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Abstract 

Within the domain of psychology, Optimal Experimental Design (OED) principles have been used to 

model how people seek and evaluate information. Despite proving valuable as computational-level 

methods to account for people’s behaviour, their descriptive and explanatory powers remain largely 

unexplored. In a series of experiments, we used a naturalistic crime investigation scenario to examine 

how people evaluate queries, as well as outcomes, in probabilistic contexts. We aimed to uncover the 

psychological strategies that people use, not just to assess whether they deviated from OED principles. 

In addition, we explored the adaptiveness of the identified strategies across both one-shot and stepwise 

information search tasks. We found that people do not always evaluate queries strictly in OED terms 

and use distinct strategies, such as by identifying a leading contender at the outset. Moreover, we 

identified aspects of zero-sum thinking and risk aversion that interact with people’s information search 

strategies. Our findings have implications for building a descriptive account of information seeking and 

evaluation, accounting for factors that currently lie outside the realm of information-theoretic OED 

measures, such as context and the learner’s own preferences.   

 

Keywords: information search, OED framework; utility functions, inquiry, question asking, 
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1. Introduction 

In everyday and professional contexts, people are often required to make judgements and decisions in 

environments permeated by uncertainty, whether through lack of information, unreliability of sources, 

or complex relationships between items. To make accurate decisions we must not only integrate and 

evaluate information, but also seek and acquire the right information in the first place. For example, 

after an initial examination a physician might have enough information to conjecture several possible 

hypotheses to explain the symptoms of a patient. However, to make an accurate diagnosis the physician 

needs to engage in additional questioning (examinations or laboratory tests) to gather information that 

can further distinguish between the possible diagnoses. Although certain aspects of this situation are 

captured by the current normative frameworks of human information acquisition (e.g., Optimal 

Experimental Design framework; Lindley, 1956), other aspects - such as how certain pre-inquiry 

“preferences” can guide people’s information search strategies - are less readily modelled. For example, 

should the physician at the outset perform an exam to facilitate the identification of a leading hypothesis 

or one that enables the exclusion of a hypothesis?  

Obtaining a ‘frontrunner’ hypothesis and ‘excluding’ a hypothesis are both seemingly rational 

motivators of inquiry, and people’s preferences for these will be influenced by contextual factors. For 

example, the physician might prioritise a test that could exclude a diagnosis at the outset, if it is one that 

has serious implications for the patient. In contrast, a criminal investigator investigating a kidnapping 

case might choose an initial inquiry that facilitates the identification of a lead suspect (i.e., frontrunner) 

from a given pool of suspects, in order to maximise the chances of rapidly finding the missing person. 

In more dispassionate situations, such as that of an employer interviewing multiple candidates for the 

same position, choosing between an initial question that might help detect a lead candidate and a 

question that could help to exclude a candidate, is even more contentious. Although central to 

information search situations, these strategic preferences, as well as their determinants, have been 

largely overlooked within the psychological literature of human information acquisition. 
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1.1. Information acquisition and evaluation: Normative account 

Seeking and evaluating information are recognised as central components of human cognition, 

capturing the attention of researchers across numerous disciplines. Within the psychological literature, 

Optimal Experimental Design (OED) principles, based on insights from statistics and computer science, 

have been used to build normative and descriptive models of people’s information acquisition and 

evaluation behaviour (Baron, 1985; Klayman & Ha, 1997; Nelson, 2005).  Part of the appeal of OED 

models is that they allow researchers to explore evaluation and integration processes within a 

probabilistic framework (Savage, 1954). As such, a Bayesian OED framework integrates i) a 

probabilistic belief model with a set of hypotheses (with specified prior probabilities) and a set of 

possible “queries”1 to discern between these, ii) a measure to quantify the usefulness of each possible 

query relative to the probabilistic belief model, and iii) a (Bayesian) method of updating beliefs 

according to a query’s outcome (Nelson, 2005).  OED principles posit that people search for information 

with the goal of optimizing the information gained from their action. Thus, queries are selected that are 

anticipated to return information of utmost value or ‘utility’, by resulting in the greatest reduction in 

uncertainty (i.e., Shannon entropy of a learner’s belief distribution).  Equation 1 illustrates the 

framework utilised by all OED models to quantify the utility of a query, eu (Q), as the expected 

usefulness (u), given current knowledge, of the possible query outcomes ai: 

𝑒𝑢(𝑄) = 	∑ 𝑃(𝑎!)𝑢(𝑎!)"! 	      Equation 1 

Several utility functions exist that quantify the usefulness of query outcomes, u (ai) in different ways. 

In the present paper we utilise utility functions defined purely in information-theoretic terms and thus 

we will not describe situation-specific utility functions with reward structures (for a discussion of these 

see Coenen, Nelson & Gureckis, 2018). The same mathematical framework can nonetheless be 

employed to both situation-specific and information-theoretic cases (Savage, 1954).  Prominent utility 

functions include probability gain (PG; Baron, 1985), Bayesian diagnosticity (Good, 1950), log 

diagnosticity, information gain (IG; Box & Hill, 1967; Lindley, 1956), Kullback-Leibler divergence 

 
1 We adopt the term query to represent any information-seeking action (i.e., experiment, test, or question).   
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(KL-D; Kullback & Liebler, 1951) and Impact (IMP; Klayman & Ha, 1987; Nickerson, 1996). We will 

now describe in turn the utility functions that we adopt in the present work, namely; Kullback-Liebler 

divergence, information gain, probability gain and Impact (for a more in-depth review of these see 

Nelson, 2005; 2008). Diagnosticity measures (e.g., log diagnosticity and Bayesian diagnosticity) were 

not included following the arguments presented in Nelson (2005) stipulating they are poor theoretical 

models of the utility of information and are not needed to explain empirical data of information search. 

Kullback-Liebler divergence conceptualises a query’s usefulness as the amount that the 

information provided by its outcomes is expected to change one’s beliefs in the hypotheses hi within 

the model. As such, KL-D computes the expected usefulness of a query outcome 𝑎! as: 

𝐾𝐿(𝑎!) = 	∑ 𝑃(ℎ!|𝑎!) ∗ 𝑙𝑜𝑔# 	
$%ℎ!&𝑎!'
$()!))!     Equation 2 

From the equation above it follows that the usefulness of a query (Q), measured as change from prior 

beliefs about a true hypothesis, H, to posterior beliefs after a particular query outcome is observed, is 

computed as: 

𝐾𝐿(𝑄) = 	∑ 𝑃(𝑎!) ∗"! ∑ 𝑃(ℎ!|𝑎!) ∗ 𝑙𝑜𝑔# 	
$%ℎ!&𝑎!'
$()!))!                   Equation 3 

Information gain (Lindley, 1956) quantifies a query’s usefulness according to how much it 

would reduce uncertainty with respect to the true hypothesis. The expected usefulness of a query 

outcome 𝑎!  would be computed as the difference between the entropy of the prior distribution and that 

of the posterior distribution, conditional on the status of the effect, and the expected usefulness of a 

query would be:   

																			IG(𝑄) = 	∑ P(ℎ!) ∗ log#
+

$()!)
−∑ P(a,) ∗-" ∑ 𝑃(ℎ!|𝑎!)." log#

+
$()!|"!)."                 Equation 4 

It is worth noting that KL-D and IG make identical predictions regarding a query’s usefulness (Oaksford 

& Chater, 1994), although they have been shown to give different measures of a particular query 

outcome’s usefulness (Nelson, 2008).  
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Probability gain values a query in terms of its expected improvement in classification accuracy, 

assuming that the most probable category will always be chosen. The model’s informational utility 

function is shown in Equation 5, where the max operators choose the leading (i.e., most likely) 

hypothesis given the outcome of a query and the initially leading hypothesis before any query. The 

difference between the two terms is the expected probability gain of a query outcome: 

PG(𝑎!) = max
!
𝑃(ℎ!|𝑎!) −	max! 𝑃(ℎ!)    Equation 5 

It follows that the expected usefulness of a query according to probability gain is maximises computed 

as: 

						PG(𝑄) = (∑ 𝑃(𝑎!) ∗-" max
)!

𝑃(ℎ!|𝑎!)) −	max)!
𝑃(ℎ!)   Equation 6 

Finally, Impact is a measure of absolute change, quantifying the usefulness of a query as the 

absolute change in beliefs (Nelson, 2005; Wells & Lindsay, 1980) from prior to posterior probability 

of the hypotheses conditional on a query outcome. The expected usefulness of a query according to 

Impact can be computed as: 

					IMP(𝑄) = 	∑ 𝑃(𝑎!) ∗"!
+
0
∗ ∑ 𝑎𝑏𝑠	[𝑃(ℎ!|𝑎!) − 	𝑃(ℎ!)]	)!                  Equation 7 

Note that with a binary hypothesis space with equiprobable base rates, Impact and Probability gain are 

identical (Nelson, 2005). 

The above-mentioned utility functions are distinct in terms of how they characterise the goal of 

the information seeker and how they quantify the diagnosicity of information; they also differ in certain 

inherent properties. For example, KL-D and Impact are non-negative measures, meaning that they will 

always quantify the expected usefulness of an outcome as being greater than zero (usefulness (𝑎!) ≥

0). IG and PG hold the property of additivity meaning that the expected usefulness of a given outcome 

equals the additive expected usefulness of each outcome (𝑎! = usefulness 𝑎+ + usefulness 𝑎#…). Some 

properties, such as non-negativity, are arguably particularly important when trying to build a descriptive 

account of people’s information search behaviour in naturalistic situations. Non-negative utility 
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functions are able to intuitively capture the notion that evidence that holds the pattern and/or probability 

distribution in a given model constant can still be epistemically valuable (Coenen et al., 2018; Evans & 

Over, 1996; Roche & Shogenji, 2016). The utility functions that do not have the property of non-

negativity might, on the other hand, lead one to counterintuitive conclusions. To explain, consider the 

scenario in which a criminal investigator has three suspects under consideration. Imagine that Suspect 

A is initially the lead suspect (P (Suspect A) = 70 %) and the remaining two suspects (B and C) have 

an equal (lower) probability, i.e., P (Suspect B) = P (Suspect C) = 15%. Suppose now that a new piece 

of evidence, E1, switches the probabilities of Suspect A and Suspect B while the probability of Suspect 

C remains the same, so that P (Suspect B | E1) = 70% and P(Suspect A | E1) = P(Suspect C | E1) = 15%. 

As Suspect B has now replaced Suspect A as the leading suspect (hypothesis), clearly E1 is of great 

epistemic value, even though the pattern of the probability distribution given the evidence has remained 

the same. Given their non-negative features, KL-D and Impact would in this instance remain true to the 

epistemic value of information, as they do not accrue solely as a result of a change in the ‘pattern’ of 

the probability distribution. In this scenario, KL-D and Impact quantify E1 as having positive utility, in 

contrast to IG and PG, which would quantify the utility E1 as 0 since it did not decrease the degree of 

uncertainty, or Shannon entropy, in the model.  

A further demonstration of the potentially problematic nature of non-negative measures arises in 

scenarios in which a learner receives information (e.g., E2) that actually reduces their belief in a given 

hypothesis (i.e., posterior probability estimate is lower than prior probability estimate), and their 

uncertainty in the environment therefore increases. In this scenario IG and PG would assign a negative 

utility value to E2, whereas KL-D would still produce a value of positive utility given that intuitively, 

something was learned, despite leading to more uncertainty in the learner’s environment (Coenen et al., 

2018). In fact, KL-D and Impact will always return a positive expected utility unless the prior and 

posterior distributions are exactly the same, in which case it would return 0 (Nelson, 2008). In a criminal 

investigation scenario, finding out a suspect is not the culprit may be pragmatically as important as 

identifying the person who is. Similarly, in a medical diagnosis scenario, being able to establish that a 

certain disease (especially if particularly fatal) that was once thought to be the leading hypothesis is 
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now not very probable, is of extreme value.  Therefore, adopting measures such as KL-D and Impact, 

that do not quantify the value of information simply in terms of reduction in uncertainty might be more 

appropriate and avoids counterintuitive claims, especially when considering information search 

behaviour in naturalistic settings (Coenen et al., 2018; Evans & Over, 1996; Roche & Shogenji, 2016). 

This notion however might not necessarily extend to single-hypothesis scenarios (which are not tested 

in the present paper) in which negative measures such as IG and PG can act as better predictors of 

participants’ ratings of the utility of query outcomes, compared to KL-D, and have been shown to reflect 

more closely how participants actually conceive the utility of a given datum, e.g., at times, negatively 

(Rusconi et al., 2014).  

Overall the above points illustrate that quantifying the expected value of an outcome (evidence) 

even in information-theoretic terms, is not trivial. We note that future research considering information 

gain measures may therefore benefit from using different types of entropy metrics, beyond Shannon. 

For example, Crupi and Tentori (2014) discuss information gained based on quadratic entropy. Crupi 

et al. (2018) further outline different entropy models, obtained from mathematics, physics and other 

domains, that could be extremely useful in devising a descriptive theory of human information search 

behaviour. 

The change or divergence between probability distributions (i.e., prior to posterior beliefs) that utility 

functions, such as KL-D2, measure, assumes a Bayesian method of belief updating, such that posterior 

probabilities 𝑃(ℎ!|𝑎!)	are calculated via Bayes’ theorem: 

𝑃(ℎ!|𝑎!) = 𝑃(ℎ!) ∗ 	
$%𝑎! &ℎ!'
$("!)

	     Equation 8 

In Equation 8, the prior P (ℎ!) represents how likely each hypothesis (ℎ!) is, and the likelihood 

𝑃(𝑎!|ℎ!)	represents how likely it is that a query outcome 𝑎! is observed given ℎ! 	is true. The posterior 

𝑃(ℎ!|𝑎!)	is therefore a function of the observed outcome 𝑎! and prior knowledge about the likelihood 

of the hypotheses considered. 

 
2 For simplicity, throughout this paper we will use KL-D when making illustrative examples regarding utility 
functions. 
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Bayesian OED models assume that people not only update their beliefs as described by Equation 

8, after finding out the outcome of a query in order to inform subsequent information search decisions, 

but also that people follow these computations to predict the most informative query, before observing 

any outcome. As such, according to OED principles, when selecting a query people should calculate its 

expected usefulness by weighting each of the outcome’s diagnosticities by the probability of obtaining 

that outcome (Coenen et al., 2018). This, in turn, depends on the prior probability of each hypothesis, 

and the conditional probabilities of the outcomes given each hypothesis. Despite the apparent 

complexity of these computations, OED models have been argued to provide the best available 

computational-level description of human behaviour in many probabilistic information search tasks 

(Gureckis & Markant, 2012; Markant & Gureckis, 2012; Nelson, McKenzie, Cottrell & Sejnowski, 

2010; Wu, Meder, Filimon & Nelson, 2017).    

Notwithstanding the merits of OED models, we argue that alternative information-gathering 

strategies should be considered in theoretical frameworks of information acquisition as they may 

capture some richer aspects of human behaviour currently overlooked by OED models. Identifying 

these alternative strategies or motivators of inquiry, such as obtaining a frontrunner hypothesis at the 

outset or excluding a hypothesis at the outset, may shed more light on the psychological underpinnings 

of people’s information seeking behaviour in a variety of contexts. This would help fill important gaps 

in the development of realistic descriptive models of inquiry that account for the information-seekers 

preferences within different contexts and move beyond standard OED explanations that assume people 

are integrating across all possible hypotheses and always aiming to maximise the information gained 

from their actions when determining the most useful item of information (Markant, Settles and 

Gureckis, 2016).  

1.2. Empirical Work and Outstanding Issues 

Bayesian OED models have so far been used to describe and predict information acquisition and 

evaluation in various domains including causal reasoning (Bramley, Lagnado, & Speekenbrink, 2015), 

eye-movements in visual perception (Najemnik & Geisler, 2009), hypothesis testing (Nelson, 2005), 

categorization (Meder & Nelson, 2012; Nelson et al., 2010) and children’s exploratory behaviour 
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(Ruggeri & Lombrozo, 2015; Schulz, Gopnik & Glymour, 2007).  As such, these models have unified 

a diverse number of inquiry tasks under a single framework.  

 Most research that has addressed people’s ability to identify useful queries has used a single 

utility function to calculate each query’s usefulness. However, in many evidence-gathering situations, 

more than one utility function might reasonably apply (Klayman & Ha, 1987; Oaksford & Chater, 

2003). Nelson (2005) re-analyzed the tasks in several articles (Skov & Sherman, 1986; Baron et al., 

1988; Slowiaczek, Klayman, Sherman & Skov, 1992; Oaksford & Chater, 2003; McKenzie & 

Mikkelsen, 2007) to identify the predictions of six OED models (employing six different utility 

functions) of the value of information, on each task. There was high agreement between models on 

which questions were most (and least) useful, and KL-D made the most exact predictions of people’s 

choices. In a later study, Nelson et al. (2010) simulated environmental probabilities designed to 

maximally differentiate theoretical predictions of the different utility function, and tested participants’ 

information-seeking behaviour in these environments embedded in a binary categorization task. Results 

suggested that in this context, PG was the primary basis for the subjective value of information. Overall, 

more research is needed to disentangle the competing models (Meder & Nelson, 2012), which remains 

an important issue for the normative analysis of search behaviour and people’s sensitivity to the 

diagnostic value of queries (Crupi et al.,2018; Oaksford & Chater, 1994).  

Within psychology, two of the most widely employed tasks to study information search 

behaviour are the 20-Question game, and the Planet Vuma scenario (for a comprehensive review of 

these, and other, tasks see Coenen et al., 2018). The 20-Question game is a deterministic task in which 

there are n persons (hypotheses h1…hm) and m binary-outcome features (queries: Q1… Qm). The goal 

in this task is to identify a randomly drawn target person by asking questions about the binary features 

from a pre-defined set, each pertaining to whether some feature is present or absent in the target person. 

Researchers have demonstrated that in this task, both children and adults seek information in a Bayesian 

OED congruent manner (Navarro & Perfors, 2011; Nelson et al., 2014; Ruggeri & Lombrozo, 2015; 

Ruggeri, Lombrozo, Griffiths & Xu, 2015). Studies have also employed the Planet Vuma scenario, a 

non-deterministic task in which the goal is to categorize a fictitious alien into one of two species 
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(hypotheses h1 and h2) by querying a pre-specified set of (binary-outcome) features. These studies have 

similarly reported that people typically have good intuitions about what queries are more informative 

as quantified by Bayesian OED models (McKenzie, 2006; Nelson, 2005; Nelson et al., 2010; Skov & 

Sherman, 1986; Slowiaczek et al. 1992; Wu et al., 2017).  

Although OED principles provide an adequate computational-level method to account for 

people’s behaviour in these tasks, from a descriptive perspective they lack explanatory power and an 

ability to fully account for the cognitive underpinnings of query evaluations (Coenen et al., 2018). Even 

in circumstances in which selection behaviour and OED model predictions are aligned, there remains 

ambiguity surrounding how people select queries that are considered to be normatively optimal by these 

OED models. For instance, research has identified heuristics that people employ when judging the 

expected informativeness of queries and has shown that these heuristics closely approximate Bayesian 

OED model predictions. For example, in non-deterministic tasks, the feature (likelihood)-difference 

heuristic (Nelson, 2005; Slowiaczek et al., 1992) predicts that people select the query with the largest 

absolute difference in feature likelihoods for either query outcome. This heuristic has been shown to 

consistently select the query with the highest informative value (measured by an OED model with utility 

function ‘Impact’; Nelson, 2005) in tasks with binary-outcome queries.  Similarly, the probability of 

certainty heuristic predicts that in deterministic tasks such as the 20-Question game (again, built with 

binary-outcome queries), people select the query with the highest probability of an outcome that grants 

certainty about the true hypothesis. This heuristic has been described as a type of generalized IG model, 

making analogous predictions to Bayesian OED models (Nelson et al., 2010). Finally, in tasks with 

large hypothesis spaces, such as the 20-Question game, the split-half heuristic agrees with OED 

principles by identifying the feature that comes closest to being true in half of the hypotheses, as the 

most informative feature (Navarro & Perfors, 2011; Nelson et al., 2014). More generally, a recent 

theoretical algorithmic demonstration was given by Nelson, Meder and Jones (2018) illustrating how 

heuristics may successfully identify queries with maximal informative value, as quantified by different 

Bayesian OED models, in both one-shot, stepwise and sequential planning tasks.  
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Given the psychological complexity of OED principles, it seems plausible that people use 

heuristics to evaluate the utility of queries. In real-world situations involving information acquisition it 

would be computationally intractable and psychologically implausible to simulate the impact of all 

possible outcomes on each hypothesis, assuming all possible outcomes are even known (Bramley, 

Dayan, Griffiths & Lagnado, 2017; Coenen et al., 2018; Huys et al., 2012). The fact that these heuristics 

have been shown to make predictions corresponding to those of Bayesian OED models ultimately raises 

concerns about the descriptive abilities of OED models. However, given that these heuristic strategies 

(i.e., split-half and probability of certainty) are only valid in probabilistic contexts with either binary-

outcome queries (i.e., 20 Question game) or binary-hypotheses (i.e., Planet Vuma scenario), more 

empirical work is needed to investigate the possible strategies that people may employ in differentially 

motivated tasks and in different probabilistic contexts. As such, the widespread usage of tasks 

comprising of a binary-hypothesis space or of binary-features may have left an array of heuristics and 

strategies undetected. In addition, it is crucial to explore the psychological processes and motivations 

underlying the use of heuristic strategies in order to build a theoretical framework that has both 

descriptive and predictive value.  

As the majority of preceding work has focused on determining whether information search 

behaviour matches the core predictions of optimal information search models, there is a need to 

investigate not only what inquiry strategies people use, but also how these are selected in different 

environments. Other than “OED friendly” heuristics, it is also possible that people use an entirely 

different set of strategies in order to balance the trade-off between computation, accuracy and 

processing limits when selecting and evaluating information. Gureckis and Markant (2009) 

demonstrated that people adopt specific strategies when searching for information in a variation of the 

task ‘Battleship’. These strategies were adapted as they progressed throughout the task, with 

participants starting with an ‘exploratory’ strategy that deviated from OED predications, before moving 

onto a more ‘exploitative’ strategy at later stages (which followed OED principles more closely). 

Similar findings were reported by Ruggeri and Lombrozo (2015), who showed that children’s question-

asking behaviour in a 20-Question game could be accounted for by particular strategies (hypothesis-
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scanning and constraint-seeking; Mosher et al., 1966) and that these were adaptively implemented 

throughout the task.  

In addition to discriminatory strategies, people have been found to employ confirmatory 

strategies, including both integrative and selection (positive testing) biases in favour of a specific 

leading hypothesis (see e.g., Hahn & Harris, 2014). For example, during sequential learning people 

often only maintain a single hypothesis, which is adapted, given new evidence (Bramley et al., 2015; 

2017; Markant & Gureckis, 2014). Moreover, when choosing interventions to learn about a causal 

system, people were found to adaptively alter their behaviour between adopting a discriminatory and a 

confirmatory strategy in order to balance their expected performance and cognitive effort (Coenen, 

Rehder & Gureckis, 2015).  Adopting confirmatory strategies, may come into conflict with the 

discriminatory nature of OED principles. It is worth nothing however, that certain Bayesian inductive 

confirmation measures such as L and Z3, have recently been proposed as quantifiers of confirmation 

assessments in human reasoning, though further empirical work is still needed to determine whether 

these models are psychologically plausible (see e.g., Crupi, Tentori & Gonzalez, 2007; Mastropasqua, 

Crupi & Tentori, 2010; Rusconi et al., 2014). Ultimately, given that information seeking does not occur 

in a vacuum, confirmatory strategies might be sensible strategies to employ if the single hypothesis 

addresses a learner’s cogitated goal. Arguably, what behaviour is considered optimal should depend on 

the belief-system and goals of the agent. Researching how certain factors including task context, 

difficulty and framing impact strategy selection during inquiry is crucial in order to help explain and 

predict inquiry behaviour in a range of different environments, accounting for particular contextual 

factors and circumstances of the learner. 

Many learning problems and information-seeking situations involve a tiered structure of super-

ordinate goals as well as subordinate-goals. It is therefore possible that confirmatory and discriminatory 

strategies may be selectively employed in order to reach different sub-goals, nested under the same 

super-goal. This fits with the notion that during self-directed learning people divide a problem into 

 
3Measure L is connected with the log likelihood ratio measure first conceived by Alan Turing (as reported by 
Good, 1950, pp. 62–63). Measure Z has been recently advocated by Crupi, Tentori and Gonzalez (2007). For 
formal definition of these measures see Crupi et al. (2007) and Mastropasqua, Crupi & Tentori (2010). 
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individual sub-components. For example, in the Battleship task, a learner’s super-goal is to find out 

which ships are hidden. They might break this down by first approximating the ships’ locations, and 

then subsequently determining their sizes. Markant, Settles and Gureckis (2016) carried out an 

empirical task that resulted in the majority of people decomposing a 3-way categorization task into a 

series of 2-way classification tasks (sub-goals) despite the super-goal being to learn all three categories. 

Whereas OED principles can make predictions about how to address each individual sub-goal, they do 

not naturally capture the process of partitioning a space into subsets of goals, and do not account for the 

determinants of these sub-goals. 

Consider the analogous situations outlined at the beginning of this paper: a physician trying to 

discern between multiple plausible diagnoses, a crime investigator trying to discern between multiple 

plausible suspects and an employer trying to discern between multiple plausible interviewees. Although 

the super-ordinate goal in each case is apparent (i.e., correctly identifying the diagnosis, suspect or 

candidate), people may introduce different sub-goals and adopt different strategies to achieve the super-

goal, such as to initially narrow the hypothesis space down from three to two. For example, one crime 

investigator might prefer to initially exclude a suspect, whereas another one might prefer to identify a 

frontrunner suspect at the outset of the investigation. These differential pre-inquiry preferences (e.g., 

exclude hypothesis at outset or obtain frontrunner) would determine how queries and outcomes are 

evaluated in ways that, in some cases, could diverge from OED principles. To explain further, within 

the same probabilistic context a person motivated by ‘exclusion’ would value the query whose outcomes 

are more likely to decrease the probability of one hypothesis as being more useful or ‘informative’. In 

contrast, someone driven by obtaining a ‘frontrunner’ would rate that same query as being of less 

informative value. Identifying the presence of these motivated strategies and establishing whether they 

could be accounted for within an OED framework merits investigation given that they are at the very 

core of understanding how people select and evaluate queries in information seeking paradigms. 

Moreover, they are likely to influence how subsequent information is sought and evaluated.  
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1.3. Current Experiments 

In a series of experiments, we investigate how people acquire and evaluate information in a variety of 

probabilistic contexts, focusing on unearthing the reasoning that underlies people’s information seeking 

behaviour in both one-off and stepwise paradigms. This allows us to move beyond simple 

demonstrations of OED principles, and help explain and predict information acquisition behaviour in 

different environments, given the particular strategic preferences of the information seeker. To further 

our understanding of these processes, we explore not only how people evaluate queries, but also query 

outcomes, an approach that is often neglected in the psychological literature of human inquiry (one 

exception is Rusconi et al., 2014). Within the OED framework, a query’s expected value is a weighted 

average of the value of each of its possible outcomes, therefore the value of outcomes may be seen as 

more basic than the value of a query. Exploring how people evaluate outcomes may thus shed light on 

how they are evaluating queries. For example, the space of outcomes that people consider might 

strongly influence the value assigned to a query. Moreover, this approach will allow us to explore, in 

our final experiment (adopting a stepwise paradigm), how receiving unexpected as well as expected 

outcomes affects belief updating. In all experiments we adopt OED principles to generate statistical 

environments in which the expected utility of the queries varies within Bayesian OED models with 

different built-in utility functions (KL-D, IG, PG and Impact) – both negative and non-negative. This 

allows us to explore people’s sensitivity to diverse probabilistic contexts when evaluating queries and 

outcomes, and to see how well different OED models agree with one another as well as with 

participants’ behaviour. 

In addition, to obtain a descriptive account of people’s queries and outcome evaluations, we 

use think-a-loud methods to extract the reasoning explanations attached to their query selections. These 

methods provide a solid basis for identifying the mental processes underlying complex tasks and can 

provide rich data on such cognitive processes (Salkind, 2010). Ultimately, they allow us to identify the 

principal strategies and motivators that underlie participants’ information acquisition behaviour, such 

as obtaining a “frontrunner” hypothesis, and assess factors that influence these strategies.  
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  Although the vast majority of information search tasks in psychology are abstract (e.g., Planet 

Vuma scenario and variants), we instead embed our models within a more naturalistic crime 

investigation task. This realism is engaging enough to motivate participants even without the use of 

specific reward functions. Using a crime investigation task allows us to naturally extract the different 

motivated strategies that might underlie participants’ selections, such as obtaining a ‘lead’ suspect 

versus eliminating a suspect, whilst holding the same super-goal of carrying out an effective 

investigation. Moreover, identifying people’s strategic preferences when searching for information in 

this context could have useful implications for real-world crime investigation, for example, when 

confirmatory search strategies have been associated with biased case construction and ultimately 

miscarriages of justice (Eady, 2009; Ormerod, Barrett & Taylor, 2008).   

Given the critical role of the first inquiry in stepwise and sequential information-seeking tasks 

(Nelson et al., 2014; Wu et al., 2017), Experiments 1-3 focused on participants’ first (and only) search 

action in a ‘one-shot’ paradigm. In Experiment 4 we address additional questions relating to the 

influence of strategies cognizant at the outset of subsequent search decisions and belief updating, 

through the use of a stepwise paradigm.  

Using a criminal investigation task allows us to render the problem tractable in experiments 

featuring the one-shot paradigm. As such, being tasked as an investigator who is trying to solve a crime 

- but has only a single opportunity at collecting evidence - makes the optimal solution to select the query 

that is most likely to maximise the posterior probability across suspects, given that this equates to the 

probability of choosing the suspect who is most likely to be the true culprit. The set-up of our one-shot 

experiments (Experiments 1-3) therefore allows us to directly evaluate the optimality of participants’ 

behaviour in environments in which this optimality is less contentious and tractable. Given the nature 

of our task, and the use of uniform priors in all of our probabilistic environments, the optimal strategy 

described above actually equates to PG (as defined in Equation 5). This set-up therefore enables us to 

assess whether participants’ information acquisition behaviour is reflective of any OED measure, and 

more specifically whether it is ‘optimal’ when compared to predictions of a PG model. Typically, in 

tasks employed in the extant psychological literature of human information acquisition it is not always 

clear which OED measure should be employed in a given context. This would depend on how the 
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measures characterise the goal of the information seeker, for example increasing classification accuracy, 

as well as how they quantify informational value.  

Given the computational burden imposed by the utility functions, which might be infeasible in 

naturalistic information search situations, we include an additional simplified ‘heuristic’ version of the 

PG model4 for comparison purposes, which we call the Probability Gain Heuristic (PGH). Including this 

model allows us to establish whether participants might be reasoning within the realm of OED 

frameworks, in that they are rationally following the principles of wanting to maximise the chance of 

obtaining a high posterior probability in the suspect pool, but are doing so via a simplified version of 

the underlying model. Our PGH model is defined in the same way as the PG model (see Equations 5 and 

6), bar the fact that when calculating a query’s expected utility, P(ai) is defined as 1 𝑛	⁄  where n is the 

number of outcomes of a given query. This simplifies the computation people have to make significantly 

compared to the standard way of computing P(ai) following the law of total probability:  

 

𝑃(𝑎!) = 	𝑃(𝑎!|ℎ!) ∗ 	(ℎ!) + 	𝑃(𝑎!|¬ℎ!) ∗ 	𝑃(¬ℎ!)    Equation 9 

 

Overall, in all our experiments we compare participants’ behaviour to the predictions of four different 

OED models, fitted with different utility functions (KL-D, IG, PG and Impact) and one model fitted 

with a PG utility function but assuming equal outcome priors (PGH). All models are parameterized using 

participants’ own beliefs to increase the informativeness of our normative comparisons. 

2. Experiment 1 

In Experiment 1 we explored people’s information-seeking behaviour in four different probabilistic 

contexts. This experiment was primarily exploratory as we aimed to identify people’s search strategies 

(i.e., obtain a frontrunner vs. eliminate a suspect) and determine how these fit with OED principles. We 

introduced more complex probabilistic models that were used in previous research, with a ternary 

hypothesis space and both binary- and ternary-outcome queries. All probabilistic models were based on 

 
4 We thank an anonymous reviewer for this suggestion. 
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a three-node Bayesian Network model (BN; Pearl, 1988). BNs are graphical models of uncertainty that 

model dependencies between hypotheses and items of evidence and can be used to calculate posterior 

probability beliefs given new states of evidence, utilising Bayes theorem. Our BN comprised of one 

hypothesis node (identity of burglar) and two query nodes (Burglary Time, Primary Item Stolen), 

connected in a common cause structure (see Figure 1). 

We built four models with different sets of conditional probability tables capturing the prior 

probability of each query outcome conditioned on each combination of states of the hypothesis node.  

Each model was integrated into a one-shot information-seeking crime investigation paradigm, described 

in section 2.2. Informed Bayesian OED (IB-OED) models, parameterized with participants’ own stated 

priors of causes were used as normative benchmarks against which to assess the accuracy of 

participants’ evaluation of queries and outcomes. Additionally, participants’ query selection behaviour 

was classified in relation to different strategies identified through participants’ own think-a-loud 

responses and these strategies were subsequently related back to IB-OED model predictions. 

 

Figure 1. Graphical representation of Bayesian Network 

 

2.1. Bayesian OED Models 

Our BNs were built in R using the package gRain (Højsgaard, Edwards & Lauritzen, 2012). Each 

network had a three-node structure (see Figure 1) with a ternary-state hypothesis node, ‘Burglar’ 

(hypotheses: Suspect 1, Suspect 2, and Suspect 3), one binary-outcome query node, ‘Burglary Time’ 
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(outcomes: day and night) and one ternary-outcome query node, ‘Primary Item Stolen’ (outcomes: 

jewellery, electronics and money).   

To fully parameterize the network, we used uniform priors for the hypothesis (Burglar) node: 

in all models, P (Suspect 1) = P (Suspect 2) = P (Suspect 3) =	+
2
. The conditional probabilities of each 

state of each query node (Burglary Time and Primary Item Stolen) given each state of the parent node 

(Burglar) were specified for each Model i where i ∈ {1, 2, 3, 4} (see Table 1).  In all models the 

hypotheses were mutually exclusive and exhaustive: one and only one of the suspects committed the 

burglary. Modelling our probabilistic model as a BN allowed us to uphold the condition of conditional 

independence ensuring that the evidence in our model was probabilistically independent given the 

hypotheses (Jarecki, Meder & Nelson, 2013). This is important in the present case as without this 

assumption the informational utility (i.e., KL-D) of different queries would not be computable from the 

individual likelihoods. 

Table 1 

Experiment 1: Conditional Probability Table with parameters employed in each model. 

 
Model 1 Model 2 Model 3 Model 4 

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

P (Day| Si) 0.1 0.9 0.25 0.05 0.95 0.05 0.05 0.95 0.05 0.1 0.9 0.25 
P (Night| Si) 0.9 0.1 0.75 0.95 0.05 0.95 0.95 0.05 0.95 0.9 0.1 0.75 

P(Jewellery| Si) 0.8 0.1 0.1 0.8 0.1 0.1 0.7 0.15 0.15 0.7 0.15 0.15 
P(Electronics|Si) 0.1 0.8 0.1 0.1 0.8 0.1 0.15 0.7 0.15 0.15 0.7 0.15 

P(Money| Si) 0.1 0.1 0.8 0.1 0.1 0.8 0.15 0.15 0.70 0.15 0.15 0.70 
N.B. for Si, i is a suspect ∈ {1, 2, 3}  

Once a probabilistic BN model was built, we added a function that computed the expected 

utility of each query relative to the probabilistic models specified in Table 1.  As such, for each of the 

four models parameterised as presented in Table 1, we created five versions, each measuring the 

expected utility of each query and outcome with a different built-in utility function computation (KL-

D, Impact, PG, PGH and IG).  As can be seen from Table 2 below, this means that the query predicted 

to be ‘optimal’ differed both across utility functions, and across models. 
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Table 2 

Experiment 1: Expected utility value of each query outcome (ai) and each query (Qi) predicted by 
each utility function in each probabilistic model 

 
Utility 

Function 
a1 

Day 
a2 

Night 

Q1 
Burglary 

Time 

a3 
Jewellery 

a4 
Electronics 

a5 
Money 

Q2 
Primary 

Item 
Stolen 

Model 1 

KL 0.49 0.33 0.4 0.66 0.66 0.66 0.66 
IG 1.1 1.25 0.4 0.92 0.92 0.92 0.66 
PG 0.72 0.51 0.27 0.8 0.8 0.8 0.47 
PGH 0.72 0.51 0.28 0.8 0.8 0.8 0.47 

Impact 0.26 0.18 0.21 0.31 0.31 0.31 0.31 

Model 2 

KL 1.03 0.44 0.65 0.66 0.66 0.66 0.66 
IG 0.55 0.55 0.5 0.92 0.92 0.92 0.66 
PG 0.9 0.49 0.3 0.8 0.8 0.8 0.47 
PGH 0.9 0.49 0.36 0.8 0.8 0.8 0.47 

Impact 0.38 0.21 0.27 0.31 0.31 0.31 0.31 

Model 3 

KL 1.03 0.44 0.65 0.4 0.4 0.4 0.4 
IG 0.55 1.14 0.65 1.18 1.18 1.18 0.4 
PG 0.9 0.49 0.3 0.7 0.7 0.7 0.37 
PGH 0.9 0.49 0.36 0.7 0.7 0.7 0.37 

Impact 0.38 0.21 0.27 0.24 0.24 0.24 0.24 

Model 4 

KL 0.49 0.33 0.4 0.4 0.4 0.4 0.4 
IG 1.1 1.25 0.4 1.18 1.18 1.18 0.4 
PG 0.72 0.51 0.27 0.7 0.7 0.7 0.37 
PGH 0.72 0.51 0.28 0.7 0.7 0.7 0.37 

Impact 0.26 0.18 0.21 0.24 0.24 0.24 0.24 
 

For example, in Model 1 KL-D predicts ‘primary item stolen’ to be the most informative query 

and in Model 3 KL-D predicts ‘burglary time’ to be the most informative query. In fact, we selected 

parameters seen in Table 1 so that according to two utility functions (KL-D and IG), in one model the 

query ‘burglary time’ would be more informative than the alternative query (e.g., for KL-D by about 

0.25 bits5), in another model the query ‘primary item stolen’ would be more informative than the 

alternative query (again for KL-D by about 0.25 information bits), and in two models the queries would 

be of approximately equal informative values (both high or both low). Contrastingly, the prediction of 

utility functions Impact, PG and PGH were largely the same across the probabilistic environments, with 

‘primary item stolen’ being of greater informative value compared to ‘burglary time’ in three scenarios, 

 
5 This is arguably a ‘noticeable’ difference and one congruent to the difference in informativeness of features reported by 
previous studies in the literature (e.g., see Baron et al., 1988; Nelson et al., 2005 and Wu et al., 2017). In Skov & Sherman 
(1986), a ‘low informativeness’ feature had KL-D value of 0.001, a ‘medium’ informativeness feature of 0.08 bits and ‘high’ 
informativeness feature of 0.15. Our informative value differences exceeded this significantly.  
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and of equal informative value to ‘burglary time’ in one scenario. As previously discussed, given the 

investigative nature of our task and the parameterisation of our networks, PG and PGH predictions would 

be considered to be the optimal solutions in all of the probabilistic environments adopted in the present 

experiment. This is due to the fact that these measures are motivated by maximising the probability of 

increasing a suspect’s probability of being the culprit as close to 1 as possible, which is intuitively the 

optimal strategy to employ in a one-shot investigation task. 

Overall, our set-up allowed us to explore: a) how the predictions of the most informative query 

and outcome differed between utility functions; b) people’s sensitivity to different probability contexts 

when evaluating queries and outcomes, and how this relates to the predictions of the various IB-OED 

models; c) the optimality of participants’ decisions when considering PG-based models to be the 

optimal solutions in the probabilistic environments embedded in the present task; d) the adaptiveness 

of their search strategies across these contexts; and e) how the choices stemming from their search 

strategies related to the different IB-OED model predictions. Moreover, it allowed us to explore 

people’s preferences for a ‘frontrunner’ strategy versus an ‘elimination’ strategy given that, for 

example, according to KL-D and IG one query would guarantee the identification of a frontrunner 

(primary item stolen), and the alternative query (burglary time) could, given a certain outcome, lead to 

the identification of a higher frontrunner, but, given a different outcome, it mainly helped eliminate a 

suspect.  

The values in Table 2 were computed as described in equations 2-7. To illustrate, in Model 1, 

using KL-D the expected utility of the query according to ‘burglary time ‘was computed by first 

computing the expected utility of outcome ‘day’ as:   

𝐾𝐿 − 𝐷	(𝑑𝑎𝑦) = 𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	1	|𝑑𝑎𝑦)	𝑙𝑜𝑔! 	
𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	1	|𝑑𝑎𝑦)
𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	1)

+ 	𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	2	|𝑑𝑎𝑦)	𝑙𝑜𝑔! 	
𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	2	|𝑑𝑎𝑦)	
𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	2)

+ 𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	3	|𝑑𝑎𝑦)	𝑙𝑜𝑔! 	
𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	3	|𝑑𝑎𝑦)	
𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	3) = 0.49 
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Subsequently computing the expected utility of outcome ‘night’ as:   

𝐾𝐿 − 𝐷	(𝑛𝑖𝑔ℎ𝑡) = 𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	1	|𝑛𝑖𝑔ℎ𝑡)	𝑙𝑜𝑔! 	
𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	1	|𝑛𝑖𝑔ℎ𝑡)

𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	1)

+ 	𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	2	|𝑛𝑖𝑔ℎ𝑡)	𝑙𝑜𝑔! 	
𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	2	|𝑛𝑖𝑔ℎ𝑡)

𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	2)

+ 	𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	3	|𝑛𝑖𝑔ℎ𝑡)	𝑙𝑜𝑔! 	
𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	3	|𝑛𝑖𝑔ℎ𝑡)

𝑃(𝑆𝑢𝑠𝑝𝑒𝑐𝑡	3) 	= 0.33 

 And finally utilising these values to compute the expected utility of the query as: 

𝐾𝐿 − 𝐷(𝑏𝑢𝑟𝑔𝑙𝑎𝑟𝑦	𝑡𝑖𝑚𝑒) = 𝑃(𝑑𝑎𝑦) ∗ 𝐾𝐿(𝑑𝑎𝑦) + 𝑃(𝑛𝑖𝑔ℎ𝑡) + 𝐾𝐿(𝑛𝑖𝑔ℎ𝑡) 		= (0.42 ∗ 0.49) + (0.58 ∗ 0.33)

= 0.40 

This could then be compared against the computed KL-D for primary item stolen to evaluate queries. 

Similar steps were carried out to compute the usefulness of the queries and outcomes according to IG, 

PG and Impact, utilising the pertinent equations (equations 4-7) previously outlined. As mentioned 

above, we included a fifth model, PGH, that used a PG utility function and assumed all outcomes had 

equal priors and thus were equally likely to occur given that query’s selection. This measure was defined 

in the same way as PG (defined in Equations 5 and 6) except for the fact that when computing a query’s 

utility, the probability of an outcome,	P(ai) was defined as	1 𝑛	⁄  where n was the number of outcomes 

of a given query. 

2.2. Method 

Here we present the general methods used in Experiments 1-3. 

2.2.1. Participants 

We tested 264 participants (nmales =88 males, Mage =34.8 years; SD = 11.9) who were recruited from 

Prolific Academic (www.prolific.ac.uk) and completed the study online on the Prolific Academic 

platform. All participants were native English speakers, who gave informed consent, and were 

compensated $1.20 for taking part in this experiment, which took on average (median) 13.2 minutes to 

complete.  
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2.2.2. Design and Materials 

 A between-subject design was adopted. Participants were randomly allocated to one of four conditions 

(nCondition 1 = 66, nCondition 2 = 67, nCondition 3 = 64, nCondition 4 = 64). All participants were presented with the 

same cover story in which they acted as crime investigators in a specialized burglary division. 

Participants in each Condition i (Ci) were required to reason with a Model i, where i ∈ {1, 2, 3, 4}, 

parameterized as outlined in section 2.1 so that the expected informative value of the two queries 

differed across OED models with different built-in utility functions and within some of these, the  

expected utility differed across probabilistic environments (see Table 1 and Table 2), and completed 

the same one-shot task described in the subsequent section (for an example of task materials see 

osf.io/tkr4v).  

2.2.3. Procedure 

Participants in each condition were initially presented with a cover story within which they were asked 

to imagine they were crime investigators. They were told that they were being transferred to the burglary 

division of a different neighbourhood and, before being involved in any new investigation, they were 

required to review the neighbourhood’s burglary statistics and the criminal records of the (three) 

burglars known to operate in the area. The criminal records of the burglars contained information on 

the ‘modus operandi’ they utilised in past burglaries, in relation to the time of day they operated in and 

the items they primarily stole. As such, participants were provided with the percentages (likelihoods) 

that each burglar operated during the night (10 pm to 10 am), or during the day (10 am to 10 pm), 

primarily stole electronics, money or jewellery. They were told these percentages were based on all the 

burglaries that each burglar had ever committed in the area and that each burglar had committed an 

equal number of burglaries.  In this manner, participants in each condition were given information on 

their respective model (i.e., variables present, causal relationships between these, uniform priors of 

hypotheses and conditional probabilities within the model). This information was presented to 

participants in both textual and tabular format in an accessible manner and was made available to them 

throughout the task.  Participants were also provided with explicit instructions on the mutually exclusive 

and exhaustive nature of the hypotheses. 
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After having reviewed this information, participants were told that a new burglary had occurred 

in their neighbourhood and they were asked to investigate the new case. At this point, prior probabilities 

of each burglar being the culprit of this burglary were elicited from participants to see if the uniform 

priors had been accepted.  Subsequently, participants were asked to select one of two investigative 

queries: ‘burglary time’ (to find out whether the burglary occurred during the day or night) and ‘primary 

item stolen’ (to find out whether electronics, money or jewellery were primarily stolen), keeping in 

mind they were able to make only one investigative inquiry throughout the task. The query selection 

question was asked in a manner that would not prime participants to adopt a particular strategy: “Please 

choose the query that you believe will be most useful for this investigation”. Following the query 

selection, participants provided a textual explanation for their choice in response to the question: 

“Please explain the reasoning behind your choice in as much detail as you can in the text box below”. 

No word limit was imposed. Subsequently, participants proceeded to indicate on a Likert scale ranging 

from (0 - not useful at all to 10 - extremely useful), the usefulness of each query (‘burglary time’ and 

‘primary item stolen’) as well as of each query outcome (‘day’, ‘night’, ‘money’, ‘jewellery’ and 

‘electronics’). Participants did not find out the outcome of the query they selected and were not required 

to make any judgments on the culpability of the suspects, when selecting a query; they were thus 

required to evaluate its expected value. The task ended once query and outcome ratings were elicited.  

2.3. Results 

2.3.1. Prior Probabilities  

The percentage of participants who correctly6 estimated the prior probabilities of all three suspects was 

76% in Condition 1, 76% in Condition 2, 73% in Condition 3 and 81% in Condition 4. These high 

percentages allow us to conclude that participants overall accepted the uniform priors given to them. 

Nonetheless, as previously mentioned, all analyses will evaluate participants’ behaviour against 

individually fitted models parameterized with their own stated priors. 

 
6 In all experiments, an estimate was considered to be correct if it fell within ± 2.5% of the normative estimate 
(in this case ~33.3%)  
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2.3.2. Query Selections 

Within each condition, we obtained the proportion of participants who selected each query (see Figure 

2).   Pearson’s Chi-Square test of independence indicated that these proportions did not differ between 

conditions, χ2 (3) = 2.45, p = 0.48.  As can be seen from Figure 2, the majority of participants in each 

condition preferred querying ‘primary item stolen’, thus suggesting that people may not be sensitive to 

the change in a query’s informative value within different probabilistic environments (according to all 

measures the two queries varied in informative value across conditions – see Table 2).  

For details on the percentage of ‘correct’ query selections within each condition according to 

each utility function see supplementary materials (S1). 

 

Figure 2.  Experiment 1: Percentage of participants who selected each query in each condition. 

 

2.3.3. Utility Function Model Comparisons 

The breakdown of the percentage of participants for whom each utility function predicted each query 

to be the most informative, or for them to be equally informative7 in each condition can be seen in Table 

3.  

 
7 Two queries were deemed to be of pragmatically equally informative value if they were within 0.05 bits of 
each other. This was done to increase the fairness of our comparisons by not expecting participants to notice a 
difference in the expected informative value of queries if they were within a certain range of each other.  
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To ascertain how well each utility function is able to predict people’s choice proportions (seen 

in Table 3), we built mixed-effects logistic regression models for each utility function, using the package 

lme4 in R (Bates et al., 2012). All models were fit by maximum likelihood estimation and had an 

underlying binomial distribution. Our model-fitting procedure started by initially building a null model 

(M0) including a random-effect with intercept for ‘Subject’ only and ‘Participant Choice’ as our 

outcome variable. In addition, we built as a model (M1) that included ‘Scenario’ as a sole fixed-effect 

predicting our outcome variable, in order to ascertain whether the distribution of participants’ choices 

varied across scenarios (M1). A likelihood ratio test between M1 and M0 confirmed the findings we 

presented in section 2.3.2 illustrating that participants’ query selections did not significantly vary across 

scenarios, χ2 (3) = 2.45, p = 0.48. 

Table 3 

Experiment 1: Percentage of predictions made by each utility function in each condition favouring 
burglary time, primary item stolen, or evaluating them as equal, and percentage of participants who 
queried Burglary Time (represented in Burglary Time > Item Stolen column) and Item Stolen 
(represented in Item Stolen > Burglary Time column). 

 Utility  
Function 

Burglary Time 
 > 

Item Stolen 

Item Stolen 
> 

Burglary Time 

Item Stolen 
 =  

Burglary Time  

Condition 1 

KL-D 0% 100% 0% 
IG 0% 100% 0% 
PG 0% 94% 6% 
PGH 1.5% 92.5% 6% 

Impact 0% 89.4% 10.6% 
 Participant Choice 21.2% 78.8% - 

Condition 2 

KL-D 0% 12% 88% 
IG 0% 12% 88% 
PG 0% 94% 6% 
PGH 3% 92.5% 4.5% 

Impact 0% 13.5% 86.5% 
 Participant Choice 16.4% 83.6% - 

Condition 3 

KL-D 95.5% 1.5% 3% 
IG 95.5% 1.5% 3% 
PG 3% 82% 15% 
PGH 10.5% 4.5% 85% 

Impact 8% 10% 82% 
 Participant Choice 26.9% 73.1% - 

Condition 4 

KL-D 0% 9.4% 90.6% 
IG 0% 9.4% 90.6% 
PG 0% 94% 6% 
PGH 1.5% 95% 3.5 

Impact 0% 9.4% 90.6% 
 Participant Choice 25% 75% - 
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After building our intercept-only model, we iteratively increased model complexity by 

including the pertinent ‘Utility Function’ as the only predictor (M2), both ‘Scenario’ and ‘Utility 

Function’ as predictors (M3) and finally ‘Scenario’, ‘Utility Function’ and the interaction ‘Scenario * 

Utility Function’ as predictors (M4) of our outcome variable (‘Participant Choice’). All models included 

a random effect with intercept for ‘Subject’ to account for within-subject correlations. The iterative 

process was stopped, and a maximal model was chosen, when the likelihood ratio test showed no 

improvement from the preceding model.   For all utility functions, the maximal model was M2; adding 

‘Scenario’ as a predictor did not improve any model’s fit. All maximal models were checked for 

overdispersion and under dispersion and no issues were noted.  

The outputs of the mixed-effect logistic regression analyses used to assess the predictive 

abilities of each utility function can be seen in Table 4 below.  Through these analyses we found PG 

and PGH to be significant predictors of ‘Participant Choice’: PG, F (2, 261) = 8, p = 0.001; PGH, F (2, 

261) = 5.4, p = 0.005. In contrast, KL-D/IG, F (2, 261) = 0.7, p = 0.5; and Impact, F (2, 261) = 1.8, p = 

0.17; were not significant predictors of ‘Participant Choice’. 

These findings can be contextualised within the information presented in Table 3. As can be 

seen, PG and PGH more closely approximate the distribution of participants’ query choices by predicting 

‘primary item stolen’ to be of greater (or equal in the case of PGH, condition 3) value than ‘burglary 

time’, thus reflecting participants’ persistent majority preference for ‘primary item stolen’ across 

conditions. Comparatively, KL-D and IG models predict ‘burglary time’ to be more informative in 

condition 2 and predict the two queries to be of equal value in two other conditions, thereby not 

reproducing the distribution of participants’ preferences in these conditions. Finally, Impact displayed 

an overall lack of discriminative capacity by evaluating the two queries to be of equal value in three out 

of four conditions – ultimately also not reflecting participants’ query preferences.  

By looking at the odds ratio (OR) values in Table 4 below we can see that in the PG model, a 

prediction of ‘primary item stolen’ made an equivalent participant choice of ‘primary item stolen’ 6.26 

times more likely than a participant choice of ‘burglary time’– these odds are significantly higher than 
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those of a PG prediction of ‘item time’, and ‘burglary time’. Similarly, in the PGH model, a prediction 

of ‘primary item stolen’ made an equivalent participant choice of ‘primary item stolen’, 7.9 times more 

likely than a participant choice of ‘burglary time’. Similarly, a PGH prediction of ‘burglary time’ made 

a participant choice of ‘burglary time’ 4.9 times more likely than a participant choice of ‘primary item 

stolen’. Comparatively, the OR values of KL/IG and Impact predictions are noticeably smaller, 

intimating they are worse predictors of participants’ query choices.  

Table 4 

Experiment 1: Parameters of the fixed effects estimated via logistic mixed-effects models, their 
statistical significance, and odds ratio for the competing models.  

Participant Choice = 8Item;  
Reference category ‘Participant Choice’= Time      

Model1 Parameter Estimate 
ß 

Std. 
Error 

ß 
t Sig. Odds 

Ratio 

OR 
95%CI 
Lower 

OR 
95%CI 
Upper 

Probability 
Gain 

(Intercept) -0.37 1.45 -0.25 0.8 - - - 
 ‘Item’ 1.83 0.47 3.95 < 0.0001 6.26 2.5 15.8 
 ‘Time’ 0.37 1.49 0.25 0.81 1.44 0.008 27.5 
 ‘ItemTime’a 0b -      

Probability 
Gain 

Heuristic 

(Intercept) -0.56 0.63 -0.36 0.72  - - 
 ‘Item’ 2.06 0.65 3.1 0.002 7.9 2.14 28.9 
 ‘Time’ 1.54 0.69 2.2 0.027 4.7 1.2 18.2 
 ‘ItemTime’ 0b -   -   

KL-D /IG 

(Intercept) 1.42 1.46 0.97 0.33 - - - 
 ‘Item’ -0.24 0.35 -0.7 0.48 0.78 0.39 1.6 
 ‘Time’ -0.4 0.37 -1.1 0.26 0.66 0.32 1.4 
 ‘ItemTime’ 0b - - - - - - 

Impact 

(Intercept) 1.2 1.4 0.86 0.39 - - - 
 ‘Item’ 0.16 0.33 0.49 0.62 1.18 0.61 2.27 
 ‘Time’ -1.6 0.93 -1.7 0.08 0.19 0.03 1.2 
 ‘ItemTime’ 0b - - - - -  

a ‘ItemTime’ reflects a prediction of the two queries having equal value defined as an abs.diff < 0.05) 
b Parameter is set to zero due to redundancy. 
1 Participant Choice ~ Utility Function Prediction + (1 | Subject) 
 

This notion is additionally confirmed by the likelihood ratio results between each maximal model and 

M0 presented in Table 5 below, which indicate that the only two models that significantly improved the 

null model are PG and PGH. 

 
8 In our model comparisons we shortened the variable name ‘primary item stolen’ to ‘Item’ and ‘burglary time’ 
to ‘Time’ 
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In order to compare the competing utility functions models and select the best approximating 

models, we used derivatives of Akaike’s Information Criterion (AIC) measure. The individual AIC 

values are not interpretable in absolute terms given that they contain arbitrary constants and are affected 

by sample size. 

Table 5 

Experiment 1: Likelihood ratio test results, AIC, Deviance, Akaike Weights (w) and Evidence Ratio 

(ER) values of the competing models. 

Model df AIC ΔAICi wi ERi Deviance χ2 df p-value 
M0

1 2 284.5 - - - 280.5  
M2 PG 4 272.2 0 0.92 1 264.2 16.34 2 < 0.0001 
M2 PGH 4 277.1 4.9 0.08 11.6 269.1 11.4 2 0.003 

M2 KL/IG 4 287.2 15 0.0005 1808 279.2 1.3 2 0.51 
M2 Impact 4 284.9 12.7 0.0016 572.5 276.9 3.6 2 0.17 

1 Participant Choice ~ 1 + (1 | Subject) 

In order to compare the different models and measure how much better the best approximating model 

is compared to the next best/alternative models, the first step therefore involved rescaling the AIC and 

compute ΔAICi by subtracting from the AIC of each model the AIC of the model with the smallest AIC 

value: 

∆𝐴𝐼𝐶! =	𝐴𝐼𝐶! − 𝐴𝐼𝐶3!0 

This transformation forces the best model to have ΔAIC=0 while the rest of the models have positive 

values. Although not a definitive rule, a coarse guide is that models with ΔAIC values less than 2 are 

considered to be essentially as good as the best model, Mr, and models with ΔAIC values of up to 6 

should not be discounted (Richards, 2005). Above this, model rejection might be considered, and 

models with ΔAIC greater than 10 are considered implausible (Burnham and Anderson, 2004). By 

consulting Table 5 above, we can deduce that PG was the best model (Mr), PGH was a contender and 

should not be discounted, and KL/IG and Impact models should be discounted and can be regarded as 

implausible models of participants’ query choices. Importantly, ΔAIC can be used to calculate two 

additional measures used to assess the relative strengths of each candidate model (Burnham and 

Anderson 2004). The first measure follows an information theoretic approach because it is based on KL 
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divergence, which is used to represent the information lost when model Mi is used to approximate full 

reality (ƒ). From the differences in AIC values, ΔAIC, an estimate of the relative likelihood L of model 

i can be obtained by the simple transform: 

𝐿(𝑀!|𝑑𝑎𝑡𝑎	 ∝ 𝑒𝑥𝑝{−0.5	∆𝐴𝐼𝐶!} 

Where ∝ stands for ‘is proportional to’. In the last step, the relative model likelihoods are normalized 

(i.e., divided by the sum of the likelihoods of all models) to obtain Akaike weights (wi) (e.g., 

Burnham & Anderson, 2004), where: 

𝑤! =	
exp(−0.5	∆𝐴𝐼𝐶!)

∑ exp	(−0.5	4
56+ ∆𝐴𝐼𝐶5)

 

The Akaike weight is a value between 0 and 1, with the sum of Akaike weights of all models in the 

candidate set being 1, and can be considered as analogous to the probability that a given model is the 

best approximating model (although there are some who disagree with this, see e.g., Bolker, 2008; Link 

and Barker 2006; Richards, 2005).  From looking at Table 5 we can see that the PG model has a 92% 

chance of being the correct model. Given that almost all of the weight lies in one model, we can 

conclude that we have low model selection uncertainty and can be confident of PG’s predictive abilities.  

The ‘evidence ratio’ (ER) can be computed as a measure of how much more likely the best 

model (∆5) is to be the best approximated model, than model i: 

𝐸𝑅 =	
exp(−0.5∆	𝐴𝐼𝐶5)
exp(−0.5	∆	𝐴𝐼𝐶!)

 

According to ER, our reference model PG is 11.6 times more likely than our next best model, PGH. This 

is likely due to the fact that, as seen in Table 3, PG correctly predicted a majority of participant choices 

to be ‘primary item stolen’ in all scenarios, whereas PGH demonstrated less discriminative capacity by 

predicting the queries to be of equal value in one scenario. In the probabilistic environments adopted in 

the present experiment, it therefore seems that participants are choosing queries in line with the optimal 
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task strategy of maximizing their chances of maximizing the posterior of one of the suspects, as dictated 

by a PG measure.  

2.3.4. Query and Outcome Ratings 

In the task participants rated both queries and outcomes on a scale ranging from 0 - not useful at all to 

10 - extremely useful. Participants’ average ratings of the usefulness of each query as well as each query 

outcome can be seen in Table 6 below. A one-way ANOVA showed no significant between-condition 

difference in the average usefulness ratings of the queries ‘burglary time’, F (3, 263) = 0.4, p = 0.76 ηp
2 

= 0.04, or ‘primary item stolen’, F (3, 263) = 0.9, p = 0.45, ηp
2 = 0.01. 

Table 6 

Experiment1: Mean participant ratings of the usefulness of each query and query outcome per 

condition on scale ranging from 0 to 10.  

 
Condition 1 Condition 2 Condition 3 Condition 4 

M (SD) M (SD) M (SD) M (SD) 

Query 
Burglary Time 6.08 (2.3) 5.7 (2.2) 5.9 (2.2) 6 (2.3) 
Primary Item Stolen 7.8 (1.9) 8.1(1.8) 8.1 (1.8) 7.6 (1.9) 

Query Outcomes 

Night 5.7 (2.3) 5.3 (1.8) 5.4 (2.1) 5.6 (2.5) 
Day 7.2 (2.1) 7.8 (2) 8.1 (2.4) 7.3 (2.3) 
Jewellery 7.8 (1.7) 7.7 (1.7) 7.8 (2) 7.4 (2) 
Electronics 7.8 (1.7) 7.8 (1.8) 7.9 (1.8) 7.2 (2) 
Money 7.8 (1.7) 7.8 (1.7) 7.7 (2.1) 7.3 (2) 

 

Arguably, participants’ actual ratings of the utility of queries and their outcomes did not reflect 

those computed by any of the utility functions. For example, in contrast to participants’ ratings, KL-D 

and IG predicted that query ‘primary item stolen’ to be most useful in Condition 1, and ‘burglary time’ 

to be most useful in Condition 3.  Furthermore, although PG’s and PGH’s higher expected utility for 

‘primary item stolen’ in Condition 2 and 4 is comparable to participants’ ratings of the usefulness of 

this query in these conditions, both of these models predicted the two queries to be of approximately 

equal value in Condition 3, which is not mirrored in participants’ ratings. Finally, Impact predicted the 

two queries to be of approximately equal value in Conditions 2-4, which again is not reflective of 
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participants’ consistently higher rating of the usefulness of ‘primary item stolen’ across conditions. 

Despite this however, as shown in Section 2.3.3, PG-based models were able to predict the qualitative 

direction of participants’ query selections better than the alternative models.  

In terms of participants’ evaluation of query outcomes, no between-condition differences were 

found in the usefulness ratings of query outcome ‘night’, F (3, 263) = 0.5, p = 0.67, ηp
2 = 0.006; query 

outcome ‘day’, F (3, 263) = 2.4, p = 0.07, ηp
2 = 0.03; query outcome ‘jewellery’, F (3, 263) = 0.76, p = 

0.52, ηp
2 = 0.009; query outcome ‘electronics’, F (3, 263) = 2.2, p = 0.08, ηp

2 = 0.025; or query outcome 

‘money’, F (3, 263) = 0.9, p = 0.41, ηp
2  = 0.01.  When comparing participants’ ratings of outcomes to 

those predicted by the utility functions (see Table 2 and Table 6), all utility functions except IG reflect 

participants’ evaluation of an outcome ‘night’ being less informative than a ‘day’ outcome for a 

‘burglary time’ query in all conditions. All utility functions captured participants’ evaluation of the 

three ‘primary item stolen’ outcomes as having equal utility in all conditions. Despite this, as proven 

by the above analysis, participants’ ratings of query outcomes did not vary across conditions, which is 

not reflective of the computations of any of the utility functions.  

 To confirm that participants’ usefulness ratings were representative of how they actually 

evaluated a query by either selecting it or not selecting it, we computed the percentage of “rating 

congruent” responses in each condition. A query choice was coded as congruent (1) if the participant 

selected the query that they also rated as being most useful on the 0-10 Likert scale. If not, a query 

choice was coded as incongruent (0). If a participant gave equal ratings to the two queries, their query 

choice was coded as congruent regardless of what query was selected.  The percentage of congruent 

query selections was: 97% in Condition 1; 100% in Condition 2; 95.5 % in Condition 3 and 98.4% in 

Condition 4. These high percentages allow us to take participants’ ratings as reliable representations of 

their evaluation of how useful they believe a query to be.  

Overall, these findings suggest that, in the probabilistic environments that we embedded in this one-

shot criminal investigation task, participants’ query selections are mostly aligned with models based on 

probability gain (PG and PGH), which we acknowledged as the optimal solutions to the task. Despite 
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this, participants’ actual ratings of the informative value of outcomes was found to mostly deviate from 

those computed by our utility functions of interest.  

2.3.5. Strategies: Think-a-loud responses 

In order to obtain an understanding of the reasoning underlying participants’ query selections and 

evaluate whether they aligned with the goals of any utility function, we analysed participants’ think-a-

loud responses. Each participants’ think-a-loud response, explaining their reasoning for selecting a 

given query (and thus anticipating it to be more informative), were initially qualitatively analysed and 

coded with a single code that simultaneously categorized, summarised and accounted for the response 

(Charmaz, 2006) by a primary rater. Each think-a-loud response was therefore attributed a code, drawn 

directly from the response and not a pre-existing set, which acted as a descriptive label of an identified 

strategy. These strategy codes were derived from explicit statements indicating a motivation of 

obtaining a desired outcome as well as explanations of a systematic form of reasoning or motivation. 

The list of strategies (with a criteria description of each) was used to finalise a coding scheme that was 

agreed upon by a second independent rater who subsequently coded 50% of the total sample of 

responses (n = 134) being blind to condition and the query selection attached to a reasoning response. 

The second rater was a post-doctoral researcher familiar with qualitative methods but with minimal 

information on the scope of the present experiment. Cohen’s weighted kappa was utilised to determine 

a high inter-rater agreement between the two raters, κw = 0.81, p < 0.001 in the strategy codes over 

imposed to participants’ responses. The strategy codes we drew from our participant sample (with a 

description of each and frequency across conditions) can be seen in Table 7. For a graphical 

representation of this information broken down by condition see Figure 3 below. Responses of 41 

participants (15%) out of the total sample were given a code of “n/a” as they did not provide an elaborate 

enough think-a-loud response for us to attribute it a specific code9. Subsequent analysis is carried out 

on the total sample (264 responses), although the “n/a” code will not be described further. 

 
9 In all experiments, responses that were attributed a code of “n/a” typically comprised of nonsensical letters, did 
not state an underlying reason for their selection, e.g., “it was easier”, or stated one that did not relate to the 
present set-up, e.g., “could trace merchandise through pawn shops”. 
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Table 7 

List of strategies extracted from think-a-loud responses with a description of these, an example response 
coded with each strategy, and the percentage of participants each strategy accounted for across 
conditions. 

Strategy Code Description Example Frequency 

Frontrunner 
Explicitly indicating a preference for 
identifying a lead suspect and thus 
obtaining a frontrunner at the outset. 

P8: “querying primary item 
stolen will narrow down my 
search to one main suspect”. 

26.5% 

Symmetry 

Preference for query with ‘symmetric’ 
parameters, i.e., in which a different 
burglar primarily accounts for each 
feature/outcome. 

P134: “each burglar has a 
preferred 'main category' of items 
they like to steal”. 

21.2% 

Differentiati
on 

Preference for query with the most 
‘percentage difference’ in outcomes 
across hypotheses and interest in 
maximally differentiating or 
disambiguating the hypotheses. 

P107: “this was the most 
differentiating fact between the 
three burglars. I wouldn't choose 
the time of day, because 2 of the 
3 burglars perform burglaries 
during the night”. 

17.4% 

Frontrunner 
+ Zero-

sum/Risk 
Aversion 

Preference for the query that is less 
‘risky’ given that regardless of the 
outcome, it increases the probability of 
one suspect over the others. 

P55: “[Suspect 1] and [Suspect 
3] prefer night-time so if the 
robbery took place at night it 
would be difficult to distinguish 
between who did it. The items 
that the robbers took is more 
likely to point at one single 
culprit”  

7.2% 

Elimination 
Preference for eliminating or excluding a 
suspect from the hypothesis space at the 
outset. 

P103: “will help eliminate the 
likelihood of one of the suspects 
committing the crime.” 

5.3% 

Highest 
Percentage 

Preference for the query that has the 
outcome with the highest percentage for 
any given suspect. 

P181: “[Suspect 2] commits 95% 
of his crimes at night, it will 
provide me with the best 
evidence”. 
 

3.4% 

Zero-sum/ 
Risk 

Aversion 

Avoiding the query whose outcomes 
would be almost equally diagnostic 
towards two suspects (“zero-sum 
reasoning” 10) and selecting the query 
whose outcome has lower evidential 
value but was more likely to occur (“risk 
aversion”11). 

P.145: “although the percentages 
for night/day are more severe, if 
it's day, there is no way of telling 
which of the two it is”. 

3.4% 

 
10 In game theory, ‘zero-sum’ describes a game where one player’s gain is a loss to other players. The zero-sum 
fallacy in evidence evaluation occurs when evidence is dismissed as non-probative if it lends equal support to 
two competing hypotheses (see Pilditch, Fenton & Lagnado, 2019). 
11 We define “risk aversion” as behaviour that occurs when in the trade-off between choosing a query that holds 
an outcome of highest evidential value (but lower probability of occurrence) and a query that holds an outcome 
of lesser evidential value (but higher probability of occurrence), participants prefer the latter.  
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Figure 3. Experiment 1: Percentage of strategies within each condition.  

 

2.3.5.1. Adaptability of Strategy Use 

In order to explore the adaptability of participants’ strategies across the different probabilistic contexts, 

we conducted a Chi-square test of independence on the percentage use of each strategy. Results showed 

a significant difference in the percentage of participants who adopted the different strategies between 

the four conditions, χ2 (18) = 34.1, p = 0.01, V = 0.23.  Bonferroni-corrected post-hoc comparisons12 

however, illustrated that the only strategy whose usage varied across conditions was ‘symmetry’, χ2 (3) 

=21.1, p < 0.0001. This could be due to the fact that more participants utilised a ‘differentiation’ strategy 

in this condition, and ‘symmetry’ and ‘differentiation’ are both concerned with similar features of a 

query (i.e., each outcome being diagnostic of a different suspect) and might be used somewhat 

interchangeably by participants. The extent to which participants adopted a frontrunner, differentiation, 

highest percentage, and frontrunner + zero-sum/risk aversion or elimination strategy did not vary across 

the four conditions. Post-hoc analysis could not be carried out on the strategy ‘zero-sum-risk aversion’ 

given the low numbers present within each cell.  

 
12  In all experiments, all post-hoc comparisons utilised Bonferroni corrections at the level of α/m where α is 
0.05 and m is the number of hypotheses being tested. 
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 Overall, it therefore seems that similarly to participants’ query selection choices, the strategies 

participants employed also remained mostly fixed across the different probabilistic environments, with 

‘frontrunner’, ‘symmetry’ and ‘differentiation’ accounting for approximately 65% of participants in 

each condition.  

2.3.5.2. Strategies and Query Selection  

Next, we investigated whether specific strategies systematically underlie specific query selections, in 

order to ascertain whether the observed query selection preferences, could be accounted for by these 

additional strategies. When collapsing across conditions, 86% of participants who utilised an 

‘elimination’ strategy, and 89% of those who utilised a ‘highest outcome’ strategy, selected the query 

‘Burglary Time’. Comparatively, 86% of participants who utilised a ‘frontrunner’ strategy, 96% of 

participants who adopted a ‘risk aversion’ strategy (including frontrunner + risk aversion), 94% of 

participants who adopted a ‘differentiation’ strategy and 95% of participants who adopted a ‘symmetry’ 

strategy’, selected the query ‘Primary Item Stolen’. This suggests that the vast majority of participants’ 

query selection preferences can be accounted for by the strategies we identified. 

An omnibus test (Chi-Square test of Independence) revealed no significant difference in the 

overall distribution of strategies underlying the two query choices between conditions, χ2 (25) = 22.14, 

p = 0.63. This suggests that certain strategies are associated with particular queries (i.e., ‘frontrunner’, 

‘differentiation’, ‘symmetry’ and ‘zero-sum/risk aversion’ to ‘Primary Item Stolen’ and ‘elimination’ 

and ‘highest percentage’ to ‘Burglary Time’). Similar to how participants’ preference to select the query 

‘Primary Item Stolen’ was irrespective of probabilistic contexts, the association between strategy and 

query selection also did not vary across contexts.  

For details on the extent to which these strategies related to accuracy of query selections 

according to each of the utility functions see supplementary materials (S2).  

2.4. Discussion  
 

Experiment 1 explored people’s information search behaviour in four different probabilistic contexts, 

with differing informative values for the queries, as measured by four utility functions (KL-D, IG, PG 
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and Impact) and a simplified heuristic PG model dubbed PGH that assumed equal outcome priors for 

each query. Utilising a between-subject design we ascertained that, despite the fact that participants in 

each condition reasoned with a different probabilistic model, the majority of participants in all 

conditions preferred querying ‘primary item stolen’.  

 Using logistic mixed-effect models, we showed that probability gain based models (PG and 

PGH) best approximated the distribution of participants’ query choices across probabilistic 

environments. PG was the best predictor of participants’ choices, predicting ‘primary item stolen’ to be 

of greater informative value in each condition. Simplifying the PG model by assigning equal priors of 

outcomes to the queries did not improve the predictive abilities of the model, thus suggesting that in the 

probabilistic environments adopted in the present experiment, participants might not be suffering from 

integration errors at the level of estimating outcome priors when evaluating the informativeness of 

queries. Overall, our model comparisons suggest that participants’ information search behaviour aligns 

with the optimal solution to this one-shot investigative task which, as represented by a PG model, entails 

maximising one’s chance of obtaining a correct suspect classification. This makes intuitive sense given 

that when tasked as a criminal investigator with only one opportunity of obtaining evidence to 

disambiguate between suspects, one should favour maximising the posterior probability of a suspect 

and therefore the chances of selecting the culpable suspect. 

 Our analysis of think-a-loud responses suggested that underlying participants’ modal querying 

of ‘primary item stolen’ was a common preference for maximally differentiating between suspects and 

obtaining a frontrunner hypothesis. However, adopting a strategy purely motivated by the identification 

of a frontrunner with the highest posterior should have led participants to correctly prefer, and rate as 

more informative, the query ‘burglary time’ in Condition 3, which instead was not what we observed. 

This showed that participants were willing to obtain a frontrunner, though only if this was also the 

‘safer’ and more probable option. This strategy is arguably pragmatically reflective of the optimal 

strategy of maximising the probability of making a correct guess, akin to PG, rather than wanting to 

maximise absolute belief change as the Impact model would dictate.  



38 
 

Although only a minority of participants explicitly stated this in their think-a-loud responses, 

selecting the query ‘primary item stolen’ even in conditions in which querying ‘burglary time’ could 

have led to the identification of a frontrunner with a higher probability of being the culprit could also 

be the product of a frontrunner preference mitigated by risk aversion. This finding fits with work by 

Poletiek and Berndsen (2000), who conceptualised hypothesis-testing behaviour as risk-taking 

behaviour and illustrated that people displayed certain biases (though in the risk-taking direction) when 

carrying out a pre-posterior analysis of the probability of obtaining supporting evidence and the 

evidential value of this evidence. Though not in line with the findings of Poletiek and Berndsen (2000), 

the ‘frontrunner risk aversion’ tendency described above echoes the results of Skov and Sherman (1986) 

who frame this tendency as being a form of confirmatory strategy behaviour (we will explore this more 

directly in our stepwise information search paradigm – Experiment 4). In the present experiment, we 

found this inclination to be additionally associated with a form of zero-sum reasoning. As such, in our 

experiment participants perceived the outcome ‘night’ as being less useful than all other query 

outcomes, in all conditions, given that this outcome was equally diagnostic of two suspects, though 

drastically lowering the probability of the third suspect (to a point in which they could be pragmatically 

eliminated). This suggests that a) participants are not significantly driven by elimination strategies, a 

finding supported by our analysis of think-a-loud responses, and b) outcomes that are equally diagnostic 

of two suspects (e.g., that would lead to equal posteriors), were deemed to be significantly less useful. 

This may be related to a form of zero-sum reasoning, defined as the dismissal of potentially probative 

evidence because it cannot differentiate between two competing hypotheses (Pilditch, Fenton & 

Lagnado, 2019). In our set-up, with three hypotheses, this form of thinking led to the dismissal of 

outcome ‘night’ as probative, despite it lowering the probability of one suspect being guilty to a level 

whereby he can almost be eliminated.  

Overall Experiment 1 illustrated that: a) participants are selecting queries mostly in line with PG 

within the bounds of the probabilistic environments employed in the present study, b) the strategies we 

unearthed from participants’ own think-a-loud responses were found to underlie specific query 

selections and were additionally able to account for participants’ preferences across probabilistic 
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contexts, c) participants prefer obtaining a frontrunner rather than eliminating a suspect in a ternary-

hypothesis scenario, and d) these strategic preferences can be influenced by factors such as risk aversion 

and zero-sum thinking, that have rarely been identified in information search paradigms.  Our next 

experiment aimed to replicate these findings in different probabilistic models to corroborate these 

findings as independent of particular chosen parameter sets and test the predictive abilities of the OED 

measures in diverse probabilistic environments. 

3. Experiment 2 

The primary aims of Experiment 2 were to extend the findings of Experiment 1 by: 1) determining 

whether participants’ preferences and motivated strategies remained robust in different probabilistic 

contexts with a binary hypothesis space and 2) illustrating that with a binary hypothesis space, 

identifying strategies such as ‘elimination’ and ‘frontrunner’ becomes conceptually impossible. As in 

Experiment 1, we created models with four different parameter sets, such that the informative value of 

each query varied across conditions. Building on the findings of Experiment 1, we anticipated that 

people would once again select the query that could lead to greater hypothesis disambiguation and was 

less risky (i.e., safe frontrunner strategy). This would be with the aim of maximising the chances of 

obtaining a suspect with a high-enough posterior to minimise choice inaccuracy in a one-shot paradigm 

– ultimately reflecting the motivations of a probability gain measure. As such, we predicted that in all 

the probabilistic environments employed in this experiment, the majority of participants would select 

(and evaluate as more informative) the query ‘burglary time’, in all conditions.   

3.1 Bayesian OED Models 

Our BNs were built as described in section 2.1, except that the parent node ‘Burglar’ (see Figure 1) was 

a binary variable (states: Suspect 1, Suspect 2). Again, we used uniform priors so that in all models P 

(Suspect 1) = P (Suspect 2) = +
#
 . For each Model i where i ∈ {1, 2, 3, 4} the conditional probabilities 

of each state of each query node (burglary time and Primary Item stolen) given each state of the common 

cause node (Burglar) can be seen in Table 8.  
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Table 8 

Experiment 2: Conditional Probability Table with parameters employed in each model. 

 
Model 1 Model 2 Model 3 Model 4 

S1 S2 S1 S2 S1 S2 S1 S2 
P (Day| Si) 0.1 0.95 0.1 0.85 0.1 0.85 0.1 0.95 

P (Night| Si) 0.9 0.05 0.9 0.15 0.9 0.15 0.9 0.05 
P(Jewellery| Si) 0.8 0.1 0.9 0.05 0.8 0.1 0.9 0.05 
P(Electronics|Si) 0.1 0.8 0.05 0.9 0.1 0.8 0.05 0.9 

P(Money| Si) 0.1 0.1 0.05 0.05 0.1 0.1 0.05 0.05 
N.B. for Si, i is a suspect ∈ {1, 2} 

Given each probabilistic model outlined in Table 8, the expected informative value of each query and 

each query outcome, computed through KL-D, IG, PG, PGH and Impact, can be seen in Table 9 below.  

Table 9 

Experiment 2: Expected value of each query outcome (ai) and each query (Qi) predicted by each 

utility function in each probabilistic model 

 Utility 
Function 

a1 
Day 

a2 

Night 
Q1 

Burglary 
Time 

a3 

Jewellery 
a4 

Electronics 
a5 

Money 
Q2  

Primary 
Item Stolen 

Model 1 

KL-D 0.55 0.70 0.6 0.50 0.50 0 0.45 
IG 0.45 0.3 0.6 0.50 0.50 1 0.45 
PG 0.90 0.95 0.43 0.89 0.89 0.5 0.35 
PGH 0.90 0.95 0.43 0.89 0.89 0.5 0.26 

Impact 0.40 0.45 0.43 0.39 0.39 0 0.35 

Model 2 

KL-D 0.51 0.40 0.45 0.70 0.70 0 0.6 
IG 0.48 0.59 0.45 0.30 0.30 1 0.6 
PG 0.89 0.86 0.38 0.95 0.95 0.5 0.43 
PGH 0.89 0.86 0.38 0.95 0.95 0.5 0.3 

Impact 0.40 0.36 0.38 0.45 0.45 0 0.43 

Model 3 

KL-D 0.51 0.40 0.45 0.50 0.50 0 0.45 
IG 0.48 0.59 0.45 0.50 0.50 1 0.45 
PG 0.89 0.86 0.38 0.89 0.89 0.5 0.35 
PGH 0.89 0.86 0.38 0.89 0.89 0.5 0.26 

Impact 0.40 0.36 0.38 0.39 0.39 0 0.35 

Model 4 

KL-D 0.55 0.70 0.6 0.70 0.70 0 0.6 
IG 0.45 0.3 0.6 0.30 0.30 1 0.6 
PG 0.90 0.95 0.43 0.95 0.95 0.5 0.43 
PGH 0.90 0.95 0.43 0.95 0.95 0.5 0.3 

Impact 0.40 0.45 0.43 0.45 0.45 0 0.43 
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Once again, the model parameters were selected so as to yield different expected informative values of 

queries across utility functions and across different model parameterisations, allowing us to explore 

people’s sensitivity and strategic adaptiveness across contexts and the abilities of utility functions to 

account for participants’ information search behaviour.  Although the binary hypothesis space does not 

formally allow us to tease apart frontrunner vs. elimination strategies, as seen in Table 8, our parameters 

rendered one query (burglary time) perceptively ‘safer’ given that each outcome was diagnostic of a 

different suspect, and one query (primary item stolen), albeit also leading to a lead suspect, somewhat 

riskier by including the low possibility of obtaining an outcome (money) that would not allow the 

disambiguation of the hypotheses. We predicted people would favour maximising their chances of 

identifying a leading suspect with less risk given the one-shot nature of the paradigm, by preferring the 

former option across probabilistic contexts.   

3.2. Method 

3.2.1.  Participants 

We tested 236 participants (104 males, Mage =34 years) who were recruited from Prolific Academic and 

completed the study online utilising the Prolific Academic platform. All participants were native 

English speakers, who gave informed consent, and were compensated $1.20 for partaking in the present 

experiment, which took on average (median) 12.7 minutes to complete.  

3.2.2. Design and Materials 

 A between-subject design was adopted. Participants were randomly allocated to one of four conditions 

(nCondition 1 = 58, nCondition 2 = 58, nCondition 3 = 59, nCondition 4 = 61). All participants were presented with the 

same cover story in which they acted as criminal investigators. Participants in each Condition i (Ci) 

were required to reason with a Model i, where i ∈ {1, 2, 3, 4}, parameterized as outlined in Section 3.1 

(see Tables 8 and 9), and completed the same one-shot task (for example task materials see osf.io/tkr4v).   
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3.2.3. Procedure 

In Experiment 2 we followed an identical procedure as that employed in Experiment 1, outlined in 

section 2.2.3. This included a stage in which participants in each condition were given information on 

the pertinent model (parameters and relationships within the model) and a stage in which participants 

were required to make a query selection based on the information given to them, as well as justify their 

selection utilising a think-a-loud response. Finally, participants were required to provide ratings on the 

usefulness of the available queries and their outcomes. Once again, participants were never informed 

of the outcome of the query they selected, making all their evaluations pertinent to the expected 

informative values queries would yield. 

3.3. Results  

3.3.1. Prior Probabilities  

The percentage of participants who correctly estimated the prior probabilities of all three suspects was 

81% in Condition 1, 88% in Condition 2, 89% in Condition 3 and 89% in Condition 4. Given these high 

percentages we concluded that participants overall accepted the uniform priors given to them. 

Nonetheless, once again, to increase the validity of our normative comparisons, all subsequent analyses 

will once again evaluate participants’ behaviour against informed Bayesian OED models (IB-OED), 

fitted with participants’ own stated priors. 

3.3.2. Query Selection 

Within each condition, we obtained the percentage of participants who selected each query (see Figure 

4).   Pearson’s Chi-Square test of independence indicated that these percentages did not differ between 

conditions, χ2 (3) = 3.32, p = 0.34, V = 0.12. In line with our predictions, the majority of participants 

queried ‘burglary time’ in all conditions. These findings strengthen those of Experiment 1 in 

demonstrating that people may not be sensitive to the varying utility of queries determined by the 

probabilistic models to the degree of our manipulation. According to all utility functions the two queries 

did at least to an extent vary in informative value across conditions, except when these were computed 

by a PGH model, that evaluated the query ‘burglary time’ as being more informative in all conditions 

(though only marginally in Condition 2).  



43 
 

 

Figure 4. Experiment 2: Percentage of participants who selected each query in each condition. 

 
3.3.3. Utility Function Model Comparisons 

The breakdown of the predictions each utility functions made regarding the informativeness of each 

query, as well as the distribution of participants’ query choices, can be seen in Table 10.  

To determine how well each utility function predicted people’s query choice proportions we 

once again built mixed-effects logistic regression models following the same model fitting procedure 

outlined in section 2.3.3. A comparison via likelihood ratio test of our null model M0 (that included a 

random-effect of ‘Subject’ with intercept and outcome variable ‘Participant Choice’) to a model, M1, 

with an added fixed-effect of ‘Condition’ illustrated that participants’ query selections did not vary 

across conditions, χ2 (3) = 3.33, p = 0.32, and that adding ‘Condition’ as a fixed-effect did not 

significantly improve the null model. Following the iterative process outlined in section 2.3.3 for 

Experiment 1, we found that for all utility functions the maximal model was M2 (‘Utility Function’ as 

fixed-effect, ‘Participant Choice’ as outcome variable and random effect with intercept for ‘Subject’) – 

including ‘Condition’ as a fixed effect did not improve the fit of any model. All maximal models were 

checked for overdispersion and under dispersion and no issues were noted. 
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Table 10 

Experiment 2: Percentage of predictions made by each utility function in each condition favouring 
burglary time, primary item stolen, or evaluating them as equal, and percentage of participants who 
queried Burglary Time (represented in Burglary Time > Item Stolen column) and Item Stolen 
(represented in Item Stolen > Burglary Time column). 

 Utility  
Function 

Burglary Time 
 > 

Item Stolen 

Item Stolen 
> 

Burglary Time 

Item Stolen 
 =  

Burglary Time  

Condition 1 

KL-D 100% 0% 0% 
IG 100% 0% 0% 
PG 91% 0% 9% 
PGH 93.1% 1.7% 5.2% 

Impact 91% 0% 9% 
 Participant Choice 89.7% 10.3% - 

Condition 2 

KL-D 0% 100% 0% 
IG 0% 100% 0% 
PG 0% 100% 0% 
PGH 91.4% 0% 8.6% 

Impact 0% 100% 0% 
 Participant Choice 79.3% 20.7% - 

Condition 3 

KL-D 0% 0% 100% 
IG 0% 0% 100% 
PG 0% 0% 100% 
PGH 96.6% 0% 3.4% 

Impact 0% 0% 100% 
 Participant Choice 84.7% 15.3% - 

Condition 4 

KL-D 0% 2% 98% 
IG 0% 2% 98% 
PG 0% 0% 100% 
PGH 95.1 3.3% 1.6% 

Impact 0% 0% 100% 
 Participant Choice 83.1% 16.9% - 

 

The outputs of the mixed-effect logistic regression analyses used to assess the predictive 

abilities of each utility function can be seen in Table 11 below. Through these analyses we found no 

main effect of any utility function on the outcome variable ‘Participant Choice’: PG, F (2, 233) = 1.4, 

p = 0.26; PGH, F (2, 233) = 1.7, p = 0.19; KL/IG, F (2, 233) = 1.2, p = 0.3; and Impact, F (2, 233) = 

1.45, p = 0.24. 

Despite these findings, by consulting the OR values in Table 11, we can see that in the PGH 

model a prediction of ‘burglary time’ (participants’ preferred query across all scenarios– see Figure 4) 

made a participant choice of ‘burglary time’ 3 times more likely than a participant choice of ‘primary 

item stolen’ Comparatively, a prediction of ‘burglary time’ by any of the other models, made a 
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participant choice of ‘burglary time’ less likely than a choice of ‘primary item stolen’. The 

interpretations of these findings can be additionally informed by consulting Table 10. As can be seen 

in Condition 2, all models performed poorly (predicting primary item stolen > burglary time) except for 

the PGH model, which was able to account for the directional preference of participants’ query selections 

in all conditions (evaluating ‘burglary time’ to be the most informative query). As such, in Condition 3 

and 4, all utility functions except PGH predicted the two queries to be of approximately equal value, 

thereby failing to accurately represent participants’ preference for one query (burglary time) over the 

other and displaying a lack of discriminative capacity.  

Table 11 

Experiment 2: Parameters of the fixed effects estimated via logistic mixed-effects models, their 
statistical significance, and odds ratio for the competing models. 

Participant Choice = ‘Time’ 
Reference category ‘Participant Choice’ = Item.      

Model1 
Parameter 
(Model 
Prediction) 

Estimate  
ß 

Std. 
Error 

 ß 
t Sig. 

Odds 
Ratio 

OR 
95%CI 
Lower  

OR 
95%CI 
Upper  

Probability 
Gain 

(Intercept) -1.49 1.32 -1.1 0.26    
 ‘Item’ 0.15 0.40 0.36 0.72 1.2 0.52 2.5 
 ‘Time’ -0.78 0.53 -1.47 0.14 0.46 0.16 1.3 

  ‘ItemTime’b 0a      

Probability 
Gain 

Heuristic 

(Intercept) 0.56 0.63 -0.36 0.72   - 
 ‘Item’ 0.13 1.37 3.1 0.002 1.14 0.08 16.9 
 ‘Time’ 1.1 0.65 2.2 0.027 3.05 0.85 10.9 
 ‘ItemTime’ 0a      

KL-D /IG 

(Intercept) -1.48 1.3 -1.1 0.26    
 ‘Item’ 0.12 0.4 0.29 0.77 1.13 0.51 2.49 
 ‘Time’ -0.7 0.49 -1.37 0.17 0.51 0.19 1.35 
 ‘ItemTime’ 0a       

Impact 

(Intercept) -1.5 1.3 -1.1 0.26    
 ‘Item’ 0.14 0.40 0.34 0.73 1.15 0.52 2.5 
 ‘Time’ -0.8 0.52 -1.5 0.13 0.45 0.16 1.3 
 ‘ItemTime’ 0a       

a Parameter is set to zero due to redundancy. 
b ItemTime refers to a model prediction of the two utilities having approximately equal value (abs diff. of 
two queries < 5%). 
1 Participant Choice ~ Utility Function Prediction + (1 | Subject) 
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The likelihood ratio test results between each maximal model and the null model are displayed in Table 

12 below. As can be seen, none of the maximal models including the utility functions as predictors 

significantly improved the null model fit in predicting the outcome variable ‘Participant Choice’. 

Table 12 

Experiment 2: Likelihood ratio test results, AIC, Deviance, Akaike Weights (w) and Evidence Ratio 
(ER) values of the competing models. 

Model df AIC ΔAICi wi ERi Deviance χ2 df p-value 
M0

1 2 218.8 - - - 214.8 - 
M2 PG 4 219.6 0.6 0.29 1.35 211.6 3.2 2 0.20 
M2 PGH 4 219 0 0.39 1 211 3.1 2 0.21 

M2 KL/IG 4 220.8 1.8 0.16 2.46 214.8 0.001 2 0.97 
M2 Impact 4 220.8 1.8 0.16 2.46 214.8 0.002 2 0.97 

1 Participant Choice ~ 1 + (1 | Subject) 

In order to compare the competing utility functions models, we again used derivatives of 

Akaike’s Information Criterion (AIC) measure and followed the same procedure outlined in section 

2.2.3 for Experiment 1. The computed ΔAIC values (see Table 12) suggest no model should be 

discounted and that there is no singular model that significantly approximates participants’ choices 

more than the others given that ΔAIC < 2 in all models. Comparing the four candidate models, PGH has 

the smallest AIC value and therefore acts as the ‘best’ reference model. The computed Akaike weights 

showed that PGH has 39% chance of being the correct model, and the next-best model, PG, has 29% 

chance of being the correct model. From the ER values (see Table 12) we can conclude that a PGH 

model is 1.35 times more likely than our next-best model, PG, and 2.46 times more likely than the 

KL/IG and Impact models.  

Overall, considering the percentages presented in Table 10, the OR values and coefficients 

presented in Table 11 and the ΔAIC, Akaike weights and ER values presented in Table 12, we can 

conclude that out of the candidate models, one with a built-in PGH utility function is able to best 

approximate the distribution of participants’ query choices. However, although faring better than its 

competitors, PGH was nonetheless not found to be a significant predictor of participants’ query 

selections. This could be due to the fact that this model was not able to account for the 15-20% of 

participants who on average selected the query ‘primary item stolen’ in each condition.  Qualitatively, 
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however, this model was representative of the direction of the majority of participants’ query selections 

(i.e., for ‘burglary time’) in all conditions suggesting that, similar to Experiment 1, participants’ query 

choices were most in line with evaluations made by a PG-based model. Contrary to our Experiment 1 

findings, in the probabilistic environments adopted in the present experiment (i.e., using a binary 

hypothesis space), the simplified model assuming equal priors was a better fit than the original PG 

model – this is discussed further in section 3.4. 

3.3.4. Query and Outcome Ratings 

Participants’ average ratings of the usefulness of each query and query outcome can be seen in Table 

13 below. A one-way ANOVA showed no significant effect of condition on the usefulness ratings of 

the queries ‘primary item stolen’, F (3, 235) = 2.38, p = 0.07, ηp
2= 0.03, and ‘burglary time’, F (3, 235) 

= 2.11, p = 0.09, ηp
2 = 0.027. As such, participants in all conditions rated the query ‘burglary time’ as 

being of higher utility than the query ‘primary item stolen’. This strengthens the notion that participants 

may be evaluating queries using criteria that lie outside of the principles dictated by the utility functions 

we compared them to, given that none of our tested utility functions foretold this unvaried preference 

for the query ‘burglary time’.  In terms of query outcome ratings, whereas no between-condition 

differences were found in the usefulness ratings of query outcome ‘night’, F (3, 234) = 2.2, p = 0.09, 

ηp
2 = 0.09, we found a significant between-condition difference in the ratings of outcome ‘day’, F (3, 

234) = 5.3, p = 0.001, ηp
2 = 0.065. 

Post-hoc pairwise comparisons showed the significant differences to be between participants 

in Conditions 1 and 2, p = 0.018 and between participants in Conditions 2 and 4, p = 0.009. As such, 

participants in Condition 2 rated the usefulness of the outcome ‘night’ to be significantly lower than 

participants in Conditions 1 and 4. No between-condition differences were found in the usefulness 

ratings of query outcome ‘money’, F (3,234) = 0.74, p = 0.53, ηp
2 = 0.009, which mirrors the predictions 

of all utility functions regarding this query outcome across conditions (lowest utility - see Table 9). 
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Table 13 

Experiment 2: Mean participant ratings of each query and each query outcome in each condition 

 
Condition 1 Condition 2 Condition 3 Condition 4 

M (SD) M (SD) M (SD) M (SD) 

Query Burglary Time 8.72(1.3) 8.05 (1.5) 8.2 (1.4) 8.3 (1.7) 
Primary Item Stolen 6.2 (2.1) 6.3(1.9) 6.8 (1.8) 7 (2.1) 

Query Outcomes 

Night 8.74 (1.3) 8.2 (1.5) 8.2 (1.4) 8.5 (1.5) 
Day 8.6 (1.5) 7.8 (1.6) 7.9 (1.2) 8.6 (1.4) 

Jewellery 7.7 (1.7) 8.5 (1.6) 7.9 (1.2) 8.4 (1.3) 
Electronics 7.9 (1.3) 8.6 (1.2) 7.9 (1.2) 8.4 (1.3) 

Money 1.6 (2.3) 1.6 (2.7) 2.2 (2.8) 2 (2) 
 

A significant between-condition difference was found in the usefulness ratings of query outcome 

‘jewellery’, F (3, 234) = 3.9, p = 0.01, ηp
2 = 0.05, with post-hoc pairwise comparisons showing the 

difference to be between Conditions 1 and 2, p = 0.03. Participants in Condition 2 rated the outcome 

‘jewellery’ as being significantly more useful than those in Condition 1. Finally, a significant between-

condition difference was found in the usefulness ratings of query outcome ‘electronics’, F (3, 234) = 

5.05, p = 0.002, ηp
2 = 0.06, with post-hoc pairwise comparisons showing the difference to be between 

Conditions 1 and 2, p = 0.01 and between Condition 2 and 3, p = 0.01. Participants in Condition 2 

valued the query outcome ‘electronics’ as more useful than participants in Conditions 1 and 3.  

Whereas some of these between-condition differences were comparable to normative value 

ratings of utility functions detailed in Table 9, participants failed to detect the varying informative value 

of the majority of outcomes across conditions. As such, all utility functions except IG predicted outcome 

‘night’ to be less informative in Condition 2 and 3 than in the remaining conditions, and outcome 

‘jewellery’ to be more useful in Condition 4 than in Conditions 1 and 3. In this respect our findings 

were in line with findings of Rusconi et al. (2014) showing IG was a better predictor of participants’ 

query outcome evaluations compared to alternative OED utility functions.   

To confirm that participants’ usefulness ratings were representative of how they actually 

evaluated a query by either selecting it or not selecting it, we once again computed the percentage of 

“rating congruent” responses in each condition. As a reminder, a query choice was coded as congruent 
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(1) if the participant selected the query that they also rated as being most useful on the 0-10 Likert scale 

- if not, a query choice was coded as incongruent (0). If a participant gave equal ratings to the two 

queries, their query choice was coded as congruent regardless of what query was selected.  The 

percentage of congruent query selections was: 94.7% in Condition 1; 100% in Condition 2; 94.8 % in 

Condition 3; and 93.3 % in Condition 4. These high percentages allow us to take participants’ ratings 

as reliable representations of their evaluation of how useful they believe a query to be. Overall, it 

appears that participants displayed some degree of sensitivity to the different probabilistic contexts 

when rating the usefulness of query outcomes, though arguably insufficiently so. Moreover, this 

sensitivity to probabilistic context was not reflected in their ratings of the queries themselves, which 

remain unvaried across conditions and consistently favoured the query ‘burglary time’ over ‘primary 

item stolen’, aligning only with qualitative directional predictions of a PGH model.  

Given that in all conditions participants evaluated query outcomes ‘jewellery’ and ‘electronics’ 

as being equal to and at times superior to the outcomes ‘day’ and ‘night’, even in Condition 2, and yet 

displayed a modal preference for the query ‘burglary time’ across conditions, this suggests that pitfalls 

in optimally evaluating queries likely occurred at the level of integrating information (i.e., weighting 

the probability of outcomes occurring), rather than from bottom-up insensitivity to probabilistic 

contexts.  Given that participants recognised the extremely low utility of outcome ‘money’ in all 

conditions, it is possible that they overweighed the probability of this outcome occurring and therefore 

excessively de-valued the query ‘primary item stolen’ and resorted to selecting the less ‘risky’ query of 

‘burglary time’, even in conditions in which this would lead to a lesser (or equal) gain in information 

according to all utility functions. This view is supported by the analysis described in section 3.3.3, 

showing that the PGH model, which assumed equal priors of outcomes, was the model that performed 

best in approximating the distribution of participants’ query selections. 

3.3.5. Strategies: Think-a-loud responses 

Given the consistency in query selection and evaluation by participants across conditions, irrespective 

of changes in the probabilistic environment, it is important to once again assess the strategies underlying 

participants’ evaluation of the expected value of queries and outcomes. To do this, we analysed the 
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think-a-loud responses related to participants’ query selections. Given that one of the outcomes of 

‘primary item stolen’ had an expected utility of zero in all contexts, we expected that more participants 

would employ a frontrunner strategy moderated by risk aversion, and thus prefer the query ‘burglary 

time’ in all conditions. 

 As all probabilistic models in Experiment 2 had binary hypotheses the states were modelled as 

mutually exclusive and exhaustive, discriminating between a frontrunner and an elimination strategy 

was not technically possible. Only two participants explicitly stated a preference for ‘eliminating’ a 

suspect, and the remainder utilised language indicating a preference for increasing the probability of 

one suspect or identifying the culprit. For this reason, and due to the constraints of utilising a binary 

hypothesis space, think-a-loud responses that voiced a preference to identify a ‘frontrunner’ or ‘lead’ 

suspect and those that voiced a preference for ‘eliminating’ a suspect were collapsed under a single 

code dubbed ‘identify the culprit’.   

The coding procedure followed that outlined in section 2.3.5 of Experiment 1. A primary rater 

coded all responses (236) and 50.8% of responses were randomly selected from the total sample (N = 

120) and coded by a second independent rater. Cohen’s weighted kappa was utilised to determine a 

moderately high inter-rater agreement between the two raters, κw = 0.88, p < 0.001. Using the principles 

outlined in Experiment 1, 36 participant responses were attributed a code of “n/a” as they did not 

provide relevant or elaborate enough explanations. Subsequent analysis was carried out on the total 

sample (including “n/a”) of 236 responses. The strategy codes extracted from all responses and their 

prevalence in accounting for the total sample will now be presented in turn (see Table 14 for descriptives 

and Figure 5 for graphical representation). 
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Table 14 

Experiment 2: Percentage use of strategy codes across conditions (collapsing scenarios).  

Strategy Code Percentage Use (across conditions) 

Symmetry 11% 
Differentiation 20.3 % 

Highest Percentage 13.6 % 
Zero-sum/Risk aversion 13.1% 

Identify culprit + Zero-sum/Risk aversion 5.5% 
Identify culprit 21.2% 

 

As suspected, the extent to which participants displayed “zero-sum/risk aversion” thinking was 

noticeably higher (~19%) than in Experiment 1 (~10%), strengthening the notion that the modal 

preference in ‘Burglary Time’ was partly the result of a risk aversion towards the query ‘Primary Item 

Stolen’, whose outcome ‘money’ was not informative in any condition, and a possible failure to 

integrate information (i.e., weighting the probability of outcomes occurring or ignoring priors of 

outcomes altogether) given that this query was actually more informative or of equal informative value 

according to all utility functions in Condition 2 (except PGH, which attributes equal priors to query 

outcomes), where participants still failed to concede this. 

 

 

Figure 5. Experiment 2: Percentage of strategy codes within each condition 
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3.3.5.1. Adaptability of Strategies  

In order to explore the adaptability of participants’ strategies across the different probabilistic contexts, 

we conducted a Chi-square test of independence. We found no significant difference in the percentage 

of participants who adopted the different strategies between the four conditions, χ2 (18) = 26.1 p = 0.097, 

V = 0.19.  This means that the extent to which participants adopted each strategy, similarly to their 

query selection preferences, did not differ across the four probabilistic environments we employed. As 

in Experiment 1, more than half of the participants could be accounted for by ‘identify suspect’, 

‘symmetry’ and ‘differentiation’ strategies across all probabilistic contexts. 

3.3.5.2. Strategies and Query Selection 

Next, we once again explored whether certain strategies systematically underlie certain query 

selections. Given that we found no significant variation of either strategy or query selection across 

conditions, this was done by collapsing across conditions. Of the participants who used an ‘identify 

culprit’ strategy (n = 50), 80% queried ‘Burglary Time’, as did 100% of participants who used an 

‘identify culprit + zero/sum risk aversion strategy’ (n = 13) and 78% of participants who utilised a 

differentiation strategy (n = 48). Similarly, 84% of participants who utilised a zero/sum risk aversion 

strategy (n = 31), 92% of participants who used a symmetry strategy (n = 26), and 84% of participants 

who used a highest percentage strategy (n = 32), also queried ‘Burglary Time’. A Chi Square test of 

independence illustrated that the extent to which these strategies underlay certain query selections did 

not vary across conditions, χ2 (6) = 5.85 p = 0.44, V = 0.16. 

Taken together, our findings suggest that both people’s queries and their underlying strategies, remain 

largely unvaried across conditions. In contrast to Experiment 1, the impossibility of explicitly 

discerning between frontrunner and elimination strategies meant that in this experiment it was not 

possible to determine whether distinct strategies related to obtaining a frontrunner vs. eliminating a 

suspect and the majority of participants who employed each of the strategies queried ‘burglary time’. 

For particulars on how the strategies related to accuracy of query selections according to the different 

utility functions see supplementary materials (S4). 
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3.4. Discussion  

In Experiment 2 we explored people’s information acquisition and evaluation behaviour in four 

different probabilistic contexts. We replicated findings from Experiment 1 by showing that participants 

across conditions displayed a strong preference for the same query (in this case ‘burglary time’) 

regardless of probabilistic environment. This switch in modal preference of ‘burglary time’, compared 

to the preference for ‘primary item stolen’ observed in Experiment 1 additionally allowed us to conclude 

that participants were not guided by the content of the queries (e.g., type of evidence per se) when 

judging their informativeness. Here we also note that, compared to Experiment 1, the utility functions 

made similar predictions, due to the binary hypothesis state (e.g., PG and Impact make identical 

predictions now). This highlights the importance of comparing the predictions of different utility 

functions across different probabilistic contexts in order to identify the environments which lead to 

differential versus concurrent evaluations of a query’s expected utility.  

 Echoing the findings of Experiment 1 we showed that probability gain based models (PG and 

PGH) best-approximated the distribution of participants’ query choices across probabilistic 

environments, though neither of these models was a significant predictor of participant choice. In 

contrast to Experiment 1, rather than the original PG model, PGH was best able to qualitatively predict 

the direction of participants’ choices by evaluating ‘burglary time’ to be the most informative query in 

all conditions. In the binary hypotheses spaces adopted in Experiment 2 it therefore appears that a 

simplified OED model that assumes equal outcome priors best accounts for the distribution of 

participants’ query evaluations. The adoption of a simplified PG model compared to Experiment 1, is 

likely due to the differences in conditional probability (CPT) values adopted in the two experiments. 

As such, in Experiment 1, the less preferred outcome ‘night’ would still result in the probabilities of 

two suspects increasing - albeit by the same amount thus not aiding disambiguation.  In contrast, in 

Experiment 2, the less preferred outcome ‘money’ would decrease the probability of both suspects 

thereby going against the intuitive goal in a one-shot investigation task of increasing the probability of 

a suspect as much as possible. As such, it is likely that participants overweighed the probability of the 

outcome they rated as less favourable (‘money’) occurring, and therefore conformed to a model that 
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assumes equal outcome priors.  This finding is in line with predictions of the dominant model of 

descriptive choice in Prospect theory (Kahneman and Tversky, 1979 – directly tested in e.g., Bleichrodt, 

2001) which predicts that small probabilities (as attached to the ‘money’ outcome in query ‘burglary 

time’ Experiment 2) are overweighed. Therefore, the findings from Experiment 2 corroborate 

Experiment 1, showing that participants evaluate queries in line with the predictions of a rational model 

that maximises the chance of obtaining a correct suspect classification and is motivated by maximising 

accuracy of choice. However, participants followed the rational model less than in Experiment 1, most 

probably due to the above-explained increase in risk-averse behaviour. 

With regard to why people are selecting and evaluating queries in this manner, an analysis of 

think-aloud responses revealed that the majority of participants across conditions were driven to identify 

the culprit by selecting the query that would guarantee disambiguation, such that regardless of its 

outcome the probability of one suspect would increase over the other. In conditions in which querying 

‘primary item stolen’ could lead to greater disambiguation of the hypotheses and increase the 

probability of a suspect higher than any outcome of query ‘burglary time’ could, an analysis of 

participants’ think-aloud responses corroborated risk-averse thinking, akin to that observed in 

Experiment 1. This risk aversion was possibly underlain by overweighing the probability of the least 

informative outcome (money) occurring, and thus resorting to choosing the alternative query, despite it 

resulting (in some conditions) to a lead suspect with lower probability of being the true culprit. Once 

again this suggests that participants, when considering the trade-off between the perceived evidential 

value of outcomes and the perceived probability of obtaining outcomes, trade some evidential value in 

favour of a query that will allow them to obtain a frontrunner with a higher probability (albeit with a 

lower chance of this frontrunner being the true culprit). These findings therefore demonstrated that 

known biases in decision making under uncertainty, such as risk aversion, also play a role in seeking 

information under uncertainty, at times leading participants to ultimately lose information (Poletiek & 

Berndsen, 2000).  

 Of note is the fact that due to the binary hypothesis space it was not possible to technically 

distinguish between ‘frontrunner’ and ‘elimination’ strategies in this experiment (although only 2 
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participants explicitly mentioned elimination in their responses), suggesting that the strategies and 

heuristics employed by participants are in part contingent on the probabilistic model employed. This 

emphasises the importance of exploring information acquisition in probabilistic contexts that 

extrapolate beyond binary-hypotheses and binary-outcome feature models in order to identify the 

strategies and heuristics people may adopt more complex probabilistic environments. 

4. Experiment 3 

In Experiments 1 and 2 we demonstrated that participants’ deviation from Bayesian OED model 

predictions when evaluating queries may stem from errors when integrating an outcome’s diagnosticity 

with the probability of its occurrence. Moreover, our results suggested that certain common motivators 

of inquiry underlie people’s query selection and evaluation behaviour. In order to narrow the space of 

explanations for our findings in Experiment 3 we built probabilistic models with a ternary hypothesis 

space and ternary outcome queries. Moreover, to explore the adaptiveness of participants’ motivated 

strategies and explore participants’ sensitivity to changes in probabilistic models at the individual level, 

we introduced a within-subject design factor requiring participants to reason with multiple models.  

As previously discussed, despite at times deviating from the predictions of OED utility functions, 

participants exhibited seemingly rational information search behaviour given the one-shot design of the 

task. More precisely, in the context of a one-shot criminal investigation it was rational to prefer to select 

the query that aided hypothesis disambiguation with minimal risk, allowing for the identification of a 

‘guaranteed’ frontrunner to pursue and make progress in the investigation. This behaviour aligned with 

the motivations of a PG measure that aims to maximise classification accuracy when identifying a lead 

suspect.  

In the present experiment we included a between-subject manipulation to investigate the effect 

of task framing - one-shot investigation versus perceived multiple possible inquiries - on strategy 

adoption and query evaluations. We predicted that participants who were under the impression the task 

comprised of multiple query selections would employ a different strategy than their counterparts who 

were told they had only one chance at obtaining information. In addition we expected participants in 
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the ‘multiple inquiries’ condition to display less risk aversion than participants who were told the task 

was a one-shot investigation, given that the former might  adopt an ‘elimination’ strategy to a greater 

extent at the outset of the investigation, given the belief that the investigation involves multiple 

inquiries. This would depart from predictions made by PG, which is no longer guaranteed to be the 

optimal solution to a task with multiple enquiries. Overall, we predicted that in this experiment none of 

the utility functions would be able to account for any differences between the one-shot and multiple 

enquiries conditions, given that task framing is not considered by the family of information-theoretic 

OED measures (Coenen et al., 2018).  

To further reduce the computational burden imposed on participants, and more directly assess 

their inquiry preferences in the absence of uncertainty, we also required participants to select one 

outcome from each query that they would prefer to receive. In this manner we directly probed their 

preferences by requiring them to choose between evidence that would lead to a frontrunner and evidence 

that would help to eliminate a suspect. Finally, we also asked participants to update their probabilistic 

beliefs given outcomes. This allowed us to explore whether biases in information integration, at the 

level of calculating the impact of different query outcomes on the various hypotheses, underlie sub-

optimal query evaluation. 

4.1. Bayesian OED Models 

Our BNs were once again built as described in Section 2.1, except that the query node ‘burglary time’ 

also had ternary outcomes (‘day’, 8am to 4pm; ‘evening’, 4pm to 12am; and ‘night’, 12am to 8am). 

Once again, we used uniform priors so that in all models P (Suspect 1) = P (Suspect 2) = P (Suspect 3) 

=+
2
. For each Model i where i ∈ {1, 2, 3, 4,5} the conditional probabilities of each state of each query 

node (Burglary Time and Primary Item stolen) given each state of the common cause node (Burglar) 

can be seen in Table 15. Given each probabilistic model outlined in Table 15, the expected informative 

value of each query and each query outcome, computed through KL-D, IG, PG, PGH and Impact can be 

seen in Table 16 below. Once again, the model parameters were selected so as to yield different expected 

informative values of queries across utility functions and across models. 
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Table 15 

Experiment 3: Conditional Probability Table with parameters employed in each model. 

 
Model 1 Model 2 Model 3 Model 4 Model 5 

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

P (Day| Si) 0.1 0.8 0.1 0.15 0.70 0.15 0.2 0.6 0.2 0.25 0.50 0.25 0.1 0.8 0.1 

P (Evening| Si) 0.1 0.1 0.8 0.15 0.15 0.70 0.2 0.2 0.6 0.25 0.25 0.50 0.1 0.1 0.8 

P (Night| Si) 0.8 0.1 0.1 0.70 0.15 0.15 0.6 0.2 0.2 0.50 0.25 0.25 0.8 0.1 0.1 

P(Jewellery| Si) 0.9 0.1 0.1 0.9 0.9 0.1 0.9 0.9 0.1 0.9 0.1 0.1 0.98 0.1 0.1 

P(Electronics|Si) 0.05 0.5 0.35 0.05 0.5 0.35 0.05 0.5 0.35 0.05 0.5 0.35 0.01 0.6 0.35 

P(Money| Si) 0.05 0.4 0.55 0.05 0.4 0.55 0.05 0.4 0.55 0.05 0.4 0.55 0.01 0.3 0.55 
N.B. for Si, i is a suspect ∈ {1, 2, 3} 

In contrast to previous experiments however, given the within-subject factor, we mostly held 

the conditional probabilities of ‘primary item stolen’ outcomes given each suspect constant across 

probabilistic models and varied those of ‘burglary time’ to facilitate the identification of a stage at which 

seeking a safe frontrunner would cease to be the favoured strategy. As such, querying ‘burglary time’ 

in Model 1 would allow participants to identify a safe frontrunner, regardless of the outcome, with 80% 

probability of being the true culprit, Model 2 with 70% chance of being the true culprit, Model 3 with 

60% chance and Model 4 with only 50% chance. Model 5 was included as it would allow participants 

to obtain a safe frontrunner with high probability but querying primary item stolen could lead to an 

almost certainly guilty suspect (98%) and almost certain elimination of the competing hypotheses. This 

set-up allowed us to determine how much information participants were willing to lose by being ‘risk 

averse’, as well as how deep-rooted their preference was for a frontrunner versus eliminating a suspect. 
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Table 16 

Experiment 3: Expected value of each query outcome (ai) and each query (Qi) predicted by each 
utility function in each model.. 

 
Utility 

Function 
a1 

Day 
a2 

Evening 
a3 

Night 

Q1 
Burglary 

Time 

a4 
Jewellery 

a5 
Electronics 

a6 
Money 

Q2 
Primary 

Item 
Stolen 

Model 1 

KL-D 0.66 0.66 0.66 0.66 0.72 0.36 0.35 0.49 
IG 0.92 0.92 0.92 0.66 0.87 1.22 1.23 0.49 
PG 0.8 0.8 0.8 0.47 0.82 0.55 0.56 0.32 
PGH 0.8 0.8 0.8 0.47 0.82 0.55 0.56 0.31 

Impact 0.31 0.31 0.31 0.31 0.32 0.19 0.18 0.24 

Model 2 

KL-D 0.40 0.40 0.40 0.40 0.72 0.36 0.35 0.49 
IG 1.18 1.18 1.18 0.40 0.87 1.22 1.23 0.49 
PG 0.7 0.7 0.7 0.37 0.82 0.55 0.56 0.32 
PGH 0.7 0.7 0.7 0.37 0.82 0.55 0.56 0.31 

Impact 0.24 0.24 0.24 0.24 0.32 0.19 0.18 0.24 

Model 3 

KL-D  0.21 0.21 0.21 0.21 0.72 0.36 0.35 0.49 
IG 1.37 1.37 1.37 0.21 0.87 1.22 1.23 0.49 
PG 0.6 0.6 0.6 0.27 0.82 0.55 0.56 0.32 
PGH 0.6 0.6 0.6 0.27 0.82 0.55 0.56 0.31 

Impact 0.18 0.18 0.18 0.18 0.32 0.19 0.18 0.24 

Model 4 

KL-D  0.08 0.08 0.08 0.08 0.72 0.36 0.35 0.49 
IG 1.5 1.5 1.5 0.08 0.87 1.22 1.23 0.49 
PG 0.5 0.5 0.5 0.17 0.82 0.55 0.56 0.32 
PGH 0.5 0.5 0.5 0.17 0.82 0.55 0.56 0.31 

Impact 0.11 0.11 0.11 0.11 0.32 0.19 0.18 0.24 

Model 5 

KL-D 0.66 0.66 0.66 0.66 0.76 0.57 0.56 0.64 
IG 0.92 0.92 0.92 0.66 0.83 1.02 1.02 0.64 
PG 0.8 0.8 0.8 0.47 0.83 0.64 0.63 0.38 
PGH 0.8 0.8 0.8 0.47 0.83 0.64 0.63 0.37 

Impact 0.31 0.31 0.31 0.31 0.33 0.21 0.21 0.26 
 

4.2. Methods 

4.2.1. Participants 

 We tested 136 participants (nmale = 49 males, Mage = 33.9 years, SD = 11.8) who were recruited from 

Prolific Academic and completed the study online utilising the Prolific Academic platform. All 

participants were native English speakers, who gave informed consent, and were compensated £2.50 

for partaking in the present experiment, which took on average (median) 26.4 minutes to complete.  
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4.2.2. Design and Materials 

 A mixed-subjects design was adopted. Participants were randomly allocated to one of two between-

subject conditions (nCondition 1 = 66, nCondition 2 = 70) that differed in the framing of the instructions (see 

section 4.2.3. below). All participants were presented with the same cover story in which they were 

tasked as criminal investigators asked to solve various burglary cases. Each burglary case represented 

a Scenario i embedded with a Model i where i ∈ {1, 2, 3, 4, 5} parameterised as in Table 15. By using 

a within-subject factor, participants in both conditions were therefore required to reason with all five 

models. For an example of our task materials see osf.io/tkr4v.  

4.2.3. Procedure 

Participants in each condition were presented with a cover story that tasked them as criminal 

investigators. They were told that they were being transferred on rotation to five burglary divisions in 

different neighbourhoods. In this manner they were instructed they would have to complete five 

scenarios (presented in randomized order).   

In each scenario participants were, as in Experiments 1 and 2, initially required to review the 

neighbourhood’s burglary statistics and the criminal records of the (three) burglars known to operate in 

the area. After having reviewed information on the model, participants were told that a new burglary 

had occurred in their neighbourhood and they were asked to investigate the new case. Participants in 

Condition 1 (one-shot inquiry condition) were explicitly told that each investigation would comprise of 

only one inquiry. Participants in Condition 2 (perceived multiple inquiries condition) were told that 

each investigation would comprise of multiple inquiries, and they would be required to make the first 

one. The framing of the task thus differed between conditions, but all participants were ultimately able 

to make only one query selection per scenario. 

In both conditions, at the outset, prior probabilities of each burglar being the culprit were elicited 

from participants to ensure the uniform priors (as stated) had been accepted.  Subsequently, participants 

were asked to select one of two investigative queries: ‘burglary time’ (to find out whether the burglary 

occurred during the day, evening or night) or ‘primary item stolen’ (to find out whether electronics, 

money or jewellery were primarily stolen). The query selection question was asked in a manner that 
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would not be leading participants to adopt a particular strategy: “Please choose the query that you 

believe will be most useful for the whole investigation”.  Participants were required to provide a think-

a-loud response explaining the reasoning underlying their choice.  

Participants did not find out the outcome of their query. Rather, regardless of their query choice, 

all participants were additionally asked to select the item of evidence (outcome) they would prefer to 

receive between an outcome of the query item stolen (randomly selected between ‘electronics’ and 

‘money’) and an outcome of the query burglary time (randomly selected between all three possible 

outcomes).So, participants were asked to choose between receiving either electronics or money (as they 

both directly entailed the elimination of a suspect) or receiving any of the burglary time evidence, given 

that any of the outcomes of this query entailed a frontrunner (increase of probability of only one 

suspect). This binary choice question allowed us to directly gather participants’ preferences for 

obtaining a frontrunner versus eliminating a suspect in a simple and direct manner that does not require 

participants to reason under uncertainty. Participants were again required to provide a textual 

explanation for their choice. 

Finally, participants were required to update the probabilities of each suspect (using a slider 

ranging from 0 – 100 %), given that they hypothetically found out each of the aforementioned outcomes 

(i.e., ‘electronics’ and ‘evening’). After giving their probabilistic estimates participants moved on to the 

next scenario. This procedure was repeated until a participant had completed all 5 scenarios.  

4.3. Results 

4.3.1. Prior Probabilities  

The percentage of participants who correctly estimated the prior probabilities of all three suspects across 

the five scenarios was 81.8% in Condition 1 and 81.4 % in Condition 2. Given these high percentages 

we concluded that the uniform priors were generally acceptable to participants. Nonetheless, once again, 

to increase the validity of our normative comparisons, all subsequent analyses will evaluate participants’ 

behaviour against informed B-OED models parameterized with participants’ own stated priors. 



61 
 

4.3.2. Query Selection 

The percentage of participants who selected each query in each scenario and per condition is graphically 

represented in Figure 6 below. For a table detailing the percentage accuracy of participants’ query 

selections according to each utility function and within each scenario/condition see supplementary 

materials (S5a). This will more directly be explored in the model comparison section of the results 

(4.3.3). 

 

 

Figure 6. Experiment 3: Proportion of query selections within each condition per scenario.  

 

To investigate whether the framing of the task (between-subjects ‘Condition’) and the 

probabilistic environments utilised in each scenario (within-subjects ‘Scenario’) affected participants’ 

query selections, we built a General Log-Linear Mixed Effects Model with a binomial distribution. Our 

model had two fixed effects (Scenario and Condition) and a random effect (Subjects) with intercept, to 

account for individual differences. Results illustrated a main effect of ‘Scenario’ on participants’ query 

selections, F (4, 670) = 42.1, p < 0.001, ηp
2 = 0.20, and a main effect of ‘Condition’, F (1, 670) = 8.4, 

p = 0.004, ηp
2 = 0.01. A significant interaction effect was also found, F (4, 670) = 2.6, p = 0.036, ηp

2 = 

0.015.  The interaction effect is driven by the fact that, although participants in each of the two 

conditions behaved comparably in scenarios 1, 2, 4 and 5, in scenario 3 they displayed markedly 
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different query preferences. More specifically, at this stage, as can be seen from Figure 6, participants 

who were in the perceived multiple inquiries condition (Condition 2) ‘switched’ preference at an earlier 

stage and queried ‘primary item stolen’ significantly more than participants in Condition 1, t (670) = 

2.42, p = 0.015. In regard to the main effect of ‘Scenario’, participants queried ‘burglary time’ more 

than the alternative query, significantly more in scenario 1 than in scenarios 3 (p < 0.001) and 4 (p < 

0.001) where the majority displayed a preference to query ‘primary item stolen.’ Moreover, participants 

in both conditions queried ‘primary item stolen’ significantly more in scenario 3 and 4 than in the other 

scenarios (all Bonferroni-corrected pairwise comparisons were significant at p < 0.05 level). 

Compared to previous experiments, participants demonstrated some degree of sensitivity to 

probabilistic contexts. Moreover, our above analysis shows that participants’ change in query 

preference was significantly influenced by the framing of the task; an effect that cannot be accounted 

for by our family of OED measures given that predictions of all utility functions remain unvaried 

regardless of task framing. 

4.3.3. Utility Function model Comparison 

The breakdown of the percentage of participants for whom each utility function predicted primary item 

stolen to be more informative, burglary time to be more informative, or for these to be equally 

informative in each condition can be seen in Table 17. From this table it appears that probability-based 

models best predicted the distribution of participants’ query selections at least in terms of qualitative 

direction compared to the alterative models. As such, in Scenario 2 PGH and PG (though marginally) 

are the only models that predicted the majority of participants would prefer the query ‘burglary time’. 

Despite this however, even these measures showed poor discriminative ability by attributing equal value 

to the queries in scenario 3 despite a participant majority query preference of ‘burglary time’. 

To determine how well each utility function predicted people’s query choice proportions we 

once again built mixed-effects logistic regression models for each utility functions using the package 

lme4 in R (Bates, Maechler & Bolker, 2012). Our null model (M0) included a random-effect with 

intercept for ‘Subject’, as well as for ‘Scenario’, and ‘Participant Choice’ as binary outcome variable. 
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M1 in this case built upon M0 by including a fixed effect of ‘Condition’ (task framing). A comparison 

via likelihood ratio test of our null model to M1 illustrated that participants’ query selections 

significantly varied across conditions, χ2 (1) = 35.8, p = 0.016, echoing the findings presented in section 

4.3.2.  Following the iterative process outlined in section 2.3.3 for Experiment 2, we found that for all 

utility functions the maximal model was M3 (‘Condition’ and ‘Utility Function’ as fixed-effects, 

‘Participant Choice’ as outcome variable and random effects with intercepts for ‘Subject’ and for 

‘Scenario’). All maximal models were checked for overdispersion and under dispersion and no issues 

were noted. 

 The outputs of the mixed-effect logistic regression analyses used to assess the predictive 

abilities of each utility function can be seen in Table 18 below. Through these analyses we found no 

main effect of any utility function on our outcome variable ‘Participant Choice’: PG, F (2, 676) = 0.1, 

p = 0.92 ; PGH, F (2, 676) = 0.9, p = 0.42; KL/IG, F (2, 676) = 0.01, p = 0.99; and Impact, F (2, 676) = 

2.7, p = 0.07. However, in each model, we found a main effect of ‘Condition’, F (1, 676) = 5.45, p = 

0.02. This suggests that task framing condition was a better predictor of participants’ query selection 

preferences than any of the utility functions. Table 18 shows that the only significant individual 

parameter was that of an Impact prediction of query ‘primary item stolen’. By looking at the 

corresponding coefficient value however, one can note that this prediction is actually inversely related 

to a participant choice of ‘primary item stolen’, e.g., a prediction of ‘primary item stolen’ increases the 

odds of a participant choosing ‘burglary time’ and decreases the odds of a participant choosing ‘primary 

item stolen’.  
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Table 17 

Experiment 3: Percentage of predictions made by each utility function in each scenario favouring 
burglary time, primary item stolen, or evaluating them as equal, and percentage of participants who 
selected each of the queries. Burglary Time 

 Utility  
Function 

Burglary Time 
 > 

Item Stolen 

Item Stolen 
> 

Burglary Time 

Item Stolen 
 =  

Burglary Time  

Scenario 1 

KL-D 98.5% 0% 1.5% 
IG 98.5% 0% 1.5% 
PG 99% 0% 1% 
PGH 99.3% 0% 0.7% 

Impact 97% 0% 3% 
 Participant 81% 19% - 

Scenario 2 

KL-D 0% 96% 4% 
IG 0% 96% 4% 
PG 57% 1% 42% 
PGH 98.5% 0.7% 0.7% 

Impact 2% 0% 98% 
 Participant 78% 22% - 

Scenario 3 

KL-D 0% 100% 0% 
IG 0% 100% 0% 
PG 0% 37% 63% 
PGH 0% 4.4% 95.6% 

Impact 0% 98% 2% 
 Participant 56% 44% - 

Scenario 4 

KL-D 0% 100% 0% 
IG 0% 100% 0% 
PG 0% 100% 0% 
PGH 0% 100% 0% 

Impact 0% 100% 0% 

 Participant 24% 76% - 
 

Scenario 5 

KL-D 3% 0% 97% 
IG 3% 0% 97% 
PG 95% 1% 4% 
PGH 96.3% 1.5% 2.2% 

Impact 54% 0% 46% 
 Participant 75% 25% - 
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Table 18 

Experiment 3: Parameters of the fixed effects estimated via logistic mixed-effects models, their 
statistical significance, and odds ratio for the competing models. 

Reference category = ‘Time' 
Participant Choice = ‘Item’        

Model1 Parameter 
Estimate  

ß 

Std. Error 

 ß 
t Sig. Odds 

Ratio 

OR 
95%CI 
Lower  

OR 
95%CI 
Upper  

PG 

(Intercept) -0.35 1.98 -0.18 0.86    
PG Prediction        
 ‘Item’ 0.13 0.44 0.3 0.76 1.14 0.48 2.7 
 ‘Time’ -0.09 0.33 -0.26 0.79 0.92 0.48 1.8 
 ‘ItemTime’ 0a       
Condition        
Condition 1 -0.5 0.2 -2.3 0.02 0.6 0.40 0.9 
Condition 2 0a       

PGH 

(Intercept) -0.86 2 -0.43 0.67    
 PGH Prediction        
‘Item’ 0.01 0.79 0.01 0.98 1.01 0.21 4.75 
‘Time’ 0.84 0.72 1.18 0.24 2.32 0.57 9.5 
‘ItemTime’ 0a       
 Condition        
Condition 1 -0.5 0.2 -2.3 0.02 0.61 0.40 0.9 
Condition 2 0a       

KL-D /IG 

(Intercept) -0.43 1.9 -0.22 0.82    
 KL/IG Prediction        
‘Item’ 0.09 0.73 0.13 0.89 1.1 0.26 4.6 
‘Time’ 0.07 0.85 0.09 0.93 1.1 0.20 5.7 
‘ItemTime’ 0a        
Condition        
Condition 1 -0.5 0.2 -2.3 0.02 0.6 0.4 0.9 
Condition 2 0a        

Impact 

(Intercept) -1.5 1.3 -1.1 0.26    
Impact Prediction        
‘Item’ -1.6 0.79 -2.01 0.045 0.2 0.04 0.96 
‘Time’ 0.32 0.37 0.86 0.39 1.4 0.66 2.86 
‘ItemTime’ 0 a  - - - - -  
Condition        
Condition 1 -0.5 0.2 -2.3 0.02 0.6 0.39 0.92 
Condition 2 0a       

 

a Parameter is set to zero due to redundancy. 
1 Participant Choice ~ Utility Function Prediction + Condition + (1 | Scenario) + (1 | Subject) 
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The likelihood ratio results comparing each maximal model, M3, to M1 are displayed in Table 19 below.  

Table 19 

Experiment 3: Likelihood ratio test results, AIC, Deviance, Akaike Weights (w) and Evidence Ratio 

(ER) values of the competing models. 

Model df AIC ΔAICi wi ERi Deviance χ2 df p-value 

M1
1 4 773.5    765.52  

M3 PG 6 777.4 5.94 0.04 19.5 765.4 0.1 2 0.94 
M3 PGH 6 775.3 3.84 0.12 6.82 763.3 2.18 2 0.34 

M3 KL/IG 6 777.48 6.02 0.04 20.28 765.48 0.04 2 0.98 
M3 Impact 6 771.46 0 0.80 1 759.46 6.1 2 0.048* 

1 Participant Choice ~ Condition + (1|Scenario) + (1 | Subject) 

In order to compare the competing utility function models and select the best approximating 

model from our available ones, we once again used derivatives of Akaike’s Information Criterion (AIC) 

measure. Given that the Impact model had the lowest AIC value we selected this as the ‘best’ reference 

model. The ΔAIC values presented in the above table suggest that PGH was the next best model, and, 

alongside the PG model, should not be discounted given that ΔAIC < 6. The KL/IG model could be 

discounted given that ΔAIC > 6. The computed Akaike weights showed that Impact has 80% chance of 

being the correct model, and our next best model PGH has 12% chance of being the correct model. 

Utilising the ER values, we concluded that an Impact model was 20 times more likely than a KL/IG 

model, 19 times more likely than a PG model and 6.8 times more likely than a PGH model to be the 

correct model.  

 Despite these findings, we must note that none of the utility functions were significant 

predictors of ‘Participant Choice’ and that Impact’s ‘superior’ predictive abilities compared to the 

alternative models were driven by the inverse significant relationship between a model prediction of 

‘primary item stolen’ and a participant query selection of ‘burglary time’. As such, this undermines the 

notion that Impact is a good predictive model of people’s information search behaviour and suggests 

that none of the utility functions are truly able to capture the distribution of participants’ query selections 

in these environments. Looking at Table 17, it appears that probability-based models best approximate 

the distribution of participants’ query selections at least in terms of qualitative direction compared to 
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the alterative models. As such, in Scenario 2 PGH and PG (though marginally) are the only models that 

predict the majority of participants would prefer the query ‘burglary time’. This is reflected in the OR 

and coefficient values of a ‘burglary time’ prediction for the PGH model (see Table 18) which, despite 

not reaching significance, increased the odds of a participant choice being time by 2.3 times compared 

to a choice of ‘primary item stolen’. Similarly, in Scenario 3, PG is able to account for the approximate 

40% of participants who prefer ‘primary item stolen’, although both PGH and PG predominantly 

predicted the informative value of the two queries to be equal in this probabilistic environment. 

Overall, however, our analysis showed that that task-framing condition is a more significant driver 

and predictor of participants’ query selections. By consulting the coefficient and OR values in Table 18 

we can see that a participant being in Condition 1 making a query selection of ‘primary item stolen’ is 

less likely than a query selection of ‘burglary time’ compared to participants in Condition 2. This finding 

is echoed by the information presented in Figure 6, showing that participants in Condition 1 selected 

the query ‘primary item stolen’ significantly less than their counterparts in Condition 2 within e.g., 

Scenario 3. As such it appears that contextual factors such as task framing are more important 

determinants of participants’ query evaluations compared to the computations dictated by information-

theoretic utility functions. 

4.3.4. Query Outcome (Evidence) Selection 
 

Next, we analysed participants’ choices when asked to directly select which outcome they would 

like to receive between one of the ‘primary item stolen’ (either electronics or money) outcomes and one 

of the ‘burglary time’ outcomes (randomly selected between all three). Any of the ‘burglary time’ 

outcomes would have led to the identification of a ‘frontrunner’ albeit with different certainties of being 

the true culprit. In contrast, electronics and money would have led to the almost certain elimination of 

a suspect, thus narrowing the scope to two now approximately equally likely suspects. The proportion 

of participants who selected each piece of evidence (query outcome) is graphically represented in Figure 

7 below, split by ‘Scenario’ and ‘Condition’. 
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Figure 7. Experiment 3:  Proportion of query outcome (evidence) selections when asked to choose 
between learning that electronics/money was stolen or one of the burglary time outcomes within each 
condition per scenario. 

 

To investigate whether the framing of the task (between-subject ‘Condition’ factor) and the 

probabilistic environments (within-subject ‘Scenario’ factor) impacted participants’ query outcome 

(evidence) selections, we again built a Log-Linear Mixed Effects Model with a binomial distribution. 

The model had two fixed effects (Scenario and Condition) and a random effect intercept (Subjects) to 

account for individual variance. This yielded no main effect of ‘Condition’ on participants’ query 

outcome preferences, F (1, 670) = 0.12, p = 0.73, ηp
2 = 0.002, but a main effect of ‘Scenario’, F (4, 670) 

= 35.6, p < 0.001, ηp
2 = 0.23. A small interaction effect was found, F (4, 670) = 2.5, p = 0.036, ηp

2 = 

0.02, explored below.  The non-significant main effect of condition suggests that participants’ 

preferences to obtain a frontrunner are exacerbated when uncertainty is removed and are robust across 

task framing conditions.  

Regarding the main effect of scenario, post-hoc pairwise comparisons illustrated a significant 

difference in evidence preferences between scenario 4 and scenario 1, p = 0.001, as well as scenario 2, 

p < 0.001, scenario 3, p = 0.04, and scenario 5, p < 0.001.  As such, compared to all other scenarios, in 

scenario 4 participants in both conditions selected the query outcome (money or electronics) that 
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enables the elimination of a suspect significantly more than the evidence (day, evening or night) that 

enables the identification of a frontrunner. 

These findings suggest that, when removing uncertainty by asking participants to select which 

outcome they would like to directly receive (in contrast to asking them about what query they’d like to 

make), the majority of participants, regardless of what task framing condition they were in, “switch 

strategy” in scenario 4 by choosing a ‘primary item stolen’ outcome over viewing ‘burglary time’ query 

outcomes that would, in this scenario, only provide participants with a “lead” suspect with a 50% 

probability of being the true culprit (the highest posterior probability of each suspect being the culprit 

given the outcomes of query burglary time would be 0.5 given the parameters outlined in Table 16).   

In regard to the significant interaction effect, post-hoc pairwise comparisons found the term to 

be driven by the significant difference across Conditions 1 and 2 within scenario 3, p = 0.003. As such, 

within this scenario, participants in the ‘perceived multiple inquiries’ condition (Condition 2) mostly 

preferred receiving evidence that would allow the elimination of a suspect (money or electronics)  

whereas participants in Condition 1 (‘single inquiry’) still preferred receiving the evidence that would 

enable the identification of a frontrunner (day, evening or night). This suggests that more participants 

in the perceived multiple inquiries condition ‘switched’ strategy earlier than those in Condition 1. In 

the latter case, in scenario 3 the majority still preferred to receive evidence that would identify a 

frontrunner, although only with a 60% chance of being the true culprit, rather than eliminating a suspect. 

We will directly assess whether participants are specifically acknowledging these strategies (i.e., 

frontrunner and elimination) in later analyses. 

These between-condition differences do not align with the maximising information goals of the 

utility functions we utilised. More broadly, purely information-theoretic OED models do not take into 

account factors such as task framing and context when computing the expected utility of a query or a 

query outcome.  
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4.3.5. Belief Updating (Posterior Probability Estimates)  

To explore whether errors of belief updating were related to participants’ biased selection of queries, 

we compared participants’ posterior probability estimates given the hypothetical observation of each of 

the two outcomes (i.e., the probabilistic estimates they gave when asked about the probability of guilt 

of each suspect given they observed certain outcomes e.g., money or electronics) to the normative 

posteriors given this evidence computed using the IB-OED models (see Figure 8).   

As such we built a Linear Mixed Effects Model with ‘probability estimate given item outcomes’ 

as a dependent variable and ‘Suspect’ (indicating whether the estimate was for Suspect 1, 2 or 3), 

‘Condition’, ‘Scenario’, and ‘Data Type’ (whether the estimate was obtained from participants or the 

normative model). A random effect of subject was included to account for individual differences. 

 

Figure 8. Experiment 3: Average probability estimates given ‘primary item stolen’ outcomes (A) and 
‘burglary time’ outcomes (B) of participants and informed BN’s for each suspect, in each scenario and 
condition.  

 

We found no main effect of ‘Condition’, F (1, 4020) = 0.3, p = 0.59, ηp
2 < 0.0001, ‘Scenario’, F 

(4, 4020) = 0.45, p = 0.78, ηp
2 < 0.0001, or ‘Data Type’, F (1, 4020) = 0.26, p = 0.61, ηp

2 < 0.0001. The 

only main effect was of ‘Suspect’, F (2, 4020) = 37292, p < 0.0001, ηp
2 = 0.95, given that ‘primary item 
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stolen’ outcomes differentially affected the probability of guilt of different suspects. We found no 

significant interaction effects between ‘Data Type’, ‘Condition’ and ‘Scenario’. The same procedure 

was carried out for probability estimates given ‘burglary time’ outcomes. Once again, we found no main 

effect of ‘Condition’, F (1, 4020) = 0.003, p = 0.9, ηp
2 < 0.0001, ‘Scenario’, F (4, 4020) = 0.25, p = 

0.91, ηp
2 < 0.0001, or ‘Data Type’, F (1, 4020) = 0.03, p = 0.86, ηp

2 < 0.0001, on participants’ estimates. 

The only main effect we found was once again of ‘Suspect’, F (2, 4020) = 1490, p < 0.0001, ηp
2 = 0.43. 

We found no significant interaction effect between ‘Data Type’, ‘Condition’ and ‘Scenario’. Overall, it 

appears that participants’ estimates given both ‘burglary time’ and ‘primary item stolen’ outcomes, 

closely approximated normative predictions. 

4.3.6. Strategies: Think-aloud responses 

In order to explore the motivated strategies that underlie participants’ query selections, as well as their 

adaptiveness across conditions and probabilistic contexts (scenarios), we once again analysed 

participants’ think-a-loud responses associated with their query selections. The coding procedure 

followed that outlined in previous experiments. A primary rater coded all responses and a second 

independent rater coded 25% of the total sample of responses (given the larger number of responses in 

this experiment, a smaller percentage of these was second-coded compared to the previous 

experiments), randomly selected (N = 170 out of 680). Cohen’s weighted kappa determined a 

moderately high inter-rater agreement between the two raters, κw = 0.71, p < 0.001. In condition 1, 47 

responses out of the total responses (N = 328), and in Condition 2, 44 responses out of the total responses 

(N = 349) were coded as “n/a” following the same criteria used in previous experiments. All responses 

were included in subsequent analysis. Below are the proportion of responses that were assigned each 

code throughout the task overall (Table 20) and within each scenario and condition (Figure 9). 
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Table 20 

Experiment 3: Percentage use of strategy codes across conditions (collapsing scenarios).  

Strategy Code 
Percentage Use 

(across scenarios) 
Condition 1 

Percentage Use 
(across scenarios) 

Condition 2 
Frontrunner 37% 36% 
Elimination 1.8% 11% 
Symmetry 11.5% 13% 

Differentiation 24% 18% 
Frontrunner + Zero-sum/Risk Aversion 3.6% 1.4% 

Highest Percentage 4.5% 6% 

Zero-sum/ Risk Aversion 3% 0.3% 
 

 

 

Figure 9.  Experiment 3:  Percentage of strategies per scenario and condition 

 

4.3.6.1. Adaptability of Strategies  

In order to explore whether participants’ strategy use varied across scenarios within each condition, we 

initially carried out two Friedman tests (within each condition). No significant difference in the adoption 

of different strategies was found within condition 1, χ2 (4) = 6.04, p = 0.2. A significant difference was 

found within condition 2, χ2 (4) = 11.2, p = 0.024. This can be attributed to participants in condition 2 

utilising an ‘elimination’ strategy significantly more in scenario 4 than in scenario 1, p < 0.014.   
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 Subsequently we collapsed the scenarios in order to explore between-condition differences in 

the adoption of different strategies between conditions. This allowed us to test the hypothesis that 

participants in the ‘perceived multiple inquiries’ condition might employ an ‘elimination’ strategy 

significantly more than participants in the ‘single inquiry’ condition who comparatively would utilise a 

‘frontrunner’ strategy significantly more and would display more risk-averse behaviour (given the one-

shot nature of the task framing).  A Chi-Square test of Independence illustrated that the distribution of 

strategies overall varied across the two conditions, χ2 (7) = 37.4, p < 0.0001, V = 0.24. Post-hoc contrasts 

with a threshold of α = 0.05 determined the significant between-condition differences were attributable 

to the differences in use of an ‘elimination’ strategy and a ‘zero-sum/risk aversion’ strategy. In line with 

our predictions, more participants in condition 2 adopted an ‘elimination’ strategy than participants in 

condition 1 and conversely more participants in condition 1 adopted a ‘zero-sum/risk aversion’ strategy 

than participants in condition 2 (see Table 20). 

  Whereas in previous experiments we noted that participants’ strategies remain largely unvaried 

across probabilistic contexts, this was not the case here. Moreover, strategies seem to be sensitive to 

task framing. The finding that more participants adopted an elimination strategy in condition 2 

intuitively makes sense given that they believe they have longer in the investigative process to determine 

an individual suspect. Thus, our findings suggest that strategies and query selections are both sensitive 

to task framing and probability contexts. However, such sensitivity is contingent on cases where 

fulfilling the strategic preferences of obtaining a frontrunner is less feasible (i.e., scenario 5 in which 

the frontrunner would only have a 50% chance of being the true culprit and scenario 4 to an extent, for 

a similar reason).  

4.3.6.2. Strategies and Query Selection 

Next, we explored whether, within each condition (varying in terms of how the task was framed e.g., 

‘perceived multiple inquiries’ versus ‘single inquiry’) certain strategies systematically underlie 

different query selections. In condition 1, 63% of participants employing a ‘frontrunner’ strategy, 92% 

of participants employing a ‘frontrunner + zero-sum/risk aversion’ strategy, 66% of participants 

employing a ‘differentiation’ strategy, 92% of participants employing a ‘symmetry’ strategy, and 90% 
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of participants employing a ‘zero-sum/risk aversion’ strategy selected the query ‘burglary time’.  In this 

same condition, 83% of participants who used an ‘elimination’ strategy and 60% of those who employed 

a ‘highest percentage’ strategy queried ‘primary item stolen’. 

 In comparison, in condition 2,  51% of participants employing a ‘frontrunner’ strategy, 60% of 

participants employing a ‘frontrunner + zero-sum risk aversion’ strategy, 65% of participants 

employing a ‘differentiation’ strategy, 93% of participants employing a ‘symmetry’ strategy, and 100% 

of participants employing a zero-sum/risk aversion strategy (though here n = 1) selected the query 

‘burglary time’.  Meanwhile 75% of participants who used an ‘elimination’ strategy and 60% of those 

who employed a ‘highest percentage’ strategy queried ‘primary item stolen’. Once again, certain 

strategies dictated different query selections with an ‘elimination’ strategy being related to querying 

‘primary item stolen’ and the remaining strategies being predominantly related to querying ‘burglary 

time’.  

To explore the extent to which strategies differentially underlie query selections and vary both 

across scenarios (within-participants) and across conditions (between-participants), we built a General 

Linear Mixed Effects Model with binomial distribution and log link function. Our model had three fixed 

effects: Condition, Scenario and Strategy; one random effect: Subjects, with intercept to account for 

individual variability; and one dependent factor: query selection (count).  This analysis showed no main 

effect of ‘Condition’, F (1, 606) = 1.97, p = 0.16, ηp
2 = 0.003, but a main effect of ‘Scenario’, F (4, 606) 

= 7.7, p < 0.0001, ηp
2 = 0.05, and a main effect of ‘Strategy’, F (7, 606) = 7.8, p < 0.0001, ηp

2 = 0.08. 

The main effect of ‘Scenario’ is addressed in previous analyses reported in section 4.3.2 (participants’ 

query selection preferences did vary across scenarios).  

In terms of ‘Strategy’, the significant pairwise comparisons in predicting query selection was 

between the ‘elimination’ strategy and: ‘frontrunner’, p = 0.024, ‘frontrunner + zero-sum/risk aversion’, 

p = 0.028, ‘differentiation’, p < 0.0001, ‘symmetry’, p < 0.0001, and ‘zero-sum/risk aversion’, p < 

0.002. As can be seen in the descriptive statistics mentioned above, an elimination strategy was 

associated with querying ‘primary item stolen’ significantly more than the other strategies that 

predominantly were underlying ‘burglary time’ query choices. In addition, significant pairwise 
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comparisons were found between ‘symmetry’ and ‘frontrunner’, p < 0.0001, ‘highest percentage’, p < 

0.0001, and ‘differentiation’, p = 0.02.  As such, a symmetry strategy was more strongly associated with 

querying ‘burglary time’ than the remaining strategies (though these also were predominantly 

underlying the same query). 

Using a full factorial design, the only significant interaction effect was between ‘Scenario’ and 

‘Strategy’, F (28, 606) = 2.1, p = 0.001, ηp
2 = 0.09.  This is due to the fact that although participants’ 

query selections varied in some scenarios (e.g., between scenario 1 and 2 and scenarios 3, 4, 5), the 

extent to which certain strategies were related to certain queries (i.e., elimination strategy and querying 

‘primary item stolen’) did not vary across scenarios. As such, our findings suggest that strategies dictate 

different query selections and they potentially indicate that the nature of the condition shifts query 

selections independently of strategy use.  

For details on how strategies related to query selection accuracy according to each utility 

function, see supplementary materials (S6). 

4.4.  Discussion  

In Experiment 3 we explored people’s information acquisition and evaluation behaviours across five 

different probabilistic contexts using a within-subjects design. Moreover, we explored the effect of task 

framing on participants’ query and query outcome preferences as well as on the adoption of a 

frontrunner vs. elimination strategy. None of the utility functions were sensitive to the different 

strategies that participants employed (e.g., frontrunner vs. elimination).  In terms of participants’ 

information search decisions, our mixed-effect logistic regression analyses showed that none of the 

models were significant predictors of participants’ query preferences. Descriptively however, 

probability gain based models were arguably able to account for the directional majority preference of 

participants’ choices in scenarios in which alternative models failed. In this set-up however, PG was 

not considered to be the optimal strategy given that half of the participants assumed that the task would 

involve multiple inquiries and therefore adopting a PG strategy at the outset is not necessarily the most 

rational choice. Overall, in the present experiment, the purely information-theoretic models we 

employed were not able to account for the observed differences in query evaluations between 
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participants who believed the task involved multiple inquiries, and those who believed it was a one-

shot task.  

 Our results illustrated that participants in condition 1 who were told the whole investigation 

entailed only one inquiry, had a modal preference for querying ‘burglary time’ in all scenarios except 

scenario 4. As per the previous experiments, this was underlain by an adoption of strategies that would 

enable the safe identification of a frontrunner, and disambiguation of suspects. In scenario 4, querying 

‘burglary time’ would only increase the posterior probability of any given suspect to 50%, triggering 

participants to switch preference and select the query ‘primary item stolen’. At this point their choices 

aligned with the predictions of all five model predictions.  On the other hand, participants in condition 

2 who were told the investigation comprised of multiple inquiries (although they were required to only 

make the first one), evaluated queries slightly differently than their counterparts in condition 1. As such, 

their preference switched given a different probabilistic model, preferring to query ‘primary item stolen’ 

over ‘burglary time’ (which could only lead to frontrunner with only 60% probability of being the true 

culprit) as early as in scenario 3. Nonetheless, participants in this condition were also primarily driven 

by a frontrunner strategy throughout the task, although we found they adopted an elimination strategy 

more than participants in condition 1. We note that although some differences were found in the 

adoption of frontrunner vs. elimination strategies between conditions, our manipulation might not have 

been strong enough to induce a significant change in strategy adoption between participants. This may 

be due to limiting the selection of queries to one, regardless of task framing condition. The instructions 

might not have been enough to instil in participants the knowledge that the investigation allowed 

subsequent inquiries. Experiment 4 adopts a stepwise paradigm to address this issue. Nevertheless, our 

results still suggest that when evaluating queries, the context and task framing are significant factors 

that both descriptive and normative frameworks of information seeking should be able to account for. 

 In the current experiment, in order to specifically investigate frontrunner versus elimination 

driven strategies, we asked participants to select one piece of evidence between either 

money/electronics or a burglary time outcome. Here, participants did not reason under uncertainty, 

instead simulating the impact of each of the two pieces of evidence on the probability of each suspect 
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being the culprit. Normatively, one piece of evidence would lead to an almost certain ‘elimination’ of 

a suspect and one piece of evidence would lead to a leading hypothesis (although the extent of this 

differed across scenarios). Participants’ outcome selections mirrored their query selections, as 

participants in condition 1 preferred receiving evidence relating to ‘burglary time’ than evidence 

relating to the ‘primary item stolen’ in all scenarios, excluding scenario 4. Participants in condition 2 

switched preference earlier, at scenario 3, at which point they preferred receiving either money or 

electronics as evidence (and thus eliminate a suspect). The fact that participants’ posterior estimates 

were accurate (given each item of evidence) indicates that participants could accurately predict how 

much the items of evidence would change the probability of guilt of each suspect, which further suggests 

that when they chose a certain piece of evidence it was because they could correctly anticipate its effect. 

This allows us to conclude that the observed preference for ‘burglary time’ outcomes was due to a 

cognizant preference for a frontrunner, and not due to belief updating errors.   

  This overall preference for a frontrunner is especially relevant when exploring information 

seeking in real-world instances such as criminal investigation, in which information itself acts as a 

reward and the accuracy of a judgement is of great importance (i.e., having the wrong lead suspect could 

have deleterious consequences on subsequent evidence gathering opportunities, potentially leading to 

erroneous convictions), and eliminating a suspect might be as valuable as catching the culprit. The 

“frontrunner bias” we observe in our studies thus far, i.e., preferring to identify a frontrunner at the 

outset of an investigation, could therefore prove problematic if it translates to naturalistic environments 

in which tunnel-vision in investigations and confirmatory information search strategies have led to 

miscarriages of justice (Eady, 2009). In a subsequent experiment, we will address whether adopting the 

frontrunner strategy at the outset leads to selective hypothesis-testing and confirmatory search 

strategies.  

Findings from Experiment 3 yield optimistic insights, as, despite mostly selecting queries that 

were not optimal according to our OED utility functions, participants were able to accurately estimate 

the impact of evidence on each hypothesis. This is in contrast to previous literature illustrating 

participants’ errors in integrating information within a Bayesian framework (i.e., Bar-Hillel, 1980; 
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Fischoff & Beyth-Marom, 1983; Tversky, 1982). In addition, it suggests that errors in estimating the 

change in probability distributions of outcomes do not underlie participants’ deviations from OED 

principles when evaluating queries. Rather, participants may be committing errors in integrating the 

weighted probabilities of outcomes occurring when choosing what query would provide them with the 

most informative evidence, or not taking these probabilities into account at all. For example, similar to 

behaviour observed in Experiment 2, by overweighting the probability of the outcome ‘money’ 

occurring in all scenarios participants might have resorted to the safer ‘frontrunner-guaranteed’ query 

option.   

Overall, Experiment 3 further substantiates the findings from previous experiments, showing that 

the adoption of common motivated strategies, such as the identification of a frontrunner, can account 

for most of participants’ query selections. However, the utility function predictions were insensitive to 

these differences. Moreover, findings from this experiment strengthened the notion that although basic 

evaluations at the level of outcomes are sound, participants’ strategies induce a myopic focus on lower 

level cues, as well as an inability to accurately integrate the prior probability of the evidence occurring 

with its diagnosticity. This behaviour is possibly what underlies query selections that deviate from 

standard Bayesian OED predictions. Finally, we have shown that purely information-theoretic utility 

functions do not adequately describe information acquisition when task framing is varied. 

5. Experiment 4 

To further explore the effect of task framing on participants’ strategies, we extended the task to a 

stepwise paradigm. We allowed participants to make multiple sequential query selections, observe the 

outcome of each query, and update their probabilistic beliefs after each observation. This final 

experiment will allow us to explore the following points: 

1) Whether people’s information seeking differs at the first decision point of a stepwise paradigm 

compared to that observed in our previous one-shot experiments. 

2) The effect of adopting frontrunner vs. elimination strategies at the outset of the task on 

subsequent search decisions and belief updating.  
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5.1. Global Bayesian OED Model 

All participants were presented with materials underpinned by the same probabilistic model built as a 

BN (see Figure 10). 

 

Figure 10. Experiment 4: Graphical representation of Bayesian Network 

 

This model was more complex than that used in previous experiments.  We used a ternary hypothesis 

node ‘Burglar’ (states: Suspect 1, Suspect 2, Suspect 3) with uniform priors so that in all models P 

(Suspect 1) = P (Suspect 2) = P (Suspect 3) = +
2
, three binary-outcome query nodes: ‘burglary time’ 

(outcomes: day, night), ‘point of entry’ (outcomes: door, window), ‘mode of entry’ (outcomes: forced, 

not forced) and a ternary-outcome query node ‘primary item stolen’ (outcomes: jewellery, electronics, 

money). The parameters of the probabilistic model in the BN, and given to participants, can be viewed 

in Table 21 below.  These parameters were selected as they allowed the identification of a clear order 

of queries in terms of their informative value, though to a different extent across utility functions, and 

the informative values of the queries differed enough that this difference should once again be 

noticeable. We kept parameters of two queries similar to our previous experiments such that one would 

facilitate the identification of a safe ‘frontrunner’ given its symmetric properties, and one might 

facilitate the ‘elimination’ of a suspect. Moreover, as will be explained below, varying the informative 

value of the queries allowed us to compute an optimal stepwise information search strategy.  
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Table 21 

Experiment 4: Conditional Probability Table with parameters employed in the global CBN 

Hypothesis 
Primary Item Stolen 
(Jewellery, money, 

electronics) 

Point of Entry 
(door, window) 

Mode of Entry 
(forced, not 

forced) 

Burglary 
Time 

(day, night) 
Suspect 1 0.1, 0.1, 0.8 0.3, 0.7 0.5, 0.5 0.9, 0.1 
Suspect 2 0.8, 0.1, 0.1 0.3, 0.7 0.8, 0.2 0.1, 0.9 
Suspect 3 0.1, 0.8, 0.1 0.7, 0.3 0.1, 0.9 0.6, 0.4 

 

The expected utility of each investigative query relative to the probabilistic belief model 

(specified in Table 21) was calculated as in the previous experiments utilising KL-D, IG, PG and Impact 

as utility functions.  Assuming an agent selected the most informative investigative query and 

normatively (as dictated by Bayes theorem) updated the probabilities at each decision stage, the 

expected utility of each investigative query according to each utility function can be seen in Table 22 

below. Given the change in paradigm from one-shot to a stepwise investigative task, probability gain 

based models are not necessarily the optimal strategies in this task given that maximising the suspect’s 

posterior probability might not be the best strategy to employ when the participant knows they have 

multiple opportunities of obtaining information. For this reason, a simplified PG model (PGH) was not 

included in the present experiment.  

 Although participants could freely select an investigative query at each decision stage, the 

outcomes of these queries were kept constant so that throughout the task, despite the changing order, 

all participants would have observed the same outcomes by the end of the task, making within-group 

comparisons more tractable. As such, if primary item stolen was queried the evidence ‘jewellery’ would 

be observed, if mode of entry was queried the evidence ‘door’ would be observed, if point of entry was 

queried the associated evidence was ‘non-forced entry’ and finally if burglary time was queried the 

evidence ‘day’ would be observed. We chose these outcomes to increase the complexity of the task and 

test participants’ ability to integrate discordant evidence, as the evidence was sometimes diagnostic 

towards different suspects. Moreover, this allowed us to explore the adaptiveness of people’s strategies 

and belief updating given unexpected evidence. 
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Table 22 

Experiment 4: Expected value of each query at each decision stage predicted by each utility function. 

 Utility 
Function 

Primary Item 
Stolen 

Burglary  
Time 

Mode of  
Entry 

Point of  
Entry 

Decision 1 

KL-D 0.66* 0.36 0.26 0.10 
IG 0.66* 0.36 0.26 0.10 
PG 0.47* 0.27 0.23 0.13 

Impact 0.31* 0.19 0.16 0.12 

Decision 2 

KL-D - 0.26* 0.16 0.04 
IG - 0.26* 0.16 0.04 
PG - 0.01* 0 0 

Impact - 0.14* 0.11 0.05 

Decision 3 

KL-D - - 0.23* 0.09 
IG - - 0.23* 0.09 
PG - - 0.12* 0.07 

Impact   0.14* 0.1 

Decision 4 

KL-D - - - 0.03 
IG - - - 0. 03 
PG - - - 0.13 

Impact - - - 0.13 
N.B. The most informative query at each decision stage (according to each utility function) is marked 

with ‘*’ 

5.1.1. Informed B-OED Models 

As the parameters assumed by the probabilistic belief model impact the computation of the expected 

utility of queries and outcomes, we did not assume participants would simply assume the stated 

parameters, and therefore built individually fitted (informed) Bayesian OED models (IB-OED) for each 

participant. These were parametrised according to each participant’s stated hypothesis priors, and 

posterior beliefs after each decision point (having observed the query outcome), incorporating their 

query selection throughout the task. This allowed us to evaluate each participant’s information 

acquisition and evaluation against the “fitted” normative model describing an individualised optimal 

sequential search and updating strategy (computed according to each utility function). In this way, 

participants were not “damned” by one initially sub-optimal query selection, allowing for meaningful 

assessment of normativity at later stages of the task. Expected utility was not computed at decision stage 

4, as all participants by default chose the last query remaining. 
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5.2. Methods  

5.2.1. Participants and Design 

A total of 117 participants (Nmale = 37; Mage = 36.1 years, SD = 7.3) were recruited from Prolific 

Academic. All participants were native English speakers who gave informed consent and were paid 

£1.5 for partaking in the present study that took on average 14 (median) minutes to complete online. 

The experimental task was designed in Qualtrics and powered through the online platform Prolific 

Academic.  A within-subjects design was employed. For task materials see osf.io/tkr4v.  

5.2.2. Procedure  

As part of the cover story, participants were once again asked to imagine they were criminal 

investigators. As per the previous experiments, they were foremost asked to review the neighbourhood’s 

burglary statistics and the criminal records of the (three) burglars known to operate in the area and were 

therefore provided with information on the (probabilistic) model (i.e., variables present, causal 

relationships between these, prior probabilities of the burglars and conditional probabilities within the 

model).  

Participants were then told that a new burglary had occurred in their neighbourhood, and that 

they were to investigate the new case. Prior probabilities of each burglar being the culprit were elicited 

from participants to ensure the uniform priors had been accepted. Subsequently, participants were asked 

to select one of four investigative queries: ‘burglary time’ (to find out whether the burglary occurred 

during the day or night), ‘primary item stolen’ (to find out whether electronics, money or jewellery were 

primarily stolen), ‘point of entry’ (to find out whether they entered through door or window) and ‘mode 

of entry’ (to find out whether they used force entry or not). Participants were not told explicitly that 

they would be able to select all queries throughout the task, but this became apparent as they progressed 

through the task. Moreover, they were asked to carefully consider each query selection so as to 

maximise the effectiveness of the whole investigation. After selecting a query, participants were 

required to provide a think-aloud response explaining their choice. Subsequently, participants would 

observe the evidence associated with their selected query (query outcome). For example, if participants 
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selected the query ‘point of entry’ they would observe the following message: “You investigate the 

point of entry and find out the burglar came in through the door”. 

After learning the outcome of a query, participants were required to provide updated posterior 

beliefs for each suspect (as probability estimates using sliders ranging from 0% to 100%). Due to the 

principles of mutual exclusivity and exhaustiveness, the estimates were required to sum to 100. After 

providing the probability estimates participants were told to select the next query. This procedure was 

repeated until all investigative queries had been exhausted.  

Throughout the task, all participants made three active queries in total (the final query chosen 

was the one left outstanding) and provided four posterior belief updates for each suspect (and the initial 

hypothesis priors estimates). Participants had access to an ‘information review’ section throughout the 

task, comprising of the information represented by Table 21, as well as a list of what evidence (query 

outcomes) had already been observed. At the end of the sequential task, given all evidence observations, 

participants were required to select which suspect they would like to bring in for questioning. 

5.3. Results  

5.3.1. Query Selection  

The proportion of participants who selected each investigative query at each decision stage can be 

visualised in Figure 11 below. For details on query selection accuracy as defined by each of the utility 

functions see supplementary materials (S6). We directly test the predictive abilities of these models in 

the subsequent analyses in section 5.3.2.  

In order to compare the predictive abilities of the utility functions, we computed Kendall-tau’s 

correlations between the queries predicted to be most informative by each of the OED models with 

different utility functions (fitted to participants’ own priors) at each decision stage, and participants’ 

actual query choices. As can be seen from Table 23 below, at the first decision stage, although all 

models are correlated, they had virtually no correlation with participant choices at decision stage 1. This 

is because all utility functions predicted the query ‘primary item stolen’ as the most informative query 

at this stage for at least 95% of participants, whereas participants displayed a split preference between 
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two queries (see Figure 11). In subsequent stages, all utility functions displayed a moderate correlation 

between each other as well as participants’ responses, except the KL-D and IG, which displayed an 

extremely strong correlation with Impact across all decision stages.  

 

Figure 11. Proportion of participants’ query selections at each decision stage 

 

Table 23 

Experiment 4: Kendall tau-b correlations between participant query selections and predictions of each 
utility function at each decision stage. 

Decision Stage  KL-D/IG PG Impact 

1 
Participant -0.08 -0.08 -0.05 
KL-D/IG -    0.4** 1.00** 

PG - - 0.4** 

2 
Participant 0.61** 0.55** 0.61** 
KL-D/IG - 0.9** 1.00** 

PG - - 0.9** 

3 
Participant 0.6** 0.36** 0.6** 
KL-D/IG - 0.7** 0.95** 

PG - - 0.66** 
** Significant at α = 0.05 
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5.3.2. Utility Function Model Comparison 

At each of the first three decision stages, we built multinomial mixed effects regression models13 with 

‘Participant Choice’ as our multinomial outcome variable and ‘Utility Function Prediction’ as our fixed 

effect categorical predictor, for each utility function. Each model additionally contained a random effect 

with intercept of ‘Subject’.  

5.3.2.1. Decision Stage 1 

 The outputs of the multinomial logistic regressions can be seen in Table 1a of Appendix 1. Our analyses 

yielded no main effect of ‘Utility Function Prediction’ on ‘Participant Choice’ in the PG model, F (3, 

111) = 0.99, p = 0.39, the KL-D/IG model, F(3, 111) = 0.01, p = 0.99, or in the Impact model, F (3, 

111) = 0.01, p = 0.99. At the first decision stage none of the utility functions were significant predictors 

of participants’ query selections. The likelihood ratio results comparing each model to an intercept-only 

model are displayed in Table 24 below.  

Table 24 

Experiment 4: Likelihood ratio test results, AIC, Deviance, Akaike Weights (w) and Evidence Ratio 

(ER) values of the competing models. 

Model AIC ΔAICi wi ERi Deviance χ2 df p-value 

PG 239.3 0 0.56 1 227.3 3.2 3 0.36 

KL/IG 241.3 1.9 0.22 2.6 229.3 1.24 3 0.74 

Impact 241.3 1.9 0.22 2.6 229.3 1.24 3 0.74 
  

In order to compare the competing utility functions models and select the best approximating 

model, we once again used derivatives of Akaike’s Information Criterion (AIC) measure and followed 

the same procedure outlined in section 2.2.3. Given that the PG model had the lowest AIC value we 

selected this as the ‘best’ reference model. The ΔAIC values presented in the above table suggest that 

both the KL/IG and the Impact model could not be discounted given that ΔAIC < 2. The computed 

 
13 Given the lack of implementations of repeated measures factors in mixed effects regression models for a 
multinomial outcome, and the fact that we are purely interested in the predictive abilities of the utility functions, 
the present analyses were carried out separately for each decision stage.  
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Akaike weights showed that PG has a 56% chance of being the correct model amongst these, with the 

remaining weight being equally distributed amongst the KL/IG and Impact models. These findings 

intimate that none of the models at decisions stage 1 are able to accurately predict participants’ choices. 

As such, at this decision stage, despite every utility function predicting ‘primary item stolen’ to be the 

most informative query for the vast majority of participants, almost 30% of participants selected 

‘burglary time’. 

5.3.2.2. Decision Stage 2 

The outputs of the mixed-effect logistic regressions carried out on decision stage 2 can be seen in 

Table 1b of Appendix 1. A main effect of ‘Utility Function Prediction’ on ‘Participant Choice’ was 

found in the KL-D/IG model, F(6, 108) = 2.9, p = 0.01, and in the Impact model, F(6, 108) = 2.9, p = 

0.01, but not in the PG model, F(12, 102) = 1.7, p = 0.078. The likelihood ratio results comparing 

each model to an intercept-only model are displayed in Table 25below.  

Table 25 

Experiment 4: Likelihood ratio test results, AIC, Deviance, Akaike Weights (w) and Evidence Ratio 

(ER) values of the competing models. 

Model AIC ΔAICi wi ERi Deviance χ2 df p-value 

PG 275.1 21.36 1E-05 43477 221.1 74.5 12 < 0.0001 

KL/IG 253.7 0 49.99 1 235.7 75.5 6 < 0.0001 

Impact 253.7 0 49.99 1 235.7 75.5 6 < 0.0001 
  

As can be seen from Table 25, given that the KL/IG models had the lowest AIC value we selected these 

as the ‘best’ reference models. The ΔAIC values presented in the above table suggest that the PG model 

could be discounted as it is implausible given that ΔAIC > 10. The computed Akaike weights showed 

that KL/IG and Impact each have approximately a 50% chance of being the correct models amongst 

these.  In combination with the findings presented above, this strengthens the notion that none of the 

utility functions are accurate predictors of participant choice behaviour in this sequential information 

search task. 
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5.3.2.3. Decision Stage 3 

The outputs of the multinomial logistic regression analyses carried out in Decision Stage 3 can be seen 

in Table 1c of Appendix 1. A main effect of ‘Utility Function Prediction’ was found on ‘Participant 

Choice’ in the KL-D/IG model, F (6, 108) = 4.7, p < 0.0001, and in the Impact model, F (6, 108) = 4.6, 

p <0.0001, and in PG, F (12, 102) = 2.3, p = 0.01. The likelihood ratio results comparing each model 

to an intercept-only model are displayed in Table 26 below.  

Table 26 

Experiment 4: Likelihood ratio test results, AIC, Deviance, Akaike Weights (w) and Evidence Ratio 

(ER) values of the competing models. 

Model AIC ΔAICi wi ERi Deviance χ2 df p-value 

PG 254.5 38 5.6E-09 17848230
1 

224.5 69.8 12 < 0.0001 

KL/IG 229.5 13 0.001 665 211.5 82.8 6 < 0.0001 

Impact 216.5 0 99.8 1 198.5 95.9 6 < 0.0001 
  

As can be seen from Table 26, given that the Impact model had the lowest AIC value we 

selected it as the ‘best’ reference model. The ΔAIC values presented in the above table suggest that both 

the PG model and the KL/IG model can be discounted and are implausible given that ΔAIC > 10. The 

computed Akaike weights showed that Impact model has an almost 100% chance of being the correct 

model compared to the alternative models. However, when considering the findings presented in the 

supplementary materials (S6), showing that at this decision stage all measures performed worse than 

chance level, we can conclude that although Impact is a better fit relative to the alternative models, 

overall none of them are particularly good fits of the distribution of participants’ query selections. This 

is corroborated by the Table 1c in the Appendices, showing that, in the Impact model, a prediction of 

‘mode of entry’ compared to one of ‘burglary rime’ significantly increased the odds of a participant 

choosing ‘mode of entry’ or ‘point of entry’. It therefore seems that, despite the above-mentioned being 

significant prediction terms, the reference model is not able to differentiate between participants’ query 
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preferences (e.g., mode of entry and point of entry) which were equally prevalent at this decision stage 

(see Figure 11).  

5.3.3.  Belief Updating 

In order to assess participants’ belief updating accuracy against IB-OED models, the absolute difference 

between the observed (participants’ empirical estimates) and predicted (by IB-OED models) posterior 

belief estimates was computed for each suspect at each decision stage (see Figure 12).   

In order to assess whether updating accuracy (indicated by a low absolute mean difference) 

differed across decision stages or suspects we ran a repeated-measures ANOVA. We found a main 

effect of decision stage on belief updating accuracy, F (2.9, 339) = 10.9, p < 0.001, ƞp
2. = 0.086. As can 

be seen from Figure 12, participants were significantly less accurate at decision stages two and three. 

 

Figure 12. Experiment 4: Participants’ average absolute belief updating error at each decision stage 
(according to IB-OED model predictions). 

 

Additionally, a main effect of suspect on updating accuracy was not found, F (1.9, 221) = 2.14, 

p = 0.12, ƞp
2. = 0.018. Finally, a significant interaction effect was found between suspect and decision 

stage, F (5.5, 638) = 4.8, p < 0.001, ƞp
2. = 0.04. People’s accuracy error increases throughout the decision 

stages for Suspect 3. As such, participants’ updating error regarding suspects 1 and 2 increases 

noticeably from decision stage 1 to decision stage 2, before decreasing to its original level. In contrast, 
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participants’ updating error increases throughout the decision stages for Suspect 3. We will discuss this 

further in relation to participants’ strategies.  

Given that we found no main effect of suspect on participants’ accuracy, we averaged 

participants’ absolute error of the three suspects so as to obtain a single measure of probability updating 

accuracy per participant at each decision stage. A repeated measures ANOVA with Greenhouse-Geisser 

correction illustrated a significant difference in participants’ updating accuracy between decision stages, 

F (3, 348) = 10.9, p < 0.001, ƞp
2. = 0.086. Post-hoc pairwise comparisons with Bonferroni correction, 

illustrated that participants’ updates were more accurate at decision stage 1 (M = 13.43, SD = 14.16) 

compared to decision stage 2 (M = 21.7, SD = 12.1), t (116) = -5.23, p < 0.001, decision stage 3 (M = 

21.5, SD = 13.5), t (116) = - 4.54, p < 0.001, and decision stage 4 (M = 18.5, SD = 13.9), t = -2.9, p = 

0.02. No significant difference was found between decisions stage 2 and 3, or between stages 2 and 4, 

or between stages 3 and 4. This suggests that participants’ updating accuracy significantly decreased 

after decision stage one, and then plateaued. 

For details on how belief updating related to query selection accuracy as computed by each utility 

function, see supplementary materials (S7). 

5.3.4. Strategies: Think-aloud  

In order to explore the strategies that underlie participants’ query and query outcome evaluations, as 

well as their adaptiveness across the task, we once again analysed participants’ thought-a-loud 

responses associated with their query selections. The coding procedure followed that outlined in 

previous experiments. A primary rater coded all responses. A second independent rater then coded the 

responses of 47% of participants (randomly selected) from the first three query selections. Cohen’s 

weighted kappa was utilised to determine a moderately high inter-rater agreement between the two 

raters, κw = 0.86 p < 0.001. 60 responses out of the total 351 (responses of 117 participants on three 

decisions) were attributed the primary code of “n/a” given the dearth of information provided. As in 

previous experiments, all responses were included in subsequent analyses. Figure 13 illustrates the 

proportion of responses accounted for by each strategy code at the first three decision stages. Table 27 

shows the percentage use of each strategy throughout the task overall (collapsed by decision stage).  
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Table 27 

Experiment 4: Participant strategy usage (percentage), collapsed across decision stages 

Strategy Code Percentage Use 
(across decisions stages) 

Frontrunner 25% 
Elimination 16% 
Symmetry 5% 

Differentiation 13% 
Frontrunner+ (frontrunner-focused) 22% 

Highest Percentage 3% 

Zero-sum/ Risk Aversion 0% 

 

Figure 13. Experiment 4: Percentages of participant strategy usage per decision stage. 

 

The strategies were the same as ones obtained in previous experiments, with the addition of a 

new strategy that we termed frontrunner+ (frontrunner-focused). Rather than wanting to determine any 

frontrunner suspect (i.e., the standard frontrunner strategy discussed previously), the frontrunner-

focussed strategy differs in that is seeks to confirm a specific frontrunner (i.e., the leading suspect 

obtained from the previous decision stage). As such it represents a more confirmatory/selective 

hypothesis testing strategy than simply wanting to obtain a frontrunner at the initial stage, at which 

point all suspects had equal priors. For example, one participant stated, “Having seen the last piece of 

evidence, I am interested to see if the burglary time matches Suspect 2’s MO” and similarly P31 

explained, “If it was night it would add to the likelihood it's the Nightingale (Suspect 2)”. 

5.3.4.1. Adaptability of Strategies  

In order to determine whether participants’ strategy choice varied throughout the task (i.e., across the 

different decision stages), we conducted a non-parametric Friedman test. Our analysis displayed a, 

albeit barely, significant difference in the use of strategies across the decision stages, χ2 (2) = 5.8, p = 

0.05. As such, Bonferroni corrected post-hoc comparisons of proportions illustrated the significant 

difference to be in the adoption of an elimination strategy across stages with participants adopting it 
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significantly more at decisions stage one than at both subsequent stages, p < 0.05. Moreover, 

participants utilised a frontrunner strategy significantly more at decision stage 1 and 3 than decision 

stage 2. At decision stage 2 participants adopted a frontrunner + (frontrunner-focused) strategy 

significantly more than at the first decision stage (at this stage it was conceptually impossible to utilise 

this strategy). Finally, participants utilised a ‘highest percentage’ strategy significantly more at the first 

decision stage than either of the subsequent two.  

 This seems to suggest that, in contrast to our previous one-shot experiments, participants’ 

strategy use was responsive to the situation (e.g., probabilistic context at a certain decision stage). For 

example, the multiple inquiry nature of this experiment seems to have led to a large cluster of 

participants adopting an elimination strategy at the outset (behaviour comparable to that of participants 

in the ‘perceived multiple inquiries’ condition in Experiment 3). 

5.3.4.2. Strategies and Query Selection 

Next, we once again explored whether, within each condition, certain strategies systematically underlie 

different query selections. For details on how the strategies related to query selection accuracy as 

computed by each utility function, see supplementary materials (S8). 

At decision stage one, 76% of participants who employed a ‘frontrunner’ strategy queried 

‘Primary Item Stolen’ (the remaining participants selecting ‘point of entry’ or ‘mode of entry’). 

Moreover, 77% of participants who utilised a ‘differentiation’ strategy, 82.1% of participants who 

utilised an ‘elimination’ strategy, and 50% of participants who utilised a ‘highest percentage’ strategy, 

selected the query ‘primary item stolen’.  

 At decision stage 2, it was harder to detect systematic relations between query chosen and 

strategy employed (as previous analysis illustrated). Nonetheless, 57% of participants who utilised a 

‘differentiation’ strategy and 50% of participants who utilised a ‘highest percentage’ strategy selected 

the query ‘primary item stolen’ at this stage. Comparatively, 58% of participants who utilised a 

frontrunner+ (frontrunner-focused) strategy and 42% of participants who adopted a frontrunner strategy 
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selected the query ‘burglary time’. At decision stage three, given the smaller number of queries 

remaining, most of the participants’ strategies underlie queries ‘mode of entry’ and ‘point of entry’.  

 A general linear model with multinomial distribution and logit link function illustrated no main 

effect of decision point on participants’ query selections χ2 (2) = 1.75, p = 0.42, but a main effect of 

strategy, χ2 (6) = 40.2, p < 0.0001. Moreover, a significant interaction effect was found between decision 

stage and strategy, χ2 (9) = 80, p < 0.0001. As such, a significant difference in query preference was 

found within Decision Stage 1 (as previously discussed), χ2 (1) = 7.15, p = 0.007. Moreover, at Decision 

stage 1 an ‘elimination’ strategy, χ2 (1) = 16.8, p < 0.0001, and a ‘highest percentage’ strategy, χ2 (1) = 

8.3, p = 0.004, were most heavily associated with querying ‘burglary time’. Comparatively, at decision 

stage 2 a frontrunner strategy, χ2 (1) = 7.2, p = 0.007, and a frontrunner-focused strategy, χ2 (1) = 8.4, p 

= 0.004, were both significantly associated with querying ‘burglary time’.  

 This seems to suggest that, as in previous experiments, certain strategies dictate the observed 

query preferences, although in contrast to our previous one-shot studies, in a stepwise inquiry situation, 

strategy adoption seems to be dependent on decision stage. 

5.3.5. Consequences of frontrunner-focused thinking 

At the first decision stage the content of participants’ think-aloud responses were reflective of the split 

observed in their query selections wherein a cluster of participants selected burglary time (driven by an 

elimination strategy) whilst the majority chose primary item stolen (driven by a frontrunner strategy). 

In this case, a frontrunner strategy led to an optimal choice as computed by all IB-OED models. 

However, this latter strategy also led many participants to less accurate belief updating at decisions 

stages two and three. As such, participants might have under-adjusted their beliefs for their leading 

hypothesis in light of contradictory evidence in order to maintain the same ‘prime suspect’ or 

frontrunner.  Our previous analysis showing that a frontrunner-focused strategy led to more accurate 

query selections at decision stage 2 but inaccurate selections at decision stage 3 bolsters this notion. 

Investigating further, we found that 53% of participants held the same suspect as lead across 

decision stages 1 and 2, despite the majority of participants having viewed contradictory evidence at 
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these stages (selecting ‘primary item stolen’ and ‘burglary time’ would show evidence diagnostic 

towards different suspects). Moreover, 30% of participants held the same suspect as lead across decision 

stages 1-3. As will be subsequently discussed, a frontrunner strategy seemed to trigger the use of a 

confirmatory strategy, which may have had conservative influences on belief updating, thereby 

explaining the increased belief updating error following decision stage 1.  

 It is worth nothing, however, that 57% of participants selected the correct suspect to bring in 

for questioning at the end of the investigation. Many of the remaining participants can be accounted for 

by frontrunner-focused thinking, since 33.3 % of participants ranked a given suspect as lead at decision 

stage 1 and subsequently reported him as the most likely culprit at the end of the task. Out of these, only 

8 participants had ranked Suspect 3 as lead at decision stage 1 and thus made the correct final judgement 

at the end of the task. The remaining 31 participants did not update their beliefs appropriately and kept 

the same suspect as leading explanation for the evidence, regardless of whether the evidence could have 

been better explained by alternative suspects. 

5.4. Discussion  

In Experiment 4 we employed a more complex probabilistic context to explore people’s information 

search and integration behaviour, exploring the adaptiveness of their strategies in a stepwise paradigm.  

In the extant literature, the majority of studies have relied on a variety of non-trivial assumptions when 

comparing human behaviour to an OED model, including the assumption that people accept and reason 

with the probabilistic parameters given to them by the experimenter (Nelson, 2005; Coenen et al., 2018). 

We increased the validity of our normative comparison by building individual models for each 

participant based on their own probabilistic beliefs and observed evidence.  This approach allowed us 

to make meaningful comparisons about the optimality of their belief updating and information 

acquisition behaviour. 

Overall, when comparing observed behaviour to IB-OED model predictions, participants tended 

to perform “sub-optimally” on the task – both in terms of belief updating and information seeking 

strategy, when compared to models with different utility functions. Of particular interest were 

participants’ query preferences at the first decision stage, when they reasoned solely with base-rate 
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information. At this point, all IB-OED models (with each utility function) predicted the most 

informative query to be ‘primary item stolen’. Although 53% of participants selected this query, a 

significant share of participants queried ‘burglary time’ (37%). According to the Bayesian formalism, 

the outcome of querying ‘primary item stolen’ substantially increased the probability of one suspect 

(Suspect 2), to 80%, and reduced the probability of the other two suspects to 10%. Comparatively, the 

outcome of querying ‘burglary time’ increased the probability of both Suspect 1 (to 57%) and Suspect 

3 (to 37%) and decreased the probability of Suspect 2 (to 6%). All utility functions therefore computed 

‘primary item stolen’ to be the most informative query at this stage. 

In the present set-up, following a ‘frontrunner’ strategy at decision stage 1 led a significant 

number of participants to select the query that was also predicted by all IB-OED models as being most 

informative (‘primary item stolen’). However, a large portion of participants might have reasoned under 

the assumption that in a multiple inquiry investigation, it might be more informative to decrease the 

probability of one suspect at the outset. This behaviour, consistent with an ‘elimination’ strategy, led 

participants to select the query ‘burglary time’, that was considered sub-optimal by all utility functions 

at this stage. Despite the ‘sub-optimality’ of this choice however, it may be seen as somewhat rational 

if we entertain the possibility of participants having different preferences and employing simplifying 

strategies in choices and integration. An analysis of participants’ think-a-loud responses revealed that 

at decision stage 1 participants who employed either ‘frontrunner’ or ‘elimination’ strategies accounted 

for the observed split in query selections. We note that the large proportion of participants who selected 

‘burglary time’ at decision stage 1 somewhat drove the inaccurate belief updating behaviour that was 

significantly more pronounced at later stages in the task.  This may be due to the fact that selecting 

‘burglary time’ or ‘primary item stolen’ at decision stage 1 leads to two different suspects being the 

most probable culprits given the query outcomes. When contradictory evidence was then observed at 

decision stage 2, it is possible that participants were unable to accurately integrate this and therefore 

misadjusted the posterior beliefs.  

Similar to the results of Wu et al. (2017) however, we found that errors in belief updating were 

not correlated with accuracy of search decisions. Therefore, the claim that the strategies we identified 



95 
 

are used to make search decisions without explicitly using Bayesian inference is not supported.  Rather, 

our findings suggest that participant’s query selections and evaluations are consistent with certain 

strategies, primarily driven by obtaining a frontrunner at the outset. Although this was consistent with 

query selections in line with OED principles at the first decision stage, consistently adopting a 

frontrunner strategy across the task dovetailed notions of confirmatory heuristics stemming from 

overconfidence in a given focal hypothesis, akin to findings within the psychological literature (e.g., 

McKenzie, 2006; Skov & Sherman, 1986) as well as forensic science literature on confirmation bias 

(e.g., ‘tunnel vision’; Findley & Scott, 2006). As such, we found that a significant proportion of 

participants seemed to reason with a hypothesis reduced to one leading hypothesis, which they 

attempted to test across the decision stages. As such, 47% of participants adopted a ‘frontrunner-

focused’ (frontrunner+) strategy at decision stage 2 and 25% at decision stage 3. These participants 

maintained a single hypothesis, seemingly ignoring its alternatives and conservatively updating their 

belief estimates relating to their leading hypothesis in light of contradictory evidence. Moreover, they 

conservatively updated their beliefs regarding the alternative suspects. This finding ties together our 

evidence suggesting that participants’ updating of Suspect 3 was increasingly inaccurate throughout the 

task. Given that the majority of participants had Suspect 1 or Suspect 2 as leads at the first two decision 

stages, they conservatively updated their probabilities regarding Suspect 3 at subsequent decision stages 

even though he was the most probable culprit by the end of the task. Although this suspect appeared 

less likely at the outset of the task, he was supported by upcoming data. Overall, this serves to 

demonstrate that certain strategies can lead to confirmatory information seeking and thus lead to 

conservative belief updating.  

6. General Discussion  

Within the domain of psychology, OED principles have been used to model how people seek and 

evaluate information. Despite proving themselves as appropriate computational-level methods to 

account for people’s behaviour in many information search tasks (i.e., Planet Vuma and 20-Q game), 

their descriptive and explanatory powers are challenged by heuristic models that make the same 

predictions (Navarro & Perfors, 2011; Oaksford & Chater, 1994), and alternative models which deviate 
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from OED model predictions, but are able to account for people’s behaviour (Bramley et al., 2015; 

Coenen, Rehder & Gureckis, 2015; Markant & Gureckis, 2014).   Given that most studies have so far 

used tasks with simple probabilistic contexts (i.e., binary hypothesis spaces and/or binary outcome 

queries), it is possible that other strategies have gone undetected.  

In a series of experiments, we investigated how people select and evaluate queries in diverse 

probabilistic contexts. Critically, these were embedded in more naturalistic crime investigation 

scenarios that included both binary and ternary hypothesis spaces and query outcomes. The focus of 

our work was not just to ascertain whether people’s evaluations aligned or deviated from information 

seeking norms, but also to uncover the motivated strategies that might explain their behaviour. In 

addition, we explored the adaptiveness of the identified strategies across probabilistic contexts using 

both within and between-subject designs, and across one-shot and stepwise information search tasks.  

In all four experiments, participants’ behaviour was evaluated against IB-OED models parameterized 

with participants’ own priors and with different built in utility functions (KL-D, IG, PG and Impact).  

In the first three experiments we also included a heuristic model with a built-in PG function (PGH).  

Results from Experiments 1-3, which employed a one-shot task, revealed a number of noteworthy 

findings. Firstly, participants selected queries that coincided with those predicted by IB-OED models 

when these aligned with their personal strategies. This suggests that utility functions that are 

independent of the preferences of the learner, as is the case with information-theoretic OED measures 

(Coenen et al., 2018), might not be appropriate descriptors of people’s information acquisition 

behaviour. As such, participants evaluated information as being more informative given their personal 

strategies of either identifying a frontrunner suspect or eliminating one.  Adopting a ternary hypothesis 

space allowed us to disentangle these strategies, leading to the identification of a modal preference for 

obtaining a frontrunner in Experiments 1 and 3. Crucially, although the probabilistic model used in 

Experiment 2 (a binary hypothesis space) did not allow for the differentiation between a frontrunner 

and an elimination strategy, participants still voiced a preference for obtaining a lead hypothesis. This 

speaks to moving beyond the binary-feature and binary-hypothesis models frequently adopted by 
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researchers in the psychology domain and encourage the adoption of diverse probabilistic models that 

allow one to identify and discriminate between these underlying strategies. 

 Overall, participants’ chosen queries and outcome evaluations in the first two experiments 

seemed to align with the intuitively optimal strategy (given our parameter sets and the investigative 

nature of the task) of maximising the chances of increasing the probability of a suspect as close to 1 as 

possible thereby reflecting the assumptions of probability gain based models. However, our mixed-

effect regression model analyses illustrated that PG and PGH were significant predictors of participants’ 

choices only in Experiment 1 and were restricted to best approximating the qualitative direction of the 

distribution of participants’ query selections in Experiment 2. As such, the query they predicted to be 

most informative, was typically chosen by the majority of participants across our experiments. Whereas 

in Experiment 1, a PG model outperformed a PGH model, the opposite was true in Experiment 2. In the 

latter study, we found that a simplified utility function that assumes equal outcome priors best 

approximated participants’ information search behaviour. This suggests that in some probabilistic 

environments, participants simplify the assumptions of OED models when evaluating the utility of 

information and that the computational complexity of OED measures might not be a realistic descriptor 

of information search behaviour especially in more naturalistic settings (Coenen et al., 2018). In 

Experiment 3 and 4, all utility functions, even the simplified PGH model, were unable to account for 

participants’ query preferences, given the introduction of task framing manipulations and stepwise 

information seeking.  

Across experiments, the majority of participants selected queries that were consistent with their 

preference of obtaining a frontrunner and adopted strategies that would enable this (i.e., frontrunner, 

differentiation, symmetry, highest outcome). As such, participants largely displayed a preference for 

queries whose outcomes were most differentially probable under each hypothesis, as it allowed for the 

identification of a frontrunner. This is conceptually related to the feature-difference heuristic, identified 

by Slowiaczek et al. (1992) and subsequently tested by Nelson et al. (2010), which entails maximising 

the difference between the likelihoods under the competing hypotheses. The feature-heuristic strategy, 

however, only applies to categorization tasks with two categories and “two-value features” (i.e., two-
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outcome features), whereas in in the present work we expand this concept by employing probabilistic 

models with both binary and ternary hypothesis spaces and binary as well as ternary-outcome features.  

Although prior research has illustrated how in probabilistic environments with two hypotheses and 

binary-outcome features, a feature-difference heuristic equates to a normative OED model with 

‘impact’ as utility function (Nelson, 2005; 2008), we were unable to make this direct comparison given 

the different nature of our probabilistic environments.  

We were able to conclude however, that although a ‘frontrunner’ strategy aligned with some 

OED model predictions (e.g., Experiment 1), this held true only when these predictions coincided with 

participants’ own strategic preferences. For example, in Experiment 3 Scenario 2, participants in both 

task framing conditions mostly employed a ‘frontrunner’ and ‘differentiation’ strategy, which resulted 

in the selection of queries that were not deemed to be most informative by any of the utility functions. 

In addition, we found evidence for the use of an ‘elimination’ strategy, although this was only 

mentioned by a minority of participants across experiments. Those who did employ an elimination 

strategy evaluated (and selected) queries consistent with this strategy as being most informative.  

Across the present studies we also found that the use of these strategies was sensitive to task 

context and demands. As such, although a frontrunner strategy dominated in most contexts, 

Experiments 2 and 3 showed that framing the task as involving multiple inquiries and adopting a 

stepwise paradigm increased the number of people who adopted an ‘elimination’ strategy. This serves 

to show that task framing, and context, may act as strategy determinants, principles currently extraneous 

to the purely information-theoretic OED measures. In addition, it tentatively suggests that participants’ 

information seeking may be rational given the task framing and context. For example, it may appear 

sensible to seek a frontrunner at the outset in a criminal investigation case comprising of a ‘one-shot’ 

inquiry – as reflected by a PG model. In comparison, eliminating a subject at the outset may seem like 

a more rational strategy to follow in a context in which there are sequential inquiries. Poletiek and 

Berndsen (2000), though utilising a different methodology, similarly showed that altering task features 

like context and content affected participants’ testing strategy.  
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 Across all of our experiments, no utility function was able to consistently account for the 

strategies we extracted from participants’ think-aloud responses. Our findings suggested that they were 

not adaptive across the probabilistic contexts per se, as OED principles would predict, but instead were 

responsive to factors such as task framing (Experiment 3). Our analysis further showed that the observed 

adaptiveness due to task framing is not accounted for by any of the utility functions we employed. 

Moreover, although the majority of participants across contexts employed a ‘frontrunner’ or 

‘differentiation’ strategy, we found a variety of strategies employed by participants, illustrating that 

strategy choice can vary from individual to individual. In our one-shot scenarios that involved no task 

framing manipulations, probability gain based models best approximated the direction of participants’ 

choices (PG in Experiment 1 and PGH in Experiment 2). In order to account for the effect of task framing 

and for factors such as risk aversion which we recognised as significant determinants of participants’ 

query evaluations, further research could investigate whether these could be formalised under different 

conceptualisations, for instance, in terms of risk-taking behaviour, following the work of Polietiek and 

Berndsen (2000).  

Although preferentially adopting a certain strategy in the first three experiments (e.g., 

frontrunner) was not shown to be detrimental, in Experiment 4, whilst adopting a ‘frontrunner’ strategy 

at the first decision stage aligned with query selections in line with informed OED model predictions 

(querying primary item stolen), we found that a continued use of this strategy led to deviations from 

IB-OED model predictions.  More specifically, adopting a frontrunner strategy at the first decision stage 

translated to a significant number of participants adopting a frontrunner-focused (frontrunner*) strategy 

in subsequent stages. This was a confirmatory strategy that entails repeatedly testing a single leading 

hypothesis and largely ignoring alternative hypotheses, despite their increasing plausibility. This is 

consistent with literature on selective exposure that finds that people with strong beliefs prefer 

information that they expect will confirm their beliefs and past choices (Schulz-Hardt, Frey, Lüthgens 

& Moscovici, 2000; Svenson, 2003). It is also consistent with selective hypothesis testing 

(Sanbonmatsu, Posavac, Kardes & Mantel, 1998) and positive testing strategies (Klayman & Ha, 1987; 

McKenzie, 2004). These search strategies are akin to those observed in forensic science whereby 
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investigators search for information in order to confirm their existing beliefs (Findley & Scott, 2006) 

which can lead to miscarriages of justice (Eady, 2009; Ormerod et al., 2008) 

Despite not always deviating from OED predictions, those adopting a frontrunner-focused 

strategy also made updating errors, and were less likely to entertain an alternative hypothesis in light of 

evidence incongruent with their current leading hypothesis. Importantly, requiring participants to 

update their beliefs in the hypotheses after each item of evidence was viewed could have exacerbated 

this effect. For example, a study on professionals illustrated that asking people to state hypotheses early 

during a mock police investigation led to more biased information-seeking strategies (O’Brien & 

Ellsworth, 2006). Moreover, requiring participants to state beliefs early in a sequential task has been 

associated with assigning more weight on initial beliefs and conservatively updating these in light of 

new evidence (Phillips & Edwards, 1966). A study comparing participants required to update 

hypotheses in a step-wise manner versus participants who are only required to formulate a hypothesis 

after viewing all evidence could elucidate this matter further.   

Overall, however, given the known detriments of adopting confirmatory strategies in real world 

settings (Kassin, Dror, Kukucka, 2013; Rassin, Eerland & Kuijpers, 2010; Van den Eeden, de Poot & 

Van Koppen, 2016) further work should explore the extent to which these are used in information-

seeking paradigms. Arguably, evaluating queries in the real world in relation to their ability to meet 

certain goals (e.g., eliminating a hypothesis at the outset) and adopting strategies that facilitate this 

across different probabilistic contexts seems more psychologically plausible than carrying out the 

computations posited by a Bayesian OED framework. By testing a heuristic model that assumes equal 

priors (PGH) we were able to determine that participants might be failing to integrate the prior of the 

outcome with the diagnosticity of the outcomes when evaluating the informative value of queries, rather 

than assuming query outcomes to have equal outcome priors. Given the real-world pragmatics of 

evidence search, mentally simulating the impact of all possible outcomes of an action on each 

hypothesis would be computationally intractable, assuming all possible outcomes can even be known. 

In step-wise or sequential information search situations, exhaustive (not goal-directed) sequential 

selections and information integrations would be similarly psychologically implausible.  
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It is also perhaps unsurprising that some participants were falling victim to well-known biases 

and reasoning fallacies when evaluating items of information. For example, across our experiments we 

noted traces of risk aversion and zero-sum thinking. Participants’ preference for obtaining a frontrunner 

at the outset was in some cases mitigated by a form of risk aversion that led them to query the feature 

that was most differentially probable under each hypothesis, even if this query was not expected to yield 

the frontrunner with the highest probability. Through an analysis of participants’ think-aloud responses 

this also seemed to be the product of overweighting the value of a ‘safe’ (information) gain, 

underweighting the value of an outcome that leads to the exclusion of a hypothesis (e.g., outcome ‘night’ 

in Experiment 1) and overweighting the probability of unlikely but uninformative outcomes occurring 

(e.g., outcome ‘money’ in Experiment 2). Moreover, our findings directly showed that participants, 

especially in Experiment 2, were averse to selecting a query that was perceived as risky since it could 

produce an outcome with the smallest benefit (in this case, 0 information). This suggests that some 

people may therefore be also evaluating information by the perceived risk associated with obtaining 

that value (which often does not coincide with the normative probability of obtaining the information). 

Although this could mean that people are reasoning systematically in respect to some utility function, 

it is not one among the functions we considered in the present paper. Rather, it could be a situation-

specific function that captures risk-aversion for gains in information. This will be the focus of future 

research.  

This risk-based information search finding is related to Poletiek and Berndsen’s (2000) 

conceptualisation of hypothesis-testing behaviour as risk-taking behaviour. The authors discriminate 

between maximising the probability of a confirming outcome (in line with classical definitions of 

confirmation strategies; see Klayman & Ha, 1987) and maximising the evidential value of the 

confirming outcome. Across two experiments the authors reported a preference to maximise the 

confirming value of the test outcome, therefore choosing the “riskier” and taking the chance of finding 

no support evidence at all, with the benefit of high-value evidence if obtained, over the “safer” test that 

would have allowed them to obtain some evidence supporting the hypothesis of interest at the expense 

of the low evidential value of the outcome. Interestingly, although we found instances of confirmatory 
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information seeking behaviour (e.g., frontrunner-focused strategy in Experiment 4), we also found that, 

especially in Experiment 2 and 3, this was mitigated by a form of risk aversion by which participants 

preferred to identify a “safe” frontrunner with lower probability of being the true culprit over the riskier 

query that could provide them with a frontrunner with higher probability of being the true culprit, but 

also with an outcome that would decrease the probability of other hypotheses. One noticeable difference 

between our work and that of Poletiek and Berdsen (2000) that could explain the different direction of 

our findings, is that they provided participants with a statement indicating the verbal probability of the 

outcomes occurring (e.g., “there is a high probability you will obtain X outcome that will lead to Y”), 

whereas we left participants to infer the probability of outcomes occurring using the probabilistic 

information they received in the scenario. Thus, it is possible that our participants, had they not 

overweighed the probability of certain outcomes occurring (e.g., ‘money’ in Experiment 2), would have 

similarly been biased towards the strength of the evidence rather than the probability of obtaining that 

evidence. Though this renders our work more comprehensive by beginning to address these issues, 

further work investigating under what circumstances people adopt risk-seeking and risk-averse 

information search strategies is still needed.  

In Experiments 1-3 we found that participants’ risk aversion was interlinked with a form of ‘zero-

sum’ thinking.  Zero-sum thinking describes instances in which evidence that is equally predicted by 

two competing hypotheses is perceived as offering no support for either hypothesis (Pilditch et al., 

2019). For this assumption to be valid the hypotheses must be mutually exclusive and exhaustive. In 

Experiment 2 most participants correctly evaluated the outcome money as being of little informative 

value across the probabilistic models (despite overweighting the probability of it occurring). In 

Experiment 1 however, following the same ‘zero-sum’ thinking led some participants to misperceive a 

query as being uninformative (even if it was normatively more informative) when one of its outcomes 

would increase the probability of two of the three hypotheses and decrease the probability of the other 

one. Here, these participants believed they would receive relatively no useful information given that the 

evidence could be highly (and at times equally) predicted by two hypotheses and overlooked the fact 

that it could lead to a reduction in the hypothesis space by being able to almost exclude one suspect. 
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Our findings, illustrating that this type of reasoning contributes to a misevaluation of the value of queries 

adds to previous work which showed how this type of reasoning fallacy leads to significant amounts of 

information (quantified by KL-D) being overlooked (Pilditch, Liefgreen & Lagnado, 2019).  

Overall, the identification of zero-sum thinking and risk averse behaviour in an information 

seeking paradigm contributes to the existing literature by bridging the gap between known reasoning 

fallacies in Bayesian probabilistic reasoning tasks and information-seeking principles, two factors that 

are rarely considered in conjunction (Coenen & Gureckis, 2015; Coenen et al., 2018).  To our 

knowledge only two studies identified risk aversion in information seeking (Poletiek & Berndsen, 2000; 

Wakabe, Sato, Watamura &Takano, 2012) although one of these was not done within a strictly Bayesian 

framework (Wakabe et al., 2012). Future work should therefore further investigate the presence of this 

phenomenon in information seeking paradigms using a purely information-theoretic set-up given it 

allows one to naturally capture confirmatory strategies both as search preferences aimed to maximise 

either the probability of a confirming outcome and/or the value of that outcome. Moreover, future work 

should be carried out in the pursuit of weaving risk-taking principles into current frameworks of human 

information seeking. 

Taken together, findings from our experiments seem to counter the notion that people strictly rely 

on information within the probabilistic model in order to compute the informative value of a query. 

Rather, they suggest that people’s evaluations of the value of information also depend on their own 

strategic preferences, task demands, and in some cases on the perceived risk of obtaining the 

information.  Whereas in some environments these can be accounted for by a probability gain utility 

function, in others they could not. Nonetheless, our findings do not paint a negative picture – in one-

shot investigative tasks when suspects had equal priors, participants predominantly adopted the optimal 

strategy of maximising their chances of finding the true culprit, as dictated by a probability gain model. 

This model was not able to approximate the distribution of participants’ query selections in variations 

of the task in which this model was not actually considered to be the optimal strategy to adopt, e.g., 

when there were sequential query selections to be made or when the participant believed the task to be 

comprised of multiple enquiries. In these paradigms, adopting situation-specific rather than 
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information-theoretic utility functions that are additionally able to account for factors such as risk 

aversion, might be best. These would likely be able to account for participants’ strategic preferences 

given different task framings and would arguably be able to fit our identified strategies (e.g., 

frontrunner) naturally within an OED framework.   

In addition, in our sequential paradigm, we found deviations from the utility functions which 

were probably due to information integration errors. An additional stream of research could explore in 

more detail how deviations from the predictions of various utility functions influence subsequent search. 

In our study, we found that although participants’ belief updating accuracy decreased throughout the 

task, this had no effect on the accuracy of their query selections. This echoes the finding of Wu et al. 

(2017) who reported no correlation between probability judgment error and proportion of correct search 

decisions. Although it appears that participants were using the probabilities given to them further work 

could compare the use of different methods of presenting information about the search environment. 

This would extend the work of Wu et al. (2017), who illustrated that presenting information as posterior 

probabilities and visualizing natural frequencies was helpful in guiding decisions.  

A final note should be made regarding the possibility that underlying the different strategies we 

have observed in these experiments are different interpretations of the value of information. To model 

our tasks, and as a normative benchmark, we utilised a measure that quantifies the value of information 

in terms of divergence, whereby the amount of information proposition ei provides to partition X is 

measured by the amount of divergence between the two probability distributions over X due to ei (Roche 

& Shogenji, 2016).  However, in circumstances such as criminal investigations people might value 

information in terms of how much it reduces doubt or expected inaccuracy, given that an erroneous 

decision can carry seriously damaging consequences. Elimination driven (as opposed to frontrunner) 

strategies in step-wise information search instances fits with a motivation to reduce inaccuracy, as the 

prospect of making an inaccurate judgment might outweigh the drive to obtain a leading hypothesis.  

Further empirical work should thus address if alternative measures that value information in terms of 

e.g., inaccuracy reduction, coincide with people’s interpretation of the value of information. 
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7. Final Remarks    

Overriding qualitative theories with principled quantitative models such as those using OED principles 

has allowed researchers in the past decade to successfully model information seeking in a variety of 

domains. However, it has also led researchers away from the question of how people are actually 

evaluating and selecting information, instead focusing on identifying violations of norms in 

information-seeking. Our work demonstrates that, although in some environments people do seek 

information in a manner that aligns with a PG measure, they are driven by additional strategies that 

cannot be entirely accounted for by an information-theoretic OED framework, which are sensitive to 

the framing and demands of a task. These strategies are accompanied by various well-known reasoning 

fallacies across a range of probabilistic contexts, and in both one-shot and stepwise information seeking 

tasks. This paper calls for further work to build on formalisms able to describe the richness of human 

inquiry, ideally by conceptualising information evaluation as a holistic form of sense making that is 

dependent both on context and on the seeker’s own preferences, motivations, and risk-taking tendencies.   
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Appendices 

 

Appendix 1 

Table 1a 

Experiment 4: multinomial logistic regression output decision stage 1 
 

Reference Category: 
‘Time’        OR 95 % CI 

Model1 
 

Participant 
Choice 

Prediction 
Parameter ß SE t Sig. OR Lower Upper 

PG  

Item 
Intercept 0.1 3.1 0.03 0.97    
Item 0.4 1 0.39 0.69 1.49 0.19 11.3 
Time 0a       

Mode 
Intercept -0.69 3.2 -0.2 0.83    
Item -1.9 1.3 -1.4 0.16 0.15 0.01 2.2 
Time 0a       

Point 
Intercept -9.5 83.5 -1.1 0.9    
Item 7.7 83 0.09 0.93 2376 3.7E-69 1.5E+75 
Time 0a       

KL-D /IG 

Item 
Intercept 8.4 66.5 0.13 0.89    
Item -8 66.4 0.12 0.9 0.0003 2 E-61 4.7E+53 
Time 0a       

Mode 
Intercept 1.7E-6 93.9 0 1    
Item -2.4 93.9 -0.03 0.98 0.09 1.4E-80 6.2E+79 
Time 0a       

Point 
Intercept 1.1E-9 93.9 0 1    
Item -1.8 93.9 -0.02 0.98 0.16 2.4E-82 1.1E+80 
Time 0a       

Impact 

Item 
Intercept 8.4 66.5 0.13 0.89    
Item -8 66.4 0.12 0.9 0.0003 2E-61 4.7E+53 
Time 0a       

Mode 
Intercept 1.7E-6 93.9 0 1    
Item -2.4 93.9 -0.03 0.98 0.09 1.4E-80 6.2E+79 
Time 0a       

Point 
Intercept 1.1E-9 93.9 0 1    
Item -1.8 93.9 -0.02 0.98 0.16 2.4E-82 1.1E+80 
Time 0a       

a Parameter is set to zero due to redundancy. 
1 Participant Choice ~ Utility Function Choice Prediction + (1 | Subject)  
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Table 1b 

Experiment 4: multinomial logistic regression output decision stage 2 

Reference Category: 
‘Time’       OR 95% CI 

Model Participant 
Choice 

Prediction 
Term ß SE t Sig. OR Lower Upper 

PG  

Item 

Intercept -0.3 2.8 -0.08 0.93    
Item 1.8 1 1.8 0.07 6.4 0.8 50.3 
Mode -16.9 2785 -0.01 0.99 4.4E-8 .00 . 

Point 17.6 5978 0.003 0.99 425585
14 .00 . 

Time -17.3 875.6 -0.02 0.98 3.1E-8 .00 . 
ItemTime 0a       

Mode 

Intercept -8.5 2.8 .000 1    
Item .85 1.1 0.79 0.43 2.3 0.28 19.4 
Mode -16.9 2788 -0.01 0.99 4.2E-8 .00  
Point -2.6E-10 8455 .000 1 1 .00  
Time -1.7 0.92 -1.8 0.06 0.18 0.03 1.1 
ItemTime 0a       

Point 

Intercept -1.1 2.9 -0.4 0.7    
Item 2.8 1.3 2.1 0.03 16.9 1.2 230 
Mode 0.7 1.5 0.5 0.6 2 0.1 37 

 Point 1.1 8455 .000 1 3 .00 . 
 Time -0.03 1.2 -0.03 0.98 0.9 0.09 10.6 
 ItemTime 0a       

KL 
/IG, 

Item 

Intercept -8 9.4 -0.8 0.39    
Item 10.2 9.1 1.1 0.26 28243 0 1.9E+12 
Mode 0.28 35.7 0.008 0.99 1.3 2.6E-31 6.7E+30 
Time 0a       

Mode 

Intercept -1.5 2.6 -0.6 0.5    
Item 2.4 0.79 3.03 0.003 11.1 2.3 53.3 
Mode 0.87 1.3 0.67 0.5 2.4 0.19 30.3 
Time 0a       

Point 

Intercept -1.1 2.6 -0.4 0.68    
Item 2.8 0.7 3.9 <0.0001 16.6 4.1 66.8 
Mode 0.38 1.3 0.3 0.76 1.4 0.12 17.9 
Time 0a       

Impact 

Item 

Intercept -8 9.4 -0.8 0.39    
Item 10.2 9.1 1.1 0.26 28243 0 1.9E+12 
Mode 0.28 35.7 0.008 0.99 1.3 2.6E-31 6.7E+30 
Time 0a       

Mode 

Intercept -1.5 2.6 -0.6 0.5    
Item 2.4 0.79 3.03 0.003 11.1 2.3 53.3 
Mode 0.87 1.3 0.67 0.5 2.4 0.19 30.3 
Time 0a       

Point 

Intercept -1.1 2.6 -0.4 0.68    
Item 2.8 0.7 3.9 <0.0001 16.6 4.1 66.8 
Mode 0.38 1.3 0.3 0.76 1.4 0.12 17.9 
Time 0a       

a Parameter is set to zero due to redundancy. 
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Table 1c 

Experiment 4: multinomial logistic regression output decision stage 3 

Reference Category = ‘Time’      OR 95% CI 

Model 
 

Participant 
Choice 

Prediction  
Term ß SE t Sig. OR Lower Upper 

PG  

Item 

Intercept -3.3E-8 2.8 .00 1    
Item 2.5 1.7 1.5 0.15 13 0.4 421.7 
Mode -8.5 26.1 -0.3 0.75 .00 .6.5E-27 6.7E+18 
Point -8.5E-9 92.4 0.00 1 1 .2.2E-80 4.6E+79 
Time -10.1 59.6 -0.1.7 0.86 4E-5 1.9E-56 8.3E+46 
ModePoint 0a       

Mode 

Intercept 1.9 2.6 0.75 0.45    
Item -0.03 1.5 -0.02 0.98 0.97 0.05 18.5 
Mode -1.2 1.1 -1.1 0.28 0.3 0.03 2.8 
Point 7.8 65.4 0.12 0.91 2443.4 1.1E-53 5.2E+59 
Time -4.2 1.5 -2.8 0.006 0.01 0.001 0.29 
ModePoint 0a       

Point 

Intercept 2.3 2.6 0.89 0.37    
Item -1.6 1.6 -0.99 0.32 0.2 0.008 4.9 
Mode -1.1 1.1 -0.99 0.32 0.3 0.03 3.1 

 Point 6.7 65.4 0.1 0.92 854.9 3.9E-54 1.8E+59 
 Time -3.5 1.3 -2.7 0.008 0.03 0.002 0.39 
 ModePoint 0a       

KL 
/IG 

Item 

Intercept -11 75 -0.1 0.88    
Item 13.7 75 0.18 0.86 86962 1.7E-59 4.3E+70 
Mode 2.5 83 0.03 0.97 12 2.3E-71 6.1E+72 
Time 0a       

Mode 

Intercept -2.2 2.4 -0.9 0.35    
Item 4 1.3 3.08 0.003 55.3 4.2 732 
Mode 3.9 0.9 4.2 <0.0001 50.1 7.9 326 
Time 0a       

Point 

Intercept -1.1 2.3 -0.4 0.66    
Item 1.7 1.3 1.2 0.21 5.5 0.37 80.9 
Mode 3.1 0.8 3.9 <0.0001 22.7 4.7 108.2 
Time 0a       

Impact 

Item 

Intercept -12 108.8 -0.1 0.91    

Item 14.6 108.8 0.13 0.89 23188
31 5.3E-88 1E+100 

Mode 3.7 124.9 0.03 0.97 43.9 1E-106 1.5E+109 
Time 0a       

Mode 

Intercept -1.8 2.2 -0.8 0.41    
Item 3.6 1.2 3 0.003 36.2 3.3 387 
Mode 4.8 1.2 4.2 <0.0001 128.2 12.6 1294 
Time 0a       

Point 

Intercept -1.12 2.2 -0.6 0.6    
Item 1.9 1.3 1.4 0.15 7 0.5 101.6 
Mode 4.75 1.2 4.1 <0.0001 115.5 11.5 1157.3 
Time 0a       

a Parameter is set to zero due to redundancy. 
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Supplementary materials 
 

S1. Experiment 1:  Query selection Accuracy 

We computed the percentage of correct choices within each condition according to each utility function 

(see Table S1a below). A query choice was coded as correct ‘1’ if it was the one that the utility function 

quantified as being most informative. In addition, if a utility function quantified the two queries as 

having equal informative value, regardless of what query they choice, participants’ selection was coded 

as correct.  

Table S1a 

Experiment 1: Percentage of correct query selections within each condition according to KL-D, IG, 
PG, PGH and Impact. 

Utility 
Function 

Condition 1  
 

Condition 2 
 

Condition 3 
 

Condition 4 
 

KL-D 78.8% 98.5% 30% 94% 
IG 78.8% 98.5% 30% 94% 
PG 82% 85% 85 % 79.6% 
PGH 83.3% 85.1% 95.5% 78.1% 

Impact 86% 98.5% 94% 94% 
 

A Chi-Square test of independence illustrated no significant difference in the percentage of 

correct/incorrect choices between the different utility functions within Condition 1, χ2 (3) = 3.47, p = 

0.32. A significant difference was found within Condition 2, χ2 (3) = 19.6, p = 0.0002; within Condition 

3, χ2 (3) = 100.4, p < 0.0001; and within Condition 4, χ2 (3) = 10.7, p = 0.01. As such, within Condition 

2 and Condition 4, PG and PGH predicted significantly less participant query selections than the other 

utility functions (though still performing well), whereas within Condition 3, KL-D and IG accurately 

predicted significantly less participant query selections than the remaining three models. 

S2. Experiment 1: Strategies and Query Selection Accuracy 

Given our findings that strategies and query selections remain largely unvaried across conditions, when 

exploring their relationship to query selection accuracy (as defined by each utility function), we 

collapsed the conditions.  Next, we computed the percentage of participants who chose the correct query 

according to each utility function within each strategy sub-set. 
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 Out of the participants who utilised an ‘elimination’ strategy (n = 14), 79% chose the correct 

query according to Impact, 93% according to KL-D/IG and PGH and 86% according to PG. Out of the 

participants who utilised a ‘frontrunner’ strategy (n =70), 83% chose the correct query according to 

Impact, 73% according to KL-D/IG, 79% according to PGH and 74% according to PG. Out of those 

who employed a ‘frontrunner + zero-sum/risk aversion’ strategy (n = 19), 100% chose the correct query 

according to Impact, 84% according to KL-D/IG, 95% according to PGH, and 89.5% according to PG. 

Out of those who employed a ‘highest percentage’ strategy (n = 9), 78% chose the correct query 

according to Impact, PG and PGH and 67% according to KL-D/IG. Out of those who employed a 

‘differentiation’ strategy (n = 46), 94% chose the correct query according to Impact, 78% according to 

KL-D/IG, 87% according to PGH and 89% according to PG. Out of the participants who utilised a 

‘symmetry’ strategy (n = 56), 88% selected the correct query according to Impact, 61% according to 

KL-D/IG, 80% according to PGH and 78% according to PG. Finally, out of the participants who utilised 

a ‘zero-sum/risk aversion’ strategy (n = 9), 67% selected the correct query according to Impact, 89% 

according to KL-D/IG and 78% according to PG and PGH.  

Utilising Chi-Square tests of independence we found no significant difference in the distribution 

of correct and incorrect query selections across strategies, when correctness was computed utilising 

KL-D/IG, χ2 (6) = 10.4, p = 0.11, V = 0.22;  PG, χ2 (6) = 5.4, p = 0.49, V = 0.15; PGH, χ2 (6) = 14.2, p = 

0.08, V = 0.23; and Impact, χ2 (6) = 10.1, p = 0.12, V = 0.21.  

The above findings suggest that none of the utility functions are truly representative of the 

strategies that we found to systematically underlie participants’ query preferences. More precisely, there 

were no differences in accuracy (as determined by a given utility function) between the strategies 

employed by participants. This included across strategies that are conceptually opposite such as 

‘elimination’ and ‘frontrunner’. Although this might speak to the robustness of the utility functions, 

arguably this insensitivity or robustness might not be appropriate for a comprehensive descriptive 

framework of human information acquisition that is able to account for the seeker’s own preferences 

and strategies. 
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S3. Experiment 2: Query selection Accuracy 

We once again computed the percentage of correct choices within each condition according to each 

utility function (see Table S3a below).   

Table S3a 

Experiment 2: Percentage of correct participant query selections within each condition according to 
KL-D, IG, PG, PGH and Impact. 

Utility 
Function 

Condition 1  
 

Condition 2 
 

Condition 3 
 

Condition 4 
 

KL-D 90% 21% 100% 98% 
IG 90% 21% 100% 98% 
PG 91% 21% 100% 100% 
PGH 89.7% 81% 84.7% 80.3% 

Impact 91% 21% 100% 100% 
 
A Chi-Square test of independence illustrated no significant difference in the percentage of 

correct/incorrect choices between the different utility functions within Condition 1, χ2 (3) = 0.2, p = 

0.98; Condition 2, χ2 (3) = 0, p = 1; within Condition 3, χ2 (3) = 0, p = 1; and within Condition 4, χ2 (3) 

= 0.6, p = 0.88. As such, all utility functions were able to equally account for participants’ query 

selections in Conditions 1, 2 and 3, and inaccurately predicted their choices in Condition 2.  In this 

condition, all utility functions predicted ‘primary item stolen’ to be of greater informative value than 

the alternative query, thereby not reflecting participants’ modal preference for the query ‘burglary time’ 

in this, and all other, conditions.  

S4. Experiment 2: Strategies and Query Selection Accuracy 

Given that strategies remained largely unvaried across conditions, when exploring their relationship to 

query selection accuracy (as defined by each utility function), we collapsed the conditions.   

Out of the participants who utilised an ‘identify culprit’ strategy (N = 50), 80% chose the correct 

query according to KL-D/IG, and 84% according to PG, PGH and Impact. Out of the participants who 

utilised a ‘differentiation’ strategy (n = 48), 81% chose the correct query according to KL-D/IG, PG 

and Impact, and 79% according to PGH. Out of the participants who utilised a ‘symmetry’ strategy (n = 

26), 77% chose the correct query according to KL-D/IG, 92% according to PGH, and 81% according to 

PG and Impact.  Out of those who utilised a ‘zero-sum/risk aversion’ strategy (n = 31), 83.9% chose 

the correct query according to PGH, and 77.4% according to KL-D/IG, PG and Impact.  Out of those 
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who utilised the ‘highest percentage’ strategy (n= 32), 81% chose the correct query according to KL-

D/IG, 84% according to PGH and 78% according to PG as well as Impact. Finally, out of those who 

utilised a ‘identify culprit +zero-sum/risk aversion’ strategy (n = 13), 100% of participants chose the 

correct query according to PGH and 69% according to KL-D/IG, PG and Impact.  

Utilising Chi-Square tests of independence we found no significant difference in the distribution of 

correct and incorrect query selections across strategies, when correctness was computed utilising KL-

D/IG, χ2 (6) = 3.7, p = 0.72, V = 0.12;  PG, χ2 (6) = 3.6, p = 0.73, V = 0.12; PGH, χ2 (6) = 5.7, p = 0.46, 

V = 0.15; and Impact, χ2 (6) = 3.6, p = 0.73, V = 0.12.  

S5. Experiment 3: Query Selection Accuracy 

Table S5a 

Experiment 3: Percentage of correct participant query selections within each condition and scenario 
according to KL-D, IG, PG, PGH and Impact. 

Utility 
Function 

Scenario 1    Scenario 2       Scenario 3 Scenario 4 Scenario 5 
C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 

KL-D 91%  72% 24.3% 24.3% 31.8% 56% 76% 77% 98.5% 97% 
IG 91%  72% 24.3% 24.3% 31.8% 56% 76% 77% 98.5% 97% 
PG 91% 71.4% 83% 88% 62% 86% 76% 77% 80% 74% 
PGH 91% 71.4% 77.3 78.6 100% 100% 76.6% 77.2% 80.3% 71.4% 

Impact 91%  72% 100% 100% 31.8% 56% 76% 77% 88% 90% 
 

S6. Experiment 3: Strategies and Query Selection Accuracy 

Within Condition 1, using Chi-Square tests of independence, a significant difference in the distribution 

of correct and incorrect query selections across strategies was found when correctness was computed 

utilising a KL-D/IG model, χ2 (7) = 16.6, p = 0.02, V = 0.23.  Further analysis revealed this was due to 

significantly more respondents using a frontrunner strategy (across scenarios) made correct query 

selections compared to those employing other strategies. No significant difference was found in the 

distribution of strategies across correct and incorrect queries when correctness was computed using 

Impact, χ2 (7) = 8.32, p = 0.3, V = 0.16; PG, χ2 (7) = 7.4, p = 0.39, V = 0.14; or PGH, χ2 (7) = 5.99, p = 

0.54, V = 0.14. In these probabilistic environments it therefore appears that KL-D and IG are more 

capable of detecting changes in the responses dictated by participants’ strategies as a result of task 

framing than the other utility functions.  
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Within Condition 2, a Chi-Square tests of independence found no significant difference in the 

distribution of correct and incorrect query selections across strategies when correctness was computed 

utilising any OED measure:  KL-D/IG,  χ2 (7) = 5.74, p = 0.57, V = 0.13;  Impact, χ2 (7) = 2.4, p = 0.93, 

V = 0.13; PG, χ2 (7) = 5.8, p = 0.57, V = 0.13; and PGH, χ2 (7) = 10.1, p = 0.18, V = 0.17. This suggests 

that these strategies, though demonstrated to systematically underlie participant’s query selections and 

are to some extent sensitive to factors such as task framing, are not being consistently captured by any 

of the utility functions.   

S6: Experiment 4: Query selection Accuracy 

In order to evaluate whether any of the utility functions were able to account for participants’ choices, 

we computed the percentage of correct choices at each decision stage according to each of these (see 

Table S6a below).  Accuracy was calibrated with IB-OED models, meaning that if a participant chose 

an incorrect query at decision stage 1, they might still have chosen the correct query at decision stage 

2, given the queries that were left. Decision stage 4 was not included in this analysis, and will not be 

included in any subsequent analyses, given that at this decisions stage, all participants selected the 

‘optimal’ query (i.e., the remaining option).  As can be seen from the below table none of the utility 

functions were able to fully account for participants’ query selections at any of the decision stages.  

Table S6a 

Experiment 4: Participant accuracy at each decision stage according to each utility function 

Utility Function Decision Stage 1 Decision Stage 2 Decision Stage 3 
Chance Level 25% 33% 50% 

KL-D 53% 56.4% 52% 
IG 53% 56.4% 52% 
PG 54.7% 54.7% 55.6% 

Impact 53% 56.4% 53% 
 

Cochran-Q tests illustrated no significant difference in the proportion of correct query choices 

across the three decision stages, χ2 (2) = 0.44, p = 0.8, when accuracy was measured utilising KL-D/IG. 

Similar results were found when accuracy was defined utilising Impact, χ2 (2) = 0.38, p = 0.83, and PG, 

χ2 (2) = 0.02, p = 0.98.  As such, it appears that none of the utility functions are able to strongly predict 

participants’ preferences at any decision stage, and that participants’ accuracy in selecting the most 
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informative query, quantified by the different utility functions, did not significantly vary across decision 

stages. Although all models performed better than chance level at the first and second decision stage, 

by decision stage three - when participants and models only had two options left to choose from -  none 

of the models performed better than chance level. We further test the predictive abilities of these models 

in the subsequent analyses. 

S7. Experiment 4: Belief Updating and Query Selection Accuracy 

We investigated the relationship between accuracy of belief updating and accuracy of query selections. 

To do so we first obtained a qualitative measure of participants’ updating by ranking their posterior 

beliefs for each of the suspects at each decision stage in descending order (1 = highest posterior, 2 = 

medium posterior, 3 = lowest posterior) and subsequently explored the correlation between having a 

correct suspect rank order (coinciding with that obtained from B-OED models) at the decision stage 

preceding a query selection and the accuracy of that query selection (correct or incorrect).   

Spearman-Rho correlation tests illustrated no significant correlation between a correct suspect 

rank order after the first stage and correct query selection at the subsequent decisions stage when 

correctness was measured utilising KL-D/IG, rs = 0.14, p = 0.14; PG, rs = 0.13, p = 0.15; and Impact, 

rs = 0.14, p = 0.14.  Similar results were found pertaining to obtaining a correct suspect rank order after 

the second decision stage and correct query selection at the third decision stage when correctness was 

measured utilising KL-D/IG, rs = 0.04, p = 0.7; PG, rs = -0.04, p = 0.66; and Impact, rs = 0.03, p = 0.74.   

S8. Experiment 4: Strategies and Query Selection Accuracy 

When accuracy was measured utilised KL-D/IG, a general linear mixed effects model with ‘strategy’ 

and ‘decision stage’ as predictors of ‘correct query’, illustrated a main effect of strategy, F (6, 333) = 

3.1, p = 0.06, no main effect of decision stage, F (2, 333) = 1.5, p = 0.22, and a significant interaction 

effect of decision stage and strategy, F (2, 333) = 7.7, p < 0.0001. Through post-hoc pairwise 

comparisons we found the only significant difference to be at decision stage 1, where an elimination 

strategy significantly predicted more inaccurate choices than a ‘frontrunner’ strategy, p = 0.02, and a 

‘differentiation’ strategy, p = 0.005. A significant difference was also found at Decision Stage 3, where 
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a frontrunner focused strategy led to more inaccurate answers than an elimination strategy, p < 0.001. 

Similarly, a ‘highest outcome’ strategy was associated with inaccurate answers significantly more at 

decision stage 1 than decision stage 3, p < 0.0001. Virtually identical findings were found when 

accuracy was measured utilising PG and Impact, suggesting that although the utility functions are not 

able to aptly capture participants’ query selections across the decision stages, they are somewhat 

sensitive to capturing the different employment of strategies throughout the task.  

Given our findings that certain strategies underlie certain query selections, and this is dependent 

on decision stages, it is unsurprising that strategies are differentially related to accurate decisions across 

decision stages. For example, our finding that an elimination strategy is associated with more inaccurate 

decisions at decision stage 1 can be explained by our previous finding that the majority of participants 

employing an elimination strategy queried ‘burglary time’ which, at this decision stage, was not deemed 

to be the most informative query by all utility functions.   

 

 


