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From turbulence to landscapes: Logarithmic mean profiles in bounded complex systems
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We show that similarly to the logarithmic mean-velocity profile in wall-bounded turbulence, the landscape
topography presents an intermediate region with a logarithmic mean-elevation profile. Such profiles are present
in complex topographies with channel branching and fractal river networks resulting from model simulation,
controlled laboratory experiments, and natural landscapes. Dimensional and self-similarity arguments are used
to corroborate this finding. We also tested the presence of logarithmic profiles in discrete, minimalist models
of networks obtained from optimality principles (optimal channel networks) and directed percolation. The
emergence of self-similar scaling appears as a robust outcome in dynamically different, but spatially bounded,
complex systems, as a dimensional consequence of length-scale independence.
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I. INTRODUCTION

The striking channel and ridge patterns in the land surface
emerge from nonlocal erosion and exhibit several well-known
scaling laws [1]. The complex networks of channels and their
self-similar statistical properties have common features with
other branch-forming systems [2,3] and have become a key
example of out-of-equilibrium systems in statistical physics
[4–7]. The analogy between the landscape self-similarity and
the scale invariance observed in turbulence has been exploited
to analyze landscape morphology [8,9]. In particular, Bonetti
et al. [10] emphasized the parallels between the channeliza-
tion cascade and the hierarchical pattern formation toward
finer scales observed in the nonequilibrium systems such as
hydrodynamic turbulence [11–13]. Here this analogy between
turbulence and landscape evolution is strengthened by the dis-
covery of a logarithmic region in the mean-elevation profiles,
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which resembles the logarithmic scaling of the mean stream-
wise velocity in the intermediate region of wall-bounded
turbulent flow [11,14–18].

In wall-bounded turbulence, the constancy of the slope of
the logarithmic profile, commonly denoted by 1/κ , where κ

is the von Karman’s constant, has been verified in numer-
ous experimental and numerical studies [18–21]. Similarly,
here we establish the existence of a logarithmic region in
mean-elevation profiles of landscape topography, using a
combination of numerical simulations and analysis of data
from laboratory experiments and real landscapes, as well as
dimensional considerations. We show that such scaling also
emerges in landscapes constructed from optimal channel net-
works [5,6,22] as well as from directed percolation, which is
commonly considered the universality class of local nonequi-
librium absorbing processes [23,24]. For high erosion rates,
we obtain mean-elevation profiles consisting of a linear part
close to the fixed-elevation boundary, similar to the viscous
sublayer in turbulence [25], followed by a logarithmic profile
at the intermediate distance from both the boundary and the
central part of the domain, similar to the inertial sublayer in
turbulence [11,26].
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FIG. 1. An example of the steady-state surface obtained from the numerical solution of Eqs. (1) and (2). The simulation domain is lx =
700 m by ly = 100 m and has 1-m grid spacing. The boundary condition at the edges is constant elevation z = 0 m. On the y-z plane, the
mean-elevation profile (black line) and the ensemble of profiles (red lines) are shown. To minimize the effect of domain size along the x axis
for the calculation of mean-elevation profile we used the surface within 100 m � x � 600 m as highlighted by the dashed box.

The logarithmic scaling is brought about by competition
between the channel-forming mechanism and the geometric
restriction of the boundary; the similarity with the competition
between turbulence fluctuations and viscous damping at the
wall hints at a common length-scale independence of complex
systems with spatially organized patterns encroaching towards
boundaries.

Before delving into the specific arguments of the paper, it
should be pointed out that, similarly to the debate in near-
wall turbulence regarding the logarithmic versus power-law
profiles, here one could argue that the self-similar behavior of
the mean-elevation profile might be the result of a more subtle
type of self-similarity, entailing an intermediate asymptotic
behavior leading to a power-law scaling (self-similarity of the
second type [27]). We do not enter in this argument here,
but only note that this does not undermine the main point
of the presence of a common self-similar behavior among
complex spatial systems (fractal river networks and the related
landscapes, turbulence, and directed percolation) when their
“branching patterns” interact with a boundary wall.

II. LANDSCAPE EVOLUTION EQUATIONS

We first consider the evolution of the land surface elevation
in the detachment-limited condition [28–30], resulting from
a balance between diffusive soil creep, fluvial erosion, and
uplift:

∂z

∂t
= D�z − Kam|∇z|n + U, (1)

where z(x, y, t ) is the surface elevation at time t and location
(x, y), D is the soil diffusivity, and U is the tectonic uplift
rate. The erosion term Kam|∇z|n, with parameters K , m, and
n, is the main destabilizing term which generates the network
of channels, similar to the nonlinear inertial term in high
Reynolds number flow. The variable a(x, y, t ) is defined as the
contributing area per unit contour-line length. The presence
of a in Eq. (1) follows from a condition of steady-state water
depth generated by a unit rainfall rate under the assumption
that water moves in the direction of the local slope with a
constant velocity. As a result [10,31], a is given by

∇ ·
(

a
∇z

|∇z|
)

= −1. (2)

By nondimensionalizing the system of Eqs. (1) and (2),
Bonetti et al. [10] derived the dimensionless number CI which
quantifies the relative impact of erosion to diffusive transport
and uplift,

CI = Klm+n

DnU 1−n
, (3)

where l is a typical length scale of the domain. Increasing CI
results in a more dissected surface with branching channels
[10], thus playing a role similar to that of the Reynolds num-
ber controlling the transition from laminar to turbulent flow.

Here, in analogy with a channel flow between parallel
plates, we numerically solved the system of Eqs. (1) and (2) in
a long strip of land, unbounded in the x direction and with con-
stant elevation at two sides, z(x, 0) = z(x, ly) = 0 m, where
ly is the width in the direction y (see Fig. 1). After reaching
steady state, the mean-elevation profile z̄(y) was obtained by
averaging the z field along the x axis for 100 m � x � 600 m
(Fig. 1) to minimize the effect of lx on the mean behavior of
the surface. An example of the mean-elevation profile (solid
black line) and an example of the ensemble of profiles (red
lines) are shown in the y-z plane in Fig. 1.

A. Dimensional analysis and self-similarity

When averaged along the x direction, the surface properties
(e.g., elevation and slope) only depend on y. Therefore, the
elevation field z(x, y) can be decomposed into the sum of
the mean elevation z̄ and fluctuations z′ around the mean,
similarly to the Reynolds decomposition [8,32],

z(x, y) = z̄(y) + z′, (4)

where z̄(y) = limlx→∞ 1
lx

∫ lx
0 z(x, y)dx. The mean slope of

steady-state surface is controlled by the parameters which
describe the diffusive transport, fluvial erosion, and tectonic
activity [D, K , U , and m in Eq. (1) with n = 1], the distance
y from the boundary, and two length scales in the y and z
directions (ly and z∗) [33]:

dz̄

dy
= f1(y, ly, z∗, D, K,U, m). (5)
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Choosing y, D, and z∗ as fundamental dimensionally inde-
pendent variables, the � theorem yields

y

z∗

dz̄

dy
= f2

(
y

ly
,

Kym+1

D
,

Uy2

Dz∗
, m

)
, (6)

from which simple manipulation of the variables leads to

(m + 1)η
dϕ

dη
= f3(η, CI, ζ , m), (7)

where CI is given by Eq. (3) with n = 1 and l = ly, while
ϕ = z̄

z∗
is the mean elevation z normalized by a factor z∗ which

describes the overall elevation of the profile. Here, we used
z∗ = z̄max, where z̄max is the average elevation at the divide
(y = ly/2). The dimensionless value CI is a global quantity
(independent of y) reflecting the relative impact of fluvial
erosion to diffusive transport [10]. The quantity η = Kym+1

D is
a local variable with a form similar to that of CI but capturing
the local relative contribution of those two processes, while

ζ = Ul2
y

Dz∗
describes the relative impact of tectonic uplift to

diffusive transport.
In a system with relatively small diffusive transport and

dominated by erosion and uplift, CI and ζ take high values.
The same argument also applies to η except for locations
close to the boundary. Thus, when the variables η, CI , and
ζ reach such an asymptotic condition, one may assume com-
plete self-similarity [33] according to which the function f3 is
independent of these quantities:

η
dϕ

dη
= κ (m), (8)

where κ is only a function of m. Integrating Eq. (8) yields

ϕ = κ (m) ln η + C, (9)

where C is independent of η but may still depend on m,
CI , and ζ . Equation (9) describes the logarithmic scaling of
the mean-elevation profile with respect to η, similarly to the
classic results of Millikan (1939) [15], to predict the log-
arithmic turbulent velocity profile. The emergence of such
a logarithmic profile is expected in systems dominated by
erosion and away enough from both the boundary and the
center of symmetry (high CI , ζ , and η). Similar dimen-
sional analysis for the general value of n can be found in
Appendix B.

It should be noted that an alternative assumption of incom-
plete self-similarity or self-similarity of the second kind [27],
f3 ∝ ηα , would lead to a power-law mean-elevation profile
ϕ ∝ ηα . As already said in the Introduction, we do not discuss
this issue here, leaving it to further contributions.

B. Numerical simulations

We numerically solved Eqs. (1) and (2) to examine the
mean-elevation profile under different conditions of diffusive
transport and fluvial erosion. The simulation domain was a
700 m by 100 m rectangular grid with constant elevation
z = 0 m at the boundary, as shown in Fig. 1. The choice of
a long domain allowed us to neglect the effect of the domain
dimension along the x axis, mimicking the case of an infinite
strip.

The numerical scheme used is a semi-implicit method that
uses the D∞ flow-direction algorithm to efficiently calculate
the contributing area at each pixel in the discretized domain
and then it is divided by grid size to compute the specific
catchment area a [10,31,34]. The spatial grid spacing was
1 m and the time step of discretization �t was selected small
enough to avoid numerical instabilities. As the initial con-
dition, we used a tent-shaped surface plus random noise in
which the local minima were filled. We performed simula-
tions with 1 � CI � 2 × 105, 0.1 � m � 1, and 0.8 � n �
1.2 to cover the range of parameters reported in the litera-
ture [35,36]. For simplicity, we used D = 0.005 m2/yr and
changed K to achieve the desired CI for a given m value.

The accuracy and robustness of the adopted numerical
method are discussed in depth in Ref. [37]. These analyses
include the comparison of the steady-state solution in the un-
channelized regime (small CI ) for which the analytic solution
is available. Anand et al. [37] also show that the simulated
surfaces capture the analytic prediction of CI at the transition
from smooth to channelized surface that is derived [10]. They
used the special case of m = n = 1 and CI → ∞ to compare
the temporal dynamics of the mean domain elevation form
numerical simulation with the exact analytic prediction.

Increasing CI (i.e., increasing the relative magnitude of
erosion compared to soil creep) results in a more dissected
surface with branching channels (see Ref. [10]). As shown in
Fig. 2, for CI = 10, the emerging surface is smooth with no
channels because the diffusive transport is dominant and pre-
vents the growth of instability and channel formation. Under
these conditions, the mean elevation profile can be obtained
analytically for m = n = 1 in terms of a hypergeometric func-
tion [10]. As CI exceeds a critical value (≈ 37 from linear
stability analysis for m = n = 1), parallel channels emerge
and, with higher CI , the surface becomes further dissected
with the development of secondary branches [10]. Thus, the
channelization index CI plays a role similar to that of the
Reynolds number in fluid motion where the initiation and
further progression of instabilities (transition from laminar to
turbulent flow) are controlled by this quantity. The formation
of branching channels impacts the mean-elevation profile, as
shown in Figs. 2(e)–2(g). It is evident that, as CI increases,
the profiles become more uniform, similar to the flattening of
the mean-velocity profile with increasing Reynolds number in
turbulence [38].

Figure 3(a) shows (half of) the mean-elevation profile for
a range of CI using the dimensionless variables ϕ and η with
z∗ = z̄max in a semi-log space for m = 0.7. The tendency of
the mean-elevation profile toward a logarithmic scaling [linear
segment in the semi-log space of Fig. 3(a)] clearly appears
beyond a certain value of CI .

We computed the characteristics of the logarithmic seg-
ment of the nondimensional mean-elevation profile by fitting
a function to the profile within 0 � y � ly/2. This includes
a linear part for the segment close to the boundary and a
logarithmic function for the intermediate segment. We also
considered an additional power function for the segment close
to the divide to cover the whole profile. We found the best fits
by maximizing the summation of R2 values of the fit to each
segment. The variables for optimization are two thresholds
for the dimensionless distance from the boundary η which
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FIG. 2. The landscape surface and the mean-elevation profile for different CI and m. (a–d) The normalized elevation z for CI = 10, 102,
103, and 104 and m = 0.5. The shaded segments at the boundaries are discarded for further extraction of mean-elevation profiles. (e–g) The
average profile for a wide range of CI and m = 0.5, m = 0.7, and m = 0.9. As CI increases (higher relative proportion of fluvial erosion to
diffusive transport), the surface becomes more dissected with branching channels. This results in the evolution of the mean-elevation profile
toward a flatter shape.

correspond to transition from the linear segment close to the
boundary to the intermediate logarithmic segment and the
transition from the logarithmic segment to the section close
to the divide. Using such thresholds, simple linear regression
gives the slope of the logarithmic profile denoted by κ . The
logarithmic fits to the intermediate segments of the profiles
for CI = 2 × 105 are shown in Fig. 3(a). The slope of the
logarithmic segment at high CI is only a function of m as
shown in Fig. 3(b).

C. Laboratory and natural landscapes

We also analyzed the data from a landscape evolution
experiment performed using the Experimental Landscape
Evolution (XLE) facility in the St. Anthony Falls Labora-
tory at the University of Minnesota, described in detail in

Refs. [39,40]. The parameters modulating fluvial erosion and
diffusion needed to analyze the logarithmic scaling were esti-
mated, assuming a steady-state governed by Eqs. (1) and (2)
with n = 1 as explained in Appendix A. Having D, K , and
m from the experimental surfaces, we computed the slope of
the logarithmic profile κ for the 16 surfaces with the same
optimization algorithm used to analyze the surfaces from the
numerical simulation. The surfaces from the physical exper-
iment also display a logarithmic scaling [see Fig. 4(b)] with
slopes κ that lie close to the results from the numerical simu-
lation [Fig. 3(b)].

To investigate the emergence of logarithmic mean-
elevation profiles in real landscapes, we analyzed high-
resolution topographic data from a basin located in the
Calhoun Critical Zone in South Carolina, USA [Fig. 4(c)].
To make an analogy with the boundary condition used

FIG. 3. The logarithmic profile in numerical simulations. (a) The dimensionless profiles corresponding to 0 � y � ly/2 in a semilog space

for m = 0.7. The dimensionless quantities are defined as η = Kym+1

D and ϕ = z
z∗ , with z∗ = z̄max. Increasing CI leads to the emergence and

further expansion of the logarithmic segment in the profiles. The dashed line is the fitted logarithmic line to the profile with CI = 105 and the
slope is reported as κ . (b) The relationship between κ and m. The slope κ (average of simulations with CI � 104) decreases monotonically
with m, suggesting that higher values of m result in flatter logarithmic profiles. The data points from a physical experiment are also shown and
lie close to the results from the numerical simulation.
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FIG. 4. The logarithmic profile in the experimental and natural landscapes. (a) The specific catchment area a for an experimental landscape,
and (b) its mean-elevation profile represented by the nondimensional quantities η and ϕ. The fitted line to the logarithmic segment of the profile
is shown by the red line with the slope reported as κ ≈ 0.12. (c) The digital elevation model of a basin at the Calhoun Critical Zone in South
Carolina, USA, and (d) its normalized mean-elevation profile which exhibits a logarithmic scaling with κ ≈ 0.11.

in this work, we consider the main channel to be analo-
gous to a fixed-elevation boundary and define u(x, y) as the
minimum distance from each location (x, y) to the main
channel. The mean-elevation profile is defined as z̄(d ) =

1
|Sd |

∑
(x,y)∈Sd

z(x, y), where Sd is the set of points with d �
u(x, y) < d + �d and �d = 5 m. Figure 4(d) shows the
normalized mean-elevation profile (ϕ versus η) for which pa-
rameters D, K , and m were computed using a similar method
explained in Appendix A for the physical experiment. The
observed logarithmic scaling with the slope κ ≈ 0.11 is con-
sistent with the logarithmic scalings obtained from numerical
simulations and laboratory experiments.

III. ANALYSIS OF DISCRETE MINIMALIST MODELS

To further corroborate the previous results and explore the
emergence of a logarithmic profile in minimalist models of
channelized landscapes, we also considered surfaces gener-
ated from two discrete minimalist models, namely optimal
channel networks (OCNs) [41] and directed percolation (DP)
[23].

A. Optimal channel networks

OCNs are configurations defined over a discrete domain
and they locally minimize the total energy dissipation which
is proportional to

∑
i∈I Aγ

i , where γ is a constant, I is the
set of nodes in the domain, and Ai is the drainage area of
node i [5,42]. Such OCNs also describe landscapes with (lo-
cally) minimum average elevation and are directly related to
the landscape evolution model formulation in the absence of
diffusive transport [22]. Given the loopless configuration of

an OCN, the corresponding elevation field can be constructed
assuming a power relationship between slope Si and area Ai at
node i, i.e., Si = βAγ−1

i , where β is a constant.
The optimality condition invokes a tendency toward ag-

gregation of flow which in turn creates a branched network
as shown in Fig. 5(a) for a 500 m by 100 m lattice with
1-m spacing. The topology of the optimal configuration is
controlled by the model parameter γ . The constructed surface
elevation is directly followed from the optimal configuration
as shown in Fig. 5(b) for the network of Fig. 5(a). Given
the elevation field, the mean-elevation profile can be com-
puted by averaging along the x axis as shown in Fig. 5(c)
in which a logarithmic scaling close the boundary is evident.
The logarithmic scaling appears as a consequence of the com-
petition between the branching invoked by optimality and the
constant-elevation boundary condition, through the power-law
relationship between slope and area.

B. Directed percolation

DP is widely considered to be the universality class of lo-
cal nonequilibrium absorbing processes [23,24] and has been
found to describe the critical behavior of the laminar-turbulent
transition [24,43–45].

In the DP framework, a set of nodes in a lattice can be
either active or inactive with a probabilistic transition between
these two states. Geometrically, DP describes the flux through
a random medium in which channels (bonds) represent the
connection between active nodes [46,47] while the system
has a preferred direction defined by external forcing. Here we
used a modified form of DP to generate networks and their
associated landscapes for a regular grid in a long rectangular
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FIG. 5. The logarithmic profile in optimal channel networks (left) and directed percolation (right). Panels (a) and (b) show an optimal
channel network (OCN) with γ = 0.5 and a directed percolation (DP) network generated numerically in a 500 m by 100 m domain with 1-m
grid spacing. The lines represent the connection between nodes (links) and their width is proportional to the drainage area A at their end. Panels
(b) and (e) show the constructed surface elevations from the OCN and DP configurations. Panels (c) and (d) show the mean-elevation profiles
computed for 100 m < x < 400 m in linear (inset) and logarithmic horizontal axis for 0 � y � ly/2. The existence of a logarithmic scaling is
evident as marked by the fitted lines in green.

domain in which the preferred direction is imposed by gravity
to ensure an overall flux toward the boundary.

For our analysis of landscapes and the analogy with tur-
bulence (high CI and high Re), we focused on the asymptotic
condition in which all nodes are active, although channels are
generated randomly. Starting from the middle of the domain,
the nodes are randomly connected to only one of three nodes
located downstream towards the domain boundary. Limiting
the outgoing bonds to only one assures the formation of an-
tiarborescence trees with their roots at the domain boundary
[see Fig. 5(d)].

As for the OCN, the elevation field was computed by set-
ting zero elevation at boundary nodes and assuming a power
relationship between slope and area [see Fig. 5(e)]. The mean-
elevation profile [Fig. 5(c)] was obtained by averaging the
constructed elevation field along the x axis. The logarithmic
scaling in the mean-elevation profile is evident in Fig. 5(f)
as highlighted by the fitted line. The network configuration
from DP [Fig. 5(d)] is visually different (less branched) from
that of OCN [Fig. 5(a)] due to apparently more randomness
compared to the constraints imposed by optimality in OCN.
Even in this case, however, the quenching of the branching
pattern at the boundary of constant, lower elevation brings
about an evident logarithmic profile, suggesting that DP may
be a model of lesser complexity that can generate such a
logarithmic mean-elevation profile.

IV. CONCLUSIONS

Inspired by the resemblance between the progressive sur-
face dissection and flattening of mean-elevation profile and

the turbulence cascade and the mean velocity profile [32,38],
we explored the existence of a self-similar, logarithmic region
in mean-elevation profiles similar to the logarithmic scal-
ing of streamwise velocity in wall-bounded turbulent flows
[11,18,26,48].

The fact that we found a logarithmic region in minimalist
models of landscape evolution, laboratory experiments, and
natural data hints at the generality of such scaling. Similar ro-
bustness to both boundary conditions and physical processes
is present in turbulent velocity profiles, where a logarithmic
region appears in both smooth and rough walls, as well as
within different levels of approximation (e.g., direct numerical
simulations and large-eddy simulation) [17,49,50]. The loga-
rithmic scaling persists for a wide range of model parameters,
in agreement with the robustness of the logarithmic scaling for
different types of fluids (e.g., Newtonian and non-Newtonian)
[51,52].

It would be of interest to try to link the existence of the
logarithmic scaling to the optimality principles (e.g., OCNs)
and the related variational principles often advocated in land-
scape models [1,4,5,41], as well as in turbulence in relation to
viscous dissipation maximization [53,54]. Recently, Hooshyar
et al. [22] showed that the landscape evolution model could
be formulated as a variational problem of extremizing the
average domain elevation.

In this paper, we did not enter into the debate about
whether the observed self-similar scaling could actually be of
the second type rather than the first type. While our results
suggest the presence of logarithmic profiles, and therefore
of first type similarity, it would certainly be of interest to
perform more scrupulous scrutiny aimed at assessing this
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point. We leave this to future research, with only the comment
that this will not undermine our main conclusion regarding
the fact that landscapes and turbulence, both examples of
complex systems out-of-equilibrium, exhibit a cascade mech-
anism [10,32] leading to a self-similar behavior in the mean
profile where the progression of branching is hindered by
boundaries.

While the dimensional analysis presented here does not
“prove” any self-similar behavior [33], it helps explain the
logarithmic scaling as the outcome of a self-similarity that is
then validated in numerical simulations, natural landscapes,
and laboratory experiments. The findings here build on the
previous observations regarding the common behavior of
landscapes and turbulence [8–10] for which logarithmic scal-
ing follows from a similar line of reasoning [15]. It should be
clear that this does not establish a common physical mech-
anism in these two systems, the answer to which requires
proving that these two systems are from the same universality
class and perhaps at different levels of complexity. It does
however show that this self-similar scaling is a robust outcome
in dynamically different complex systems, emerging as a di-
mensional consequence of length-scale independence, when
they are spatially bounded.
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APPENDIX A: ANALYSIS OF THE LABORATORY
EXPERIMENTS

The parameters modulating fluvial erosion and diffusion
needed to analyze the logarithmic scaling were estimated as-
suming a steady-state governed by Eqs. (1) and (2) with n = 1
[36]. The specific catchment area a was computed by dividing
the total contributing area from D∞ by the grid spacing of
the scanned surfaces (0.5 mm) [34]. Following Ref. [55] and
focusing on the regions with small fluvial erosion (hilltops
with small a and |∇z|), from Eq. (1), D was approximated as

D = − U

	za|∇z|−→0
. (A1)

FIG. 6. The dependence of the slope of logarithmic scaling on
the parameter n. (a) The logarithmic scaling persists for a range of
n and the slope κ increases with higher n. (b, c) The nondimension-
alized mean-elevation profiles for two cases with the same m = 0.9
and CI = 105, but different n. In both cases the logarithmic scaling
is easily detectable.

Given D and from Eq. (A1) at steady state, K and m can
be estimated by fitting a power function to D	z+U

|∇z| versus a
relationship [40,55]:

D	z + U

|∇z| = Kam. (A2)

Having D, K , and m from the experimental surfaces, we
computed the slope of the logarithmic profile κ for the 16
surfaces with the same optimization algorithm used to analyze
the surfaces from the numerical simulation.

APPENDIX B: EFFECT OF n ON THE LOGARITHMIC
SCALING

The self-similarity arguments presented in the paper for
n = 1 can be readily generalized with respect to n by defining
η = Kym+n

DnU 1−n and using CI from Eq. (3) with l = ly. Following
the same line of reasoning, one can find

ϕ = κ (m, n) ln η + C, (B1)

where κ is a function of both m and n. To reveal details on
the functional dependence of κ on n, we ran an additional
300 simulations with CI � 104; m = 0.5, 0.7, and 0.9; n =
0.8, 0.9, 1, 1.1, and 1.2; and the same boundary and initial
conditions discussed earlier. Our results clearly show that
the logarithmic scaling emerges for a range of parameter n
[Fig. 6(b) and 6(c)] and the slope κ increases with higher n
values [Fig. 6(a)].
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