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Abstract 

Rheology is an indispensable tool for formulation development, which when harnessed, can 

both predict a material’s performance and provide valuable insight regarding the material’s 

macrostructure. However, rheological characterizations are under-utilized in 3D printing of 

drug formulations. In this study, viscosity measurements were used to establish a mathematical 

model for predicting the printability of fused deposition modelling 3D printed tablets 

(Printlets). The formulations were composed of polycaprolactone (PCL) with different 

amounts of ciprofloxacin and polyethylene glycol (PEG), and different molecular weights of 

PEG. With all printing parameters kept constant, both binary and ternary blends were found to 

extrude at nozzle temperatures of 130, 150 and 170 C. In contrast PCL was unextrudable at 

130 and 150 C. Three standard rheological models were applied to the experimental viscosity 

measurements, which revealed an operating viscosity window of between 100-1000 Pa.s at the 

apparent shear rate of the nozzle. The drug profile of the printlets were experimentally 

measured over seven days. As a proof-of-concept, machine learning models were developed to 

predict the dissolution behaviour from the viscosity measurements. The machine learning 

models were discovered to accurately predict the dissolution profile, with the highest f2 

similarity score value of 90.9 recorded. Therefore, the study demonstrated that using only the 

viscosity measurements can be employed for the simultaneous high-throughput screening of 

formulations that are printable and with the desired release profile.  

 

Keywords: Three-dimensional printing; 3D Printed drug products; Fused Deposition 

Modeling (FDM); Oral drug delivery systems; Artificial Intelligence; Machine Learning; 

Prediction Models.  

 

1 Introduction 

Fused deposition modelling (FDM) is a sub-class of three-dimensional printing (3DP) 

technologies and is a state-of-the-art fabrication technique in drug development (Aho et al., 

2019; Goyanes et al., 2014; Trenfield et al., 2019a). FDM can print a range of drug delivery 

devices (DDS) that previously would have required multiple fabrication techniques (Beck et 

al., 2017; Eleftheriadis et al., 2019; Goyanes et al., 2016; Goyanes et al., 2015; Khaled et al., 

2015; Tagami et al., 2019; Tagami et al., 2018; Trenfield et al., 2019b). Furthermore, it 
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possesses both spatial and temporal resolution that make it highly desirable for both research 

and clinical applications (Kollamaram et al., 2018; Melocchi et al., 2019; Sadia et al., 2016; 

Smith et al., 2018). In addition, FDM printers demand a low laboratory footprint and are 

inexpensive. Such traits make FDM an ideal candidate technology to produce on-demand and 

personalized medicines (Verstraete et al., 2018), and in turn, improve patient quality of life. In 

order to realize this goal, several challenges will need to be addressed. 

 While promising in its ability to deliver novel DDS, other aspects of FDM are yet to be 

explored. The current approach to determining whether a formulation is printable via FDM 

employs a heuristic approach, where the feedstock for FDM is prepared under the assumption 

it can print. The feedstock for FDM are filaments, which are fabricated by hot-melt extruders 

(HME). Through the author’s experience, a lot of filament is needed for testing a formulation’s 

printability. However, this approach is both time- and resource-intensive. The problem is 

further compounded when researching expensive materials. If the prepared filament is found 

to be unusable, then it is destroyed. Hence, a more efficient approach is needed in order for 

FDM to be scaled for clinical use. The transition of FDM from laboratory to clinical settings 

would require the process to be automated and made intuitive for clinicians to use.  

 One characterization technique that captures the essence of FDM extrusion, and is a 

staple in formulation development, is rheology (Elbadawi et al., 2018; Isreb et al., 2019). 

Similar to FDM, recent rheometers can subject formulations to both heat and shearing, thereby 

mimicking the mode of actions exhibited in FDM. Rheological measurements are a multi-

faceted, where insight into polymer mechanical properties, stability, crystallization and 

degradation can be obtained (Aho et al., 2015; He et al., 2019; Madsen et al., 1998; Wu et al., 

2006), to name a few. Previous work has shown that rheological data can be correlated to the 

performance of the material during fabrication (Shen et al., 2020). Another avenue of research 

has sought to use rheological data of feedstocks and correlate it to the properties of the final 

product (Höfl et al., 2006; Killion et al., 2011; Kim et al., 2018). This is because rheology can 

provide insight into material macrostructure (Calvet et al., 2004; Erwin et al., 2010). However, 

the application of rheology in 3DP of pharmaceuticals has not been thoroughly explored. 

In comparison to the trial-and-error approach currently employed in FDM, rheology 

measurements require a small amount of material. In other 3DP techniques that are performed 

at room temperature, an intuitive understanding of the material’s behaviour can be developed 

through visually inspecting the formulation (Gao et al., 2014; Gonzalez et al., 2017). However, 
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FDM is a high-temperature technique, where the material’s properties vary, and hence cannot 

be readily interpreted by examining the filaments in their cold state. Moreover, recent advances 

have seen in-line rheological sensors for real-time monitoring (Coogan and Kazmer, 2019, 

2020), which have the potential to automate FDM printing, which is needed to translate the 

technology to clinical settings. 

Although rheology provides a wealth of information about a material, the information 

can be overwhelming, particularly for inexperienced users. Researchers are afforded different 

rheological measurements to perform, from traditional viscosity measurements (Löbmann and 

Svagan, 2017) to the more advanced oscillatory amplitude shear studies performed for sensitive 

measurements (Salehiyan et al., 2014; Sun et al., 2011). As with large volumes of observations, 

it is challenging to discern patterns and would require years of experience. One technique that 

has seen a recent explosion in pattern recognition application is machine learning (ML), which 

uses cutting-edge models to discern patterns from complex datasets (Ekins et al., 2019; Liu et 

al., 2020). ML are a collection of algorithms capable of handling different formats of inputs, 

and can discern patterns in high-dimensional, non-linear datasets (LeCun et al., 2015; Singh et 

al., 2016). ML has revolutionized many medical industries, where it has successfully 

outperformed medical experts in their respective tasks (Nnamoko and Korkontzelos, 2020; 

Ting et al., 2018). ML has also been applied in drug formulation to predict processing 

conditions that would otherwise have required time and resources (Gentiluomo et al., 2020; 

Han et al., 2019; Lou et al., 2019). However, the use of ML in 3D printing pharmaceutics is 

thoroughly underdeveloped, with one study to date using ML for predicting FDM printing of 

tablets (Elbadawi et al., 2020). 

This study sought to investigate the potential of rheology to predict the printability of 

formulations and to predict the drug release profile of the 3D printed formulations. A number 

of filaments were fabricated in-house using polycaprolactone, ciprofloxacin and different 

molecular weights of polyethylene glycol (PEG).  All filaments were measured for their 

viscosity, which was correlated to their printing performance. In addition, machine learning 

models were developed to determine whether viscosity measurements can predict drug release. 

The study demonstrated that viscosity measurements could be used to screen materials for 

FDM printing, and with for the desired drug release profile.   
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2 Experimental Procedure 

2.1 Starting Materials 

Polycaprolactone (Mn = 80,000 g/mol), acetic acid (96%), ciprofloxacin (98.0%) and 

polyethylene glycol (PEG, Mw.: 4000 g.mol-1 and Mw.: 8000 g.mol-1) were purchased from 

Sigma-Aldrich Chemie GmbH (Steinheim, Germany, and St. Louis, U.S.A.). Polyethylene 

glycol (Mw.: 200 g.mol-1) was obtained from Fluka. Acetone (≥ 99.5%) was purchased from 

VWR (France), and dichloromethane (DCM) were purchased from Fisher Scientific 

(Germany). All chemicals were used without further purification. 

The reagents used for the dissolution study (HPLC and dissolution bath) were: Acetic 

Acid (Fluka, Steinheim, Germany), acetonitrile (LiChrosolv®, Merck, Darmstadt, Germany), 

methanol (Prepsolv®, Merck, Darmstadt, Germany), sodium hydroxide (puriss pa grade, 

Fluka, Steinheim, Germany) and potassium dihydrogen phosphate (purum grade, Fluka, 

Steinheim, Germany).   

2.2 Fabrication Process 

The raw materials were initially mixed with solvents to ensure a homogenous admixture is 

obtained, as previously detailed (Elbadawi, 2019). The solvent-casted films were then cut and 

loaded into a hot-melt extruder (Xcalibur, Noztek, UK. A torque speed of 20 rpm was used, 

and the barrel temperatures were set to 120, 100 and 60 °C.  The composition of the filaments 

and their sample name are provided in Table 1.   

The filaments were used to fabricate the FDM prints. 3D models were generated using Solid 

Edge ST8 (Siemens PLM Software, Huntsville/AL, USA), with a diameter and height of 12 

and 3 mm, respectively. Subsequently, the .stl files were transferred to Cura 2.5 (Ultimaker 

B.V., The Netherlands) where the printing parameters were selected, and thereafter a g-code 

was generated.  

The Ultimaker 3® (Ultimaker, Geldermalsen, The Netherlands) was used to 3D print the 

devices. The printing parameters were: a 0.4 mm nozzle temperature of 170 °C; a print speed 

of 50 mm/s; a layer height of 0.25 mm; infill density of 20%; and a glass build plate temperature 

of 40 °C. Fan cooling was enabled during the printing process, and the entire printing process 

took approximately 3 minutes per sample. Once the device was printed, it was left for two 

minutes prior to removing from the build-plate to prevent deformation by handling of the print. 

A representative image of a printlet is provided in the supplementary document (Figure S1). 



6 

 

Commercial polylactic acid (PLA White, Ultimaker, Netherlands) and commercial PCL with 

a molecular weight of 50,000 da (Facilan™ PCL 100, Elogi AM, Netherlands) were also used 

for comparison. Their recommended printing temperature as advised by their respective 

manufacturers were 200 and 120 ºC, respectively. The final prints had a variation of ± 0.2 mm 

to the prescribed CAD model, which was determined by a Vernier caliper. 

 

2.3 Characterization Techniques 

2.3.1 Differential Scanning Calorimetry (DSC) 

A Q1000 (TA Instruments, USA) DSC equipped with an autosampler, and nitrogen for both 

cooling and purging (50 ml/min) was used to determine the melting points of the admixtures. 

Bulk sample sizes of 5-8 mg were placed in hermetic aluminium pans with a pierced lid. The 

temperature was initially equilibrated to – 90 °C, followed by a heating rate of 20 °C /min from 

-90 to 0 °C, after which a heating rate of 5 °C /min was employed until 275 °C, which was the 

end of the run. The melting point was calculated as the onset of melting. 

2.3.2 X-Ray Diffractometry (XRD) 

An XRD Empyrean (Panalytical, Netherlands) was employed to examine the crystallinity of 

the bulk printed samples. Samples were scanned between 5 and 40 ° 2-theta values using a 

CuKα source with a voltage of 45 kV and a current of 20 mA, and a step size of 0.026, and 100 

s per step.  

2.3.3 Attenuated Total Reflectance Fourier-Transformation Infra-red (ATR-FTIR) 

ATR-FTIR was performed using the vertex 80v (Bruker, Germany) in the mid-infrared region, 

equipped with platinum ATR accessory. 3D printed objects were directly placed onto the 

crystal, and the spectra were recorded at room temperature between 4000 and 400 cm-1, with a 

resolution of 4 cm-1. Prior to analyses, a background scan was performed. Tests were performed 

in triplicates. 

2.3.4 Rheological Measurements 

A temperature ramp to determine an ideal neat PCL nozzle extrusion temperature was 

performed. The test was conducted from 50 to 180 °C at a ramp rate of 5 °C/min (i.e. similar 

to the DSC ramp rate), with a strain rate and angular frequency of 0.8% and 10 rad/s, 

respectively. Time sweeps were also conducted, where the angular frequency used herein was 

100 rad/s and a strain of 0.1%. 
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DHR 2 (TA Instruments, USA) was used to measure the viscosity of the samples. The filaments 

were cut into 10-20 mm lengths and placed on the Peltier plate, where the temperature was set 

to either 130, 150, or 170 °C. An eight-millimetre parallel plate geometry with a gap of 0.4 mm 

was used for the viscosity measurements. An initial oscillatory amplitude sweep for neat PCL 

was performed to determine the linear viscoelastic region thereof. Accordingly, at a strain of 

0.1%, the measurements were conducted from 0.1 to 500 rad/s. The steady-state shear was 

performed using the rheometers flow mode, and a time of 60 seconds was used for the 

measurements. For the Cox-Merz rule to upheld, the viscosity measurements were performed 

to obtain a discrepancy of less than 15%. The apparent shear rate was determined as previously 

described (Elbadawi et al., 2018). All error bars represent the standard deviation of the data. 

All tests were performed in triplicates. 

2.3.5 Dissolution Study 

USP dissolution apparatus (Type II) was used to study the drug dissolution rate from the 3D 

printed objects. 900 mL of phosphate buffer pH 6.8 was used as a dissolution medium. The 

experiments were performed at 37 °C ± 0.5, and the paddle was rotated at 50 rpm. Aliquot (6 

ml) of the samples was withdrawn from the vessel at different time points and replaced with a 

phosphate buffer of equal amount, for a period of seven days. The drug concentration was 

determined using high-performance liquid chromatography (HPLC) (Agilent 1200 infinity, 

Agilent Technologies, USA), in which a calibration curve was established. The HPLC protocol 

was followed in accordance with a previous study (Wu et al., 2008). All experiments were 

performed in triplicates due to sampling limitations. Dissolution was conducted under non-sink 

conditions and without the addition of surfactants in the media to mitigate the effect of 

polymer-surfactant interaction on the drug release behaviour. All error bars represent the 

standard deviation of the data. All tests were performed in triplicates. 

 

2.4 Machine Learning Models 

Machine learning models were developed in-house using Python v3.7 and using the scikit-learn 

package v0.21.3. The models used herein were multi-linear regression, decision tree and 

support vector machines. For the latter, the kernel function was set to linear. For each sample, 

the inputs used were the complex viscosity measurements obtained between 0.1 to 100 rad/s at 

170 °C. The output was the drug profile measured over the seven-day period. The models were 

trained on all but one sample, which was used as an unseen data to test the performance of the 
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model. A python function was used to randomly split the data into training and testing, which 

selected sample 20CIP-10P8 as the test sample. No hyper-parameter tuning was employed for 

the ML models. For comparison, partial least square (PLS) analysis was fitted into the 

rheological data to predict the dissolution profile, using two components. PLS is a non-machine 

learning technique that is regularly used for developing prediction models. In this study, it 

serves as a baseline model to compare the effectiveness of the ML models.  

 For determining the efficacy of the models, the f2 similarity factor was employed, for 

which the equation is: 

𝒇2 = 50𝒍𝒐𝒈10 {[1 +
1

𝑛
∑ 𝑤𝑡(𝑅𝑡 − 𝑇𝑡)2

𝑛

𝑡=1

 ]

−0.5

 × 100} (Eq. 1) 

 

Where n is the number of dissolution points, Rt and Tt are the measured and predicted 

dissolution predicted values, respectively, at time t. wt is the weighting factor, which was set 

to one. 

3 Results and Discussion 

PCL with different amounts of ciprofloxacin and PEG were successfully fashioned into 

filaments with the desired dimensions for FDM. The extrusion temperature examined were 

130, 150 and 170 °C, where 170 °C was used in previous research (Beck et al., 2017; Goyanes 

et al., 2016; Muwaffak et al., 2017), and formed the starting point for this study. The built-plate 

temperature was determined by a combination of differential scanning calorimetry and 

rheological measurements (Figure S2). The results revealed that during cooling, neat PCL 

solidified at approximately 40 °C. The DSC thermograph revealed that PCL began to crystallise 

at 30 °C (Figure S2 (c)). Rheological measurements, owing to its higher sensitivity, revealed 

that the loss modulus was the dominant moduli during cooling from 190 °C until 43 °C, where 

a crossover was observed (Figure S2 (d)). Thereafter, the storage modulus dominated until 20 

°C. A storage modulus greater than the loss modulus is indicative of a viscoelastic material that 

is dominantly solid. The rheological measurements were able to detect the solidification 

process earlier than DSC owing to its higher measurement sensitivity. Accordingly, a 

temperature of 40 °C was selected to ensure that the layers exhibited sufficient mechanical 

stability to prevent collapsing under the above-deposited layers (Aho et al., 2019).  



9 

 

Neat PCL was confirmed to print at 170 °C; however, it did not extrude at the lower 

temperatures. Printing at 190 °C resulted in an improved flow of neat PCL, and consequently 

a better quality printlet. In contrast, all PCL blends of CIP and CIP with PEG were found to 

extrude at 130, 150 and 170 °C, and produced printlets. The only exception was 20CIP-15P2, 

which although extruded, it was unable to adhere to the platform. Increasing the temperature 

above 170 °C or decreasing below 130 °C had no effect, and the filament remained unprintable. 

The observations suggest that although CIP or CIP wit PEG were effective at lowering the 

nozzle temperature for printing PCL, not all compositions yielded a successful print. A 

previous study by the author found that incorporating ciprofloxacin or PEG altered the adhesion 

mechanism of PCL (Elbadawi, 2019). Following printing, x-ray diffraction and Fourier-

transformation infrared spectroscopy were applied, which revealed that all components 

remained in the printlets (Figure S3).  

 

3.1 Predicting Printability using Rheological measurements 

Viscosity measurements of the filaments for 130 and 170 °C are presented in Figure 2. Before 

viscosity measurements, rheological time ramps were performed to ensure the stability of the 

materials as a function of time (Figure S4). The test was performed for five minutes, which 

was above the time it took for a viscosity measurement. The results confirmed that samples 

were rheologically stable for five minutes at both 130 and 170 °C., and hence, any changes 

observed in viscosity (Figure 2) were as a function of shear rate. 

The results are presented in both their steady- and dynamic-states. Viscosity 

measurements revealed that the addition of both 10 and 20 w/w% of CIP reduced the initial 

plateau (also known as Newtonian plateau), which led to lower viscosity measurements across 

the measured shear range. The results verified that the addition of CIP plasticized PCL, and 

hence why it was printable at lower temperatures. The effect of PEG on PCL-CIP filaments 

varied depending on the PEG molecular weight and quantity thereof. Adding PEG 200 further 

reduced the viscosity of the polymer blend across all shearing range. Incorporating PEG 4000 

or 8000 produced Newtonian plateau that were either comparable or greater than their 

respective PCL-CIP binary blends. This order was reversed at higher shear rates, where their 

viscosity was below their respective binary blends. This behaviour demonstrated that the 

incorporation of PEG 4000 or 8000 resulted in filaments that were more shear-thinning, and 

thus although presented with an initial higher viscosity, by the end of the test their viscosity 
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was lower than their binary counterparts. Interestingly, differential scanning calorimetry tests 

performed on both filament and printlet samples did not reveal any plasticity effect from either 

ciprofloxacin or PEG (Figure S5), as a depression in melting point was not observed. Hence, 

it was concluded that rheological data was more sensitive to measuring plasticization of PCL 

by CIP and CIP with PEG. 

The shearing events that occur in extrusion-based techniques occur at higher shear rates 

than what was feasible using the rotational rheometer (Aho et al., 2015; Suwardie et al., 2011). 

The apparent shear rate in the nozzle for this study was calculated to be 1000 s-1, which was in 

the same order of magnitude as the end of the test (500 s-1). To extrapolate the viscosity 

measurements to 1000 s-1, rheological models were fitted to the data, which are used to 

extrapolate the measured data to shear regions of interest (de Vicente et al., 2005; Frajkorová 

et al., 2016; Subhy, 2017; Wilson, 2019). The three models employed here were the Cross, 

Carreau-Yasuda and Williamson model, although the latter does not factor in an infinite shear 

region, but this was not necessary for this study. The red line fitted in Figure 2 is that of the 

Cross model (R2 > 0.99), which is: 

𝜼 = 𝜼∞ +  
𝜼𝟎 −  𝜼∞

𝟏 + (𝒌𝜸̇)𝟏−𝒏
 (Eq. 2) 

 

where η is the viscosity, η0 is the zero shear viscosity, 𝜂∞ is the infinite shear viscosity, 𝛾̇ is 

the shear rate, k is the material consistency, and n is the power-law index. The equations for 

the Williamson and Carreau-Yasuda model can be found in the supplementary document (Eq. 

(A1) & (A2)). The derived viscosity at γ̇ app are enumerated in Table 2, where the results 

extracted for both Carreau-Yasuda and Williamson are also presented. 

All three models revealed that at the apparent shear rate, only PCL at 130 C exhibited 

a viscosity in the order of 103 Pa.s, whereas the other formulations were in the order of 102 

Pa.s. The PCL blends exhibited values in the order of 102 Pa.s at both 130 and 170 °C, ranging 

between 291 to 965 Pa.s. This is in agreement with Anderegg et al. (2019)14 who also reported 

values in the order of 102 Pa.s via their in-situ approach. To further validate the models, the 

same methodology was applied to commercial polylactide (PLA) and polycaprolactone 

filaments. Both filaments were found to print at their respective manufacturers’ recommended 

temperature. Fitting the rheological models revealed that they too exhibited viscosities in the 

order of 102 at the apparent shear rate. Printing the commercial PLA at 170 °C, 30 °C below 
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the recommended temperature, was found not to extrude, and subsequent modelling revealed 

the viscosity at the apparent shear rate was in the order of 103 Pa.s. Thus, an operating viscosity 

range was established using a semi-empirical model.  

 Very few studies have investigated the ideal viscosity for FDM printing (Azad et al., 

2020). The proposed approach offers an alternative to using viscosity measurements to predict 

3D printing. Ilyes et al. (2019) investigated a range of polymeric excipients, and suggested that 

FDM can work with complex viscosities up to 1200 Pa.s at 100 rad/s are printable (Ilyés et al., 

2019). The semi-empirical model developed herein is an extension of their work, which factors 

in the FDM parameters (i.e. printing speed and temperature). Coogan et al. (2019) developed 

an in-line rheometer that was inserted at the nozzle of their FDM printer, which was used to 

measure the viscosities of polycarbonate and high-impact polystyrene. The researchers 

explored different processing conditions and found that viscosities were in the order of 102 Pa.s 

for all but one of their 18 experiments (Coogan and Kazmer, 2019). However, in-line 

rheometers are not readily available and are complex to build.  

 

3.2 Predicting Dissolution using Rheology and Machine Learning 

The formulations that were printed were thereafter tested for their dissolution profile, over 

seven days (Figure 3). The binary blends containing PCL and CIP presented with the lowest 

release rate. As expected, the addition of PEG amplified the release rate, with samples 

containing PEG 200 were observed to release the most. Hence, the data is in concert with 

previous results that PEG can enhance drug release, and that different molecular weights result 

in different drug release profiles. The molecular weight of PEG influences the drug release 

because different molecular weights exhibit different swelling kinetics, and also dissolve at 

different rates (Paun et al., 2012). Furthermore, the dissolution of PEG induces in-situ pores, 

thereby exposing more of the delivery system surface area to the dissolution media. Different 

molecular weights of PEG will produce varying porous structures, which in turn will affect the 

drug release rate from the polymer matrix. 

 Predicting the dissolution profiles of the drug from their respective viscosity profiles 

was performed by splitting the results into eight samples for training, and holding one back to 

test the models’ capabilities. The sample held back was, in essence, used to see how the 

machine learning models performed with unseen data. Four common machine learning models 

were used, which were multi-linear regression (MLR), decision trees and support vector 
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machines (SVM). In addition, a non-machine learning predictive algorithm, partial least 

squares (PLS), was also used to determine whether the ML models can outperform a widely-

used conventional algorithm.  

 The performance of the models is illustrated in Figure 4. All ML models were able to 

perfectly learn the training data, with a slight deviation observed in SVM for the two lower 

release profiles. PLS, on the other hand, was not as effective at learning the training data. 

Noticeable overestimates of release were observed for 10CIP and 20CIP-10P2. Once the 

models were built, they were then applied to the unseen sample, which was 20CIP-10P8. The 

f2 similarity score is a standard measurement used to determine the effectiveness of prediction. 

It is a unitless value that measures the closeness between the predicted and actual profiles. The 

FDA has set a public value of 50-100 to indicate similarity between two dissolution profiles 

(Jasińska-Stroschein et al., 2017). It was applied in this study as a quantitative measurement 

for model accuracy, where it was discovered that decision tree obtained a considerably greater 

accuracy than the other models. An f2 value of 90.9 was obtained, while the other three models 

obtained values between 50.2 to 57.5. Surprisingly, given its weak performance in learning the 

training data, PLS produced the second-highest f2 score. 

 All four models were able to achieve a similarity score set by the FDA, and hence all 

models were acceptable in their predicting proficiency. Decision trees remarkable 

outperformance infers that the data is non-linear since PLS, MLR and SVM only discern linear 

relationships. Of great significance, this is the first study to use rheological measurements to 

predict dissolution profiles. Previous works have also used ML in their predictions. A recent 

study in 3D printing used ML to predict the dissolution profile using the formulation 

composition and one printing parameter as inputs (Madzarevic et al., 2019).  

Two models were developed in the study, where one model obtained an f2 score of 

52.15, and the second obtained 44.91. The challenge of using a formulation’s components 

and/or a printer’s function is that it may not translate to other formulations. If new materials 

are to be used in the formulation, then the ML model would have to be trained again. Moreover, 

storage conditions and pre-treatments may affect material performance, which makes a model 

built on this approach susceptible to external factors. Using a fundamental property of a 

formulation, like viscosity, prevents subjectivity, and the model does not need to be re-trained 

when new materials or grades are used. A more conventional approach employed is to use 

vibrational spectroscopy data as inputs in developing ML models (Baranwal et al., 2019; 
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Donoso and Ghaly, 2005; Pawar et al., 2016). Recently near-infrared spectroscopy and Raman 

spectroscopy were individually combined with ML to predict dissolution profiles, where the 

highest f2 score reported was 90.53 (Galata et al., 2019). The challenge of using vibrational 

spectra is that the pre-processing of the data is required, which is laborious. The present study 

used the raw viscosity measurements and without pre-processing. One principal advantage of 

vibrational spectroscopies is that they can be non-destructive.   

The salient phenomenon shared by both rheology and dissolution studies is the 

disentanglement of the polymer chains (Chakravorty et al., 2016; Wang, 2015). Previous work 

has reported that a change in rheological properties is consequently manifested in a change in 

dissolution profile (Bonferoni et al., 1992; Chakravorty et al., 2016). The present study builds 

on previous work by demonstrating that quantitative estimations of the drug release can be 

made using ML. It is the first to investigate the use of rheology and machine learning to predict 

drug dissolution profiles. Further work is needed to develop a more robust predictive model. 

The current approach will need to be tested on a larger dataset, comprising of different 

formulations. In addition, more sensitive rheological measurements should be incorporated 

when building the models, which can aid the ML models to discern nuanced changes in 

formulation.  

 

4 Conclusion 

The current study demonstrated the potential of rheology to predict both printability and 

dissolution profiles for formulations prepared for FDM printing. A semi-empirical model was 

developed to determine the ideal viscosity of filaments, which was found to be in the order of 

102 Pa.s at the apparent shear rate used for printing. Filaments with a viscosity above 103 Pa.s. 

were found to be unextrudable. The use of PEG were effective in reducing the printing 

temperature. However, the use of 15 w/w% PEG 200 was found to unable to adhere to the build 

plate, which indicates that consideration should be given to the choice of PEG molecular 

weight. For predicting the dissolution profile, it was found that the non-linear model 

outperformed both ML linear models and PLS. An f2 score of 90.9 was obtained for the testing 

data, which indicated a remarkable similarity between the predicted and actual dissolution 

profile. The current approach highlights the potential of using rheology to expedite the 

formulation stage of drug development. Future work will endeavour to produce a more robust 

predictive model for both printability and drug release profiles.  
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Table Captions 

Table 1. Sample name and composition of the HME filaments. 

Table 2. The calculated viscosities (Pa.s) at the apparent shear rate determined by the Cross, 

Williamson, and Carreau-Yasuda rheological models. The table enumerates the results calcu-

lated at both 130 and 170 °C (R2 > 0.99; the standard deviation of n = 3). 

 

 

Figure Captions 

Figure 1. An overview of the present study: predicting printability and drug release using rhe-

ological measurements. 

Figure 2. Viscosity Profiles of the filaments at 130 and 170 °C. Both steady-state (open shapes) 

and dynamic-state (closed shapes) measurements are superimposed. The dynamic-state meas-

urements were fitted with the Cross model, which is represented by the red line. 

Figure 3. Dissolution profiles of the 3D printed tablets. 

Figure 4. Dissolution profile prediction results when using viscosity measurements as inputs. 

The models were first built using nine samples (training data, left-hand side), and were evalu-

ated by testing their ability to predict unseen data (right-hand side). f2 score was used to quan-

titively determine the models accuracy (the cross and square data points represent the actual 

and predicted data, respectively). 

 

 

 


