	2014	showed	a	case	fatality	rate	of	52%	in	men	and	23	%	in

women	43.

-ANIMALS:	This	sex	bias	is	also	observed	in	animal	models	of	SARS	infections.	In	a	mouse	model	of

SARS-CoV–1	infection,	female	mice	had	a	lower	case	fatality	ratio,	and	less	lung	inflammation	and

oedema	than	males.	Moreover,	ovarectomy	and	treatment	with	the	oestradiol	antagonist,	ICI	182,

780,	diminished	the	sex	advantage	of	female	mice,	implicating	oestradiol	in	this	sex	difference44.

Studies	in	animals	that	are	known	vectors	for	human	disease	have	not	shown	the	same	sex	bias	that

is	observed	in	humans.	Seropositivity	in	these	reservoir	animals,	which	act	as	hosts	for	viral

pathogens	but	generally	do	not	display	symptoms,	has	been	investigated	with	sampling	studies.

Studies	in	wild	bats,	known	reservoirs	for	pathogenic	coronaviruses,	have	shown	either	similar

seropositivity	in	males	and	females	45,	or	higher	seropositivity	in	female	animals46.	Similar	studies	in

dromedary	camels,	the	main	reservoir	host	for	MERS-CoV,	showed	higher	seropositivity	in	females

47,48.	A	possible	explanation	for	the	higher	rate	of	seropositivity	in	females	is	the	higher	risk	of

exposure:	the	close	proximity	of	female	dromedaries	to	their	highly	susceptible	calves	puts	them	at

repeated	risk	of	infection	48,	while	pregnant	bats	collect	to	stay	warm	during	roosting	season46.

2.	SEX	DIFFERENCES	IN	OTHER	INFECTIONS
Sex	differences	in	response	to	infection	occur	at	all	ages	with	a	generally	higher	burden	of	bacterial,

viral,	fungal	and	parasitic	infections	in	human	males.	New-born	males	are	more	likely	to	die	from

infection	than	females49	and	male	children	have	higher	rates	of	parasitic	infections50.	Tuberculosis

and	hepatitis	B	infection	are	more	common	in	males,	who	are	also	more	likely	to	die	of	sepsis	than

females51,52.	An	exception	to	this	male	predominance	in	infectious	disease	is	urinary	tract	infections,
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where	adult	females	are	40	times	more	likely	than	males	to	develop	disease53.	Females	with	human

immunodeficiency	virus	(HIV)	infection	have	less	circulating	viral	RNA,	but	are	1.6	times	more	likely	to

progress	to	advanced	immune	deficiency	syndrome	(AIDS)	at	the	same	viral	load	as	men54.	Women

are	more	susceptible	to	infections	of	the	upper	respiratory	tract	such	as	tonsillitis	and	sinusitis	while

men	are	more	susceptible	to	lower	respiratory	tract	infections	i.e.	community-acquired	pneumonia55.

Notably,	the	female	sex	bias	in	infection	is	mainly	observed	after	puberty	and	before	menopause,

suggesting	that	sex	hormones	play	an	important	role	in	this	phenomenon53.

3.	SEX	DIFFERENCES	IN	INFLUENZA	
Unlike	COVID–19,	mortality	rates	during	previous	influenza	pandemics	have	typically	been	higher	in

females,	despite	a	higher	prevalence	of	infection	in	men.	Studies	from	Japan	during	the	most	recent

H1N1	pandemic	found	that	during	reproductive	years	morbidity	rates	were	higher	in	females,	but

outcomes	were	worse	for	males	under	20	and	over	8056.	Pregnancy	is	an	established	risk	factor	for

influenza	morbidity	and	mortality:	in	US	data	from	the	2009	Influenza	A	(H1N1)	pandemic,	pregnant

women	represented	5%	of	all	deaths	despite	comprising	less	than	1%	of	the	population57.	From	the

limited	data	about	COVID–19	in	pregnancy	to	date,	there	does	not	seem	to	be	the	same	association

with	morbidity	that	is	seen	in	influenza,	but	this	may	change	as	more	information	becomes

available58.	Data	from	influenza-infected	animal	models	demonstrate	no	difference	in	viral	load

between	males	and	females,	but	greater	pro-inflammatory	cytokine	and	chemokine	production	in

females,	suggesting	that	host-mediated	inflammatory	responses	contribute	to	the	disparity	in

morbidity	between	the	sexes59.	Analysis	of	the	effect	of	sex	hormones	versus	the	sex	chromosome

complementon	the	response	to	influenza	infection	demonstrates	that	sex	steroids	are	likely	to	be

driving	the	differences	observed59.

The	stronger	female	response	to	influenza	antigens	that	may	underlie	more	severe	disease	is

mirrored	in	the	female	response	to	vaccination.	Women	consistently	report	more	severe	local	and

systemic	side	effects	and	produce	higher	antibody	titres	in	response	to	seasonal	flu	vaccinations60,61
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than	men.	Females	achieved	equivalent	protective	antibody	titres	to	males	at	half	the	dose	of

inactivated	influenza	vaccine	62.	After	influenza	vaccination,	female	B	cells	produced	more	antigen-

specific	IgG,	mediated	by	sex-based	differences	in	gene	expression	within	B	cells	63.	

4.	SEX	DIFFERENCES	IN	THE	IMMUNE	SYSTEM
Despite	being	a	previously	underappreciated	biological	variable,	it	is	now	well	established	that	males

and	females	mount	different	immune	responses	to	infection.	Whilst	some	differences	are	seen	in	the

immune	response	from	birth,	certain	differences	are	only	observed	after	sexual	maturity.	This

suggests	that	both	sex	chromosome	complement	as	well	as	sex	hormones	influence	the	immune

response.		In	very	general	terms,	females	tend	to	be	skewed	towards	a	more	robust	immune	response

towards	pathogens	with	relatively	decreased	self-tolerance,	whereas	males	tend	to	have	better	self-

tolerance,	but	a	less	robust	response	to	pathogens.	This	contributes	to	the	clinical	phenotype	of

females	being	relatively	protected	against	infection	and	malignancy	when	compared	to	males,	but

more	prone	to	developing	autoimmune	diseases.	

SEX	CHROMOSOMES	AND	SEX	HORMONES:	There	is	an	over-expression	of	genes	with	an	immune

function	on	the	X	chromosome64,	as	evidenced	by	the	existence	of	many	X-linked	immunodeficiency

disorders65.	There	is	emerging	evidence	that	there	may	be	variable	inactivation	and	regulation	of	the

inactive	X	chromosome	in	immune	cells	with	subsequent	bi-allelic	expression	of	X-encoded	immune

genes	in	females	66,67.	Many	immune	cells	express	oestrogen	receptors	alpha	and	beta	68.	The	effect

of	oestradiol	seems	to	be	dose-dependent,	with	low	doses	corresponding	to	a	T	helper	1	(Th1)-type

response	and	cell-mediated	immunity,	and	higher	doses	(such	as	in	pregnancy)	corresponding	to	T

helper	2	(Th2)-type	responses	and	humoral	immunity	51,69.	Oestradiol	modulates	CD4	T	cells	and	CD8

T	cells70,	promotes	T	regulatory	(Treg)	cell	expansion	in	vitro	and	in	vivo	71	and	decreases	T	helper	17

(Th17)/interleukin–17	(IL–17)	production	72.	Oestradiol	is	associated	with	increased	antibody

production,	somatic	hyper-mutation	and	class	switching	73,	abundance	of	neutrophils	74,	and

monocyte/macrophage	cytokine	production	75.	In	human	T	cells,	almost	half	of	the	activated	genes
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have	an	oestrogen	response	element	in	their	promoter	region76.	Testosterone	is	generally	thought	to

dampen	the	immune	response;	a	lack	of	testosterone	associates	with	increased	inflammatory

cytokines,	antibody	titres,	CD4/CD8	ratios	and	natural	killer	cells	along	with	a	decrease	in	Treg	cells

51,77.	

INNATE	IMMUNITY:	In	terms	of	innate	immunity,	limited	data	suggest	sex-based	differences	in	the

expression	and	response	of	pattern-recognition	receptors	on	various	immune	cells.	For	example,	both

neutrophils	from	human	males	and	peritoneal	macrophages	from	male	mice	express	higher	levels	of

toll-like	receptor	4	(TLR4)	78,79	and	produce	higher	levels	of	tumour	necrosis	factor	alpha	(TNFα)	after

lipopolysaccharide	(LPS)	stimulation	than	females	80.	

There	are	important	sex	differences	in	the	innate	antiviral	response	that	may	be	relevant	to	the	sex

discrepancy	seen	in	COVID–19.	There	is	a	large	body	of	evidence	showing	that	females	have	a	more

robust	production	of	type	1	interferon	(IFN)	upon	sensing	of	viral	RNA	via	toll-like	receptor	7	(TLR7)

81–86.	When	exposed	to	HIV-derived	RNA,	plasmacytoid	dendritic	cells	from	females	produce	more

type	1	IFN	than	males	87.	This	phenomenon	has	been	shown	to	associate	with	sex	hormone

concentration	but	also	the	number	of	X	chromosomes	present	82	84.			

ADAPTIVE	IMMUNITY:	The	adaptive	immune	system	mirrors	the	trend	of	females	being	skewed

towards	a	more	robust	immune	response,	but	poorer	self-tolerance,	and	males	having	improved

tolerance,	but	a	less	robust	response	to	infections.	Autoimmune	regulator	(AIRE)	gene	expression	is

decreased	in	female	thymic	tissue	compared	to	males	and	females	have	improved	thymic	function

when	compared	to	males	throughout	life	88–90.	At	all	ages,	and	even	during	HIV	infection,	females

have	more	CD4+	T	cells	than	males	91–96.	Female	T	cells	have	more	robust	cytotoxic	activity	and

upregulation	of	inflammatory	genes	than	males75,	while	males	have	more	Tregs	than	females97.	

Females	have	more	B	cells	and	produce	more	immunoglobulin	than	males	91,98.

5.	SEX	DIFFERENCE	IN	IMMUNE-AGING
There	is	a	marked	association	between	morbidity/mortality	and	advanced	age	in	COVID–19.	Although
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age-associated	changes	in	immunity	are	beyond	the	scope	of	this	review	and	are	available

elsewhere99,	it	is	of	note	that	age-associated	changes	in	the	immune	system	are	also	different

between	sexes.	There	is	a	male-specific,	age-associated	decline	in	B	cells	and	a	trend	towards

accelerated	immune	ageing	in	males	100,101	which	may	further	add	to	the	sex	difference	in	disease

phenotype.	

Conclusion
These	data	demonstrate	that	although	there	is	no	sex	difference	in	the	proportion	of	people	infected

with	COVID–19,	men	are	at	a	significantly	higher	risk	of		severe	disease	and	death	than	women.

Previous	reports	describe	fundamental	differences	between	sexes	in	the	immune	response	to

infection.	These	include	a	more	robust	antiviral	innate	interferon	response	and	increased	adaptive

immunity	towards	viral	antigens	in	females.	In	people	infected	with	COVID–19,	these	differences	are

likely	to	lead	to	more	effective	viral	control	in	females,	which	may	contribute	to	the	relatively	lower

risk	of	developing	severe	disease.	Although	further	studies	are	needed,	these	data	have	implications

for	the	clinical	management	of	COVID–19	and	highlight	the	importance	of	considering	sex	as	an

important	variable	in	fundamental	and	clinical	research.
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Figure	1

Study	selection.	42	reports	were	found.	2	reports	were	excluded	as	they	did	not	report	the

total	number	of	infections	by	sex	(1	ITU	admission	only	case	series	and	1	mortality	case

series)and	1	report	was	excluded	as	it	contained	less	than	5	cases.	Of	the	39	remaining

reports;	for	the	analysis	of	case	numbers	by	sex,	12	reports	were	excluded	due	to	possible

duplication;	of	the	6	reports	that	reported	ITU	admission	by	sex,	1	was	excluded	for	possible

duplication;	of	the	15	reports	that	included	mortality	by	sex,	3	were	excluded	for	possible

duplication.
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Figure	2

There	is	no	obvious	sex	difference	in	the	proportion	of	people	infected	with	COVID-19.	Table

and	forest	plot	shows	number	of	infected	males	and	total	number	of	infected	COVID-19

cases	in	27	studies.	The	random	effects	model,	which	accounts	for	variance	across	reports,

indicated	no	statistical	difference	(0.52	95%	Confidence	Interval	(CI)=0.50,0.53,	p=0.12).
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Figure	3

Male	sex	is	associated	with	a	significantly	increased	risk	for	ITU	admission	within	COVID-19

patients.	Table	and	forest	plot	shows	number	of	ITU	admissions	and	total	number	of	infected

COVID-19	cases	for	each	sex.	Odds	Ratio	(OR)=2.50;	95%	Confidence	Interval	(CI)=2.25,

2.78;	p=7.3e-64	for	random	effects	model,	pooled	across	n=5	reports	with	complete	data

on	COVID-19	cases	and	ITU	admissions	in	males	and	females.
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Figure	4

Male	sex	is	associated	with	a	significantly	increased	risk	for	mortality	within	COVID-19

patients.	Table	and	forest	plot	shows	number	of	deaths	and	total	number	of	infected	COVID-

19	cases	for	each	sex.	Odds	Ratio	(OR)=1.60;	95%	Confidence	Interval	(CI)=1.41,	1.82;

p=7.4e-13	for	random	effects	model,	n=12	reports	with	complete	data	on	COVID-19	cases

and	mortality	in	males	and	females.
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