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ABSTRACT
The nuclear stellar disc (NSD) is a flattened stellar structure that dominates the gravitational potential of the Milky Way at
Galactocentric radii 30 � R � 300 pc. In this paper, we construct axisymmetric Jeans dynamical models of the NSD based
on previous photometric studies and we fit them to line-of-sight kinematic data of the Apache Point Observatory Galactic
Evolution Experiment (APOGEE) and silicon monoxide (SiO) maser stars. We find that (i) the NSD mass is lower but consistent
with the mass independently determined from photometry by Launhardt et al. Our fiducial model has a mass contained within
spherical radius r = 100 pc of M(r < 100 pc) = 3.9 ± 1 × 108 M� and a total mass of MNSD = 6.9 ± 2 × 108 M�. (ii) The
NSD might be the first example of a vertically biased disc, i.e. with ratio between the vertical and radial velocity dispersion
σ z/σ R > 1. Observations and theoretical models of the star-forming molecular gas in the central molecular zone suggest that
large vertical oscillations may be already imprinted at stellar birth. However, the finding σ z/σ R > 1 depends on a drop in the
velocity dispersion in the innermost few tens of parsecs, on our assumption that the NSD is axisymmetric, and that the available
(extinction corrected) stellar samples broadly trace the underlying light and mass distributions, all of which need to be established
by future observations and/or modelling. (iii) We provide the most accurate rotation curve to date for the innermost 500 pc of
our Galaxy.
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1 IN T RO D U C T I O N

The nuclear stellar disc (NSD) is a flattened stellar structure that dom-
inates the gravitational potential of the Milky Way at Galactocentric
radii 30 � R � 300 pc (see e.g. fig. 14 in Launhardt, Zylka & Mezger
2002). Current observational constraints are consistent with the NSD
being an axisymmetric structure (Gerhard & Martinez-Valpuesta
2012), although it cannot be ruled out that it actually consists of a
secondary nuclear bar (Alard 2001; Rodriguez-Fernandez & Combes
2008). The radius and exponential scale height determined from near-
infrared photometry and star counts are R � 100–200 pc and H �
45 pc, respectively (Catchpole, Whitelock & Glass 1990; Launhardt
et al. 2002; Nishiyama et al. 2013; Gallego-Cano et al. 2020).

The NSD is cospatial with the central molecular zone (CMZ),
a ring-like accumulation of molecular gas at R � 200 pc, which is
the Milky Way’s counterpart of the star-forming nuclear rings that
are commonly found at the centre of barred galaxies (Molinari et al.
2011; Henshaw et al. 2016; Tress et al. 2020). This cospatiality is
presumably not a coincidence, and suggests that the NSD is made
of stars born in the dense CMZ gas (Baba & Kawata 2020; Sormani
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et al. 2020). This picture is consistent with kinematic observations
that show that the NSD is rotating with velocities similar to those
of the molecular gas in the CMZ (Schönrich, Aumer & Sale 2015).
The rotation of the NSD has been detected in the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) data by
Schönrich et al. (2015), in OH/IR and silicon monoxide (SiO) maser
stars by Lindqvist, Habing & Winnberg (1992) and Habing et al.
(2006), in the Very Large Telescope (VLT)/Infrared Spectrometer and
Array Camera (ISAAC) near-infrared integral-field spectroscopy by
Feldmeier et al. (2014), and in classical Cepheids by Matsunaga et al.
(2015).

Since the CMZ gas currently flows in the gravitational potential
created by the NSD, having an accurate representation of the NSD
mass and density distribution is crucial to understand gas flows in
the CMZ. Hydrodynamical simulations confirm this by showing
that macroscopic properties such as the size of the CMZ strongly
depends on the mass and density profile of the NSD (e.g. Sormani
et al. 2018; Li, Shen & Schive 2020; Tress et al. 2020). However,
Bland-Hawthorn & Gerhard (2016) note that the kinematic data
from Schönrich et al. (2015) suggest a mass that is on the lower
side of that determined from near-infrared photometry by Launhardt
et al. (2002): the former report a rotation velocity of v � 120 km s−1

at R � 100 pc, which naively suggests (ignoring asymmetric drift)
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8 M. C. Sormani et al.

a mass of MNSD � Rv2/G � 3 × 108 M�, while the latter report
a mass of MNSD = 6 ± 2 × 108 M� at the same radius. It is thus
important to constrain the NSD mass more precisely.

The mass and structure of the NSD can be constrained by
constructing stellar dynamical models of the NSD and comparing
them with the available kinematic/star counts data. The only attempt
available in the literature is a very simple spherical Jeans modelling
from Lindqvist et al. (1992) based on a sample of 148 OH/IR maser
stars. However, this model neglects that the stellar density distribution
of the NSD is strongly flattened (Launhardt et al. 2002; Nishiyama
et al. 2013; Gallego-Cano et al. 2020) and is based on a limited
number of stars.

Dynamical modelling of the NSD is also interesting from a general
theoretical perspective. NSDs are common in the centre of spiral
galaxies (Pizzella et al. 2002; Cole et al. 2014; Gadotti et al. 2019,
2020). The radii of nuclear rings in the sample of Gadotti et al.
(2019, 2020) range from R ∼ 100 to ∼1000 pc, so the size of
the Milky Way’s NSD is consistent with but on the lower side of
their distribution (see fig. 5 and table 2 in Gadotti et al. 2020).
Since NSDs have different formation and evolution history than
more well-studied disc systems such as galactic discs, they may
be expected to have qualitatively different structural and kinematic
properties.

In this paper, we aim to construct Jeans-type dynamical models
of the NSD that are consistent with previous photometric/star
counts studies and to compare them with line-of-sight kinematic
data. This will provide constraints on the mass and structure of
the NSD.

The paper is structured as follows. In Section 2, we describe the
observational data. In Section 3, we describe the Jeans modelling
methodology. In Section 4, we present our results, and in Section 5
we discuss them. We sum up in Section 6.

2 O BSERVATIONA L DATA

2.1 APOGEE data

We use data from the Sloan Digital Sky Survey IV (SDSS-
IV)/APOGEE survey (Majewski et al. 2017) Data Release 16 (DR16;
Ahumada et al. 2020), which is publicly available at https://www.
sdss.org/dr16/irspec/. APOGEE is the first large-scale spectroscopic
survey of the Milky Way in the near-infrared (H band, 1.51–1.70μm).
Most of the stars that we will use for the modelling in this paper are
part of the ‘GALCEN’ field, which is a special additional target
not part of the main survey targets (see section 8 in Zasowski et al.
2013). Since observations of the Galactic Centre are hampered by the
extreme crowding and the high extinction and differential reddening
(Nishiyama et al. 2008; Schödel et al. 2010; Nogueras-Lara et al.
2018a, 2019a, 2020a), the majority of stars that we can observe
using APOGEE are bright giants (Bovy et al. 2014, 2016).

In order to diminish foreground contamination, we apply a series
of cuts to the data. Our ‘standard’ filter is constructed as follows.
First, we exclude all stars outside the range |l| < 1.◦5 and |b| <

0.◦25 (see red dashed box in the top panel of Fig. 1). Assuming a
Sun–Galactic Centre distance of 8.2 kpc (e.g. Gravity Collaboration
et al. 2019), this corresponds to projected radial and vertical distances
of |R| < 215 pc and |z| < 36 pc, roughly the NSD radius and scale
height (see Section 1). In this region, the surface density of the
NSD is higher than that of the Galactic disc and therefore the
percentage of contaminating stars are expected to be relatively low
(see e.g. table 5 in Catchpole et al. 1990). A total of 405 APOGEE

Figure 1. All APOGEE stars contained in the region |b| < 0.◦3, |l| < 3◦.
Each point represents an individual star. Red stars are those that satisfy all the
selection criteria defined in Section 2.1, while black stars are those excluded
by the various cuts. The red dashed lines indicate these cuts: stars outside
of the box in the top panel, or to the left of the red-dashed line in the third
panel, are excluded. The blue dashed lines indicate additional cuts that we
use to check the robustness of our results against variations in the selection
criteria (see Section 4). vlos is the line-of-sight velocity, H and K are the
Two Micron All Sky Survey (2MASS) H- and K-band magnitudes, and AK is
the K-band extinction from the Wide-field Infrared Survey Explorer (WISE)
survey (Wright et al. 2010).
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Jeans modelling of the NSD 9

stars are contained in this region. We then apply a parallax cut by
excluding stars that according to the APOGEE data file have p −
3δp > 1/dmin, where p is the Gaia Data Release 2 (DR2) parallax,
δp is the Gaia DR2 parallax uncertainty, and dmin = 7 kpc (so we
remove stars that are closer than this distance). Only a small subset
of stars has Gaia parallax defined, so this cut only removes two
stars from the 405, leaving 403. Then we apply a proper motion cut
by excluding stars that have μα − 3δμα > μmax or μδ − 3δμδ >

μmax, where μα and μδ are the Gaia DR2 proper motions in RA
and Dec. directions, δμα and δμδ are the associated uncertainties,
and μmax = 400/(4.74 × 7000) × 1000 mas yr−1 corresponds to a
proper motion velocity of 400 km s−1 at 7 kpc (i.e. we exclude
stars that at distance of d > 7 kpc move faster than 400 km s−1).
After applying this cut, we are left with 366 stars. Finally, we apply
a colour–magnitude cut. We follow the methodology explained in
Nogueras-Lara et al. (2020b) and consider only stars with H − K >

max(−0.0233K + 1.63, 1.3), see red dashed line in the third panel of
Fig. 1. Because of the high extinction that characterizes the Galactic
Centre (AK ∼ 2.5 mag; e.g. Nishiyama et al. 2008; Nogueras-Lara
et al. 2018a, 2019a, 2020b), this colour cut effectively excludes the
foreground stellar population belonging to the Galactic disc, whose
absolute extinction is significantly lower, and also the majority of
stars from the inner bulge (AK ∼ 1.2 mag, corresponding to (H −
K) ∼ 1; Nogueras-Lara et al. 2018b). The final set of stars, which
consists of 273 stars, is shown in red in Fig. 1.

In order to compare the data with Jeans models, we bin the final
set of stars using the VORBIN package from https://pypi.org/user/mi
cappe/. This is an implementation of the two-dimensional adaptive
spatial binning method of Cappellari & Copin (2003), which uses a
Voronoi tessellation to bin data with given minimum signal-to-noise
ratio. Here, we only use this as a convenient method to define a
Voronoi tessellation that has approximately the same number of stars
in each bin. The signal-to-noise ratio parameter essentially controls
the average number of stars in each bin: a higher (lower) value results
in less (more) bins with a higher (lower) number of stars in each of
them. We assign constant signal = 1, noise = 1 and use a target
signal-to-noise ratio of 3.2, which gives an average of �10 stars per
bin. The result is shown in Fig. 2.

2.2 SiO maser data

We use the 86 GHz SiO maser survey of the inner Galaxy from
Messineo et al. (2002, 2004, 2005). The SiO maser stars targeted
in this survey are stars in the asymptotic giant branch (AGB) phase
with estimated ages in the range 0.2–2 Gyr (e.g. Habing et al. 2006,
and references therein).

Similarly to what we have done in Section 2.1 for the APOGEE
data, in order to reduce foreground contamination we apply a series
of cuts to the maser data. There are initially 67 maser stars in
the region |l| < 1.◦5 and |b| < 0.◦25, four of which are flagged as
foreground contamination by Messineo et al. (2005). After excluding
these four stars, we apply the same colour–magnitude cut defined
in Section 2.1 using H and K determined from the Two Micron
All Sky Survey (2MASS; Skrutskie et al. 2006); see red dashed
line in the third panel of Fig. 3. This excludes only one more star.
The final set therefore consists of 62 stars, which are shown in red
in Fig. 3.

As for the APOGEE data, we bin the final set of stars using the
VORBIN package. Again we assign constant signal = 1, noise = 1
and use a target signal-to-noise ratio of 3.2, which gives an average
of �10 stars per bin. The result is shown in Fig. 4.

Figure 2. Voronoi binning of the APOGEE stars that satisfy all the selection
criteria defined in Section 2.1 (the red stars in Fig. 1). Top: the number of
stars in the bin. Middle: average line-of-sight velocity (equation 17). Bottom:
root-mean-square velocity (equation 18). The latter is the quantity that we fit
in our Jeans modelling.

3 J E A N S M O D E L L I N G

We model the line-of-sight stellar kinematics using an anisotropic ax-
isymmetric Jeans formalism (Cappellari 2008). Section 3.1 reviews
the basic equations of this formalism. Section 3.2 describes how we
compute the observables from the model, and Section 3.3 describes
our fitting procedure. Section 3.4 describes the mass distribution and
gravitational potential models that we employ.

3.1 Review of Jeans equations

The dynamics of a collisionless stellar system is described by the
collisionless Boltzmann equation, which in cylindrical coordinates
(R, φ, z) for an axisymmetric system reads (see equation 4–17 of
Binney & Tremaine 1987)

∂f

∂t
+ vR

∂f

∂R
+ vφ

R

∂f

∂φ
+ vz

∂f

∂z
+

(
v2

φ

R
− ∂�

∂R

)
∂f

∂vR

− 1

R

(
vRvφ + ∂�

∂φ

)
∂f

∂vφ

− ∂�

∂z

∂f

∂vz

= 0, (1)

where f (x, v, t) is the distribution function (DF), f (x, v, t) d3x d3v

is the number of stars in the small volume d3x = R dR dφ dz centred
on x and with velocities in the small range d3v = dvR dvφ dvz

centred on v, and �(x, t) is the gravitational potential. Note that,
for equation (1) to be valid, it is not necessary that � is the potential
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Figure 3. Same as Fig. 1, but for the SiO maser stars from Messineo et al.
(2002, 2004, 2005) and using the selection criteria defined in Section 2.2.

self-consistently generated by the (tracer) density distribution calcu-
lated from f (see equation 2 below). For example, f might describe
a subpopulation of stars that only partially contributes to the overall
gravitational potential �.

Figure 4. Same as Fig. 2, but for SiO maser stars shown in red in Fig. 3.

The spatial density of tracer stars ρ(x), the mean velocities v̄i(x),
and the velocity ellipsoid σij (x) are defined as

ρ =
∫

f d3v, (2)

vi = 1

ρ

∫
f vi d3v, (3)

vivj = 1

ρ

∫
f vivj d3v, (4)

σ 2
ij = (vi − v̄i)(vj − v̄j ) = vivj − v̄i v̄j , (5)

where i, j = R, φ, or z. Multiplying equation (1) by vR, vφ , or vz

respectively, assuming axisymmetry (∂φ = 0), and integrating over
all velocities, we obtain the following Jeans equations1 (see equations
4-29a–4-29c in Binney & Tremaine 1987):

∂ (ρv̄R)

∂t
+

∂
(
ρv2

R

)
∂R

+ ∂ (ρvRvz)

∂z
+ ρ

(
v2

R − v2
φ

R
+ ∂�

∂R

)
= 0,

(6)

∂
(
ρv̄φ

)
∂t

+ ∂
(
ρvRvφ

)
∂R

+ ∂
(
ρvφvz

)
∂z

+ 2ρ

R
vφvR = 0, (7)

∂ (ρv̄z)

∂t
+ ∂ (ρvRvz)

∂R
+

∂
(
ρv2

z

)
∂z

+ ρ

R
vRvz + ρ

∂�

∂z
= 0. (8)

1The steps involve integrating some terms by parts and assuming that f → 0
for |v| → ∞.
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Jeans modelling of the NSD 11

The typical situation in Jeans modelling is one in which given ρ

and �, and under the assumption of steady state (∂t = 0), we want
to use equations (6)–(8) to generate predictions for the six velocity
moments (v2

R , v2
φ , v2

z , vRvφ , vRvz, and vφvz) that can be compared
with kinematic observations. However, for a steady state system
(∂t = 0), equations (6)–(8) provide only three constraints among
these six moments. Therefore, in order to proceed, one has to make
some assumptions that reduce the number of unknowns to match
the number of equations. Following Cappellari (2008) we assume
that

(i) v̄R = v̄z = 0, i.e. any mean streaming motion within the disc
is purely tangential;

(ii) vRvφ = vzvφ = 0;
(iii) σRz = vRvz = 0, i.e. the principal axes of the velocity ellip-

soid σ ij (which can always be diagonalized since it is a symmetric
tensor) are parallel to the R and z axes;

(iv) v2
R = bv2

z , where the anisotropy b is a constant.

Assumptions (i) and (ii) are in the spirit of our assumption that
the disc is axisymmetric. Assumption (iii) is stronger than (ii), and
does not have such a natural justification. It is reasonable to assume
that vRvz = 0 in the z = 0 plane, since this follows if we assume
reflection symmetry with respect to the plane z = 0. In the solar
neighbourhood, as one moves away from the z = 0 plane the velocity
ellipsoid ‘tilts’ in the sense that it is more closely aligned with the
r and θ axes of a spherical polar coordinate system (Siebert et al.
2008; Binney et al. 2014; Everall et al. 2019). Nevertheless, even
if the velocity ellipsoid does tilt like this, then (using the standard
rules for the transformation of tensors under rotations) we would
have vRvz = (σ 2

r − σ 2
θ ) sin θ cos θ , which is much smaller than the

other terms in equations (6) and (8) when one is close to the plane
(θ = π/2). We have tested that assuming that the principal axes
are aligned on spherical rather than cylindrical coordinates does not
affect the conclusions of the paper (see Section 5.2 for more details).
Assumption (iv) is harder to justify a priori and is mainly motivated
by simplicity. We will see in Section 4 that it gives an adequate
representation of the available data.

Under these assumptions, equation (7) is identically zero, while
equations (6) and (8) become

∂
(
ρbv2

z

)
∂R

+ ρ

(
bv2

z − v2
φ

R
+ ∂�

∂R

)
= 0, (9)

∂
(
ρv2

z

)
∂z

+ ρ
∂�

∂z
= 0. (10)

These two equations can be solved in the two unknowns v2
z and v2

R .
Integrating equation (10) using the boundary condition ρv2

z → 0 as
z → ∞ and then substituting in equation (9) we obtain

ρv2
z (R, z) =

∫ ∞

z

ρ
∂�

∂z
dz, (11)

ρv2
φ(R, z) = b

⎡
⎣R

∂
(
ρv2

z

)
∂R

+ ρv2
z

⎤
⎦ + Rρ

∂�

∂R
. (12)

These equations allow one to generate predictions for v2
z (R, z) and

v2
φ(R, z) given ρ(R, z), �(R, z), and the parameter b. In Section 3.2,

we show that it is straightforward to project these quantities along
lines of sight and to compare the results against the (density-
weighted) projected second moment constructed from the observed
stellar samples. We stress however that equations (11) and (12) rely
on the simplifying and somewhat arbitrary assumptions (iii) and (iv)

Figure 5. Geometry of the line-of-sight integration (see Section 3.2).

above. One of the biggest shortcomings of Jeans modelling is that
even if a tracer density model ρ and a gravitational potential � are
found such that the moments calculated using equations (11) and
(12) project to give a good representation of the data, this does not
guarantee that this model is physical: it may not exist a well-defined
DF (f > 0) in the potential � that corresponds to the density ρ and
that satisfies all the assumptions made in this section (steady state,
axisymmetry, i–iv; see e.g. section 4.4.1 in Binney & Tremaine 2008).

3.2 Calculation of observables

Equations (11) and (12) allow one to calculate predictions for
v2

z (R, z) and v2
φ(R, z). However, we do not have direct observations of

these two quantities for the NSD. In order to calculate the observables
that can be compared to our data, we need to integrate them along
the line of sight.

We assume that the NSD is exactly edge-on and that all lines of
sight can be considered parallel at the distance of the Galactic Centre.
Under these assumptions the line-of-sight velocity is given by (see
Fig. 5)

vlos(R, z) = vφ(R, z) cos φ + vR(R, z) sin φ. (13)

Taking the square of this equation and then averaging2 we find (see
e.g. appendix A of Evans & de Zeeuw 1994)

v2
los(R, z) = v2

φ(R, z) cos2 φ + v2
R(R, z) sin2 φ, (14)

where we have used that vφvR = 0 (see Section 3.1). The second
moment of the line-of-sight velocity is obtained by integrating
equation (14) along the line of sight weighting by density:3


μ2
los =

∫ ∞

−∞
ρ
(
v2

φ cos2 φ + v2
R sin2 φ

)
ds, (15)

2The average of a generic quantity G(x, v) are defined here as Ḡ(R, z) =∫
[f G d3v]/ρ, where ρ = ∫

f d3v.
3Note that we use the same Greek letter 
 to denote both surface density
and the summation symbol. The two can be distinguished since the latter
is always accompanied by an index of summation (i or j), while the former
never is.
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12 M. C. Sormani et al.

where s indicates the distance along the line of sight and the surface
density is defined as


 =
∫ ∞

−∞
ρ ds. (16)

3.3 Fitting procedure

We calculate the likelihood of a model as follows.

(i) For each bin j (see Figs 2 and 4), we calculate the mean line-
of-sight velocity and the mean square line-of-sight velocity from the
observed sample as

〈vlos,obs〉j = 1

Nj

Nj∑
i=0

vlos,obs,i , (17)

μ2
obs,j ≡ 〈

v2
los,obs

〉
j

= 1

Nj

Nj∑
i=0

v2
los,obs,i , (18)

where the sum is extended over all stars contained in the bin,
the index j labels the bins, the index i labels individual stars,
vlos, obs, i is the observed line-of-sight velocity of the star i and Nj

is the number of stars in the bin. We use the notation 〈 · 〉j =∑
i · /Nj to denote averages over the bin j, while we reserve the

overline symbol ·̄ to denote averages over the DF (e.g. equation 3).
The values of Nj, 〈vlos, obs〉j, and μobs, j calculated in this way are
shown in Figs 2 and 4 for the APOGEE stars and SiO maser stars,
respectively.

(ii) For each bin j, we calculate the second moment of the line-
of-sight velocity μ2

los,i at the on-sky position of each individual star i
within the bin by performing the integrals in equations (15) and (16).
Then we average these over the bin,

μ2
model,j ≡ 〈

μ2
los

〉
j

= 1

Nj

Nj∑
i=0

μ2
los,i . (19)

Given the small number of stars in each bin, the quantity (19) is a
reasonable proxy of the observed quantity (18).

(iii) We assume that the estimates (18) are normally dis-
tributed about their true values. Then the likelihood of a
model is

P = exp
(−χ2/2

)
, (20)

where

χ2 =
∑

j

[
μobs,j − μmodel,j

�μj

]2

, (21)

where the sum is extended over all bins and �μj is the error on μobs, j,
which we estimate as

�μj = μobs,j√
Nj

. (22)

3.4 Gravitational potential and density distribution

The Jeans equations (11) and (12) require assuming a gravitational
potential �(R, z) and a density distribution ρ(R, z) in order to generate
predictions for v2

z (R, z) and v2
φ(R, z). Note that, as mentioned in

Section 3.1, for equations (11) and (12) to be valid it is not necessary
that �(R, z) is the potential self-consistently generated by ρ(R, z).
We will consider both models in which �(R, z) is generated by ρ(R,
z) and models in which it is not.

3.4.1 Gravitational potential

At the range of Galactocentric radii considered in this paper only two
components contribute significantly to the potential: the NSD, which
dominates the potential at 30 � R � 300 pc, and the nuclear stellar
cluster (NSC), which dominates the potential at 1 � R � 30 pc (e.g.
Launhardt et al. 2002; Schödel et al. 2014; Gallego-Cano et al.
2020). Therefore we take a gravitational potential of the following
form:

�(R, z) = α�NSD(R, z) + β�NSC(R, z), (23)

where parameter α is the mass scaling of the NSD and will be
left as a free parameter in our fitting procedure below. The value
α = 1 will correspond to the normalizations of ρNSD as given
below in this section. The parameter β is the mass scaling of
the NSC, which we keep fixed in all our fitting procedures. We
will consider models with (β = 1) and without (β = 0) the
NSC.

To calculate the potential �NSD(R, z) we consider three different
NSD models, the diversity of which reflects the current large
uncertainties in the mass distribution of the NSD. The first is the
best-fitting model from Launhardt et al. (2002) (see their section 5.2;
see also equation 1 in Li et al. 2020):

ρNSD(R, z) = ρ1 exp

{
− log(2)

[(
R

R1

)nR

+
( |z|

z0

)nz
]}

+ ρ2 exp

{
− log(2)

[(
R

R2

)nR

+
( |z|

z0

)nz
]}

, (24)

where nR = 5, nz = 1.4, R1 = 120 pc, R2 = 220 pc, z0 = 45 pc,
ρ1/ρ2 = 3.9, ρ1 = 15.2 × 1010 M� kpc−3, and log (2) � 0.693.
Launhardt et al. (2002) showed that this model fits well the Cosmic
Background Explorer (COBE) 4.9 μm emission. The vertical scale
height z0 has been independently confirmed from star counts by
Nishiyama et al. (2013).

The second NSD model we consider is the best-fitting axisym-
metric model of Chatzopoulos et al. (2015), which has a density
distribution given by (see their equation 17)

ρNSD(R, z) = (3 − γ )M

4πq

a0

aγ (a + a0)4−γ
, (25)

where

a(R, z) =
√

R2 + z2

q2
, (26)

and γ = 0.07, q = 0.28, a0 = 182 pc, and M = 6.2 × 109 M�.
Note that this is only the second component from equation (17)
of Chatzopoulos et al. (2015), while the first component represents
the NSC (see below).

The third NSD model we consider is obtained by deprojecting
model 2 of Gallego-Cano et al. (2020) (see their equation 3 and
their table 4). These authors have fitted a Sérsic profile to the
Spitzer/Infrared Array Camera (IRAC) 4.5 μm stellar surface density
maps of the central 300 × 250 pc2. Their models give a projected
density 
(R, z) that can be deprojected to obtain the 3D density dis-
tribution ρ(R, z). For an edge-on system, this deprojection is unique
and can be done using the Abel transform (see e.g. appendix A in
Mamon & Boué 2010). The following analytical density distribution
gives an excellent approximation to the unique deprojected density
distribution:

ρNSD(R, z) = ρ1 exp

[
−
(

a

R1

)n1
]

+ ρ2 exp

[
−
(

a

R2

)n2
]

, (27)
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Jeans modelling of the NSD 13

Figure 6. Comparison between Sérsic model 2 of Gallego-Cano et al. (2020)
(full black lines) and the analytical approximation given by equation (27)
(dashed red lines). Top panel: contours of surface density 
(R, z). Bottom
panel: surface density radial profile in the plane z = 0. The normalization
of both models is arbitrarily chosen so that 
 = 2 × 1010 M� kpc−3 at the
centre.

where a(R, z) is defined as in equation (26), q = 0.37, n1 =
0.72, n2 = 0.79, R1 = 5.06 pc, R2 = 24.6 pc, ρ1/ρ2 = 1.311, and
ρ2 = 170 × 1010 M� kpc−3. Since Gallego-Cano et al. (2020) nor-
malize their model using observed intensity and not surface density,
we choose the arbitrary normalization ρ2 by requiring that the surface
density is 
 = 2 × 1010 M� kpc−3 at the centre. The normalization
with respect to this value, quantified by the parameter α, will be
determined by the fitting procedure in Section 4. Fig. 6 shows
that there is excellent agreement between the surface density of
model 2 of Gallego-Cano et al. (2020) and that obtained with
equation (27).

Fig. 7 compares the three NSD models described above. It can
be seen that they have rather different density contours. Since the
Gallego-Cano et al. (2020) NSD is obtained using data at much higher
resolution than those of Launhardt et al. (2002) and Chatzopoulos
et al. (2015), we consider it is the most accurate of the three. We will
see in Section 4 that the main results of this paper are not affected
by the choice of the NSD model.

To calculate the potential �NSC(R, z) generated by the NSC, we
adopt the mass density of the best-fitting axisymmetric model from
Chatzopoulos et al. (2015) (see their equation 17):

ρNSC(R, z) = (3 − γ )MNSC

4πq

a0

aγ (a + a0)4−γ
, (28)

Figure 7. Comparison of the three NSD models considered in this paper (see
Section 3.4.1). Top: density ρ(R, z). Bottom: surface density 
(R, z).

where

a(R, z) =
√

R2 + z2

q2
, (29)

and γ = 0.71, q = 0.73, a0 = 5.9 pc, and MNSC = 6.1 × 107 M�.
This corresponds to the first component from equation (17) of
Chatzopoulos et al. (2015), while the second component corresponds
to the NSD as mentioned above.

3.4.2 Tracer density distribution

For the density distribution ρ(R, z) we consider two
cases.
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14 M. C. Sormani et al.

Table 1. Best-fitting parameters for all the models considered in this paper. Each row corresponds to a panel in Figs 8, A1, and A2. Columns are defined as
follows. Filter: selection criteria used to filter the data. ‘Standard’ denotes the criteria as described in Sections 2.1 and 2.2 (see red dashed lines in Figs 1 and 3).
‘Restrictive’ is the same as standard, but using a more restrictive colour–magnitude cut that is shifted by 0.2 mag (see blue lines in the third panels of Figs 1
and 3). ‘(l, v) cut’ is the same as standard, but with an additional cut that excludes all stars outside the parallelogram shown in blue dashed lines in the second
panels of Figs 1 and 3. �(R, z): employed gravitational potential. ‘NSD+NSC’ and ‘NSD only’ mean that the potential is calculated using equation (23) with
fixed β = 1 and β = 0, respectively. ρ(R, z): employed tracer density distribution, which can be either the same as the one that generates the potential �(R,
z) (equation 30) or the ring distribution (equation 31). NSD: mass model used to calculate �NSD (see Section 3.4.1). α: best-fitting mass scaling of the NSD
relative to the normalization as given in Section 3.4.1. b: best-fitting anisotropy parameter. χ2: value for the best-fitting model. M(r < 100 pc): mass contained
within spherical radius r = 100 pc in units of 108 M�.

Model Fitted to Filter �(R, z) ρ(R, z) NSD α b χ2 M(r < 100 pc)

1 APOGEE Standard NSD+NSC NSD+NSC Launhardt et al. (2002) 0.8 0.475 11.74 4.3
2 APOGEE Standard NSD+NSC NSD+NSC Chatzopoulos et al. (2015) 0.875 0.45 10.79 5.0
3 (fiducial) APOGEE Standard NSD+NSC NSD+NSC Gallego-Cano et al. (2020) 0.9 0.4 10.73 3.9
4 SiO masers Standard NSD+NSC NSD+NSC Launhardt et al. (2002) 0.675 0.8 0.82 3.7
5 SiO masers Standard NSD+NSC NSD+NSC Chatzopoulos et al. (2015) 0.675 0.925 0.74 4.0
6 SiO masers Standard NSD+NSC NSD+NSC Gallego-Cano et al. (2020) 0.85 0.725 0.80 3.7

7 APOGEE Restrictive NSD+NSC NSD+NSC Launhardt et al. (2002) 0.85 0.425 11.91 4.5
8 APOGEE Restrictive NSD+NSC NSD+NSC Chatzopoulos et al. (2015) 0.925 0.375 11.84 5.2
9 APOGEE Restrictive NSD+NSC NSD+NSC Gallego-Cano et al. (2020) 0.875 0.4 12.79 3.8
10 APOGEE (l, v) cut NSD+NSC NSD+NSC Launhardt et al. (2002) 0.75 0.225 4.19 4.0
11 APOGEE (l, v) cut NSD+NSC NSD+NSC Chatzopoulos et al. (2015) 0.85 0.175 2.42 4.9
12 APOGEE (l, v) cut NSD+NSC NSD+NSC Gallego-Cano et al. (2020) 0.675 0.125 1.83 3.1

13 APOGEE Standard NSD only NSD only Launhardt et al. (2002) 0.925 0.6 13.22 4.3
14 APOGEE Standard NSD only NSD only Chatzopoulos et al. (2015) 0.975 0.625 12.71 4.9
15 APOGEE Standard NSD only NSD only Gallego-Cano et al. (2020) 1.175 0.65 11.80 4.4
16 APOGEE Standard NSD+NSC Ring Launhardt et al. (2002) 0.95 0.825 13.47 5.0
17 APOGEE Standard NSD+NSC Ring Chatzopoulos et al. (2015) 0.875 0.625 13.37 5.0
18 APOGEE Standard NSD+NSC Ring Gallego-Cano et al. (2020) 1.45 0.625 13.04 6.0

(i) The stellar populations traced by our data (Section 2) are
distributed in the same way as the stars that make up most of the
mass of the NSD/NSC. In this case, we take for ρ(R, z) in equations
(11) and (12) the density distribution that generates the potential
�(R, z) given in equation (23), i.e.

ρ(R, z) = αρNSD(R, z) + βρNSC(R, z). (30)

(ii) The stellar populations traced by our data (Section 2) are
distributed differently than stars that make up most of the mass of
the NSD/NSC. Indeed, the selection function of APOGEE favours
younger populations of order ∼1 Gyr of age (e.g. fig. 1 of Aumer &
Schönrich 2015), while the SiO maser stars have estimated ages of
0.2–2 Gyr (Habing et al. 2006), which may be distributed differently
than the older stars that are believed to make up most of the NSD
mass (Nogueras-Lara et al. 2020b). Since the gas in the CMZ is
believed to have a ring-like morphology (e.g. Molinari et al. 2011;
Kruijssen, Dale & Longmore 2015; Sormani et al. 2018; Tress et al.
2020), and that the distribution of relatively young stars traced by our
data might still reflect the gas distribution, we consider a ring-like
stellar density distribution given by

ρ(R, z) = ρ0 exp

[
−η

(
R0

R
+ R

R0

)
− |z|

z0

]
, (31)

where R0 = 100 pc is the radius at which the density is maximum,
η = 1 is a parameter that controls the width of the ring, and for the
vertical scale height we take z0 = 45 pc as in equation (24).

4 R ESULTS

All the models considered in this paper are listed in Table 1. Fig. 8
shows the probability distributions for models 1–6. The left-hand,
middle, and right-hand columns differ for the NSD models employed,

and correspond to those of Launhardt et al. (2002), Chatzopoulos
et al. (2015), and Gallego-Cano et al. (2020), respectively. The top
row corresponds to models that are fitted to APOGEE data, while the
bottom row corresponds to models that are fitted to SiO maser data.

The top row in Fig. 8 shows that although the three NSD models
have rather different density distributions (see Fig. 7), they all give
similar values for M(r < 100 pc) and for the anisotropy parameter b
when fitted to APOGEE data (Table 1). The best-fitting value for our
(fiducial) model 3 is α = 0.9 ± 0.2 that corresponds to a mass M(r <

100 pc) = (3.9 ± 1) × 108 M� and a total NSD mass of MNSD =
(6.9 ± 2) × 108 M�. The anisotropy parameter is consistently b ∼
0.5 for all models. Fitting the same model to SiO masers (bottom left-
hand panel) gives results that are consistent with the fit to APOGEE
data, but with significantly larger uncertainty (as is expected given
the smaller number of stars in the SiO masers data).

To assess the impact of our data selection criteria, we follow a
strategy similar to that of Nogueras-Lara et al. (2020b) and repeat
the fits using different cuts. Models 7–9 are identical to models 1–3
except that we use a more restrictive colour–magnitude cut that is
shifted by 0.2 mag with respect to the standard cut (see blue dashed
line in Fig. 1). This excludes 30 additional APOGEE stars from the
sample, leaving 243. Table 1 and Fig. A1 show that this does not
affect the results significantly.

The second panel in Fig. 1 displays several stars at negative
(positive) longitude that have large positive (negative) line-of-sight
velocities and therefore naively appear to be counter-rotating. Such
stars are most likely stars on elongated x1-like orbits that belong to
the Galactic bar (Aumer & Schönrich 2015; Molloy et al. 2015),
and indeed occupy the same area in the (l, v) plane as the so-
called ‘forbidden velocity’ gas, which has a similar interpretation
(Binney et al. 1991; Fux 1999; Sormani, Binney & Magorrian 2015b).
Also visible in the second panel of Fig. 1 are stars with very high

MNRAS 499, 7–24 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/1/7/5904769 by U
niversity C

ollege London user on 13 O
ctober 2020



Jeans modelling of the NSD 15

Figure 8. Probability distributions P(α, b) calculated using equation (20) for models 1–6 (see Table 1). Contours show the 1σ , 2σ , and 3σ contours that contain
68, 95, and 99.7 per cent of the total probability, respectively. The parameter α is the mass normalization of the NSD relative to the normalizations as given in
Section 3.4.1. The parameter b = σ 2

R/σ 2
z is the anisotropy parameter introduced by Cappellari (2008). The lateral panels represent the marginalized distributions

P(α) = ∫
P(α, b) db and P(b) = ∫

P(α, b) dα. The crosses mark the maximum of P in the 2D distributions, which correspond to the values reported in Table 1.

line-of-sight velocities (vlos ≥ 200 km s−1), which are also most
likely stars on x1-type bar orbits (Molloy et al. 2015; Habing 2016)
and also have a gas counterpart as ‘high-velocity peaks’ in the (l,
v) plane (Binney et al. 1991; Sormani et al. 2015b). In order to
assess the potential impact of such contamination from the Galactic
bar, models 10–12 repeat the fits excluding all the stars outside the
blue parallelogram in the second panel of Fig. 1. This removes 54
APOGEE stars from the sample, leaving 219. Table 1 and Fig. A1
show that this does not affect the mass normalization significantly,
but it tends to give even lower values for the anisotropy parameter b.

To assess the impact of including the NSC component, which is
important only for R � 30 pc (|l| � 0.◦2), we now consider models
that only include the NSD potential and density. Models 13–15 are
identical to models 1–3 except that we exclude the NSC by setting
its normalization to β = 0 (see equations 23 and 30). Table 1 and
Fig. A2 show that this favours a slightly larger mass and anisotropy
parameter b than the NSD+NSC models, but are consistent within
the uncertainties. Thus, the inclusion of the NSC does not affect the
results significantly, which is reasonable given the small number of
data points at |l| � 0.◦2 (Figs 2 and 4). The best-fitting NSD-only
model fits the data comparably well as the best NSD+NSC model.
This confirms that our approach to keep the NSC mass fixed to
the value determined by Chatzopoulos et al. (2015) in our fitting
procedure is reasonable. The inclusion of the NSC will be more
important when better data will be available in the future.

As mentioned in Section 3.4.2, the stellar populations traced by our
data might be distributed differently than stars that make up most of

the mass of the NSD/NSC. In particular, given that both the selection
functions of APOGEE and SiO maser stars tend to favour relatively
young stellar populations with ages ∼1–2 Gyr (see references in
Section 3.4.2), we consider a ring-like density distribution that might
reflect more closely the gas distribution in the CMZ. Table 1 and the
bottom row of Fig. A2 show the result of fitting the ring models,
which have the same potential as the NSD+NSC models but a ring-
like density distribution given by equation (31), to APOGEE data.
As for the NSD-only models, the ring models favour a slightly larger
mass scaling parameter α and an anisotropy a bit higher and closer
to b ∼ 1. We continue the discussion on this point in Section 5.2.

Fig. 9 compares our fiducial model 3 to both APOGEE and SiO
maser data. The model and data show a reasonably good agreement
given the quality of the data. Models 1 and 2, which employ a different
NSD mass distribution, offer comparably good representations of the
data. A similar consideration applies to the NSD-only models. This
makes clear that the limiting factor in our analysis is the quality of
the data, and not the assumed potential/density distribution. Trying
to refine the potential/density distribution would not make sense until
better data become available.

5 D ISCUSSION

5.1 The mass of the nuclear stellar disc

We have seen in Section 4 that our models favour a mass M(r <

100 pc) = (4 ± 1) × 108 M� that is consistent with but lower than the
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16 M. C. Sormani et al.

Figure 9. Comparison between observational data and model 3 (see Table 1). Left: APOGEE data. Right: SiO maser data. Top: observed second moment of the
line-of-sight velocity (equation 18) versus predictions (equation 19). Each point on the left-hand (right-hand) panel represents one of the bins shown in Fig. 2
(Fig. 4). Middle: second moment of the line-of-sight velocity as a function of longitude for observational data (crosses) and best-fitting model (circles). Bottom:
predictions for the second moment of the line-of-sight velocity (compare with bottom panels in Figs 2 and 4).

best-fitting value M(r < 100 pc) � (6 ± 2) × 108 M� of Launhardt
et al. (2002). The two determinations are to a large extent independent
since ours is based on the line-of-sight kinematics while the one of
Launhardt et al. (2002) is purely based on the photometry.

As mentioned in Section 1, the size of the CMZ in simulations of
gas flow in Milky Way-like barred potentials depends on the mass
of the NSD. Li et al. (2020) use this fact to constrain the mass of the
NSD. They run several simulations with different NSD mass until the
size of the simulated CMZ matches the size of the observed CMZ.
While there are several uncertainties in this approach related to the
fact that the size of the simulated CMZ also depends on the assumed
equation of state of the gas (e.g. Sormani, Binney & Magorrian
2015a) and on the details of the assumed Galactic bar potential (e.g.
Sormani et al. 2015b), they also found a NSD mass that is on the
lower side of the range indicated by Launhardt et al. (2002) (see fig.
7 in Li et al. 2020), consistent with our result.

Nogueras-Lara et al. (2020b) used the GALACTICNUCLEUS
survey (Nogueras-Lara et al. 2019b) to create dereddened Ks lu-
minosity functions and fit them using theoretical stellar evolution
models, and estimated the mass contained in a cylinder of R � 45 pc
and |z| � 20 pc to be M = 6.5 ± 0.4 × 107 M�. As shown in fig. 7
of Li et al. (2020), this mass would also be consistent with a mass
slightly lower than that of Launhardt et al. (2002).

The mass estimation of Launhardt et al. (2002) involves assuming
a mass-to-infrared-light ratio, which carries rather large uncertainties
(see their section 5.4). For the NSD, they assumed a rather large value
of ϒ = 2. Assuming a value closer to the more common ϒ = 0.6
(e.g. Meidt et al. 2014; Schödel et al. 2014) would lower their mass
estimate considerably.

Given that all our models consistently suggest a mass that is on the
lower side of the mass estimated by Launhardt et al. (2002) for all
the combination of potential/density/data set/filters we considered,
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Jeans modelling of the NSD 17

Figure 10. Mass enclosed within spherical radius r. Orange dashed line:
best-fitting NSD of our (fiducial) model 3. Blue dashed line: best-fitting NSD
of model 1. Green dashed line: best-fitting NSD of model 2. Black dashed line:
mass of the central black hole Sgr A∗ (Gravity Collaboration et al. 2019).
Dash–dotted line: NSC (equation 28). Dotted line line: Galactic bulge/bar
(GB) model from section 4.2 of Launhardt et al. (2002). Orange solid line:
sum NSD from model 3+NSC+Sgr A∗+GB. Blue thick solid line: sum NSD
from model 1+NSC+Sgr A∗+GB. Green thick solid line: sum NSD from
model 2+NSC+Sgr A∗+GB. Grey thick solid line: best-fitting photometric
mass from Launhardt et al. (2002).

and given the large uncertainties in the mass estimation of the latter
stemming from the mass-to-infrared-light ratio, we conclude that it
is likely the mass of the NSD is lower than the mass estimated by
Launhardt et al. (2002).

Fig. 10 compares the mass enclosed within spherical radius r of
models 1–3, which differ in the assumed NSD mass distributions.
While at r � 100 pc the three models agree well with each other,
they diverge at larger radii. This is because the three models have
very different extensions as can be seen in Fig. 11. Model 3 is
the least extended of the three, while model 2 is by far the most
extended. As a result, the total mass of the NSD in models 1,
2, and 3 are MNSD1 = 1.2 × 109 M�, MNSD2 = 5.3 × 109 M�, and
MNSD3 = 0.69 × 109 M�, respectively. The first is the easiest to
compare with Launhardt et al. (2002) (MNSD = 1.4 ± 0.6 × 109 M�)
since it assumes the same underlying NSD mass distribution. The
model of Chatzopoulos et al. (2015) is most likely too extended and
gives an unrealistically high total mass. This is not too surprising
since these authors were mostly concerned with fitting the innermost
few tens of parsecs and not the larger scales considered here. Our
fiducial model 3 gives the lowest mass of the three, and is probably
the most accurate at least out to r � 150 pc given that it is based on
the highest resolution data and that the subtraction of the Galactic
bulge/bar is made with exactly the same model as Launhardt et al.
(2002).

Fig. 12 shows the rotation curves for models 1–3. The rotation
curves show significant differences. Since all the three models are all
plausible models of the NSD, the scatter can be taken as a measure of
the uncertainty in the rotation curve of the Galaxy in the innermost

few hundred parsec. Note however that all the rotation curves are
significantly lower than the rotation curve implied by Launhardt
et al. (2002).

5.2 A vertically biased disc?

All our models favour a value of the anisotropy parameter 1/
√

b =
σz/σR > 1 (see Table 1 and Figs 8, A1, and A2). This means that
vertical oscillations are stronger than radial oscillations, which is
unusual for a disc system. For example, the Galactic disc in the solar
neighbourhood has values ranging from σ z/σ R � 0.4 for the youngest
populations to �0.8 for the oldest (e.g. Holmberg, Nordström &
Andersen 2009; Martig et al. 2016; Mackereth et al. 2019; Nitschai,
Cappellari & Neumayer 2020). Modelling of the kinematics of
external galaxies hints at a loose correlation between σ z/σ R and
Hubble type (e.g van der Kruit & de Grijs 1999; Gerssen & Shapiro
Griffin 2012; Pinna et al. 2018), with σ z/σ R decreasing from about
1.0 in early types (lenticulars) to about 0.4 in late types (Sd). Gentile
et al. (2015) find σ z/σ R = 1.2 ± 0.2 for the Sb galaxy NGC 3223,
which is one of the highest values found in any other galaxy. Our
value of σ z/σ R ∼ 1.5 for the NSD is much larger than any of these.
We note, however, that these other measurements are all for large,
kpc-scale discs, not for a compact NSD. On much smaller scales,
Brown & Magorrian (2013) fit unusually large vertical oscillations
in their model of the eccentric disc at the centre of M31.

In order to test whether the finding that σ z/σ R > 1 depends on
our assumption that the velocity ellipsoid is aligned on cylindrical
coordinates, we have repeated our analysis assuming that the velocity
ellipsoid is aligned on spherical coordinates (see section 2.4 of
Cappellari 2020). We found that models with σ θ /σ r > 1 are clearly
favoured, which on the plane z = 0 corresponds to σ z/σ R > 1. Thus,
the alignment of the velocity ellipsoid does not affect the results
discussed here.

There are two questions in relation to our finding that σ z/σ R > 1.
The first is why are such values favoured by our models? Comparison
of Fig. 9 with Fig. 13 shows that the reason is that a small value
of b (i.e. a large σ z/σ R) is needed to reproduce the drop in the
observed μobs near the centre (|l| � 0.◦5), which is present both in the
APOGEE data and the SiO maser data (see middle row in Fig. 9).
In Fig. 9, which shows model 3 with b = 0.45, the drop is well
reproduced, while in Fig. 13, which shows the same model but for
b = 1, the drop is not well reproduced. The ‘NSD only’ models
favour a slightly larger value of b compared to the ‘NSD+NSC’
models because the absence of the NSC component in the middle
lowers the velocity dispersion in the central regions compared to
the outer parts. The ring models also favour a larger value of b
(consistent with b ∼ 1, see Fig. A2) because the density is essentially
zero for R � 50 pc, and therefore those regions do not contribute to
the integrals in equations (11) and (12). Assuming that the drop
in the data is real (which ought to be confirmed with better data),
this suggests that indeed b < 1, or that our assumed tracer density
population is not representative of the population from which the
kinematics are drawn. We note that the observed kinematics directly
constrain only the vR and vφ components of velocity: our constraints
on the vz component come from the integral (11) of ρ and � along z.
If the potential or density were much flatter than we have assumed,
then the σ z given by (11) would increase and we could fit the observed
kinematics with larger values of b. It is currently unclear whether such
a strong flattening would be detectable given the extreme and strong
differential extinction.

Assuming that σ z/σ R > 1 then the second question is how would
stars get such large vertical oscillations? In the solar neighbourhood
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18 M. C. Sormani et al.

Figure 11. Contours of constant density ρ(R, z) (top) and surface density 
(R, z) (bottom). From left to right: models 1, 2, 3 (see Table 1 and equation 30), and
ring model (see equation 31). The ring model is normalized with an arbitrary density scaling ρ0 = 1010 M� kpc−3 (this scaling does not enter the fitting procedure
since it simplifies in the calculations of the second moments 19). The lowest contour in the top panels corresponds to a density of ρ = 3.2 × 107 M� kpc−3 and
contours are geometrically spaced every 0.3 dex. The lowest contour in the top panels corresponds to a surface density of 
 = 108 M� kpc−2 and contours are
geometrically spaced every 0.33 dex.

Figure 12. Circular velocity curves in the plane z = 0. The top panel
is a zoom in the innermost 200 pc of the bottom panel. The style/colour
scheme is the same as in Fig. 10. The circular velocity curve of Launhardt
et al. (2002) is calculated from the corresponding line in Fig. 10 assuming
spherical symmetry. For all the other components the circular velocity curve
is calculated as vcirc = √

R d�/dR. For the Galactic bar component, the
velocity curve is calculated after azimuthally averaging the triaxial density
profile given in Launhardt et al. (2002).

stars are formed from gas clouds that move on almost closed orbits,
beginning their lives with random velocities of the order of a few
km s−1. There are a number of dynamical processes that inevitably
cause these random velocities to increase over time (see Sellwood
2014 for a recent review). Each of these heating mechanisms has a
different effect on the ratio σ z/σ R. For example, spiral density waves
tend to increase σ R, but have little effect on σ z. We note, however,
that the NSD is probably hot enough that any spiral waves are weak.
Two-body scattering of stars by other stars or by giant molecular
clouds produces more isotropic heating (Jenkins & Binney 1990;
Aumer, Binney & Schönrich 2016), but still limited to σ z/σ R �
0.6 (Ida, Kokubo & Makino 1993), much smaller than we find in
the NSD. The most promising mechanism for producing σ z/σ R >

1 from an initially cold stellar population is probably from bending
instabilities caused by the presence of a counter-rotating population
(Khoperskov & Bertin 2017).

An alternative explanation is to relax the assumption that NSD
stars were born from a kinematically cold gas disc. Interestingly,
observations show that the dense and star-forming molecular gas in
the CMZ is currently concentrated into streams that possess strong
vertical oscillations of the order of �z � 30 pc (see e.g. fig. 4 in
Molinari et al. 2011 and fig. 5 in Purcell et al. 2012). This value
is similar to the NSD scale height determined by Nishiyama et al.
(2013). Moreover, Tress et al. (2020) argue that these large vertical
oscillations in the CMZ gas are induced by the large-scale bar-
driven accretion and are quite typical in that region based on a
combination of observations and hydrodynamical simulations (see
their section 6.4). This suggests that NSD stars might already possess
large vertically oscillations at birth.

That leaves open the question of whether this mechanism would
produce vertical oscillations that are so much stronger than the radial
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Jeans modelling of the NSD 19

Figure 13. Same as Fig. 9, but for a model that is identical to model 3 except that b = 1. Note that the drop in second moment velocities at |l| � 0.◦5 is
reproduced less well than in the model shown in Fig. 9.

ones. The currently observed scale height of the NSD is �45 pc.
Assuming that this is similar to the typical vertical excursions of stars
in the NSD, it implies that stars oscillate between zmin � −45 pc and
zmax � 45 pc. Assuming σz/σR = 1/

√
b � 1.5 (Table 1) and a mean

radius of R � 120 pc, it implies typical radial oscillations between
Rmin � 90 pc and Rmax � 150 pc, which is roughly consistent with
the expected eccentricities of the x2 orbits on which the CMZ gas
is believed to be flowing on (e.g. Binney et al. 1991; Englmaier &
Gerhard 1999; Sormani et al. 2015a, 2020; Tress et al. 2020), and
is also consistent with the eccentricity of the ballistic model of
Kruijssen et al. (2015, see their table 1). However, large uncertainties
remain, and the question should be readdressed in the future when
better data become available.

We conclude that the NSD might be the first example of a vertically
biased stellar disc (σ z/σ R > 1). We propose that the large vertical
dispersion might be already imprinted at stellar birth by the star-
forming molecular gas in the CMZ.

6 C O N C L U S I O N S

We have constructed axisymmetric Jeans models of the NSD and
have fitted them to the line-of-sight kinematic data of APOGEE and
SiO maser stars. We adopted three rather different mass distributions
that have been previously shown to be consistent with near/mid-
infrared photometry and star counts. Our main results are as follows.

(i) All our models indicate that the mass of the NSD is lower
than, but consistent with, the value determined independently from
near-infrared photometry by Launhardt et al. (2002) (see Fig. 10).
Our fiducial model, based on the recent analysis of high-resolution
mid-infrared Spitzer data by Gallego-Cano et al. (2020), has a mass
contained within spherical radius r = 100 pc of M(r < 100 pc) =
3.9 ± 1 × 108 M� and a total mass of MNSD = 6.9 ± 2 × 108 M�.
If instead we assume the same underlying mass distribution of the
NSD as Launhardt et al. (2002), which is more spatially extended
than our fiducial model, we obtain MNSD = 1.2 ± 2 × 109 M�, still

MNRAS 499, 7–24 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/1/7/5904769 by U
niversity C

ollege London user on 13 O
ctober 2020



20 M. C. Sormani et al.

lower side than the original determination of Launhardt et al. (2002).
The absence/presence of the nuclear stellar cluster in our models and
switching between a disc- or ring-like density distribution for the
tracer population do not affect these results significantly.

(ii) We find evidence that the NSD is vertically biased, i.e. σ z/σ R

> 1. If true, the NSD would be the first example of a vertically biased
disc system. Observations and theoretical models of the dense star-
forming molecular gas in the CMZ suggest that large vertical velocity
dispersions may be already imprinted at stellar birth. However, we
caution that the finding σ z/σ R > 1 depends on many assumptions,
and in particular on the observed drop in the second moment of the
line-of-sight velocity in the innermost parts, on our assumptions of
axisymmetry that the anisotropy is spatially constant, on whether the
stellar populations traced by APOGEE and SiO maser data follow
a disc- or ring-like density distribution, and, more generally, on our
assumption that the available corrected star count data provide good
estimates of the underlying light and mass distribution. All of these
need to be established by future observations and/or modelling.

(iii) The rotation curves implied by our models are shown in
Fig. 12. The rotation curve of our fiducial model 3 is the most accurate
to date for the innermost 500 pc of our Galaxy. The scatter between
model 1, 2, and 3 can be taken as a measure of the current uncertainty
of the rotation curve in this region.

While Jeans models provide useful constraints and insight into
the dynamics of the NSD, they are limited as there is no guarantee
that they correspond to a physical DF that is everywhere positive (f
> 0). Therefore, a worthwhile direction of future investigation is to
produce DF-based models that can overcome the shortcomings of
Jeans modelling.
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APPENDI X A : PRO BA BI LI TY DI STRI BU TIO NS
F O R MO D E L S 7 – 1 8

Figs A1 and A2 show the probability distributions for models 7–12
and 13–18, respectively.

Figure A1. Same as Fig. 8, but for models 7–12.
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Figure A2. Same as Fig. 8, but for models 13–18.

APPENDIX B: C OMPARISON BETWEEN DATA
A N D M O D E L S 1 A N D 2

Figs B1 and B2 show a comparison between the data and models 1

and 2.
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Figure B1. Same as Fig. 9, but for model 1.
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Figure B2. Same as Fig. 9, but for model 2.
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