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ROBUST BAYESIAN INFERENCE FOR SET-IDENTIFIED MODELS
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This paper reconciles the asymptotic disagreement between Bayesian and frequen-
tist inference in set-identified models by adopting a multiple-prior (robust) Bayesian
approach. We propose new tools for Bayesian inference in set-identified models and
show that they have a well-defined posterior interpretation in finite samples and are
asymptotically valid from the frequentist perspective. The main idea is to construct a
prior class that removes the source of the disagreement: the need to specify an un-
revisable prior for the structural parameter given the reduced-form parameter. The
corresponding class of posteriors can be summarized by reporting the ‘posterior lower
and upper probabilities’ of a given event and/or the ‘set of posterior means’ and the
associated ‘robust credible region’. We show that the set of posterior means is a consis-
tent estimator of the true identified set and the robust credible region has the correct
frequentist asymptotic coverage for the true identified set if it is convex. Otherwise, the
method provides posterior inference about the convex hull of the identified set. For
impulse-response analysis in set-identified Structural Vector Autoregressions, the new
tools can be used to overcome or quantify the sensitivity of standard Bayesian inference
to the choice of an unrevisable prior.

KEYWORDS: Multiple priors, identified set, credible region, consistency, asymptotic
coverage, identifying restrictions, impulse-response analysis.

1. INTRODUCTION

IT IS WELL KNOWN THAT the asymptotic equivalence between Bayesian and frequen-
tist inference breaks down in set-identified models. First, the sensitivity of Bayesian in-
ference to the choice of the prior does not vanish asymptotically, unlike in the point-
identified case (Poirier (1998)). Second, any prior choice can lead to ‘overly informative’
inference, in the sense that Bayesian interval estimates asymptotically lie inside the true
identified set (Moon and Schorfheide (2012)). This paper reconciles this disagreement
between Bayesian and frequentist inference by adopting a multiple-prior robust Bayesian
approach.

In a set-identified structural model, the prior for the model’s parameter can be decom-
posed into two components: the prior for the reduced-form parameter, which is revised

Raffaella Giacomini: r.giacomini@ucl.ac.uk
Toru Kitagawa: t.kitagawa@ucl.ac.uk
This paper merges and extends two previously circulated (and now retired) working papers: Giacomini, R.

and T. Kitagawa (2015): ‘Robust Inference about Partially Identified SVARs’ and Kitagawa, T. (2012): ‘Es-
timation and Inference for Set-Identified Parameters using Posterior Lower Probabilities’. We would like to
thank Matthew Read for outstanding research assistance and Alessio Volpicella for providing useful computa-
tional insights. We also thank Gary Chamberlain, Jean-Pierre Florens, Eleonora Granziera, Frank Kleibergen,
Sophocles Mavroeidis, Andriy Norets, Joris Pinkse, Frank Schorfheide, three anonymous referees, and several
seminar and conference participants for their valuable comments. Both authors gratefully acknowledge finan-
cial support from ERC Grants 536284 and 715940 and the ESRC Centre for Microdata Methods and Practice
(CeMMAP) (Grant RES-589-28-0001).

© 2021 The Authors. Econometrica published by John Wiley & Sons Ltd on behalf of The Econometric Society.
Raffaella Giacomini is the corresponding author on this paper. This is an open access article under the terms of
the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

https://www.econometricsociety.org/
mailto:r.giacomini@ucl.ac.uk
mailto:t.kitagawa@ucl.ac.uk
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.3982%2FECTA16773&domain=pdf&date_stamp=2021-07-26


1520 R. GIACOMINI AND T. KITAGAWA

by the data; and the prior for the structural parameter given the reduced-form parame-
ter, which cannot be revised by data. Our robust Bayesian approach removes the need to
specify the prior for the structural parameter given the reduced-form parameter, which
is the component of the prior that is responsible for the asymptotic disagreement be-
tween Bayesian and frequentist inference. This is accomplished by constructing a class of
priors that shares a single prior for the reduced-form parameter but allows for arbitrary
conditional priors for (or ambiguous beliefs about) the structural parameter given the
reduced-form parameter. By applying Bayes’s rule to each prior in this class, we obtain a
class of posteriors and show that it can be used to perform posterior sensitivity analysis
and to conduct inference about the identified set.

In practice, we propose summarizing the information in the class of posteriors by re-
porting the ‘posterior lower and upper probabilities’ of an event and/or the ‘set of pos-
terior means (or quantiles)’ in the class of posteriors and the associated ‘robust credible
region’. These outputs can be expressed in terms of the (single) posterior of the reduced-
form parameter, so they can be obtained numerically if one can draw the reduced-form
parameter randomly from its posterior.

We show that, if the true identified set is convex, the set of posterior means converges
asymptotically to the true identified set and the robust credible region attains the desired
frequentist coverage for the true identified set asymptotically (in a pointwise sense). If
the true identified set is not convex, the method provides posterior inference about the
convex hull of the identified set.

The paper further proposes diagnostic tools that measure the plausibility of the identi-
fying restrictions, the information contained in the identifying restrictions, and the infor-
mation introduced by the unrevisable prior that would be required by a standard Bayesian
approach.

The second part of the paper presents a detailed illustration of the method in the con-
text of impulse-response analysis in Structural Vector Autoregressions (SVARs) that are
set-identified due to under-identifying zero and/or sign restrictions (Faust (1998), Canova
and Nicolo (2002), Uhlig (2005), among others). As is typical in this literature, we focus
on pointwise inference about individual impulse responses. A scalar object of interest fa-
cilitates computing the set of posterior means and the robust credible region, since the
posterior of an interval can be reduced to the posterior of a two-dimensional object (the
upper and lower bounds).1

Most empirical applications of set-identified SVARs adopt standard Bayesian infer-
ence and select a non-informative—but unrevisable—prior for the rotation matrix that
transforms reduced-form shocks into structural shocks.2  Baumeister and Hamilton (2015)
cautioned against this approach and showed that it may result in spuriously informative
posterior inference. Our method overcomes this drawback by removing the need to spec-
ify a single prior for the rotation matrix.

We give primitive conditions that ensure frequentist validity of our method in the con-
text of SVARs. The conditions are mild or easy to verify, and cover a wide range of ap-
plications. In particular, the results on the types of restrictions that give rise to a convex
identified set with continuous and differentiable endpoints are new to the literature and
may be of separate interest regardless of whether one favors a Bayesian or a frequentist
approach.

1Extending the analysis to the vector case would in principle be possible, but challenging in terms of both
visualization and computation. This is also true in point-identified SVARs (see Inoue and Kilian (2013)).

2Gafarov, Meier, and Montiel-Olea (2018) and Granziera, Moon, and Schorfheide (2018) are notable ex-
ceptions that consider a frequentist setting.
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We provide an algorithm for implementing the procedure, which in practice adds an
optimization step to the algorithms used in the literature, such as those of Uhlig (2005)
and Arias, Rubio-Ramírez, and Waggoner (2018).

Our practical suggestion in empirical applications is to report the posterior lower (or
upper) probability of an event and/or the set of posterior means and the robust credible
region, as an alternative or addition to the standard Bayesian output. Reporting the out-
puts from both approaches, together with the diagnostic tools, can help one separate the
information contained in the data and in the identifying restrictions from that introduced
by choosing a particular unrevisable prior.

As a concrete example of how to interpret the robust Bayesian output in an SVAR
application, the finding that the posterior lower probability of the event ‘the impulse re-
sponse is negative’ equals, say, 60%, means that the posterior probability of a negative
impulse response is at least 60%, regardless of the choice of unrevisable prior for the ro-
tation matrix. The set of posterior means can be interpreted as an estimate of the impulse-
response identified set. The robust credible region is an interval for the impulse response
such that the posterior probability assigned to it is greater than or equal to, say, 90%,
regardless of the prior for the rotation matrix.

The empirical illustration applies the method to a standard monetary SVAR that im-
poses various combinations of equality and sign restrictions typically used in the litera-
ture. The findings show that all 90% robust credible regions contain zero, casting doubts
on the informativeness of such restrictions. In particular, sign restrictions alone have little
identifying power, which means that standard Bayesian inference is largely driven by the
choice of the unrevisable prior for the rotation matrix. The addition of zero restrictions
tightens the estimated identified set, makes standard Bayesian inference less sensitive to
the choice of prior for the rotation matrix, and can lead to informative inference about
the sign of the output response to a monetary policy shock.

This paper is related to several literatures in econometrics and statistics.
Robust Bayesian analysis has a long history in statistics. See Berger (1994) and refer-

ences therein. In econometrics, pioneering contributions using multiple priors are Cham-
berlain and Leamer (1976) and Leamer (1982), who obtained the bounds for the posterior
mean of regression coefficients when a prior varies over a certain class. No previous stud-
ies explicitly consider set-identified models, but rather focus on point-identified models,
and view the approach as a way to measure the global sensitivity of the posterior to the
choice of prior (as an alternative to a full Bayesian analysis requiring the specification of
a hyperprior over the priors in the class).

In econometrics, there is a large literature on estimation and inference in set-identified
models from the frequentist perspective. See Canay and Shaikh (2017) for a survey of
the literature and references therein. In the context of certain sign-restricted SVARs,
Granziera, Moon, and Schorfheide (2018) proposed frequentist inference by inverting
tests for a minimum-distance type criterion function, while Gafarov, Meier, and Montiel-
Olea (2018) applied the delta-method using directional derivatives. Our approach is com-
plementary, as it accommodates a broader class of identifying restrictions, while relying
on different conditions to attain asymptotic frequentist validity.

There is also a growing literature on Bayesian inference for set-identified models. Some
propose posterior inference based on a single prior irrespective of the posterior sensitiv-
ity introduced by set identification (Baumeister and Hamilton (2015), Gustafson (2015)).
Our paper does not intend to provide a normative argument as to whether one should
adopt a single prior or multiple priors under set identification: our main goal is to offer
new tools for inference and to show that they have a well-defined posterior interpre-
tation in finite samples and yield asymptotically valid frequentist inference. In parallel
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work, Norets and Tang (2014) and Kline and Tamer (2016) considered Bayesian infer-
ence about the identified set. Norets and Tang (2014) focused on dynamic discrete choice
models. Kline and Tamer (2016) focused on moment inequality models and constructed
confidence regions that share some relation with our robust credible regions. Their pro-
posal does not have a formal Bayesian interpretation, and their credible sets do not mini-
mize volume, so the coverage can be conservative. If one were to extend our framework to
moment inequality models, one could view our approach as providing a formal posterior
interpretation for the confidence regions in Kline and Tamer (2016), while ensuring that
they have minimum volume. In addition, we show how to construct the set of posterior
means as a consistent estimator of the true identified set. Wan (2013) and Chen, Chris-
tensen, and Tamer (2018) proposed using Bayesian Markov Chain Monte Carlo meth-
ods to overcome some computational challenges of the frequentist approach to inference
about the identified set.

Finally, a key insight of this paper is to recognize that from the Bayesian perspective,
under mild regularity conditions, an identification region can be viewed as a random
closed set, and Bayesian inference on it can be carried out using elements of random
set theory. This theory has proven very helpful for partial identification analysis since its
introduction to econometrics (Beresteanu and Molinari (2008), Beresteanu, Molchanov,
and Molinari (2012)), and a novel contribution of our paper is to bring these tools into
Bayesian inference.

The remainder of the paper is organized as follows. Section 2 considers the general
setting of set identification and introduces the multiple-prior robust Bayesian approach.
Section 3 analyzes the asymptotic properties of the method. Section 4 illustrates the appli-
cation to SVARs. Section 5 discusses the numerical implementation. Sections 4 and 5 are
self-contained, so a reader interested in SVARs can focus on these sections. Section 6 con-
tains the empirical application and Section 7 concludes. The proofs are in Appendix A.
The Supplemental Material (Appendix B in Giacomini and Kitagawa (2021)) contains
additional results and discussion about the validity of the assumptions in SVARs.

2. SET IDENTIFICATION AND ROBUST BAYESIAN INFERENCE

2.1. Notation and Definitions

This section describes the general framework of set-identified structural models. In par-
ticular, it introduces the definitions of structural parameter θ, reduced-form parameter
φ, and parameter of interest η that are used throughout the paper.

Let (Y�Y) and (Θ�A) be the standard Borel measurable spaces of a sample Y ∈ Y
and a parameter vector θ ∈ Θ, respectively. We restrict attention to parametric models,
so Θ ⊂ R

d , d < ∞. Assume that the conditional distribution of Y given θ exists and has
a probability density p(y|θ) at every θ ∈ Θ with respect to a σ-finite measure on (Y�Y),
where y ∈ Y indicates sampled data.

Set identification of θ arises when multiple values of θ are observationally equivalent,
so that for θ and θ′ �= θ, p(y|θ) = p(y|θ′) for every y ∈ Y (Rothenberg (1971)). Obser-
vational equivalence can be represented by a many-to-one function g : (Θ�A) → (Φ�B),
such that g(θ) = g(θ′) if and only if p(y|θ) = p(y|θ′) for all y ∈ Y (see, e.g., Barankin
(1960)). This relationship partitions the parameter space Θ into equivalent classes, in
each of which the likelihood of θ is ‘flat’ irrespective of observations, and φ = g(θ) maps
each of the equivalent classes to a point in a parameter space Φ. In the language of struc-
tural models in econometrics (Koopmans and Reiersol (1950)), φ = g(θ) is the reduced-
form parameter that indexes the distribution of the data. The reduced-form parameter
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carries all the information for the structural parameter θ through the value of the like-
lihood function, in the sense that there exists a B-measurable function p̂(y|·) such that
p(y|θ)= p̂(y|g(θ)) for every y ∈ Y and θ ∈ Θ.3

Let the parameter of interest η ∈ H be a subvector or a transformation of θ, η = h(θ)
with h : (Θ�A) → (H�D), H ⊂ R

k, k < ∞. The identified sets of θ and η are defined as
follows.

DEFINITION 1—Identified Sets of θ and η: (i) The identified set of θ is the inverse
image of g(·): ISθ(φ) = {θ ∈ Θ : g(θ) = φ}, where ISθ(φ) and ISθ(φ

′) for φ �= φ′

are disjoint and {ISθ(φ) :φ ∈ Φ} constitutes a partition of Θ.
(ii) The identified set of η = h(θ) is a set-valued map ISη : Φ ⇒ H defined by the

projection of ISθ(φ) onto H through h(·), ISη(φ) ≡ {h(θ) : θ ∈ ISθ(φ)}.
(iii) The parameter η = h(θ) is point-identified at φ if ISη(φ) is a singleton, and η is

set-identified at φ if ISη(φ) is not a singleton.

We define the identified set for θ in terms of the likelihood-based definition of obser-
vational equivalence of θ. As a result, ISθ(φ) and ISη(φ) are ensured to give sharp iden-
tification regions at every distribution of data indexed by φ. In some structural models,
including SVARs, the space of the reduced-form parameter Φ on which the reduced-form
likelihood is well-defined can be larger than the space of the reduced-form parameter
generated from the structure g(Θ); that is, the model is observationally restrictive in the
sense of Koopmans and Reiersol (1950). In this case, the model is falsifiable, and ISθ(φ)
can be empty for some φ ∈ Φ.

2.2. Multiple Priors

In this section, we discuss how set identification induces unrevisable prior knowledge
and we introduce the use of multiple priors.

Let πθ be a prior (distribution) of θ and πφ be the corresponding prior of φ, obtained
as the marginal probability measure on (Φ�B) induced by πθ and g(·):

πφ(B)= πθ

(
ISθ(B)

)
for all B ∈ B
 (2.1)

Since the likelihood for θ is flat on ISθ(φ) for any Y , conditional independence θ ⊥ Y |φ
holds. The posterior of θ, πθ|Y , is accordingly obtained as

πθ|Y (A) =
∫
Φ

πθ|φ(A)dπφ|Y (φ)� A ∈A� (2.2)

where πθ|φ denotes the conditional distribution of θ given φ,4 and πφ|Y is the posterior
of φ.

Expression (2.2) shows that the prior of the reduced-form parameter, πφ, can be up-
dated by the data, whereas the conditional prior of θ given φ is never updated because the

3In Bayesian statistics, φ = g(θ) is called the (minimal) sufficient parameters that satisfy conditional inde-
pendence Y ⊥ θ|φ (Barankin (1960)).

4To avoid the Borel paradox, we follow the definition of conditional distribution πθ|φ via the conditional
expectation, that is, πθ|φ(A) ≡ E(1A(θ)|φ), where E(·|φ) is the B-measurable, πφ-integrable function such
that for any B ∈ B, E(ξ(θ) · 1B(θ)) = ∫

B
E(ξ(θ)|φ)dπφ. The regular conditional distribution πθ|φ is unique up

to a πφ-null set of φ.
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likelihood is flat on ISθ(φ) ⊂Θ for any realization of the sample. In this sense, one can in-
terpret πφ as the revisable prior knowledge and the conditional priors, {πθ|φ(·|φ) : φ ∈ Φ},
as the unrevisable prior knowledge.

In a standard Bayesian setting, the posterior uncertainty about θ is summarized by a
single probability distribution. This requires specifying a single prior for θ, which induces a
conditional prior πθ|φ that is unique up to πφ-almost sure equivalence. If one could justify
this choice of conditional prior, the standard Bayesian updating formula (2.2) would yield
a valid posterior for θ. A challenging situation arises if a credible conditional prior is not
readily available. In this case, a researcher who is aware that πθ|φ is never updated by
the data might worry about the influence that a potentially arbitrary choice can have on
posterior inference.

The robust Bayesian analysis in this paper focuses on this situation, and removes the
need to specify a single conditional prior by introducing ambiguity for πθ|φ in the form of
multiple priors.

DEFINITION 2—Multiple-Prior Class: Given a unique πφ supported only on g(Θ), the
class of conditional priors for θ given φ is

Πθ|φ = {
πθ|φ : πθ|φ

(
ISθ(φ)

)= 1�πφ-almost surely
}

 (2.3)

Πθ|φ consists of arbitrary conditional priors as long as they assign probability 1 to the
identified set of θ. Πθ|φ induces a class of proper priors for θ, Πθ ≡ {πθ = ∫

πθ|φ dπφ :
πθ|φ ∈ Πθ|φ}, which consists of all priors for θ whose marginal distribution for φ coin-
cides with the specified πφ. Our proposal requires a researcher to specify a single prior
only for the reduced-form parameter φ, but it otherwise leaves the conditional prior πθ|φ
unspecified.

In this paper, we shall not discuss how to select πφ, and treat it as given. As the influ-
ence of this prior on posterior inference disappears asymptotically, any sensitivity issues
in this respect potentially only concern small samples. Another reason for not introducing
multiple priors for φ is to avoid possible issues of non-convergence of the class of poste-
riors, as discussed in the literature on global sensitivity analysis, for example, Ruggeri and
Sivaganesan (2000).

2.3. Posterior Lower and Upper Probabilities

Applying Bayes’s rule to each prior in the class Πθ generates the class of posteriors
for θ. Transforming each member of the class gives the class of posteriors for the param-
eter of interest η:

Πη|Y ≡
{
πη|Y (·)=

∫
Φ

πθ|φ
(
h(θ) ∈ ·)dπφ|Y : πθ|φ ∈ Πθ|φ

}

 (2.4)

We propose to summarize this posterior class by the posterior lower probability πη|Y∗(·) :
D → [0�1] and the posterior upper probability π∗

η|Y (·) :D → [0�1], defined as

πη|Y∗(D)≡ inf
πη|Y ∈Πη|Y

πη|Y (D)� π∗
η|Y (D) ≡ sup

πη|Y ∈Πη|Y
πη|Y (D)


Note the conjugate property, πη|Y∗(D) = 1 − π∗
η|Y (D

c), so it suffices to focus on one of
them. The lower and upper probabilities provide the bounds of posterior beliefs that are
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valid irrespective of the choice of unrevisable prior. When {η ∈ D} specifies a hypothesis
of interest, πη|Y∗(D) can be interpreted as saying that ‘the posterior credibility for {η ∈
D} is at least equal to πη|Y∗(D), no matter which unrevisable prior one assumes’. These
quantities are useful for conducting global sensitivity analysis with respect to a prior that
cannot be revised by the data.

In order to derive an analytical expression for πη|Y∗(·), we make the following assump-
tion.

ASSUMPTION 1: (i) The prior of φ, πφ, is proper, absolutely continuous with respect to
a σ-finite measure on (Φ�B), and πφ(g(Θ)) = 1, that is, ISθ(φ) and ISη(φ) are
non-empty, πφ-a.s.

(ii) The mapping between θ and φ, g : (Θ�A) → (Φ�B), is measurable and its inverse
image ISθ(φ) is a closed set in Θ, πφ-a.s.

(iii) The mapping between θ and η, h : (Θ�A) → (H�D), is measurable and ISη(φ) =
h(ISθ(φ)) is a closed set in H, πφ-a.s.

Assumption 1(i) guarantees that the identified set ISη(φ) can be viewed as a random
set defined on the probability space both a priori (Φ�B�πφ) and a posteriori (Φ�B�πφ|Y ),
which we exploit in the proof of Theorem 1 below. As we discuss in Section 5, the numer-
ical implementation of our method allows an improper prior with support larger than
g(Θ) and imposes the assumption by only retaining draws that give a non-empty identi-
fied set. Assumptions 1(ii) and 1(iii) are mild conditions ensuring that ISθ(φ) and ISη(φ)
are random closed sets satisfying a measurability requirement. The closedness of ISθ(φ)
and ISη(φ) is implied, for example, by continuity of g(·) and h(·).

The next theorem expresses the posterior lower and upper probabilities for the param-
eter of interest in terms of the posterior of φ. This provides the basis for the numerical
approximation of these probabilities, which only requires the ability to compute the iden-
tified set at values of φ randomly drawn from its posterior.

THEOREM 1: Under Assumption 1, for D ∈D,

πη|Y∗(D) = πφ|Y
({
φ : ISη(φ) ⊂D

})
� π∗

η|Y (D) = πφ|Y
({
φ : ISη(φ)∩D �= ∅})


The expression for πη|Y∗(D) shows that the lower probability on D is the probabil-
ity that the (random) identified set ISη(φ) is contained in D in terms of the posterior
probability of φ. The intuition for this result can be best understood when η = θ. The
decomposition in equation (2.2) suggests that, to minimize the posterior probability on
{θ ∈ D}, we choose, if possible, a conditional prior πθ|φ that assigns all the probability
outside D so as to attain πθ|φ(D) = 0. Such choice of prior is, however, not possible for
φ such that ISθ(φ) ⊂ D, since the requirement πθ|φ(ISθ(φ)) = 1 binds and any choice of
prior satisfies πθ|φ(D) = 1. Symmetrically, the posterior probability on {θ ∈ D} is maxi-
mized by choosing, if possible (i.e., if ISθ(φ)∩D �= ∅), a conditional prior that puts all the
probability inside D. These constructions of the extreme conditional priors immediately
lead to the expressions of the lower and upper probabilities in Theorem 1.5

5Viewing the identified-set correspondence ISθ(φ) as a random closed set defined on the probability space
(Φ�B�πφ|X), let ξ : Φ → Θ be a measurable selection of ISθ(φ), that is, ξ(φ) is B-measurable and satisfies
πφ|X({ξ(φ) ∈ ISθ(φ)}) = 1. Artstein’s inequality (Theorem 2.1 in Artstein (1983)) shows that the set of proba-
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Setting η = θ gives the posterior lower and upper probabilities for θ in terms of the
containment and hitting probabilities of ISθ(φ). In standard Bayesian inference, the pos-
terior of θ is transformed into a posterior for η = h(θ) by integrating the posterior proba-
bility measure of θ for η, while here it corresponds to projecting random sets ISθ(φ) onto
H via η = h(·). This highlights the difference between standard Bayesian analysis and ro-
bust Bayesian analysis based on the lower probability. Corollary A.1 in Appendix A shows
that for each D ∈ D, the set of posterior probabilities {πη|Y (D) : πη|Y ∈ Πη|Y } coincides
with the connected intervals [πη|Y∗(D)�π∗

η|Y (D)], implying that any posterior probability
in this set can be attained by some posterior in Πη|Y .

It is well known in the robust statistics literature (e.g., Huber (1973)) that the lower
probability of a set of probability measures is, in general, a monotone nonadditive mea-
sure (capacity). The posterior lower and upper probabilities in this paper coincide with
the construction of the posterior lower and upper probabilities of Wasserman (1990) when
it is applied to our prior class. An important distinction from Wasserman’s analysis is that
our posterior lower probability is guaranteed to be an ∞-order monotone capacity (a
containment functional of random sets), which simplifies the investigation of its analyti-
cal properties and the practical implementation of the method.

2.4. Set of Posterior Means and Quantiles

The posterior lower and upper probabilities shown in Theorem 1 summarize the set of
posterior probabilities for an arbitrary event of interest D. To summarize the information
in the posterior class without specifying D, we propose to report the set of posterior means
of η.

The next proposition shows that the set of posterior means of η is equivalent to the
Aumann expectation of the convex hull of the identified set.

THEOREM 2: Suppose Assumption 1 holds and the random set ISη(φ) ⊂ H, φ ∼ πφ|Y ,
is L1-integrable with respect to πφ|Y in the sense that Eφ|Y (supη∈ISη(φ) ‖η‖) < ∞. Let
co(ISη(φ)) be the convex hull of ISη(φ)

6 and let EA
φ|Y (·) denote the Aumann expectation

of a random set with underlying probability measure πφ|Y .7 Then, the set of posterior means
is convex and equals the Aumann expectation of the convex hull of the identified set:{

Eη|Y (η) : πη|Y ∈Πη|Y
}= EA

φ|Y
[
co
(
ISη(φ)

)]

 (2.5)

bility distributions for θ formed by measurable selections of ISθ(φ) is given by

ΠS
θ|Y ≡ {

πθ|Y : πθ|Y (A) ≤ πφ|Y
(
ISθ(φ)∩A �= ∅)�∀A ∈ A� closed

}



Since a measurable selection of ISθ(φ) corresponds to degenerate conditional priors {πθ|φ = 1ξ(φ) : φ ∈Φ} and
it is included in the set of conditional priors used in our analysis, the set of posteriors for θ, Πθ|Y , defined in
(2.4) with η = θ satisfies Πθ|Y ⊇ ΠS

θ|Y . As implied by Artstein’s inequality, however, the upper probability of
Πθ|Y obtained in Theorem 1 with η = θ agrees with the upper probability of ΠS

θ|Y on any closed measurable
A ∈ A.

6co(ISη) :Φ⇒H is viewed as a closed random set defined on the probability space (Φ�B�πφ|Y ).
7Let X : Φ⇒H be a closed random set defined on the probability space (Φ�B�πφ|Y ), and ξ(φ) : Φ → H

be its measurable selection, that is, ξ(φ) ∈ X(φ), πφ|Y -a.s. Let S1(X) be the class of integrable measurable
selections, S1(X) = {ξ : ξ(φ) ∈ X(φ)�πφ|Y -a.s., Eφ|Y (‖ξ‖) < ∞}. The Aumann expectation of X is defined as
(Aumann (1965)) EA

φ|Y (X)≡ {Eφ|Y (ξ) : ξ ∈ S1(X)}.
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Let s(ISη(φ)�q) ≡ supη∈ISη(φ) η
′q, q ∈ Sk−1, be the support function of the identified

set ISη(φ) ⊂ R
k, where Sk−1 is the unit sphere in R

k. It is known that the Aumann expec-
tation of co(ISη(φ)) satisfies s(EA

φ|Y [co(ISη(φ))]� ·) = Eφ|Y [s(ISη(φ)� ·)] (see, e.g., The-
orem 1.26 in Chapter 2 of Molchanov (2005)) and a support function one-to-one corre-
sponds to the closed convex set. Hence, the analytical characterization in Theorem 2 sug-
gests that the set of posterior means can be computed by approximating Eφ|Y [s(ISη(φ)� ·)]
using the draws of ISη(φ)�φ∼ πφ|Y and mapping back the approximated average support
function to obtain the set of posterior means EA

φ|Y [co(ISη(φ))].
In case of scalar η, the set of posterior means has the particularly simple form

EA
φ|Y [co(ISη(φ))] = [Eφ|Y ((φ))�Eφ|Y (u(φ))], where (φ) = inf{η : η ∈ ISη(φ)} and

u(φ) = sup{η : η ∈ ISη(φ)} are the lower and upper bounds of ISη(φ). This lower (up-
per) bound is attained by the conditional priors {πθ|φ : φ ∈ Φ} that allocate probability
1 to θ attaining the lower (upper) bound of ISη(φ). In applications where it is feasible
to compute (φ) and u(φ), we can approximate Eφ|Y ((φ)) and Eφ|Y (u(φ)) by using a
random sample of φ drawn from πφ|Y .

In case of scalar η, the set of posterior τth quantiles of η is also simple to compute.
We apply Theorem 1 with D = (−∞� t], −∞ < t < ∞, to obtain the set of the posterior
cumulative distribution functions (CDF) of η for each t. Inverting the upper and lower
bounds of this set at τ ∈ (0�1) gives the set of posterior τth quantiles of η.

2.5. Robust Credible Region

This section introduces the robust Bayesian counterpart of the highest posterior density
region that is typically reported in standard Bayesian inference. For α ∈ (0�1), consider a
subset Cα ⊂H such that the posterior lower probability πη|Y∗(Cα) is greater than or equal
to α:

πη|Y∗(Cα)= πφ|Y
({φ : ISη(φ) ⊂ Cα}

)≥ α
 (2.6)

Cα is interpreted as ‘a set on which the posterior credibility of η is at least α, no matter
which posterior is chosen within the class’. Dropping the italicized sentence yields the usual
interpretation of a posterior credible region, so this definition seems like a natural ex-
tension to our robust Bayesian setting. We refer to Cα satisfying (2.6) as a robust credible
region with credibility α.

As in the standard Bayesian case, there are multiple ways to construct Cα satisfying
(2.6). We propose to resolve this multiplicity by choosing the Cα with the smallest volume:

C∗
α ∈ arg min

C∈C
Leb(C)� s.t. πφ|Y

({φ : ISη(φ)⊂ C})≥ α� (2.7)

where Leb(C) is the volume of C in terms of the Lebesgue measure and C is a family of
subsets in H.8 We refer to C∗

α as a smallest robust credible region with credibility α. The
credible regions for the identified set proposed in Moon and Schorfheide (2011), Norets
and Tang (2014), and Kline and Tamer (2016) satisfy (2.6), so they are robust credible
regions in our definition. However, these works do not consider the volume-optimized
credible region (2.7).9

8In case that ISη(φ) lies in a k′-dimensional manifold of Rk, k′ < k, πφ|Y -a.s., we modify the Lebesgue
measure on Rk in this optimization to that of Rk′ so that this ‘volume’ minimization problem can have a
well-defined solution.

9Moon and Schorfheide (2011) and Norets and Tang (2014) proposed credible regions for the identified set
by taking the union of ISη(φ) over φ in its Bayesian credible region.
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Obtaining C∗
α is challenging if η is a vector and no restriction is placed on the class C in

(2.7). Proposition 1 below shows that, for scalar η, this can be overcome by constraining C
to be the class of closed connected intervals. C∗

α can then be computed by solving a simple
optimization problem.

PROPOSITION 1—Smallest Robust Credible Region for Scalar η: Let η be scalar and
let d :H×D →R+ measure the distance from ηc ∈H to the set ISη(φ) by

d
(
ηc� ISη(φ)

)≡ sup
η∈ISη(φ)

{‖ηc −η‖}

For each ηc ∈ H, let rα(ηc) be the αth quantile of the distribution of d(ηc� ISη(φ)) induced
by the posterior distribution of φ, that is,

rα(ηc) ≡ inf
{
r : πφ|Y

({
φ : d(ηc� ISη(φ)

)≤ r
})≥ α

}



Then, C∗
α in (2.7), with C restricted to the class of closed connected intervals, is a closed

interval centered at η∗
c = arg minηc∈H rα(ηc) with radius r∗

α = rα(η
∗
c).

2.6. Diagnostic Tools

2.6.1. Plausibility of Identifying Restrictions

For observationally restrictive models (i.e., g(Θ) is a proper subset of Φ), quantifying
posterior information for assessing the set-identifying restrictions can be of interest. To do
so, we start with a prior of φ that supports the entire Φ, which we denote by π̃φ. Trimming
the support of π̃φ on g(Θ) = {φ : ISθ(φ) �= ∅} gives πφ satisfying Assumption 1(i). We
update π̃φ to obtain the posterior of φ with extended domain π̃φ|Y .

Since emptiness of the identified set can refute the imposed identifying restrictions,
their plausibility can be measured by the posterior probability that the identified set is
non-empty, π̃φ|Y ({φ : ISη(φ) �= ∅}).10 Note that this measure depends only on the poste-
rior of the reduced-form parameter, so it is free from the issue of posterior sensitivity due
to set identification. By reporting the posterior plausibility of the identifying restrictions
and the set of posterior means conditional on {ISη(φ) �= ∅}, we can separate inferential
statements about the validity of the identifying restrictions from inferential statements
about the parameter of interest, which is difficult to do from a frequentist perspective
(see the discussion in Sims and Zha (1999)).

2.6.2. Informativeness of Identifying Restrictions and of Priors

The strength of identifying restrictions can be measured by comparing the set of pos-
terior means relative to that of a model that does not impose these restrictions but is
otherwise identical. For instance, suppose the object of interest η is a scalar. Let Ms be
the set-identified model imposing the identifying restrictions and Ml be the model that
relaxes the restrictions. For identification of η, the identifying power of the restrictions

10An alternative measure is the prior-posterior odds of the non-emptiness of the identified set,
π̃φ|Y ({φ:ISη(φ) �=∅})
π̃φ({φ:ISη(φ) �=∅}) . A value greater than 1 indicates that the data support the plausibility of the imposed restric-

tions.
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imposed in Ms but not in Ml can be measured by

Informativeness of restrictions imposed in model Ms but not in Ml

= 1 − width of set of posterior means of η in model Ms

width of set of posterior means of η in model Ml


 (2.8)

This measure captures by how much (in terms of the fraction) the restrictions in model
Ms reduce the width of the set of posterior means of η compared to the model Ml.11

The amount of information in the posterior provided by the choice of the unrevisable
prior πθ|φ in a standard Bayesian analysis can be similarly measured by comparing the
width of Cα satisfying (2.6) to the width of the standard Bayesian credible region obtained
from the single prior:

Informativeness of the choice of prior

= 1 − width of a Bayesian credible region of η with credibility α

width of a robust credible region of η with credibility α

 (2.9)

This measure captures by what fraction the credible region of η is tightened by choosing
a particular unrevisable prior πθ|φ.

3. ASYMPTOTIC PROPERTIES

The set of posterior means or quantiles and the robust credible region introduced in
Section 2 have well-defined (robust) Bayesian interpretations in finite samples and they
are useful for conducting Bayesian sensitivity analysis to the choice of an unrevisable
prior. To examine whether these quantities are useful from the frequentist perspective,
we now analyze their asymptotic frequentist properties. We show two main results. First,
the set of posterior means can be viewed as an estimator of the identified set that con-
verges to the true identified set asymptotically when the true identified set is convex. Oth-
erwise, the set of posterior means converges to the convex hull of the true identified set.
Second, the robust credible region has the correct asymptotic coverage for the true iden-
tified set. These results show that introducing ambiguity for non-identified parameters
induces asymptotic equivalence between (robust) Bayesian and frequentist inference in
set-identified models. An implication of this finding is that our robust Bayesian analysis
can also appeal to frequentists.

In this section, we let φ0 ∈ Φ denote the true value of the reduced-form parameter and
YT = (y1� 
 
 
 � yT ) denote a sample of size T generated from PYT |φ0

.

3.1. Consistency of the Set of Posterior Means

Assume the following conditions:

ASSUMPTION 2: (i) ISη(φ0) is bounded, and the identified set correspondence ISη : Φ⇒
H is continuous at φ =φ0 (see, e.g., Sundaram (1996) for the definition of continuity
for correspondences).

11The measure is meaningful only when the identified sets in both models are bounded. In this case, the
measure lies in the unit interval because ISη(φ�Ms) ⊆ ISη(φ�Ml) for all φ.
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(ii) The posterior of φ is consistent for φ0, PY∞|φ0 -a.s.12

(iii) There exists δ > 0 such that ISη(φ) is L1+δ-integrable with respect to πφ|YT ;

Eφ|YT

(
sup

η∈ISη(φ)
‖η‖1+δ

)
< ∞� PYT |φ0

-a.s., (3.1)

for all large enough T.

Assumption 2(i) requires that the identified set of η is a continuous correspondence at
φ0. In the case of scalar η with convex identified set ISη(φ) = [(φ)�u(φ)], this means
that (φ) and u(φ) are continuous at φ0. Since (φ) and u(φ) can be viewed as the values
of the optimizations (φ) = minθ∈ISθ(φ) h(θ) and u(φ) = maxθ∈ISθ(φ) h(θ), the theorem of
maximum (e.g., Theorem 9.14 in Sundaram (1996)) shows that sufficient conditions for
continuity of (φ) and u(φ) are continuity of h(·) and continuity of the correspondence
for ISθ(φ). In a common special case where ISθ(φ) is a polyhedron and [(φ)�u(φ)] are
the values of linear programming, continuity of the polyhedral correspondence is implied
by the condition of dimension-stability of the polyhedron (e.g., Proposition 6 in Wets
(1985)). For SVAR models, Appendix B.2 in Giacomini and Kitagawa (2021) shows that
the continuity property is mild and easily verifiable.

Assumption 2(ii) requires that Bayesian estimation of the reduced-form parameter is
a standard estimation problem in the sense that almost-sure posterior consistency holds.
Assumption 2(iii) strengthens Assumption 2(i) by assuming that ISη(φ) is πφ|YT -almost
surely compact-valued and its radius has finite (1 + δ)th moment. In the scalar case, As-
sumption 2(iii) holds with δ = 1 if (φ) and u(φ) have finite posterior variances.

THEOREM 3—Consistency: Suppose Assumption 1 holds.
(i) Under Assumptions 2(i) and 2(ii), limT→∞ πφ|YT ({φ : dH(ISη(φ)� ISη(φ0)) > ε}) = 0

for all ε > 0, PY∞|φ0 -a.s., where dH(·� ·) is the Hausdorff distance.
(ii) Suppose Assumption 2 holds and the prior for φ, πφ, is non-atomic; then the set of

posterior means almost surely converges to the convex hull of the true identified set,
that is,

lim
T→∞

dH

(
EA

φ|YT

[
co
(
ISη(φ)

)]
� co

(
ISη(φ0)

))→ 0� PY∞|φ0-a.s.

The first claim of Theorem 3 states that the identified set ISη(φ), viewed as a random
set induced by the posterior of φ, converges in posterior probability to the true identified
set ISη(φ0) in the Hausdorff metric. This claim only relies on continuity of the identified
set correspondence and does not rely on Assumption 2(iii) or on convexity of the identi-
fied set. The second claim of the theorem provides a justification for using (a numerical
approximation of) the set of posterior means as a consistent estimator of the convex hull
of the identified set. The theorem implies that the set of posterior means converges to the
true identified set if this set is convex.

3.2. Asymptotic Coverage Properties of the Robust Credible Region

We first state a set of conditions under which the robust credible region asymptotically
attains correct frequentist coverage for the true identified set ISη(φ0).

12Posterior consistency of φ means that limT→∞ πφ|YT (G)= 1 for every G open neighborhood of φ0 and for
almost every sampling sequence following PY∞|φ0 . For a finite-dimensional φ, posterior consistency is implied
by higher-level conditions for the likelihood of φ. See Section 7.4 of Schervish (1995) for details.
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ASSUMPTION 3: (i) The identified set ISη(φ) is πφ-almost surely closed and bounded,
and ISη(φ0) is closed and bounded.

(ii) The robust credible region Cα belongs to the class of closed and convex sets C in R
k.

Assumption 3(i) is a weak requirement in practical applications. We allow the identi-
fied set ISη(φ) to be non-convex, while Assumption 3(ii) constrains the robust credible
region to be closed and convex. Under convexity of Cα, ISη(φ) ⊂ Cα holds if and only if
co(ISη(φ)) ⊂ Cα holds, so that the inclusion of the identified set by Cα is equivalent to the
dominance of their support functions, s(ISη(φ)�q) = s(co(ISη(φ))�q) ≤ s(Cα�q) for all
q ∈ Sk−1 (see, e.g., Corollary 13.1.1 in Rockafellar (1970)). This fact enables us to char-
acterize a set of conditions for correct asymptotic coverage of Cα in terms of the limiting
probability law of the support functions, which has been studied in the literature on fre-
quentist inference for the identified set (e.g., Beresteanu and Molinari (2008), Bontemps,
Magnac, and Maurin (2012), Kaido (2016)).

ASSUMPTION 4: Let C(Sk−1�R) be the set of continuous functions from the k-dimensional
unit sphere Sk−1 to R, and let φ̂ denote the maximum likelihood estimator of φ. For a se-
quence aT → ∞ as T → ∞, define stochastic processes in C(Sk−1�R) indexed by q ∈ Sk−1,

Xφ|YT (q) ≡ aT

[
s
(
ISη(φ)�q

)− s
(
ISη(φ̂)�q

)]
�

XYT |φ0
(q) ≡ aT

[
s
(
ISη(φ0)�q

)− s
(
ISη(φ̂)�q

)]
�

where the probability law of Xφ|YT is induced by πφ|YT , T = 1�2� 
 
 
 , and the probability law
of XYT |φ0

is induced by the sampling process PYT |φ0
, T = 1�2� 
 
 
 . The following conditions

hold:
(i) Xφ|YT �X as T → ∞ for PY∞|φ0 -almost every sampling sequence, where � denotes

weak convergence.
(ii) XYT |φ0

�Z as T → ∞, and Z ∼X .
(iii) Pr(X(·)≤ c(·)) is continuous in c ∈ C(Sk−1�R) with respect to the supremum metric,

and Pr(X = c)= 0 for any non-random function c ∈ C(Sk−1�R).
(iv) Let Cα be a robust credible region satisfying α ≤ πφ|YT ({φ : ISη(φ) ⊂ Cα}) ≤ 1 − ε

for some ε > 0 for all T = 1�2� 
 
 
 . The stochastic process in C(Sk−1�R), ĉT (·) ≡
aT [s(Cα� ·)− s(ISη(φ̂)� ·)], converges in PYT |φ0

-probability to c ∈ C(Sk−1�R) as T →
∞.

Assumption 4(i) states that the posterior distribution of the support function of the
identified set ISη(φ), centered at the support function of ISη(φ̂) and scaled by aT , con-
verges weakly to the stochastic process X . The weak convergence of the scaled support
function to the tight Gaussian process on Sk−1 holds with aT = √

T , for instance, if the
central limit theorem for random sets applies; see, for example, Molchanov (2005) and
Beresteanu and Molinari (2008). Assumption 4(i) is a Bayesian analogue to the frequen-
tist central limit theorem for the support functions.

Assumption 4(ii) states that, from the viewpoint of the support function, the differ-
ence between ISη(φ̂) and the true identified set scaled by aT converges in distribution to
the stochastic process Z, and the probability law of Z coincides with the probability law
of X .13 Since the distribution of X is defined conditional on a sampling sequence while

13The stochastic process X is induced by the large sample posterior distribution, while Z is induced by the
large sample sampling distribution. We therefore use different notations for them.



1532 R. GIACOMINI AND T. KITAGAWA

Z is unconditional, the agreement of the distributions of X and Z implies that the de-
pendence of the posterior distribution of Xφ|YT on the sample YT vanishes as T → ∞.
Beresteanu and Molinari (2008) and Kaido and Santos (2014) provided practical exam-
ples where the limiting process Z is a zero-mean tight Gaussian process in C(Sk−1�R).

Assumptions 4(i) and 4(ii) are delicate assumptions and whether they hold depends on
the geometry of the identified set. The working paper version of this paper discusses an
example (Example C.2 in Appendix C) showing that, if the support function s(ISη(φ)�q)
is not differentiable in φ at some q, this can lead to violation of Assumptions 4(i) and 4(ii).
See also Kitagawa, Montiel-Olea, Payne, and Verez (2020) for properties of the asymp-
totic posterior for a non-differentiable function of parameters satisfying the Bernstein–
von Mises property such as φ.

Assumption 4(iii) means that the limiting process X is continuously distributed and
non-degenerate in the stated sense, which holds true if X follows a non-degenerate
Gaussian process. In addition to the convexity requirement of Assumption 3(ii), Assump-
tion 4(iv) requires Cα to be bounded and to lie in a neighborhood of ISη(φ̂) shrinking at
rate 1/aT .

THEOREM 4—Asymptotic Coverage: Under Assumptions 3 and 4, Cα, α ∈ (0�1), is an
asymptotically valid frequentist confidence set for the true identified set ISη(φ0) with asymp-
totic coverage probability at least α:

lim inf
T→∞

PYT |φ0

(
ISη(φ0)⊂ Cα

)≥ α


If, in Assumption 4(iv), Cα satisfies πφ|YT (ISη(φ) ⊂ Cα) = α, PYT |φ0
-a.s., for all T ≥ 1, Cα

asymptotically attains the exact coverage probability,

lim
T→∞

PYT |φ0

(
ISη(φ0)⊂ Cα

)= α


REMARKS: First, unlike in Imbens and Manski (2004) and Stoye (2009), the frequentist
coverage statement of Cα is for the true identified set rather than for the true value of the
parameter of interest. Therefore, when η is a scalar with non-singleton ISη(φ0), Cα will
be asymptotically wider than the frequentist (connected) confidence interval for η.

Second, Theorem 4 shows pointwise asymptotic coverage rather than asymptotic uni-
form coverage over a class of the sampling processes φ0. As stressed in the frequentist
literature (e.g., Imbens and Manski (2004), Stoye (2009), Romano and Shaikh (2010),
Andrews and Soares (2010), it is desirable for frequentist methods to attain asymptoti-
cally valid coverage in the uniform sense. Examining this property for our procedure is,
however, challenging because it would require the Bernstein–von Mises condition for the
support function processes (Assumptions 4(i) and 4(ii)) to hold uniformly over a class of
the sampling processes φ0. To our knowledge, little is known to what extent the Bernstein–
von Mises property holds in the uniform sense even for the standard case of identifiable
parameters. We thus leave this investigation for future research.

Third, the confidence region considered by Moon and Schorfheide (2011) and Norets
and Tang (2014) can attain asymptotically correct coverage under a different set of as-
sumptions (Assumptions 1 and 5(i) in this paper). Although these assumptions may be
easier to check than Assumption 4, the credible region proposed by these authors is gen-
erally conservative. In contrast, Theorem 4 shows that if Cα is constructed to satisfy (2.6)
with equality (e.g., it is the smallest robust credible region C∗

α), the asymptotic coverage
probability is exact. Theorem 5 in Kline and Tamer (2016) shows a similar conclusion to
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Theorem 4 under the conditions that the Bernstein–von Mises property holds for estima-
tion of φ and that aT (φ̂ − φ0) and ĉT (·) are asymptotically independent. Our Assump-
tion 4(iv) implies the asymptotic independence condition of Kline and Tamer (2016) by as-
suming ĉT converges to a constant. Theorem 4, on the other hand, assumes the Bernstein–
von Mises property in terms of the support functions of the identified set rather than the
underlying reduced-form parameters.

Assumption 4 is rather high-level, and could be difficult to check when η is a vector.
For a scalar η, we can obtain a set of sufficient conditions for Assumptions 4(i)–4(iii)
that are simple to verify in empirical applications, for example, the set-identified SVARs
considered in Section 4.

ASSUMPTION 5: Let the parameter of interest η be a scalar. Denote the convex hull of the
identified set by co(ISη(φ)) = [(φ)�u(φ)].

(i) The maximum likelihood estimator φ̂ is strongly consistent for φ0, and the posterior of
φ and the sampling distribution of φ̂ are

√
T -asymptotically normal with an identical

covariance matrix:
√
T(φ− φ̂)|YT �N (0�Σφ)� as T → ∞�PY∞|φ0-a.s., and

√
T(φ̂−φ0)|φ0 �N (0�Σφ)� as T → ∞


(ii) (φ) and u(φ) are continuously differentiable in an open neighborhood of φ0, and
their derivatives are nonzero at φ0.

Assumption 5(i) implies that likelihood-based estimation of φ satisfies the Bernstein–
von Mises property in the PY∞|φ0 -almost sure sense. See Borwanker, Kallianpur, and
Prakasa Rao (1971) for an almost-sure version of the Bernstein-von Mises theorem and
regularity conditions on the likelihood function and the prior for φ. Additionally imposing
Assumption 5(ii) implies applicability of the delta method to (·) and u(·), which implies
Assumptions 4(i)–4(iii) for scalar η. In addition, it can be shown that the shortest robust
credible region in (2.7) satisfies Assumption 4(iv). Hence, C∗

α is an asymptotically valid
frequentist confidence set for the true identified set with asymptotic coverage probability
exactly equal to α.

It is important to note that Assumption 5(ii) is restrictive in some aspects. First, it
does not allow (φ) or u(φ) to be flat at φ0. This is because the Bernstein–von Mises
property for φ (Assumption 5(i)) does not carry over to (φ) or u(φ) through the second-
order delta method if their first-order derivatives are zero at φ0, and it leads to violation
of Assumptions 4(i) and 4(ii). Second, non-differentiability of (φ) and u(φ) arises if
the projection bounds for η involve the max or min operations and the minimizers or
maximizers are not unique at φ = φ0. Bounds involving the max or min appear in the
intersection bound analysis of Manski (1990) and the partial identification analysis via
linear programming of Balke and Pearl (1997). As shown in Kitagawa et al. (2020), the
Bernstein–von Mises property breaks down for non-differentiable functions of φ, and it
leads to violation of Assumptions 4(i) and 4(ii). Appendix B.3 in Giacomini and Kitagawa
(2021) discusses the differentiability assumptions and their plausibility in the context of
SVAR models.

PROPOSITION 2: Suppose Assumptions 3 and 5 hold. Then Assumptions 4(i)–4(iii) hold
true and the smallest robust credible region C∗

α defined in (2.7) satisfies Assumption 4(iv).
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Hence, by Theorem 2, C∗
α is an asymptotically valid frequentist confidence set for ISη(φ0)

with exact coverage,

lim
T→∞

PYT |φ0

(
ISη(φ0)⊂ C∗

α

)= α


Lemma 1 of Kline and Tamer (2016) obtains a similar result for a robust credi-
ble region different from our smallest credible region C∗

α; theirs takes the form Cα =
[(φ̂)− cα/

√
T�u(φ̂)+ cα/

√
T ], where cα is chosen to satisfy (2.6) with equality.

4. ROBUST BAYESIAN INFERENCE IN SVARS

In this section, we illustrate our method in the context of impulse-response analysis in
set-identified SVARs. This section is self-contained. Consider an SVAR(p):

A0yt = a+
p∑

j=1

Ajyt−j + εt for t = 1� 
 
 
 � T� (4.1)

where yt is an n × 1 vector and εt is an n × 1 vector white noise process, normally
distributed with mean zero and variance the identity matrix In. The initial conditions
y1� 
 
 
 � yp are given. We assume that one always imposes the sign normalization restric-
tions that the diagonal elements of A0 are nonnegative. The reduced-form VAR(p) rep-
resentation of the model is

yt = b+
p∑

j=1

Bjyt−j + ut� (4.2)

where b = A−1
0 a, Bj = A−1

0 Aj , ut = A−1
0 εt , and E(utu

′
t) ≡ Σ = A−1

0 (A−1
0 )′. The reduced-

form parameter is φ = (vec(B)′� vech(Σ)′)′ ∈ Φ ⊂ R
n+n2p × R

n(n+1)/2, where B = [b�B1�

 
 
 �Bp]. We restrict the domain Φ to the set of φ’s such that the variance-covariance
matrix of the reduced-form errors is nonsingular and the reduced-form VAR(p) model
can be inverted into a VMA(∞) model.

Let Q ∈ O(n) be an n × n orthonormal ‘rotation’ matrix and O(n) be the set of n ×
n orthonormal matrices. As in Uhlig (2005) and Rubio-Ramírez, Waggoner, and Zha
(2010), consider the transformation

B = A−1
0 [a�A1� 
 
 
 �Ap]� Σ = A−1

0

(
A−1

0

)′
� Q = Σ−1

tr A
−1
0 �

where Σtr is the lower-triangular Cholesky factor of Σ with nonnegative diagonal ele-
ments. This transformation is one-to-one, as it is invertible with nonsingular Σ, so that
A0 = Q′Σ−1

tr and [a�A1� 
 
 
 �Ap] = Q′Σ−1
tr B. Since θ in Section 2 can be any one-to-one

transformation of the structural parameters, in this section we follow the convention in
the literature and set θ = (φ′� vec(Q)′)′.

Translating the sign normalization restrictions diag(A0) ≥ 0 into constraints on θ
gives the space of structural parameters as Θ = {(φ′� vec(Q)′)′ ∈ Φ × vec(O(n)) :
diag(Q′Σ−1

tr ) ≥ 0}. The sign normalization restrictions can be written as linear inequali-
ties (

σi
)′
qi ≥ 0 for all i = 1� 
 
 
 � n� (4.3)
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with [σ1�σ2� 
 
 
 �σn] the column vectors of Σ−1
tr and [q1� q2� 
 
 
 � qn] the column vectors

of Q.
The VMA(∞) representation of the model is

yt = c +
∞∑
j=0

Cjut−j = c +
∞∑
j=0

CjΣtrQεt−j�

where Cj is the jth coefficient matrix of (In −∑p

j=1 BjL
j)−1.

We denote the hth horizon impulse response by the n× n matrix IRh, h= 0�1�2� 
 
 


IRh = ChΣtrQ� (4.4)

and the long-run cumulative impulse-response matrix by

CIR∞ =
∞∑
h=0

IRh =
( ∞∑

h=0

Ch

)
ΣtrQ
 (4.5)

The scalar parameter of interest η is a single impulse response, that is, the (i� j)-
element of IRh:

η= IRh
ij ≡ e′

iChΣtrQej = c′
ih(φ)qj ≡ η(φ�Q)� (4.6)

where ei is the ith column vector of In and c′
ih(φ) is the ith row vector of ChΣtr. Note

that the analysis developed below for the impulse responses can be extended to the struc-
tural parameters A0 and [A1� 
 
 
 �Ap], since the (i� j)th element of Al can be obtained as
e′
j(Σ

−1
tr Bl)

′qi, with B0 = In.

4.1. Set Identification in SVARs

Set identification in an SVAR arises when knowledge of the reduced-form parameter
φ does not pin down a unique A0. Since any A0 = Q′Σ−1

tr satisfies Σ = (A′
0A0)

−1, in the
absence of identifying restrictions {A0 = Q′Σ−1

tr : Q ∈ O(n)} is the identified set of A0’s,
that is, the set of A0’s that are consistent with φ (Uhlig (2005, Proposition A.1)). Im-
posing identifying restrictions can be viewed as restricting the set of feasible Q’s to lie in
a subspace Q of O(n), so that the identified set of A0 is {A0 = Q′Σ−1

tr : Q ∈ Q} and the
corresponding identified set of η is

ISη(φ)= {
η(φ�Q) :Q ∈Q

}

 (4.7)

In the following, we characterize the subspace Q under common types of identifying re-
strictions.

4.2. Identifying Restrictions

4.2.1. Under-Identifying Zero Restrictions

Examples of under-identifying zero restrictions typically used in the literature are re-
strictions on some off-diagonal elements of A0, on the lagged coefficients {Al : l =
1� 
 
 
 �p}, on contemporaneous impulse responses IR0 = A−1

0 , and on the cumulative
long-run responses CIR∞ in (4.5).
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All these restrictions can be viewed as linear constraints on the columns of Q. For
example: (

(i� j)th element of A0

)= 0 ⇐⇒ (
Σ−1

tr ej
)′
qi = 0�(

(i� j)th element of Al

)= 0 ⇐⇒ (
Σ−1

tr Blej
)′
qi = 0�(

(i� j)th element of A−1
0

)= 0 ⇐⇒ (
e′
iΣtr

)
qj = 0�

(
(i� j)th element of CIR∞)= 0 ⇐⇒

[
e′
i

∞∑
h=0

Ch(B)Σtr

]
qj = 0


(4.8)

We can thus represent a collection of zero restrictions in the general form:

F(φ�Q)≡

⎛
⎜⎜⎝
F1(φ)q1

F2(φ)q2





Fn(φ)qn

⎞
⎟⎟⎠= 0� (4.9)

where Fi(φ) is an fi ×n matrix. Each row in Fi(φ) corresponds to the coefficient vector of
a zero restriction that constrains qi as in (4.8), and Fi(φ) stacks all the coefficient vectors
that multiply qi into a matrix. Hence, fi is the number of zero restrictions constraining qi.
If the zero restrictions do not constrain qi, Fi(φ) does not exist and fi = 0.

In order to implement our method, one must first order the variables in the model.

DEFINITION 3—Ordering of Variables: Order the variables in the SVAR so that the
number of zero restrictions fi imposed on the ith column of Q (i.e., the rows of Fi(φ)
in (4.9)) satisfy f1 ≥ f2 ≥ · · · ≥ fn ≥ 0. In case of ties, if the impulse response of interest
is that to the jth structural shock, order the jth variable first. That is, set j = 1 when no
other column vector has a larger number of restrictions than qj . If j ≥ 2, then order the
variables so that fj−1 > fj .14

Rubio-Ramírez, Waggoner, and Zha (2010) showed that, under regularity assumptions,
a necessary condition for point identification is that the rank of Fi(φ) equals to n− i for
all i = 1� 
 
 
 � n. Here we consider restrictions that make the SVAR set-identified because

fi ≤ n− i for all i = 1� 
 
 
 � n� (4.10)

with strict inequality for at least one i ∈ {1� 
 
 
 � n}.15

The following example illustrates how to order the variables in order to satisfy Defini-
tion 3.

14The assumption pins down a unique j, while it does not necessarily yield a unique ordering for the other
variables if some of them admit the same number of constraints. However, the condition for convexity in
Appendix B in Giacomini and Kitagawa (2021) is not affected by the ordering of the other variables as long as
the fi ’s are in decreasing order.

15The class of under-identified models considered here does not exhaust the universe of all possible non-
identified SVARs, since there exist models that do not satisfy (4.10), but for which the structural parameter
is not globally identified for some values of the reduced-form parameter. For instance, in the example in
Section 4.4 of Rubio-Ramírez, Waggoner, and Zha (2010), with n = 3 and f1 = f2 = f3 = 1, the structural
parameter is locally, but not globally, identified.
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EXAMPLE 1: Consider a SVAR for (πt� yt�mt� it)
′, where πt is inflation, yt is (de-

trended) real GDP, mt is the (detrended) real money stock, and it is the nominal interest
rate. Consider the following under-identifying restrictions imposed on A−1

0 :

⎛
⎜⎝
uπ�t

uy�t

um�t

ui�t

⎞
⎟⎠=

⎛
⎜⎜⎝
a11 a12 0 0
a21 a22 0 0
a31 a32 a33 a34

a41 a42 a43 a44

⎞
⎟⎟⎠
⎛
⎜⎝
επ�t
εy�t
εm�t

εi�t

⎞
⎟⎠ 
 (4.11)

Let the objects of interest be the impulse responses to εi�t (a monetary policy shock).
Let [qπ�qy� qm�qi] be a 4 × 4 orthonormal matrix. By (4.8), the imposed restrictions im-
ply two restrictions on qm and two restrictions on qi. An ordering consistent with Defini-
tion 3 is (it�mt�πt� yt)

′, and the corresponding numbers of restrictions are (f1� f2� f3� f4) =
(2�2�0�0) with j = 1. The restrictions in this example satisfy (4.10). If instead the objects
of interest are the impulse responses to εy�t (interpreted as a demand shock), order the
variables as (it�mt� yt�πt) and let j = 3.

4.2.2. Sign Restrictions

Sign restrictions could be considered alone or in addition to zero restrictions. If there
are zero restrictions, we maintain the ordering in Definition 3. If there are only sign re-
strictions, we order first the variable whose structural shock is of interest. Suppose there
are sign restrictions on the responses to the jth structural shock. Sign restrictions are lin-
ear constraints on the columns of Q: Shj(φ)qj ≥ 0,16 where Shj(φ) ≡ DhjCh(B)Σtr, with
Dhj an shj × n matrix that selects the sign-restricted responses from the impulse-response
vector Ch(B)Σtrqj . The nonzero elements of Dhj equal 1 or −1 depending on whether the
corresponding impulse responses are positive or negative.

Stacking Shj(φ) over multiple horizons gives the set of sign restrictions on the responses
to the jth shock as

Sj(φ)qj ≥ 0� (4.12)

where Sj(φ) is a (
∑h̄

h=0 shj)× n matrix Sj(φ) = [S0j(φ)
′� 
 
 
 � Sh̄j(φ)]′, with 0 ≤ h̄ ≤ ∞ the

maximal horizon in the impulse-response analysis. If there are no sign restrictions on the
h̃th horizon responses, sh̃j = 0 and Sh̃j(φ) is not present in Sj(φ).

Let IS ⊂ {1�2� 
 
 
 � n} be such that j ∈ IS if some of the impulse responses to the jth
structural shock are sign-constrained. We denote the set of all sign restrictions, Sj(φ)qj ≥
0 for j ∈ IS , as

S(φ�Q)≥ 0
 (4.13)

4.3. The Impulse-Response Identified Set

The identified set for the impulse response in the presence of under-identifying zero
restrictions and sign restrictions is given by

ISη(φ|F�S)= {
η(φ�Q) :Q ∈Q(φ|F�S)}� (4.14)

16For y = (y1� 
 
 
 � ym)
′, y ≥ 0 means yi ≥ 0 for all i and y > 0 means yi ≥ 0 for all i and yi > 0 for some i.
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where Q(φ|F�S) is the set of Q’s that jointly satisfy the sign restrictions (4.13), the zero
restrictions (4.9), and the sign normalizations (4.3),

Q(φ|F�S) = {
Q ∈O(n) : S(φ�Q)≥ 0�F(φ�Q)= 0�diag

(
Q′Σ−1

tr

)≥ 0
}

 (4.15)

Proposition B.1 in Giacomini and Kitagawa (2021) shows that, unlike the cases with only
zero restrictions, with sign restrictions the identified set of η can be empty.

4.4. Multiple Priors in SVARs

Let π̃φ be a prior for the reduced-form parameter. We ensure that the prior for φ is
consistent with Assumption 1(i) by trimming the support of π̃φ as

πφ ≡ 1
{
Q(φ|F�S) �= ∅}

π̃φ

({
φ :Q(φ|F�S) �= ∅}) · π̃φ� (4.16)

where {φ ∈ Φ : Q(φ|F�S) �= ∅} is the set of reduced-form parameters that yield non-
empty identified sets for any structural parameters or impulse responses.

A joint prior for θ = (φ�Q) ∈ Φ × O(n) that has φ-marginal πφ can be expressed as
πθ = πQ|φπφ, where πQ|φ is supported only on Q(φ|F�S). Since (A0�A1� 
 
 
 �Ap) and η
are functions of θ = (φ�Q), πθ induces a unique prior for the structural parameters and
the impulse responses. Conversely, a prior for (A0�A1� 
 
 
 �Ap) that incorporates the sign
normalizations induces a unique prior for πθ. While the prior for φ is updated by the data,
the conditional prior πQ|φ is not updated.

Under point identification, the restrictions pin down a unique Q (i.e., Q(φ|F�S) is a
singleton), in which case πQ|φ is degenerate and gives a point mass at such Q. Specify-
ing πφ thus suffices to induce a single posterior for the structural parameters and for
the impulse responses. In contrast, in the set-identified case, specifying only πφ cannot
yield a single posterior and one would also need to specify a prior πQ|φ. This is the stan-
dard Bayesian approach adopted by the vast majority of the empirical literature using
set-identified SVARs (e.g., Uhlig (2005)), and its potential pitfalls have been discussed by
Baumeister and Hamilton (2015).17

The robust Bayesian procedure in this paper does not require specifying a prior πQ|φ,
but considers the class of all priors πQ|φ supported on Q(φ|F�S),

ΠQ|φ = {
πQ|φ : πQ|φ

(
Q(φ|F�S))= 1�πφ-almost surely

}

 (4.17)

Combining ΠQ|φ with the posterior for φ generates a class of posteriors for θ = (φ�Q),

Πθ|Y = {πθ|Y = πQ|φπφ|Y : πQ|φ ∈ΠQ|φ} (4.18)

and a class of posteriors for the impulse response η,

Πη|Y ≡
{
πη|Y (·)=

∫
πQ|Y

(
η(φ�Q) ∈ ·)dπφ|Y : πQ|Y ∈ ΠQ|Y

}

 (4.19)

17Since (φ�Q) and (A0�A1� 
 
 
 �Ap) are one-to-one (under the sign normalizations), the difficulty of spec-
ifying a prior πQ|φ can be equivalently stated as the difficulty of specifying a prior for the structural parameters
that is compatible with πφ.
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4.5. Set of Posterior Means and Robust Credible Region

Applying Theorem 2 to the impulse response, we obtain the set of posterior means:[∫
Φ

(φ)dπφ|Y �
∫
Φ

u(φ)dπφ|Y

]
�

where (φ) = inf{η(φ�Q) : Q ∈ Q(φ|F�S)} and u(φ) = sup{η(φ�Q) : Q ∈ Q(φ|F�S)}.
Section 5 discusses how to compute (φ) and u(φ).

The smallest robust credible region with credibility α for the impulse response can be
computed using draws of [(φ)�u(φ)], φ ∼ πφ|Y and applying Proposition 1. It is inter-
preted as the shortest interval estimate for the impulse response η, such that the posterior
probability put on the interval is greater than or equal to α uniformly over the posteriors
in the class (4.19).

To validate the frequentist interpretation of the set of posterior means, Appendix B in
Giacomini and Kitagawa (2021) provides conditions for convexity, continuity, and differ-
entiability of the identified set map ISη(φ|F�S) for the impulse response. By Theorems 2
and 3(ii), convexity and continuity of ISη(φ|F�S) as a function of φ allow us to interpret
the set of posterior means as a consistent estimator of the true identified set. In addition,
by Proposition 2, differentiability of the upper and lower bounds of the impulse-response
identified set in φ with nonzero derivatives guarantees that the robust credible region is
an asymptotically valid confidence set for the true impulse-response identified set.

5. NUMERICAL IMPLEMENTATION

We present an algorithm to numerically approximate the set of posterior means, the
robust credible region, and the diagnostic tool in Section 2.6.1 for the case of SVARs.
The algorithm assumes that the variables are ordered as in Definition 3 and the zero
restrictions, if any imposed, satisfy (4.10). Matlab code implementing the procedure can
be obtained from the authors’ personal websites or upon request.

ALGORITHM 1: Let F(φ�Q) = 0 and S(φ�Q) ≥ 0 be the set of identifying restrictions
(one or both of which may be empty), and let η = c′

ih(φ)qj∗ be the impulse response of
interest.

Step 1. Specify π̃φ, the prior for the reduced-form parameter φ.18 Estimate a Bayesian
reduced-form VAR to obtain the posterior π̃φ|Y .

Step 2. Draw φ from π̃φ|Y . Given the draw of φ, check whether Q(φ|F�S) is empty by
following the subroutine (Step 2.1–Step 2.3) below.
Step 2.1. Let z1 ∼N (0� In) be a draw of an n-variate standard normal random vari-

able. Let q̃1 = M1z1 be the n × 1 residual vector in the linear projection of z1

onto an n× f1 regressor matrix F1(φ)
′. For i = 2�3� 
 
 
 � n, run the following pro-

cedure sequentially: draw zi ∼ N (0� In) and compute q̃i = Mizi, where Mizi is
the residual vector in the linear projection of zi onto the n × (fi + i − 1) ma-
trix [Fi(φ)

′� q̃1� 
 
 
 � q̃i−1]. The vectors q̃1� 
 
 
 � q̃n are orthogonal and satisfy the
equality restrictions.

18π̃φ need not be proper, nor satisfy the condition π̃φ({φ : Q(φ|F�S) �= ∅}) = 1 (i.e., the prior may assign
positive probability to regions of the reduced-form parameter space that yield an empty set of Q’s satisfying
the restrictions).



1540 R. GIACOMINI AND T. KITAGAWA

Step 2.2. Given q̃1� 
 
 
 � q̃n obtained in the previous step, define

Q =
[

sign
((
σ1
)′
q̃1

) q̃1

‖q̃1‖ � 
 
 
 � sign
((
σn
)′
q̃n

) q̃n

‖q̃n‖
]
�

where ‖ · ‖ is the Euclidean metric in R
n. If (σi)′q̃i is zero for some i, set

sign((σi)′q̃i) equal to 1 or −1 with equal probability. This step imposes the sign
normalization that the diagonal elements of A0 are nonnegative.

Step 2.3. Check whether Q obtained in Step 2.2 satisfies the sign restrictions
S(φ�Q)≥ 0. If so, retain this Q and proceed to Step 3. Otherwise, repeat Step
2.1 and Step 2.2 a maximum of L times (e.g., L = 3000) or until Q is obtained
satisfying S(φ�Q) ≥ 0. If none of the L draws of Q satisfies S(φ�Q) ≥ 0, ap-
proximate Q(φ|F�S) as being empty and return to Step 2 to obtain a new draw
of φ.

Step 3. Given φ obtained in Step 2, compute the lower and upper bounds of
ISη(φ|S�F) by solving the following constrained nonlinear optimization problem:

(φ) = arg min
Q

c′
ih(φ)qj∗�

s.t. Q′Q = In� F(φ�Q)= 0� diag
(
Q′Σ−1

tr

)≥ 0� S(φ�Q)≥ 0�

and u(φ) = arg maxQ c′
ih(φ)qj∗ under the same set of constraints.

Step 4. Repeat Step 2–Step 3 M times to obtain [(φm)�u(φm)], m = 1� 
 
 
 �M . Ap-
proximate the set of posterior means by the sample averages of ((φm) : m =
1� 
 
 
 �M) and (u(φm) :m= 1� 
 
 
 �M).

Step 5. To obtain an approximation of the smallest robust credible region with cred-
ibility α ∈ (0�1), define d(η�φ) = max{|η − (φ)|� |η − u(φ)|}, and let ẑα(η) be
the sample αth quantile of (d(η�φm) : m = 1� 
 
 
 �M). An approximated smallest
robust credible region for η is an interval centered at arg minη ẑα(η) with radius
minη ẑα(η).19

Step 6. The proportion of drawn φ’s that pass Step 2.3 is an approximation of the pos-
terior probability of having a nonempty identified set, π̃φ|Y ({φ : Q(φ|F�S) �= ∅}),
corresponding to the diagnostic tool discussed in Section 2.6.1.

REMARKS: First, the step of the algorithm drawing orthonormal Q’s subject to zero and
sign restrictions (Step 2) is common to our approach and the existing standard Bayesian
approach of, for example, Arias, Rubio-Ramírez, and Waggoner (2018). In particular,
Step 2.1 is similar to Steps 2 and 3 in Algorithm 2 of Arias, Rubio-Ramírez, and Wag-
goner (2018), but uses a linear projection instead of their QR decomposition and imposes
different sign normalizations.20

Second, Step 3 is a non-convex optimization problem and the convergence of gradient-
based optimization methods in these problems is not guaranteed. To mitigate this prob-
lem, at each draw of φ one can draw multiple values of Q from Q(φ|F�S) to use as
starting values in the optimization step, and then take the optimum over the solutions
obtained from the different starting values.

19In practice, we obtain this interval by grid search using a fine grid over η. The objective function in this
problem is non-differentiable, so gradient-based optimization methods are inappropriate.

20The Matlab code we provide also offers the option of using a QR decomposition. In our experience, the
two ways of drawing Q are comparable in terms of both the resulting distribution of Q and computational cost.
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Third, if the zero and sign restrictions restrict only a single column of Q, Steps 2.1–2.3
and 3 can be substituted by an analytical computation of the bounds of the identified set at
each draw of φ, using the result of Gafarov, Meier, and Montiel-Olea (2018). While they
applied the result at φ̂ in a frequentist setting, we apply it at each draw from the posterior
of φ. Step 6 can also be replaced by analytically checking whether the identified set is
empty at each draw of φ.21 The advantage of the analytical approach is that we can assess
the emptiness even when the identified set is narrow, and it is computationally faster. The
advantage of the numerical approach is that it is applicable even when the restrictions
involve multiple columns of Q (i.e., the restrictions are on multiple structural shocks).

Fourth, if there are concerns about the convergence properties of the numerical opti-
mization step due to a large number of variables and/or constraints, but there are restric-
tions on multiple columns of Q (so the analytical approach cannot be applied), one could
use the following algorithm.

ALGORITHM 2: In Algorithm 1, replace Step 3 with the following:
Step 3’. Iterate Step 2.1–Step 2.3 K times and let (Ql : l = 1� 
 
 
 � K̃) be the draws that

satisfy the sign restrictions. (If none of the draws satisfy the sign restrictions, draw a new
φ and iterate Step 2.1–Step 2.3 again.) Let qj∗�k, k = 1� 
 
 
 � K̃, be the j∗th column vector
of Qk. Approximate [(φ)�u(φ)] by [mink c

′
ih(φ)qj∗�k�maxk c′

ih(φ)qj∗�k].

A downside of this alternative is that the approximated identified set is smaller than
ISη(φ|F�S) at every draw of φ. Nonetheless, the estimator of the identified set is still
consistent as the number of draws of Q goes to infinity. Comparing the bounds obtained
using Algorithms 1 and 2 may also provide a useful check on the convergence properties
of the optimization in Step 3.

6. EMPIRICAL APPLICATION

We illustrate how our method can be used to: (1) perform robust Bayesian inference
in SVARs without specifying a prior for the rotation matrix Q; (2) obtain a consistent
estimator of the impulse-response identified set; and (3) if a prior for Q is available,
disentangle the information introduced by this choice of prior from that solely contained
in the identifying restrictions.

The model is based on the four-variable SVAR considered by Granziera, Moon, and
Schorfheide (2018), which in turn is based on Aruoba and Schorfheide (2011). The ob-
servables are the federal funds rate (it), real GDP per capita in log differences (�yt),
inflation as measured by the GDP deflator (πt), and real money balances (mt).22 The

21This involves considering all possible combinations of (n − 1) active restrictions and checking whether
any one of the vectors solving the active restrictions satisfies all the non-active sign restrictions. In practice, we
compute the unit-length vectors in the null space of the matrix containing the (n− 1) active restrictions using
the ‘null’ function in Matlab. Since the null space has dimension 1, there are only two unit-length vectors, which
differ only in their signs. We check whether either one of the vectors satisfy the non-active restrictions. If we
can pass this check for at least one combination of (n − 1) active restrictions, we conclude that the identified
set is non-empty. See also Giacomini, Kitagawa, and Volpicella (2020).

22The data on yt are from FRED. The other data are from Frank Schorfheide’s website: https://web.sas.
upenn.edu/schorf/. For details on the construction of the series, see Appendix D of Granziera, Moon, and
Schorfheide (2018) and Footnote 5 of Aruoba and Schorfheide (2011).

https://web.sas.upenn.edu/schorf/
https://web.sas.upenn.edu/schorf/
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data are quarterly from 1965:1 to 2006:1. The model is

⎛
⎜⎝
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞
⎟⎠
⎛
⎜⎝

it
�yt
πt

mt

⎞
⎟⎠= a+

2∑
j=1

Aj

⎛
⎜⎝

it−j

�yt−j

πt−j

mt−j

⎞
⎟⎠+

⎛
⎜⎝
εi�t
εy�t
επ�t
εm�t

⎞
⎟⎠ �

and the impulse response of interest is the output response to a monetary policy shock,
∂yt+h

∂εi�t
= ∑h

j=0
∂�yt+j

∂εi�t
, so j∗ = 1. The sign normalization restrictions (nonnegative diagonal

elements of the matrix on the left-hand side) and the assumption that the covariance
matrix of the structural shocks is the identity matrix imply that the output response is with
respect to a unit standard deviation positive (contractionary) monetary policy shock.

We consider different combinations of the following zero and sign restrictions:
(i) a12 = 0: the monetary authority does not respond contemporaneously to output.

(ii) IR0(�y� i)= 0: the instantaneous impulse response of output to a monetary policy
shock is zero.

(iii) CIR∞(�y� i) = 0: the long-run impulse response of output to a monetary policy
shock is zero.

(iv) Sign restrictions: following a contractionary monetary policy shock, the responses
of inflation and real money balances are nonpositive on impact and after one quar-
ter ( ∂πt+h

∂εi�t
≤ 0 and ∂mt+h

∂εi�t
≤ 0 for h = 0�1), and the response of the interest rate is

nonnegative on impact and after one quarter ( ∂it+h

∂εi�t
≥ 0 for h= 0�1).

We start from a model that does not impose any identifying restrictions (Model 0). We
then impose different combinations of the restrictions, summarized in Table I, which all
give rise to set identification. Restrictions (i)–(iii) are zero restrictions that constrain the
first column of Q, so f1 = 1 if only one restriction out of (i)–(iii) is imposed (Models II to
IV), and f1 = 2 if two restrictions are imposed (Models V to VII). No zero restrictions are
placed on the remaining columns of Q, so for all models f2 = f3 = f4 = 0, and the order
of the variables satisfies Definition 3.

All models impose the sign restrictions in (iv), which are those considered in Granziera,
Moon, and Schorfheide (2018). This implies that Model I coincides with their model (with
a different measure of output).

The prior for the reduced-form parameters, π̃φ, is the improper Jeffreys’ prior, with
density proportional to |Σ|− 4+1

2 . This implies a normal-inverse-Wishart posterior from

TABLE I

MODEL DEFINITION AND PLAUSIBILITY OF IDENTIFYING RESTRICTIONSa

Restrictions \Model 0 I II III IV V VI VII

(i) a12 = 0 – – x – – x x –
(ii) IR0(�y� i)= 0 – – – x – x – x
(iii) CIR∞(�y� i)= 0 – – – – x – x x
(iv) Sign restrictions – x x x x x x x

π̃φ|Y ({φ : ISη(φ) �= ∅}) 1.0000 1.0000 1.0000 1.0000 0.9970 0.6575 0.8621 0.8803

aNotes: ‘x’ indicates the restriction is imposed; π̃φ|Y ({φ : ISη(φ) �= ∅}) is the measure of the plausibility of the identifying restric-
tions described in Section 2.6.1. The approach using Step 6 in Algorithm 1 (with a maximum of 3000 draws of Q at each draw of φ)
and the analytical approach described in the remarks after Algorithm 1 produce the same estimates.
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which it is easy to draw. The results are based on Algorithm 1, considering five start-
ing values as discussed in the remarks in Section 5.23 We draw φ’s until we obtain 1000
realizations of the non-empty identified set and check for convexity of the set using Propo-
sition B.1 in Appendix B in Giacomini and Kitagawa (2021).

We also compare our approach to standard Bayesian inference based on a uniform
prior for Q. We obtain draws from the single posterior for the impulse response by iter-
ating Steps 2.1–2.3 of Algorithm 1, and retaining only the draws of Q that satisfy the sign
restrictions.24

Table II provides the posterior inference results for the output responses at h = 1 (3
months), h = 10 (2 years and 6 months), and h = 20 (5 years) in each model, for both
the robust Bayesian and the standard Bayesian approaches. The table also shows the
posterior lower probability that the impulse response is negative, πη|Y∗(η < 0), as well as
the diagnostic tools from Section 2.4.

Figures 1 and 2 report the set of posterior means for the impulse responses (vertical
bars) and the smallest robust credible region with credibility 90% (continuous line), for
the robust Bayesian approach; for the standard Bayesian approach, they report the pos-
terior mean (dotted line) and the 90% highest posterior density region (dashed line).25

We can draw several conclusions. First, choosing a uniform prior for the rotation matrix
affects posterior inference: in Model I, this prior choice is more informative than the
identifying restrictions; in some of the models and for some horizons, standard Bayesian
analysis suggests that the output response is negative, whereas the robust Bayesian lower
probability of this event is very low, implying that the conclusion of standard Bayesian
analysis in these cases is largely driven by the choice of unrevisable prior. See Wolf (2020)
for a similar finding.

Second, all 90% robust credible regions contain zero, casting doubts about the infor-
mativeness of these common under-identifying restrictions. In particular, sign restrictions
alone (Model I) have little identifying power and result in set estimates that are too wide
to draw informative inference about the sign of the impulse response. Adding a single
zero restriction (Models II to IV) makes the identified set estimates tighter, although
the identifying power varies across horizons: the restriction on the contemporaneous re-
sponse (restriction (ii)) is more informative at short horizons and the long-run restriction
(restriction (iii)) is more informative at long horizons. The zero restriction on A0 (restric-
tion (i)) is informative at both short and long horizons.

Third, imposing additional zero restrictions (Models V to VII) makes the identifying
restrictions more informative than the choice of the prior and reduces the gap between
the conclusions of standard and robust Bayesian analysis. The robust Bayesian analysis
also becomes informative for the sign of the output response.

23The results are visually indistinguishable when using the analytical approach discussed in the remarks in
Section 5. Five initial values appear sufficient to achieve convergence of the numerical algorithm to the true
optimum.

24In Models 0 and I, this is equivalent to Uhlig (2005), as it obtains draws from the uniform prior over the
space of rotation matrices satisfying the sign normalizations and sign restrictions (if any). In models with both
zero and sign restrictions, this is comparable to Arias, Rubio-Ramírez, and Waggoner (2018), aside from the
small differences in the algorithms discussed in Section 5 and the fact that they used a normal-inverse-Wishart
prior for the reduced-form parameter. Using the same prior as Arias, Rubio-Ramírez, and Waggoner (2018)
gives visually indistinguishable results.

25These figures do not capture the dependence of the responses across different horizons.
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FIGURE 1.—Plots of output impulse responses to a monetary policy shock (Models 0–III). Notes: See Table I
for the definition of models. In each figure, the points are the standard Bayesian posterior means, the vertical
bars are the set of posterior means, the dashed curves are the upper and lower bounds of the standard Bayesian
highest posterior density regions with credibility 90%, and the solid curves are the upper and lower bounds of
the robust credible regions with credibility 90%.

7. CONCLUSION

We develop a robust Bayesian inference procedure for set-identified models, providing
Bayesian inference that is asymptotically equivalent to frequentist inference about the
identified set. The main idea is to remove the need to specify a prior that is not revised by
the data, but allow for ambiguous beliefs (multiple priors) for the unrevisable component
of the prior. We show how to compute an estimator of the identified set and the associated
smallest robust credible region that respectively satisfy the properties of consistency and
correct frequentist coverage asymptotically.

We conclude by summarizing the recommended uses and advantages of our method.
First, by reporting the robust Bayesian output, one can learn what inferential conclusions
can be supported solely by the identifying restrictions and the posterior for the reduced-
form parameter. Even if a user has a credible prior for parameters for which the data
are not informative, the robust Bayesian output will help communicate with other users
who may have different priors. Second, by comparing the output across different sets of
identifying restrictions, one can learn which restrictions are crucial in drawing a given
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FIGURE 2.—Plots of output impulse responses to a monetary policy shock (Models IV–VII). Notes: See
Figure 1.

inferential conclusion. Third, the procedure can be a useful tool for separating the infor-
mation contained in the data from any prior input that is not revised by the data.

The fact that, in applications to macroeconomic policy analysis using SVARs, the set
of posterior means and the robust credible region may be too wide to draw informative
policy recommendations should not be considered a disadvantage of the method. Wide
sets may encourage the researcher to look for additional credible identifying restrictions
and/or to refine the set of priors, by inspecting how the data are collected, by considering
empirical evidence from other studies, and by turning to economic theory. If additional
restrictions are not available, our analysis informs the researcher about the amount of
ambiguity that the policy decision will be subject to. As Manski (2013) argued, knowing
what we do not know is an important premise for a policy decision without incredible
certitude.

APPENDIX A: LEMMAS AND PROOFS

Lemmas A.1–A.3 are used to prove Theorem 1.

LEMMA A.1: Assume (Θ�A) and (Φ�B) are measurable spaces in which Θ and Φ are
complete separable metric spaces. Under Assumption 1, ISθ(φ) and ISη(φ) are random
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closed sets induced by a probability measure on (Φ�B), that is, ISθ(φ) and ISη(φ) are closed
and, for A ∈A and D ∈H,{

φ : ISθ(φ)∩A �= ∅} ∈ B for A ∈A�{
φ : ISη(φ)∩D �= ∅} ∈ B for D ∈H


PROOF OF LEMMA A.1: Closedness of ISθ(φ) and ISη(φ) is implied directly by As-
sumptions 1(ii) and 1(iii). To prove measurability of {φ : ISθ(φ)∩A �= ∅}, Theorem 2.6 in
Chapter 1 of Molchanov (2005) is invoked, which states that, given Θ as a Polish space,
{φ : ISθ(φ) ∩ A �= ∅} ∈ B holds if and only if {φ : θ ∈ ISθ(φ)} ∈ B is true for every θ ∈ Θ.
Since ISθ(φ) is an inverse image of the many-to-one mapping, g :Θ→ Φ, {φ : θ ∈ ISθ(φ)}
is a singleton for each θ ∈ Θ. Any singleton set of φ belongs to B, since Φ is a metric space.
Hence, {φ : θ ∈ ISθ(φ)} ∈ B holds.

Measurability of {φ : ISη(φ)∩D �= ∅} follows since {φ : ISη(φ)∩D �= ∅} = {φ : ISθ(φ)∩
h−1(D) �= ∅} and h−1(D) ∈ A (Assumption 1(iii)). The first result implies {φ : ISη(φ) ∩
D �= ∅} ∈ B. Q.E.D.

LEMMA A.2: Under Assumption 1, let A ∈ A be an arbitrary fixed subset of Θ. For every
πθ|φ ∈ Πθ|φ, 1{ISθ(φ)⊂A}(φ)≤ πθ|φ(A|φ) holds πφ-almost surely.

PROOF OF LEMMA A.2: For the given subset A, define ΦA
1 = {φ : ISθ(φ) ⊂ A�

ISθ(φ) �= ∅} = {φ : ISθ(φ) ∩ Ac �= ∅}c . Note that, by Lemma A.1, ΦA
1 belongs to B. To

prove the claim, it suffices to show
∫
B

1ΦA
1
(φ)dπφ ≤ ∫

B
πθ|φ(A)dπφ for every πθ|φ ∈ Πθ|φ

and B ∈ B. Consider∫
B

πθ|φ(A)dπφ ≥
∫
B∩ΦA

1

πθ|φ(A)dπφ = πθ

(
A∩ ISθ

(
B ∩ΦA

1

))
�

where the equality follows by the definition of conditional probability. By the construction
of ΦA

1 , ISθ(B ∩ ΦA
1 ) ⊂ A holds, so πθ(A ∩ ISθ(B ∩ ΦA

1 )) = πθ(ISθ(B ∩ ΦA
1 )) = πφ(B ∩

ΦA
1 )= ∫

B
1ΦA

1
(φ)dπφ. Thus, the inequality is proven. Q.E.D.

LEMMA A.3: Under Assumption 1, for each A ∈A, there exists πA
θ|φ∗ ∈Πθ|φ that achieves

the lower bound of πθ|φ(A) obtained in Lemma A.2, πφ-almost surely.

PROOF OF LEMMA A.3: The claim holds trivially when A = ∅ or A = Θ. We hence
prove the claim for A different from ∅ or Θ. Fix A ∈ A and let ΦA

1 be as in the proof of
Lemma A.2 and

ΦA
0 = {

φ : ISθ(φ)∩A = ∅� ISθ(φ) �= ∅}�
ΦA

2 = {
φ : ISθ(φ)∩A �= ∅ and ISθ(φ)∩Ac �= ∅}�

where each of ΦA
0 , ΦA

1 , and ΦA
2 belongs to B by Lemma A.1. Note that ΦA

0 , ΦA
1 , and

ΦA
2 are mutually disjoint and constitute a partition of g(Θ) ⊂ Φ. Consider a Θ-valued

measurable selection ξA(·) defined on ΦA
2 if non-empty, such that ξA(φ) ∈ (ISθ(φ)∩Ac)

holds for πφ-almost every φ ∈ ΦA
2 . Such measurable selection ξA(φ) can be constructed,

for instance, by ξA(φ) = arg maxθ∈ISθ(φ)∩Aε d(θ�A), where d(θ�A) = infθ′∈A ‖θ − θ′‖ and
Aε = {θ : d(θ�A) ≤ ε} is the closed ε-enlargement of A (see Theorem 2.27 in Chapter 1
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of Molchanov (2005) for B-measurability of such ξA(φ)). If ΦA
2 is empty, we do not need

to construct ξA(·) and the construction of the conditional probability distribution πA
θ|φ∗

shown below remains valid.
Pick an arbitrary πθ|φ ∈ Πθ|φ and construct another πA

θ|φ∗ as, for Ã ∈A,

πA
θ|φ∗(Ã) =

{
πθ|φ(Ã) for φ ∈ΦA

0 ∪ΦA
1 �

1{ξA(φ)∈Ã}(φ) for φ ∈ΦA
2 


πA
θ|φ∗(·) is a probability measure on (Θ�A): πA

θ|φ∗ satisfies πA
θ|φ∗(∅) = 0, πA

θ|φ∗(Θ) = 1, and
is countably additive. Also, πA

θ|φ∗ belongs to Πθ|φ because πA
θ|φ∗(ISθ(φ)) = 1 holds, πφ a.s.,

by the construction of ξA(φ). With the thus-constructed πA
θ|φ∗ and an arbitrary subset

B ∈ B, consider∫
B

πA
θ|φ∗(A)dπφ =

∫
B

πA
θ|φ∗

(
A∩ ISθ(φ)

)
dπφ

=
∫
B∩ΦA

0

πA
θ|φ∗

(
A∩ ISθ(φ)

)
dπφ +

∫
B∩ΦA

1

πA
θ|φ∗

(
A∩ ISθ(φ)

)
dπφ

+
∫
B∩ΦA

2

πA
θ|φ∗

(
A∩ ISθ(φ)

)
dπφ

=
∫
B∩ΦA

1

πA
θ|φ∗

(
A∩ ISθ(φ)

)
dπφ =

∫
B

1ΦA
1
(φ)dπφ�

where the first equality follows by πA
θ|φ∗ ∈ Πθ|φ, the third equality follows since A ∩

ISθ(φ) = ∅ for φ ∈ ΦA
0 and πA

θ|φ∗(A ∩ ISθ(φ)) = 1{ξA(φ)∈A}(φ) = 0 for φ ∈ ΦA
2 , and the

fourth equality follows since πA
θ|φ∗(A ∩ ISθ(φ)) = 1 for φ ∈ ΦA

1 . Since B ∈ B is arbitrary,
this implies that πA

θ|φ∗(A) = 1ΦA
1
(φ), πφ-almost surely, implying that πA

θ|φ∗ achieves the
lower bound shown in Lemma A.2. Q.E.D.

PROOF OF THEOREM 1: We first show the special case of η = θ. In the expression of
the posterior of θ given in equation (2.2), πθ|Y (A) is minimized over the prior class by
plugging in the attainable pointwise lower bound of πθ|φ(A). By Lemmas A.2 and A.3, the
attainable pointwise lower bound of πθ|φ(A) is given by 1{ISθ(φ)⊂A}(φ). Hence, πθ|Y∗(A) =∫
Φ

1{ISθ(φ)⊂A}(φ)dπφ|Y (φ) = πφ|Y ({φ : ISθ(φ) ⊂ A}). The upper probability follows by its
conjugacy, π∗

θ|Y (A) = 1 −πθ|Y∗(Ac).
For the general case η = h(θ), the expression of the posterior lower probability follows

from

πη|Y∗(D)= πθ|Y∗
(
h−1(D)

)= πφ|Y
({
φ : ISθ(φ) ⊂ h−1(D)

})= πφ|Y
({
φ : ISη(φ) ⊂D

})



The expression of the posterior upper probability follows again by the conjugacy property.
Q.E.D.

COROLLARY A.1: Under Assumption 1, let πη|Y∗(D) and π∗
η|Y (D), D ∈ D, be the poste-

rior lower and upper probabilities obtained in Theorem 1. The set of posterior probabilities
{πη|Y (D) : πη|Y ∈Πη|Y } is a connected interval given by [πη|Y∗(D)�π∗

η|Y (D)].
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PROOF OF COROLLARY A.1: Consider first the case of η= θ. Fix A ∈A different from
∅ and Θ. Using the notation and the argument in the proof of Lemma A.3, it can be shown
that the upper probability can be attained by setting the conditional prior as, for Ã ∈A,

πA∗
θ|φ(Ã) =

{
πθ|φ(Ã) for φ ∈ΦA

0 ∪ΦA
1 �

1{ξAc
(φ)∈Ã}(φ) for φ ∈ΦA

2 �

where ξAc
(·) is a Θ-valued measurable selection defined for φ ∈ ΦA

2 such that ξAc
(φ) ∈

[ISθ(φ) ∩ A] holds for πφ-almost every φ ∈ ΦA
2 . Consider mixing πA∗

θ|φ with πA
θ|φ∗ con-

structed in the proof of Lemma A.3, πλ
θ|φ ≡ λπA

θ|φ∗ + (1 − λ)πA∗
θ|φ, λ ∈ [0�1]. Note that

πλ
θ|φ belongs to Πθ|φ for any λ ∈ [0�1] since πλ

θ|φ(ISθ(φ)) = 1. The posterior probability
for {θ ∈A} with conditional prior πλ

θ|φ is the λ-convex combination of the posterior lower
and upper probabilities, λπθ|Y∗(A)+ (1 − λ)π∗

θ|Y (A). Since λ ∈ [0�1] is arbitrary, the set
of the posterior probabilities for {θ ∈ A} is the connected interval [πθ|Y∗(A)�π∗

θ|Y (A)].
The conclusion follows by setting A = h−1(D). Q.E.D.

PROOF OF THEOREM 2: At each φ in the support of πφ|Y , the set {Eη|φ(η) :
πη|φ(ISη(φ)) = 1} agrees with co(ISη(φ)). Hence, (Eη|φ(η) : φ ∈ g(Θ)) pinned down
by selecting πθ|φ from Πθ|φ can be viewed as a selection from co(ISη). Since the prior
class Πθ|φ does not constrain choices of πθ|φ over different φ’s, Πθ|φ contains any selec-
tion of co(ISη). Having assumed that co(ISη(φ)) is a πφ|Y -integrable random closed set,
the set {Eη|Y (η) =Eφ|Y [Eη|φ(η)] : πθ|φ ∈Πθ|φ} agrees with EA

φ|Y [co(ISη)] by the definition
of the Aumann integral. Its convexity follows by the assumption that ISη(φ) is closed and
integrable and Theorem 1.26 of Molchanov (2005). Q.E.D.

PROOF OF PROPOSITION 1: Let Cr(ηc) denote the closed interval centered at ηc with
radius r. The event {ISη(φ) ⊂ Cr(ηc)} happens if and only if {d(ηc� ISη(φ)) ≤ r}. So,
rα(ηc) ≡ inf{r : πφ|Y ({φ : d(ηc� ISη(φ)) ≤ r}) ≥ α} is the radius of the smallest interval
centered at ηc that contains random sets ISη(φ) with a posterior probability of at least
α. Therefore, finding a minimizer of rα(ηc) in ηc is equivalent to searching for the center
of the smallest interval that contains ISη(φ) with posterior probability α. The attained
minimum of rα(ηc) is its radius. Q.E.D.

PROOF OF THEOREM 3: (i) Let ε > 0 be arbitrary. Since Assumption 2(i) implies that
ISη(·) is compact-valued in an open neighborhood of φ0, continuity of the identified set
correspondence at φ0 is equivalent to continuity of ISη(·) at φ0 in terms of the Hausdorff
metric (see, e.g., Proposition 5 in Chapter E of Ok (2007)). This implies that there exists
an open neighborhood G of φ0 such that dH(IS(φ)� IS(φ0)) < ε holds for all φ ∈ G.
Consider

πφ|YT

({
φ : dH

(
ISη(φ)� ISη(φ0)

)
> ε

})
= πφ|YT

({
φ : dH

(
ISη(φ)� ISη(φ0)

)
> ε

}∩Gc
)≤ πφ|YT

(
Gc
)
�

where the equality follows because {φ : dH(ISη(φ)� ISη(φ0)) > ε} ∩ G = ∅ by the con-
struction of G. The posterior consistency of φ yields limT→∞ πφ|YT (Gc)= 0, PY∞|φ0 -a.s.

(ii) Let s(co(ISη)�q) = supη∈co(ISη) η
′q, q ∈ Sk−1, be the support function of the closed

and convex set co(ISη), where Sk−1 is the unit sphere in R
k. Let ε > 0 be arbitrary

and let G be an open neighborhood of φ0 such that dH(ISη(φ)� ISη(φ0)) < ε holds for
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all φ ∈ G. Under Assumption 2(iii), EA
φ|YT [co(ISη(φ))] is bounded, so, using the sup-

port function, the Hausdorff distance between EA
φ|YT [co(ISη(φ))] and co(ISη(φ0)) can be

bounded above by

dH

(
EA

φ|YT

[
co
(
ISη(φ)

)]
� co

(
ISη(φ0)

))
= sup

q∈Sk−1

∣∣Eφ|YT

[
s
(
co
(
ISη(φ)

)
� q
)− s

(
co
(
ISη(φ0)

)
� q
)]∣∣

≤ sup
q∈Sk−1

∣∣Eφ|YT

[{
s
(
co
(
ISη(φ)

)
� q
)− s

(
co
(
ISη(φ0)

)
� q
)} · 1G(φ)

]∣∣
+ sup

q∈Sk−1

∣∣Eφ|YT

[{
s
(
co
(
ISη(φ)

)
� q
)− s

(
co
(
ISη(φ0)

)
� q
)} · 1Gc(φ)

]∣∣
≤Eφ|YT

[
dH

(
co
(
ISη(φ)

)
� co

(
ISη(φ0)

)) · 1G(φ)
]

+ sup
q∈Sk−1

{
Eφ|YT

[∣∣s(co
(
ISη(φ)

)
� q
)− s

(
co
(
ISη(φ0)

)
� q
)∣∣1+δ]} 1

1+δ
[
πφ|YT

(
Gc
)] δ

1+δ

≤ ε+ sup
q∈Sk−1

{
2δEφ|YT

[
s
(
co
(
ISη(φ)

)
� q
)1+δ + s

(
co
(
ISη(φ0)

)
� q
)1+δ]} 1

1+δ
[
πφ|YT

(
Gc
)] δ

1+δ

≤ ε+ 2
δ

1+δ

[
Eφ|YT

[
sup

η∈ISη(φ)
‖η‖1+δ

]
+ 2 sup

η∈ISη(φ0)

‖η‖1+δ
] 1

1+δ · [πφ|YT

(
Gc
)] δ

1+δ � (A.1)

where the first line uses the identity dH(D�D′)= supq∈Sk−1 |s(D�q)− s(D′� q)| for convex
and compact sets D, D′ ⊂ R

k and the identity s(EA
φ|YT [co(ISη(φ))]� q) =

Eφ|YT [s(co(ISη(φ))�q)], that is valid for a non-atomic posterior for φ (see, e.g., The-
orem 1.26 in Chapter 2 of Molchanov (2005)), the third line applies Hölder’s inequal-
ity to the term involving 1Gc(φ), the fourth line follows by noting that dH(co(ISη(φ))�
co(ISη(φ0))) < ε on G and |a − b|1+δ ≤ (|a| + |b|)1+δ ≤ 2δ(|a|1+δ + |b|1+δ), and the
final line follows since supq∈Sk−1 s(co(ISη(φ))�q)

1+δ = supη∈ISη(φ) ‖η‖1+δ. By Assump-
tions 2(i), 2(iii), and the posterior consistency of πφ|YT , we have supη∈ISη(φ0)

‖η‖1+δ < ∞,
lim supT→∞ Eφ|YT [supη∈ISη(φ) ‖η‖1+δ] < ∞, and limT→∞ πφ|YT (Gc) = 0, PY∞|φ0 -a.s. Hence,
the second term in (A.1) converges to zero PY∞|φ0 -a.s. Since ε is arbitrary, claim (ii) fol-
lows. Q.E.D.

PROOF OF THEOREM 4: Since Cα is convex by Assumption 3(ii), ISη(φ) ⊂ Cα holds if
and only if s(ISη(φ)�q) ≤ s(Cα�q) for all q ∈ Sk−1. Therefore, we have

α≤ πφ|YT

(
ISη(φ) ⊂ Cα

)= πφ|YT

(
s
(
ISη(φ)� ·

)≤ s(Cα� ·)
)= πφ|YT

(
Xφ|YT (·)≤ ĉT (·)

)
�

for all YT and T = 1�2� 
 
 
 . Similarly, the frequentist coverage probability of Cα for
ISη(φ0) can be expressed as PYT |φ0

(ISη(φ0) ⊂ Cα) = PYT |φ0
(XYT |φ0

(·) ≤ ĉT (·)). Let PX

be the probability law of the limiting stochastic process X(·) of Assumptions 4(i)
and 4(ii).

Our aim is to prove the following convergence claims: under Assumption 4,

(A)
∣∣πφ|YT

(
Xφ|YT (·)≤ ĉT (·)

)− PX

(
X(·)≤ ĉT (·)

)∣∣→ 0� as T → ∞�PY∞|φ0 -a.s., and

(B)
∣∣PYT |φ0

(
XYT |φ0

(·)≤ ĉT (·)
)− PX

(
X(·)≤ ĉT (·)

)∣∣→ 0
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in PY∞|φ0 -probability as T → ∞


Since πφ|YT (Xφ|YT (·)≤ ĉ(·))≥ α, convergence (A) implies lim infT→∞ PX(X(·)≤ ĉT (·))≥
α, PY∞|φ0 -a.s. Then, convergence (B) in turn implies our desired conclusion. If ĉT is cho-
sen to satisfy πφ|YT (Xφ|YT (·) ≤ ĉ(·)) = α, (A) and (B) imply limT→∞ PYT |φ0

(XYT |φ0
(·) ≤

ĉT (·))= α.
To show (A), note that any weakly converging sequence of stochastic processes in

C(Sk−1�R) is tight (see, e.g., Lemma 16.2 and Theorem 16.3 in Kallenberg (2001)).
Hence, Assumption 4(i) implies that for almost every sampling sequence of YT , there
exists a class of bounded functions F ⊂ C(Sk−1�R) such that F contains {ĉT (·)} for all
large T . Furthermore, we can constrain F to equicontinuous functions because the sup-
port functions for bounded sets are Lipshitz continuous.

For (A), it suffices to show

sup
c∈F

∣∣PXT

(
XT(·)≤ c(·))− PX

(
X(·)≤ c(·))∣∣→ 0� as T → ∞ (A.2)

for any weakly converging stochastic processes, XT �X , where PXT
denotes the proba-

bility law of XT . Suppose this claim does not hold. Then, there exists a subsequence T ′ of
T , a sequence of functions {cT ′(·) ∈F}, and ε > 0 such that∣∣PXT ′

(
XT ′(·)≤ cT ′(·))− PX

(
X(·)≤ cT ′(·))∣∣> ε (A.3)

holds for all T ′. By Assumption 4(iv) and the Arzelà–Ascoli theorem, F is relatively com-
pact. Hence, there exists a subsequence T ′′ of T ′ such that cT ′′ converges to c∗ ∈ C(Sk−1�R)
(in the supremum metric) as T ′′ → ∞. By Assumption 4(iii), PX(X(·) ≤ cT ′′(·)) →
PX(X(·) ≤ c∗(·)) as T ′′ → ∞. By the assumption that XT �X and the continuous map-
ping theorem, XT ′′ − cT ′′ �X − c∗. Hence, Assumption 4(iii) and the Portmanteau theo-
rem26 imply that PXT ′′ (XT ′′(·)− cT ′(·) ≤ 0) → PX(X(·)− c∗(·) ≤ 0) as T ′′ → ∞. We have
shown |PXT ′′ (XT ′′(·)≤ cT ′′(·))−PX(X(·)≤ cT ′′(·))| → 0 along T ′′, which contradicts (A.3),
so the convergence (A.2) holds.

Next, we show (B). By Assumption 4(iv), XYT |φ0
− ĉT � Z − c. Since Z is distributed

identically to X by Assumption 4(ii) and X is continuously distributed in the sense of As-
sumption 4(iii), the Portmanteau theorem gives convergence of PYT |φ0

(XYT |φ0
(·)≤ ĉT ′(·))

to PZ(Z(·) ≤ c(·)) = PX(X(·) ≤ c(·)). Furthermore, by Assumptions 4(iii) and 4(iv),
the continuous mapping theorem implies PX(X(·) ≤ ĉT (·)) →PY∞|φ0

PX(X(·) ≤ c(·)) as
T → ∞. Combining the two claims proves (B). Q.E.D.

The proof of Proposition 2 uses the next lemma.

LEMMA A.4: Let LevT and Lev be the α-level sets of JT (·) and J(·), respectively,

LevT = {
c ∈ R

2 : JT (c)≥ α
}
� Lev = {

c ∈ R
2 : J(c) ≥ α

}



Define a distance from point c ∈ R
2 to set F ⊂ R

2 by d(c�F) ≡ infc′∈F ‖c − c′‖, where ‖ · ‖
is the Euclidean distance. Under Assumption 2, (a) d(c�LevT ) → 0 in PYT |φ-probability as
T → ∞ for every c ∈ Lev, and (b) d(cT �Lev) → 0 in PYT |φ-probability as T → ∞ for every
{cT : T = 1�2� 
 
 
 } sequence of measurable selections of LevT .

26See, for example, Theorem 4.25 of Kallenberg (2001).
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PROOF OF LEMMA A.4: To prove (a), suppose that the conclusion is false. That is, there
exist a subsequence T ′, ε, δ > 0, and c = (c� cu) ∈ Lev such that PYT ′ |φ0

(d(c�LevT ′) > ε) >
δ for all T ′. The event d(c�LevT ′) > ε implies JT ′(c + ε

2 � cu + ε
2) < α since (c + ε

2 � cu + ε
2) /∈

LevT ′ . Therefore, it holds that

PYT ′ |φ0

(
JT ′

(
c + ε

2
� cu + ε

2

)
<α

)
> δ (A.4)

along T ′. Under Assumption 4(i), however, JT ′(c + ε
2 � cu + ε

2) − J(c + ε
2 � cu + ε

2) → 0,
PY∞|φ0 -a.s. This convergence combined with strict monotonicity of J(·) implies J(c +
ε
2 � cu + ε

2) > J(c) ≥ α. Hence, PYT ′ |φ0
(JT ′(c + ε

2 � cu + ε
2) > α) → 1 as T ′ → ∞, but this

contradicts (A.4).
To prove (b), suppose again that the conclusion is false, implying that there exist subse-

quence T ′, ε, δ > 0, and a sequence of (random) measurable selections cT = (c�T � cu�T )
′

from LevT such that PYT ′ |φ0
(d(cT ′�Lev) > ε) > δ for all T ′. Since d(cT ′�Lev) > ε implies

J(c�T ′ + ε
2 � cu�T ′ + ε

2) < α,

PYT ′ |φ0

(
J

(
c�T ′ + ε

2
� cu�T ′ + ε

2

)
<α

)
> δ (A.5)

holds along T ′. Note, however, that

J

(
c�T ′ + ε

2
� cu�T ′ + ε

2

)
=
[
J

(
c�T ′ + ε

2
� cu�T ′ + ε

2

)
− J(cT ′)

]
+ [

J(cT ′)− JT (cT ′)
]+ JT (cT ′)

>
[
J(cT ′)− JT ′(cT ′)

]+ α→ α

in PYT ′ |φ0
-probability, where the strict inequality follows from that J(·) is strictly mono-

tonic and JT (cT ′) ≥ α. The convergence in probability in the last line follows from the
continuity of J(·) and supc∈R2 |J(c) − JT ′(c)| → 0 for any sequence of distributions JT ′
converging weakly to a distribution with continuous CDF (e.g., Lemma 2.11 in van der
Vaart (1998)). This in turn implies PYT ′ |φ0

(J(c�T ′ + ε
2 � cu�T ′ + ε

2) ≥ α) → 1 as T ′ → ∞,
which contradicts (A.5). Q.E.D.

PROOF OF PROPOSITION 2: We first show that Assumption 5 implies Assumptions 4(i)–
4(iii). Set aT = √

T . When k = 1, the domain of the support function of ISη(φ) consists
of two points S0 = {−1�1}, and the stochastic processes considered in Assumptions 4(i)
and 4(ii) are reduced to bivariate random variables corresponding to the lower and upper
bounds of ISη(φ),

Xφ|YT = √
T

(
(φ)− (φ̂)

u(φ)− u(φ̂)

)
� XYT |φ0

= √
T

(
(φ0)− (φ̂)

u(φ0)− u(φ̂)

)



By the delta method, the asymptotic distribution of XYT |φ0
is XYT |φ0

� N (G′
φ0
ΣφGφ0),

where Gφ ≡ ( ∂
∂φ
(φ)� ∂u

∂φ
(φ)). For Xφ|YT , the mean value expansion at φ̂ leads to Xφ|YT =

G′
φ̃

· √T(φ − φ̂), where φ̃ = λφφ + (1 − λφ)φ̂ for some λφ ∈ [0�1]. Since φ̂ is assumed

to be strongly consistent to φ0 and Assumption 5(i) implies that φ̃ converges in πφ|YT -
probability to φ̂, PY∞|φ0 -a.s., Gφ̃ converges in πφ|YT -probability to Gφ0 , PY∞|φ0 -a.s. Com-
bining with (φ − φ̂)|YT �N (0�Σφ), PY∞|φ0 -a.s., we conclude Xφ|YT �N (G′

φ0
ΣφGφ0),
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PY∞|φ0 -a.s. Hence, Assumptions 4(i) and 4(ii) follow. Assumption 4(iii) clearly holds by
the properties of the bivariate normal distribution.

Next, we show that C∗
α satisfies Assumption 4(iv). We represent connected intervals by

C = [(φ̂)− c/
√
T�u(φ̂)+ cu/

√
T ], (c� cu) ∈R

2. Denote the posterior lower probability
of C as a function of c ≡ (c� cu)

′,

JT (c)≡ πη|YT (C)= πφ|YT

((−1 0
0 1

)
Xφ|YT ≤ c

)



Denoting the shortest robust credible region as C∗
α = [(φ̂)− ĉ�T /

√
T�u(φ̂)+ ĉu�T /

√
T ],

ĉT ≡ (ĉ�T � ĉu�T )
′ is obtained by ĉT ∈ arg minc{c + cu} subject to JT (c) ≥ α. Having shown

Assumption 4(i), let J(c) ≡ PX

((−1 0
0 1

)
X ≤ c

)
. Note that the weak convergence Xφ|YT �

X and continuity of J(·) imply JT (c) → J(c) as T → ∞, PY∞|φ0 -a.s., for any c ∈R2. Let
c∗ = (c∗

 � c
∗
u)

′ be a solution of the following minimization problem: c∗ ∈ arg minc{c + cu}
subject to J(c) ≥ α. Since {c : J(c)≥ α} is the upper level set of the bivariate normal CDF,
which is strictly convex and bounded from below, and the objective function is linear in c,
c∗ is unique.

We next prove ĉT→ c∗ in PYT |φ0
-probability as T → ∞. Let KT = arg min{cl + cu :

JT (c) ≥ α}, and suppose that ĉT → c∗ in PYT |φ0
-probability is false, that is, there exist

ε, δ > 0, and subsequence T ′ such that

PYT ′ |φ0

(∥∥ĉT ′ − c∗∥∥> ε
)
> δ (A.6)

holds for all T ′. Since ĉT ′ is a selection from LevT , Lemma A.4(b) ensures that there exists
a sequence of selections in Lev, c̃T = (c̃�T � c̃u�T )

′, such that ‖ĉT ′′ − c̃T ′ ‖ → 0 in PYT ′ |φ0
-

probability along T ′. Consequently, (A.6) implies that an analogous statement holds also
for c̃T ′ for all large T ′. Let f̂T = ĉ�T + ĉu�T , f̃T = c̃�T + c̃u�T , and f ∗ = c∗

 +c∗
u. By continuity of

the value function, the claim PYT ′ |φ0
(‖c̃T ′ − c∗‖ > ε) > δ for all large T ′ and c̃T ∈ Lev imply

existence of ξ > 0 such that PYT ′ |φ0
(f̃T ′ −f ∗ > ξ) > δ for all large T ′. Since ‖ĉT ′′ − c̃T ′‖ → 0

in PYT ′ |φ0
-probability implies |f̂T ′ − f̃T ′ | → 0 in PYT ′ |φ0

-probability, it also holds that

PYT ′ |φ0

(
f̂T ′ − f ∗ > ξ

)
> δ� (A.7)

for all large T ′.
In order to derive a contradiction, apply Lemma A.4(a) to construct a sequence

čT ′ = (č�T ′� ču�T ′) ∈ LevT such that ‖čT ′ − c∗‖ → 0 in PYT ′ |φ0
-probability. Then, we have

f ∗ −(č�T ′ + ču�T ′) → 0 in PYT ′ |φ0
-probability and, combined with (A.7), PYT ′ |φ0

(f̂T ′ −(č�T ′ +
ču�T ′) > ξ) > δ for all large T ′. This means that the value of the objective function eval-
uated at feasible point čT ′ ∈ LevT ′ is strictly smaller than the value evaluated at ĉT ′ with
a positive probability for all large T ′. This contradicts that ĉT is a minimizer in LevT for
all T . This completes the proof of Assumption 4(iv). Q.E.D.
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