
Indoor Air. 2020;00:1–22.     |  1wileyonlinelibrary.com/journal/ina

1  | INTRODUC TION

Classrooms are the second most important indoor environment for 
children after their homes 1 because children spend around 25%-
30% of their life in schools.2-4 Concerns over adverse effects of poor 
indoor air quality (IAQ) on children's health, productivity, and well-
being are growing,5-8 especially because indoor air can be 10 times 
as polluted as the outdoor air in real conditions.9 Poor IAQ leads to 
some psychological or physiological costs,10 and influences students’ 

health and performance, especially in younger ages.11 Building reg-
ulatory frameworks for the provision of adequate IAQ is framed 
around CO2 levels rather than other pollutants.12 IAQ is often char-
acterized by CO2 concentrations,13-18 in buildings where exhaled air, 
people, or bio-effluents are the main pollution sources.19-21 Carbon 
dioxide (CO2) as the most important human bio-effluent22-24 is pro-
duced by human respiration14 in proportion to their metabolic rate.23

The introduction signifies the importance of CO2 levels on chil-
dren's absenteeism, health, and academic performance by reviewing 
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the results of several studies. Studies have shown that children's ex-
posure to poor IAQ increases school absenteeism25 and deteriorates 
respiratory system.25-27 The study by Shendell et al (2004) shows 
that when CO2 concentrations increase by 1000 ppm, around 10%-
20% of absenteeism is increased.13 Seppänen et al (1999) suggest 
that decreasing CO2 concentrations below 800 ppm can decrease 
the risk of sick building syndrome (SBS) symptoms, such as head-
ache, fatigue, or eye/throat irritation.28 Myhrvold et al (1996) show 
that CO2 concentrations greater than 1500 ppm may lead to head-
ache, dizziness, tiredness, difficulties in concentrating, and unpleas-
ant odor in classrooms.29

It is shown that adverse health effects and absenteeism caused 
by poor IAQ can negatively affect children's academic perfor-
mance.30,31 Several studies have found a negative correlation 
between high CO2 levels and performance on cognitive and con-
centration tests.32-34 Coley et. al (2007) show that increase of CO2 
levels from a mean of 690 ppm to a mean of 2909 ppm leads to a 5% 
decrease in Power of Attention.32 Berner (1993) shows that average 
students’ test scores increase 5.4 points (P < .05) for each improved 
category of building conditions (ie, “poor” to “fair” to “excellent”).34 
Myhrvold et al (1996) by studying 550 subjects aged 15-20 in 20 
classrooms in Norwegian schools show that increased CO2 levels, 
corresponding to 0-999, 1000-1499, and 1500-4000 ppm, are as-
sociated with mean performance indices of −0.8, 0.02, and 0.13, re-
spectively (negative scores representing better scores).29 Children 
as the main occupants of primary schools represent a vulnerable 
group35-38; therefore, improving IAQ is significant for them. Above-
mentioned studies highlight the impact of CO2 levels on IAQ, health, 
and productivity; however, children's perception of IAQ with regard 
to environmental and sensation variables is less investigated, espe-
cially in primary schools.

It is important to investigate school children's perception of 
IAQ due to their physical and physiological differences with adults. 
Physically, young children are more susceptible to indoor air pollu-
tion compared to adults due to higher air intake in proportion to their 
body weight39-43 and less developed organs, tissues, and immune 
system.42 Physiologically, children have higher respiration and met-
abolic rates.44 External factors such as type of work30,45 and stress 
level46 can also impact children's perception of IAQ negatively. Since 
primary school children's perception of IAQ is less investigated, the 
study aims to investigate the association between children's percep-
tion of IAQ with environmental variables (such as CO2 levels and op-
erative temperature) and thermal sensations in naturally ventilated 
classrooms. It also looks at the impact of children's air sensation 
votes (ASVs) on their overall comfort and tiredness levels.

2  | METHODOLOGY

The five main steps carried out in this methodology are as follows: 
(1) defining research design; (2) sampling climate, buildings, and oc-
cupants; (3) acquiring data on children's perception of the indoor 
environment and environmental measurements; (4) evaluating 

classrooms’ IAQ against standards; and (5) reviewing statistic meth-
ods for analysis.

2.1 | Research design

The design of the study defines transverse sampling in which ac-
cording to Nicol et al (2012) bias is lowered or avoided; thus, the 
results are more representative.47 The problem with longitudinal 
sampling in this type of study is that many intervening variables may 
affect studied variables during a lengthy time.48 There is a danger of 
sampling bias in longitudinal studies47 which is due to the small pop-
ulation. Participants might lose interest in participating due to high 
frequency of surveys49 in longitudinal studies. Hence, data acquisi-
tion and observations were carried out in 29 different classrooms on 
29 distinct days throughout one year. To increase the validity of the 
study and reduce bias, the number of studied classrooms is similar 
during both seasons, 15 classrooms during non-heating and 14 class-
rooms during heating seasons.

2.2 | Sample selection

Samples were selected with specific attention to climate, buildings, 
and observed occupants.

2.2.1 | Location

Schools were selected in the mild climate of UK for two main reasons: 
(1) Mild or temperate climates where the outside temperature is 
lower than indoor temperature can provide opportunities for build-
ings’ natural ventilation, as supported in several other studies.50-52 
Mumovic, et al. (2018) suggest that outdoor temperature in the UK is 
lower than the indoor temperature for most of the year during both 
day and night51; therefore, window opening can ventilate and cool 

Practical Implications

• Air sensation votes are correlated with the last 5 min-
utes of CO2 measurements.

• Perception of air quality is affected by CO2 levels and 
operative temperature.

• When children feel “hot or cold,” air sensation votes are 
the least favourable.

• When “CO2 < 1000 ppm and Top < 23°C,” perception of 
air quality is improved by 43%.

• Standards should consider the impact of both operative 
temperature and CO2 levels on perceived IAQ.

• Better perception of indoor air quality results in higher 
overall comfort votes.
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the building. (2) Mild climates can reduce the biased impact of one 
extreme climate to let investigate window operation in NV buildings 
during both non-heating and heating seasons. This study was carried 
out in Coventry, West Midland from July 2017 until the end of May 
2018. Both seasons were studied because variations in temperature 
and relative humidity would influence students’ perception of the 
indoor environment.53,54 Measurements during schools’ occupied 
time show that outdoor temperatures varied between 11.5-24.9°C 
with a mean of 18.1°C during non-heating seasons and changed 
between 3.5-14.2°C with a mean of 7.8°C during heating seasons. 
Outdoor variables were taken from Met office local weather sta-
tions55 that were maximum 3 miles away from each study site.

2.2.2 | Buildings

In this study, 29 NV classrooms were selected in eight primary 
schools that comply with the following five criteria. (1) Selected 
schools are naturally ventilated since the main source of ventila-
tion in most schools in the UK is windows. Furthermore, variations 
in temperature, relative humidity, and indoor pollutants from me-
chanical ventilation and air-conditioning systems53,54 can impact 
children's perception of IAQ. (2) Schools were selected in quiet areas 
with a considerable distance to the main road to not restrict window 
operation due to high background noise level as recommended by 
Building Bulletin 93: Acoustic Design of Schools to facilitate natural 
ventilation.56 The regional Road Noise, LAeq 16h, is less than 55 dB 
in all selected schools according to England Noise Map Viewer.57 
(3) Schools were also selected in low-polluted areas to not restrict 
window operation, as recommended by CIBSE TM 21: Minimizing 
pollution at air intakes.58 Schools were selected in areas with low 
Daily Air Quality Index (DAQI) according to Air pollution Forecast 
provided by the Met Office.59 (4) Buildings were selected with dif-
ferent architectural features as studies have shown that buildings’ 
design affects IAQ.24,38,60 Classroom's architectural features are 
shown in Table 1; classroom area (50-70 m2), volume (130-252 m3), 
window area (0-8 m2), number of windows (0-8), and the minimum 
height of windowsill (0.5-2.3 m). 5. Schools were selected among 
both renovated and existing buildings because buildings have dif-
ferent potentials for maintaining IAQ according to their age and de-
sign.42,60,61 Furthermore, the required IAQ is different for renovated 
and existing buildings.62 Among 29 classrooms, 13 classrooms are 
renovated and 16 classrooms are not.

2.2.3 | Occupants

It is important to select an age-group that has a good understand-
ing of questionnaire structure and indoor environment. Among pri-
mary school students, children in their late middle childhood (9-11 
YO) rather than their peers in early middle childhood (6-8 YO) were 
selected as the main respondents of this study because of their more 
developed literacy skills, cognitive abilities,63 and attention span.64 M
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They evaluate facts better,64 which results in data validity and con-
sistency of findings.63 The gender ratio of surveyed girls (51%) and 
boys (49%) is approximately the same that can reduce bias and in-
crease the credibility of results.65

2.3 | Data acquisition

2.3.1 | Children's perception of indoor environment

This study acquires data on children's Air Sensation Votes (ASVs) 
and Thermal Sensation Votes (TSVs) through a self-reported ques-
tionnaire that was validated in an earlier study by authors,65 Table 2. 
Children's perception of IAQ was questioned by “How is the air in 
the classroom now?” with a 5-point rating scale as “Very fresh, Fresh, 
OK, Stuffy and Very stuffy”. This question is followed by another 
question to find out if they want the air to be “Fresher” or “As it 
is.” Several other studies confirm that CO2 concentrations deter-
mine children's perception of air freshness and stuffiness.33,66,67 To 
evaluate how Thermal Sensation Votes (TSVs) affect ASVs, children 
were surveyed on the thermal environment by “How do you feel 
now?” with a 5-point rating scale as “Cold, Cool, OK, Warm, Hot.” 
To discover how comfort and tiredness levels are related to ASVs, 
two other questions, “Do you feel comfortable now?/Do you feel 
tired now?,” were administrated to children by 3-point rating scales, 
Table 2.

According to Building Bulletin 101 (2018), the internal air qual-
ity in schools is determined largely by odor (from people and mate-
rials) and CO2 levels, rather than any other pollutants.8 Therefore, 
during the pilot study, another question was designed for evaluat-
ing children's perception of IAQ; “Is your classroom smelly now?”.65 
However, this question was removed from the questionnaire during 
the validation process53 since no correlation was found between 
CO2 levels and answers to this question. This is mainly because oc-
cupants already in the room will not be aware of odor, as a reaction 
to odor is immediate and olfactory sense rapidly adjusts to odor.68 
Studies have shown that CO2 concentrations better account for chil-
dren's perception of air freshness66,67 than children's perception of 
smell.65

Children were usually asked to fill out the paper-based ques-
tionnaire at the end of morning and afternoon sessions because the 
end of sessions has the poorest conditions in terms of IAQ due to 
accumulation of stale air.21 In total, questionnaires were filled out 
on 52 different morning and afternoon sessions. Goto et al (2002)69 
suggest that occupants should maintain a stable activity level at 
least 30 minutes before filling out the questionnaire. Therefore, 
the authors made sure that children maintained sedentary activities 
(reading and writing) at least 30 minutes before filling out the ques-
tionnaires. Running surveys resulted in observing 805 children and 
collecting 1390 questionnaires, Table 3.
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2.3.2 | Environmental measurements

Environmental variables affecting IEQ and comfort were recorded at 
5-minute intervals; however, environmental variables recorded at the 
time of children's filling out the questionnaire are evaluated in this 
study. Environmental variables were recorded at 5-minute intervals 
by multi-functional SWEMA equipment, standalone data loggers, and 
CO2 meter (TGE-0011, accuracy: ±50 + 2%). Measurement station was 
located away from the main airflows (eg, windows), away from heat 
sources (eg, projectors), and also away from sun patches at a height of 
1.1 m as recommended by ISO 7726.70 Equipment was placed within 
the vicinity of children's desks without impairing their visual access and 
seating arrangement. The instruments were set up in the classrooms 
before children's arrival in the morning so that instruments acclimatize 
to the classrooms’ environment before reading.47

2.4 | IAQ standards

The European standard of EN 13779:200762 recommends IAQ val-
ues and expected percentage dissatisfied in four different building 
categories, Table 4”: (I) high level of expectation for spaces occupied 
by very sensitive people with special requirements, (II) normal level 
of expectation for new buildings and renovations, (III) moderate level 
of expectation for existing buildings, and (IV) low level of expecta-
tion only acceptable for a short period.

The American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) standard 62 recommends CO2 

level of 1000 ppm for classrooms,14 which is similar to that for 
Category II buildings for new and renovated buildings.

2.5 | Statistical analysis

To decide on the most appropriate statistical tests, parametric and 
non-parametric tests are defined.

Parametric tests can only be used when data fulfill these three 
conditions: (1) the level or scale of measurement is of equal interval 
or ratio scaling, (2) the distribution of the population is normal, and 
(3) the variances of both variables are equal.71,72

To check the normality of the interval-scale data, histograms, 
Kolmogorov-Smirnov/Shapiro-Wilk's tests and QQ plots are ap-
plied.73 In histograms, the normally distributed data peak in the 
middle and are symmetrical about the mean (bell-shaped)73; how-
ever, it does not need to be perfectly normally distributed.74 For 
Kolmogorov-Smirnov/Shapiro-Wilk's tests, normality tests are un-
likely to detect non-normality for small sample sizes (n < 20) and 
are too sensitive for larger sample sizes (n > 50).73 In QQ plots, 
the points will be close to the line for normally distributed data.74 
Because Kolmogorov-Smirnov/Shapiro-Wilk's tests are sensitive to 
outliers, histograms for large samples and QQ plots for small sam-
ples can be used.74 To check homogeneity of variance, Levene's test 
(part of standard SPSS output) can be used.74

In this study, histograms and Levene's tests are used to check the 
distribution and variance of the dependent variable of air sensation 
votes (ASVs). Results of this study show that air sensation votes, as 

TA B L E  3   The number of schools, classrooms, and children observed

School Number Date
Number of 
classrooms

Number of surveyed & observed 
children

Number of collected 
questionnaires

School 1 July 17-21, 2017 5 130 210

School 2 September 21-27, 2017 4 110 195

School 3 October 29-31, 2017 3 65 115

School 4 November 21-24, 2017 3 85 115

School 5 Jan 29-Feb 02, 2018 5 145 290

School 6 Feb 12-16, 2018 5 85 140

School 7 April 17-19, 2018 3 80 165

School 8 May 22-25, 2018 4 105 160

Total July 2017- May 2018 32 805 1390

Categories
IAQ 
standard

Expected 
percentage 
dissatisfied

Range of 
CO2 levels

Total CO2 level based on 
outdoor CO2 of 400 ppm

Category I High <15 <400 <800

Category II Medium 15-20 400-600 800-1000

Category III Moderate 20-30 600-1000 1000-1400

Category IV Low >30 >1000 >1400

TA B L E  4   CO2 levels and expected 
percentage dissatisfied by EN 13779:2007 
for each category of IAQ62
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dependent in this study, are approximately normal (bell-shaped), as 
shown in Figure 1; however, Levene's test shows that variances are 
not equal, [F (4, 1354) = 14.7, P = .000]. The data were analyzed 
using the Statistical Package for Social Science (SPSS).75

Statistical analysis in the following is categorized into four main 
groups: (1) descriptive, (2) correlational, (3) predictive, and (4) group 
differences (cause and effect). Table 5 shows a summary of tests 
done in this study based on the type of dependent and independent 
variables.

2.5.1 | Descriptive statistics

Descriptive statistics such as (minimum, maximum, mean, and stand-
ard deviation) can describe normal distribution of variables.74 In this 
study, descriptive statistics are used to describe the dependent vari-
able of ASVs which is normally distributed.

2.5.2 | Correlational

Correlation indicates both the strength and direction of the relation-
ship between a pair of variables.71,72 It is assumed that higher cor-
relation coefficient values and smaller associated P values imply a 
stronger correlation.76 Spearman's correlation is a non-parametric 
measure used for ordinal/interval and skewed data to show the 
strength of the relationship.71-73

2.5.3 | Predictive

Regression explains how variables are related and it predicts depend-
ent variable (y) given the independent variable (x),74 (y = a + bx + e, 
R2 = n). The R2 value shows the proportion of the variation in the 
dependent variable which is explained by the model.71,72,74 In this 

study, correlations and regressions are used to show how ASVs are 
related to Top and CO2 levels, Table 5.

2.6 | Group differences

Tests of group differences are used to determine whether the groups 
are the same or not.71,77 Chi-square test is used to compare propor-
tions between two or more independent groups,15,71-73 and Kruskal-
Wallis test is used to compare the medians between groups.71-73 In 
this study, chi-square and Kruskal-Wallis tests are used to show how 
frequency and median of ASVs change in different categories of 
TSVs, IAQ, operative temperature (Top), and tiredness, Table 5.

3  | RESULTS AND DISCUSSION

The study provides an overview of the recorded data on children's 
perception of the indoor environment and indoor environmental 
conditions. The first part of the study shows factors affecting ASVs 
including physical parameters (such as CO2 levels, operative temper-
ature, and humidity) and thermal sensation. The second part of the 
study shows factors that are affected by ASVs such as comfort and 
tiredness levels, Figure 2.

3.1 | Overview of the recorded data

• Perception of Indoor Environment:
The frequency of children's ASVs (%) and Air Preference Votes 

(APVs) during different seasons is shown in Figure 3. This fig-
ure shows that proportion of “OK” votes is the highest (40.3%), 
followed by “fresh or very fresh” votes (36.2%) and then “stuffy 
or very stuffy” votes (23.5%). The frequency (%) of comfort and 
tiredness votes during different seasons is shown in Figure 4. 

F I G U R E  1   Normal distribution of ASVs
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As can be seen in Figure 4, “comfortable” votes are the highest 
(51.4%), followed by “a little comfortable” (34.7%) and “not com-
fortable” (13.9%). Similarly, “a little tired” votes are the highest 
(40.8%), followed by “tired” votes (33.8%) and “not-tired” (25.4%) 
votes, Figure 4.

• Indoor Environmental Conditions:

Descriptive statistics of environmental variables at the time 
of filling out questionnaires are presented in Table 6. Mean CO2 
level is higher during heating seasons (1310 ppm) than that during 

non-heating seasons (1180 ppm). Maximum air velocity is below 
0.1 m/s in this study; therefore, operative temperature (Top) was cal-
culated based on the average of indoor air temperature and radiant 
temperature.47,78 Mean operative temperature and humidity during 
non-heating seasons (24.2°C and 50.9%) are higher than those 
during heating seasons (22.8°C and 37.3%).

Figure 5 shows frequency (%) of “at-the-time CO2 levels” in 
each category of IAQ during non-heating and heating seasons. 
Measurements of “at-the-time CO2 levels” are mostly distributed in 
categories III and IV and CO2 levels in Cat I are only recorded during 
non-heating seasons, Figure 5.

TA B L E  5   Summary of all tests in this study

Variables

Corresponding Test

Variables in this Study

Independent (IV) Dependent (DV) Dependent Independent

1 interval IV Ordinal or interval Non-parametric Spearman 
correlation71-73

ASVs CO2 levels

Top

1 IV with 2 or more 
groups

Ordinal or interval Non-parametric Kruskal-Wallis test71-73 ASVs TSVs

Categorical Non-parametric chi-square test71,72 ASVs Different Cat of IAQ

Different Cat of Top

Different Cat of Tiredness

F I G U R E  2   Classification of results and 
findings

F I G U R E  3   Frequency (%) of ASVs and 
APVs during different seasons

Very
Fresh Fresh OK Stuffy Very

Stuffy
Very
Fresh Fresh OK Stuffy Very

Stuffy
Non-Hea�ng Hea�ng

As it is 19.0 39.1 39.1 2.4 0.4 21.6 44.2 31.7 2.0 0.5

Fresher 3.6 16.9 43.7 28.3 7.5 8.6 18.3 41.5 23.0 8.6
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Table 7 shows mean operative temperatures and their standard 
deviations (SD) in each category of IAQ. As can be seen in Table 7, 
mean operative temperature and SD are higher when CO2 levels are 
lower than 800 ppm (Category I) compared to other categories.

3.2 | The impact of CO2 levels on ASVs

The impact of CO2 levels on ASVs is investigated by predicting the 
strength of the relationship (correlations), degree of variations (re-
gressions), and predicted percentage dissatisfied (PPD).

3.2.1 | Strength of relationship (Correlations)

CO2 levels affect occupants’ perceived IAQ19,28 and determine occu-
pants’ perception of air freshness and stuffiness.66,67 Results of this 
study, using Spearman correlation coefficient test, show that chil-
dren’ ASVs and CO2 levels at the time of filling out the questionnaire 
are significantly correlated during non-heating seasons (Spearman 
correlation coefficient = 0.17, P < .001); however, the correlation is 

less significant during heating seasons (Spearman correlation coef-
ficient = 0.10, P < .01). CO2 measurements are recorded at 5-min 
intervals in this study; therefore, “at-the-time CO2 level” refers to the 
average CO2 levels during the last 5 minutes. Correlations suggest 
that the strength of the relationship between CO2 levels and ASVs is 
higher during non-heating (17%) than heating seasons (10%).

Correlations between ASVs and CO2 levels were compared 
with the average of CO2 levels during the last 10 and 15 minutes 
of the survey to estimate which range of CO2 better indicates chil-
dren's perception of IAQ, Table 8. During non-heating seasons, the 
correlation between ASVs and 5-minute CO2 levels (correlation 
coefficient = 0.17) is higher than that with an average of 10-min-
ute (correlation coefficient = 0.15) or 15-minute (correlation co-
efficient = 0.14) CO2 measurements. During heating seasons, the 
correlation between ASVs and 5-min CO2 levels (P = .01, correla-
tion coefficient = 0.10) is more significant than that with average of 
10-minute CO2 measurements (P = .04, correlation coefficient = 0.09) 
and it is not significant for 15-minute CO2 (P = .25 > 0.05), Table 8. 
Children’ ASVs and average CO2 levels during the whole session 
were not correlated (P = .41 > .05). Correlation coefficient shows 
the strength of the relationship between a pair of variables71,72; 

F I G U R E  4   Frequency (%) of comfort 
and tiredness votes during different 
seasons
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Comfort and Tiredness levels during two seasons

Non-Hea�ng Hea�ng

Season Parameters Minimum Maximum Mean SD

Non-heating CO2 level (ppm) 662 3277 1180 488

Air velocity (m/s) 0.00 0.1 0.08 0.05

Operative temperature (°C) 19.0 28.1 24.2 2.1

Relative humidity (RH) 38.3 66.6 50.9 7.8

Heating CO2 level (ppm) 842 2106 1310 351

Air velocity (m/s) 0.00 0.09 0.05 0.03

Operative temperature (°C) 18.9 26.8 22.8 1.7

Relative humidity (RH) 25.8 53.4 37.3 7.4

TA B L E  6   Descriptive statistics of 
environmental variables at the time of 
filling out the questionnaire
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therefore, the last 5-minutes CO2 measurements are used for fur-
ther analysis due to a stronger relationship with ASVs.

The stronger relationship between ASVs and “5-minute CO2 
measurement” than “10 or 15 minutes CO2 measurement” suggests 
that children get adapted to indoor CO2 levels after 5 minutes. After 
5-minute adaptation, children's ASVs in this study are independent 
of CO2 levels. Similar studies support that due to adaptation, ASVs 
show high acceptability, and adapted subjects would not distinguish 
between high and low levels of concentration.79,80 The study by Cain 
(1985) found that after 3 minutes of adaptation, perceived intensity 
reaches a stable level of 40% of the initial amount.81 Another study 
by Gunnarsen (1992) shows that 95% of the votes on IAQ change 
due to adaptation which took place within 6 minutes of exposure.79 
After 5 minutes, adapted votes that are independent of CO2 levels 

are obtained; therefore, the study uses at-the-time CO2 levels (5-min 
measurement) for further analysis. Standards and regulations usually 
consider average CO2 levels as an indicator of IAQ because concen-
trations are generally spatially non-uniform.28 However, these results 
suggest that children's instantaneous perception of IAQ is more re-
lated to CO2 levels at the time of the survey. Therefore, children's 
ASVs in short intervals should also be evaluated to have a better un-
derstanding of perceived IAQ.

3.2.2 | Degree of variations (regressions)

For each survey, the proportions of “very fresh/fresh” (ie, ASV = 1 or 
2), “OK” (ie, ASV = 3), and “stuffy/very stuffy” (ie, ASV = 4 or 5) votes 
were calculated and plotted against CO2 levels during non-heating 
and heating seasons, Figures 6 and 7. Similarly, the proportion of chil-
dren who prefer the air quality to be “fresher” (ie, APV = 1) or “as it is” 
(ie, APV = 2) was calculated and plotted against CO2 levels, Figures 6 
and 7.

Non-heating seasons: As can be seen in Figure 6, by the in-
crease in CO2 levels, “fresh/very fresh” votes decrease, and “OK” 
and “stuffy/very stuffy” votes increase during non-heating seasons. 
Regressions in Figure 6 suggest that 33% variations in “fresh/very 
fresh” votes, 28% variations in “OK” votes and 5% variations in 
“stuffy/very stuffy” votes are explained by CO2 levels. To predict 
how votes change by CO2 changes, “slope” and “intercept” of each 
linear model are also considered, as suggested in other studies.71,72 
Slopes in Figure 6 show that the rate at which CO2 changes affect 
ASVs is highest for “fresh/very fresh” votes, then “OK” votes and 
then “stuffy/very stuffy” votes during non-heating seasons.

F I G U R E  5   Frequency (%) of “at-the-
time CO2 levels” in each category of IAQ 
during different seasons
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Percent frequency 
(%) Top (Mean)

Top 
(SD)

Category I <800 14.7 23.31 3.01

Category II 800 < CO2 < 1000 16.5 22.93 2.26

Category III 1000 < CO2 < 1400 38.1 22.94 1.93

Category IV CO2 > 1400 30.7 22.88 1.13

TA B L E  7   Mean and SD of Top in each 
category of IAQ

TA B L E  8   The correlation between ASVs and 5-, 10-, and 15-min 
averages of CO2 levels

Seasons CO2 level

Sig. 
(2-tailed) 
with ASVs

Correlation 
with ASVs

Non-heating 5-min average 0.000 0.172***

10-min average 0.000 0.148***

15-min average 0.000 0.142***

Heating 5-min average 0.018 0.103*

10-min average 0.042 0.089*

15-min average 0.251 0.050

*P < .05. 
**P < .01. 
***P < .001. 
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Figure 6 shows that “fresh/very fresh” line intersects with “OK” 
line at CO2 level of 950 ppm and it intersects with “stuffy/very stuffy” 
line at CO2 level of 1450 ppm. This indicates that at CO2 = 950 ppm, 
the proportion of “fresh/very fresh” and “OK” votes is equal and 
at CO2 level = 1450 ppm, the proportion of “fresh/very fresh” and 
“stuffy/very stuffy” votes is equal. When CO2 > 950 ppm, the pro-
portion of “OK” votes is more than “fresh/very fresh” votes, and 
when CO2 > 1450 ppm, the proportion of “stuffy/very stuffy” votes 
is more than “fresh/very fresh” votes. This suggests that “at-the-time 
CO2 levels” should not exceed 1450 ppm; otherwise, the proportion 
of “stuffy/very stuffy” votes would be more than “fresh/very fresh” 
votes. CO2 level of 1450 ppm is close to the upper limit of Category 
III buildings which corresponds to a moderate level of expectation for 
existing buildings.

Heating Seasons: As can be seen in Figure 7, by the increase in 
CO2 levels, “fresh/very fresh” votes decrease, “OK” votes do not 
change, and “stuffy/very stuffy” votes increase during non-heating 
seasons. Regressions in Figure 7 reflect that only 10% variations in 
“fresh/very fresh” votes, 6% variations in “stuffy/very stuffy” votes, 
and 2% variations in “OK” votes are explained by CO2 levels. Slopes 
in Figure 7 show that the rate of CO2 changes is highest for “fresh/
very fresh” votes, then “stuffy/very stuffy” votes, and then “OK” 
votes during heating seasons. The graph shows that “fresh/very 
fresh” line intersects with “OK” line at CO2 level = 1150 ppm and 
it intersects with “stuffy/very stuffy” line at CO2 = 2000 ppm. This 
shows that at CO2 = 1150 ppm, the proportion of “fresh/very fresh” 
and “OK” votes is equal and at CO2 = 2000 ppm, the proportion of 
“fresh/very fresh” and “stuffy/very stuffy” votes is equal.

F I G U R E  6   Proportions of ASVs and 
APVs by CO2 levels during non-heating 
seasons
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and APVs by CO2 levels during heating 
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Comparing Figures 6 and 7 shows that the proportion of “OK” 
votes increases by the increase in CO2 during non-heating seasons; 
however, they do not change significantly during the heating sea-
son. This suggests that “OK” votes do not show a fixed or recognized 
trend for acceptability on air sensation scale. On the other hand, 
“OK” votes on thermal sensation scale are perceived acceptable 
because thermal sensation scale is symmetrical with more accept-
able votes in the middle and less acceptable ones at the ends. Air 
sensation scale has a direction from the acceptable to unacceptable 
votes, with “OK” votes in the middle as a transition point. Therefore, 
only “fresh/very fresh” and “stuffy/very stuffy” votes change by CO2 
variations.

3.2.3 | CO2 levels and Predicted Percentage 
Dissatisfied (PPD)

European21 and ASHRAE standards14 suggest that for acceptable 
IAQ, the percentage of dissatisfaction among occupants should not 
be more than 20%.14,82-84 Maximum PPD of 20% regarding thermal 
comfort is generally acceptable; therefore, it is prudent to adopt a 
20% PPD level regarding IAQ.20

EN 13779:200762 for categories I and II and ASHRAE standards14 
recommend CO2 levels below 1000 ppm for maintaining IAQ; this 
level is also recommended in several other studies.15 Therefore, PPD is 
calculated for CO2 levels more than 1000 ppm or less than 1000 ppm, 
Figure 8. Results of this study show that when CO2 < 1000 ppm, ex-
pected percentage dissatisfied (PPD) with IAQ is 17.4%. Two more 
studies confirm that the threshold for PPD of 20% is approximately 
1000 ppm.20 When CO2 > 1000 ppm, “stuffy/very stuffy” votes 
increase around 9% and “fresh/very fresh” votes decrease around 
13%. This means by keeping CO2 levels below 1000 ppm, around 
22% improvement in ASVs can be maintained. Furthermore, when 
CO2 < 1000 ppm, “Fresh/Very Fresh” votes are 27% higher than 
“Stuffy/Very Stuffy” votes; however, this difference is only 5% when 
CO2 > 1000 ppm.

3.3 | Impact of operative temperature and humidity 
on ASVs

Humphreys et al (2002) suggest that physical variables such as air 
temperature and relative humidity affect IAQ perception directly.85 
Wargocki and Wyon (2017) also show that the mechanisms that 
mediate the impacts of IAQ and thermal environment on perfor-
mance are surprisingly similar.86 To discover how operative tem-
perature (Top), humidity (RH%), and ASVs are related, correlation 
tests were run between ASVs, Top, and RH%, Table 9. Previous 
studies have shown that lower humidity improves perceived IAQ 
28,81,87,88; however, results of this study show that humidity does 
not affect children's ASVs (P(NH) = 0.072 and P(H) = 0.46 > 0.05), 
Table 9. This is mainly because children are not exposed to very 
low or very high humidity levels in this study (38%-66% during 
non-heating and 26%-53% during heating seasons), Table 6. It is 
also shown that humidity has a modest effect on thermal sensa-
tion and perceived IAQ for moderate environments (<26°C)89 
activity levels (<2 met).21,89 As can be seen in Table 9, there is a 
correlation between CO2 levels and humidity during non-heating 
(Spearman correlation coefficient = 0.11, P < .005) and heating 
seasons (Spearman correlation coefficient = 0.43, P < .001). This 
is mainly because relative humidity and CO2 levels are both ema-
nated through occupants’ respiration and sweating, as suggested 
by Ghita and Catalina (2015)90; therefore, relative humidity and 
CO2 variations have similar patterns.

Results of this study show that operative temperature (Top) 
is not correlated to children's ASVs during non-heating seasons 
(P = .27 > .05); however, it is significantly related to their ASVs 
during heating seasons (Spearman correlation coefficient = 0.15, 
P < .001), Table 9. During non-heating seasons, ASVs are cor-
related to CO2 levels (Spearman correlation coefficient = 0.172, 
P < .001) and not to Top (P = .27 > 0.05), Table 9. During heating 
seasons, ASVs are more correlated to Top (Spearman correlation 
coefficient = 0.15, P < .001) compared to CO2 levels (Spearman 
correlation coefficient = 0.1, P < .05), Table 9. To assure that 

F I G U R E  8   Frequency (%) of ASVs in 
each category of IAQ
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impact of Top on ASVs is not influenced by CO2 levels, the cor-
relation between CO2 levels and Top is also investigated in Table 9. 
Results show that CO2 and Top have a negative correlation; sug-
gesting that the impact of Top on ASVs is not skewed by CO2 levels. 
The negative correlation between CO2 levels and Top (°C) in this 
study is due to more open windows during non-heating seasons 
compared to heating seasons.

Children's mean ASVs are calculated for each survey based on 
scale codes in Table 2 (very fresh = 1, fresh = 2, OK = 3, stuffy = 4, 
very stuffy = 5). Figure 9 shows the relationship between mean 
ASVs for each survey, CO2 levels (ppm), and Top (°C) at the time of 
filling out the questionnaire. As can be seen in Figure 9, by an in-
crease in CO2 levels and Top, mean ASVs increase. Regressions in 
Figure 9 suggest that 24% and 6% variations in ASVs are explained 
by CO2 levels during non-heating and heating seasons, respectively. 
Similarly, 5% and 18% variations in ASVs are explained by Top during 
non-heating and heating seasons, respectively. Results of the study 
show that for 1°C increase in Top (°C), ASVs increase 0.8 and 0.5 
points on the 5-point rating scale during non-heating and heating 
seasons. For 200 ppm increase in CO2 levels, ASVs increase 0.45 
and 0.85 points during non-heating and heating seasons. A similar 
study shows that by 1°C change in room temperature, average ASV 

of university students changes 0.3-0.4 points on the 6-point rating 
scale.19

Results of this study show that lower temperatures improve chil-
dren's perception of IAQ. Previous studies have also confirmed that 
lower temperature (keeping the air cool) improves perceived IAQ and 
higher temperatures degrade IAQ.28,30,81,87,91,92 Therefore, the air is 
perceived fresher at reduced temperatures and stuffier at higher tem-
peratures. Temperature changes the energy content of the air and the 
cooling effect in the respiratory tract.88 When the temperature is con-
siderably lower than the mucosal temperature (30-32°C), the thermal 
sense is stimulated due to convective and evaporative cooling of the 
respiratory tract.15 When the respiratory cooling effect decreases to 
a certain level, the air is perceived very poor whether the air is clean 
or polluted.88 A similar study shows that for the median indoor tem-
perature of 22.31°C, students were totally satisfied with IAQ while for 
temperatures greater than 25°C, they were dissatisfied.33 Thermal con-
ditions can also affect IAQ indirectly by influencing emission sources 
and indoor concentrations of pollutants.12

Figure 10 shows that the impact of temperature on ASVs de-
creases with an increasing level of CO2 concentration. As can be 
seen in Figure 10, when CO2 level = 800 ppm, by 1°C decrease in 
temperature from 24.5°C to 23.5°C, children's ASVs change from 

TA B L E  9   The correlation coefficient between parameters

Seasons Parameters

ASVs Operative temperature (Top) Humidity (RH%)

Correlation Sig. Correlation Sig. Correlation Sig.

Non-heating ASVs 1.000 . 0.04 0.27 −0.067 0.072

CO2 level 0.172*** 0.000 -0.12*** 0.002 0.11 0.004

Heating ASVs 1.000 . 0.15*** 0.000 −0.03 0.46

CO2 level 0.10* 0.018 -0.10* 0.026 0.43 0.000

*P < .05. 
**P < .01. 
***P < .001. 
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“stuffy/very stuffy” to “fresh/very fresh.” However, when CO2 
level > 1400 ppm, a decrease in temperature does not change or 
improve children's ASVs significantly. Figure 11 shows that the in-
fluence of CO2 concentration on ASVs decreases with increasing 
temperature. As can be seen in Figure 11, when Top = 19°C, around 
300 ppm decrease in CO2 level from 1500 to 1200 ppm improves 
children's ASVs from “stuffy/very stuffy” to “fresh/very fresh.” 
However, when Top > 26°C, the decrease in CO2 levels does not sig-
nificantly improve children's ASVs.

This study shows that the impact of temperature on ASVs de-
creases with increasing CO2 levels, and the influence of CO2 con-
centration on ASVs decreases with increasing temperature. Both 
findings are supported in a similar study by Fang et al (1998)88 on the 
impact of temperature and humidity on the perception of IAQ. These 
findings can be explained by two reasons; warm air can be inter-
preted stuffy and perceived unacceptable, whether the air is fresh 
or stuffy.88 It is shown that temperature affects IAQ especially when 
the air is overheated.88 Stuffy air can also be interpreted as warm in 
the respiratory tract and perceived unacceptable.88,93

3.3.1 | Comfort temperature

An earlier study by authors shows that the upper limit of thermal 
comfort band for surveyed children is around 23°C.94 Therefore, 
the frequency (%) of ASVs in two categories of operative tempera-
ture (Top < 23°C and Top > 23°C) is investigated. The result of the 
chi-square test shows that there is a significant difference in the 
frequency of ASVs in two categories of operative temperatures 
[X2(2, N = 1359) = 19.9, P < .001]. As can be seen in Figure 12, 
when Top < 23°C, “Fresh/Very Fresh” votes are around 9% higher 
and “Stuffy/very stuffy” votes are around 11% lower compared to 
when Top ≥ 23°C. Therefore, around 20% improvement in ASVs can 

be observed when Top is within or lower than children's thermal com-
fort band. Furthermore, when Top < 23°C, “Fresh/Very Fresh” votes 
are 25% higher than “Stuffy/Very Stuffy” votes; however, this differ-
ence is only 5% when Top > 23°C.

To ensure that children's improved perception of IAQ is also im-
pacted by lower temperatures and not merely by air change rates, 
ventilation rates, and CO2 levels, the study considers the correla-
tion between operative temperatures, air change rates, and ventila-
tion rates. An earlier study by authors95 evaluates ventilation rates 
on the same classrooms from the transient mass balance method. 
Results show that Top is correlated with ACRs (Spearman correlation 
coefficient = 0.20, P < .05) and VRs (Spearman correlation coeffi-
cient = 0.29, P < .001). The positive correlation suggests that when 
Top is higher, ACRs and VRs are also higher.95 This indicates that by 
the increase of Top, there is a higher tendency to open windows which 
in turn increases VRs, as supported in several other studies.22,42

This finding rejects the hypothesis that lower temperatures im-
prove children's perception of IAQ through higher ventilation rates. 

F I G U R E  1 0   Impact of temperature on ASVs with increasing 
CO2 level
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The study highlights that lower temperatures improve children's per-
ception of IAQ independent of ventilation rates.

3.4 | Impact of thermal perception on ASVs

The study shows the effect of TSVs and TPVs on ASVs in boxplots, 
Figures 13 and 14. Results of Kruskal-Wallis H test show that there 
is a statistically significant difference in mean and median of ASVs 
between different groups of TSVs during non-heating (χ2(4) = 26.89, 
P = .000) and heating (χ2(4) = 58.97, P = .000) seasons. Similarly, 
there is a statistically significant difference in ASVs between differ-
ent groups of TPVs during non-heating (χ2(4) = 62.13, P = .000) and 
heating (χ2(4) = 61.2, P = .000) seasons.

Figure 13 shows that children's ASVs are oriented toward 
stuffy/very stuffy votes when children feel hot [ASV(mean) = 3.3-
3.5] and cold [ASV(mean) = 2.6-3.2]. This finding is confirmed by 
Humphreys et al (2002) that show when occupants are uncomfort-
ably warm, they perceive IAQ poorly.85 The most favorable ASVs 
[ASV(mean) = 2.4-2.5] are given when children feel “cool” during both 
seasons. Figure 14 shows that when children have “cooler” prefer-
ence, they give the least favorable ASVs [ASV(mean) = 3.4]; however, 
when they have “as it is” preference, they give the most favorable 
ASVs [ASV(mean) = 2.4-2.5]. Humphreys et al (2002) also support that 
respondents give the most favorable ASVs when they require no 
change in the thermal environment.85 Therefore, in this study with 
the focus on UK children, the most favorable ASVs are given when 
children feel “cool” and have “as it is” preference. However, these 
results may be different in another climate.

In Table 10, crosstabs were created by using TSVs, TPVs, and 
ASVs. Among children who feel “hot,” nearly half of them (47%) find 
the classroom “stuffy/very stuffy,” while less than a quarter (23%) 
find the classroom “fresh/very fresh.” Among children who feel 
“cool,” more than half of them (53%) find the classroom “fresh/very 
fresh” and only 13% find the classroom “stuffy/very stuffy”; “fresh/
very fresh” votes are 4 times more than “stuffy/very stuffy” votes, 
Table 10.

Among children who have “cooler” preference, 23% find the 
classroom “fresh/very fresh” and 48% find the classroom “stuffy/
very stuffy”; “stuffy/very stuffy” votes are more than two times 
“fresh/very fresh” votes, Table 10. Among children who prefer the 
classroom “as it is,” 46% find the classroom “fresh/very fresh” and 
8% find the classroom “stuffy/very stuffy”; “fresh/very fresh” votes 
are 5.8 times more than “stuffy/very stuffy” votes, Table 10. This 
indicates the impact of TSVs and TPVs on ASVs; when children are 
more satisfied with their thermal environment, they give more fa-
vorable ASVs.

3.5 | Integration

Results of this study show that by keeping CO2 levels below 
1000 ppm, ASVs improve by 23% (Refer to 3.1.3). Furthermore, by 
keeping operative temperatures within or below thermal comfort 
band (Top < 23°C in this study), ASVs improve by around 20%. To 
integrate the impact of both Top and CO2 on ASVs, the proportion of 
children in each category of ASVs based on Top and CO2 is presented 
in Table 11.

According to Table 11, when CO2 < 1000 ppm and Top < 23°C 
(operative temperature is below the upper limit of thermal comfort 

F I G U R E  1 3   ASVs change within 
different categories of TSVs

F I G U R E  14   ASVs change within different categories of TPVs
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band), only 10% of children find the classroom “stuffy/very stuffy,” 
which is lower than PPD recommended by EN 15251 21 for Category 
I buildings. A similar study15 estimates that keeping CO2 < 1000 ppm 
and Top < 22°C can reduce PPD to 15%.15 Table 11 shows that when 
CO2 < 1000 ppm and Top > 23°C, PPD increases to 20%. Another 
study15 estimates that when CO2 < 1000 ppm and Top > 26°C, PPD will 
rise to 25%.15 Table 11 shows when CO2 > 1000 ppm and Top > 23°C, 
29.1% of children find the classroom “stuffy/very stuffy.” When 
“CO2 < 1000 ppm & Top < 23°C” compared to when “CO2 > 1000 ppm 
& Top > 23°C,” “stuffy/very stuffy” votes are 19% less and “fresh/very 
fresh” votes are 24% more (43% improvements on ASVs).

Improving ASVs by 43% is hard to achieve just by lowering 
CO2 levels and increasing ventilation rates; therefore, decreas-
ing operative temperatures within thermal comfort band can 
also help to improve children's perception of IAQ. The study by 

Bakó-Biró et.al (2012) recommends UK schools managers to con-
sider CO2, temperature, and humidity for maintaining IAQ, to 
keep temperatures within comfortable ranges [20-22°C during 
winter] and [22-24°C during summer] and humidity levels below 
60% during winter time but preferably above 40%.96 The study by 
Chatzidiakou et al (2015) confirms the need for an integrated ap-
proach providing simultaneously adequate IAQ and thermal com-
fort15 to improve the perception of IAQ. There is evidence that 
in case of insufficient cooling, increasing ventilation rate would 
be a waste of energy without any improvement in environment; 
however, decreasing air temperature up to the comfort threshold 
would succeed to provide a more pleasant perception of IAQ.88 
Fanger (1998) suggests ventilation standards such as ASHRAE 
do not consider the impact of temperature and humidity on per-
ceived IAQ.88 The review by Salthammer et al (2016) shows that 
poor IAQ in schools can be related to lack of budgets for local 
administrative bodies and inefficiency of regulations for better 
IAQ.97 Results of this study also suggest that standards and regu-
lations should consider the integrated impact of both temperature 
and CO2 levels on perceived IAQ.

TA B L E  1 0   Frequency of TSVs and TPVs in each category of ASVs

TSVs/TPVs

Air quality

Very fresh Fresh Stuffy Very stuffy

Number % Number % Number % Number %

TSVs Cold 12 21.8 8 14.5 9 16.4 6 10.9

Cool 30 15.0 75 37.5 22 11.0 4 2.0

OK 44 8.9 133 26.8 66 13.3 7 1.4

Warm 47 11.7 96 23.8 97 24.1 13 3.2

Hot 14 6.9 33 16.2 50 24.5 45 22.1

TPVs Cooler 24 9.7 34 13.7 69 27.8 50 20.2

A little cooler 24 6.9 72 20.8 95 27.5 11 3.2

As it is 52 12.0 146 33.6 34 7.8 3 0.7

A little warmer 26 11.7 69 30.9 29 13.0 6 2.7

Warmer 21 19.6 24 22.4 17 15.9 5 4.7

TA B L E  11   Frequency (%) of children’ ASVs based on Top and 
CO2

CO2 level 
(ppm) Top ASVs

Percent 
(%)

<1000 Top < 23°C Fresh or very fresh 53.0

OK 37.0

Stuffy or very stuffy 10.0

Top > 23°C Fresh or very fresh 41.4

OK 38.6

Stuffy or very stuffy 20.0

>1000 Top < 23°C Fresh or very fresh 36.7

OK 41.4

Stuffy or very stuffy 21.9

Top > 23°C Fresh or very fresh 28.7

OK 42.2

Stuffy or very stuffy 29.1

F I G U R E  1 5   ASV changes in different comfort groups
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3.6 | The impact of TSVs and ASVs on 
overall comfort

The study examines the effect of ASVs on different comfort groups 
as boxplots in Figure 15. Results of Kruskal-Wallis H test show 
that there is a statistically significant difference in mean and me-
dian of ASVs between different comfort groups during non-heating 
(χ2(4) = 48.5, P = .000) and heating (χ2(4) = 104.5, P = .000) seasons. 
Results show that when children are comfortable, mean ASVs are 
the most favorable (ASVNH = 2.6, ASVH = 2.4) and when children are 
not comfortable, mean ASVs are the least favorable (ASVNH = 3.2, 
ASVH = 3.7), Figure 15.

To examine the combined effect of ASVs and TSVs on comfort 
level, classrooms’ mean ASVs and TSVs for each comfort group are 
presented in Figure 16. As can be seen in Figure 16, range of TSVs 
and ASVs for “comfortable” children is narrower than that for “a lit-
tle comfortable” and “uncomfortable” children. Figure 16 shows that 
TSVs range from “−0.4 to +1” for comfortable votes, while they range 
from “−2 to +2” for uncomfortable votes. The difference between the 

range of TSVs for comfortable and uncomfortable votes is 2.6 [(−2 to 
2) - (−0.4 to 1)]. On the other hand, ASVs range from “+2.2 to +2.9” for 
comfortable votes, while they range from “+2.2 to +4” for uncomfort-
able votes. The difference between the range of ASVs for comfortable 
and not comfortable votes is 1.1 [(4-2.2) - (2.9-2.2)]. This suggests that 
changes in TSVs compared to ASVs are more significant in different 
comfort groups.

3.7 | Impact of CO2 levels, ASVs, and TSVs 
on Tiredness

The frequency (%) of children in each group of tiredness for differ-
ent IAQ categories is depicted in Figure 17. The result of chi-square 
test shows that there is a significant difference in frequency of (%) of 
tiredness groups in four categories of IAQ [X2(6, N = 1216) = 26.2, 
P < .001]. Figure 17 shows that as classrooms’ IAQ deteriorates 
from Category I to IV, the proportion of children feeling not tired 
decreases around 16% and the proportion of children feeling tired 

F I G U R E  1 6   The combined effect of 
ASVs and TSVs on different comfort levels

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

–2.00 –1.50 –1.00 –0.50 0.00 0.50 1.00 1.50 2.00

AS
V 

(m
ea

n)

TSV (mean)

Comfortable Not Comfortable

A li	le Comfortable Linear (Comfortable)

Linear (Not Comfortable) Linear (A li	le Comfortable)

F I G U R E  17   Frequency (%) of children 
in each group of tiredness for IAQ 
categories

<800 800<CO2<1000 1000<CO2<1400 CO2>1400
I am not �red now 36.5 32.8 22.5 20.8

I am a li�le �red now 38.2 37.3 39.6 42.1

I am �red now 25.3 29.9 37.9 37.1

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

Fr
eq

ue
nc

y 
(%

)

Categories of IAQ 

I am not �red now I am a li�le �red now

I am �red now Linear (I am not �red now)

Linear (I am �red now)



18  |     KORSAVI et Al.

increases around 12%. In total, by improving classrooms’ IAQ from 
Category IV to I, 28% of tiredness votes can be improved.

To examine the combined effect of ASVs and TSVs on tiredness 
level, classrooms’ mean ASVs and TSVs for each tiredness group 
are presented in Figure 18. As shown in Figure 18, TSVs range from 
“−1 to +1.25” for the “not-tired” group, while it ranges from “−1 to 
+1.5” for the “tired” group. The difference between ranges of TSVs 
for tired and not-tired groups is 0.25 [(–1 to 1.5) - (−1 to 1.25)]. On 
the other hand, ASVs range from “+2.5 to +3” for the “not-tired” 
group, while they range from “+2 to +3.5” for the “tired” group. 
The difference between the range of ASVs for “not-tired” and 
“tired” groups is 1.1 [(3.5-2) - (3-2.5)]. This suggests that changes 
in ASVs compared to TSVs are more significant in different groups 
of tiredness.

This study shows that by the increase in CO2 levels, tiredness 
levels increase. Previous studies have also shown that higher CO2 
levels are related to higher tiredness29,65,96 and discomfort7,65 levels. 
It is important to reduce the CO2 level before discomfort and tired-
ness levels set in. An earlier study by authors using the same data 
set65 highlights that high CO2 levels in classrooms impact children's 
errors in responding; therefore, among children who provide invalid 
and inconsistent responses to questionnaires, around 80% are tired 
or a little tired. It is shown that at concentrations over 1000 ppm, 
failures in decision making start to show and that at 2500 ppm fail-
ure in decision making is clear.31 Coley et al (2007) show that in class-
rooms where CO2 levels are high, students are less attentive and 
cannot concentrate well on what the teacher is saying, which over 
time can have detrimental effects on their learning performance.32 
CO2 is seen as a harmless gas and is given little significance96; how-
ever, as it contributes directly to the loss of concentration and in-
creased tiredness,98 it should be regarded as a very significant air 
pollutant.96 By lowering CO2 levels and improving IAQ, children 
would feel more comfortable and less tired,7,65,96 which can conse-
quently increase their productivity and learning performance.31,99 

The importance of ensuring acceptable IAQ in classrooms is distin-
guished as a contributing factor to the learning performance of stu-
dents.100 Mechanisms that mediate the effects of thermal conditions 
and IAQ on performance are similar86; therefore, it is expected to 
improve both collectively.

4  | CONCLUSION

This paper has focused on factors influencing children's perception 
of IAQ in primary school classrooms during non-heating and heating 
seasons. The study suggests that children's perception of IAQ de-
pends on “at-the-time CO2 level” which refers to the last 5 minutes 
of CO2 measurement because children adapt to the classroom's IAQ 
after 5 minutes. Therefore, studying CO2 levels within short inter-
vals reflects children's perception of IAQ more reliably than looking 
at average CO2 levels.

This study also highlights that indoor operative temperature 
and perception of the thermal environment (Top and TSVs) impact 
children's perception of IAQ. High temperatures and children's 
poor perception of thermal environment reduce children's accep-
tance of IAQ, even when CO2 levels are within acceptable limits. 
Low CO2 levels fail to provide acceptable IAQ when children are 
thermally uncomfortable in classrooms. According to results of this 
study, children's perception of IAQ deteriorates significantly when 
CO2 level goes above 1000 ppm and the operative temperature 
goes above the upper limit of thermal comfort band (above 23°C 
in this study). When CO2 < 1000 ppm and Top < 23°C, only 10% of 
children have “Stuffy/Very stuffy” votes, while this amount triples 
when CO2 > 1000 ppm and Top > 23°C. These findings urge school 
stakeholders and especially building management systems (BMS) to 
control CO2 levels and indoor operative temperatures collectively 
to improve children's perception of IAQ. Standards and regulations 
should also consider both CO2 levels and Top to evaluate IAQ.

F I G U R E  1 8   The combined effect 
of ASVs and TSVs on different levels of 
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