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Abstract

Weighted log-rank tests are arguably the most widely used tests by practitioners for the two-sample
problem in the context of right-censored data. Many approaches have been considered to make weighted log-
rank tests more robust against a broader family of alternatives, among them, considering linear combinations
of weighted log-rank tests, and taking the maximum among a finite collection of them. In this paper, we
propose as test statistic the supremum of a collection of (potentially infinite) weight-indexed log-rank tests
where the index space is the unit ball in a reproducing kernel Hilbert space (RKHS). By using some desirable
properties of RKHSs we provide an exact and simple evaluation of the test statistic and establish connections
with previous tests in the literature. Additionally, we show that for a special family of RKHSs, the proposed
test is omnibus. We finalise by performing an empirical evaluation of the proposed methodology and show an
application to a real data scenario. Our theoretical results are proved using techniques for double integrals
with respect to martingales that may be of independent interest.

Key words: Survival Analysis, Right-Censored Data, Reproducing Kernel Hilbert Space, Log-rank Test,
two-sample tests.

1 Introduction

Two-sample testing is a classical problem in the context of survival data. For instance, in a clinical trial, two-
sample tests can be used to compare different treatments when the survival times of patients are censored.
Within the context of right-censored data, the classical log-rank test, first introduced by Mantel [1966]
and Peto and Peto [1972], is the most widely used test among practitioners. A well-known property of
the classical log-rank test is that it is the most powerful test under the assumption of proportional-hazard
alternatives. This result can be deduced by noticing that the log-rank test statistic coincides with the
score test statistic when the true cumulative hazard function belongs to the model {Λθ, θ ∈ Θ}, where
Λθ(t) =

∫ t
0
eθdΛ0(x), Λ0 denotes the cumulative hazard function under the null hypothesis, and θ ∈ Θ ⊆ R is

the parameter of the model. While the classical log-rank test is optimal for proportional-hazard alternatives,
it can have a substandard behaviour when the true cumulative hazard function cannot be expressed in terms
of {Λθ, θ ∈ Θ}.

In order to broaden the power of the classical log-rank test to other families of alternatives, researchers
have introduced and studied different variants of weighted log-rank tests [Tarone and Ware, 1977, Gill, 1980,
Harrington and Fleming, 1982, Bagdonavicius et al., 2010, Andersen et al., 2012]. We refer the reader to
Chapter 7 of Klein and Moeschberger [2006] for a general discussion and comparison of different weighted
log-rank tests approaches. In the simplest case, each weighted log-rank test with weight function ω can be
written as a score test for alternatives in the model {Λθ,ω(t), θ ∈ Θ}, where Λθ,ω(t) =

∫ t
0
eθω(F0(x))dΛ0(x)

and ω is fixed. Then, similarly to the above, it can be deduced that each weighted log-rank test is the most
powerful test for the null hypothesis H0 : Λ1 = Λ0 under the assumption that Λ1 can be expressed in terms
of {Λθ,ω, θ ∈ Θ}, for some θ 6= 0. If the true cumulative hazard function cannot be expressed in terms of this
parametric model, there are no guarantees at all for the behaviour of the weighted log-rank test. Indeed,
it may happen that we observe pathological cases in which the test has zero asymptotic power for specific
alternatives. This is the case of the classical log-rank test, which is recovered by choosing ω = 1, in the
setting of crossing-hazard alternatives.

In an attempt to overcome the previously described limitations of weighted log-rank tests, researchers
have considered two natural approaches to improve their performance: the first approach considered is to
learn the weight function from the data, which defines a weighted log-rank test with an adaptive weight
function, and the second approach consists on combining several log-rank tests into a single test statistic.
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Both approaches avoid making the strong parametric assumption that a particular model is true. The first
approach has been discussed by Lai et al. [1991], Yang et al. [2005] and Yang and Prentice [2010], and the
second approach, which is the focus of this paper, has been studied by several authors. Particularly, Tarone
[1981], Kössler [2010], and Garès et al. [2015] combined weighted log-rank tests by considering the maximum
of a finite collection of them, and Kosorok and Lin [1999] proposed the supremum of an infinite collection
of weight-indexed log-rank tests, with weights belonging to a particular space of functions. The latter
approach is very close to what we propose in this paper, however, the test statistic proposed by Kosorok and
Lin [1999] lacks of an analytically tractable expression, which forces the authors to rely on a Monte-Carlo
approximation of it, whereas our approach, by an appropriate selection of the space of functions, obtains a
simple expression for our test statistic, leading to a simple testing procedure.

While the focus of this paper are weighted log-rank test and the combination of them, there are other
test-approaches for the two-sample problems that are worth mentioning. One example of these approaches
are the weighted Kaplan-Meier estimators [Pepe and Fleming, 1989], which are parametrised on a weight
function, and they can also be combined into one single statistic [Shen and Cai, 2001]. A different approach
is the so-called empirical likelihood approach [Zhou, 2016], which leads to very interesting test statistics that
can also be combined into a single statistic [Bathke et al., 2009]. Somewhat classical options are the Cramer
von-Mises and the Kolmovorov-Smirnov test statistics, that have been deeply studied in many settings,
including Survival Analysis [Koziol and Green, 1976, Koziol and Yuh, 1982].

In this paper, we consider the supremum of a potentially infinite collection of weighted log-rank tests
with weights belonging to the unit ball of a reproducing kernel Hilbert space of functions. Then, we propose
to test the null hypothesis H0 : Λ1 = Λ0, by checking if supω∈H:‖ω‖H≤1 LRn(ω) ≈ 0, where LRn(ω) denotes
a weighted log-rank test with weight function ω, and H is a reproducing kernel Hilbert space of functions.
Clearly, if Λ1 can be expressed in terms of {Λθ,ω, θ ∈ Θ, ω ∈ B1(H)} for some θ 6= 0 and some ω ∈ B1(H)
(where B1(H) denotes the unit ball of H), our test statistic should be strictly greater than zero, in which
case we decide against the null hypothesis. Also, notice that, the larger the space of functions H, the more
models we test at the same time.

Choosing weights ω in the unit ball of a reproducing kernel Hilbert space H is the key step in our testing
procedure, as we will show that, by doing so, our test statistic supω∈H:‖ω‖H≤1 LRn(ω) can be evaluated
exactly by a straightforward computation. This result follows from the good properties of reproducing
kernel Hilbert spaces. Particularly, we will use two properties of reproducing kernel Hilbert spaces: i) they
are uniquely characterised by a kernel function K, i.e., a symmetric and positive-definite function, and
ii) they satisfy the so-called reproducing kernel property, which states that ω(x) = 〈ω,K(x, ·)〉H holds for
any function ω ∈ H and any point x. By using this property we will show that supω∈H:‖ω‖H LRn(ω)2 =∑n
i=1

∑n
j=1 K(xi, xj)cicj , for some points xi and constants cj (depending on the data). This type of kernel

estimators have been previously addressed by Neuhaus [1987] in connection with infinite sums of linear rank
estimators (such as the log-rank) in the uncensored setting. Since, in practice, our test statistic is a quadratic
form based on the kernel K, our method can be described just in terms of K avoiding the need to describe
a Hilbert space. Describing kernel functions with interesting properties and useful interpretation has been
a topic of extensive research, especially in the Machine Learning community. A compendium of popular
kernels used in applications can be found in Sousa [2010].

While we can easily establish connections between our method and approaches based on weighted log-
rank tests, we will show that an alternative interpretation of our test statistic allows us to connect our
approach with the kernel mean embedding testing approach. In particular, we will show that our test statistic
supω∈H:‖ω‖H≤1 LRn(ω) can be alternatively written as the norm of the difference of particular embeddings
of our two samples into H. The idea of comparing probability distributions/datasets by embedding them
into a reproducing kernel Hilbert space of functions has been extensively studied in the uncensored setting
by researchers in Statistics and Machine Learning [Berlinet and Thomas-Agnan, 2004, Smola et al., 2007],
however, it seems this idea has yet to percolate into the Survival Analysis community and, up to the best of
our knowledge, it has only been considered by Fernandez and Gretton [2019] for the goodness-of-fit problem
under right-censored data. In the uncensored case, two-sample tests were proposed and studied by Gretton
et al. [2012]. In this work, the authors embed two different samples into a reproducing kernel Hilbert space
by considering the so-called “kernel mean embedding” of the empirical distribution of each sample. Then,
they compute the difference between these two samples by computing the distance (induced by the norm)
of the embeddings into H. This idea can be straightforwardly applied to right-censored data by considering
the kernel mean embedding of the Kaplan-Meier estimator instead of the empirical distribution, which leads
to test statistics that are Kaplan-Meier V -statistics. These type of statistics were studied by Bose and Sen
[2002] and by Fernández and Rivera [2020], and include as particular cases well-known statistics such as the
Cramer von-Mises test statistic. As it was pointed out by Fernández and Rivera [2020] such an approach is
not suitable for censored data as Kaplan-Meier V -statistics are only reliable when the amount of censored
observations is rather small when compared to the total amount of data, and even in that case, the test
statistic may not be data-efficient.

In this work, we study several asymptotic properties of our test statistic under both, the null and
alternative hypothesis. Under the null hypothesis, we find the limiting distribution of our test statistic
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by approximating it by a degenerate V-statistic. Under the alternative hypothesis, we prove that under
reasonable conditions, our test has asymptotic power tending to one. While the asymptotic null distribution
is known, in most cases, its parameters are hard to compute. Thus, in order to implement our test, we
propose a Wild Bootstrap approximation of the null distribution and prove that the Wild Bootstrap statistic
converges in distribution to our test statistic under the null hypothesis, giving us a correct Type-I error.
Finally, we show that particular instances of our test statistic recover some existing testing approaches
studied in the literature, which suggests our testing procedure is a natural generalisation of them. Examples
of tests which our testing procedure recovers are: weighted log-rank tests, Pearson-type tests [Akritas, 1988]
and projection-type tests [Brendel et al., 2014, Ditzhaus and Friedrich, 2018].

Besides theoretical guarantees, we provide an extensive empirical evaluation of our method in two impor-
tant data scenarios: proportional hazard functions and time-dependent hazard functions, including Weibull
and periodic hazard alternatives. In our experiments we demonstrate that our method has a good perfor-
mance in a wide range of problems, which include sample sizes from small to large, and different censoring
percentages. Our experiments show that finite-dimensional reproducing kernel Hilbert spaces tend to have
an overall better performance in problems with fewer observations or a simpler hazard function. While more
complex reproducing kernel Hilbert spaces (i.e., infinite-dimensional spaces) still show a good performance
in these simpler problems, our experiments show that they are better suited for larger datasets and more
complex hazard functions. We also provide a real-data evaluation of our method, trying different kernel
functions, and we compare the results with those obtained by Ditzhaus and Friedrich [2018].

The structure of the paper is as follows. In Section 2, we introduce some standard notation used in
Survival Analysis and describe weighted log-rank tests. In Section 3 we introduce the essential background
knowledge about reproducing kernel Hilbert spaces (RKHS) and formally introduce our test statistic. In
Section 4 we study asymptotic properties of our test. Later, in Section 5, we proceed to explain how to
implement a Wild Bootstrap approach. Sections 6 and 7 are devoted to empirical studies using simulated
data and real data, respectively.

2 Survival analysis background

2.1 General notation

We establish some general notation that will be used throughout the paper. We denote R+ = (0,∞). Let
f : R+ → R+ be an arbitrary right-continuous function, then we define f(x−) = limh→0 f(x− |h|). In this
work we make use of standard asymptotic notation [Janson, 2011], e.g., Op, op, Θp, etc., with respect to the
number of sample points n. In order to avoid large parentheses, we write X = Op(1)Y instead of X = Op(Y ),
especially if the expression for Y is very long. Given a sequence of stochastic processes (Wn(x) : x ∈ X ),
depending on the number of observations n, and a function f(x) ≥ 0, we say that Wn(x) = Op(1)f(x)
uniformly for all x ∈ An, if and only if supx∈An

|Wn(x)|/f(x) = Op(1), where An ⊆ X is a set that may

depend on n, and we use the convention 0/0 = 0. Lastly, in this work the integral symbol
∫ b
a

means
integration over (a, b] unless we state otherwise.

2.2 Right-censored data

Our data corresponds to right-censored observations belonging to two groups/classes, namely group 0 and
group 1. We assume that the total number of observations is n, and that n = n0 + n1, where nc denotes
the number of observations in group c ∈ {0, 1}. We use [n] to denote the set {1, . . . , n}. For the sake of
asymptotic analysis, we assume that we have no vanishing groups, that is, n0/n → η and n1/n → (1 − η)
with η ∈ (0, 1) as n tends to infinity.

Right-censored datasets are commonly observed in triples ((Xi,∆i, ci))i∈[n], where Xi = min{Ti, Ci} is
an observed time, defined as the minimum between a survival time of interest Ti and a censoring time Ci,
the variable ∆i = 1{Xi=Ti} is an indicator of whether we actually observe the survival time of interest, and
ci ∈ {0, 1} is an associated covariate that denotes the group membership of the i-th observation. In this
work we assume that all triples are mutually independent and that the triples have the same distribution
within each group. Additionally, we assume non-informative censoring, meaning that, given the covariate
ci, the survival time Ti is independent of the censoring time Ci.

We denote by Fc, Gc, and Hc, the respective conditional distribution functions of the random variables
Ti, Ci, and Xi, given that the covariate ci takes the value c ∈ {0, 1}. Notice that 1 − Hc = (1 − Fc)(1 −
Gc) due to the non-informative censoring assumption. For simplicity of exposition, we assume that the
distribution functions Fc and Gc are continuous distributions on R+, however, all the methods of this
paper can be extended to general probability distributions on R, as our results are based on counting
processes arguments that have been developed in full generality. We denote by Sc(x) = 1 − Fc(x) and by
Λc(x) =

∫
(0,x]

Sc(s)
−1dFc(s), the so-called survival and cumulative hazard functions associated with Fc,

respectively, and we denote by Ŝc the Kaplan-Meier estimator of Sc, and by Λ̂c the Nelson-Aalen estimator
of Λc. Notice that for the computation of Ŝc and Λ̂c we only use triples (Xi,∆i, ci) satisfying ci = c.
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While in principle we assume that the covariates ci are deterministic, it is also possible to consider
them as independent and identically distributed (i.i.d.) samples from a Bernoulli distribution with mean η
(notice that in this case n0 is a random variable satisfying n0/n → η almost surely). These two possible
assumptions originate two models: the deterministic covariates model and the random covariates model.
For our analysis, it will be convenient to use the random covariates model as, under this assumption, the
triples ((Xi,∆i, ci))i∈[n] are i.i.d. which simplifies the asymptotic analysis, nevertheless, as we will show in
Appendix B.3, both models are asymptotically equivalent. Also, in practice, there is no difference between
the two models when implementing our testing procedure.

In this paper, we use the notion of pooled data and pooled distributions. The pooled data corre-
sponds to the original data after ignoring/removing the covariates (ci)i∈[n], that is, the pooled data is
((Xi,∆i))i∈[n]. We use the term pooled distributions to refer to the distributions of a randomly selected
data-point. Particularly, under the random covariates model, the pooled distributions associated with the
observed times (Xi)i∈[n] and the survival times (Ti)i∈[n], are the marginal distributions of Xi and Ti, re-
spectively, given by H = ηH0 + (1 − η)H1 and F = ηF0 + (1 − η)F1. Under the deterministic covariates
model, the pooled distributions associated with the observed times and the survival times correspond to
(n0/n)H0 +(n1/n)H1 and (n0/n)F0 +(n1/n)F1, respectively. Notice that, since (n0/n)H0 +(n1/n)H1 → H
and (n0/n)F0 + (n1/n)F1 → F as n grows to infinity, the pooled distributions of both models are asymptot-
ically equivalent. Additionally, we denote by S(x) = 1−F (x) and by Λ(x) =

∫
(0,x]

S(s)−1dF (s) the survival

and cumulative hazard functions associated with the pooled distribution F , and we use the Kaplan-Meier
estimator Ŝ and the Nelson-Aalen estimator Λ̂ to approximate S and Λ, respectively. Notice that Ŝ and Λ̂
are computed using the pooled-data.

2.3 Counting processes

In this work, we use the standard counting processes notation used in Survival Analysis. We define the indi-
vidual, class and pooled counting processes by N i(x) = ∆i1{Xi≤x} for i ∈ [n], Nc(x) =

∑n
i=1 1{ci=c}N

i(x)
for c ∈ {0, 1}, and N(x) =

∑n
i=1 N

i(x) = N0(x) + N1(x), respectively. Similarly, we define the indi-
vidual, class and pooled risk functions by Y i(x) = 1{Xi≥x}, Yc(x) =

∑n
i=1 1{ci=c}Y

i(x) and Y (x) =∑n
i=1 Y

i(x) = Y0(x) + Y1(x), respectively. By using the previous notation, we write the Nelson-Aalen esti-

mator of dΛc as dΛ̂c(x) = dNc(x)/Yc(x), and the pooled Nelson-Aalen estimator as dΛ̂(x) = dN(x)/Y (x).

To avoid ambiguities we assume that 0/0 = 0, e.g., dΛ̂(x) = 0 if Y (x) = 0. Finally, we define the process
L(x) = Y0(x)Y1(x)/Y (x), which appears frequently in our results, and we define τn = max{Xi : i ∈ [n]}
and τ = sup{x : 1 −H(x) > 0}. Observe that τn → τ a.s. and that N i(x) = N i(τn), Nc(x) = Nc(τn) and
N(x) = N(τn) for any x ≥ τn. Also, notice that all our observed times, Xi, are less than τ as they are
generated from continuous distributions.

We assume that all random variables are defined on a common filtrated probability space (Ω,F , (Fx)x≥0,P),
where the sigma-algebra Fx is generated by{

1{Xi≤s,∆i=0},1{Xi≤s,∆i=1} : 0 ≤ s ≤ x, i ∈ [n]
}
,

and the P-null sets of F . Under the deterministic covariates model, we define the individual (Fx)-martingales
associated to each data point, (Xi,∆i, ci), as M i(x) = N i(x) −

∫
(0,x]

Y i(s)dΛci(s). Similarly, under the

deterministic covariates model, we define the class and pooled martingales by Mc(x) =
∑n
i=1 1{ci=c}M

i(x)
and M(x) =

∑n
i=1 M

i(x) = M0(x) + M1(x), respectively, where c ∈ {0, 1}. Notice that under the random
covariates model, M i(x), Mc(x) and M(x) are (Fx)-martingales when conditioning on (ci)i∈[n] (alternatively,
we can include the sigma algebra associated with (ci)i∈[n] to generate Fx). We denote by 〈M i〉(x) and
[M i](x), respectively, the predictable and quadratic variation processes associated with M i(x), which, in the
context of continuous survival and censoring times, are given by d〈M i〉(x) = Y i(x)dΛci(x) and d[M i](x) =
dN i(x). For further information about counting processes and their applications in Survival Analysis we
refer the reader to Fleming and Harrington [1991].

Notice that, since we consider continuous survival times, we can estimate F (x) by either F̂ (x) or F̂ (x−).

The main advantage of using the latter estimator is that (F̂ (x−))x≥0 is left-continuous, and thus, it is a
predictable process with respect to the filtration (Fx)x≥0.

2.4 The log-rank estimator

The weighted log-rank statistic is defined by

LRn(ω) =
n

n0n1

∫ τn

0

ω(F̂ (x−))L(x)
(
dΛ̂0(x)− dΛ̂1(x)

)
, (1)

where the function ω : [0, 1) → R is referred to as weight function. In the previous equation recall that

L(x) = Y0(x)Y1(x)/Y (x), F̂ is the pooled Kaplan-Meier estimator of the pooled distribution function F , and

Λ̂0 and Λ̂1 are the class Nelson-Aalen estimators of the cumulative hazard functions Λ0 and Λ1, respectively.

4



Gill [1980] studied the asymptotic behaviour of the weighted log-rank statistic, LRn(ω), under the null
hypothesis H0 : F0 = F1, obtaining that√

n0n1

n
LRn(ω)

D→ N(0, σ2), (2)

where

σ2 =

∫ τ

0

w(F0(x))2 (1−G0(x))(1−G1(x))

η(1−G0(x)) + (1− η)(1−G1(x))
dF0(x).

Notice that, even under the null hypothesis, the censoring distributions G0 and G1 are not necessarily equal,
hence the expression given for σ2 cannot be simplified. Also, in most cases, the censoring distributions are
unknown, and thus it is not possible to evaluate σ2 to find rejection regions. To carry-out a testing procedure,
we can use the asymptotic null distribution given in Equation (2), replacing the asymptotic variance σ2 by

σ̂2 = n/(n0n1)
∫ τn

0
ω(F̂ (x−))2L(x)dΛ̂(x), which is an unbiased estimator of σ2 under the null hypothesis.

We refer the reader to Gill [1980] for more details.
It is a well-known fact that weighted log-rank tests relate to score tests through the choice of a specific

family of alternatives. Let

Λ(x; θ, ω) =

∫ x

0

eθω(F0(s))dΛ0(s), θ ∈ Θ, (3)

be a parametric model (indexed by θ) for the cumulative hazard function, where ω : [0, 1) → R is a fixed
continuous function, and Θ is chosen as an open subset of R containing 0. Then, under the assumption
that Λ1(x) = Λ(x; θ1, ω) for some θ1 ∈ Θ, testing the null hypothesis, H0 : Λ0 = Λ1, is equivalent to test
H0 : θ = 0.

We can test H0 : θ = 0 by using a score test. The score statistic is computed in terms of the score
function defined by U(θ) = ∂/∂θ logLn(θ;ω), where Ln(θ;ω) is the likelihood function under the model of
Equation (3). For the Goodness-of-Fit problem, where F0 and Λ0 are known, the score statistic is given by

U(0) =

∫ τn

0

w(F0(x))Y1(x)
(
dΛ0(x)− dΛ̂1(x)

)
.

In the Two-Sample problem, Λ0 and F0 are unknown, but they can be estimated using the pooled Nelson-
Aalen and Kaplan-Meier estimators, obtaining

Û(0) =

∫ τn

0

w(F̂ (x−))L(x)
(
dΛ̂(x)− dΛ̂1(x)

)
.

Then, a simple comparison shows that n/(n0n1)Û(0) = LRn(ω), from which we deduce the relationship
between the weighted log-rank test defined in Equation (1) and the score test associated to the parametric
model defined in Equation (3). By the Neyman-Pearson Lemma, we deduce that the weighted log-rank test
is the most powerful test for small departures from the null, that is, when θ → 0. Unfortunately, if the model
in Equation (3) is misspecified, little can be said about the performance of the test, indeed, it is well-known
that, in some cases, the weighted log-rank statistic yields a test with asymptotically zero-power.

3 An RKHS approach to the log-rank test

A standard approach to broaden the power of weighted log-rank tests, in order to achieve a more robust
behaviour across a larger class of alternatives, is to combine several weighted log-rank tests into a single
statistic. In this way, if one of the weight functions completely fails to differentiate between the null and
alternative hypotheses, we can still rely on the remaining weight functions to help us to discriminate, and
thus increase the overall power of our testing procedure. Two interesting questions that arise from this
approach are: How do we combine these weighted log-rank tests? Which and how many weight functions
do we need to choose?

Selecting and combining weight functions efficiently for the problem at hand is very difficult as, in most
cases, it requires that the user analyses the data in advance to select appropriate weight functions, e.g.,
it is usual to check if the hazard functions cross or/and if they show late/early departures. Searching for
important features in the data may be very time-consuming and, moreover, it is always possible that there
are features that do not translate into an appropriate weight function. Also, it might happen that the user
overlooks some important relations.

Instead of relying on the expertise of a user to identify important features, we can consider as many
weight functions as possible to account for the heterogeneity in the data. We can take this approach to the
extreme by considering a potentially infinite family of weights. While this approach solves the problem of
choosing weight functions, naively choosing a particular family of weights will lead to tests that, i) are hard to
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calibrate as we will need several data points to reach the correct Type-I error, ii) do not have an analytically
tractable closed form for the test statistic, leading to tests that iii) are computationally expensive.

In order to overcome the previous difficulties, we consider weight functions belonging to the unit ball of
a reproducing kernel Hilbert space H, and propose as test statistic Zn, which is defined by

Zn = sup
ω∈H,‖ω‖2H≤1

LRn(ω)2. (4)

While a priori there is not a good reason to choose this particular family of weights, we will show that it
has very nice features that translate into desirable properties of our testing procedure; among others, the
test statistic has a simple closed form, allowing simple computations as well as an economic Wild Bootstrap
implementation.

3.1 Reproducing kernel Hilbert spaces

A reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions ω : [0, 1) → R satisfying that
the evaluation ω → ω(x) is continuous for every fixed x ∈ [0, 1) (it is worth mentioning that we can replace
[0, 1) by any space). By the Riesz representation theorem, for any x ∈ [0, 1), there exists a unique element
Kx ∈ H such that ω(x) = 〈Kx, ω〉H for all ω ∈ H, which is known as the reproducing kernel property. Since
Kx ∈ H for all x ∈ [0, 1), Kx(y) = Ky(x) = 〈Kx,Ky〉H holds for any x, y ∈ [0, 1). Then, this result allows
us to define the so-called reproducing kernel K : [0, 1)2 → R as

K(x, y) = 〈Kx,Ky〉H. (5)

From now on, in order to ease the notation, we write K(x, ·) instead of Kx(·), even though the former induces
a slight abuse of notation.

For every RKHS H with inner product 〈·, ·〉H there exists a unique symmetric positive-definite repro-
ducing kernel K : [0, 1)2 → R satisfying Equation (5). Conversely, by the Moore-Aronszajn Theorem
[Aronszajn, 1950], for any symmetric positive-definite kernel function K : [0, 1)2 → R, there exists a unique
RKHS H for which K is its reproducing kernel.

Given a finite signed measure µ on [0, 1), we define the kernel mean embedding of µ into H as

µ→
∫

[0,1)

K(y, ·)µ(dy) ∈ H, (6)

where the previous integral has to be understood as a Bochner integral. A sufficient condition to guarantee
the existence of such an embedding is that

∫
[0,1)

√
K(x, x)|µ|(dx) < ∞ [Gretton et al., 2012, Lemma 3]. A

kernel K is said to be characteristic if the mean kernel embedding, defined in Equation (6), is injective on
the space of probability distributions (i.e., distinct probability measures are embedded as different elements
of H). Furthermore, a continuous kernel K is said to be c-universal if the mean kernel embedding is injective
on the set of finite signed measures. Clearly, a continuous c-universal kernel is characteristic. Most of the
standard kernels used in applications are c-universal, e.g., the Gaussian kernel, K(x, y) = exp{−(x−y)2/σ2},
and the OrnsteinUhlenbeck kernel, K(x, y) = exp{−|x− y|/|σ|}. For more information about characteristic
and c-universal kernels we refer the reader to Fukumizu et al. [2009], Muandet et al. [2017], Simon-Gabriel
and Schölkopf [2018] and references therein.

3.2 An RKHS log-rank test

Recall that

Zn = sup
ω∈H,‖ω‖2H≤1

LRn(ω)2,

where H is an RKHS of functions ω : [0, 1)→ R with reproducing kernel K : [0, 1)2 → R. In this section, we
show that it is possible to find a closed-form expression for our test statistic, Zn, in terms of the reproducing
kernel K associated with H. This result is formally stated in the following theorem:

Theorem 1.

Zn =

(
n

n0n1

)2 ∫ τn

0

∫ τn

0

K(F̂ (x−), F̂ (y−))L(x)L(y)
(
dΛ̂0(x)− dΛ̂1(x)

)(
dΛ̂0(y)− dΛ̂1(y)

)
. (7)

By using the definition of the class Nelson-Aalen estimators, Equation (7) can be rewritten as

Zn =

(
n

n0n1

)2 n∑
i=1

n∑
j=1

K(F̂ (Xi−), F̂ (Xj−))L(Xi)L(Xj)(−1)ci+cj
∆i

Yci(Xi)

∆j

Ycj (Xj)
, (8)
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which is a quadratic form with matrix-representation given by

Zn =

(
n

n0n1

)2

VᵀK̂V, (9)

where V ∈ Rn is defined by Vj = L(Xj)(−1)cj ∆j/Ycj (Xj) and K̂ ∈ Rn × Rn is the matrix defined by

K̂ij = K(F̂ (Xi), F̂ (Xj)).
In order to prove Theorem 1, we introduce an alternative embedding of the data, which is different to

the kernel mean embedding of Equation (6). Given a measure ν (not necessarily a probability measure), we
define the embedding φ of a finite signed measure ν into H by

φν(·) =

∫ τ

0

K(F (y), ·)ν(dy).

In practice, since the pooled distribution F is unknown, we replace it by the pooled Kaplan-Meier estimator
F̂ (x−) (recall that the survival time are continuous). Then, by using the previous definition, we introduce

φn0 (·) =
n

n0n1

∫ τn

0

K(F̂ (y−), ·)L(y)dΛ̂0(y), and φn1 (·) =
n

n0n1

∫ τn

0

K(F̂ (y−), ·)L(y)dΛ̂1(y), (10)

which are the corresponding embeddings of two empirical measures, νn0 and νn1 , into H, where νn0 and νn1
are defined for any s < t by

νn0 ((s, t]) =
n

n0n1

∫ t

s

L(x)dΛ̂0(x), and νn1 ((s, t]) =
n

n0n1

∫ t

s

L(x)dΛ̂1(x), (11)

respectively. Notice that φn0 and φn1 are always well-defined, meaning that φn0 ∈ H and φn1 ∈ H, since they
are just finite sums of elements of H (observe that K(F̂ (y−), ·) ∈ H for any fixed y).

By using the previous embeddings, we obtain an inner product representation of the weighted log-rank
statistic, which will be used in the proof of Theorem 1.

Lemma 2 (Log-rank representation). For any ω ∈ H,

LRn(ω) = 〈w, φn0 − φn1 〉H ,

and then

Zn = ‖φn0 − φn1 ‖2H.

Proof. Since F̂ (x−) ∈ [0, 1) for any x ≤ τn, the reproducing property yields ω(F̂ (x−)) = 〈ω(·),K(F̂ (x−), ·)〉H.
Then, by the linearity of the inner product and integration,

LRn(ω) =
n

n0n1

∫ τn

0

ω(F̂ (x−))L(x)
(
dΛ̂0(x)− dΛ̂1(x)

)
=

n

n0n1

∫ τn

0

〈w,K(F̂ (x−), ·)〉HL(x)
(
dΛ̂0(x)− dΛ̂1(x)

)
=

〈
w,

n

n0n1

∫ τn

0

K(F̂ (x−), ·)L(x)
(
dΛ̂0(x)− dΛ̂1(x)

)〉
H

= 〈w, φn0 − φn1 〉H .

Finally, by taking supremum over the unit ball, we have that

Zn = sup
ω∈H,‖ω‖2H≤1

LRn(ω)2 = sup
ω∈H,‖ω‖2H≤1

〈w, φn0 − φn1 〉2H = ‖φn0 − φn1 ‖2H, (12)

where the last equality holds since H is a Hilbert space.

Proof of Theorem 1. By Equation (10), we have (φn0 −φn1 )(·) = n
n0n1

∫ τn
0

K(F̂ (x−), ·)L(x)(dΛ̂0(x)−dΛ̂1(x)).
Then, by using the linearity of the inner product and integration, and the reproducing kernel property, we
deduce

‖φn0 − φn1 ‖2H

=

〈
n

n0n1

∫ τn

0

K(F̂ (x−), ·)L(x)
(
dΛ̂0(x)− dΛ̂1(x)

)
,

n

n0n1

∫ τn

0

K(F̂ (y−), ·)L(y)
(
dΛ̂0(y)− dΛ̂1(y)

)〉
H

=

(
n

n0n1

)2 ∫ τn

0

∫ τn

0

〈
K(F̂ (x−), ·),K(F̂ (y−), ·)

〉
H
L(x)L(y)

(
dΛ̂0(x)− dΛ̂1(x)

)(
dΛ̂0(y)− dΛ̂1(y)

)
=

(
n

n0n1

)2 ∫ τn

0

∫ τn

0

K(F̂ (x−), F̂ (y−))L(x)L(y)
(
dΛ̂0(x)− dΛ̂1(x)

)(
dΛ̂0(y)− dΛ̂1(y)

)
.
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3.3 Recovering existing tests

Our testing approach is based on fixing an RKHS of functions H, which is done by fixing a kernel K. We
show that for specific choices of the reproducing kernel K, we recover some previously known tests.

3.3.1 Weighted log-rank tests

In order to recover the classical weighted log-rank test LRn(ω), we set K(x, y) = ω(x)ω(y). Notice that K
is symmetric and non-negative definite for any ω. Then, by evaluating Zn using Equation (7), we obtain

Zn = LRn(ω)2.

3.3.2 Pearson-type tests

Consider the partition of the interval (0, 1] given by Ij = (j/k, (j + 1)/k], where j ∈ {0, . . . , k − 1}
and k > 0 is an integer. We recover Pearson-type testing approaches by choosing the kernel K(x, y) =∑k−1
j=0 ω(x)ω(y)1Ij×Ij (x, y), where ω : [0, 1) → R is a given weight function. Then, by evaluating Zn using

Equation (7), we get

Zn =

k−1∑
j=0

LRn

(
ω1{Ij}

)2
=

k−1∑
j=0

(∫
Ij

ω(F̂ (x−))L(x)
(
dΛ̂0(x)− dΛ̂1(x)

))2

.

Particularly, if we choose ω ≡ 1, we recover

Zn =

k−1∑
j=0

 ∑
Xi∈Ij

Y1(Xi)

Y (Xi)
∆i1{ci=0} −

∑
Xi∈Ij

Y0(Xi)

Y (Xi)
∆i1{ci=1}

2

, (13)

which compares observed frequencies on Ij between the two groups. We can go further and consider the
normalised version of Pearson-type tests by choosing the kernel as

K(x, y) =

k−1∑
j=0

ω(x)ω(y)

σj(ω)2
1Ij×Ij (x, y),

where σj(ω)2 = n
n0n1

∫
Ij
ω(F̂ (x−))2L(x)dΛ̂(x). Notice that in this case K(x, y) is a random kernel, but it

converges to a deterministic one since σj(ω) converges almost surely to a constant when n tends to infinity.

3.3.3 Projection-type test

Projection-type tests were introduced by Brendel et al. [2014], and recently revisited by Ditzhaus and
Friedrich [2018]. Consider a finite number of weight functions w1, . . . , wk such that wi ◦ F ∈ L2(ν) for all
i ∈ {1, . . . , k}, where ν is the measure given by

ν(dx) =
(1−H0(x))(1−H1(x))

1−H(x)
dΛ(x).

The projection-type testing approach considers the following test statistic

k∑
i=1

LR(w̃i)
2,

where {w̃i}ki=1 is an orthonormal base of the subspace U of L2(ν) generated by w1 ◦ F, . . . , wk ◦ F . We
refer the reader to Brendel et al. [2014] for a detailed explanation. Brendel et al. [2014] and Ditzhaus
and Friedrich [2018] recommend using weights with some meaning, for instance, ω(x) = x − 1/2 is used to
detect a cross between two hazard functions around the median of the pooled survival time distribution, and
ω(x) = xp(1 − x)q is used to detect early and/or late differences between the hazard functions, depending
on the parameters p and q. Nevertheless, observe that, in terms of projections, the meaning of the functions
does not matter as, for instance, projecting over the subspace generated by {1, x− 1/2, x(1− x), x2(1− x)}
is the same as projecting over the subspace generated by {1, x, x2, x3}.

Our approach can be seen as a natural generalisation of the previous method. Indeed, we can recover
the previous test statistic by choosing the kernel

K(x, y) =
k∑
i=1

w̃i(x)w̃i(y).

8



To compute the orthonormal basis {ω̃i}ki=1, we just need to compute the k × k matrix P , where P ij =
〈wi, wi〉L2(ν) =

∫ τ
0
ωi(F (x))ωj(F (x))dν(x), and then we set ω̃i(·) =

∑
j P
−1
ij wj(·). Notice that the matrix P

may not have an inverse, meaning that the functions ωi are not linearly independent in L2(ν). In such a case
we compute its Moore-Penrose pseudo-inverse. Since, in practice, we do not have enough information to com-
pute P , we can estimate it (under the null hypothesis) by P̂ ij = n/(n0n1)

∫ τ
0
ωi(F̂ (x−))ωj(F̂ (x−))L(x)dΛ̂(x).

Finally, observe that this procedure generates a random kernel that converges to a deterministic one when
n tends to infinity.

4 Asymptotic Properties

In this section we study some asymptotic properties of our test statistic Zn. Before introducing our main
results, we state some standard and very reasonable conditions that are needed in our proofs. We first state
some smoothness, and moment conditions regarding the kernel K.

Condition 3. Let K : [0, 1)2 → R be a continuous kernel, and let X,X ′, Y, Y ′ be independent random
variables such that X,X ′ ∼ F0 and Y, Y ′ ∼ F1. Then, we assume that

i) E
(
K(F (X), F (Y ))2(1−G0(X))(1−G1(Y ))

)
<∞,

ii) E
(
K(F (X), F (X ′))2(1−G0(X))(1−G0(X ′))

)
<∞,

iii) E (K(F (X), F (X))(1−G0(X))) <∞,

iv) E
(
K(F (Y ), F (Y ′))2(1−G1(Y ))(1−G1(Y ′))

)
<∞, and

v) E (K(F (Y ), F (Y ))(1−G1(Y ))) <∞.

In the previous conditions, recall that F = ηF0 + (1− η)F1 is the pooled distribution, and F = F0 under
the null hypothesis. In addition, we need a technical condition to deal with the randomness generated by
F̂ (x−), which is an analogue of the conditions needed in Theorem 4.2.1 of Gill [1980].

Condition 4. Assume that for every ε > 0, it holds that

i) limt→τ lim supn→∞P
(∫ τ

t
K(F̂ (x−), F̂ (x−))(1−G0(x))dF0(x) > ε

)
= 0, and

ii) limt→τ lim supn→∞P
(∫ τ

t
K(F̂ (x−), F̂ (x−))(1−G1(x))dF1(x) > ε

)
= 0.

Note that our conditions are not easy to verify in practice as they require knowledge of the distributions
involved, however, the conditions are trivially satisfied for continuous and bounded kernels on [0, 1)2, which
is a property that most standard kernels, such as the Gaussian kernel, satisfy.

Finally, in order to ease notation, we present our results in terms of the functions ψ : R+ → R and
ψ∗ : R+ → R, defined by

ψ(x) =
(1−G0(x))(1−G1(x))

η(1−G0(x)) + (1− η)(1−G1(x))
, (14)

and

ψ∗(x) =
(1−G0(x))(1−G1(x))

η(1−H0(x)) + (1− η)(1−H1(x))
. (15)

4.1 Limit distribution under the null hypothesis

Our first result establishes that, under the null hypothesis, (n0n1/n)Zn converges in distribution to a limit
random variable Z, when the number of data points tends to infinity.

Theorem 5 (Limit distribution under the null). Assume Conditions 3 and 4 hold. Then, under the null
hypothesis, we have that

n0n1

n
Zn

D→ Z =

∫ τ

0

K(F0(x), F0(x))ψ(x)dF0(x) +
1

η(1− η)
Y, (16)

as n approaches infinity, where Y =
∑∞
i=1 λi(ξ

2
i − 1), ξ1, ξ2, . . . are a collection of (potentially infinity) i.i.d.

standard normal random variables, and λ1, λ2, . . . are non-negative constants. Additionally, the mean and
variance of Z are respectively given by

E (Z) =

∫ τ

0

K(F0(x), F0(x))ψ(x)dF0(x) and Var (Z) = 2

∫ τ

0

∫ τ

0

K(F0(x), F0(y))2ψ(x)ψ(y)dF0(x)dF0(y).

In the previous theorem, the constants λi are the eigenvalues of an integral operator in the L2 space
associated with the measure induced by the triple (Ti,∆i, ci) under the random covariates model. More
details about the limit distribution are shown in Section B along with the proof of Theorem 5.
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4.2 Power under alternatives

We continue by studying the asymptotic behaviour of our test statistic under the alternative hypothesis, that
is, under the assumption that H1 : F0 6= F1 holds. To this end, we first prove that Zn (without considering
any scaling) converges to a deterministic value.

Define the measures ν0 and ν1 on R+ by

ν0(A) =

∫
A

ψ∗(s)S1(s)dF0(s) and ν1(A) =

∫
A

ψ∗(s)S0(s)dF1(s), (17)

where ψ∗ is defined in Equation (15), and define their embeddings into H by

φ0(·) =

∫ τ

0

K(F (y), ·)dν0(y) and φ1(·) =

∫ τ

0

K(F (y), ·)dν1(y), (18)

respectively. The measures ν0 and ν1 can be understood as the population measures, respectively, of the
empirical measures νn0 and νn1 defined in Equation (11). We will show that, under appropriate conditions,
the embeddings φn0 and φn1 , defined in Equation (10), converge to φ0 and φ1, respectively, where convergence
is with respect to the norm of H. This fact together with Theorem 1 yields the following result:

Theorem 6. Assume Conditions 3 and 4 hold, then

Zn
P→ ‖φ0 − φ1‖2H. (19)

At this point, it should be clear that our test is consistent under the alternative hypothesis if φ0 6= φ1

whenever ν0 6= ν1. We will show that if F0 6= F1 then ν0 6= ν1, however, this result does not immediately
extrapolate to φ0 and φ1. A sufficient condition to ensure that φ0 and φ1 are different when F0 6= F1 is that
the kernel K is c-universal (see definition in Section 3.1).

Corollary 7 (Consistency). Suppose that Conditions 3 and 4 hold, and that the kernel K is c-universal.
Additionally, assume that 1−Gc(x) = 0 implies Sc(x) = 0, for any c ∈ {0, 1}. Then, under the alternative
hypothesis, we have that n0n1/nZn →∞, which implies that

Pr
(n0n1

n
Zn > Qn(1− α)

)
→ 1,

where Qn(1−α) denotes the (1−α)-quantile of the random variable (n0n1/n)Zn under the null hypothesis.

We remark that the previous result uses the (1 − α)-quantile of (n0n1/n)Zn under the null hypothesis,
which converges to a finite quantity due to Theorem 5.

Notice that Corollary 7 establishes consistency for all the alternatives under the assumption of a c-
universal kernel K, nevertheless, even if the kernel K is not c-universal, we can still ensure consistency for
particular alternatives, as we show in the following proposition.

Proposition 8. Assume that Conditions 3 and 4 hold, and suppose that dΛ1(x) = eθω̄(F0(x))dΛ0(x) for
some ω̄ ∈ H and θ 6= 0. Then (n0n1/n)Zn →∞, and thus the test is consistent for such an alternative.

Note that if dΛ1(x) = eθω̄(F0(x))dΛ0(x) for some ω̄ ∈ H and θ 6= 0, then lim infn→∞ LRn(ω̄)2 > 0. In this
case,

lim inf
n→∞

Zn = lim inf
n→∞

sup
ω∈H,‖ω‖H≤1

LRn(ω)2 ≥ lim inf
n→∞

LRn(ω̄)2 > 0.

Therefore (n0n1/n)Zn → ∞, and thus the test is consistent for such a particular alternative. In general,
any argument that ensures consistency of LRn(ω)2 for some ω̄ in H also applies to our test statistic Zn, as
long as the limit distribution of (n0n1/n)Zn exists under the null hypothesis.

5 Wild Bootstrap Implementation

Given α ∈ (0, 1), we construct a statistical test of level α by rejecting the null hypothesis if (n0n1/n)Zn >
Qn(1 − α), where Qn(1 − α) is the (1 − α)-quantile of the distribution of (n0n1/n)Zn under the null
hypothesis. As the distribution of (n0n1/n)Zn is usually unknown, we can use its asymptotic distribution,
given in Theorem 5, to approximate the rejection region. Unfortunately, excluding exceptional cases, the
limiting distribution is rather complex, and thus computing the asymptotic (1−α)- quantile is very hard. In
order to carry out our test, we introduce a simple Wild Bootstrap implementation of our testing procedure.

Recall, from Equation (8), that our test statistic Zn can be written as follows:

Zn =

(
n

n0n1

)2 n∑
i=1

n∑
j=1

K(F̂ (Xi−), F̂ (Xj−))L(Xi)L(Xj)(−1)ci+cj
∆i

Yci(Xi)

∆j

Ycj (Xj)
. (20)
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Notice that the expression given for Zn looks like a V-statistic. However, what prevents Zn from being a
V-statistic is that it depends on the functions F̂ (x−), Y0(x)/n0 and Y1(x)/n1, and n/(n0n1)L(x), which
are all random functions that depend on all data points. In Appendix B.1 and Appendix B.3, we prove
that we can replace these functions by their respective limits plus some small additive error term that
vanishes sufficiently fast as the number of observations grows. From this result, we deduce that Zn can be
approximated by a V-statistic, suggesting that the standard Wild Bootstrap sampling scheme of Dehling
and Mikosch [1994] can be used to approximate the asymptotic distribution of n/(n0n1)Zn.

Let W = (Wi)i∈[n] be a sequence of i.i.d. random variables satisfying that E(Wi) = 0 and E(W 2
i ) = 1,

and such that they are independent of any other source of randomness, in particular, from the observations.
Then, we define the Wild Bootstrap statistic associated with Zn by

ZWn =

(
n

n0n1

)2 n∑
i=1

n∑
j=1

WiWjK(F̂ (Xi−), F̂ (Xj−))L(Xi)L(Xj)(−1)ci+cj
∆i

Yci(Xi)

∆j

Ycj (Xj)
. (21)

Similarly to the expression given in Equation (9), we can write ZWn as

ZWn =

(
n

n0n1

)2

(WV)ᵀK̂(WV), (22)

where W ∈ Rn×Rn is the diagonal matrix whose entries are given by Wjj = Wj . Also, recall that V ∈ Rn

is defined by Vj = L(Xj)(−1)cj ∆j/Ycj (Xj) and K̂ ∈ Rn ×Rn is defined by K̂ij = K(F̂ (Xi), F̂ (Xj)). This
matrix expression is very convenient for the computational implementation of our method.

The following theorem states the correctness of our Wild Bootstrap approach:

Theorem 9. Assume that Conditions 3 and 4 are satisfied. Then, under the null hypothesis, it holds that
for any x ∈ R+,

P

(
n0n1

n
ZWn ≥ x

∣∣∣∣(Xi,∆i, ci)i∈[n]

)
P→ P(Z ≥ x),

where Z is the random variable defined in Theorem 5.

With the previous ingredients we are ready to describe our testing procedure, which relies on approxi-
mating the (1 − α)-quantile of the distribution of Zn by the quantiles of ZWn . Since we can freely sample
independent copies from ZWn given the data points, we can estimate the quantile by Monte Carlo simulations.
Our algorithm is as follows:

i) Set level α ∈ (0, 1) of the test and let N be a large integer,

ii) Sample N independent copies of the Wild Bootstrap statistic using Equation (22),

iii) Compute the (1− α)-quantile of the previous sample and call it QWn (1− α),

iv) Compute the test statistic Zn using Equation (9),

v) Reject the null-hypothesis if Zn > QWn (1− α), otherwise do not reject it.

6 Simulations

We perform an empirical evaluation of our methods in which the ground truth is known. To this end,
we consider two different settings: a proportional hazard functions setting (in which the classic log-rank
test is provably the most powerful), and a time-dependent hazard functions setting, including Weibull and
periodic hazard functions. All our experiments consider the same null cumulative hazard function Λ0(t) = t,
corresponding to the cumulative hazard function of an exponential random variable with mean 1. We choose
Λ1(t) belonging to one of the following parametric families:

i) Proportional hazards: for this case we consider Λ1(t) belonging to the parametric family given by
Λ(t; θ) = θt with θ ∈ [0, 2]. Observe that Λ0(t) is recovered when θ = 1.

ii) Weibull (polynomial) hazards: we consider Λ1(t) belonging to a family of Weibull cumulative
hazard functions Λ(t; θ) = tθ with θ ∈ [0, 2]. Notice that θ = 1 recovers the null.

iii) Periodic hazards: we consider Λ1(t) belonging to the family given by Λ(t; θ) = t − sin(πθt)/(πθ)
with θ ∈ (0, 15]. Notice that limθ→∞ Λ(t; θ) = Λ0(t) = t, recovering the null hypothesis.

Figure 1 shows the behaviour of the cumulative hazard functions of the parametric families previously
described, for different values of θ.
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Figure 1: Set of cumulative hazard functions for the proportional, Weibull and periodic experiments. Solid
black line denotes the null cumulative hazard Λ0(t) = t. Observe that each family recovers the null cumulative
hazard function Λ0(t) for some specific value θ0.

6.1 Implementation

6.1.1 Kernels

The heart of our testing-approach is undoubtedly the kernel function. In Section 3.3 we showed that specific
choices of the kernel function lead to some existing tests. In our experiments we use some of these choices
as well as a kernel that is c-universal. We define kernels in the following categories:

1. Log-rank kernels (LRP and LRC): In Section 3.3.1, we considered kernels of the form K(x, y) =
ω(x)ω(y), recovering the well-known weighted log-rank tests. In our experiment we choose ω to be
equal to i) ω1(x) = 1 and ii) ω2(x) = (x − 1/2). For i) we recover the classical log-rank test (LRP),
used to test proportional hazard functions, while for ii) we recover a weighted log-rank test (LRC),
designed to discover if the hazard functions cross around the median of the distribution F .

2. Projection kernels (P2W and P4W): we follow the approach described in Section 3.3.3, which
recovers the testing procedure of Brendel et al. [2014]. In particular, we choose kernel functions based
on the subspace generated by the weight functions i) {1, x} and ii) {1, x, x2, x3}. We denote the kernels
in i) and ii) by P2W and P4W, respectively, making a clear reference to the dimension of the subspace.

3. Pearson-type kernels (Per4 and Per5): we consider the Pearson-type kernel functions defined in
Section 3.3.2, particularly in Equation (13). For our experiments, we partition the space into 4 and 5
disjoint regions, and denote the kernels by Per4 and Per5, respectively.

4. Squared exponential kernel (SEK): we consider the squared exponential kernel (SEK) defined by
K(x, y) = exp{−(x − y)2/σ2} with σ = 0.1. This kernel is c-universal, hence by Corollary 7, it leads
to an omnibus test. Better results may be obtained by optimising the parameter σ for the problem at
hand. A well-known heuristic is to choose σ as the median of the pairwise differences of the observations
Scholkopf and Smola [2001].

.

6.1.2 Computer Implementation

Our experiments are implemented in R following the Wild Bootstrap approach described in Section 5, choos-
ing Rademacher random variables for the Wild Bootstrap weights W. We compute our test statistic Zn and
the Wild Bootstrap statistic ZWn by using the quadratic form expressions given in Equations (9) and (22),
respectively. By using these expressions, it is possible to give a simple and fast implementation of our testing
procedure, indeed, 1000 repetitions of our testing procedure (using 1000 Wild Bootstrap samples) takes just
a couple of minutes in a standard commercial laptop, for n0 = n1 = 100. For each experiment, we consider
sample sizes of 30 and 100 observations per group, and we choose a censoring distribution generating 10%
and 30% of censored observations.

6.2 Type-I error

In our first experiment, we verify that our tests achieve a correct Type-I error of α = 0.05 for each combination
of sample size and censoring percentage, for the kernels described in Section 6.1.1. For each different
combination of parameters, we run our test in 1000 simulated datasets. Table 1 shows the results. In general,
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Log-Rank Projection Pearson-type SEK
n0 n1 cen0 cen1 LRP LRC P2W P4W Per4 Per5 SEK
30 30 10% 10% 4.5 5 5.1 4.7 6.1 5.7 5

10% 30% 5.4 4.4 4.5 4.1 5 5.1 4.2
30% 30% 4.3 4.7 4.2 4.4 4.7 4.4 4.2

30 100 10% 10% 3.9 5.7 5 5.1 5.2 4.9 5.2
10% 30% 6.7 4.6 7.1 5.1 5.2 4.5 4.7
30% 10% 5 7.3 6.1 4.9 5.9 5.6 5
30% 30% 3.9 5.1 3.8 3.9 4.4 4.8 3.8

100 100 10% 10% 4.7 4.2 5.2 5.9 4.9 4.7 4.3
10% 30% 5 5.9 5.4 6.6 6.1 5.8 6.1
30% 30% 5.1 5.3 5.5 4.7 5.1 4.8 4.8

Table 1: Significance Level at α = 5%. nc stands for the number of data points of group c, and cenc indicates
the percentage of censored data.

the Wild Bootstrap approach has no problem reaching the correct level for even censoring percentages.
Uneven censoring causes a few problems, so the user should be careful when applying this method in the
latter setting. Arguably, the squared exponential kernel (SEK) is the most robust. It is worth recalling that
projection tests use a random kernel (it depends on the data points) which might impact its performance.
Additionally, while not reported here, we tested other significance levels, obtaining similar results.

6.3 Power Simulations

We provide an empirical evaluation of our testing procedure for each of the settings described in Section 6:
proportional, Weibull and periodic hazard functions. As previously mentioned, the null cumulative hazard
function is given by Λ0(t) = t. The power is estimated by repeating our testing procedure over 1000 simulated
datasets for each combination of sample size and censoring percentage. Results for the proportional, Weibull
and periodic settings are shown in Figures 2, 3, and 4, respectively. We give a few comments and remarks
about our experiments.

1. We report a very small fraction of our experiments as all the results are qualitatively the same as the
ones shown in Figures 2, 3, and 4.

2. We only report results for the kernel Per5 since the kernel Per4 has an almost identical behaviour.

3. The LRP test is equivalent to the score test for the proportional hazard functions model; thus, it can
be deduced that it is the most powerful test for local alternatives under this model. The previous
statement is supported by Figure 2, where we observe an excellent performance of the LRP test in the
setting of proportional hazard functions alternatives. Observe that the LRP test loses all of its power
(nearly zero power) for the Weibull and periodic hazard alternatives as shown in Figures 3, and 4.

4. The LRC test is equivalent to the weighted log-rank test with weight w(x) = x − 1/2. It can be
observed in Figure 3, that the LRC test has a very good performance in the setting of Weibull hazard
alternatives, but its power is relatively low in the other two settings, as shown in Figures 2 and 4.
An explanation for this behaviour follows from the fact that the LRC kernel is designed to be optimal
at detecting a cross around the median of the pooled distribution F , and thus, it will not be a good
fit for the proportional hazards experiment. Also, for more complex hazard functions, such as those
described in the periodic setting, we can observe more than one cross occurring, which explains the
poor performance of the LRC test.

5. We observe different behaviours for the projection kernels P2W and P4W. In the proportional hazard
functions setting, the P2W test has the best performance after the LRP test, which is explained by
the fact that this kernel is constructed considering the subspace generated by {1, x}, where the weight
ω(x) = 1 is known to be optimal for proportional hazard alternatives. While P4W also includes this
weight (it is generated by {1, x, x2, x3}), the fact that it considers a larger space of possible alternatives
makes the test more data-expensive resulting in a loss of power. For the Weibull hazard functions
setting, we observe that both projection tests, P2W and P4W, have an overall good performance.
This behaviour can be explained by the fact that both tests consider projections on polynomials,
and the Weibull hazard functions are, indeed, polynomials. In the periodic case, both kernels have a
substandard behaviour due to the fact that the hazard structure is rather different to a polynomial of
finite degree. Note that with more data it seems that the tests do not improve when compared to the
best kernel, in this case, the squared exponential kernel SEK.

6. The Pearson-type kernel Per5 has a consistent behaviour, being neither too good nor too bad. Disad-
vantages are that the user needs to specify beforehand a partition of the space.
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Figure 2: Proportional hazards experiment. Left: group sizes 30 and censoring percentage 30%. Right group
sizes 100 and censoring percentage 30%.

SEK Per4 Per5 LRP LRC P2W P4W
p-values 0.0053 0.0151 0.0222 0.2531 0.0011 0.0051 0.0228

Table 2: p-values obtained (using the Wild Bootstrap approach) for the comparison of the treatments
‘Chemotherapy’ and ‘Chemotherapy+Radiation’ for the GTSG data.

7. The squared exponential kernel, SEK, gives overall good results. In one hand, while in the presence
of more ‘structured’ data, i.e., proportional or Weibull (polynomial) hazard functions, simpler kernels
give better results, the SEK still has a good performance. On the other hand, in presence of more
‘complex’ data, its performance is better than other kernels. In general, the SEK performs better than
Pearson-type kernels, suggesting that the SEK is a better choice for an all-around kernel.

8. In general, it seems that for nice structured data, simpler kernels (leading to simpler methods) have
better results. On the other hand, for complex data, a more complex kernel seems to be a good option.
Overall, we think that the SEK is the best option as it has a robust behaviour in simple data-scenarios,
and it outperforms other tests in more complex scenarios. Also, as shown in Table 1, this kernel has
close to no problems reaching the correct Type-I error.

7 Real data

We consider the Gastrointestinal Tumor Study Group data (GTSG), Stablein et al. [1981], available in the
‘coin’ R-package. The data considers a randomised clinical trial in the treatment of locally advanced,
non-resectable gastric carcinoma. In this study, 42 patients were treated by using chemotherapy alone, while
45 patients were treated by using a combination of chemotherapy and radiation therapy. The aim of the
study is to detect differences between these treatments. Kaplan-Meier curves for each group are shown in
Figure 5. The null hypothesis is that there is no difference between the treatments. We apply our test
considering the 7 different kernels described in Section 6.1.1. The corresponding p-values (approximated by
using our Wild Bootstrap approach) are shown in Table 2.

All the tests, except for the classical log-rank test, reject the null hypothesis at 5% level of significance.
This outcome is quite reasonable as the survival functions cross, as shown in Figure 5. Indeed, the smallest
p-values are given by the SEK, LRC and the P2W tests which reject the null hypothesis at 1% level of
significance. This is not a surprising behaviour of LRC and P2W, as these kernels are tailored to detect
crossings. The SEK also performs very well which is quite satisfying as this kernel is not particularly designed
for the setting of crossing hazards.
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Figure 3: Polynomial (Weibull) hazards experiment. Left: group sizes 30 and censoring percentage 30%. Right
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Figure 5: Kaplan-Meier curves for the patients treated by using chemotherapy alone versus a combination of
chemotherapy and radiation therapy

8 Conclusion

We have introduced an RKHS-based testing procedure for the standard problem of two-sample hypothesis
testing in the framework of right censored data. Our test statistic is the supremum of weighted log-rank
statistics, where the weights belong to the unit ball of an RHKS. While our test statistic is apparently very
complex, its evaluation becomes analytically tractable due to the reproducing property of reproducing kernel
Hilbert spaces. Indeed, our test statistic can be written as a quadratic form as in Equation (9), and it can be
fully characterised by a kernel function K. This simple structure allows us to derive asymptotic properties
of our test, and it suggests that the standard Wild bootstrap approach can be used to approximate the
rejection region. We also showed that our test can be seen as a natural infinitely-dimensional generalisation
of other well-known test statistics based on log-rank statistics. Finally, we performed a simulation study
which compares the results of the test statistic for different kernel functions.

To finish the paper we discuss some of our results and potential research ideas. First, as shown in
Theorem (5), the asymptotic distribution of our test statistic under the null hypothesis is, in general,
intractable, and thus we need to rely on bootstrapping techniques to approximate the rejection region.
While, for us, the natural option is to consider a Wild Bootstrap approach, it is also possible to consider
a permutation approach as the one used for weighted log-rank tests [Neuhaus, 1993]. In the case of equal
censoring, the permutation approach has the advantage of being finitely exact, however, in the general case
of censoring, the permutation approach is not directly applicable since the limit distribution of our test
statistic depends on the censoring distribution of each group. For weighted log-rank tests, this problem is
fixed by standardising the test statistic leading to an asymptotically distribution-free test. Unfortunately,
it is not clear how to standardise (if possible) our test statistic, and we think this is a non-trivial task,
especially for infinitely-dimensional kernels, hence, we leave this problem as future research.

A natural question to ask is: How do we choose a kernel function? Unfortunately, nobody can provide
an answer for such a question yet and choosing kernel functions is an active field of research in Statistics
and Machine Learning, as it is an issue that happens in several other contexts such as Gaussian Processes
inference, support vector machine, kernel regression, etc. In practice, our simulation study suggests that
simple (finite-dimensional) kernels, e.g., polynomials, are good enough if we know in advance that the
hazard function has a relatively simple form, whereas complex kernels are better suited for complex hazard
functions. In general, the squared exponential kernel is a very safe choice as it performs well in both settings.
Nevertheless, we should not expect it to perform well in every setting, as Janssen [2000] proved that for a
finite number of data points, any nonparametric test has preferences for a finite-dimensional subspace of
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alternatives, and outside this subspace, the power of the test is almost flat in balls of alternatives. This
means that, for a fixed number of data points, it is possible to find alternatives for which the squared
exponential kernel has fails, however, due to the complex form of the kernel, it may be difficult to construct
such an alternative, and we do not expect that to happen in practical settings. Note that, by choosing a
reproducing kernel, Theorem 5 shows that our test fixes most of its power on a finite number of directions,
which are given by the eigenfunctions with larger eigenvalues in the spectral decomposition of the kernel,
and thus, with a finite number of data points we expect the test to concentrate its power around the first m
eigenfunctions with larger eigenvalues, where m is some constant depending on n, and as long as n grows,
m should be growing as well.

Finally, we give a few comments about our technical results. Our asymptotic analysis uses the fact that
our test statistic is a double stochastic integral (Equation (7)), and particularly, under the null hypothesis,
those stochastic integrals are with respect to martingales. Our main tool to study these objects is The-
orem 17, which allows us to control double stochastic integrals with respect to a special class of random
integrands h, which includes our integrand K(F̂ (x−), F̂ (y−))L(x)L(y), as well as several others. Our theo-
rem is powerful enough to study other type of collection of log-rank statistics, for example, we can consider
the test statistic

sup
ω∈H,‖ω‖2H≤1

∫ τn

0

ω(Y (x)/n)L(x)(dΛ̂0(x)− dΛ̂1(x)),

which is similar to our test statistic (c.f., Equations (4) and (1)), but replacing Ŝ(x−) by Y (x)/n (See

[Fleming and Harrington, 1991, Chapter 7]). In general, replacing Ŝ(x−) by any reasonable predictable
process gives a test statistic that can be analysed by our methods, and furthermore, our tool can be applicable
to an even larger class of processes. The analysis of other type of test statistics is subject of future research.
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Appendix

A Preliminary Results

A.1 Some Results for Counting Processes

Proposition 10. The following results hold:

i) limn→∞ supt≤τ |Ŝ(t)− S(t)| = 0 a.s.,

ii) limn→∞ supt≤τ |Y (t)/n−H(t−)| = 0 a.s.,

Item i is due to Stute and Wang [1993], and item ii is the Glivenko-Cantelli theorem.

Proposition 11. Let β ∈ (0, 1), then

i) P(Ŝ(t) ≤ β−1S(t), ∀t ≤ τn) ≥ 1− β,
ii) P

(
Y (t)/n ≤ β−1(1−H(t−)), ∀t ≤ τn

)
≥ 1− β, and

iii) P (Y (t)/n ≥ β(1−H(t−)), ∀t ≤ τn) ≥ 1− e(1/β)e−1/β .

i.e., i) supt≤τn Ŝ(t)/S(t) = Op(1), ii) and iii) supt≤τn Y (t)/(n(1−H(t−)) = Θp(1).

The proofs of items i and iii are due Gill et al. [1983], and item ii follows from Gill [1980, Theorem 3.2.1].

Remark 12. Notice that the results of the previous propositions still hold if we replace Y (t), H(t) and n by
Yc(t), Hc(t) and nc, respectively.

A.2 Double Martingales

In our proofs, we will frequently encounter double martingale integral processes of the form:∫ t

0

∫ t

0

hn(x, y)dWn(x)dWn(y), t ≥ 0, (23)

where hn : R2 → R is a sequence of symmetric positive-definite random functions, and (Wn(t))t≥0 is a
sequence of (Ft)-martingales. The aim of this section is to establish conditions under which such processes
converge to zero in probability when evaluated at t = τn. This result is formally stated in Theorem 17, and
to prove it, we use some results introduced by Fernández and Rivera [2020] for double integrals with respect
to martingales.

Definition 13. Define the σ-algebra P on C = {(x, y) : 0 < x < y <∞} as the σ-algebra generated by sets
of the form

(a1, b1]× (a2, b2]×X, where 0 ≤ a1 ≤ b1 < a2 ≤ b2, and X ∈ Fa2 ,

and {0} × {0} ×X, where X ∈ F0.

A stochastic process (h(x, y))(x,y)∈C is said to be P-measurable if it is measurable with respect to P.
The following proposition is a simple consequence of the definition of P.

Proposition 14. Let k : R2 → R be a measurable function, and let (h1(t))t≥0 and (h2(t))t≥0 be (Ft)-
predictable stochastic processes. Then the process (h(x, y))(x,y)∈C given by h(x, y) = k(h1(x), h2(y))) is
P-measurable.

Theorem 15. Let h be a P-measurable process, and let W be a right-continuous (Ft)-martingale. Assume
that for all t ≥ 0, it holds that

E

(∫
(0,t]

∫
(0,y)

|h(x, y)||dW (x)||dW (y)|

)
<∞. (24)

Then, (Z(t))t≥0, defined by Z(t) =
∫ t

0

∫
(0,y)

h(x, y)dW (x)dW (y), is an (Ft)-martingale.

In our proofs we are particularly interested in predictable positive-definite processes which are defined
as following:

Definition 16. We say a process (h(x, y))x,y≥0 is a predictable positive-definite process if it satisfies the
following properties: i) h(x, y) = h(y, x), ii) h is positive definite, i.e., each realisation of the stochastic process
is a positive definite function, iii) (h(x, y))(x,y)∈C is P-measurable, and iv) (h(x, x))x≥0 is predictable with
respect to (Fx)x≥0.

The next theorem, whose proof is deferred to Section E, gives sufficient conditions under which the
process of Equation (23) converges to zero in probability.
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Theorem 17. Let (hn(x, y))x,y≥0 be a sequence of predictable positive-definite processes, let Wn be a se-
quence of right-continuous (Ft)-martingales with predictable and quadratic variation processes denoted by
〈Wn〉 and [Wn], respectively, and suppose that

E

(∫ t

0

∫ t

0

|hn(x, y)||dWn(x)||dWn(y)|
)
<∞ (25)

holds for all n large enough, and for all t ∈ (0, τ).
Then, if ∫ τn

0

hn(x, x)d〈Wn〉(x) = op(1),

we have that ∫ τn

0

∫ τn

0

hn(x, y)dWn(x)dWn(y) = op(1),

and the same holds if we replace op(1) by Op(1).

Note that Equation (25) holds trivially due to the simple nature of our martingales, hence, we will not
verify this conditions in our applications of the theorem.

B Analysis under the Null Hypothesis: Proof of Theorem 5

The proof of Theorem 5 is split into three mains steps:

i) We find a cleaner asymptotic expression for our test statistic under the null hypothesis. In particular,
we show that Zn can be rewritten as

Zn =

(
n

n0n1

)2 n∑
i=1

n∑
j=1

∫ τn

0

∫ τn

0

K(F̂ (x−), F̂ (y−))
(−1)ci+cjL(x)L(y)

Yci(x)Ycj (y)
dM i(x)dM j(y).

Then, by using Theorem 17, we prove that F̂ (x−), n/(n0n1)L(x), and Yc(x)/n can be replaced by
their respective limits, F0(x), ψ(x)S0(x), and (1 − Hc)(x)ηc−1(1 − η)−c, up to a small additive term
that decreases to zero in probability, obtaining that

Zn =
1

n2

n∑
i

n∑
j=1

∫ τn

0

∫ τn

0

K(F0(x), F0(y))ψ(x)ψ(y)

(1−Gci(x))(1−Gcj (y))

1

η2

(
−η

(1− η)

)ci+cj
dM i(x)dM j(y) + op

(
n−1) .

(26)

ii) We prove that the deterministic and random covariates models are asymptotically equivalent in the
sense that our test statistic nZn has the same asymptotic distribution (when it exists) under both
models.

iii) We obtain the limit distribution of nZn under the random covariates model. Our results translate to
the deterministic covariates model by using the result of the previous item.

B.1 Step i: Finding a simpler asymptotic representation

For this step, we work under the deterministic covariates model, but notice that our analysis can be extended
to the random covariates model by conditioning on the number of random covariates with value 0, say N0,
and by noticing that N0/n→ η almost surely.

From Theorem 1 and Lemma 2, we have that

Zn =

∥∥∥∥ n

n0n1

∫ τn

0

K(F̂ (x−), ·)L(x)dΛ∗(x)

∥∥∥∥2

H
(27)

=

(
n

n0n1

)2 ∫ τn

0

∫ τn

0

K(F̂ (x−), F̂ (y−))L(x)L(y)dΛ∗(x)dΛ∗(y), (28)

where dΛ∗(x) = dΛ̂0(x)− dΛ̂1(x), and

dΛ∗(x) =
dM0(x)

Y0(x)
− dM1(x)

Y1(x)
=

n∑
i=1

(−1)ci
dM i(x)

Yci(x)
(29)
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holds under the null hypothesis. In particular, notice that, under the null hypothesis, (Λ∗(x))x≥0 is an
(Fx)-martingale with predictable and quadratic variation processes given by

d〈Λ∗〉(x) =
dΛ0(x)

L(x)
and d[Λ∗](x) =

dN0(x)

Y0(x)2
+
dN1(x)

Y1(x)2
, (30)

respectively. Then, by substituting Equation (29) in Equation (28), we can rewrite our test statistic as

Zn =

(
n

n0n1

)2 n∑
i=1

n∑
j=1

∫ τn

0

∫ τn

0

K(F̂ (x−), F̂ (y−))L(x)L(y)(−1)ci+cj
dM i(x)dM j(y)

Yci(x)Ycj (y)
.

The main result of this section is the following:

Theorem 18. Assume Conditions 3 and 4 hold. Then, under the null hypothesis, it holds that

nZn =
1

n

n∑
i=1

n∑
j=1

∫ τn

0

∫ τn

0

K(F0(x), F0(y))ψ(x)ψ(y)

(1−Gci(x))(1−Gcj (y))
η−2

(
−η

(1− η)

)ci+cj
dM i(x)dM j(y) + op (1) .

We split the proof of Theorem 18 into three parts:

1) We prove that the pooled Kaplan-Meier estimator, F̂ (x−) can be replaced by its limit F0(x) (recall F0

is continuous, and thus F0(x) = F0(x−)),

2) we prove that nL(x)/(n0n1) can be replaced by its limit ψ(x)S0(x), and

3) we prove that Y0(x)/n and Y1(x)/n can be replaced by their limits, η(1−H0(x)) and (1−η)(1−H1(x)),
respectively.

For the proof of Theorem 18 we will recurrently use the following fact: let q : R→ [0, 1) and let µ be a
measure on [0,∞), then∥∥∥∥∫ ∞

0

K(q(x), ·)µ(dx)

∥∥∥∥2

H
=

∫ ∞
0

∫ ∞
0

K(q(x), q(y))µ(dx)µ(dy),

which is a straightforward consequence of the linearity of the inner product and integration, and the repro-
ducing property (this argument was used in the proof of Theorem 1).

B.2 Proof of Theorem 18

Part 1): Replacement of F̂ (x−) by F0(x)

The following Lemma proves that K(F̂ (x−), F̂ (y−)) can be replaced by K(F0(x), F0(y)), up to a small error.

Lemma 19. Assume Conditions 3 and 4. Then, under the null hypothesis, it holds that

nZn = n

(
n

n0n1

)2 ∫ τn

0

∫ τn

0

K(F0(x), F0(y))L(x)L(y)dΛ∗(x)dΛ∗(y) + op(1).

Proof. Using norm notation, the desired result is equivalent to show that

n

∥∥∥∥( n

n0n1

)∫ τn

0

K(F̂ (x−), ·)L(x)dΛ∗(x)

∥∥∥∥2

H
= n

∥∥∥∥( n

n0n1

)∫ τn

0

K(F (x), ·)L(x)dΛ∗(x)

∥∥∥∥2

H
+ op(1). (31)

By triangular inequality ‖b‖H − ‖a − b‖H ≤ ‖a‖H ≤ ‖b‖H + ‖a − b‖H, then, by taking square, we deduce
that we just need to prove that

n

∥∥∥∥ n

n0n1

∫ τn

0

(K(F (x), ·)−K(F̂ (x−), ·))L(x)dΛ∗(x)

∥∥∥∥2

H
= op(1), (32)

and that

n

∥∥∥∥ n

n0n1

∫ τn

0

K(F (x), ·)L(x)dΛ∗(x)

∥∥∥∥2

H
= Op(1). (33)

We begin by verifying Equation (33). Expanding the inner product expression, the left-hand side equals

O(1)
1

n

∫ τn

0

∫ τn

0

K(F (x), F (y))L(x)L(y)dΛ∗(x)dΛ∗(y).

Also, notice that (K(F (x), F (y))L(x)L(y))x,y≥0 is a predictable positive-definite process (recall Defini-
tion 16), and since (Λ∗(x))x≥0 is an (Fx)-martingale with predictable and quadratic variation processes
given in Equation (30), a straightforward application of Theorem 17 tell us that we just need to verify that

1

n

∫ τn

0

K(F (x), F (x))L(x)dΛ0(x) = Op(1).
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The previous equation holds true by Condition 3, and by using that L(x)/n = Op(1)S0(x)ψ(x) uniformly
for all x ≤ τn due to Propositions 11.ii and 11.iii, and since ψ(x) ≤ η−1(1−G0(x)).

We continue verifying Equation (32). Notice that

n

∥∥∥∥ n

n0n1

∫ τn

0

(K(F (x), ·)−K(F̂ (x−), ·))L(x)dΛ∗(x)

∥∥∥∥2

H
= n

(
n

n0n1

)2 ∫ τn

0

∫ τn

0

h(x, y)dΛ∗(x)dΛ∗(y), (34)

where

h(x, y) =
(
K(F0(x), F0(y))−K(F0(x), F̂ (y−))−K(F̂ (x−), F0(y)) +K(F̂ (x−), F̂ (y−))

)
L(x)L(y).

It is easy to verify that (h(x, y))x,y≥0 is a predictable positive-definite process, then, by using Theorem 17,

the desired result follows from proving n
(

n
n0n1

)2 ∫ τn
0

h(x, x)d〈Λ∗〉(x) = op(1).

Using that L(x)/n = Op(1)S0(x)ψ(x) uniformly for all x ≤ τn and ψ(x) ≤ η−1(1−G0(x)), we get

n

(
n

n0n1

)2 ∫ τn

0

h(x, x)d〈Λ∗〉(x) = Op(1)

∫ τ

0

ω(x)(1−G0(x))dF0(x),

where ω(x) = K(F0(x), F0(x))− 2K(F0(x), F̂ (x−)) +K(F̂ (x−), F̂ (x−))). Let ε > 0, then for any t ∈ (0, τ),

P

(∫ τ

0

ω(x)(1−G0(x))dF0(x) ≥ ε
)

≤ P
(∫ t

0

ω(x)(1−G0(x))dF0(x) ≥ ε

2

)
+P

(∫ τ

t

ω(x)(1−G0(x))dF0(x) ≥ ε

2

)
(35)

We will prove that both terms on the right-hand side of the previous equation tends to 0 as n approaches
infinity. For the first term, notice that, since supx≤t |F̂ (x−)− F (x)| = 0 a.s. by Proposition 10.i, and since

K is continuous in [0, 1)2, it exists N , large enough such that for every n ≥ N , ω(x) ≤ ε/4 uniformly on
[0, t], thus

∫ t
0
ω(x)(1−G0(x))dF0(x) ≤ ε/4. Therefore, for any t < τ ,

lim sup
n→∞

P

(∫ t

0

ω(x)(1−G0(x))dF0(x) ≥ ε

2

)
= 0, (36)

For the second term of the right-hand side of Equation (35), note that 2K(F0(x), F̂ (x−)) ≤ K(F0(x), F0(x))+

K(F̂ (x−)), F̂ (x−)), then ω(x) ≤ 2K(F0(x), F0(x)) + 2K(F̂ (x−)), F̂ (x−)), and thus we deduce

P

(∫ τ

t

ω(x)(1−G0(x))dF0(x) ≥ ε

2

)
≤ P

(∫ τ

t

K(F0(x), F0(x))(1−G0(x))dF0(x) ≥ ε

8

)
+P

(∫ τ

t

K(F̂ (x−), F̂ (x−))(1−G0(x))dF0(x) ≥ ε

8

)
(37)

By Condition 3 we deduce that it exists t′ < τ ,
∫ τ
t′ K(F0(x), F0(x)(1 − G0(x))dF0(x) < ε/16. Then, by

combining Equations (36) and (37), we get that for every t ≥ t′

lim sup
n→∞

P

(∫ τ

0

ω(x)(1−G0(x))dF0(x) ≥ ε
)
≤ lim sup

n→∞
P

(∫ τ

t

K(F̂ (x−), F̂ (x−)(1−G0(x))dF0(x) ≥ ε

8

)
,

and by taking t → τ , we deduce that lim supn→∞P
(∫ τ

0
ω(x)(1−G0(x))dF0(x) ≥ ε

)
= 0 by Condition (4),

completing our proof.

Part 2): Replacement of n
n0n1

L(x) by ψ(x)S0(x)

By the previous part, our test statistic satisfies

nZn = n

(
n

n0n1

)2 ∫ τn

0

∫ τn

0

K(F0(x), F0(y))L(x)L(y)dΛ∗(x)dΛ∗(y) + op(1).

The next step is to show that we can replace n/(n0n1)L(x) by its limit ψ(x)S0(x) without altering the value
of nZn by more than an error of order op(1). We formalise this result in the following lemma.

Lemma 20. Under Conditions 3 and 4, it holds

nZn = n

∫ τn

0

∫ τn

0

K(F (x), F (y))ψ(x)ψ(y)S0(x)S0(y)dΛ∗(x)dΛ∗(y) + op(1).
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Proof. Similar to the proof of Lemma 19, we just need to prove that

n

∥∥∥∥∫ τn

0

K(F (x), ·)
(

n

n0n1
L(x)− ψ(x)S0(x)

)
dΛ∗(x)

∥∥∥∥2

H
= op(1), (38)

and

n

∥∥∥∥∫ τn

0

K(F (x), ·)ψ(x)S0(x)dΛ∗(x)

∥∥∥∥2

H
= Op(1). (39)

We begin by proving Equation (38). Note that, by expanding the inner product, it is enough to prove that

n

∫ τn

0

∫ τn

0

h(x, y)dΛ∗(x)dΛ∗(y) = op(1),

where

h(x, y) = K(F (x), F (y))

(
n

n0n1
L(x)− ψ(x)S0(x)

)(
n

n0n1
L(y)− ψ(y)S0(y)

)
.

Also, observe that (h(x, y))x,y≥0 is a predictable positive-definite process. Then, by Theorem 17, we just
need to verify that n

∫ τn
0

h(x, y)d〈Λ∗〉(x) = op(1), which is deduced from the following equalities:

n

∫ τn

0

h(x, y)d〈Λ∗〉(x) = n

∫ τn

0

K(F (x), F (x))

(
1− ψ(x)S0(x)

n/(n0n1)L(x)

)2(
n

n0n1

)2

L(x)dΛ0(x)

= Op(1)

∫ τ

0

K(F (x), F (x))

(
1− ψ(x)S0(x)

n/(n0n1)L(x)

)2

ψ(x)dF0(x)

= op(1)

where the second equality is due to Propositions 11.ii and 11.iii, from which we deduce that L(x)/n =
Θp(1)ψ(x)S0(x) uniformly for all x ≤ τn, and the third equality is due to an application of the dominated
convergence theorem in sets of arbitrarily large probability: observe that, by Proposition 10, we have that(

1− ψ(x)S0(x)
n/(n0n1)L(x)

)
→ 0 for all x < τ . Additionally,

K(F (x), F (x))

(
1− ψ(x)S0(x)

n/(n0n1)L(x)

)2

ψ(x) = Op(1)K(F (x), F (x))ψ(x)dF0(x)

= Op(1)K(F (x), F (x))(1−G0(x)),

since ψ(x) ≤ (1 − G0(x)) for all x < τ , and note that K(F (x), F (x))(1 − G0(x)) is integrable by Condi-
tion 3. With these ingredients we can apply the dominated convergence theorem in set of arbitrarity large
probability.

To check Equation (39), we follow the same steps, using that n
∫ τn

0
K(F (x), F (x))ψ(x)2S0(x)2/L0(x)dΛ0(x) =

Op(1), since L0(x)/n = Θp(1)ψ(x)S0(x) uniformly for all x ≤ τn.

Part 3): Replacement of Y0 by ηn(1 − H0) and Y1 by (1 − η)n(1 − H1) From the previous step, it
holds that

nZn = n

∥∥∥∥∫ τn

0

K(F0(x), ·)ψ(x)S0(x)dΛ∗(x)

∥∥∥∥2

H
+ op(1)

=
1

n

∥∥∥∥∫ τn

0

K(F0(x), ·)ψ(x)S0(x)

(
dM0(x)

Y0(x)/n
− dM1(x)

Y1(x)/n

)∥∥∥∥2

H
+ op(1)

Our next step is to replace Y0/n and Y1/n by their corresponding limits ηS0(1−G0) and (1−η)S0(1−G1).
The following Lemma implies the desired result.

Lemma 21. Under Conditions 3, it holds

1

n

∥∥∥∥∫ τn

0

K(F0(x), ·)ψ(x)S0(x)

(
1

(Yc(x)/n)
− ηc−1(1− η)−c

S0(x)(1−Gc(x))

)
dMc(x)

∥∥∥∥2

H
= op(1), (40)

and

1

n

∥∥∥∥∫ τn

0

K(F0(x), ·) ψ(x)

(1−Gc(x))
dMc(x)

∥∥∥∥2

H
= Op(1), (41)

for any class label c ∈ {0, 1}.
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Proof. We only prove the result for c = 0 as the proof for c = 1 follows the same steps. Define σn(x) =(
1

Y0(x)/n
− η−1

S0(x)(1−G0(x))

)
, and notice that

1

n

∥∥∥∥∫ τn

0

K(F0(x), ·)ψ(x)S0(x)

(
1

(Y0(x)/n)
− η−1

S0(x)(1−G0(x))

)
dM0(x)

∥∥∥∥2

H

=
1

n

∫ τn

0

∫ τn

0

K(F0(x), F0(y))ψ(x)ψ(y)S0(x)S0(y)σn(x)σn(x)dM0(x)dM0(y) (42)

Define h(x, y) as the integrand in the previous double integral, and notice that (h(x, y))x,y≥0 is a pre-
dictable positive-definite process. Also, recall that M0(x) is an (Fx)x≥0-martingale with predictable and
quadratic variation processes given by d〈M0〉(x) = Y0(x)dΛ0(x) and d[M0](x) = dN(x). Then, by Theo-
rem 17, we just need to verify that

1

n

∫ τn

0

h(x, y)d〈M0〉(x) = op(1).

By Proposition 11.ii, we have Y0(x)/n = Op(1)S0(x)(1−G0(x)) uniformly for all x ≤ τn.∫ τn

0

h(x, y)d〈M0〉(x) = Op(1)

∫ τ

0

K(F0(x), F0(x))ψ(x)2σn(x)2
1{x≤τn}S0(x)2(1−G0(x))dF0(x).

To prove that the previous expression is op(1) we use the dominated convergence theorem. For such, observe
that σn(x)→ 0 a.s. for all x < τ , and that σn(x)2 = Op(1)(S0(x)(1−G0(x))2 uniformly for all x ≤ τn due
to proposition 11.iii, therefore

K(F0(x), F0(x))ψ(x)2σn(x)2S0(x)2(1−G0(x)) = Op(1)K(F0(x), F0(x))
ψ(x)2

1−G0(x)
,

uniformly for all x ≤ τ . Finally, note that K(F0(x), F0(x)) ψ(x)2

1−G0(x)
is integrable by Condition 3, since

ψ(x) ≤ min{η−1(1−G1(x)), (1−η)−1(1−G0(x))}. The previous analysis yields that we can use the dominated
convergence theorem in sets of large probability, concluding that Equation (40) holds true. Equation (41)

follows from the same arguments, by noticing that
∫ τn

0
K(F0(x), F0(x)) ψ(x)

(1−G0(x))
Y0(x)dΛ0(x) = Op(1).

B.3 Step II: Asymptotically equivalence of two models

After applying Theorem 18 we get

Zn =
1

n2

n∑
i

n∑
j=1

∫ τn

0

∫ τn

0

K(F0(x), F0(y))ψ(x)ψ(y)

(1−Gci(x))(1−Gcj (y))
η−2

(
−η

(1− η)

)ci+cj
dM i(x)dM j(y) + op

(
n−1) , (43)

Recall that the previous expression is valid when considering either deterministic or independent Bernoulli(η)
covariates. In this section we show that asymptotic results obtained using either the deterministic or random
covariates models are equivalent.

Let si = (Xi,∆i, ci) for all i ∈ [n] and define J : (R+ × {0, 1} × {0, 1})2 → R as

J(si, sj) = η−2

(
−η

(1− η)

)ci+cj ∫ Xi

0

∫ Xj

0

K(F0(x), F0(y))ψ(x)ψ(y)

(1−Gci(x))(1−Gcj (y))
dM i(x)dM j(y). (44)

Also, define

Vn =
1

n2

n∑
i=1

n∑
j=1

J(si, sj), (45)

and notice that Vn is the non-negligible part of Zn, that is, Zn = Vn+op(n
−1) for both, the deterministic and

the random covariates models. In this section only, we denote by Z′n and Zn, respectively, the test statistics
under the deterministic and random covariates models. More generally, we use an apostrophe (e.g., V ′n) to
denote any term related to the deterministic covariates model.

Lemma 22. There exists a coupling of Zn and Z′n such that Zn − Z′n = op(n
−1).

Proof. We construct a coupling such that Vn − V ′n = o(n−1), which implies the desired result. The coupling
is constructed as follows:

1. For c ∈ {0, 1}, denote by µc the measure induced by the random pair (X,∆) where X = min(T,C)
and ∆ = 1{T≤C}, and T and C are independent random variables such that T ∼ Fc and C ∼ Gc.
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2. Let L0 = (Xi,∆i, 0)i≥1 and L1 = (X̄i, ∆̄i, 1)i≥1 be such that all the triples in L0 and L1 are independent
of everything, and (Xi,∆i) ∼ µ0 and (X̄i, ∆̄i) ∼ µ1 for all i ≥ 1. Note that, since the times are sampled
from continuous distributions, the data points are unique almost surely.

3. In the deterministic covariates model we generate the data, namelyD′n, by choosing the first n0 elements
of L0 and the first n1 elements of L1.

4. In the random covariates model, we generate the data, namely Dn, by sampling N0 ∼ Binomial(n, η)
and then choosing the first N0 elements of L0 and the first n−N0 elements of L1.

5. Compute V ′n and Vn by using the datasets D′n and Dn, respectively.

Note that the datasets Dn and D′n differ in exactly Q = |N0−n0| points. For ease of notation, denote by
si = (Xi,∆i, ci) the observations in Dn and by s′i = (X ′i,∆

′
i, c
′
i) the observations in D′n. We sort the datasets

in such a way that the first Q elements of each dataset are not present in the other, and the remaining n−Q
elements in such a way that sj = s′j for j ≥ Q+ 1. Then, a simple computation shows that

Vn − V ′n = Dn +Rn, (46)

where

Dn =
1

n2

Q∑
i=1

Q∑
j=1

J(si, sj)− J(s′i, s
′
j) and Rn =

2

n2

Q∑
i=1

n∑
j=Q+1

J(si, sj)− J(s′i, sj). (47)

We continue by proving that nDn = op(1) and nRn = op(1). To this end, we need the following intermediate
result, whose proof is deferred to Appendix E.

Proposition 23. Let A : R+×R+ → R be a symmetric function such that, for every c, c′ ∈ {0, 1}, the follow-
ing integrals are finite:

∫ τ
0
|A(x, x)|(1−Gc(x))dFc(x) and

∫ τ
0

∫ τ
0
A(x, y)2(1−Gc(x))(1−Gc′(y))dFc(x)dFc′(y).

Define J(si, sj) by

J(si, sj) =

∫ Xi

0

∫ Xj

0

A(x, y)dM i(x)dM j(y)

for all i, j ∈ [n], and denote by Ẽ the expectation conditioned on fixed covariate values ci and cj. Then the
following hold:

i) Ẽ(J(si, si)) =
∫ τ

0
A(x, x)(1−Gci(x))dFci(x),

ii) Ẽ (|J(si, si)|) <∞,

iii) for all i 6= j, Ẽ(J(si, sj)|sj) = 0, and

iv) for all i 6= j, Ẽ
(
J(si, sj)

2
)

=
∫ τ

0

∫ τ
0
A(x, y)2(1−Gci(x))(1−Gcj (y))dFci(x)dFcj (y).

In our applications of Proposition 23, we will choose

A(x, y) =
1

η2

(
−η

1− η

)ck+c` K(F0(x), F0(y))ψ(x)ψ(y)

(1−Gk(x))(1−G`(y))
.

We continue by proving n|Dn| = op(1). Observe that, by symmetry,

n|Dn| =
1

n

∣∣∣∣∣
Q∑
i=1

Q∑
j=1

J(si, sj)− J(s′i, s
′
j)

∣∣∣∣∣
≤ 1

n

∣∣∣∣∣
Q∑
i=1

J(si, si)− J(s′i, s
′
i)

∣∣∣∣∣+
2

n

∣∣∣∣∣
Q∑
i=1

Q∑
j=i+1

J(si, sj)− J(s′i, s
′
j)

∣∣∣∣∣ . (48)

For the first term in Equation (48), notice that by conditioning on Q, we obtain

E

(
1

n

∣∣∣∣∣
Q∑
i=1

J(si, si)− J(s′i, s
′
i)

∣∣∣∣∣
∣∣∣∣∣Q
)
≤ E

(
1

n

Q∑
i=1

|J(si, si)|

∣∣∣∣∣Q
)

+E

(
1

n

Q∑
i=1

|J(s′i, s
′
i)|

∣∣∣∣∣Q
)

=
Q

n
E(|J(s1, s1)||c1 = 0) +

Q

n
E(|J(s′1, s

′
1)||c′1 = 1),

where the last equality holds since, without loss of generality, the first Q elements of Dn are chosen
from L0 and the Q elements of D′n are chosen from L1. Additionally, notice that by Proposition 23.ii,
E(|J(s1, s1)||c1 = 0) <∞ and E(|J(s′1, s

′
1)||c′1 = 1) <∞.

Also, note that

E

(
Q

n

)2

≤ E
(
Q2

n2

)
≤ 2E

(∣∣∣∣N0

n
− η
∣∣∣∣2
)

+ 2
∣∣∣η − n0

n

∣∣∣2 = 2Var

(
N0

n2

)
+ 2

∣∣∣η − n0

n

∣∣∣2 → 0 (49)
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where the last limit holds because Var(N0) = η(1− η)n, and n0/n→ η. Then, by using the previous result,
we deduce

E

(
1

n

∣∣∣∣∣
Q∑
i=1

J(si, si)− J(s′i, s
′
i)

∣∣∣∣∣
)

= E

(
E

(
1

n

∣∣∣∣∣
Q∑
i=1

J(si, si)− J(s′i, s
′
i)

∣∣∣∣∣
∣∣∣∣∣Q
))

= O(1)E

(
Q

n

)
→ 0.

We continue by proving that the second term in Equation (48) is op(1). Let ε > 0, then

P

(
2

n

∣∣∣∣∣
Q−1∑
i=1

Q∑
j=i+1

J(si, sj)− J(s′i, s
′
j)

∣∣∣∣∣ ≥ ε
)

= E

(
P

(
2

n

∣∣∣∣∣
Q−1∑
i=1

Q∑
j=i+1

J(si, sj)− J(s′i, s
′
j)

∣∣∣∣∣ ≥ ε
∣∣∣∣∣Q
))

≤ 1

ε2
E

(
Var

(
2

n

Q−1∑
i=1

Q∑
j=i+1

J(si, sj)− J(s′i, s
′
j)

∣∣∣∣∣Q
))

,

and

Var

(
2

n

Q−1∑
i=1

Q∑
j=i+1

J(si, sj)− J(s′i, s
′
j)

∣∣∣∣∣Q
)

= Var

(
2

n

Q−1∑
i=1

Q∑
j=i+1

J(si, sj)

∣∣∣∣∣Q
)

+Var

(
2

n

Q−1∑
i=1

Q∑
j=i+1

J(si, sj)

∣∣∣∣∣Q
)

=
4

n2

Q−1∑
i=1

Q∑
j=i+1

Var(J(si, sj)) +Var(J(s′i, s
′
j))

=
4

n2

Q−1∑
i=1

Q∑
j=i+1

E(J(si, sj)
2) +E(J(s′i, s

′
j)

2),

the first inequality holds because the variables (si)
Q
i=1 are independent of (s′i)

Q
i=1, given Q. The second

equality follows from noticing that Cov(J(si, sj), J(sl, sk)) = 0 for all (i, j) 6= (l, k), which is a simple
computation that follows straightforwardly from Proposition 23.iii. By Proposition 23.iv, there exists C′ > 0
such that for all i 6= j, E(J(si, sj)

2) ≤ C′ and E(J(s′i, s
′
j)

2) ≤ C′, then

Var

(
2

n

Q−1∑
i=1

Q∑
j=i+1

J(si, sj)− J(s′i, s
′
j)

∣∣∣∣∣Q
)
≤ CQ

2

n2
,

for some C > 0. We conclude

P

(
2

n

∣∣∣∣∣
Q−1∑
i=1

Q∑
j=i+1

J(si, sj)− J(s′i, s
′
j)

∣∣∣∣∣ ≥ ε
)
≤ 1

ε2
E

(
Var

(
2

n

Q−1∑
i=1

Q∑
j=i+1

J(si, sj)− J(s′i, s
′
j)

∣∣∣∣∣Q
))

≤ C

ε2
E(Q2/n2)→ 0,

where the last limit follows from Equation (49).
Finally, we prove n|Rn| = op(1). Let ε > 0, then

P(n|Rn| ≥ ε) = E (P(n|Rn| ≥ ε|Q)) ≤ 1

ε2
E (Var(nRn|Q))

and

Var(nRn|Q) =
4

n2

Q∑
i=1

n∑
j=Q+1

Var (J(si, sj)|Q) +Var
(
J(s′i, sj)|Q

)
≤ CQ(n−Q)

n2
,

where the previous equality follows by Proposition 23.iii, from which we deduce that all non-trivial co-
variances are 0, and the inequality holds for some constant C > 0 due to Proposition 23.iv, as indeed,
Var (J(si, sj)|Q) and Var (J(s′i, sj |Q)) are bounded for any i, j ∈ [n], independently of the value of the co-
variates. Since E(Q)/n→ 0 we conclude that nRn = op(1) which, combined with the fact that nDn = op(1),
yields n(Vn − V ′n) = op(1).
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B.4 Step III: Limit distribution under the null hypothesis

In this section we prove Theorem 5 for the random covariates model. Recall that by Lemma 22, the result
also holds for the deterministic covariates model.

Recall from Equation (45) that

n0n1

n
Zn =

n0n1

n
Vn + op(1) =

n0n1

n

1

n2

n∑
i=1

n∑
j=1

J(si, sj) + op(1), (50)

where J is defined in Equation (44) and si = (Xi,∆i, ci) are independent and identically distributed random
observations as the covariates are random, which is the main advantage of working in the random covariates
model. Then, by using the previous expression, the asymptotic distribution of (n0n1)/nZn can be obtained
from a standard application of the theory of V-statistics. In particular, by Proposition 23.iii, E(J(si, sj)|sj) =
0 for any i 6= j, hence J is a so-called degenerate V-statistic kernel, therefore Theorem 4.3.2 of Koroljuk and
Borovskich [1994] yields

1

n

n∑
i=1

n∑
j=1

J(si, sj)
D→ E(J(s1, s1)) + Y, (51)

where Y =
∑∞
i=1 λi(ξ

2
i − 1), (ξi)i≥1 are independent and identically distributed standard normal ran-

dom variables, and (λi)i≥1 are the eigenvalues associated to the integral operator TJ : L2(X1,∆1, c1) →
L2(X1,∆1, c1) defined by (TJφ)(s) = Es1(J(s, s1)φ(s1)), where Es1 means expectation with respect s1 =
(X1,∆1, c1). From Equation (51) we deduce that

n0n1

n
Zn

D→ η(1− η)E(J(s1, s1)) + η(1− η)Y.

We finish by computing the asymptotic mean and variance of our test statistic. By using Proposition 23.i,
a simple computation shows that

E(J(s1, s1)) =
1

η

∫ τ

0

K(F0(x), F0(x))ψ(x)2

1−G0(x)
dF0(x) +

1

1− η

∫ τ

0

K(F0(x), F0(x))ψ(x)2

1−G1(x)
dF0(x),

and since Y has mean 0, the asymptotic mean of (n0n1)/nZn is given by

η(1− η)E(J(s1, s1)) =

∫ τ

0

K(F0(x), F0(x))ψ(x)dF0(x).

Finally, from Proposition 23.iv, we have that

Var(Y) = 2
∑
i=1

λ2
i = 2E(J(s1, s2)2) =

2

(η(1− η))2

∫ τ

0

∫ τ

0

K(F0(x), F0(y))2ψ(x)ψ(y)dF0(x)dF0(y),

from which we deduce that the expression for the asymptotic variance is given by

Var(η(1− η)Y) = 2

∫ τ

0

∫ τ

0

K(F0(x), F0(y))2ψ(x)ψ(y)dF0(x)dF0(y).

C Wild Bootstrap

By following exactly the same steps used in the proof of Theorem 5, the Wild Bootstrap test statistic ZWn ,
given in Equation (21), can be rewritten as ZWn = VWn +op(n

−1), where VWn = 1
n2

∑n
i=1

∑n
j=1 WiWjJ(si, sj),

and J is the kernel defined in Equation (44). Under the random covariates model Vn is a degenerate V -
statistic, and thus, Theorem 9 is a direct application of Theorem 3.1 of Dehling and Mikosch [1994]. This
result can be extended to the deterministic covariates model by using the same coupling of Lemma 22
(however, randomness is taken over W, as we are conditioning on the sequence of data points).

D Proof of Theorem 6 and Corollary 7

In this section we mainly work under the alternative hypothesis, therefore we need to consider this fact when
computing some limit results. For instance, in this more general setting the limit of n/(n0n1)L(x) is slightly
different to its limit under the null hypothesis. Indeed, by Proposition 10, for every fixed x, it holds

n

n0n1
L(x)→ ψ∗(x)S1(x)S0(x) a.s., (52)
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as the number of observations tends to infinity, and by Proposition 11

n

n0n1
L(x) = Op(1)ψ∗(x)S1(x)S0(x), (53)

uniformly for all x ≤ τn. In the previous results, ψ∗(x) is the function defined in Equation (15) which
satisfies the following bound

ψ∗(x) ≤ min

{
1−G0(x)

ηS1(x)
,

1−G1(x)

(1− η)S0(x)

}
. (54)

Other objects that may vary their limits in this more general setting are the pooled Nelson-Aalen estimator
Λ̂ and Kaplan-Meier statistic F̂ , and in general, any statistic constructed using the survival times (Ti)i∈[n]

(as now, F0 and F1 may or may not be equal). Having this in mind, we proceed to prove Theorem 6 and
Corollary 7.

To proof Theorem 6, we require the following intermediate result:

Lemma 24. Assume that Conditions 3 and 4 hold. Then, ‖φnc − φc‖H
P→ 0 for c ∈ {0, 1}.

Proof. We prove the result for c = 0, as the proof for c = 1 is exactly the same. We consider the deterministic
covariates model since for the random covariates model we can condition on the number of data points with
covariate equal to 0.

Define the intermediate embeddings, φ̂0 ∈ H and φ′0 ∈ H, by

φ̂0(·) =
n

n0n1

∫ τn

0

K(F̂ (y−), ·)L(y)dΛ0(y), and φ′0(·) =
n

n0n1

∫ τn

0

K(F (y), ·)L(y)dΛ0(y),

and recall that φn0 and φ0 (introduced in Equations (10) and (18), respectively) are given by

φn0 (·) =
n

n0n1

∫ τn

0

K(F̂ (y−), ·)L(y)dΛ̂0(y) and φ0(·) =

∫ τ

0

K(F (y), ·)ψ∗(y)S1(y)dF0(y).

Notice that in this setting the pooled distribution F is not necessarily equal to F0.
Clearly

‖φn0 − φ0‖H ≤ ‖φn0 − φ̂0‖H + ‖φ̂0 − φ′0‖H + ‖φ′0 − φ0‖H.

We will prove that the three terms in the right-hand-side of the previous equation are op(1). First we prove

‖φn0 − φ̂0‖H = op(1). Recall that the Nelson-Aalen estimator satisfies (dΛ̂0− dΛ0)(x) = dM0(x)/Y0(x), then

‖φn0 − φ̂0‖2H =

(
n

n0n1

)2 ∥∥∥∥∫ τn

0

K(F̂ (x−), ·)L(x)
dM0(x)

Y0(x)

∥∥∥∥2

H
=

1

n2
0

∫ τn

0

∫ τn

0

h(x, y)dM0(x)dM0(y), (55)

where

h(x, y) = K(F̂ (x−), F̂ (y−))
(Y1(x)/n1)(Y1(y)/n1)

(Y (x)/n)(Y (y)/n)
.

We prove that Equation (55) is op(1) by using Theorem 17. Observe that h(x, y) is symmetric and positive-
definite, (h(x, y))(x,y)∈C is P measurable by Proposition 14, and (h(x, x))x≥0 is predictable with respect to
(Fx)x≥0. Then, by Theorem 17, the result is deduced from checking that 1

n2
0

∫ τn
0

h(x, x)d〈M0〉(x) = op(1).

By using that Y1(x)/Y (x) ≤ 1, n/n1 = O(1), and that Y0(x)/n0 = Op(1)S(x)(1 −G0(x)) uniformly for all
x ≤ τn, we have

1

n2
0

∫ τn

0

h(x, x)d〈M0〉(x) =
1

n2
0

∫ τn

0

K(F̂ (x−), F̂ (x−))
(Y1(x)/n1)2

(Y (x)/n)2
Y0(x)dΛ0(x)

= O(1)
1

n0

∫ τn

0

K(F̂ (x−), F̂ (x−))(1−G0(x))dF0(x).

The previous term is tends to 0 since
∫ τn

0
K(F̂ (x−), F̂ (x−))(1−G0(x))dF0(x) <∞ by Condition 4.

We continue by proving ‖φ̂0 − φ′0‖H = op(1). Let t < τ and ε > 0, then

P
(
‖φ̂0 − φ′0‖2H > ε

)
≤ P

(∥∥∥∥ n

n0n1

∫ t

0

h(x, ·)L(x)dΛ0(x)

∥∥∥∥2

H
> ε/2

)
+P

(∥∥∥∥ n

n0n1

∫ τn

t

h(x, ·)L(x)dΛ0(x)

∥∥∥∥2

H
> ε/2

)
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where h(x, ·) = (K(F̂ (x−), ·)−K(F (x), ·)). By taking limsup when n grows to infinity, the first probability
is equal to zero since h(x, y) = 〈h(x, ·), h(y, ·)〉H → 0 uniformly for all x, y ≤ t. Then,

lim sup
n→∞

P
(
‖φ̂0 − φ′0‖2H > ε

)
≤ lim sup

n→∞
P

(∥∥∥∥ n

n0n1

∫ τn

t

h(x, ·)L(x)dΛ0(x)

∥∥∥∥2

H
> ε/2

)
.

Finally, by taking limit when t→ τ , and by using the definition of h, we obtain

lim sup
n→∞

P
(
‖φ̂0 − φ′0‖2H > ε

)
≤ lim
t→τ

lim sup
n→∞

P

(∥∥∥∥ n

n0n1

∫ τn

t

K(F̂ (x−), ·)L(x)dΛ0(x)

∥∥∥∥
H
>
√
ε/2/2

)
+ lim
t→τ

lim sup
n→∞

P

(∥∥∥∥ n

n0n1

∫ τn

t

K(F (x), ·)L(x)dΛ0(x)

∥∥∥∥
H
>
√
ε/2/2

)
.

We prove that each of the terms in the right-hand-side of the previous Equation are 0. For the first one,
from Propositions 11.ii and 11.iii, we have that (n/(n0n1))L(x) = β−1ψ∗(x)S0(x)S1(x) for all x ≤ τn with
probability at least 1− p(β) with p(β)→ 0 as β → 0. Then, with probability at least 1− p(β) we have∥∥∥∥ n

n0n1

∫ τn

t

K(F (x), ·)L(x)dΛ0(x)

∥∥∥∥2

H
≤ β−2

∫ τn

t

∫ τn

t

K(F̂ (x−), F̂ (y−))S1(x)ψ∗(x)S1(y)ψ∗(y)dF0(x)dF0(y)

≤ 2β−2

∫ τn

t

∫ τn

t

K(F̂ (x−), F̂ (x−))S1(x)ψ∗(x)S1(y)ψ∗(y)dF0(x)dF0(y)

≤ 2β−2

∫ τn

t

S1(y)ψ∗(y)dF0(y)

∫ τn

t

K(F̂ (x−), F̂ (x−))S1(x)ψ∗(x)dF0(x)

≤ 2

η2
β−2

∫ τn

t

K(F̂ (x−), F̂ (x−))dF0(x),

where the second inequality holds by noting that 2K(s, t) ≤ K(s, s) +K(t, t) for all s, t since K is positive
definite, and the fourth inequality holds Equation (54). Finally,

P

(∥∥∥∥ n

n0n1

∫ τn

t

K(F̂ (x−), ·)L(x)dΛ0(x)

∥∥∥∥
H
>
√
ε/2/2

)
≤ p(β) +P

(∫ τn

t

K(F̂ (x−), F̂ (x−))dF0(x) ≥ β2η2
√
ε/2/4

)
(56)

then, by Condition 4, we conclude that for all β ∈ (0, 1)

lim sup
t→τ

lim sup
n→∞

P

(∥∥∥∥ n

n0n1

∫ τn

t

K(F̂ (x−), ·)L(x)dΛ0(x)

∥∥∥∥
H
>
√
ε/2/2

)
≤ p(β), (57)

then taking β → 0 yields the desired result. A similar argument shows that

lim
t→τ

lim sup
n→∞

P

(∥∥∥∥ n

n0n1

∫ τn

t

K(F (x), ·)L(x)dΛ0(x)

∥∥∥∥
H
>
√
ε/2/2

)
= 0,

concluding that ‖φ̂0 − φ′0‖2H = op(1).
Finally, we prove that ‖φ′0 − φ0‖H = op(1). Observe that by triangular inequality,

‖φ′0 − φ0‖H

≤
∥∥∥∥∫ τn

0

K(x, ·)
(

n

n0n1
L(x)− ψ∗(x)S1(x)S0(x)

)
dΛ0(x)

∥∥∥∥
H

+

∥∥∥∥∫ τ

τn

K(F (y), ·)ψ∗(y)S1(y)dF0(y)

∥∥∥∥
H
.

Observe that∥∥∥∥∫ τn

0

K(x, ·)
(

n

n0n1
L(x)− ψ∗(x)S1(x)S0(x)

)
dΛ0(x)

∥∥∥∥2

H
=

∫ τn

0

∫ τn

0

K(x, y)σ(x)σ(y)
dF0(x)

S0(x)

dF0(y)

S0(y)

= op(1)

where σ(x) = ψ∗(x)S0(x)S1(x)−n/(n0n1)L(x). The second equality follows from the dominated convergence
theorem: by Equation (52), we have σ(x)→ 0 for all x ≤ τ almost surely, also, by Equations (53) and (54),
it holds σ(x)/S0(x) = Op(1)ψ∗(x)S1(x) = Op(1)(1−G0(x)) uniformly for all x ≤ τn. From Condition 3 we
have that

∫ τ
0

∫ τ
0
|K(F (x), F (y))|(1−G0(x))(1−G0(y))dF0(x)dF0(y) <∞, then we can apply the dominated

convergence theorem on sets of probability as high as desired, obtaining that ‖φ′0 − φ0‖H = op(1).

30



Finally, observe that∥∥∥∥∫ τ

τn

K(F (y), ·)ψ∗(y)S1(y)dF0(y)

∥∥∥∥2

H
=

∫ τ

τn

∫ τ

τn

K(F (x), F (y))ψ∗(x)ψ∗(y)S1(x)S1(y)dF0(x)dF0(y)

= O(1)

∫ τ

τn

∫ τ

τn

K(F (x), F (y))(1−G(x))(1−G(y))dF0(x)dF0(y)

= op(1)

where the second equality is due to Equation (54), and the third is due Condition 3 together with the fact
that τn → τ .

Proof of Theorem 6. Notice that
√
Zn = ‖φn0 − φn1 ‖H. Then, by using the triangle inequality, we deduce

‖φ0 − φ1‖ − ‖φ0 − φn0 ‖H − ‖φ1 − φn1 ‖H ≤
√
Zn ≤ ‖φn0 − φ0‖H + ‖φ0 − φ1‖H + ‖φ1 − φn1 ‖H,

hence, a straightforward application of Lemma 24 deduces
√
Zn

P→ ‖φ0 − φ1‖H, and by squaring both sides,
we obtain the desired result.

Proof of Corollary 7. Theorem 6 yields
√
Zn

P→ ‖φ0 − φ1‖H, therefore it is enough to prove that φ0 6= φ1.
Recall from Equation (18) that for c ∈ {0, 1}, φc is defined by

φc(·) =

∫ τ

0

K(F (y), ·)dνc(y)

where the measures νc is defined in Equation (17). Let F−1(x) = inf{t ≥ 0 : F (t) = x}, which is differentiable
almost everywhere since F is the cumulative distribution function of a continuous random variable. Then,
by performing a change of variables, we obtain

φc(·) =

∫ 1

0

K(x, ·) 1

f(F−1(x))
dνc(F

−1(x)),

where f is the density function associated with F . We conclude that φc is the mean kernel embedding (see
Equation (6)) of the measure πc(·) on [0, 1) given by πc(A) =

∫
A

1
f(F−1(x))

dνc(F
−1(x)).

As the kernel K is continuous and c-universal (recall the definition from Section 3.1), the mean kernel
embedding of finite signed measures is injective, hence, we just need to check that π0 6= π1 and that both
measures are finite.

First, we prove that F0 6= F1 implies that π0 6= π1. We proceed by contradiction, i.e., we assume
that π0 = π1. Since F and F−1 are non-decreasing functions, π0 = π1 implies ν0 = ν1. Observe that ν0

and ν1 are continuous measures with respective densities ψ∗(x)S1(x)f0(x) and ψ∗(x)S0(x)f1(x), where f0

and f1 denote the density functions of F0 and F1, respectively. Since ν0 = ν1, their densities are equal.
Let τ0 = sup{t : S0(t) > 0} and τ1 = sup{t : S1(t) > 0}, and, without lost of generality, assume that
τ0 ≤ τ1. By hypothesis, for all x < τ0 we have that G0(x) < 1 and G1(x) < 1, hence ψ∗(x) > 0. Using
that ψ∗(x)S1(x)f0(x) = ψ∗(x)S0(x)f1(x), we deduce that for all x < τ0, S1(x)f0(x) = S0(x)f1(x); thus,
λ0(x) = λ1(x), and therefore, by the bijection between hazard and density functions, we have F0(x) = F1(x).
Since F0(τ0) = 1, we conclude that F0(x) = F1(x) for all x ∈ R+, which is a contradiction.

Finally, a simple computation verifies that νc is a finite measure. Indeed, for c = 0, we have
∫ τ

0
dν0(x) =∫ τ

0
ψ∗(x)S1(x)f0(x)dx, and from Equation (54) it holds that ψ∗(x)S1(x)f0(x) ≤ Cf0, where C > 0, therefore

ν0 is a finite measure. The same holds for ν1, concluding the result.

E Deferred proofs

E.1 Proof of Theorem 17

To ease notation, we write h and W instead of hn and Wn, respectively. Define the process R by

R(t) =

∫ t

0

∫ t

0

h(x, y)dW (x)dW (y), t ≥ 0. (58)

Observe that R(0) = 0 and that R(t) ≥ 0 for every t ≥ 0 since h is positive definite. We will prove that
exists an increasing predictable process A that majorises R in the sense that E(R(T )) ≤ E(A(T )) for every
finite stopping time, and then, we will apply the Lenglart-Rebolledo inequality to R and A, which tells us
that for every ε, δ > 0, P(supt≤T R(t) ≥ ε) ≤ ε/δ+P(A(T ) ≥ δ) for any stopping time T (even unbounded).
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To find the process A, we start by noticing that R can be decomposed as R(t) = D(t) + 2Z(t), where
the processes D and Z are given by

D(t) =

∫ t

0

h(x, x)d[W ](x), and Z(t) =

∫ t

0

∫
(0,y)

h(x, y)dW (x)dW (y),

respectively. We make two observations. First, since the process (h(x, y)(x,y)∈C is P-measurable, then
(Z(t))t≥0 is an (Ft)-martingale by Theorem 15. Additionally, by the Optional Stopping Theorem, Z(T ) = 0
for every bounded stopping time T . Second, since h is positive definite, h(t, t) ≥ 0 and (h(x, x))x≥0 is
(Fx)-predictable, then the process (D(t))t≥0 is increasing and adapted with D(0) = 0 and it is compensated
by the process A given by

A(t) =

∫ t

0

h(Q(x), Q(x))d〈W 〉 (59)

which is increasing and predictable with respect to (Ft)t≥0. Since D−A is a martingale, we have E(D(T )) =
E(A(T )) for any bounded stopping time T . We conclude that for every bounded stopping time T , it
holds that E(R(T )) = E(A(T )), i.e., A majorises R. Then, if A(τn) = op(1), the Lenglart-Rebolledo
inequality concludes that R(τn) = op(1), and if A(τn) = Op(1), then the Lenglart-Rebolledo inequality
yields R(τn) = Op(1).

E.2 Proof of Proposition 23

Item i: Observe that

Ē (J(si, si)) = Ē

(∫ Xi

0

∫ Xi

0

A(x, y)dM i(x)dM i(y)

)
= Ē(D(Xi)) + 2Ē(Z(Xi)),

where D(t) and Z(t) are defined by

D(t) =

∫ t

0

A(x, x)d[M i](x) and Z(t) =

∫ t

0

∫
(0,y)

A(x, y)dM i(x)dM i(y),

and notice that d[M i](x) = dN i(x) since the survival times are continuous.
We begin by noticing that

Ẽ(D(Xi)) = Ẽ

(∫ Xi

0

A(x, x)dN i(x)

)
= Ẽ (A(Xi, Xi)∆i) =

∫ τ

0

A(x, x)(1−Gci)dFci(x).

Also, by Theorem 15 and conditioned on the value of the covariate, Z(t) is a zero-mean (Ft)-martingale.
Then the optional stopping time theorem yields Ẽ(Z(Xi)) = Ẽ(Z(0)) = 0, and thus

Ē (J(si, si)) =

∫ τ

0

A(x, x)(1−Gci)dFci(x).

Item ii: Observe that

|J(si, si)| ≤ ∆i|A(Xi, Xi)|+ 2∆i

∣∣∣∣∫ Xi

0

A(Xi, x)dΛci(x)

∣∣∣∣+

∣∣∣∣∫ Xi

0

∫ Xi

0

A(x, y)dΛci(x)dΛci(y)

∣∣∣∣ .
We continue by proving that all the terms on the right-hand-side of the previous equation have positive
expectation.

For the first term we have

Ẽ (∆i|A(Xi, Xi)|) =

∫ τ

0

|A(x, x)|(1−Gci(x))dFci(x) <∞, (60)

where the last inequality follows from the assumptions made in the Proposition. The second term satisfies

Ẽ

(
∆i

∣∣∣∣∫ Xi

0

A(Xi, x)dΛci(x)

∣∣∣∣) ≤ ∫ τ

0

∫ y

0

|A(y, x)|dΛci(x)(1−Gci(y))dFci(y) <∞, (61)

where the last inequality follows from Lemma 1 of Efron and Johnstone [1990] (see also Remark 2 of Akritas
[2000]). Finally, the last term satisfies

Ẽ

(∣∣∣∣∫ Xi

0

∫ Xi

0

A(x, y)dΛci(x)dΛci(y)

∣∣∣∣) ≤ Ẽ(∫ τ

0

∫ τ

0

1{Xi≥max(x,y)}|A(x, y)|dΛci(x)dΛci(y)

)
=

∫ τ

0

∫ τ

0

|A(x, y)|(1−Hci(x ∨ y))dΛci(x)dΛci(y)

= 2

∫ τ

0

∫ y

0

A(x, y)|(1−Gci(y))dFci(x)dΛci(y)

<∞,
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where the second equality holds by the symmetry of the functions A(x, y) and 1−Hci(x ∨ y), and the last
inequality holds by Equation (61).

Item iii: Let i 6= j and define the process

Q(t) =

∫ t

0

∫ Xj

0

A(x, y)dM j(y)dM i(x). (62)

Notice that conditioned on sj = (Xj ,∆j , cj) and ci, the process (Q(t))t≥0 is a zero-mean martingale.
Therefore, by the optional stopping theorem we have

Ẽ(J(si, sj)|sj) = Ẽ(Q(Xi)|sj) = Ẽ(Q(0)|sj) = 0.

Item iv: Observe that Ẽ(J(si, sj)
2) = Ẽ(Q(Xi)

2) for i 6= j, where (Q(t))t≥0 is the process defined in
Equation (62). Observe that, conditioned on sj = (Xj ,∆j , cj) and ci, (Q(t)2)t≥0 is an (Ft)-submartingale
with compensator given by

〈Q〉(Xi) =

∫ Xi

0

(∫ Xj

0

A(x, y)dM j(y)

)2

Y i(x)dΛci(x).

Then

Ẽ(Q(Xi)
2|sj) = Ẽ(〈Q〉(Xi)|sj) = Ē

(∫ Xi

0

(∫ Xj

0

A(x, y)dM j(y)

)2

Y i(x)dΛci(x)

∣∣∣∣∣ sj
)

=

∫ τ

0

(∫ Xj

0

A(x, y)dM j(y)

)2

E(Y i(x))dΛci(x)

=

∫ τ

0

(∫ Xj

0

A(x, y)dM j(y)

)2

(1−Gci(x))dFci(x)

and thus

Ẽ(Q(Xi)
2) = Ẽ(Ẽ(Q(Xi)

2|sj)) = Ẽ

(∫ τ

0

(∫ Xj

0

A(x, y)dM j(y)

)2

(1−Gci(x))dFci(x)

)

=

∫ τ

0

Ẽ

((∫ Xj

0

A(x, y)dM j(y)

)2
)

(1−Gci(x))dFci(x)

=

∫ τ

0

Ẽ

(∫ τ

0

A(x, y)2Yj(y)dΛcj (y)

)
(1−Hci(x))Λci(x)

=

∫ τ

0

∫ τ

0

A(x, y)2(1−Gcj (y))(1−Gci(x))dFcj (y)dFci(x),

where the second equality is due to the independence of si and sj for i 6= j, and the third equality follows

by noticing that, conditioned on cj ,
(∫ t

0
A(x, y)dM j(y)

)2

is an (Ft)-submartingale for any fixed x ∈ R+

and its compensator is given by
∫ t

0
A(x, y)2Y j(y)dΛcj (y).
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