
Bayesian Networks for Asset Management
and Financial Risk

Denis de Montigny

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
of

University College London.

Department of Computer Science
University College London

July 27, 2020



2

I, Denis de Montigny, confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, I confirm that this has been indicated in
the work.



Abstract

This thesis explores the use of Bayesian networks to develop “views” for a Black-Litterman
asset allocation model, and determines whether they can help in the creation of better
investment portfolios. Views represent an investor’s expectations of the future performance
of a company’s shares: an estimate of expected return, and a measure of the uncertainty of
this estimate. This thesis aims to automate the creation of views and to pioneer intelligent
portfolio construction as part of an algorithmic asset management process.

Portfolio construction in asset management is typically performed with the objective of
maximizing expected return and minimizing expected risk. One model which is used for
this purpose is the Black-Litterman model. This model requires an input from the portfolio
manager: an estimate of future returns for each asset included in the portfolio. This research
develops predictions of returns and an estimate of the uncertainty of this prediction using
Bayesian networks, as input for a Black-Litterman model. This hybrid approach is then
tested under trading conditions. This research also develops a scientific framework and
platform which allows for the rapid analysis of any algorithm for generating views as well
as any general portfolio construction model.

This research is important because the results contribute to a new generation of asset man-
agement by combining classical theories with computational intelligence, automating and
enhancing part of the process. The ability to rapidly include, analyze, and compare mod-
els developed by other researchers would greatly facilitate the communication of research
results with the asset management industry.

This research comprises three experiments:

1. A Benchmark Portfolio Using Traditional Algorithms. The first experiment estab-
lishes a benchmark, using a standard Black-Litterman approach, against which further
models will be compared. It also develops and validates the analysis platform. The
performance of this benchmark portfolio is found to be below the performance of the
index on which it is based for virtually all periods, on a risk adjusted basis. It is
concluded that it is interesting to investigate whether a Bayesian network may be used
to develop views which would enhance the performance of the portfolio.
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2. Generating Views Using a Bayesian Network. The second experiment investigates
the use of Bayesian networks for asset management as input to a Black-Litterman
model. Different approaches are compared using linear regression, autoregression,
GARCH, EGARCH and EGARCH-M. A limited set of factors is used, including the
price of oil, the spread between 10 year and 2 year treasuries, the spread between
BAA and AAA bonds, and a stress index developed by the Federal Reserve Bank of
St-Louis (FRED)1. The resulting return predictions are compared to realized returns.
While the main objectives of this experiment were met, further research is required in
order to build Bayesian networks which better predict returns as well as estimates of
the uncertainty of the predictions.

3. Algorithmic Asset Management System. This experiment extends the platform de-
veloped in the previous experiments by including more detailed analysis, and further
develops the Bayesian network of the second experiment to apply it to daily use in
a trading environment using out of sample data to validate results. This experiment
demonstrates how Bayesian networks may be used to generate views, constructs port-
folios, and analyses their performance. In support of the hypothesis that markets are
efficient, the portfolios constructed in this experiment did not significantly outperform
their benchmark. Nevertheless, as their performance was sometimes above and oth-
erwise not far below their benchmark, these results are encouraging. Further research
may yield better results. The robust scientific framework and platform finalized in
this experiment can be used in order to easily explore and compare other Bayesian
networks, as well as other machine learning models.

This research makes the following contributions to science:

1. A Benchmark Portfolio Using Traditional Algorithms. Developing a platform
providing back-testing, comparison, and basic analysis of algorithms to generate
views or other inputs for potentially any general portfolio construction model. This
platform may ultimately help improve communication of basic research in portfolio
modelling and analysis with the asset management industry by providing a robust and
reliable auditing tool.

2. Generating Views Using a Bayesian Network. Demonstrating that Bayesian net-
works, using a variety of models and including external factors, may be used to
effectively model risk and returns.

3. Algorithmic Asset Management System. Providing an analysis platform with full
flexibility to use different means of analysis, algorithms for generating views, portfolio
management models, and data sets. Demonstrating the robustness of an approach for
generating views based on Bayesian networks in actual trading conditions.

1The FRED provides historical data as part of its mandate to provide high-quality economic research
https://fred.stlouisfed.org/.

https://fred.stlouisfed.org/
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This research is expected to lead to a greater understanding of the application
of artificial intelligence in asset management, and to lead to a framework which
can be used to facilitate communication of academic research results with the
asset management industry.

Convincing members of the asset management industry that a new approach to asset man-
agement has value is a long process. Proving that the new approach would have worked
in the past using a backtest is necessary but not sufficient2. A backtest is necessary since,
if the approach would not have worked in the past, it is considered unlikely to work in the
future. Failure to use separate training and testing datasets, failure to account for the fact that
the dataset may exclude companies which have gone bankrupt, and unrealistic assumptions
regarding liquidity and market impact are some reasons a backtest is considered insufficient.
Even careful academic research is controversial. For example, while Fama and French
(1992) argue they have uncovered important results, Black (1993a) argues these results are
due to data mining and are unlikely to work in the future. Convincing asset managers of the
usefulness of a new approach requires, in practice, that the approach be shown towork on live
data over a three to five year period. In the current rapidly evolving environment, one may
suspect that, by the time an approach can be shown to work, the underlying technology has
already been widely adopted and the approach is no longer useful. A scientific framework
and platform which, itself, can be shown to be useful in the early discovery of valuable new
approaches would be of practical interest.

2See for example http://methodical.co.za/literature/ive-never-seen-bad-backtest/
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Chapter 1

Introduction

This chapter introduces the motivations and objectives for the research, briefly
describes the design, implementation, and testing of the experiments, lists its
contributions to science, and presents the structure of the thesis.

Portfolio construction in asset management is typically performed with the objective of
maximizing expected return and minimizing expected risk. One model which is used for
this purpose is the “Black-Litterman”model. This model requires an input from the portfolio
manager: an estimate of future returns for each asset included in the portfolio, as well as a
measure of the uncertainty of this estimate. These two numbers are commonly referred to as
“views”. This research investigates the application of Bayesian networks to develop views
for a Black-Litterman model.

This hybrid approach is then tested under trading conditions. This research also develops a
back-testing framework which allows for the rapid analysis of any algorithm for generating
views as well as any general portfolio construction model. The use of this scientific platform
aims to pioneer intelligent portfolio construction as part of an algorithmic asset management
process.

1.1 Research Motivation
One key objective of portfolio construction is to produce investment portfolios with the
highest expected return for an expected level of risk. In a mean-variance framework, risk
is quantified as variance of returns, and the objective is to maximize expected mean returns
for a given level of variance. The Black-Litterman model is one model which may be used
to construct mean-variance efficient portfolios which incorporate user-generated views.

This research is motivated by the fact that views for a Black-Litterman model are subjective,
expensive, and time-consuming to produce. They may also be sub-optimal. They are sub-
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jective because they depend on expert knowledge. They are expensive and time-consuming
to produce because they rely in part on fundamental research, analysis of events, and data.
They may be sub-optimal when asset managers are not experts in all aspects of the assets in
their portfolio.

This research investigates Bayesian networks to generate views because they can encode
expert knowledge and combine it with data, and they may provide an improvement over the
current, largely manual, process. Models based on Bayesian networks are also interesting to
investigate for the following reasons (Koller and Friedman, 2009; Lauritzen, 1996; Rebonato
and Denev, 2014). First, stress scenarios can be included in these models by specifying
the conditions under which tail events may be expected to happen, given current market
conditions. This may be interesting as the Black-Litterman model assumes returns are
normally distributed while there is considerable evidence that they are not (Cont, 2001;
Fama, 1965b; Mandelbrot, 1963). Second, the networks offer some level of transparency
because relations between factors may be established. This helps managers understand
the networks and communicate their conclusions. Third, because graphs are modular,
they can be extended with new factors without impacting the whole network. Fourth,
efficient computer algorithms to work with graphs are available. For example, methods of
approximate inference exist where exact inference is NP hard.

Probabilistic graphical models are an active area of research at University College London
including work on representation, inference, learning, applications to time series models,
and to mobile pedestrian localization (Barber, 2016; Barfuss et al., 2016; Bracegirdle, 2013;
Oikonomou-Filandras, 2016).

In applying Bayesian networks to develop views, this thesis implicitly investigates whether
these models can be used to generate new information which is not reflected in current
market prices, in possible contradiction to some forms of the efficient market hypothesis.

1.2 Research Objectives
The main objective of this research is to determine whether Bayesian networks may be used
to generate views that result in portfolios with improved risk/return characteristics.

This main objective may be divided as follows:

• Develop a classical Black-Littermanmodel which serves as a benchmark against which
to compare other portfolios.

• Develop a platform to analyze and compare portfolio allocation models. Test the
platform by including historical price data for an index and a simple equal-weighted
portfolio construction model.

• Enhance the classical Black-Litterman model with a Bayesian network and determine
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whether returns can be shown to improve.
• Enhance the Bayesian network using different algorithms and determine whether
returns can be shown to improve.

• Enhance the analysis platform into a comprehensive tool which is capable of using
different analysis methods. Integrate the results obtained in this thesis to provide a
flexible tool enabling the use of different equity selection, machine learning, portfolio
generation, and portfolio analysis models.

1.3 Research Methodology
A back-testing platform is developed and tested by including historical price data for the
selected equity index, the NASDAQ-100, as well as a simple portfolio model which allocates
equal weights to each equity in the index. Standard metrics are used to compare the
performance of portfolios created using these models including annual return, variance, and
measures such as the Sharpe ratio.

A standard unconstrained Black-Litterman model is implemented to develop a standard
model portfolio against which other portfolios developed using Bayesian networks are com-
pared.

This research is comprised of three experiments, based on the following data set :

1.3.1 Data Set
Work is based on the NASDAQ-100 (the Index), which represents the 100 largest companies
listed on the NASDAQ weighted by market capitalization, excluding companies in the
financial sector. It is the basis for one of the most actively traded exchange traded funds in
the world, the Powershares QQQ (the ETF). The Index was formed on January 31, 1985.

The Index is reviewed on a quarterly basis and rebalanced on an annual basis, based on
market values at end of October and shares outstanding at the end of November of each year.
Rebalancing is published beginning December.1

The list of stocks which comprised the Index on a quarterly or monthly basis for the period
from 01/01/1995 to 30/09/2017 was obtained from Siblis Research2. Historical price data
adjusted for stock splits and dividend payments for these stocks, as well as the value of
the Index itself, was initially obtained from Yahoo and Quandl3, and then from Interactive
Brokers. When this data is incomplete - for example, historical data is not always available
for companies which no longer exist today - it may be necessary to reduce the dataset by

1Further information on the index: http://www.nasdaq.com/markets/indices/nasdaq-100.
aspx, https://indexes.nasdaqomx.com/docs/NDX_Fundamentals.pdf, and https://en.wikipedia.org/
wiki/NASDAQ-100

2Last accessed 27.03.2018: http://siblisresearch.com/data/historical-components-nasdaq/
3Accessed via API or web scraping. https://finance.yahoo.com and https://www.quandl.com/

tools/api

http://www.nasdaq.com/markets/indices/nasdaq-100.aspx
http://www.nasdaq.com/markets/indices/nasdaq-100.aspx
https://en.wikipedia.org/wiki/NASDAQ-100
https://en.wikipedia.org/wiki/NASDAQ-100
http://siblisresearch.com/data/historical-components-nasdaq/
https://finance.yahoo.com
https://www.quandl.com/tools/api
https://www.quandl.com/tools/api
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excluding certain equities.

1.3.2 A Benchmark Portfolio Using Traditional Algorithms
The first experiment establishes a benchmark against which the performance of other models
are compared. This is useful for two reasons. First, although the annual return of the
benchmark portfolio could be expected to be close to the annual return of the ETF and the
Index, returns may not be identical for several reasons. For example, the ETF will pay
a number of fees, including management fees and brokerage fees. In addition, although
both the Black-Litterman portfolio and the Index contain the same securities, the allocation
calculated by the Black-Litterman algorithm is unlikely to correspond exactly to the one
used for the Index and the ETF. Second, the final experiment is based on a subset of the
Nasdaq-100 Index. The QQQ ETF is therefore not a suitable benchmark against which to
compare the performance of the portfolios constructed. For these reasons, explicitly creating
a benchmark portfolio ensures that differences in performance between the benchmark and
the portfolios generated using other models are attributable to these models.

The dataset does not include all stocks which comprise the Index. Returns of portfolios
constructed using this reduced dataset will not be comparable to the returns of the ETF or
the Index. This experiment constructs a benchmark using this reduced dataset. It therefore
provides an objective and consistent basis on which to compare the returns of models making
use of Bayesian networks, which also use this reduced dataset.

Given historical prices and the market capitalization of shares underlying the index, the
Black-Littermanmodel is used to extract equilibrium returns for these shares, based upon the
correlations of the changes in their prices, and their relative weights bymarket capitalization.
These equilibrium returns are notmodified by views, and are used directly in amean-variance
optimizer to produce the final benchmark portfolio weights.

The annual returns on the benchmark portfolio are compared to the returns on the Index
and the ETF. In principle, the returns on the benchmark portfolio are expected to exceed the
returns of the ETF by around 8 to 10 basis points, which correspond to the administration
and management fees of the fund.

In order to compare different portfolio constructionmodels, an analysis platform is developed
and tested. This platform enables rapid back-testing and analysis of models.

1.3.3 Generating Views Using a Bayesian Network
The second experiment investigates the use of Bayesian networks for asset management. The
Bayesian networks are constructed so as to be flexible, and integrate the scientific platform
being developed.

Bayesian networks are used to construct views, consisting of predicted equity returns as
well as a level of confidence in these predictions. Returns are assumed to be a function of
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a number of factors, including past returns and changes in oil prices, inflation, and interest
rates. The functional forms modelled include GARCH, EGARCH, and EGARCHM.

The results are compared to realized returns over the period.

1.3.4 Algorithmic Asset Management System
The third experiment integrates the first and second experiments to provide a flexible tool
enabling the use of different equity selection, machine learning, portfolio generation, and
portfolio analysis algorithms. It applies this tool in a trading environment, using daily market
data.

The data are a subset of the equities which are part of the Nasdaq-100 Index. The 10 equities
having returns with the highest correlation to the returns on the QQQ ETF are selected for
inclusion in the portfolios.

Factors which could be included in the analysis are discussed. As the factor data must be
available at time of trading, proxies are considered for some factors which have been used
in research. Principal Component Analysis is used to reduce the dimensions of the factor
space to reduce computation time.

Portfolios are created using the Black-Litterman model developed in Experiment 1 and the
Bayesian networks developed in Experiment 2 for views.

The performance of the portfolios is compared to the performance of a “No Views” bench-
mark portfolio and an “Equal Weights” portfolio.

1.4 Contributions to Science
This research makes the following contributions to science:

1. A Benchmark Portfolio Using Traditional Algorithms. This experiments develops
a platform providing back-testing, comparison, and basic analysis of algorithms to
generate views and potentially any general portfolio constructionmodel. This platform
may ultimately help improve communication of cutting edge research in portfolio
modelling and analysis with the asset management industry by providing a robust and
reliable auditing tool.

2. Generating Views Using a Bayesian Network. This experiment demonstrates how
Bayesian networks may be used to effectively model equity returns and uncertainty of
returns. It explores and compares Bayesian networks using GARCH, EGARCH, and
EGARCHM models more thoroughly than previous research.

3. Algorithmic Asset Management System. This experiment demonstrates how
Bayesian networks may be used to generate views to construct portfolios. It ap-
plies this approach with Bayesian networks in daily trading conditions, utilizes these
views to create portfolios, and demonstrates tools to compare the performance of
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these portfolios. In support of the hypothesis that markets are efficient, the portfolios
constructed in this experiment were below though close to their benchmark. This ex-
periment also finalizes an analysis platform with full flexibility to use different means
of analysis, algorithms for generating views, portfolio management models, and data
sets. It finally identifies further areas of research in portfolio construction.

1.5 Structure of the Thesis
The thesis is organized as follows.

• Chapter 2 - Background and Literature Review. This chapter presents background
information and research on the key concepts relevant to the research topic, including
algorithmic asset management, asset allocation models, and Bayesian networks.

• Chapter 3 - Experimental Data and Scientific Platform. This chapter describes the
data used in this thesis, and the design and testing of the analysis platform.

• Chapter 4 - A Benchmark Portfolio Using Traditional Algorithms. This chapter
presents the design, implementation, testing, and results of the first experiment which
establishes a benchmark portfolio against which other models will be compared.

• Chapter 5 - Generating Views Using a Bayesian Network. This chapter presents
the design, implementation, testing, and results of the second experiment which
investigates the use of probabilistic graphical models for asset management. Different
representations will be compared.

• Chapter 6 - Algorithmic Asset Management System. This chapter presents the design,
implementation, testing, and results of the third experiment which integrates the first
and second experiments to provide a flexible tool enabling the use of different equity
selection, machine learning, portfolio generation, and portfolio analysis algorithms.
This tool is used with out of sample daily market data.

• Chapter 7 - Conclusions and Future Research. The final chapter provides general
conclusions which can be drawn from the research performed, highlights key findings
and contributions to current knowledge, and indicates potential areas for further
research.
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Chapter 2

Background and Literature Review

This chapter presents background information and research on the key con-
cepts relevant to the research topic, including asset allocation models, risk,
algorithmic asset management, and Bayesian networks.

2.1 Context
Asset allocation is the process of constructing an investment portfolio of risky assets in such
a way as to meet an investor’s objectives. The goal is to determine the portfolio weights or
the percentage of the portfolio to invest in each asset.

In general, individual weights may be negative if short selling is allowed. The constraint
that all weights must be positive is often imposed in implementation.

The investor’s first objective is normally assumed to be tomaximize expected return, however
there may be other objectives, including for example socially responsible investing in which
certain companies are avoided on the basis that they do not meet an investor’s social,
environmental, governance, or similar requirements. These types of objectives are often
implemented as constraints by the selection of an appropriate benchmark against which the
performance of the portfolio is measured, and by the selection of an appropriate universe of
assets from which the portfolio is constructed.

Investors are normally assumed to be risk averse. They are assumed to prefer a higher
return, and to prefer lower risk. The level of an investor’s risk aversion may be influenced
by a variety of factors, including the investor’s age, liquidity requirements, and personality.
Different investors may therefore have different levels of risk aversion.

Risk is generally defined as risk of loss, and often measured using the variance of returns
on the asset over an appropriate time horizon. Other measures of risk exist, including
Value-at-Risk (VaR) and conditional VaR (CVaR, also called expected shortfall).
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2.2 Bayesian networks
2.2.1 Computational Methods
2.2.1.1 Introduction
This research aims to apply computational methods to improve the asset management pro-
cess. Computational methods can be broadly grouped into three fields:

• Computational Statistics
• Artificial Intelligence
• Complex Systems

Computational statistics refers to computationally intensive statistical methods which require
optimized algorithms to solve otherwise intractable problems. Examples include bootstrap
and Monte Carlo simulation. Markov Chain Monte Carlo is discussed in detail in Section
2.2.6.

Many definitions of artificial intelligence exist, including “the study of how to make comput-
ers do things at which, at the moment, people are better” (Rich and Knight, 2009). Subfields
in artificial intelligence include knowledge-based AI where an expert encodes knowledge in
a model; logic-based AI which uses logical rules for representing knowledge and solving
problems; evolutionary algorithms; and machine learning. Subfields of machine learning
include unsupervised learning where the goal is to learn patterns in data without additional
explicit information; supervised learning, to learn a function f∗ which approximates a true
function f where y = f(x), given a training set comprised of values for vectors x and y;
and reinforcement learning where the goal is to maximize total net rewards for actions taken.
Machine learning is further discussed in section 2.2.1.2.

Complex systems refers to “... an ensemble of many elements which are interacting in
a disordered way, resulting in robust organisation and memory” (Ladyman, Lambert, and
Wiesner, 2013). Examples of approaches to work with complex systems include agent-based
systems.

The use of computational methods in asset management is an active area of research.

2.2.1.2 Machine learning
This research is mostly concerned with supervised machine learning using data.

Somemachine learning algorithms such as logistic regression, clustering, linear discriminant
analysis, and support vector machines are used to classify an input space into a limited
number of classes. The output of these algorithms is in a sense discrete, while the output
desired in this research are values for expected returns and variances, which are assumed to
be continuous values. Many machine learning algorithms can be considered (Russell and
Norvig, 2010).
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Given input values for x and y linear regression learns the parameters a of a linear
regression function y = ax + ε by minimizing an error function. Error functions include
ordinary least squares, which selects those parameters a which minimize the function
S =

∑
i

(yi−aixi)2. The approach can be generalized by modifying the regression function

and the error function. The EGARCH Eqs. (2.38) and (2.39) can be considered a more
complex type of regression.

Artificial neural networks are collections of units which are loosely based on the concept
of biological neurons. Each unit, when receiving an input from predecessors, may process
it and send further inputs to other units connected to it. These networks may be used in both
supervised and unsupervised learning, and are extremely powerful as they may learn any
arbitrary function. One drawback of this class of algorithms is that they function as black
boxes: it is not clear how the results are obtained. Another is the potential for overfitting.

Random forests are a collection of uncorrelated decision trees. The individual decision
trees are created during the training phase. The outputs of the model are calculated based
on an average value of the results of each tree. An interesting aspect of this algorithm is its
resistance to overfitting, however they may be complex to analyze.

Probabilistic graphical models, including Markov and Bayesian networks, use a graph
to represent a distribution over a multi-dimensional space by encoding the conditional
dependence between random variables. Markov models are undirected, potentially cyclic,
graphs, while Bayesian Networks are directed acyclic graphs. The two models are closely
related and both can be used to represent a given distribution. Bayesian networks are
discussed in section 2.2.

2.2.1.3 Computational Methods in Asset Management
As discussed in Section 2.3, the general goal of asset management is the creation of an
optimal portfolio. Computational methods may be used in different ways to attain this
overall goal.

A number of researchers have attempted to address the concerns with mean-variance opti-
mization discussed in Section 2.3.3 by adding constraints of various types (Metaxiotis and
Liagkouras, 2012). The problem, however, then becomes difficult to solve using traditional
methods. Deng, Lin, and Lo (2012), Golmakani and Fazel (2011), Zhang et al. (2010),
and Zhu et al. (2011) propose particle swarm optimization algorithms to obtain the optimal
Mean-Variance portfolio when a broader range of constraints is imposed, including limiting
turnover or selecting portfolios with few active positions in order to reduce transaction costs.
Chen et al. (2014) explore the use of an artificial bee colony algorithm to select optimal
portfolios assuming returns are fuzzy numbers and in the presence of transaction costs.
Doerner et al. (2006) and Sefiane and Benbouzian (2013) apply ant colony algorithms to the
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optimization process. Metaxiotis and Liagkouras (2012) provide a review of a broad range
of approaches that have been explored.

These papers only seek to improve the optimization process, without incorporating additional
insights investors may have. This thesis investigates the use of computational methods for
this later process.

2.2.2 Bayesian Networks
A Bayesian network is a graphical model which represents the conditional independence of
random variables via a directed acyclic graph. The nodes of the graph are random variables
- such as inflation expectations, industrial production, or returns on assets. The variables are
also referred to as factors. The edges represent an assumption of conditional dependence
between the random variables - for example returns on assets may be conditionally dependent
on inflation expectations. An absence of an edge expresses an assumption of conditional
independence.

The use of a Bayesian network in this thesis is partly motivated by a need to quantify
the uncertainty of predictions. As discussed in Section 2.3.3, the Black-Litterman model
requires that the portfolio manager provide views for the assets in the portfolio. Views
are defined as a prediction of expected returns, and an estimate of the uncertainty of this
prediction. Bayesian network can provide results as random variables with a probability
distribution. The mean and variance of the distribution can be used as the prediction and
the measure of uncertainty.

An additional motivation for the use of Bayesian networks is the possibility to introduce
expert knowledge in the form of prior expectations.

Inference is the process of answering questions about the values of unobserved variables in
the graph, given data. As discussed later, exact inference in Bayesian networks is NP-hard.
Although even approximate inference is, in principle, NP-hard, approaches such as Markov
Chain Monte Carlo (MCMC) can often be used to perform approximate inference.

To describe a Bayesian network, two things are required: the topology of the graph, and
the relationship between the factors in the graph. If the factors take on discrete values,
conditional probability distributions may be used. Otherwise the functional form of the
relationship must be described and the parameters of this function become the variables of
interest, the values of which can be learned from data.

It is incorrect though sometimes intuitively useful to think of the graph in terms of causality:
changes in inflation expectations “cause” changes in asset returns. This is incorrect because a
Bayesian network can be createdwhich has an edge pointing in the other direction but that still
correctly represents the conditional independence between these variables. Nevertheless,
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R = f(I, P )

I P

(a) Naive Bayes: Returns as a function of
inflation and production

R = f(I, P )

I = f(P ) P

(b) Dependent factors: Consider inflation as
a function of production

Figure 2.1: AnaiveBayesian network, where all factors are assumed to be conditionally independent,
contrasted with a network with factors which are conditionally dependent. Including
conditional dependencies in a graph can be useful for scenario analysis.

particularly when interpreting the results of the Bayesian network, it is useful to construct
the network in a way which is plausible from the point of view of causality.

2.2.3 Motivation
Bayesian networksmay bewell suited to help address some criticisms of the Black-Litterman
model discussed in Section 2.3.3. First, equity returns are treated as random variables with
a probability distribution. Predictions can therefore be made and include both an expected
return and a measure of uncertainty such as variance. Second, distributions other than the
normal distribution may easily be used. Third, models which take into account observed
volatility clustering may be used to describe the relationship between factors in the Bayesian
network.

Standard models lack transparency, are difficult to challenge, and are computationally inef-
ficient due to the fact that the entire joint probability distribution between all factors must
be calculated. Bayesian networks are a natural solution to these issues. They are tractable,
intuitive, can be easily extended, and allow the incorporation of expert knowledge.

2.2.4 Model
In a naive Bayesian network1 as in Figure 2.1a the factors themselves are assumed to be
conditionally independent of each other. This simple model can be useful. Figure 2.1b
presents a slightly more complicated network where inflation is assumed to be condition-
ally dependent on industrial production. Where both production and inflation are always
observed, this conditional dependence is of no importance. However where either inflation
or production are unknown, or if a simulation of an increase in inflation or production is
desired, knowledge of the other factor can be useful. In either case, the parameters of the
functions relating different factors can be inferred from data.

1Notation for drawing the Bayesian networks is from (Dietz, 2010).
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2.2.5 Inference of GARCH parameters
Consider the case where returns follow a process defined as

rt = εt (2.1)

σ2
t =

n∑
i=1

θifi + θn+1σ
2
t−1 + θn+2ε

2
t−1 (2.2)

εt = σtεt, (2.3)

where the fi’s are exogenous factors and θ are paramters. This is a GARCH process with n
exogenous regressors. The vector θ is a random variable with distribution p(θ). The mean
and standard deviation of the components of θ are to be inferred from data x using Bayesian
inference. This question has been studied extensively (Anyfantaki and Demos, 2012, 2016;
Bauwens and Lubrano, 1998; Cuervo, Achcar, and Barossi-Filho, 2014; Takaishi, 2006,
2013; Vrontos, Dellaportas, and Politis, 2000).

Bayesian inference begins with Bayes’ rule. In this case this is

p(θ|x) =
p(x|θ)p(θ)

p(x)
, (2.4)

where p(θ|x), the posterior, is the value of the parameters θ given the data x. p(x|θ) is
called the likelihood, p(θ) the prior, and p(x) the marginal likelihood or the evidence. The
joint distribution of θ and x is

p(θ,x) = p(x|θ)p(θ) (2.5)

marginalising

p(x) =

∫
θ
p(x|θ)p(θ)dθ. (2.6)

In general, θ is multidimensional. In these cases, p(θ) is likely to be intractable, and the
calculation of this integral is NP hard (Cuervo, Achcar, and Barossi-Filho, 2014; Takaishi,
2013). Various approaches can be used to perform approximate inference, including Ex-
pectation Maximization, Variational Bayes, and Markov chain simulation (Markov Chain
Monte Carlo or MCMC) (Gelman et al., 2014). The approach used in this thesis is MCMC.

2.2.6 Markov Chain Monte Carlo
Markov Chain Monte Carlo creates a large number of samples to approximate a target
distribution p(θ|x). It does this by drawing candidate values for θ from an approximate
probability distribution, and accepting or rejecting the candidate based upon some measure
of fit with the target probability distribution in order to create a Markov chain, where a
Markov chain is defined as a sequence of random variables (a1, a2, ...an) where, for all
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i > 1, the distribution of ai only depends on ai−1. Inference can then be performed using
the Markov chain represented by the accepted samples.

It is typically not necessary to draw samples from the entire parameter space. Probability
mass is often concentrated in a smaller part of parameter space called the “typical set”
(Andrew, 2004). The objective is therefore to find the typical set and search it efficiently.
Several algorithms exist to do this, including random walk metropolis (Metropolis et al.,
1953), Gibbs sampling (Geman and Geman, 1984), Hamiltonian Monte Carlo (HMC)
(Duane et al., 1987; Neal, 2011), and the No U-Turn Sampler (NUTS) (Hoffman and
Gelman, 2014). These algorithms differ in the way they generate candidate values for θ and
in the way they accept or reject candidate solutions.

NUTS,which is an enhancement ofHMC, is used in this thesis. HMC introduces an auxiliary
variable r. In a fictitious Hamiltonian system, θ corresponds to the position of particles,
and r to their momentum. The auxiliary variables are drawn from a random distribution,
yielding the joint density

p(θ, r) ∝ exp

(
L(θ)− 1

2
r · r

)
, (2.7)

in which, assuming normally distributed returns, the log-likelihood function L(θ) is, apart
from a constant term, (Bollerslev (1986))

L(θ) = − 1

2N

N∑
n=1

(
log σ2

n +
ε2n
σ2
n

)
. (2.8)

HMC searches the typical set by providing a sequence ofM candidate values for θ. Given a
number of steps L, a step-size δ, setting the starting value of θ̃ to the present value of θm−1

and starting value of r̃ to the value of r0 drawn from the multivariate normal distribution,
the candidates are produced by running the leap-frog Algorithm (1) L times (Hoffman and
Gelman, 2014)

Algorithm 1 Leap-frog algorithm

1: procedure leap-frog(θ̃, r̃, δ)
2: r̃ ← r̃ + (δ/2)∇θL(θ̃)
3: θ̃ ← θ̃ + δr̃
4: r̃ ← r̃ + (δ/2)∇θL(θ̃),
5: return θ̃, r̃
6: end procedure

where ∇θ is the gradient with respect to θ. The algorithm produces a new proposed draw
comprised of a pair of vectors θ̃m+1 and r̃m+1. It accepts this draw with probability equal
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to

α = min

(
1,

exp(L(θ̃)− 1
2 r̃ · r̃)

exp(L(θm−1)− 1
2r0 · r0

)
. (2.9)

The algorithm continues untilM samples have been accepted.

2.2.7 Summary

This section presented Bayesian networks. It presented themotivation for the use of Bayesian
networks to generate views for a Black-Litterman model discussed in Section 2.3.3, and how
a GARCH model can be used in this approach. It discussed inference of the GARCH
parameters using Markov Chain Monte Carlo, and the No U-Turn Sampler used in this
thesis.

2.3 Asset Allocation Models
This section presents two asset allocation models: mean-variance optimization pioneered
by Harry Markowitz, and the Black-Litterman model proposed by Fischer Black and Robert
Litterman.

2.3.1 Mean-Variance Optimization

2.3.1.1 Model

Markowitz defines amean-variance optimal portfolio as a portfolio of investment securities
that presents both (Markowitz, 1952, 1955):

1. Maximum expected return for a given level of expected risk.
2. Minimum expected risk for a given level of expected return.

Consider a portfolio composed ofN risky assets. Let µ be the vector of the mean return, in
excess of the risk free rate, of each asset in the portfolio,w the vector of the weight of each
asset in the portfolio, and Σ the N ×N covariance matrix of asset returns.

The expected return µp and variance σ2
p of this portfolio are

µp = wᵀµ (2.10)

σ2
p = wᵀΣw. (2.11)
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For an investor with a required rate of return in excess of the risk free rate of µ0, this portfolio
is a mean-variance optimal portfolio if it meets the condition (Fabozzi, Focardi, and Kolm,
2006, p. 23)

minwᵀΣw, (2.12)

subject to the constraints

µ0 = wᵀµ (2.13)∑
i

wi = 1. (2.14)

Let Iᵀ be a 1 × N matrix of ones, [1, 1, . . . , 1]. Markowitz (1955) provides a detailed
solution to this optimization problem which can be expressed as (Fabozzi, Focardi, and
Kolm, 2006, p. 24)

w = g + hµ0 (2.15)

g =
1

ac− b2
Σ−1(cI − bµ) (2.16)

h =
1

ac− b2
Σ−1(aµ− bI) (2.17)

a = IᵀΣ−1I (2.18)

b = IᵀΣ−1µ (2.19)

c = µᵀΣ−1µ. (2.20)

The weightsw are the output of the mean-variance optimization. The covariance matrix Σ

can be estimated based upon the covariance of historical returns (Satchell and Scowcroft,
2000). Black and Litterman (1992) and He and Litterman (1999) explore various methods
of estimating µ, including using historical average returns, equal means, risk-adjusted equal
means, and an equilibrium approach discussed in Section 2.3.3. This thesis follows the later
equilibrium approach when implementing mean-variance optimization.

The set of portfolios with optimal weights w∗, meeting these conditions for all attainable
returns µ0, is called the efficient set. The optimal weights including the constraint wi > 0,
∀wi can be obtained in python by convex optimization using the cvxopt package.

2.3.1.2 Critique
This section presents a critique of the algorithm, focusing on issues in its application.

Given return and variance assumptions, the portfolios in the efficient set promise the best
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return for a given level of risk. They are the first potential benchmarks for portfolio managers
(Bevan and Winkelmann, 1998, p. 10). There may, however, be reasons to digress from the
proposed weights w∗ in constructing an investment portfolio.

Optimal portfolio weights are very sensitive to the return assumptions used (Black and
Litterman, 1992). A small increase in the expected returns of one asset was found in some
cases to set the weights of half the securities in the portfolio to zero, without impacting either
portfolio expected return nor variance (Best and Grauer, 1991). Michaud (1989) states that
this instability is in part due to ill-conditioning of the covariance matrix.

When no constraints are imposed, optimal weights often include significant short positions.
When constraints on short positions are imposed, the result is often allocations of zero
weights to most assets - which Black and Litterman (1992) and Firoozye and Blamont
(2003) call "corner solutions".

Factors such as liquidity or market capitalizations are not taken into consideration (Black
and Litterman, 1992; Michaud, 1989). Allocated weights may be so large that investors
would be acquiring a significant percentage of the outstanding shares of a company. It may
be impossible to perform these trades without impacting the transaction price.

Return and variance estimates must be given for all assets. However, the investor may not
be an expert on all asset classes, and may have a view only on a subset of all assets in the
portfolio. In this case the investor would provide a view where one is held, and default
assumptions for all other assets. The model does not allow the manager to distinguish
between strongly held views and simple assumptions. As it treats both equally, the result
may be a portfolio which does not reflect the investor’s views (Black and Litterman, 1992;
Firoozye and Blamont, 2003). Michaud (1989) notes that this problem extends to inherently
different levels of uncertainty related to different asset classes.

2.3.2 Enhancements to Mean-Variance Optimization

Many of the criticisms of the mean-variance optimization model are due to errors in the
estimation of inputs (Harris, Stoja, and Tan, 2017). Harris, Stoja, and Tan (2017) and
Lejeune (2011) survey a number of approaches which have been investigated to address this
issue, including Bayesian (Black and Litterman, 1992; Jorion, 1991), Robust Optimization
(Huang et al., 2010; Stinstra and Hertog, 2008; Tütüncü and Koenig, 2004), and Stochastic
Programming (Bonami and Lejeune, 2009). In this thesis, we focus on the Black-Litterman
model as it has become one of the most widely used approaches in practice, and it resolves
many of the issues discussed above.



2.3. ASSET ALLOCATION MODELS 31

2.3.3 The Black-Litterman Asset Allocation Model

2.3.3.1 Introduction

The Black-Litterman model (Black and Litterman, 1992) was proposed in order to ad-
dress some of the perceived problems with mean-variance optimization. Combining mean-
variance optimization with the capital asset pricing model (CAPM) (Lintner, 1965; Sharpe,
1964), it allows investors to express views only on certain assets, to express different levels
of uncertainty for each view, and integrates these views with default return and covariance
parameters for all assets.

This section presents the core elements of themodel which are necessary for implementation.

2.3.3.2 Model

According to Black and Litterman (Black, 1993b; Black and Litterman, 1992), using his-
torical data to calculate expected returns is unreliable. The Black-Litterman approach is
therefore based on theory. The formula for equilibrium excess returns, Π, follows from the
CAPM, using the market capitalizations of assets forw, the equilibrium market weights (He
and Litterman, 1999; Idzorek, 2007; Satchell and Scowcroft, 2000)

Π = δΣw, (2.21)

where δ is the investor’s risk aversion.

Assuming the expected return of the market portfolio E(r) is normally distributed with
mean µm and variance σ2

m so that

E(r) ∼ (µm, σ
2
m) (2.22)

then the risk aversion parameter δ is defined as (Satchell and Scowcroft, 2000, p. 139)

δ =
µm
σ2
m

. (2.23)

We then formulate a set of views on the market. Following Idzorek (2007), a view i is
expressed as a set of weights {pi1, · · · , pin}, an expected return qi for a portfolio with these
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weights, and a variance ωi. For a set of k views, we define

P =


p11 · · · p1n

... . . . ...
pk1 · · · pkn

 (2.24)

Q =


q1

...
qk

 (2.25)

Ω =



ω1 0 · · · 0 0

0 ω2 · · · 0 0
...

... . . . ...
...

0 0 · · · ωk−1 0

0 0 · · · 0 ωk


. (2.26)

The views are required to be independent. They are therefore uncorrelated, and thus Ω has
zero weights on all non-diagonal elements. Idzorek states that the ω′s may, by default, be
set to the elements of the k × 1 vector P (τΣ)P ᵀ, where τ is a measure of the uncertainty
of the prior covariance matrix, Σ. In this case

Ω =



τ(p1Σp
ᵀ
1) 0 · · · 0 0

0 τ(p2Σp
ᵀ
2) · · · 0 0

...
... . . . ...

...
0 0 · · · τ(pk−1Σp

ᵀ
k−1) 0

0 0 · · · 0 τ(pkΣp
ᵀ
k)


. (2.27)

The diagonal elements of Ω can also be set to the variance of the views if these are available.

In implementation, care must be taken to formulate equations in such as way as to take into
consideration that P and Ω may not be invertible.

Mean returns µ, the posterior varianceM , and the sample variance Σp combining market
equilibrium conditions and investor views are given by (Kolm and Ritter, 2017; Walters,
2008)

µ = Π + τΣP ᵀ[(P τΣP ᵀ) + Ω]−1[Q− PΠ] (2.28)

M = ((τΣ)−1 + P ᵀΩP )−1 (2.29)

Σp = Σ +M . (2.30)
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We can rearrange Eq. (2.21) to solve for portfolio weights given a set of returns Π and the
sample variance matrix Σp in the absence of constraints (He and Litterman, 1999; Mankert,
2006; Walters, 2008)

w∗ = Π(δΣ)−1. (2.31)

Inverting Σ may be avoided by rewriting (2.31) and solving for w∗ in

(δΣ)w∗ = Π. (2.32)

2.3.3.3 Critique
The Black-Litterman model assumes that the correlation matrix is stable over time (Harris,
Stoja, and Tan, 2017). For example, He and Litterman (1999) use 20 years of historical
data to estimate Σ in their implementation. The model also assumes that returns are
normally distributed (Harris, Stoja, and Tan, 2017). In fact, there is evidence that returns
are not normally distributed, return distributions may not be stable, ergodicity may not hold,
tails are not symmetrical, correlations increase when markets fall, and volatility exhibits
clustering (Cont, 2001; Rebonato and Denev, 2012). Finally the construction of the views
required by the model is itself not trivial.

The model has been extended using a variety of approaches, including some based on
machine learning and artificial intelligence.

2.3.4 Enhancements to the Black-Litterman Model
Fabozzi and Kolm (2007) and Kolm, Tütüncü, and Fabozzi (2014) survey recent enhance-
ments to the canonical Black-Litterman model. Some of these are the result of modern
advances in machine learning and computing power, as well as the availability of large
amounts of data, which nowmake it feasible to use more complex algorithms than have been
used in the past.

The canonical model assumes that returns are normally distributed, using variance as a
risk measure (Giacometti et al., 2007). As there is evidence that returns are not normally
distributed (Cont, 2001; Fama, 1965b; Mandelbrot, 1963), there has been interest in relaxing
these assumptions. One approach, for which fully commented code is available online, will
be discussed in more detail.

Meucci (2006a,b) developed a methodology to extend the Black-Litterman model to non-
normally distributedmarkets and views using copula-opinion pooling (COP). Their approach
also allows investors to express their views in different ways, for example using a uniform
distribution. The COP approach defines anN -dimensional variableM which can represent
any set of random variables for factors that can characterize the noise in market returns,
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including market returns. The distribution of this variable is the prior which is defined “by
means of sophisticated proprietary models” (Meucci, 2006a). Stress-testing of correlations
and non-linear views are not permitted by the model. While the model may be applicable
more broadly than the canonical model, no evidence is provided that the portfolios generated
using this approach result in higher returns than those generated by the canonical model.

Meucci (2008) proposes a “fully flexible” alternative model to incorporate general views
in non-normal markets using an entropy pooling approach. As in their previous work, the
approach begins with anN -dimensional vector of factorsX which drive the market. Views
are defined as generic functions, which are not necessarily linear. Weights are defined using
an optimization function with a cost function they call a “subjective index of satisfaction”
defined using a number of alternative approaches including Value at Risk, a utility function,
or a spectral risk measure, all subject to investment constraints. The posterior is determined
by minimizing the relative entropy between the market distribution with and without views

X ∼ fx (2.33)

w∗ ≡ argmax
w∈C

(S(w; fx)) (2.34)

V ≡ g(X) ∼ f̃v (2.35)

E(f̃x, fx) ≡
∫
f̃x(x)

(
ln f̃x(x) + ln fx(x)

)
dx (2.36)

f̃x ≡ argmin
(f∈V )

(E(f, fx)) , (2.37)

where f is a general probability density function, S is a “subjective index of satisfaction”,
w are asset weights, C are a set of constraints, V are views expressed as as functions of the
market X , f ∈ V represents all distributions consistent with the views. Except in special
cases, the solution to the minimization problem must be found numerically. While this
approach is again more broadly applicable than the canonical Black-Litterman model as it
can, in principle, address a portfolio including asset classes such as options, no empirical
evidence regarding the performance of portfolios generated using this approach is presented.

(Lejeune, 2011) derived a model using value at risk, again without empirically testing the
proposed model.

Giacometti et al. (2007) applied normal, t-student, and stable distributions for returns, and
value at risk, conditional value at risk, and dispersion-based risk measures to estimate
equilibrium returns. In all, ten models are used to produce return estimates. They compared
these return estimates to actual returns in the next period, and found that an α-stable return
distribution combinedwith dispersion-based riskmeasures provided the best forecast. While
they indicate that their forecasts were then used to produce a portfolio, they do not report
the performance of these portfolios. It is therefore unclear whether their improved forecasts
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resulted in improved performance.

The Black-Litterman model is the subject of considerable research on aspects beyond the
use of non-normal return distributions. For example, Mankert (2006) explores links with
behavioral finance; Beach and Orlov (2007) use GARCH-derived views as inputs to the
model; Cooper, Molyboga, and Molyboga (2016) integrate the model with exotic beta; and
Creamer (2015) bases views on news sentiment analysis and high-frequency data. Almgren
and Chriss (2006) replace expected returns with a sorting criteria. Qian and Gorman (2001)
extend Black-Litterman to expressing views on volatility and correlations. Zhou (2009)
includes information contained in the data-generating process. Meucci (2009) considers
how to modify the risk factors underlying the market, rather than just the returns themselves.
Kolm and Ritter (2017) generalize the Black-Litterman model and provide views on factor
risk premia. Avramov and Zhou (2010) reviews a number of recent studies, including some
that question the assumption that returns are independent and identically distributed and
others that explore regime change and stochastic volatility.

The objective of Beach and Orlov (2007) is similar to one of the objectives of this research
as they seek to generate a proxy for user views as input to a Black-Litterman model. Their
approach uses a EGARCH-M(1,1) model (Nelson (1991)) with regressors z1 and z2. They
describe their model as

yt = xᵀ
tυ + δσ̂2

t +ψz1t + εt (2.38)

log(σ2
t ) = ω + β log(σ2

t−1) + α

∣∣∣∣ εt−1

σt−1

∣∣∣∣+ γ
εt−1

σt−1
+ϕz2t, (2.39)

where yt is the asset return, xᵀ is a vector of historical returns, εt = σtηt, ηt ∼ N (0, 1),
σ̂t is the variance estimated using EGARCH, α, β, γ, δ, ω are real numbers, and υ,ϕ,ψ are
vectors.

The justification for the use of this model is that market volatility is higher when the market
falls then when it increases by the same amount. This asymmetry can be represented in
EGARCH, (Eq. (2.39)).

ARCH-M models the dependence between return and risk by including the conditional
variance in the mean equation (Eq. (2.38)).

Focusing on allocation to 20 countries, they selected regressors based on macroeconomic
factors such as the growth in industrial production, inflation, the return on the USD index
relative to major currencies, the difference in the yield on BAA and AAA bond indices, the
difference in the three-month Eurodollar yield and the three-month treasury bill yield, and
the percentage change in the world spot price of oil.
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Constructing portfolios using an iterative process which modified τ in Eq. (2.28) and (2.29)
to keep portfolio risk within certain limits, they report positive results for this "risk-reduced
portfolio".

For reasons discussed in Section 3.2.2, these positive results may be due in part to the use,
in back testing, of information which was not available at the time. If so, then their results
may be unreliable.

This body of research indicates the existing broad interest in improving the way the Black-
Litterman model is implemented. This model requires that the user define views for some
or all assets in the portfolio. Views are defined as a prediction of expected returns, and
an estimate of the uncertainty of this prediction. As discussed in Section 2.2, a Bayesian
network can provide results as random variables with a probability distribution. Implicit in
a probability distribution is the notion that the result is uncertain. Bayesian networks can
be used to quantify the uncertainty of their predictions, and are therefore well-suited to this
requirement. This thesis contributes to research on the use of the Black-Litterman model
and focuses on determining whether Bayesian networks may be useful in generating views
for this model. For this purpose, a canonical Black-Litterman model is used.

2.3.5 Asset Allocation and the Efficient Market Hypothesis
Fama (1965a) discussed the notion of efficient markets as one where securities prices fully
reflect all available information. Fama (1970) introduced different types ofmarket efficiency:
the strong form which assumes market prices reflect all available information, including
insider information, the semi-strong form where market prices are assumed to instantly
reflect the value of new publicly available information, and the weak form where market
prices are assumed to reflect all past publicly available information - allowing time for the
market to react to new information. Fama later provided the following summary :

“Market efficiency means that deviations from equilibrium expected returns are unpre-
dictable based on currently available information. But equilibrium expected returns can
vary through time in a predictable way. (Fama and Litterman, 2012)”

One can view the efficient market hypothesis (EMH) as presenting markets as a multi-agent
system comprised of intelligent agents acting with local rules, whose actions have as an
effect that all information is reflected in market prices. This is important, since if at least
the semi-strong form of the efficient market hypothesis holds, investors cannot forecast
future returns and one might believe they can do no better than to hold the market portfolio.
Nevertheless, Fama himself states “Of all the potential embarrassments to market efficiency,
momentum is the primary one. (Fama and Litterman, 2012)” suggesting that the hypothesis
may not hold in all cases. There are several reasons one may wish to attempt to forecast
future returns, in spite of evidence in support of the EMF.
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First, some have found evidence that the efficient market hypothesis does not hold in all
cases. Rosenberg, Reid, and Lanstein (1985) found that stocks with a low price/book ratio
tend to outperform the market.

Second, mean-variance optimization allows investors to find optimal portfolios. However,
it requires both an estimate of future returns and future covariances for all assets in the
portfolio.

Third, the weak form of the EMH allows for the possibility that markets react gradually
to new information. Computational intelligence and machine learning techniques may,
by aggregating large amounts of data quickly and efficiently, establish new relationships
between apparently unrelated data which, in effect, creates new information.

In this sense, this thesis contributes to the body of knowledge testing the efficient market
hypothesis.

2.3.6 Summary

This section discussed asset allocation models including mean-variance optimization and
the Black-Litterman asset allocation model. It presented various approaches which have
been explored to enhance the models, demonstrating the existing broad interest in improving
the way the Black-Litterman model is implemented.

The Black-Litterman model requires that the user provides views for each asset in the
portfolio. Views are defined as a prediction of expected returns, and an estimate of the
uncertainty of this prediction. As discussed in Section 2.2, Bayesian networks are well-
suited to this type of requirement. This thesis therefore contributes to existing research on
the use of the Black-Litterman model by exploring how Bayesian networks may be useful in
generating views for a Black-Litterman model.

This section also discussed the objectives of this thesis in the context of the efficient market
hypothesis.

2.4 Risk
Risk measurement, a related field, is also the subject of a number of research papers, and
may provide guidance on potential areas to investigate in algorithmic asset management.
Solutions which are currently being investigated in this area include building upon standard
approaches (Di Bernardino et al., 2015), agent-based models (LeBaron, 2006), and prob-
abilistic graphical models (Denev, 2011; Kwiatkowski and Rebonato, 2011; Rebonato and
Denev, 2014; Rebonato and Denev, 2012).
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2.5 Algorithmic Asset Management
Algorithmic asset management can be defined as the process of automating and enhancing
the entire asset management value chain, from suitability testing to portfolio construction
and client reporting. Algorithmic trading, defined as a method of automatically executing a
large trade in such a way as to limit cost, market impact, and risk, can be considered a part
of algorithmic asset management. This thesis focuses on one key part of the algorithmic
asset management process: intelligent portfolio construction.

2.5.1 Robo-advisors
Robo-advisors can be defined as "algorithms to automatically allocate, manage and optimize
clients’" portfolios.2 According to the investment magazine Barron’s, Betterment pioneered
robo-advisory in 2010. Vanguard PAS and Schwabb Intelligent Portfolios, which started in
2015, manage $83 billion and $19 billion repectively. Goldmans Sachs, JP Morgan, and
Morgan Stanley are all reported to be working on their own versions of robo-advisory3.

Currently, the process generally involves investing client portfolios in low-cost exchange
traded funds (ETF’s) in order to provide exposure to asset classes while ensuring diver-
sification. Robo-advisory services are therefore engaged at a relatively low level in the
value-adding process of asset management.

One example of a robo-advisory service is the one offered by KeyTrade Bank in Belgium
and Luxembourg4. This robo-advisor first generates a client risk profile using an online
questionnaire. Based upon the answers the clients provide, the client is assigned to one of 10
risk profiles, from "very defensive" (low risk) to "very aggressive" (high risk), and assigned
to one of 10 corresponding portfolios. Twelve ETF’s were selected to represent 12 asset
classes: Euro-Zone equities, US Equities, Japanese Equities, Emerging Market Equities,
Pacific ex-Japan Equities, Euro-Zone Government Bonds, Bonds issued by companies in the
Euro-Zone, High Yield Bonds, Emerging Market Bonds, Index-Linked Bonds, Industrial
Metals, Gold. Each of the 10 portfolios can be invested in any or all of these ETF’s, as well as
Cash. The portfolio weights are determined on a monthly basis, based upon the risk-aversion
coefficient associated with the risk profile, in a Black-Litterman framework which takes
into consideration the views of the "Investment Committee". This "Investment Committee"
oversees the investment process, and reviews the weights assigned to each portfolio to ensure
they are reasonable. Trades are then performed automatically, on all client accounts. The
process therefore combines minimal human intervention with a basic algorithm to perform
the asset management process. The main advantages of this robo-advisor are said to be
lower cost, and lower minimum requirement on assets under management, as an account can
be opened with assets as low as 15,000 EUR.

2https://en.wikipedia.org/wiki/Robo-advisor
3July 31, 2017 issue of Barron’s magazine available at https://www.barrons.com/magazine?archives=2017
4http://www.keytradebank.lu
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Chapter 3

Experimental Data and Scientific Platform

This chapter presents the experimental data used in the experiments, including
equity market data and macroeconomic data. It also describes the scientific
analysis platform developed, and discusses design choices that have beenmade.

3.1 Introduction
Two types of data are used in this research. Equity market data, including the prices of
securities, as well as the trading volume and market capitalization, are the first type. Macro-
economic data, including fundamental indicators of economic activity, inflation, interest
rates, and oil prices, are the second. Data for Experiments 1 and 2 covered the period from
31/12/1994 to 30/09/2017. Data for Experiment 3 covered the period from 31/7/2016 to
1/8/2019.

The development of a scientific analysis platform for research on asset management is
motivated first by the need to investigate different models at different steps of the asset
management process, second by the need to compare the results of the use of these different
models, and third by the desire to communicate these results to the investment community.
The scientific analysis platform is composed of a framework which breaks down the asset
management process into stages each of which can be enhanced by computational methods,
and an audit trail at each stage that provides insight into the decision making process at that
stage. The platform is described in Section 3.3.

3.2 Experimental Data
3.2.1 Equity Data
Work is based on theNASDAQ-100 (the Index), which represents the 1001 largest companies
listed on the NASDAQ weighted by market capitalization, excluding companies in the

1At 31/10/2017, the index is comprised of 107 companies.
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financial sector. It is the basis for one of the most actively traded exchange traded funds
(the ETF) in the world, the Powershares QQQ Trust, Series 1. This index was formed on
January 31, 1985, is reviewed on a quarterly basis, and rebalanced on an annual basis, based
on market values at end of October and shares outstanding at the end of November of each
year. Rebalancing is published beginning December. The ETF was launched on March 10,
1999. Monthly data starts on March 31, 1999.

One of the criteria for inclusion in the index is market liquidity: the average daily trading
volume of equities considered for inclusion must be at least 200,000 shares2. This provides
some assurance that the closing prices quoted by market data providers are based on recent
trades. Using only securities which are included in the Index therefore helps avoid erroneous
results based on securities prices which cannot, in practice, be realized.

Data regarding the composition of the index at each quarter from 31/03/1995 to 30/09/2017
as well as shares outstanding over the same period were obtained from Siblis Research3. A
total of 350 companies were part of the index at some point during this period. Of these,
daily price data is available for 211 companies. For the remaining 139, only quarterly price
data is available for the period from 31/03/1995 to 31/12/2004. Daily price data is available
thereafter. Details are provided in Appendix C. This research focuses on the 211 companies
for which daily price data is available for the entire period under investigation.

In the interest of understanding the data, Figure 3.1 presents the distribution of daily and
monthly historical returns of the QQQ ETF compared to a normal distribution with the same
mean and standard deviation as the daily or monthly series. Table 3.1 presents the mean,
standard deviation, excess kurtosis, and skew of the two series. The Jarque-Bera test statistic
is used to determine whether sample data come from a normal distribution. Comparing
this statistic to the χ2 distribution with two degrees of freedom, the assumption that either
the daily or monthly series of returns is normally distributed can be rejected. In particular
the positive kurtosis in both cases indicates the distribution is leptokurtic: the probability
of extreme gains and losses are higher than would be expected if returns were normally
distributed. This corresponds to observed “fat tails” in Figure 3.1. The positive skewness
of daily returns indicates the likelihood of extreme losses is correspondingly higher than the
likelihood of extreme gains. This agrees with market wisdom that gains are slow and losses
sudden. On the other hand, the negative skewness of monthly returns would indicate the
opposite, which is perhaps unexpected. This is not investigated further. The conclusion of
this analysis is that methods which assume the returns series is normally distributed should
be used with caution.

Jensen (2000) presents reasons historical data must be used with care. Of most interest to

2https://www.nasdaq.com/markets/indices/nasdaq-100.aspx retrieved 10/05/2018.
3www.siblisresearch.com
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(a) The distribution of daily returns compared to a normal distribution.
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Figure 3.1: The distribution of daily and monthly returns of the QQQ ETF compared to normal
distributions. Daily returns exhibit positive skew and significant excess kurtosis while
monthly returns actually exhibit slight negative skew over the period, and a relatively
lower positive kurtosis. Neither daily nor monthly returns appear normally distributed.

this research is survivorship bias (Garcia and Gould, 1993; Malkiel, 1995). In this case,
survivorship bias refers to the fact that the historical data used may exclude companies
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Data Daily Std Error Monthly Std Error

Mean 0.04% 0.025% 0.8% 0.47%
Standard Deviation 1.8% 7.1%
Skew 0.34 0.035 -0.38 0.16
Excess Kurtosis 7.01 0.071 1.89 0.32
Jarque-Bera Test 9,793 38
Sample Size 4,734 225
χ2(2) ~0 ~10−9

Table 3.1: Statistics for Daily and Monthly Returns QQQ ETF. Neither daily nor monthly returns
for this ETF are normally distributed.

which are no longer quoted on the NASDAQ today. One of reasons a company may no
longer be quoted is bankruptcy. Simulations using a dataset which is biased in this way
may be expected to produce higher returns than one which includes companies which are
now bankrupt. The QQQ ETF may have included these companies in the past, and therefore
the performance of portfolios constructed in this research cannot be directly compared to
the performance of this ETF. Since the benchmarks developed in the first experiment use
the same (potentially biased) dataset as the later experiments, the impact of this bias is
partly eliminated. There remains the risk that models which are developed work well with
healthy companies but would fail with the type of companies which go bankrupt. This risk
is addressed in the third experiment, working on live data.

The initial data included some errors. In some cases, the prices were provided as strings
rather than floating point numbers. All price and market capitalization data were reviewed
manually to remove these spurious errors.

All securities used in this research are quoted in US dollars (USD). This is therefore the
reference currency used.

The third experiment, working on daily data in actual trading conditions, will obtain prices
from InteractiveBrokers. This data was of a higher quality than the data from Syblis
research. Although problems linked to missing data due to market closures existed, all data
was correctly represented and required no manual processing.

All market data being publicly available, no data privacy issues exist.

3.2.2 Macroeconomic Data
Macroeconomic time series data was obtained from the FRED database of the Federal
Reserve Bank of St-Louis 4. This data is also publicly available so that no data privacy
issues exist.

4https://fred.stlouisfed.org
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Data Daily Weekly Monthly

Industrial Production X
Consumer Price Index X
Premium X
Term X
Oil X
Stress X

Table 3.2: This table presents the frequency at which factor data was available. Although Consumer
Price Index and Industrial Production data are available on a monthly basis, there is a
delay of several weeks after the end of the month to which they relate, before they become
available. All other data is either available on the FRED database without delay, or
represents data which is widely available in real time.

Other data sources were considered, including the data set used in (Beach and Orlov,
2007), the IFC Database which is now the Global Financial Development Database of the
World Bank. However, as at 10/10/2018, this database was last been updated in July 2018.
Information is therefore clearly not updated sufficiently frequently to be used for trading. In
addition, back testing on the assumption this information was available at the time of trading
will be unreliable at best as it assumes access to information which was not available to
other market participants.

The following data series were obtained from FRED:

• Industrial Production: Industrial Production Index (INDPRO5)
• CPI: Consumer Price Index for All Urban Consumers: All Items Less Food and
Energy (CPILFESL)

• Premium: Difference between
Moody’s Seasoned BAA Corporate Bond Yield (BAA, Daily: DBAA)
Moody’s Seasoned AAA Corporate Bond Yield (AAA, Daily: DAAA)

• Term: 10-Year Treasury Constant Maturity Minus 2-Year Treasury Constant Maturity
(T10Y2Y)

• Oil: Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Oklahoma
(DCOILWTICO)

• Financial Stress: St. Louis Fed Financial Stress Index (STLFSI)

These data series were selected based on Beach and Orlov (2007).

The frequency of the data is presented in Table 3.2.

It should be emphasized that Industrial Production and Consumer Price Index data is avail-
able with considerable delay. CPI data for July 2018, for example, was available on Septem-

5The code in parenthesis is the FRED identifier for the series.
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Description Production Inflation Premium Term Oil

Mean 0.13% 0.18% 0.977 1.1909 0.81%
Maximum 2.05% 1.38% 3.430 2.8400 35.34%
Minimum -4.31% -1.77% 0.530 -0.4700 -32.37%
SD 0.65% 0.28% 0.435 0.9113 9.22%

Table 3.3: Macroeconomic factors, summary statistics.

ber 13 2018. This data is subject to embargo before that date, in order not to give unfair
advantage to any market participants. Use of this data in back testing must be done with
care, so that data is not used before it would have become available.

Other data such as corporate bond yields, treasury rates, and oil prices are included in the
Fred database with some delay, however, as these prices are widely available on a near real
time basis, there is less of an issue with their use.

In some cases, manual preprocessing of this data was required. For example, data for
T10Y2Y on the 30/03/2018, the last business day in March of that year, is blank. There
is, however, equity data on that day. In similar cases, data was replaced by data from the
previous day.

Monthly changes in inflation were calculated based on the CPI. Monthly changes in Pro-
duction were calculated based on the Industrial Production Index. The price of oil was not
adjusted for inflation.

3.2.3 ETF’s as Predictors of the Performance of Economic Factors

It would be useful to use equity prices to predict the performance of economic factors since,
contrary to economic data, equity prices are easily available on a daily or real time basis.
Breeden (1979) showed how portfolios can be used to replace state variables in an asset
pricing model. Huberman, Kandel, and Stambaugh (1987) investigates the characteristics
of portfolios with returns which mimick the performance of factors. Andersson et al. (2011)
and Lamont (2001) report there is some evidence that equity portfolios can be predictors
of economic factors such as consumption, inflation, and GDP. Melas, Suryanarayanan, and
Cavaglia (2010) discusses practical issues such as trading volume.

Using ETF’s which focus on companies in defined economic sectors may be one way of
summarizing the market’s view of the future performance of economic factors relevant to
that sector. The future performance of key economic factors relevant to sectors such as raw
materials may be relevant to the future returns of companies which depend indirectly on
these sectors - for example because they are suppliers to companies in that sector.
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3.2.4 Risk-Free Rate
The “risk-free” interest rate is sometimes required in certain algorithms. This rate is return
available on a theoretical security which is free of default risk. A proxy for the risk-free rate
for the US Dollar is normally the return on a security issued by the US Government, of an
appropriate maturity (Grabowski, Nunes, and Harrington, 2014). As much of the focus of
this research is on a one-month period between rebalancing, a logical risk-free rate would
be the annualized 1-month Treasury constant maturity rate6, however data on this series is
only available from the FRED database as of 31.07.2001.

There are other interest rates which could be used to replace the 1-month treasury rate,
including the 3-Month Treasury Constant Maturity Rate7, for which data is available from
the FRED database as of 04.01.1982, and the effective federal funds rate, which is a weighted
average of overnight interest rates negotiated between financial institutions for lending
balances held at a Federal Reserve Bank8. Data for this rate is readily available as of at least
1955.

Figure 3.2 compares the federal funds rate with the two treasury rates for the period from
31.07.2001. Over the period for which data is available for all series, both the federal funds
and the 3-month treasury rate are close to the 1-month rate, although the federal funds rate
exhibits more volatility than either the 1-month or 3-month rates. The choice of reference
risk-free rate could be expected to impact results. Visually, the 1-month and 3-month rates
may appear to behave most similarly. In fact, the correlation between the federal funds
rate and the 1-month treasury rate is .98 over this period, while the correlation between the
3-month and the 1-month treasury rates is .99. However, correlations between changes in
the federal funds rate and the 1-month treasury rate is much lower than between changes
in the 3-month and 1-month treasury rates: .08 versus .67. As the change in interest rates
could be expected to be relevant to changes in equity prices, for the purposes of Experiment
1 and 2, the risk-free rate is therefore taken to be the annualized 3-Month Treasury Constant
Maturity Rate from the FRED database. A graph of the entire series is presented in Figure
3.3. The federal funds rate will be used for Experiment 3, as this experiment focuses on
daily returns.

3.3 Scientific Analysis Platform
This research explores the use of Bayesian networks to develop views for a Black-Litterman
asset allocation model, and determine whether they can help in the creation of better in-
vestment portfolios. It involves the development and comparison of a number of asset
management models. In time, the number of models may be increased and may include

6https://fred.stlouisfed.org/series/DGS1MO
7https://fred.stlouisfed.org/series/DGS3MO
8https://fred.stlouisfed.org/series/FEDFUNDS
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Figure 3.2: Federal funds, 1-month, and 3-month Treasury rates are compared. The federal funds
rate exhibits more volatility than either 1-month or 3-month Treasury rates. The choice
of reference risk-free rate could be expected to impact results. The 3-month Treasury
rate is the reference rate for Experiments 1 and 2. The federal funds rate is the reference
rate for Experiment 3.

some not specifically designed with this research in mind. It is therefore desirable to create
a platform to facilitate the processes of model development, adaptation, and comparison.

Ultimately, this platform may be of interest to final users outside of academia. Where
possible, the needs of these users should be anticipated in designing the platform in order to
facilitate further enhancements to be brought at a later stage.

It may, at some point, be desirable to include two additional layers in the final platform:
one addressing communication with users in the form of an intelligent conversational agent,
another providing a live audit trail through a decentralized ledger of all transactions proposed
by the various models over time.

3.3.1 Motivation
The development of the scientific analysis platform for research on asset management is
motivated by the need to first investigate the use of different models at each stage of the asset
management process, second compare the results of these models, and third communicate
these results to third parties.

3.3.2 Design Objectives
One objective of the platform is to help determine whether asset management models based
on Bayesian networks and a Black-Litterman asset allocation model are better, in some
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Figure 3.3: Risk-Free Rate: 3-month Treasury constant maturity rate. This is the reference rate for
Experiments 1 and 2. Although the 3-month rate has been relatively low and stable in
the past few years, this has not always been the case.

sense, than a set of benchmark portfolios.

In order to accomplish this, the platform should be designed to facilitate asset management
model creation as well as model comparison. For example, it should be possible to use
different asset models or comparison engines with minimal impact on the other parts of the
system.

The platform should be designed to further the objectives of both this research and future
final users if their needs can be anticipated. In particular, as one objective of this research
is the comparison of model performance, it should help ensure that differences in model
performance are due to the model decisions rather than external factors.

An overview of the proposed scientific platform is presented in Figure 3.4. It should be
mentioned that other approaches to asset management exist. This approach was selected and
this platform was designed in order to permit the use of different machine learning models
at critical points in an asset management process.

From the point of view of data flows, the platform begins with the universe of equities and
factors. Some means of selecting a subset of all available equities and all possible factors
must be defined. This is termed “dimensionality reduction”. The data is fed to a model to
predict the risk and return of individual investments. The predictions are fed into a portfolio
constructionmodel. The performance of the portfolios are analysed and reports are prepared.
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Figure 3.4: This is an overview of the scientific platform. A more detailed schema of one possible
implementation is given in Figure 6.1.

At each step, an appropriate audit trail is automatically created. The audit trail ensures that
the decisions taken by the model in that step can be understood and explained (Samek et al.,
2019).

Each step of the process can be replaced by another model. For example, while this research
uses Bayesian networks for return prediction, other models can be used for this step without
modifying the rest of the platform.

At this stage, the scientific analysis platform is general. One possible implementation is
presented in Section 6.5.

3.3.2.1 Data acquisition
Allowing models the freedom to select any existing security, in any market, may have certain
advantages. Some models may be very well adapted to building portfolios of emerging
market debt securities. Other models may be better at working with developed markets.
If the first portfolio outperforms the second, one would need to know if the first model is
better than the second, or whether emerging market debt, in general, outperforms developed
markets. One would need to compare both models and markets.

On the other hand, it may be desirable to constrain the universe of securities that models
may include in their portfolio. If all asset management models build their portfolio from
the same list of securities, one source of uncertainty is removed which helps ensure that
differences in performance are not due to external factors. In addition, as this research
focuses on securities which were part of the NASDAQ 100, it is necessary that models be
able to work with these securities. Finally, in practice, the final user may wish to select the
securities or asset classes from which models build their portfolios. Users may, for example,
wish to invest only in socially responsible companies. Models must be able to accept this
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constraint.

For similar reasons, models must be constructed to accept securities market data. The final
user may have a preferred data source including for example Bloomberg, Refinitiv (formerly
Thomson Reuters), Interactive Brokers, Telekurs, FactSet, and Quandl. Model performance
may not be “improved” simply by using more favourable market prices. However, some
models may use additional data. For example, some may use news or macro-economic
indicators. Models must be permitted to obtain data - other than market data - on their own,
as otherwise crucial flexibility may be lost.

Designing the market data acquisition stage to be separate from the asset management
models, while allowing models to obtain any additional data they require, helps meet these
objectives.

In practice, market data validation would need to be performed. First, market data should be
valid in the obvious sense of being positive floating point numbers, perhaps in an acceptable
range. In addition, all securities used must have sufficient trading volume to ensure that
trades could actually be performed at the given market prices. For the purpose of this
research, the data used have been verified manually (Chapter 3).

3.3.2.2 Model creation

In a mean-variance framework as used throughout this research, portfolio construction has
two parts: estimating future risk and return, and creating an optimized portfolio using these
estimated parameters. In this research, the portfolio is created using a Black-Litterman
algorithm, as the focus is on comparing different models for parameter estimation. At a
later stage, other approaches to portfolio construction could be considered, using a broader
array of parameters, and portfolio construction could ultimately be separate from parameter
estimation.

Some models will be developed specifically for this platform. These models must have a
common interface. Other models may be provided, for example by the final user. It must be
simple to include (or exclude) a new model from the comparison.

3.3.2.3 Model comparison

The comparison of highly dynamic models is a complex field of research. Industry standard
mean-variance metrics are implemented in this research, however many others may be
envisaged. For example, other metrics may be meaningful if it is desired that risk should be
measured taking skew or kurtosis into consideration. It would be very interesting to be able,
at a later stage, to implement more advanced comparison engines. The comparison stage
must therefore be separate from the other stages in order to facilitate its replacement.
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3.3.2.4 User interface
At a later stage, the results of this research would be provided in the form of software as a
service (SAAS). In preparation for this, all results and interactions with users are through a
web interface.

3.3.3 Design Overview
The platform will be organized around a mediator design pattern (Gamma et al., 1995). In
this design pattern, only one class has direct knowledge of the interface of other classes.
These other classes may therefore easily be modified and work independently each other.
This approach helps ensure loose coupling and tight cohesion.

Figure 3.5: The scientific platform was developed in such a way as to allow the independent devel-
opment of the component parts. This approach helps ensure loose coupling and tight
cohesion.

The main classes presented in Figure 3.5 are:

• Techne: Techne is the mediator class. All interactions with the web interface, data,
and model updates are through this class.

• AbstractDataModel: Defines the interface to download data.
• Strategy: Defines the specifics of the portfolio construction process, including the
asset management model:

ParameterEstimation: e.g. a Bayesian network for risk and return estimation
PortfolioConstruction: a Black-Litterman algorithm, where relevant

• StrategyManager: Manages one Strategy object. Defines the structure of backtesting.
Stores the result in a database.

• PortfolioManager: Manages a set of Strategy objects.
• Analysis: Defines metrics to compare asset management models. Accesses a database
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for the results of backtesting previously stored by the StrategyManager.
• View: Django web interface.

When developing parameter estimation models, they may be accessed directly by the medi-
ator for testing purposes. This is done without the creation of a Strategy object which uses
the model. This practical dependency of the mediator class is not discussed further and is
not included in Figure 3.5.

3.3.4 Tools
Practical decisions regarding tools to use when developing a SAAS solution include choice
of the programming language, web framework, and database.

• Programming language
Python 39 was selected as the programming language as many high quality, optimized
python packages are available to handle large data sets, including pandas10.

• Web framework
A web framework is useful as it automatically handles many aspects of web de-
velopment, such as web page templates, database access, forms, email, and user
authentication. It also helps avoid security issues such as SQL injection, cross-site
scripting, forgery and clickjacking. From the number of web frameworks which can be
used with python, Django11 was selected based on experience with this package. One
useful aspect of Django is that it naturally implements a type of MVA by separating
web page templates from the core business logic.

• Database
A database management system may be used for data storage to deal with concurrent
data access, eliminate redundancy, and help ensure data security. Possible choices
include SQLite, MySQL, and PostgreSQL. Django recommends either MySQL or
PostgreSQL12.
For practical reasons, the website is hosted by DreamHost. The simplest database
solution on DreamHost is MySQL.
In many cases, the advantages of a database were not required. Rather than converting
database objects to pandas DataFrames (and vice versa), a simpler solution was often
saving the pandas DataFrame as a pickle13 object file.

3.3.5 Testing
Django supports creation of an automated test suite using an integrated unittest module.
Tests may be written for all stages of the web-based application, including the HTTP-level

9https://www.python.org, accessed 10/05/2018
10https://pandas.pydata.org, accessed 10/05/2018
11https://www.djangoproject.com, accessed 10/05/2018
12https://docs.djangoproject.com/en/2.0/topics/migrations/
13https://docs.python.org/3/library/pickle.html, accessed 10/05/2018
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requests.

3.3.6 Data Visualization
This research makes use of large data sets, elaborate data flows, and complex algorithms.
These may contain errors which are susceptible to being caught by data validation and
automated testing procedures, if these are designed to catch them. However, some of these
errors may not be easily identifiable a priori. For example, the algorithm may call for
trading a security which is not liquid, or holding a position in a security which exceeds a
reasonable percentage of the outstanding equity of a company. Visualization of the data
sets and independent reproduction of key metrics would be useful in identifying new or
unexpected types of errors. It could also be useful in prototyping new metrics.

This additional layer of testing can be performed by using pandas and xlsxwriter14 to output
information to Microsoft Excel files. This technique can be used to create a full audit trail
of program logic and relevant data.

Many of the charts and tables presented in this research have been produced using this
technique. For example, a chart or table was defined once, for one Strategy, and was
prepared automatically for all other Strategies.

Ultimately, this process could be adapted to provide final users with Excel files containing
a level of detail appropriate to their needs.

3.3.7 Summary
This section has presented the scientific analysis platform developed as part of this research.
It has considered themotivation for the development of the platform and the objectives which
drive its design. The stages of data acquisition, model creation, and model comparison have
been considered, as well as the requirement that each stage of the framework is loosely
coupled in order to facilitate the use of different computational models.

14http://xlsxwriter.readthedocs.io, accessed 10/05/2018
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Chapter 4

A Benchmark Portfolio Using Traditional
Algorithms

This experiment establishes benchmarks against which the performance of
other models are compared. The benchmarks are formed from a subset of
the shares underlying the NASDAQ-100 equity index. The selected portfolios
will be formed using two strategies: one which allocates equal weights to
each security in the portfolio, and a canonical Black-Litterman model without
additional information in the form of views on the performance of individual
assets. The performance of these portfolios will be analyzed and compared
to the performance of the QQQ Exchange Traded Fund which replicates the
performance of the NASDAQ-100 equity index.

4.1 Introduction
This research explores the use of Bayesian networks to develop views for a Black-Litterman
asset allocationmodel, to determinewhether they can help in the creation of better investment
portfolios. The objectives of this experiment are to develop benchmarks against which
models implementing Bayesian networks can be compared, and to begin defining what is
meant by “better” portfolios. These objectives are met in three steps. The first involves
the creation of a simple portfolio based on buying and holding the QQQ ETF. The second
involves the creation of a simple model which allocates an equal percentage of the total
portfolio value to each security in the portfolio. The third step involves the implementation
of a canonical Black-Litterman model. Each step is useful in building and validating the
securities data set which will be used throughout this research, and implements a first
version of the scientific platform, including backtesting and comparison metrics, which will
be enhanced in later experiments.
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4.2 Aims and Objectives
This experiment is divided into three parts. The first uses the QQQ ETF. The other two
create portfolios which include the 211 companies for which daily data is available for the
entire period under investigation (see Section 3.2.1).

First, a simple portfolio based on buying and holding the QQQ ETF is developed and tested.
This ETF is comprised of the securities of interest to this research, it is low cost, publicly
traded, and easily accessible. It therefore sets an objective benchmark of the risk and return
profile for any portfolio invested in this asset class. However, it is not sufficient in this case
as the data set used in this research may be biased (see Section 3.2.1).

Second, a portfolio based on allocating an equal weight to each security in the portfolio is
developed and tested. In an equal-weighted portfolio, the same USD amount is invested in
each security in the portfolio, at the beginning of each month. DeMiguel, Garlappi, and
Uppal (2009) found that equal-weighted portfolios outperformed value-weighted portfolios
in which the portfolio weight of a security is calculated based on it’s market capitalization.
This portfolio may therefore be a challenging benchmark. The backtesting procedure is
developed and tested. The returns of this portfolio are compared to the first benchmark.

Third, a portfolio based on a canonical Black-Litterman algorithm, in the absence of views
is developed and tested. If the implementation functions correctly, it should, in the absence
of views, return portfolio weights which are similar to market weights: weights based on
market capitalization. Due to errors introduced in particular by the matrix inversion process,
the two sets of weights are not expected to be exactly the same, however they should not
be systematically very different. This portfolio would then behave as a value-weighted
portfolio.

4.3 Implementation
4.3.1 General
In this experiment, portfolios are rebalanced on a monthly basis, at the end of each month,
starting from 1995. Except for the first and final year, 12 portfolios are constructed, per year.
Metrics are based on the value of these monthly portfolios.

In practice, to ensure efficient execution, equity positions normally should and sometimes
must be multiples of 100 shares. This limitation is ignored.

Transaction fees are charged on both purchases and sales of securities. Transaction fees are
ignored for all portfolios, including the benchmark.

4.3.2 QQQ ETF
Developing and testing theQQQETF benchmark involves implementing part of the scientific
platform including download of data, data validation, testing, export to Microsoft Excel, and
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presentation via a web-based interface. It also involves developing the backtesting procedure
and basic return comparison metrics.

Data for the QQQ ETF are used in two ways. First, comparison metrics are run on the
simple historical price series. Second, a Strategy (see Figure 3.5) is implemented to create
a portfolio containing only units of the QQQ ETF. Metrics run on this Strategy as part of the
backtesting procedure would be expected to equal those calculated based on the simple price
series. This provides some assurance that the backtesting procedure functions as expected.

4.3.3 Equal Weights
Developing and testing the equal weights benchmark involves identifying all securities
which were part of the NASDAQ-100, defining an AbstractDataModel interface and im-
plementing it to download adjusted price data, manually validating the data, and defining
and implementing a Strategy interface which uses an EqualWeights implementation of the
PortfolioConstruction interface (See Figure 3.5).

The details of the calculation of the equal weights portfolio are illustrated in Figure 4.1 which
presents the positions invested in American Airlines shares for the period from 27/02/2015
to 30/06/2017. The opening market value of the position is equal to the opening portfolio
market value, divided by the number of securities in the portfolio. As at 31/10/2017, the
Index was comprised of 107 companies. The number of securities included in the portfolios
created in this research may vary depending upon the availability of daily market data, as
discussed in Section 3.2.1. The quantity invested in the security is modified based on the
portfolio’s closing market value, so as to maintain an equal weight for all securities in the
portfolio.

4.3.4 Canonical Black-Litterman
Developing and testing the Black-Litterman algorithm, in the absence of views involves
downloading and validatingmarket capitalization data, and creating an implementation of the
Strategy interfacewhich uses aBlack-Litterman implementation of the PortfolioConstruction
interface (See Figure 3.5).

One contribution of the Black-Litterman algorithm is the fact that it begins with expected
market returns, calculated assuming the market is in equilibrium. It then combines these
market returns with user provided views to generate the portfolio. One might expect that
supplying the Black-Litterman algorithm with “neutral” views, which equal what the Black-
Litterman algorithm calculates are market risk and returns, would yield the same portfolio
as if no views had been supplied. If this is the case, the posterior returns calculated by the
algorithm would be close to the priors calculated as equilibrium market weights, and the
portfolio weights returned by a Black-Litterman algorithm with neutral views would also
be very close to weights based on market capitalization. Implementing the third bench-
mark in this way has the advantage of providing some assurance that the implementation
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value_date Adj Close Weight Quantity
Opening 

Market Value
Closing Market 

Value

Opening 
Portfolio 

Market Value

Number of 
Securities in 

Portfolio
2015-02-27 46.75 1.02% 3,091 147,754 144,498 14,479,935 98
2015-03-31 51.52 1.02% 3,397 158,814 174,994 15,563,809 98
2015-04-30 47.23 1.02% 3,018 155,484 142,536 15,237,401 98
2015-05-29 41.44 1.02% 3,325 157,032 137,795 15,389,161 98
2015-06-30 39.06 1.02% 3,859 159,920 150,729 15,672,156 98
2015-07-31 39.22 1.02% 3,992 155,924 156,568 15,280,571 98
2015-08-31 38.22 1.02% 3,983 156,230 152,227 15,310,574 98
2015-09-30 38.07 1.01% 3,780 144,443 143,887 14,299,897 99
2015-10-30 45.32 1.01% 3,661 139,384 165,911 13,798,989 99
2015-11-30 40.54 1.01% 3,357 152,106 136,075 15,058,535 99
2015-12-31 41.61 1.01% 3,780 153,228 157,275 15,169,527 99
2016-01-29 38.31 1.00% 3,624 150,797 138,833 15,079,726 100
2016-02-29 40.40 1.00% 3,620 138,673 146,232 13,867,343 100
2016-03-31 40.41 1.00% 3,440 138,985 139,019 13,898,474 100
2016-04-29 34.18 1.00% 3,645 147,263 124,569 14,726,349 100
2016-05-31 31.53 1.00% 4,197 143,446 132,334 14,344,600 100
2016-06-30 27.97 1.00% 4,735 149,318 132,472 14,931,804 100
2016-07-29 35.08 1.00% 5,239 146,551 183,771 14,655,089 100
2016-08-31 35.98 1.00% 4,457 156,355 160,356 15,635,464 100
2016-09-30 36.28 1.00% 4,379 157,552 158,897 15,755,154 100
2016-10-31 40.24 1.00% 4,389 159,260 176,617 15,926,001 100
2016-11-30 46.14 1.00% 3,895 156,728 179,728 15,672,802 100
2016-12-30 46.39 1.00% 3,500 161,520 162,390 16,152,005 100
2017-01-31 43.97 1.00% 3,483 161,566 153,123 16,156,647 100
2017-02-28 46.16 1.00% 3,892 171,107 179,654 17,110,734 100
2017-03-31 42.12 1.00% 3,839 177,211 161,692 17,721,116 100
2017-04-28 42.44 1.01% 4,278 180,192 181,556 17,839,050 99
2017-05-31 48.31 1.01% 4,325 183,539 208,928 18,170,357 99
2017-06-30 50.22 1.01% 3,908 188,778 196,226 18,689,014 99
2017-07-31 50.34 1.02% 3,715 186,575 187,020 18,284,371 98
2017-08-31 44.74 1.03% 3,817 192,122 170,762 18,635,833 97
2017-09-29 47.49 1.04% 4,304 192,577 204,414 18,487,379 96

Figure 4.1: Equal weights strategy sample: AAL (American Airlines).

correctly takes views into consideration. This avoids having to modify the Black-Litterman
implementation in the future.

The implementation first calculates the prior expected returns, Π, using Eq. (2.21). This
requires the calculation of the risk aversion parameter δ, the covariance matrix Σ, and the
market weights w.

The value of the risk aversion parameter of the market, δ can be calculated using Eq. (2.23).
Walters (2008) states that the value of δ can be assumed if one does not know the expected
return and standard deviation of the market portfolio. In this research, the value of δ was
assumed to be constant and equal to 2.5, following the value used by He and Litterman
(1999).

Care must be taken when calculating the value of the prior covariance matrix Σ to ensure
that the number of data points used is higher than the number of equities in the portfolio,
otherwise the resulting matrix will be singular and it cannot be inverted. In this research,
the covariance matrix Σ is calculated using the covariance of the last 180 monthly returns
r (Satchell and Scowcroft, 2000)

Σ = 12× cov(r, r). (4.1)
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Market weights w were determined from the number of outstanding shares multiplied by
the share price at the end of the month.

The Black-Litterman model determines a combined return distribution of returns from a
prior equilibrium distribution and a view distribution. These are distributed as follows
(Idzorek, 2007)

π ∼ N(Π, τΣ) (4.2)

ω ∼ N(Q,Ω) (4.3)

ρ ∼ N(E[R], [τΣ−1 + (P ᵀΩP )]−1), (4.4)

where π is the prior, ω the view, and ρ the combined returns. The scalar τ is a measure of
the uncertainty of the covariance matrix. Idzorek (2007) discusses the role of this parameter
and its value in literature. It is set to 0.05 in this research.

The posterior expected return can be calculated using Eq. (2.28).

In future experiments, the only elements which will change between the third portfolio and
future implementations is the estimation of the parameters which comprise views and the
frequency of rebalancing: the same market data is used, and the same fundamental Black-
Litterman algorithm is used. Although backtesting procedures and comparison metrics
evolve throughout this research, they are applied consistently to all portfolios, including the
benchmarks.

4.4 Results
4.4.1 Overview
An overview of the initial web page presenting the returns based on backtesting is provided
in Figure 4.2. The figure presents the returns an investor would have had if invested in each
of the strategies - with monthly rebalancing - starting one year, three years, five years, and
ten years ago. The figure also presents the annual returns of each strategy. Returns for 2017
are until 30.09.2017.

4.4.2 QQQ ETF
Data for the QQQ ETF were used in two ways in order to test the Strategy interface. A first
portfolio was created manually using the price of one unit of the ETF. A second portfolio
was created using the Strategy interface, with an initial investment of $1M representing
22,040.30 shares of the ETF. If the Strategy and Strategy Manager classes are correctly
implemented, the monthly and daily returns of portfolios produced using these two methods
should be identical.
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Figure 4.2: Web page: backtesting of returns.

The yearly returns of these portfolios appear in the two columns with labels “QQQ” in
Figure 4.2. Daily returns are presented in Figure 4.3, in which "Price Return" represents
the daily return of the ETF and "Return Strategy" represents the daily return of the portfolio
produced using the implementation of the Strategy interface. As expected, the two “QQQ”
portfolios have identical returns over all periods, which provides evidence that the Strategy
and Strategy Manager classes were correctly implemented.

value_date Adj Close Weight Quantity Market Value Price Return Return Strategy
1999-03-11 45.59 1.00 22,040.30 1,004,896.32
1999-03-12 44.48 1.00 22,040.30 980,416.36 (2.44%) (2.44%)
1999-03-15 45.76 1.00 22,040.30 1,008,568.21 2.87% 2.87%
1999-03-16 46.15 1.00 22,040.30 1,017,136.00 0.85% 0.85%
1999-03-17 45.82 1.00 22,040.30 1,009,792.37 (0.72%) (0.72%)
1999-03-18 46.70 1.00 22,040.30 1,029,375.69 1.94% 1.94%
1999-03-19 45.51 1.00 22,040.30 1,003,060.16 (2.56%) (2.56%)
1999-03-22 44.95 1.00 22,040.30 990,820.39 (1.22%) (1.22%)
1999-03-23 43.37 1.00 22,040.30 955,936.64 (3.52%) (3.52%)

Figure 4.3: QQQ ETF and strategy performance calculation.

4.4.3 Equal Weights
Yearly returns of a portfolio constructed using the equal weights Strategy with monthly
rebalancing are presented in Figure 4.2. End of month market values of this portfolio are
presented in Figure 4.4. The market value calculated using the model is presented in the
“Close” column. The closing market values prior to rebalancing are recalculated in an
Excel spreadsheet using securities values and quantities which are also recalculated in the
spreadsheet using equal weights. The results are presented in the “Close (Recalculated)”
column. The “Opening (Recalculated)” column recalculates the previous close after rebal-
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ancing, which is effectively the portfolio’s opening market value. The purpose of Figure 4.4
is twofold. First, it tests that the Closing value of the portfolio calculated by the Strategy
Manager are correct. Second, it verifies that the act of rebalancing does not change the total
portfolio value V , i.e. V = Qt × Pt = Qt+1 × Pt, where Pt are the prices of assets at
time t and Qt and Qt+1 are the number of shares invested in each asset before and after
rebalancing. The monthly performance of the portfolio is presented in the last column.

value_date Close Close (Recalculated) Opening (Recalculated) Performance
1999-03-31 3,562,391.25 3,562,391.25 3,275,536.00 8.76%
1999-04-30 3,801,494.34 3,801,494.34 3,562,391.25 6.71%
1999-05-28 3,791,225.48 3,791,225.48 3,801,494.34 -0.27%
1999-06-30 4,215,324.46 4,215,324.46 3,791,225.48 11.19%
1999-07-30 4,218,304.70 4,218,304.70 4,215,324.46 0.07%
1999-08-31 4,290,330.31 4,290,330.31 4,218,304.70 1.71%
1999-09-30 4,370,139.70 4,370,139.70 4,290,330.31 1.86%
1999-10-29 4,677,436.82 4,677,436.82 4,370,139.70 7.03%
1999-11-30 5,219,463.42 5,219,463.42 4,677,436.82 11.59%

Figure 4.4: Equal weights strategy performance calculation.

4.4.4 Canonical Black-Litterman
Yearly returns of a portfolio constructed using the Black-Litterman Strategy with monthly
rebalancing are presented in Figure 4.2.

End of month market values of an early portfolio calculated using an algorithm which
contained an error, are presented in Figure 4.5. In this Figure, the market value of the
“Opening” portfolio value was not equal to the previous “Close”. This difference was
caused by rounding errors in calculation of the model weights. In principle, the total value
of all weights should have been equal to 1. This was not the case in this early version of the
algorithm. The corrected end of month market values are presented in Figure 4.6.

value_date Close Close (Recalculated) Opening (Recalculated) Performance
1999-03-31 5,030,033.57 5,030,033.57 4,569,750.01 9.74%
1999-04-30 4,932,282.93 4,932,282.93 4,948,806.57 -1.94%
1999-05-28 4,553,962.65 4,553,962.65 4,816,079.80 -7.67%
1999-06-30 5,069,286.16 5,069,286.16 4,484,371.79 11.32%
1999-07-30 5,084,272.78 5,084,272.78 5,054,324.68 0.30%
1999-08-31 5,529,209.31 5,529,209.31 5,083,013.40 8.75%
1999-09-30 5,462,539.27 5,462,539.27 5,520,730.61 -1.21%
1999-10-29 5,756,871.34 5,756,871.34 5,440,687.42 5.39%
1999-11-30 6,279,387.74 6,279,387.74 5,763,751.07 9.08%
1999-12-31 7,779,750.25 7,779,750.25 6,260,628.59 23.89%
2000-01-31 7,429,461.75 7,429,461.75 7,500,088.85 -4.50%
2000-02-29 8,430,738.12 8,430,738.12 7,424,171.80 13.48%
2000-03-31 9,451,401.62 9,451,401.62 8,399,821.29 12.11%
2000-04-28 8,193,149.90 8,193,149.90 9,435,959.26 -13.31%
2000-05-31 7,219,247.62 7,219,247.62 8,166,968.12 -11.89%

Figure 4.5: Error in Black-Litterman strategy performance calculation.

As discussed in 4.3.4, the prior and posterior returns calculated by the model are expected
to be close. Figure 4.7 presents the prior and posterior returns for a selection of dates and
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value_date Close Close (Recalculated) Opening (Recalculated) Performance
1999-03-31 4,683,278.79 4,683,278.79 4,254,725.73 10.07%
1999-04-30 4,637,360.38 4,637,360.38 4,683,278.79 -0.98%
1999-05-28 4,384,970.11 4,384,970.11 4,637,360.38 -5.44%
1999-06-30 4,956,919.13 4,956,919.13 4,384,970.11 13.04%
1999-07-30 4,971,782.22 4,971,782.22 4,956,919.13 0.30%
1999-08-31 5,408,214.05 5,408,214.05 4,971,782.22 8.78%
1999-09-30 5,351,208.69 5,351,208.69 5,408,214.05 -1.05%
1999-10-29 5,648,287.01 5,648,287.01 5,351,208.69 5.55%
1999-11-30 6,153,594.03 6,153,594.03 5,648,287.01 8.95%
1999-12-31 7,646,744.10 7,646,744.10 6,153,594.03 24.26%
2000-01-31 7,305,675.15 7,305,675.15 7,646,744.10 -4.46%
2000-02-29 8,296,175.74 8,296,175.74 7,305,675.15 13.56%
2000-03-31 9,309,610.96 9,309,610.96 8,296,175.74 12.22%
2000-04-28 8,083,442.93 8,083,442.93 9,309,610.96 -13.17%
2000-05-31 7,145,414.96 7,145,414.96 8,083,442.93 -11.60%

Figure 4.6: Correct Black-Litterman strategy performance calculation.

securities. Prior and posterior returns were exactly the same, to 10 significant figures, for
all dates and all securities.

Ticker Prior Posterior Prior Posterior Prior Posterior
AAPL 0.21728 0.21728 0.21413 0.21413 0.21293 0.21293
ADBE 0.21841 0.21841 0.21421 0.21421 0.21618 0.21618
ADSK 0.16896 0.16896 0.16632 0.16632 0.16442 0.16442
AMAT 0.28305 0.28305 0.27674 0.27674 0.27705 0.27705
AMGN 0.15681 0.15681 0.15492 0.15492 0.15186 0.15186
ATML 0.04956 0.04956 0.01996 0.01996 0.08692 0.08692
BOBE (0.01500) (0.01500) (0.00365) (0.00365) 0.02121 0.02121
CBRL 0.10175 0.10175 0.10514 0.10514 0.10789 0.10789
COST 0.14940 0.14940 0.14684 0.14684 0.14592 0.14592
CPWR (0.07273) (0.07273) (0.03004) (0.03004) (0.00756) (0.00756)
CRUS 0.18039 0.18039 0.17885 0.17885 0.17377 0.17377
CSCO 0.16645 0.16645 0.16244 0.16244 0.15610 0.15610
CTAS 0.10484 0.10484 0.10352 0.10352 0.10220 0.10220
DELL 0.08466 0.08466 0.06728 0.06728 0.02122 0.02122
EA 0.16023 0.16023 0.16066 0.16066 0.15940 0.15940
INTC 0.24333 0.24333 0.23768 0.23768 0.23850 0.23850
JBHT 0.07013 0.07013 0.06913 0.06913 0.07009 0.07009
KELYA 0.08042 0.08042 0.07727 0.07727 0.07687 0.07687
KLAC 0.21806 0.21806 0.21700 0.21700 0.21672 0.21672
LLTC 0.03401 0.03401 0.01554 0.01554 0.01883 0.01883
LRCX 0.28156 0.28156 0.27829 0.27829 0.27863 0.27863
MLHR 0.10019 0.10019 0.09388 0.09388 0.09048 0.09048
MOLX 0.04658 0.04658 0.03091 0.03091 0.03152 0.03152
MSFT 0.24456 0.24456 0.24090 0.24090 0.23876 0.23876
NDSN 0.07771 0.07771 0.07751 0.07751 0.07664 0.07664
ORCL 0.27103 0.27103 0.26850 0.26850 0.26765 0.26765
PAYX 0.12264 0.12264 0.11804 0.11804 0.11382 0.11382
PCAR 0.10879 0.10879 0.10802 0.10802 0.10895 0.10895

30/06/1995 31/07/1995 31/08/1995

Figure 4.7: Comparison of prior and posterior returns on selected dates.

The model weights assigned by this implementation of the Black-Litterman algorithm are
very similar to market weights. Figure 4.8 presents a graph of the market weights and the
model weights assigned to each asset for the 30/06/2017. For each equity, the graph presents
it’s relative market weight and the weight the model assigns to it. For example, AAPL is the
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last point on the right in Figure 4.8, with market and model weights of 0.106. The securities
are sorted so that market weights are in ascending order. The correlation coefficient for the
two series on this date is 0.99. The average correlation coefficient for the two series for each
of the 267 months from 31/07/1995 to 29/09/2017 was 0.99. As can be seen in Figure 4.1,
market and model weights were virtually identical for almost all dates on which the model
was run but there were exceptions: two weight series had correlation coefficients of 0.74
(on the 27/04/2004) and 0.82 (on the 31.03.2009). The weights calculated by the algorithm
include negative weights representing short positions, while market weights are naturally
only positive weights representing long positions. Nevertheless, they are valid solutions to
the optimization problem posed to the Black-Litterman algorithm. There is therefore no
evidence that the Black-Litterman implementation does not function correctly.
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Figure 4.8: Comparison of market and model weights assigned to assets on 30/06/2017.

4.5 Discussion
This experiment developed the infrastructure for the second and third experiments.

A Django framework was developed which enables the deployment of the results of the
research in the form of SAAS.

Two benchmarks were developed, one based on equal weights, and one based on a Black-
Litterman algorithm without views. In the process, the various classes making up the
scientific platform - in particular the Strategy and Strategy Manager classes - were imple-
mented and tested. The testing process was performed in part through unit tests, and in part
through the automatic production of Excel spreadsheets which will serve as audit trails of
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Correlations Count

0.74 - 0.76 1
0.76 - 0.78 0
0.78 - 0.80 0
0.80 - 0.82 1
0.82 - 0.84 0
0.84 - 0.86 0
0.86 - 0.88 0
0.88 - 0.90 2
0.90 - 0.92 0
0.92 - 0.94 0
0.94 - 0.96 1
0.96 - 0.98 8
0.98 - 1.00 254

Table 4.1: Correlations between model and market weights over entire period.

the complex data processes.

The tests which were performed did not uncover errors in the Black-Litterman algorithm.
The model weights calculated were close to market weights, as expected, for almost all
periods. The equilibrium market returns calculated by the model as priors were very close
to the posterior returns, as expected as no views were provided to modify the posterior.

One operational problem was encountered in the implementation of the Black-Litterman
algorithm: if there are more equities than data points, the covariance matrix is singular and
cannot be inverted. This is a however a known result, and care must simply be taken to
ensure there are more than 100 data points, or 9 years, for the calculation of the covariance
matrix.
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Chapter 5

Generating Views Using a Bayesian Network

This experiment investigates the use of Bayesian networks for asset manage-
ment as input to a Black-Litterman model. Different approaches are compared,
including the use of two different packages, discrete versus continuous distribu-
tions for random variables, and different functional forms for the relationship
between factors and returns.

5.1 Introduction
The core aim of this research is to determine whether using Bayesian networks to develop
views for a Black-Litterman asset allocationmodel may result in better investment portfolios.
The objectives of this experiment are to develop Bayesian networks to generate views in a
flexible way so that the networks may be modified as required.

5.2 Aims and Objectives
The overall aim of this experiment is to explore the use of Bayesian networks to generate
views for a Black-Litterman asset allocation model.

The first objective will be to build and explore different functional forms for the relation
between factors and returns for a Bayesian network in order to generate views for a Black-
Litterman asset allocation model.

The second objective will be to develop tools to understand and evaluate the output of the
Bayesian network.

5.3 Background
5.3.1 Bayesian Statistics
One of the main motivations for using Bayesian statistics is to obtain a measure of the
uncertainty of predictions. Another is to enable the use of priors which can be used to
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express expert knowledge regarding the factor of interest.

Bayesian networks present other advantages as well. Whereas a model such as a neural
network is opaque and works as a black box, the relative importance of factors in a Bayesian
network can be identified. This lends the model a degree of transparency. Bayesian
networks may also be extended without recalculating the entire graph if it is desirable to add
independent factors to the graph.

5.3.2 Tools
Several options exist to model Bayesian networks using Python. Different packages focus
on different aspects of Bayesian networks, including learning model structure and inference
using either discrete or continuous distributions. The main task with which this research is
concerned is inference, and three packages appear to be appropriate for this task on Python:
PyStan, Edward, and PyMC3 . Either of these packages would appear to be suitable for
the purposes of this research1. PyStan (Carpenter et al., 2017) is a python interface to
Stan, a probabilistic programming language written in C++. It requires a C++ compiler
at runtime, which slows execution initially but helps ensure faster calculations. Stan is
stable and benefits from strong academic support. Edward (Tran et al., 2016) is a more
recent effort. It has recently been included in TensorFlow Probability2. This would tend
to suggest that it is future proof, however documentation is uneven at this point. PyMC3
is a more established package, with complete documentation and examples available on
the web. It based on Theano (Bergstra et al., 2010), which appears to be discontinued3,
however the developers of PyMC3 have declared the future version, PYMC4, will be based
on TensorFlow. Development work in this research is based on PyMC3 , mainly due to the
impression that, as it is written in Python, it would be easier to learn and prototype with this
module than it would be with PyStan, and it is more mature than TensorFlow Probability
with better documentation available for it at this point in time.

PyMC3 version 3.5 on Windows 10 was used initially. This version appears to have a bug
which inhibits working with several cores simultaneously. The same version of PyMC3 on
linux run inside a virtual machine did not have this limitation and was therefore used for this
experiment. For Experiment 3, PyMC3 was run on linux, on the UCL cluster.

A package that was also considered is pgmpy, based on (Koller and Friedman, 2009).
Although this package is easy to use, inference is prohibitively slow beyond very basic
networks, and customization of the functional form between factors and returns also did not
appear possible. Initial work performed using pgmpy is presented in Appendix D.

1Pyro is a more recent alternative which appears promising (Bingham et al., 2019).
2https://medium.com/tensorflow/introducing-tensorflow-probability-dca4c304e245 last accessed

26.11.2019
3https://en.wikipedia.org/wiki/Theano_(software) last accessed 26.11.2019
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5.3.3 Priors
5.3.3.1 Introduction
Prior probability distributions for the parameters of the Bayesian networks must be selected.
In practice, investors may wish to define priors using their expert knowledge. It is also
possible to define priors based on historical data. In this thesis, uninformative priors are
selected, subject to constraints such as the avoidance of overflow errors.

5.3.3.2 Maximimum Entropy
The entropy of a continuous distribution p is defined as (Jaynes, 1968)

H(p) = −
∫
p(x) log p(x)dx. (5.1)

According to the maximum entropy principle, the prior distribution which maximizes Eq.
(5.1) should be selected.

5.3.3.3 Uniform Distribution
On a finite interval [a, b], the uniform distribution is the maximum entropy distribution (Park
and Bera, 2009). The probability density function of the continuous uniform distribution
for a variable x is given as (Hogg and Craig, 1978)

p(x; a, b) =

{
1
b−a for a ≤ x ≤ b
0 for x < a or x > b.

(5.2)

When a variable x is uniformly distributed on the interval [a, b] the notation used is

x ∼ U(a, b). (5.3)

5.3.3.4 Normal Distribution
On the open interval the normal distribution is the maximum entropy distribution (Park and
Bera, 2009). The probability density function of the continuous normal distribution for a
variable x is given as (Hogg and Craig, 1978)

p(x;µ, σ) =
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
. (5.4)

When a variable x is normally distributed with mean µ and variance σ2, the notation used is

x ∼ N(µ, σ2). (5.5)

5.3.3.5 Gamma Distribution
The gamma distribution is the maximum entropy distribution on a semi-infinite support with
given expectation (Park and Bera, 2009). The probability density function of the gamma
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distribution for a variable x is given as (Hogg and Craig, 1978)

p(x;α, β) =

{
βαxα−1 exp(−βx)

(α−1)! for x > 0

0 for x ≤ 0,
(5.6)

where α, β > 0 are selected such that E(x) = α
β . When a variable x is gamma-distributed,

the notation used is

x ∼ Γ(α, β). (5.7)

5.3.3.6 Folded Normal Distribution
In certain cases, all that is known is that the variable of interest does not take on negative
values, although it may be zero. In this case, the folded or half-normal distribution was used.
The probability density function in this case is given as (Leone, Nelson, and Nottingham,
1961)

p(x;σ) =


√

2
σ
√
π

exp
(
− x2

2σ2

)
for x ≥ 0

0 for x < 0.
(5.8)

When a variable x is distributed according to the folded normal distribution with mean
µ = 0 and variance σ2, the notation used in this thesis is

x ∼ |N(0, σ2)|. (5.9)

5.3.3.7 Bounded Normal Distribution
In certain cases, the normal distribution would have been used, but it was necessary to
truncate it in order to avoid overflow or underflow errors. The probability density function
of the bounded normal distribution used in this case is given as (Burkardt, 2014)

p(x;µ, σ, a, b) =

 1
σ

φ(x−µσ )
Φ( b−µσ )−Φ(a−µσ )

for a ≤ x ≤ b

0 for x < a or x > b
(5.10)

φ(ν) =
1√
2π

exp

(
−1

2
ν2

)
(5.11)

Φ(ν) =
1√
2π

∫ ν

−∞
exp

(
−t2/2

)
dt, (5.12)

whereφ(ν) is the standard normal distribution, andΦ(ν) its cumulative distribution function.
When a variable x is distributed according to the bound normal distribution on the interval
[a, b] with mean µ and variance σ2, the notation used in this thesis is

x ∼ Ψ(µ, σ2, a, b). (5.13)
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5.3.4 Modelling returns in PyMC3
5.3.4.1 Introduction
Expected returns are modelled in a Bayesian network as a function of factors, which may
include past returns andmacro-economic factors. Various models exist to combine factors in
order to reflect stylized statistical properties of asset returns (Cont, 2001). Some properties it
may be desirable to model include heavy tails, time-varying volatility which has a degree of
autocorrelation which leads to volatility clustering, as well as (negative) correlation between
returns and volatility.

One interesting aspect of Bayesian networks is the ability to freely modify the models used
at each node. Fabozzi, Focardi, and Kolm (2006) and Kita et al. (2012) present the following
among many other potentially useful models. All these models may be adapted to include
external regressors. In a Bayesian network, all variables and parameters are considered
continuous random variables.

PyMC3 makes use of the MCMC methods presented in Section 2.2.6.

5.3.4.2 AR(p)
An AR(p) (auto regressive) model defines a time-varying random process as a linear combi-
nation of its own past values and a stochastic error term. This is useful to model time series
which display autocorrelation, including equity returns over short periods (Cont, 2001), and
inflation (Fuhrer, 2009)

rt = α+

p∑
i=1

βirt−i + εt (5.14)

εt ∼ N(0, σ2), (5.15)

where σ is constant and N(µ, σ2) is the normal distribution defined in Section 5.3.3.4.
When p = 1, this reduces to AR(1)

rt = α+ βrt−1 + εt. (5.16)

5.3.4.3 MA(q)
In the moving average regression model, returns are modelled based upon past error terms.
This model is useful if random shocks, which have affected past returns, are assumed to
affect current returns as well, for example through mean reversion if the parameters are
negative

rt = α+

q∑
i=1

βiεt−i + εt (5.17)

εt ∼ N(0, σ2), (5.18)
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where and N(µ, σ2) is the normal distribution defined in Section 5.3.3.4.

5.3.4.4 ARMA(p,q)

The ARMA model combines both an AR(p) and MA(q) models. It can be useful if both
returns and error terms are assumed to be autocorrelated

rt = α+

p∑
i=1

β1irt−i +

q∑
j=1

β2jεt−j + εt (5.19)

εt ∼ N(0, σ2), (5.20)

where and N(µ, σ2) is the normal distribution defined in Section 5.3.3.4.

5.3.4.5 ARCH(q)

ARCHmodels introduce time-varying volatility and allowvolatility clustering (Engle, 1982).
The model was first applied to estimates of the variance of UK inflation. It is specified as

rt = εt (5.21)

σ2
t = ω +

q∑
i=1

λiε
2
t−i (5.22)

εt = σtεt (5.23)

εt ∼ N(0, 1), (5.24)

where λi >= 0 for all i and N(µ, σ2) is the normal distribution defined in Section 5.3.3.4.
Engle (1982) distinguishes between a constant unconditional variance, ω in Eq. (5.22)
and conditional variance σ2 which is conditional on past variance. Engle (1982) focusses
discussion on the variance, Eq. (5.22).

For simplicity, this thesis focusses on q = 1, referred to here as an ARCH(1) model, where
returns and variance depends only on the most recent value.

It may be useful to note that ε as defined in Eq. (5.20) and ε as defined in Eq. (5.23) have
identical probability density functions due to the fact that the mean in both cases is zero,
since X ∼ N(µ, σ2) =⇒ cX ∼ N(cµ, c2σ2). This can be seen in Figure 5.1. This
figure is a histogram created using 100,000 random draws from two normal distributions,
one ∼ N(0, σ2) and the other standard normal, ∼ N(0, 1). The second was then scaled by
σ. The value of σ used for illustration was 0.5, but the conclusion is valid for all values of
σ.

5.3.4.6 ARCH-M(p,q)

ARCH in mean (Engle, Lilien, and Robins, 1987) reflects the expectation higher volatility
results in higher returns. The model was originally applied to estimating risk premia in the
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Figure 5.1: PDF of variables defined in Eqs. (5.20) and (5.23) for σ = 0.5.

term structure of interest rates. ARCH-M(p,q) is defined as

rt = α+

p∑
i=1

βiσ
2
t−i + εt (5.25)

σ2
t = ω +

q∑
i=1

λiε
2
t−i. (5.26)

5.3.4.7 GARCH(p,q)
The GARCH model (Bollerslev, 1986) is an extension to the ARCH model which is more
flexible. The equation for variance in this model bears a passing resemblance to the ARMA
model as it includes both an auto regressive term as a function of past variance, and a
“moving average” term depending upon past (return) error terms

rt = εt (5.27)

σ2
t = ω +

p∑
i=1

λ1iσ
2
t−i +

q∑
j=1

λ2jε
2
t−j (5.28)

εt = σtεt, (5.29)

where all λ’s are restricted to be non-negative. This research focusses on a GARCH(1,1)
model.
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5.3.4.8 GARCH-M(1,1)
GARCH in mean models (Engle and Bollerslev, 1986) add a variance term in the mean
equation which again helps reflect the expectation that higher volatility will result in higher
returns. This model was originally applied to estimating risk premiums in the foreign
exchange markets

rt = α+ β1rt−1 + β2σ
2
t + εt (5.30)

σ2
t = ω + λ1σ

2
t−1 + λ2ε

2
t−1 (5.31)

εt = σtεt. (5.32)

5.3.4.9 EGARCH(1,1)
GARCH models imply that past error terms and variance have the same impact, whether
they arise from increasing or decreasing returns, which may not be the case (Nelson, 1991).
EGARCH models (Nelson, 1991) were introduced to address this limitation

rt = α+ βrt−1 + εt (5.33)

log(σ2
t ) = ω + λ1 log(σ2

t−1) + λ2

[∣∣∣∣ εt−1

σt−1

∣∣∣∣− E (∣∣∣∣ εt−1

σt−1

∣∣∣∣)]+ λ3
εt−1

σt−1
(5.34)

εt = σtεt, (5.35)

where εt is IID with E(εt) = 0 and Var(εt) = 1. It is not necessarily normally distributed:
Nelson (1991) discussed the Generalized Error distribution and the Student t distribution.
If ε follows a Student t distribution with ν > 1 degrees of freedom, the expectation is given
by (Ahsanullah, Shakil, and Kibria, 2015)

E(|εt|) = 2

√
ν

π

Γ
(
ν+1

2

)
Γ
(
ν
2

)
(ν − 1)

. (5.36)

5.3.4.10 EGARCH-M(1,1)
EGARCH-M as defined in Nelson (1991) includes the variance in the return equation to
help reflect the expectation that higher risk could lead to higher returns. The full form used
in this research, including external regressors is (Beach and Orlov, 2007)

rt = α+ β1rt−1 + β2σ
2
t + βᵀ

3Z1t + εt (5.37)

log(σ2
t ) = ω + λ1 log(σ2

t−1) + λ2

[∣∣∣∣ εt−1

σt−1

∣∣∣∣− E (∣∣∣∣ εt−1

σt−1

∣∣∣∣)]+ λ3
εt−1

σt−1
+ λᵀ

4Z2t (5.38)

εt = σtεt, (5.39)

where εt is distributed as for EGARCH. Zn are (arrays of) exogenous regressors. β3 and
λ4 may also be arrays.
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5.3.4.11 Theano
Theano4 is a Python library used to optimize and evaluate multi-dimensional mathematical
expressions at speeds similar to compiled C code. It is currently maintained by the PyMC3
team. Implementing Bayesian EGARCH-M using PyMC3 utilizes advanced functionality
of Theano.

5.4 Design
5.4.1 Network
Figure 5.2 represents aNaiveBayesian networkwhich forms the basis of this implementation.
The model implies that the change in price of an asset in the next period, N + 1, is related
to the change in price of the asset in period N and changes in macroeconomic data in
periodN . All factors are assumed to be conditionally independent. This assumption can be
taken because data is available for all factors. This first model therefore excludes Industrial
Production and Inflation, for which this independence assumption could be expected not to
hold. Interest rates, for example, would not be expected to be independent of inflation or
industrial production. The model also excludes the use of ETF’s as factors, as data was only
available from earliest 2004.

Table 3.2 presents the frequency ofmacroeconomic data. The holding period assumed in this
experiment is one month, and all data would appear to be available on a monthly basis. As
discussed in 3.2.2, however, data is sometimes released mid-month, and with considerable
delay in relation to the period for which the data is calculated. If data is required on a
more timely basis than it is available, it may be estimated. This estimation process may be
modelled as additional dependencies within the Bayesian Net, by identifying parent or child
factors related to the data to be estimated.

5.4.2 Models
It is expected that a complex model such as EGARCH-M will be necessary to provide
a reasonable prediction of future returns. The development of this model will be done
on an incremental basis, for two reasons. First, a complex model may, in fact, not be
better than a simpler model. It is interesting and relevant to explore this. Second, it
is desirable to test and debug the development of the model in an organized manner by
introducing relevant technical difficulties gradually. Linear regression is straightforward to
implement in PyMC3 . AR(1) (Eq. (5.16)) adds the problem of considering the history of
returns in predicting future returns. GARCH (Eq. (5.28)) adds the complexity of including
past standard deviation and past errors in returns, in the calculation of predicted standard
deviation. EGARCH (Eq. (5.34)) adds the logarithm in the calculation of expected standard
deviation, and EGARCH-M (Eq. (5.38)) is the final objective.

4http://deeplearning.net/software/theano/introduction.html
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Premium

Figure 5.2: ABayesian network is a directed acyclic graphwhere an absence of a connection between
two nodes expresses an assumption of conditional independence. In a naive Bayesian
network, all factors are assumed to be conditionally independent. This approach may be
relevant if the values of all factors are expected to be known. Conditional dependence
between factors may be introduced later if assumptions change or if scenario analysis is
desired.

The following models will be implemented as Bayesian networks and the results compared.

• Linear regression
• AR(1)
• GARCH(1,1)
• EGARCH(1,1)
• EGARCH-M(1,1) assuming ε follows Normal distribution

PyMC3 includes basic implementations of AR(p) and GARCH(1,1). These models will
nevertheless be implemented separately for three reasons. First, the PyMC3 implementa-
tions cannot be used with external regressors, as required in this research. Second, they are
not structured in such a way that prediction is easy. Third, test data can be used to compare
the output of new implementations with the standard ones PyMC3 provides in order to
ensure that they work as expected.

5.5 Implementation
5.5.1 Introduction
The following models will attempt to find a relation between changes in oil prices, changes
in credit spreads, changes in the term structure of interest rates, and changes in a stress index
calculated by the FRED.

There is some evidence any relationships which may exist are not stable, and depend upon
recent conditions (Yuhn, Kim, and Mccown, 2018). For illustration, Figure 5.3 graphs
changes in factors to the returns on AAPL shares. Outliers are excluded in these graphs.
Visually, it would appear plausible that, if there is a relationship between changes in the term
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structure of interest rates and returns on AAPL stocks for example, the two are positively
correlated in the first period and negatively correlated in the second. Monthly data over
a rolling period of 54 months is considered in this experiment. Over the period from
30/12/1994 to 31/05/1999, the relationship between the n+ 1 monthly returns of AAPL and
factor returns for month n is presented in Figure 5.4. The period presented was a particularly
interesting one, including the Asian financial crisis in 1997, the breakdown of Long-Term
Capital Management (LTCM) in 1998, the continued buildup of the dot-com bubble which
collapsed in 2000, and the financial crisis of 2008. In many cases, as can be seen for example
in Figure 5.4, there are outliers which may need to be taken into consideration.

Implementing models in PyMC3 is complicated by several factors.

PyMC3 , using Theano, first creates a computational graph compiled to C code, and then uses
this graphwith the data. In this process, it is not straightforward to trace the value of variables
during computation. It is not possible to print the values of variables during computation.
It is not possible to insert break points in this process. The following approaches were used
to work around this situation5.

When computation is not halted, but the model is simply not converging - or not converging
to known parameter values - then it is possible to create a type of audit trail by making the
output of the computational graph include an array of all intermediate values. In this way,
it is possible to trace the values of variables during computation.

When computation is halted, however, this approach cannot be used. In some cases, PyMC3
fails with a cryptic message relating to Bad Initial Energy or Maxx matrix contains zeros
on the diagonal. Simulations in Excel using data which seems to be related to the errors is
useful in identifying specific causes. It was found that these errors are generally related to
two different issues: overflow (or underflow) and problems with data.

Overflow errors were found to occur in models which require logs or exponentials. Experi-
mentation in Excel can help identify the range to which prior values must be constrained to
avoid overflow or underflow errors. Priors can then be adjusted accordingly, for example to
a Uniform distribution over the range of acceptable values. This generally did not improve
inference, but it did avoid overflow errors. Priors are discussed in more detail in Secton
5.3.3

Problems related to data were found to occur when data was missing. These data points
are converted to "NaN", or "Not a number", which causes PyMC3 to fail. Once these
data points have been identified, they can be adjusted to useable values. In this experiment,
missing data for changes in the value of factors or stock prices was converted to 0.

5docs.pymc.io/notebooks/variational_api_quickstart.html#Tracking-parameters presents an alternative ap-
proach to tracing parameter values.
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(a) Period 31/12/1994 to 30/06/1999.

(b) Period 30/04/2003 to 31/10/2007.

Figure 5.3: Changes in factors against returns of AAPL, for two different periods. Any simple linear
relationships which may appear in the first set of graphs is not observed in the second
set. This suggests that relationships change over time. Some outliers have been removed
for clarity.
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Figure 5.4: Changes in factors vs next period returns of AAPL stock for the period 31/12/1994 to
31/05/1999.

Computation times are relatively long, taking from around 15 to 75 minutes for one data
point. For this reason, creating test cases is not always a practical approach. It was, however,
found that initial testing and model construction could be performed using smaller sampling
sizes. It was found, for example, that if using 4 chains of 1000 samples + 500 samples for
tuning did not yield somewhat reasonable results, larger sampling sizes of 4 chains of 20,000
samples each generally did not either.

Initialization of models using ADVI rather than training using NUTS was found to provide
results which were closer to known true values when testing models using synthetic data.
One drawback of this approach is that it requires more time. ADVI also sometimes results
in Bad Energy errors while training with NUTS did not result in errors.

Finally it is in the end time saving to work very progressively, using models which are well
understood and implemented in Excel to create synthetic data, and introducing new technical
difficulties one at a time.
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5.5.2 Testing
One way of testing whether a model has been implemented correctly is to construct a series
using a predefined process with known parameter values, and see whether the model can
return the parameters and make predictions which are not unreasonable. It is straightforward
to create an artificial time series which follows, for example, an AR(1) or an EGARCH-M
process with external regressors in Microsoft Excel.

If the model is implemented correctly and for it to be useful, it should return the parameter
values similar to those used in Excel to create the time series, and it should make reasonable
predictions. The new model implementations are therefore tested by producing appropriate
time series in Microsoft Excel using known parameters, and ensuring that the new models
can recover the known model parameters.

The models are trained on 99 data points, and the resulting parameter estimates used to
predict the 100th data point. The parameter values as well as the prediction are compared to
the known values.

5.5.3 Linear Regression
Implementation of linear regression is the first model on which others are built. The
relationship between the exogenous regressors, X , and asset returns, r, is modelled as

r ∼ N(µ, σ2) (5.40)

µt = α+
∑
i

βitXit (5.41)

α ∼ N(0, 0.2) (5.42)

βi ∼ N(0, 0.2) (5.43)

σ ∼ |N(0, 1)|, (5.44)

where |N(0, 1)| is a folded normal distribution defined in Section 5.3.3.6, N(µ, σ2) is the
normal distribution defined in Section 5.3.3.4, i = {0, 1, 2, 3}, and the given values (0 and
0.2 for example) are the priors provided to the model. The normal distribution is used for
simplicity and could easily be replaced by, for example, a t-distribution to better represent
the heavier tails observed in the distribution of actual returns.

Themodelwas implemented usingmonthly data from30.11.1994 to 30.09.2017. Predictions
were performed for each month from 30.07.1999 to 30.09.2017. Each prediction was
performed using a model which was trained on the latest 54 months. 6 chains of 5000
samples each were generated using MCMC, for a total of 30,000 samples. An additional
1000 samples per chain were generated for tuning. These samples were discarded.

Training in PyMC3 results in a "trace" variable. It contains an array of all values of
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the parameters α, βi, and σ which are the result of the sampling in PyMC3 . 500 sets
of parameter values are drawn from the 30,000 useful samples. Posterior prediction is
performed by using the latest factor values applied to each parameter value set, to provide
500 predictions of future returns. The mean and standard deviation of these predictions is
taken as the final prediction. Results are presented in Section 5.6.1.

5.5.4 AR(1)

Implementation of an autoregressive model (AR) is interesting for two reasons. First, AR
introduces dependence of expected returns on past returns. Second PyMC3 contains a basic
implementation of an AR model which does not use external regressors, but which provides
a benchmark for a first implementation of an AR model which can be extended to include
external regressors.

A basic custom implementation of AR(1) was first developed and compared to the default
AR(1) implementation which is included in PyMC3 . This custom implementation was
further developed to include external regressors and validated using synthetic data. This
second implementation forms the basis for GARCH and EGARCH-M implementations in
the following sections.

The relationship between asset returns was first modelled as

rt = βrt−1 + εt (5.45)

β ∼ N(0, 2) (5.46)

σ ∼ |N(0, 1)| (5.47)

εt ∼ N(0, σ2), (5.48)

where |N(0, 1)| is a folded normal distribution defined in Section 5.3.3.6 and N(µ, σ2) is
the normal distribution defined in Section 5.3.3.4. A uniform distribution could have been
used for β, as the value of this parameter could be expected to lie in the open interval (−1, 1)

however it is not inconceivable that β would lie outside this interval for a short period.
The consequence may be a rapidly increasing or decreasing geometric series which may be
counter intuitive but not impossible. Use of the normal distribution was actually found to
make no difference in practice and was retained for later, purely technical, convenience.

PyMC3 defines AR(1) in terms of τ ∼ Γ(1, 1) where τ =
1

σ2
. The two models were run

once in six chains of 30,000 samples each on monthly data from 31.01.1995 to 31.05.1999.
The two models both converge, mix well, and were found to agree on a value for β as
presented in Figure 5.5 and summarized in Table 5.1. The model was further enhanced
to include exogenous regressors. The relationship between asset returns and exogenous
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Model Beta Sigma Rhat

PyMC3 0.096030 0.084716 0.999986
Custom implementation 0.096196 0.068088 0.999994

Table 5.1: PyMC3 AR(1) compared to custom implementation: key statistics for the value of β.
The custom implementation of AR(1) estimates the same value of β and a similar value
of σ as the implementation of AR1 which is supplied as part of PyMC3 .

(a) Default PyMC3 version of AR(1)

(b) Custom implementation of AR(1)

Figure 5.5: The left hand side of the graphs shows that all chains of both models converge to the
same distributions. The second graphs in (a) and (b) are different because PyMC3
defines AR(1) in terms of τ ∼ Γ(1, 1) where τ =

1

σ2
. The right hand side of the graphs

shows that the two models mixed well and that the parameter space was evenly searched.
The two models were found to agree on a value for β.

regressors was modelled as

rt = β0rt−1 +
∑
i=1

βifi + εt (5.49)

βi ∼ N(0, 2) (5.50)

σ ∼ |N(0, 1)| (5.51)

εt ∼ N(0, σ2), (5.52)

where f are exogenous regressors, |N(0, 1)| is a folded normal distribution defined in
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Parameter Actual Value Estimate Mean Estimate Std Dev.

β0 0.750 0.782 0.023
β1 2.000 1.984 0.066
β2 -0.500 -0.511 0.028
σ2 0.150 0.173 0.013
xi+1 1.763 1.816 0.172

Table 5.2: AR(1) training and prediction using synthetic data. The estimated mean value of all
parameters are very close to their true known values.

with pm.Model() as ar_model:
beta0 = pymc3.Normal(’beta0’, 0, 10)
beta1 = pymc3.Normal(’beta1’, 0, 10)
beta2 = pymc3.Normal(’beta2’, 0, 10)
stdev = pymc3.HalfNormal(’stdev’,sd=10)
X_im1 = theano.shared(x_im1.values)
X_i = theano.shared(x_i.values)
R1_im1 = theano.shared(r1_im1.values)
R2_im1 = theano.shared(r2_im1.values)
mu = X_im1 \times beta + R1_im1 \times beta1 + R2_im1 \times beta2
obs = pymc3.Normal(’obs’, mu=mu, sd=stdev, observed=X_i)
ar_trace=pymc3.sample(draws=20000,tune=5000,cores=4,chains=4)

Listing 5.1: Implementation of AR1 with regressors

Section 5.3.3.6, and N(µ, σ2) is the normal distribution defined in Section 5.3.3.4. A
simplified implementation of AR1 with regressors is presented in Listing 5.1. Following
the procedure discussed in Section 5.5.2, this implementation was tested on synthetic data
created in Excel. The real process for the synthetic data is

xt = β0xt−1 + β1f1t−1 + β2f2t−1 + εt (5.53)

εt ∼ N(0, σ2) (5.54)

f1 ∼ N(0.5, 0.25) (5.55)

f2 ∼ N(1.5, 0.25), (5.56)

where f are exogenous regressors, N(µ, σ2) is the normal distribution defined in Section
5.3.3.4, and the parameters are as defined in Table 5.2. Results of the training and prediction
are presented in Table 5.2 which shows that the actual values for all parameters as well as
the 100th data point xi+1 are within two standard deviations of the model estimates.

Themodelwas implemented usingmonthly data from30.11.1994 to 30.09.2017. Predictions
were performed for each month from 30.07.1999 to 30.09.2017. Each prediction was
performed using a model which was trained on the latest 54 months. 4 chains of 20000
samples each were generated using MCMC, for a total of 80,000 samples. An additional
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Model ω λ1 λ2

PyMC3 0.003 0.098 0.131
Custom implementation 0.003 0.098 0.131
True value 0.05 0.1 0.15

Table 5.3: A flexible custom implementation of GARCH(1,1) recovered the same parameter mean
values as PyMC3 when presented with synthetic data series. These parameter values are
different from the known true values due to the random innovation term in the synthetic
data.

5000 samples per chain were generated for tuning. These samples were discarded. One
single month for one stock, including prediction, took approximately 1.5 minutes on the
computer used for testing.

Training in PyMC3 results in a "trace" variable. It contains an array of all values of
the parameters α, βi, and σ which are the result of the sampling in PyMC3 . 5000 sets
of parameter values are drawn from the 80,000 useful samples. Posterior prediction is
performed by using the latest factor values applied to each parameter value set, to provide
5000 predictions of future returns. The mean and standard deviation of these predictions is
taken as the final prediction. Results are presented in Section 5.6.2.

5.5.5 GARCH(1,1)
Implementing a GARCH model with regressors in PyMC3 is interesting for two reasons.
First, it introduces a technical difficulty as the calculation of current volatility depends upon
past volatility calculations as well as past errors in returns. Second, PyMC3 includes a
basic implementation of GARCH(1,1) which does not allow external regressors, but which
can provide a benchmark for a first implementation of a GARCH(1,1) model which can be
extended to include external regressors.

A basic custom implementation of GARCH(1,1) was developed and tested as described in
Section 5.5.2. The model described in Section 5.3.4.7 was specified as

λ1, λ2 ∼ |N(0, 1)| (5.57)

σ ∼ |N(0, 1)| (5.58)

εt ∼ N(0, σ2), (5.59)

where |N(0, 1)| is a folded normal distribution defined in Section 5.3.3.6, and N(0, σ2) is
the normal distribution defined in Section 5.3.3.4. Results are summarized in Table 5.3. As
the custom implementation can be considered a more flexible reformulation of the PyMC3
implementation of GARCH(1,1), it is not unexpected that the results are very close for
these two implementations. The model described in Section 5.3.4.7 was further enhanced
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Parameter True Value Estimated Mean Standard Deviation Number of SD From True Value

α 0.020 0.053 0.027 -1.194
β0 0.050 -0.094 0.110 1.305
β1 0.700 0.756 0.191 -0.293
ω 0.020 0.035 0.014 -1.022
λ1 0.500 0.333 0.162 1.030
λ2 0.150 0.268 0.164 -0.720
xi+1 -0.088 0.011 0.108 0.813

Table 5.4: The values of all parameters to a synthetic data series generated using exogenous regres-
sors were estimated using Bayesian GARCH(1,1). The mean estimates were within 1.5
standard deviations of the known true values. The predicted value of xi+1 was within
one standard deviation of the true value.

to include external regressors in the returns formula, modelled as

rt = α+ β0rt−1 + β1f1 + εt (5.60)

α ∼ N(0.5, 1) (5.61)

βi ∼ N(0.5, 1) (5.62)

ω ∼ N(0.5, 0.2) (5.63)

λi ∼ N(0.5, 0.2) (5.64)

εt ∼ N(0, σ2), (5.65)

where f1 is an exogenous regressor andN(µ, σ2) is the normal distribution defined in Section
5.3.3.4. This implementation was tested following the procedure described in Section 5.5.2.
Results of the training and prediction are presented in Table 5.4 which shows that the actual
values for all parameters as well as the 100th data point are within two standard deviations
of the model estimates. The model was trained on historical stock data. The results are
presented in Section 5.6.3.

5.5.6 EGARCH(1,1)

EGARCH is not implemented as part of PyMC3 . Implementation of the model is therefore
interesting in its own right. It introduces the use of logarithms, which gave rise to issues
discussed in Section 5.5.1.

An implementation of EGARCH(1,1) described in Section 5.3.4.9 was developed and tested
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Parameter True Value Estimated Mean Standard Deviation Number of SD From True Value

α 0.020 0.010 0.016 0.620
β0 0.003 -0.006 0.028 0.318
β1 0.100 -0.013 0.098 1.153
β2 0.150 0.134 0.111 0.148
β3 0.200 0.178 0.097 0.225
β4 0.400 0.454 0.107 -0.507
ω 4.000 3.486 1.159 0.443
λ1 -0.040 0.001 0.283 -0.146
λ2 0.002 0.364 0.809 -0.447
λ3 0.500 0.104 0.777 0.509
xi+1 -0.278 -0.058 0.126 -1.744

Table 5.5: The values of all parameters to a synthetic data series generated using exogenous regres-
sors were estimated using Bayesian EGARCH(1,1). The mean estimates were within 1.5
standard deviations of the known true values. The predicted value of xi+1 was within
two standard deviations of the true value.

as described in Section 5.5.2. The model was specified as

α ∼ Ψ(0, 1,−0.5, 0.5) (5.66)

βi ∼ Ψ(0, 1,−1.0, 1.0) (5.67)

−ω ∼ Γ(α = 2, β = 0.5) (5.68)

λ1 ∼ N(0, 0.01) (5.69)

λi ∼ N(0, 1) (for i = {2, 3}) (5.70)

− log(σ2) ∼ Γ(α = 2, β = 0.5) (5.71)

εt ∼ N(0, σ2), (5.72)

where Ψ(µ, σ2, a, b) is a bounded normal distribution defined in Section 5.3.3.7, N(µ, σ2)

is the normal distribution defined in Section 5.3.3.4, and Γ(α, β) is the Gamma distribution
defined in Section 5.3.3.5. The Gamma distribution is strictly positive. As 0 < σ < 1

however, log(σ2) < 0. Therefore the values of −ω and − log(σ2) are those modelled using
the Gamma distribution.

Results are summarized in Table 5.5. The actual values for all parameters as well as the
100th data point are within 1.5 standard deviations of the model estimates.

The model was trained on historical stock data. The results are presented in Section 5.6.4.
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Parameter True Value Estimated Mean Standard Deviation Number of SD From True Value

α 0.020 0.011 0.015 0.604
β00 0.100 0.076 0.060 0.404
β01 0.750 0.895 0.811 -0.179
β1 0.010 0.072 0.092 -0.673
β2 0.200 0.082 0.084 1.405
β3 0.500 0.459 0.083 0.488
β4 0.700 0.784 0.096 -0.868
ω 3.000 3.076 0.423 -0.180
λ1 0.300 0.244 0.095 0.591
λ2 -0.250 0.003 0.218 -1.158
λ3 2.000 1.625 0.681 0.551
xi+1 -0.242 -0.013 0.179 -1.281

Table 5.6: The values of all parameters to a synthetic data series generated using exogenous regres-
sors were estimated using Bayesian EGARCH-M(1,1). The mean estimates were within
1.5 standard deviations of the known true values. The predicted value of xi+1 was also
within 1.5 standard deviations of the true value.

5.5.7 EGARCH-M(1,1)
An implementation of EGARCH-M(1,1) described in Section 5.3.4.10 was developed and
tested as described in Section 5.5.2. The model was specified as

α ∼ N(0, 0.02) (5.73)

βi ∼ N(0, 1) (5.74)

−ω ∼ Γ(α = 2, β = 0.5) (5.75)

λ1 ∼ U(0, 0.9) (5.76)

λ2 ∼ U(−0.5, 0.5) (5.77)

λ3 ∼ Γ(α = 2, β = 0.5) (5.78)

− log(σ2) ∼ Γ(α = 2, β = 0.5) (5.79)

εt ∼ N(0, σ2), (5.80)

where U(a, b) is a uniform distribution defined in Section 5.3.3.3, N(µ, σ2) is the normal
distribution defined in Section 5.3.3.4, and Γ(α, β) is the Gamma distribution defined in
Section 5.3.3.5. As 0 < σ < 1, log(σ2) < 0, the values of −ω and − log(σ2) are those
modelled using the Gamma distribution.

The priors were selected in order to allow for a range of values of σ which correspond to
observed market values, very roughly between 2% and 30%.

Results are summarized in Table 5.6. The actual values for all parameters as well as the
100th data point are within two standard deviations of the model estimates.
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Data Real Data Prediction

Mean 0.030 0.034
Standard Distribution 0.122 0.049

Table 5.7: This table presents the first two moments of the distributions of real and predicted returns
of the linear regression model over the same period. While both distributions have similar
means, the standard deviation of real returns is over 12%, while the standard deviation of
predicted returns is only 4.9%.

The model was trained on historical stock data. The results are presented in Section 5.6.5.

5.6 Results
5.6.1 Linear regression
The model specified in Section 5.5.3 was implemented using monthly data covering the
period 31.11.1994 to 30.09.2017.

The traceplot for the first prediction is presented in Figure 5.6. The traceplot has one row
for each parameter α, βi, and σ. The left side of the traceplot presents the distribution of
the parameter. For each of these graphs, each line represents one chain. The right hand side
of the traceplot is used to evaluate whether the MCMC model has explored the parameter
space adequately. In this case, all chains converge to the same distribution, and all seem to
have explored the parameter space evenly.

Figure 5.7 compares all predicted returns to actual realized returns. In most cases, actual
realized returns are within one standard deviation of predicted returns, however realized
returns clearly show much more variation than predicted returns. For example, several
consecutive months in 2008 have very similar and stable predictions, while actual realized
returns for those months are either very positive or very negative.

Table 5.7 presents the first two moments of the distributions of real and predicted returns
over the same period. While both distributions have similar means, the standard deviation
of real returns is over 12%, while the standard deviation of predicted returns is only 4.9%.

The Kolmogorov-Smirnov test (Simard and L’Ecuyer, 2011) is used to test whether two
samples come from the same distribution. The result of this test yields a p-value of the order
of 10−6, resulting in the rejection the null hypothesis, at 5% significance level, that the two
samples do in fact come from the same distribution.

Even if individual predictions different from realized returns, perhaps the errors cancel each
other out over longer periods, and predictions could be useful. Comparing the performance
of a notional portfolio having returns equal to the predictions, to a portfolio with returns
equal to realized returns may help investigate this question.
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Figure 5.6: The traceplot related to the training of the linear regression model for the first data point,
on 30.07.1999. The left hand side of the figure shows that all chains converged to the
same distribution for the parameter values. The right hand side of the traceplot shows
the MCMC model has explored the parameter space evenly.

As the period used in this research included at least two unusual sub-periods: the dot-com
bubble which ended in 2000, and the financial crisis of 2008, Figure 5.8 compares the
relative performance of a real and a notional portfolio, breaking down the investment period
by resetting the value of the portfolio to 100USDon 31.12.2002, 31.12.2007, and 31.12.2009
in order to explore the relative performance during these periods. This breakdown would
suggest that there are in fact no periods during which the simple linear regression model
based on the factors used in this section would provide predicted returns which would be
useful in a Black-Litterman model.
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Figure 5.7: This chart compares all predicted returns to actual realized returns for the linear re-
gression model from 30.07.1999 to 30.09.2017, with bars indicating +/- 1 standard
deviation. In most cases, actual realized returns are within one standard deviation of
predicted returns, however realized returns clearly show much more variation than pre-
dicted returns. For example, several consecutive months in 2008 have very similar and
stable predictions, while actual realized returns for those months are either very positive
or very negative.

Data Real Data Prediction

Mean .030 .035
Standard Distribution 0.122 0.046

Table 5.8: This table presents the first two moments of the distributions of real and predicted returns
of the AR(1) model over the same period. While both distributions have similar means,
the standard deviation of real returns is over 12%, while the standard deviation of predicted
returns is only 4.6%.

5.6.2 AR1
The model specified in Section 5.5.4 was implemented using monthly data covering the
period 31.11.1994 to 30.09.2017.

The traceplot for the first prediction is presented in Figure 5.9. For all parameters, the
traceplot shows that the parameter space has been search evenly, and that all chains converge
to similar distributions.

Figure 5.10 compares all predicted returns to actual realized returns. In most cases, actual
realized returns are within one standard deviation of predicted returns, however realized
returns again show much more variation than predicted returns.
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Figure 5.8: This graph compares the relative performance of a real and a notional portfolio, breaking
down the investment period by resetting the value of the portfolio to 100 USD on
31.12.2002, 31.12.2007, and 31.12.2009 in order to explore the relative performance
during these periods. This breakdown would suggest that there are in fact no periods
during which the simple linear regression model based on the factors used in this section
would provide predicted returns which would be useful in a Black-Litterman model.

Table 5.8 presents the first two moments of the distributions of real and predicted returns
over the same period. While both distributions have similar means, the standard deviation
of real returns is over 12%, while the standard deviation of predicted returns is only 4.6%.

The result of the Kolmogorov-Smirnov test again yields a p-value of the order of 10−6,
resulting in the rejection the null hypothesis, at 5% significance level, that the two samples
do in fact come from the same distribution.

Figure 5.11 compares the relative performance of a real and a notional portfolio, breaking
down the investment period by setting the value of the portfolio to 100 USD on 31.12.2002,
31.12.2007, and 31.12.2009 in order to explore the relative performance during these periods.
This breakdownwould suggest that there are in fact no periods duringwhich theAR(1)model
based on the factors used in this section would provide predicted returns which would be
useful in a Black-Litterman model.

5.6.3 GARCH(1,1)
The model specified in Section 5.5.5 was implemented and trained on monthly data from
30.11.1994 to 30.09.2017. Predictions were performed for each month from 30.07.1999 to
30.09.2017. Each prediction was performed using a model which was trained on the latest
54 months. 4 chains of 6,000 samples each were generated, for a total of 24,000 samples.
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Figure 5.9: The traceplot related to the training of the AR(1) model for the first data point, on
30.07.1999. The left hand side of the figure shows that all chains converged to the same
distribution for the parameter values. The right hand side of the traceplot shows the
MCMC model has explored the parameter space evenly.
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Figure 5.10: This chart compares all predicted returns to actual realized returns for the AR(1) model
from 30.07.1999 to 30.09.2017, with bars indicating +/- 1 standard deviation. In most
cases, actual realized returns are within one standard deviation of predicted returns,
however realized returns again show more variation than predicted returns.
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Figure 5.11: AR(1) - performance breakdown by sub-period. This graph compares the relative
performance of a real and a notional portfolio, breaking down the investment period
by resetting the value of the portfolio to 100 USD on 31.12.2002, 31.12.2007, and
31.12.2009 in order to explore the relative performance during these periods. This
breakdown would suggest that there are in fact no periods during which the AR(1)
model based on the factors used in this section would provide predicted returns which
would be useful in a Black-Litterman model.



5.6. RESULTS 90

Data Real Data Prediction

Mean 0.030 0.033
Standard Distribution 0.122 0.046
Spearman Correlation -0.076

Table 5.9: This table presents the first two moments of the distributions of real and predicted returns
of the GARCH(1,1) model over the same period. While both distributions have similar
means, the standard deviation of real returns is over 12%, while the standard deviation of
predicted returns is only 4.6%.

1,000 samples per chain were generated for tuning and discarded.

The traceplot for the first prediction is presented in Figure 5.12. The left hand side of the
traceplot shows that all chains converge to the same distributions for each parameter. The
right hand side of the traceplot shows that the parameter spaces have been explored evenly.

Figure 5.13 compares all predicted returns to actual realized returns. In most cases, actual
realized returns are outside of one standard deviation of predicted returns. GARCH(1,1)
underestimates the uncertainty in the prediction.

Table 5.9 presents the first two moments of the distributions of real and predicted returns
over the same period. While both distributions have similar means, the standard deviation of
real returns is around 12%, while the standard deviation of predicted returns is much lower,
at 4.6%.

The result of the Kolmogorov-Smirnov test yields a p-value of the order of 10−7, resulting
in the rejection of the null hypothesis, at 5% significance level, that the two samples do in
fact come from the same distribution.

Figure 5.14 compares the relative performance of a real and a notional portfolio, breaking
down the investment period by setting the value of the portfolio to 100 USD on 31.12.2002,
31.12.2007, and 31.12.2009 in order to explore the relative performance during these periods.
This breakdown does not clearly provide evidence that the prediction returns obtained using
the GARCH(1,1) model are not useful in predicting real returns, as the performance of the
real and the notional portfolio bear a certain resemblance. Nevertheless, the correlation
coefficient between the two series is very low, and in fact negative, at -0.076.

5.6.4 EGARCH(1,1)
The model specified in Section 5.5.6 was implemented and trained on monthly data from
30.11.1994 to 30.09.2017. Predictions were performed for each month from 30.07.1999 to
30.09.2017. Each prediction was performed using a model which was trained on the latest
54 months. 4 chains of 6,000 samples each were generated, for a total of 24,000 samples.
1,000 samples per chain were generated for tuning and discarded. Training one stock for
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Figure 5.12: The traceplot related to the training of the GARCH(1,1) model for the first data point,
on 30.07.1999. The left hand side of the figure shows that all chains converged to the
same distribution for the parameter values. The right hand side of the traceplot shows
the MCMC model has explored the parameter space evenly.
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Figure 5.13: This chart compares all predicted returns to actual realized returns for the GARCH(1,1)
model from 30.07.1999 to 30.09.2017, with bars indicating +/- 1 standard deviation.
In most cases, actual realized returns are outside of one standard deviation of predicted
returns. GARCH(1,1) underestimates the uncertainty in the prediction.

one prediction took approximately 20 minutes on average.

Data Real Data Prediction

Mean 0.030 0.033
Standard Distribution 0.122 0.041
Spearman Correlation -0.026

Table 5.10: This table presents the first twomoments of the distributions of real and predicted returns
of the EGARCH(1,1) model over the same period. While both distributions have similar
means, the standard deviation of real returns is over 12%, while the standard deviation
of predicted returns is only 4.1%.

The traceplot for the first prediction is presented in Figure 5.15. The left hand side of
the traceplot shows that some chains did not converge to the same distributions for each
parameter. In addition, the right hand side of the traceplot shows that the parameter spaces
have not been explored evenly. The use of a larger number of samples to tune the model was
explored. Results are presented in Appendix E resolved these issues but required a very long
time and resulted in similar predictions. For these reasons, results based on more limited
tuning were retained.

Figure 5.16 compares all predicted returns to actual realized returns. Most realized returns
lie outside of one standard deviation from predicted returns. EGARCH(1,1) underestimates
the uncertainty of predictions.
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Figure 5.14: GARCH(1,1) - performance breakdown by sub-period. This graph compares the
relative performance of a real and a notional portfolio, breaking down the investment
period by setting the value of the portfolio to 100 USD on 31.12.2002, 31.12.2007,
and 31.12.2009 in order to explore the relative performance during these periods. This
breakdown does not clearly provide evidence that the prediction returns obtained using
the GARCH(1,1) model are not useful in predicting real returns, as the performance
of the real and the notional portfolio bear a certain resemblance. Nevertheless, the
correlation coefficient between the two series is very low, and in fact negative, at
-0.076.

Table 5.10 presents the first two moments of the distributions of real and predicted returns
over the same period. While both distributions have similar means, the standard deviation of
real returns is around 12%, while the standard deviation of predicted returns is much lower,
at 4.1%.

The result of the Kolmogorov-Smirnov test yields a p-value of the order of 10−9, resulting
in the rejection of the null hypothesis, at 5% significance level, that the two samples do in
fact come from the same distribution.

Figure 5.17 compares the relative performance of a real and a notional portfolio, breaking
down the investment period by setting the value of the portfolio to 100 USD on 31.12.2002,
31.12.2007, and 31.12.2009 in order to explore the relative performance during these pe-
riods. This breakdown would suggest that there are in fact no periods during which the
EGARCH(1,1) model based on the factors used in this section would provide predicted re-
turns which would be useful in a Black-Litterman model. In fact the correlation coefficient
of the two series is very small and negative, -0.026.
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5.6.5 EGARCH-M(1,1)
The model specified in Section 5.5.7 was implemented and trained on monthly data from
30.11.1994 to 30.09.2017. Predictions were performed for each month from 30.07.1999 to
30.09.2017. Each prediction was performed using a model which was trained on the latest
54 months. 4 chains of 6,000 samples each were generated, for a total of 24,000 samples.
3,000 samples per chain were generated for tuning and discarded. Training was slow as there
were frequent errors as described in Section 5.5.1. In these cases, training was launched
once again until it completed without error. One single month for one stock took up to
approximately 75 minutes on the computer used for testing.

The traceplot for the first prediction is presented in Figure 5.18. The left hand side of the
traceplot shows that, even with the relatively limited samples size used to tune the model,
all chains converge to the same distributions for each parameter. The right hand side of the
traceplot shows that the parameter spaces have been explored reasonably evenly. Although,
as discussed in Appendix E, increasing the number of samples used for tuningwould improve
the traceplots, the increase in training time required to do so would be prohibitive. As the
predictions using fewer samples for tuning appear to be similar to those obtained with a
larger number of samples, this approach was retained.

Figure 5.19 compares all predicted returns to actual realized returns. Many realized returns
lie within one standard deviation from predicted returns. EGARCHM(1,1) better estimates
the uncertainty of predictions than previous models. The bar chart does, however, identify
four severe outliers: a negative return of 65% is predicted on the 31.05.2013, a negative
return of 70% is predicted on the 31.01.2014, -59% on 31.05.2016, and -62% on 30.06.2016.

Data Real Data Prediction

Mean 0.030 0.02
Standard Distribution 0.122 0.112
Spearman Correlation -.062

Table 5.11: This table presents the first twomoments of the distributions of real and predicted returns
of the EGARCH-M(1,1) model over the same period. Both distributions have similar
means and standard deviations. Nevertheless the result of the Kolmogorov-Smirnov test
yields a p-value of the order of 10−5, resulting in the rejection of the null hypothesis, at
5% significance level, that the two samples do in fact come from the same distribution.

The size of these negative returns is not unrealistic, as there actually was a month with
negative returns of 59% in early 2000. However the frequency with which these negative
returns are predicted is unrealistic, in addition to being incorrect. In practice, a review of
outlier predictions would be required.

Table 5.11 presents the first two moments of the distributions of real and predicted returns
over the same period. Both distributions have similar means and standard deviations.
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Nevertheless the result of the Kolmogorov-Smirnov test yields a p-value of the order of
10−5, resulting in the rejection of the null hypothesis, at 5% significance level, that the two
samples do in fact come from the same distribution.

Figure 5.20 compares the relative performance of a real and a notional portfolio, breaking
down the investment period by setting the value of the portfolio to 100 USD on 31.12.2002,
31.12.2007, and 31.12.2009 in order to explore the relative performance during these periods.
The graph in the last period is strongly affected by the outlier predictions discussed above.
This breakdown would suggest that there are in fact no periods during which the EGARCH-
M(1,1) model based on the factors used in this section would provide predicted returns
which would be useful in a Black-Litterman model. In fact the correlation coefficient of the
two series is small and negative, -0.062.

5.7 Summary
The main objective of this experiment was to build and explore different models for a
Bayesian network to generate views for a Black-Litterman asset allocation model, and to
develop tools to understand and evaluate the predictions.

Different Bayesian networks were built using AR(1), GARCH(1,1), EGARCH(1,1), and
EGARCHM(1,1) models.

The models were tested against synthetic data created in Excel. In all cases, it was possible
to recover the known values of model parameters in using the Bayesian networks, leading to
the conclusion that the models were correctly implemented.

The models were then used to predict the returns on AAPL stocks. All Bayesian networks
were constructed using the same factors. Results did not clearly indicate that any model
would be useful in generating views for a Black-Litterman model.

In no case was it possible to provide evidence that predicted returns and realized returns
were similarly distributed. Correlation coefficients between the predicted and realized
returns were low and even negative.

In most cases, the models failed to correctly estimate the uncertainty in the prediction. This
is important as the uncertainty of the prediction is a direct input into the Black-Litterman
model. Exceptions were the linear regression, AR(1), and EGARCHM(1,1) models.

5.8 Discussion
In this experiment, Bayesian networks were implemented using a number of different func-
tional forms for the relationship between factors and returns. Predictions of returns using
these models may be improved through a better selection of factors and an increase in the
number of samples generated to tune the model. This must be performed in such a way that
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inference remains possible in a reasonable time period.

Increasing the number of factors used could result in better predictions. The likelihood of
finding factors on which the returns of a given stock are conditionally dependent increases
when a broader range of factors are considered. The cost is an increase in training time.

Increasing the number of samples used to tune the model has been shown to result in a
better search through the parameter space for an EGARCH model. This may result in better
predictions. The cost is an additional increase in training time.

Training for one data point made use of four cores on the computer and took between 15
and 75 minutes. Training one stock for 218 dates took up to 12 days on a machine with 4
cores. Applying this same model to 100 the equities in the NASDAQ would be beyond the
scope of this thesis. Increasing either the number of factors used or the number of samples
for tuning would further increase training times. There are several possible solutions which,
used together, may reduce this issue.

First, the number of equities considered for inclusion in the portfolio could be reduced to
a subset of the 100 equities in the NASDAQ. One approach could be to include as many
equities as possible, subject to time constraints. It should be noted that regulatory or other
constraints, not considered further in this research, may dictate a lower limit on the number
of equities in the portfolio to ensure sufficient diversification.

Second, training could be performed on a high performance cluster. This research will make
use of the UCL Cluster.

Third, it may be possible to select better priors. One problem was that training produced
errors which required the initiation of a new training sessions. One hypothesis is that training
sometimes explored a parameter space resulting in over/underflows which were avoided in
other training sessions. Selecting better priors which avoid this parameter space may be
possible.

Fourth, the size of the Bayesian network could be reduced through dimensionality reduction
applied to the factors. Algorithms exist which could help reduce a broader range of factors
to a smaller number of relevant features. This is further considered in Section 6.3.1.3.

While the main objectives of this experiment were met, further research is required in order
to build Bayesian networkswhich better predict returns as well as estimates of the uncertainty
of the predictions.
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Figure 5.15: The traceplot related to the training of the EGARCH(1,1) model for the first data point,
on 30.07.1999. The left hand side of the traceplot shows that some chains did not
converge to the same distributions for each parameter. The right hand side of the
traceplot shows that the parameter spaces have not been explored evenly. The use of a
larger number of samples to tune the model resolved these issues but required a very
long time and resulted in similar predictions. Results based on more limited tuning
were therefore retained.
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Figure 5.16: This chart compares all predicted returns to actual realized returns for the
EGARCH(1,1) model from 30.07.1999 to 30.09.2017, with bars indicating +/- 1 stan-
dard deviation. In most cases, actual realized returns are outside of one standard
deviation of predicted returns. EGARCH(1,1) underestimates the uncertainty in the
prediction.
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Figure 5.17: EGARCH(1,1) - performance breakdown by sub-period. This graph compares the
relative performance of a real and a notional portfolio, breaking down the investment
period by setting the value of the portfolio to 100 USD on 31.12.2002, 31.12.2007,
and 31.12.2009 in order to explore the relative performance during these periods.
This breakdown would suggest that there are in fact no periods during which the
EGARCH(1,1) model based on the factors used in this section would provide predicted
returns which would be useful in a Black-Litterman model. In fact the correlation
coefficient of the two series is very small and negative, -0.026.
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Figure 5.18: The traceplot related to the training of the EGARCH-M(1,1) model for the first data
point, on 30.07.1999. The left hand side of the traceplot shows that, even with the
relatively limited samples size used to tune the model, all chains converge to the same
distributions for each parameter. The right hand side of the traceplot shows that the
parameter spaces have been explored reasonably evenly.
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Figure 5.19: This chart compares all predicted returns to actual realized returns for the EGARCH-
M(1,1) model from 30.07.1999 to 30.09.2017, with bars indicating +/- 1 standard
deviation. Many realized returns lie within one standard deviation from predicted
returns. EGARCHM(1,1) better estimates the uncertainty of predictions than previous
models. The bar chart does, however, identify four severe outliers: a negative return
of 65% is predicted on the 31.05.2013, a negative return of 70% is predicted on the
31.01.2014, -59% on 31.05.2016, and -62% on 30.06.2016.
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Figure 5.20: EGARCH-M(1,1) - performance breakdown by sub-period. This graph compares the
relative performance of a real and a notional portfolio, breaking down the investment
period by setting the value of the portfolio to 100 USD on 31.12.2002, 31.12.2007, and
31.12.2009 in order to explore the relative performance during these periods. The graph
in the last period is strongly affected by the outlier predictions discussed above. This
breakdown would suggest that there are in fact no periods during which the EGARCH-
M(1,1) model based on the factors used in this section would provide predicted returns
which would be useful in a Black-Litterman model. In fact the correlation coefficient
of the two series is small and negative, -0.062.
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Chapter 6

Algorithmic Asset Management System

This experiment compares the performance of portfolios generated based on
views produced by different algorithms to the performance of a benchmark.
The views are generated using six algorithms: standard GARCH, standard
EGARCH, standard EGARCHM, Bayesian GARCH, Bayesian EGARCH, and
Bayesian EGARCHM. The views are used in a standard Black-Litterman portfo-
lio optimization model developed in Experiment 1. The benchmark is a neutral
portfolio constructed without views. A portfolio with equal weights is also
constructed. This experiment finalizes the scientific analysis platform begun in
the first experiment.

6.1 Introduction
This experiment aims to determine whether views generated using a Bayesian network can
be useful in portfolio construction using a final version of the scientific analysis platform
used throughout this thesis. It will compare the performance of portfolios created using a
Black-Litterman model with views generated using a Bayesian networks based on various
models representing the relationship between factors and equity returns to the returns on a
neutral portfolio. A portfolio with equal weights will also be constructed.

This experiment will consider portfolios invested over the three year period from 31 July
2016 to 1 August 2019 and rebalanced on a daily basis. Daily returns from earlier periods
will be considered in training as required.

6.2 Aims and Objectives
The ultimate aim of this experiment is to backtest a Black-Litterman model using views
generated from a Bayesian network using only data available at time of trade, and to evaluate
the performance of the resulting portfolios using a final version of the scientific analysis
platform developed throughout this thesis.



6.3. BACKGROUND 104

The first objective is to enhance and finalize the scientific analysis platform.

The second objective is to implement and backtest a Black-Litterman model to develop sev-
eral portfolios, each based on a different Bayesian network using only information available
at time of trade.

The third objective is to evaluate the performance of these portfolios within the platform.

6.3 Background
6.3.1 Dimensionality Reduction
The QQQ index is made up of around 100 equities1. Hundreds of different factors can be
used to forecast equity returns. Creating a number of models which predict the returns of
100 equities using all potentially available factors would be intractable. Dimensionality
reduction is the process of reducing the set of factors used in prediction. It will be used to
inform on the core set of equities which can be used to model the QQQ index. It will also
be used to select which factors are “best”.

Generally, dimensionality reduction can be performed by selecting a subset of all factors, or
by extracting a (smaller) set of relevant features from all factors .

6.3.1.1 Factor Selection
Selecting 10 equities to represent the NASDAQ-100 is not considered a critical process.
Listing all possible sets of 10 equities and selecting the set which has, as a market-weighted
portfolio, the highest correlation with the Index would in principle work, but would neces-
sitate the calculation of correlations on around 1019 sets, which is intractable. A factor
selection approach will be used instead.

Three approaches to factor selection include wrapper methods, filter methods, and embedded
methods (Chandrashekar and Sahin, 2013). A filter method ranks available factors using an
appropriate criterion.

Possible approaches to ranking the 100 equities include ordering by market capitalization or
correlation with the Index. This experiment will rank each equity based upon the correlation
of equity returns with the returns of the QQQ ETF, over the period being considered and
retain 10 equities. This relatively simple approach is selected for several reasons. It is
expected to give a reasonable proxy for the ETF, it is also simple, objective, and easily
implemented.

6.3.1.2 Feature Extraction
Selecting a subset of factors is expected to be important to this experiment.

1The actual number of equities varies. As at 15.08.2019, there are 103 equities in the Index https:
//en.wikipedia.org/wiki/NASDAQ-100.

https://en.wikipedia.org/wiki/NASDAQ-100
https://en.wikipedia.org/wiki/NASDAQ-100
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One approach could be to consider all possible subsets of factors and train each model for
each equity on each set in order to select the subset which provides the best prediction,
however this is intractable.

Feature extraction consists in transforming a large number of available factors into a smaller
set of uncorrelated features which retain most of the information present in the initial
factors. Many approaches can be considered (Ding et al., 2012). Principal Component
Analysis (PCA) will be used in this experiment (Jolliffe, 2002).

6.3.1.3 Principal Component Analysis
PCA is an unsupervised learning algorithm to transform the space of factors into a feature
space of fewer dimensions which retains asmuch of the initial variance as desired. It does not
take into consideration the model used, and so will not select those factors most significant
for a given model. It can in this sense be considered model neutral, which may be desirable
at this stage in order to compare the performance of models.

For a set of n factors x, the algorithm looks for a succession of m uncorrelated linear
functions a′ix having maximum variance, where 0 < i ≤ m

a′ix =
n∑
j=1

aijxj . (6.1)

The linear functions a′ix are the principal components. The ideal outcome is that most of
the variance of x will be explained bym� n principal components.

The a’s are found by looking at the covariance matrix Σ of the dataset. The ith principal
component is given by zi = a

′
ix where ai is an eigenvector of Σ corresponding to its ith

largest eigenvalue.

6.3.2 Performance Measurement
In comparing the performance of different portfolios, both the returns of the portfolios and
their risk must be taken into consideration. For example, given portfolios with similar
returns, investors would prefer the one with lower risk.

6.3.2.1 Sharpe Ratio
Sharpe (Sharpe, 1966, 1994) proposed the following Ex Post ratio S in order to compare a
portfolio to a benchmark

S = µ/σ (6.2)

µ =
1

N

N∑
n=1

µn (6.3)

µn = Rn −Bn, (6.4)
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whereRn andBn are the realized and benchmark returns respectively, and σ is the standard
deviation σ2 =

∑
n(µn − µ)2/(N − 1) over the period.

The best estimator of S, Ŝ, is also of this form (Lo, 2002).

The Sharpe ratio is generally presented based on annual returns. If it is calculated based on
daily IID returns, one approach would be to simply multiply it by

√
252, as there are 252

trading days in a year and returns, the numerator in Equation (6.3.2.1), increase linearly with
t whereas σ, the denominator, increases as the

√
t. Lo (2002) argues that, given the fact that

market returns are not IID, this approach is misleading. For this reason, the Sharpe Ratio
will generally not be annualized. Results will be useful for this research but not comparable
to data generally available on other funds or investments.

The Standard Error (Lo, 2002) in the estimation of the Sharpe Ratio will be estimated as

SE =

√
1 + Ŝ2

2

T
. (6.5)

The 95% confidence interval around Ŝ is given by

Ŝ ± 1.96

√
1 + Ŝ2

2

T
. (6.6)

6.3.2.2 Modigliani Risk-Adjusted Performance

Modigliani risk-adjusted performance (Modigliani and Leah, 1997), M2, is similar to the
Sharpe Ratio, with the advantage of being more intuitive as it is expressed in terms of %
returns. It is defined as

M2 = SσB, (6.7)

where S is calculated using the excess returns over Rf , the average risk-free rate for the
period under consideration, and σB is the standard deviation of the benchmark portfolio.

6.3.2.3 Herfindahl-Hirschman Index

The Herfindahl-Hirschman Index (Rhoades, 1993) (HHI) is a measure of concentration.
Typically defined based on market concentration of firms, it is used in this thesis to explore
the extent to which portfolios are giving higher weights to a smaller subset of equities. For
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a portfolio of N equities, it is defined as

H =
∑
n

ω2
n. (6.8)

The HHI will range from 1/N , if each equity has an equal weight, to 1 if only one equity is
given a weight of 100%.

The Participation Ratio, defined as 1/H , gives an intuition of the number of equities in
which the portfolio is concentrated, and can range from 1 to N .

6.4 Design
In order to meet the aims and objectives defined in Section 6.2, this experiment will be
designed as follows:

First, select a set of 10 equities as a proxy to the around 100 equities in the NASDAQ-100
Index using factor selection as described in Section 6.3.1.1.

Second, define and justify a relatively broad range of potential factors, and extract the most
interesting features of this set as described in Section 6.3.1.2. Data relating to the factors
must be available at time of trade.

Third, generate views based on:

1. a traditional statistical GARCH model (S-GARCH)
2. a traditional statistical EGARCH model (S-EGARCH)
3. a traditional statistical EGARCHM model (S-EGARCHM)
4. a Bayesian network using a GARCH model (B-GARCH)
5. a Bayesian network using an EGARCH model (B-EGARCH)
6. a Bayesian network using an EGARCHM model (B-EGARCHM)

The result is six time series of {expected return, variance of expected return} pairs.

Fourth, implement and backtest an equal-weighted portfolio, a Black-Litterman portfolio
with no views, and six Black-Litterman portfolios based on the views generated previously.
The result will be eight time series of portfolio returns.

Fifth, compare the portfolio returns. Include a comparison to the returns of the QQQ Index
to provide an intuition that the overall returns are reasonable.

6.5 Implementation
This experiment implements the platform first presented in Section 3.3. Each component
of the platform can be developed and modified separately. A detailed view of the scientific
platform implemented in this experiment is presented in Figure 6.1. Each component is
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Figure 6.1: This is a detailed view of the platform, first presented in Section 3.3, which is im-
plemented in this experiment. Each component of the platform can be developed and
modified separately. Details are discussed in Section 6.5.

discussed in the following sections. All analysis is based on audit trails and reports which
are automatically produced by the platform.

6.5.1 Selecting Subset of Equities
As discussed in Section 6.3.1, a small number of equities must be selected from those in the
NASDAQ-100 Index, in order to keep the computation times reasonable. Equities will be
ranked based upon the correlation of their daily returns to the daily returns of the QQQ ETF.

The objective is not to pre-select equities which outperform the Index, but to select a set of
equities which is representative. The process may however introduce bias, for example if it
systematically omits those securities with low correlations to the returns of the ETF due to
the fact that they performed very poorly in the period under review while the ETF performed
very well overall.

The correlation between the daily returns on the QQQ ETF and each equity in the Index
was calculated once: over the period from 31/07/2015 to 31/07/2016. The 10 equities with
the correlations above 0.7260 were selected. They are listed in Table 6.1. HSIC had the
lowest correlation with the index over the period, 0.7260, and MSFT the highest, 0.8181.
AMZN had the highest mean daily returns, 0.0017 and AAPL the lowest, with -0.0003.
Portfolio construction and back testing was performed over the period from 31/07/2016 to
01/08/2019.

6.5.2 Selecting Features from Factors
6.5.2.1 Selected Factors
A large number of factors have been used in research on equity returns (Beach and Orlov,
2007; Harvey et al., 2014). These factors include those based on quantitative data such
as oil prices, and those based on qualitative data such as news or other unstructured data.
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Ticker Mean Returns Standard Deviation Correlation to QQQ

QQQ 0.0003 0.0131 1.0000
AAPL -0.0003 0.0189 0.7473
ADP 0.0006 0.0134 0.7640
AMGN 0.0002 0.0184 0.7789
AMZN 0.0017 0.0218 0.7424
FISV 0.0010 0.0128 0.8079
GOOG 0.0010 0.0178 0.7679
GOOGL 0.0009 0.0173 0.7919
HSIC 0.0009 0.0125 0.7260
MSFT 0.0010 0.0169 0.8181
SBUX 0.0002 0.0160 0.7722

Table 6.1: Portfolios were constructed with the ten equities with the highest correlations with the
NASDAQ-100 Index over the period from 31/07/2015 to 31/07/2016. Portfolio construc-
tion and back-testing was performed over the period from 31/07/2016 to 01/08/2019.

Although news data could be useful in predicting equity returns, defining metrics based on
news is a complex subject in its own right. This thesis will focus on quantitative data for
practical reasons.

The time required for training Bayesian networks depends strongly upon the number of
factors used. In order to reduce computation time to a reasonable time period, given the
fact that training will be performed for 10 equities and 252 dates, a subset of the factors that
have been used in research is selected, and a small set of features is extracted from these
factors.Preliminary testing indicates that feature extraction using PCA is rapid - around 1
second per data point - and can be recalculated at each point prior to predictions.

The set of features may be different for each equity. The set of factors which are significant
could be expected to change over time, as different factors becomemore relevant than others,
and so the set of features to be extracted would also vary with time. For example, interest
rates may be important at some point, and news on trade more significant at other times.

In many cases, daily data will not be available for a factor. One approach in dealing with
missing data could be to recalculate factors using, for example, interpolation. This approach
is rejected as it could not be used in actual trading. Another approach could be to predict the
missing factors using historical data. In this thesis, factors are only considered if daily data
can be obtained for that factor. In some cases, a proxy such as an ETF for the factor may be
included. Preference will be given to factors for which data is available from the markets, as
this is transparent and objective data. The list of selected factors is presented in Table 6.2.

Beach and Orlov (2007) used EGARCHM(1,1) to create views for Black-Litterman models
using the growth in industrial production for industrial countries, inflation, the return on
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the US dollar index relative to major currencies, the difference in the yield on BAA and
AAA bond indexes from Moody’s, the difference in the three-month Eurodollar yield and
the three-month treasury bill yield, the difference in the 10-year treasury bond yield and the
three-month treasury bond yield, and the percentage change in the world spot price of oil.

Data for industrial production is not available on a daily basis. No proxy was found.

Data for inflation is not available on a daily basis. An ETF, RINF, which tracks the spread
between US Treasury inflation-protected securities and US Treasurys of equal maturity, can
in principle be used as a proxy for inflation. However, assets under management of the
ETF are only around 50 MUSD, which leads to reduced liquidity and therefore potential
mispricing relative to inflation. Fees are relatively high due to the fact that the strategy
requires short positions in US Treasurys. In spite of these issues, the ETF will be included
in the list of selected factors.

The return on the USD relative to other major currencies appears intuitively as an interesting
factor. This could be modelled as the difference between interest rates USD Treasuries and
the government bonds of other major currencies. As the feature extraction would model
differences between factors if they are relevant, it is considered more useful to include both
instruments as factors. As interest rates are inversely related to the prices of bonds, ETFs
and indices tracking the prices of treasuries and international treasury bonds were included.

The world spot price of oil was considered using the BNO ETF. The price of Gold was also
included.

Harvey et al. (2014) lists 316 different factors broken down into different risk types: fi-
nancial, macro, microstructure, behavioural, accounting, and other. Volatility, liquidity,
momentum, sentiment, short sale restrictions, media coverage, PE ratio, intangibles, and
political campaign contributions are examples of factors which could be considered.

Market volatility can be included with the VIX Index. Volatility of the equity itself is
available from market data suppliers as “Option Implied Volatility”.

Many measures of liquidity exist, some simple such as the bid-ask spread, some more
complex (Fong, Holden, and Trzcinka, 2017). A summary statistic for this measure is not
readily available. Daily trading volume will be taken as a pragmatic and simple proxy for
liquidity.

Momentummay bemodelled by taking into consideration the six-month return on the equity.

Historical data for other data such as sentiment and financial ratios is not readily available
at this time.
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Identifier Details Proxy for

RINF ProShares Inflation Expectations ETF Inflation
USTTEN ICE US 10 Year Treasury Futures Index US 10 Year Treasury
IGOV iShares International Treasury Bond Return on major currencies
BNO United States Brent Oil Fund Oil ETF
IRX CBOE Interest Rate Composite Index 13 Week Treasury Bill
TNX CBOE Interest Rate 10 Year Note 10 Year Teasury Note
GLD SPDR Gold Shares Gold ETF
VIX CBOE Volatility index Market volatility

Volume Trading volume ×Market Price Liquidity
OIV Option Implied Volatility Equity specific volatility
Momentum Market Value Today / Market Value 6 months earlier - 1 Momentum

Table 6.2: These are the factors which were selected. A broad range of factors that have been
used in research on equity returns in Harvey et al. (2014) and Beach and Orlov (2007)
were considered. Selection was made by focusing on quantitative factors for which daily
market data could be obtained either for the factor itself or for a proxy such as an ETF for
the factor.

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

#Following line is external code which returns a pandas DataFrame with the
factors.

factors = get_factors_dataframe()
scaled_factors = StandardScaler().fit_transform(factors)
pca = PCA(0.95)
principal_components = pca.fit_transform(scaled_factors)
features = principal_components

Listing 6.1: PCA with scikit-learn

6.5.2.2 Feature Extraction
In order to extract a smaller number of relevant features from the factors listed in Table 6.2,
a Principal Component Analysis is performed.

Using scikit-learn in python, the process is presented in Listing 6.1. The procedure requires
that data be normalized with mean of 0 and variance of 1. This process in itself may speed
up training of the Bayesian networks. The implementation requires that 95% of the variance
in the original factors be explained by the Principal Components. These are returned in a
Numpy array.

Preliminary testing indicates that between 6 and 7 features are extracted from the 11 factors
in Table 6.2 when using 1 year of data.

6.5.3 Generate Views
Views, consisting of predicted returns and variance, are produced for every working day
over the three year period from 31/07/2016 to 01/08/2019. Previous periods are used as
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required, for example for training or calculation of six-month momentum.

Traditional GARCH, EGARCH and EGARCHM models are created using the arch2 python
package.

For each prediction, PCA is run over the 3 months prior to the prediction. The resulting
features are used as inputs to a Bayesian network. Training of the Bayesian network is over
a one year period prior to prediction.

At times statistical EGARCH and EGARCHM did not converge. On those points, statistical
GARCH was used for prediction.

In the statistical package, the volatility equations did not make use of features (external
regressors). Only EGARCHM made use of features in predicting returns.

6.5.4 Generate Portfolios
The views generated in Section 6.5.3 were combined with equity market weights in a
Black-Litterman model to generate portfolios for each day in the period from 31/07/2016 to
01/08/2019.

The Black-Litterman model described in Section 2.3.3 combines implicit market expected
returns with predicted returns using a measure of uncertainty of the predicted returns. More
importance is given to predicted returns if uncertainty is close to zero. More importance is
given to market expected returns if uncertainty is high.

A very low level of uncertainty, in addition to reflecting a level of confidence in the predicted
return which may be unrealistic, reduces the advantages of the Black-Litterman model over
the simpleMean Variance model presented in Section 2.3.1. In particular, a very low level of
uncertainty sometimes results in extremely large long and short positions being taken. It was
found empirically that a minimum value of uncertainty of 0.1 was desirable. Uncertainty
above 1.0 was found to have little impact. In these cases, market expected returns were
given overwhelming importance. The uncertainty of the views derived in Section 6.5.3 was
therefore cast to the interval [0.1, 1.0].

6.6 Results
6.6.1 Views
Correlations between the predicted and actual returns are presented in Table 6.3. None of
the models predicted returns which had high correlations with actual returns for the equities
considered. In some cases the correlations were negative. Nevertheless, the predictions
may add value when being used to create portfolios, for example if they help identify those
equities which are expected to over or under perform by, for example, correctly ranking

2Kevin Sheppard. (2018, October 3). bashtage/arch: Release 4.6.0 (Version 4.6.0)
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securities in order of increasing performance or identifying outliers.

Details of the statistical properties of return predictions are presented in Table 6.4 and 6.5.
Over the period, ADP and HSIC were the two securities with the highest actual mean return.
With the exception of B-EGARCHM, which estimates a slightly higher return for HSIC,
AAPL, and AMZN relative to most other securities, no other approach seems to rank the
highest performers overall. On the other hand, B-EGARCHM has a mean prediction for
FISV (0.0117) which is far above the mean of realised returns (0.0004). This does not
support the view that the models rank securities in order of increasing returns in order to
overweight those securities with better returns.

An interesting analysis may arise, however, when one combines predicted returns with
the standard deviation of predictions. AAPL is the stock with the fourth highest mean
realized return of 0.0011. All models rank it in their top 3. For example, S-EGARCHM
ranks it highest, although its estimate is only 0.0003, and B-EGARCHM third highest with
an estimate of 0.0017. However, all Bayesian models are much less uncertain about this
estimate than their frequentist counterparts. B-EGARCHM, for example, gives this estimate
the lowest standard deviation of all its own estimates, 0.0086. This could suggest that B-
EGARCHM attributes a certain relative level of confidence in this estimate. S-GARCHM
gives this estimate the second highest standard deviation of all its own estimates, 0.0028.
This may indicate that S-GARCHM is more confident about its other estimates. On the
other hand, most models rank FISV, the actual worst performer with a mean realized return
of 0.0004, favourably. S-EGARCHM ranks it third, B-EGARCHM ranks it first. However,
B-EGARCHM is very uncertain about this estimate: this is the estimate it is the most
uncertain about, with a standard deviation of 0.1545. S-EGARCHM, on the contrary, ranks
the uncertainty with this estimate of returns as ninth. Combining returns and estimates of
uncertainty in a portfolio context may therefore be interesting.

6.6.2 Portfolios
Correlations between the daily returns of the portfolios are presented in Table 6.6. Most
correlations are very high. The lowest correlation is 0.810, between the QQQ Index and
the equal weights portfolio. The highest, excluding the diagonals, is 0.999 between the B-
GARCH and B-GARCHM portfolios. This reflects the fact that the Black-Litterman model
starts with market weights and makes adjustments based on predictions of returns. The fact
that there are only 10 equities in the portfolio, and that these were selected based upon a
high level of historical correlation with the QQQ Index may also explain the fact that even
the daily returns of the Equal Weights portfolios have correlations in excess of 0.8 with
portfolios constructed using the Black-Litterman model.

Participation ratios are presented in Table 6.7. In all cases, most weight is given to five stocks:
AAPL, AMZN, GOOG, GOOGL, and MSFT. This is due to the large difference in market
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Stock S-GARCH S-EGARCH S-EGARCHM B-GARCH B-EGARCH B-EGARCHM

AAPL 0.0207 -0.0606 -0.0687 -0.0237 -0.0606 -0.0687
ADP 0.0028 -0.0108 0.0222 0.0728 -0.0108 0.0222
AMGN -0.0568 -0.0739 -0.0602 -0.0486 -0.0739 -0.0602
AMZN -0.0487 -0.0626 -0.0475 -0.0523 -0.0626 -0.0475
FISV -0.0233 -0.0116 -0.0173 -0.0465 -0.0116 -0.0173
GOOG 0.0118 -0.0494 -0.0476 -0.0330 -0.0494 -0.0476
GOOGL 0.0235 -0.0295 -0.0258 -0.0051 -0.0295 -0.0258
HSIC -0.0113 0.0018 -0.0006 -0.0029 0.0018 -0.0006
MSFT 0.0221 -0.0219 0.0285 0.0346 -0.0219 0.0285
SBUX 0.0174 -0.0001 0.0141 0.0389 -0.0001 0.0141

Table 6.3: This table presents correlations between predicted and actual returns. None of the
models predicted returns which had high correlations with actual returns. Correlations
were sometimes negative. Predictions may nevertheless add value when being used to
create portfolios, for example if they help identify those equities which are expected to
over or under perform.

Stock Actual S-GARCH S-EGARCH S-EGARCHM B-GARCH B-EGARCH B-EGARCHM

AAPL 0.0011 0.0005 0.0006 0.0003 0.0018 0.0017 0.0017
ADP 0.0016 0.0004 0.0003 0.0003 0.0005 0.0004 -0.0000
AMGN 0.0010 0.0002 0.0003 0.0001 -0.0010 -0.0009 -0.0010
AMZN 0.0010 0.0010 0.0010 0.0002 0.0013 0.0016 0.0015
FISV 0.0004 0.0005 0.0003 0.0002 0.0027 0.0072 0.0117
GOOG 0.0013 0.0004 0.0004 0.0000 -0.0010 -0.0005 -0.0007
GOOGL 0.0005 0.0003 0.0003 -0.0000 -0.0011 -0.0007 -0.0009
HSIC 0.0016 0.0002 0.0001 0.0002 -0.0007 0.0006 0.0026
MSFT 0.0007 0.0006 0.0006 0.0001 0.0007 0.0009 0.0006
SBUX 0.0006 0.0004 0.0004 -0.0001 0.0007 0.0001 0.0001

Table 6.4: This table presents the mean values of predicted daily returns. With the exception of
B-EGARCHM, which estimates a slightly higher return for HSIC, AAPL, and AMZN
relative to most other securities, no other approach seems to rank the highest performers
overall. On the other hand, B-EGARCHM has a mean prediction for FISV (0.0117)
which is far above the mean of realised returns (0.0004). This does not support the view
that the models rank securities in order of increasing returns in order to overweight those
securities with better returns.

capitalization between these companies and ADP, AMGN, FISV, HSIC, and SBUX. This
issue could have been addressed by selecting equities with similar market capitalizations.
This may have resulted in portfolios with better participation ratios, at the risk of being
equivalent to selecting a large cap or small cap portfolio approach.

Details of the statistical properties of the portfolios generated using the views in Section
6.6.1 are presented in Table 6.8. Performance is measured using both the Sharpe ratio
presented in Section 6.3.2.1 and the M2 ratio presented in Section 6.3.2.2. In order to
assist intuition, theM2 ratios calculated on daily returns were annualized. Both the Sharpe
ratio and the M2 were calculated using the Federal Funds Rate as the risk-free rate. The
QQQ Index was presented for reference purposes, in order to provide some intuition that the
returns obtained were reasonable. The QQQ Index cannot be used as a benchmark: since
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Stock Actual S-GARCH S-EGARCH S-EGARCHM B-GARCH B-EGARCH B-EGARCHM

AAPL 0.0159 0.0018 0.0020 0.0028 0.0095 0.0080 0.0086
ADP 0.0171 0.0009 0.0009 0.0022 0.0109 0.0143 0.0158
AMGN 0.0130 0.0011 0.0011 0.0027 0.0091 0.0083 0.0091
AMZN 0.0216 0.0020 0.0020 0.0029 0.0117 0.0084 0.0099
FISV 0.0142 0.0011 0.0011 0.0019 0.0233 0.1014 0.1545
GOOG 0.0176 0.0012 0.0015 0.0026 0.0131 0.0094 0.0107
GOOGL 0.0213 0.0012 0.0014 0.0027 0.0138 0.0109 0.0127
HSIC 0.0417 0.0015 0.0017 0.0029 0.0273 0.0154 0.0564
MSFT 0.0143 0.0010 0.0010 0.0023 0.0101 0.0068 0.0093
SBUX 0.0143 0.0009 0.0009 0.0017 0.0093 0.0080 0.0089

Table 6.5: This table presents the standard deviation of predicted daily returns. An interesting
analysis arises when predicted returns in Table 6.4 are combined with the standard
deviation of predictions presented here. Of all its predictions, B-EGARCHM calculates
the highest standard deviation to its least successful prediction, FISV. This is contrary to
the frequentist models, which appear relatively confident in their unsuccessful predictions.
Combining returns and estimates of uncertainty in a portfolio context may therefore be
interesting.

Correlations QQQ No Views Equal Weights S-GARCH B-GARCH S-EGARCH B-EGARCH S-EGARCHM B-EGARCHM

QQQ 1.000 0.950 0.810 0.949 0.947 0.949 0.946 0.949 0.945
No Views 0.950 1.000 0.841 1.000 0.997 1.000 0.998 1.000 0.996
Equal Weights 0.810 0.841 1.000 0.835 0.823 0.835 0.842 0.834 0.830
S-GARCH 0.949 1.000 0.835 1.000 0.997 1.000 0.998 1.000 0.996
B-GARCH 0.947 0.997 0.823 0.997 1.000 0.997 0.996 0.997 0.999
S-EGARCH 0.949 1.000 0.835 1.000 0.997 1.000 0.998 1.000 0.996
B-EGARCH 0.946 0.998 0.842 0.998 0.996 0.998 1.000 0.998 0.997
S-EGARCHM 0.949 1.000 0.834 1.000 0.997 1.000 0.998 1.000 0.996
B-EGARCHM 0.945 0.996 0.830 0.996 0.999 0.996 0.997 0.996 1.000

Table 6.6: This table presents correlations between the daily returns of the portfolios. Most corre-
lations are very high which reflects the fact that the Black-Litterman model starts with
market weights and makes adjustments based on predictions of returns. The fact that
there are only 10 equities in the portfolio, and that these were selected based upon a high
level of historical correlation with the QQQ Index may also explain the fact that even
the daily returns of the Equal Weights portfolios have correlations in excess of 0.8 with
portfolios constructed using the Black-Litterman model.

Statistic No Views S-GARCH B-GARCH S-EGARCH B-EGARCH S-EGARCHM B-EGARCHM

Participation Ratio 5.75 5.57 5.57 5.52 5.57 5.57 5.57

Table 6.7: This table presents participation ratios. In all cases, most weight is given to five stocks:
AAPL, AMZN, GOOG, GOOGL, and MSFT, due to the large difference in market
capitalization between these companies and ADP, AMGN, FISV, HSIC, and SBUX.
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Model Total Return Ŝ SE(Ŝ) P-Value M2

QQQ 62.4% 0.0539 0.0362 18.7%
No Views 87.6% 0.0619 0.0362 21.8%
Equal Weights 92.8% 0.0738 0.0362 <.001 26.4%
S-GARCH 86.2% 0.0606 0.0362 0.46 21.2%
B-GARCH 89.7% 0.0622 0.0362 0.87 21.9%
S-EGARCH 86.6% 0.0607 0.0362 0.49 21.3%
B-EGARCH 81.8% 0.0580 0.0362 0.03 20.2%
S-EGARCHM 86.4% 0.0607 0.0362 0.50 21.3%
B-EGARCHM 86.0% 0.0602 0.0362 0.34 21.1%

Table 6.8: This table presents the statistical properties of portfolio daily returns. The portfolio
with the highest return, Sharpe ratio, and M2 is the Equal Weights portfolio, which
allocates 10% of the portfolio to each equity. The Sharpe Ratio of that portfolio is
significantly different from the Sharpe Ratio of the No Views portfolio at a 5% level. The
B-GARCH portfolio also has a higher Sharpe Ratio than the No Views portfolio, however
the difference is not significantly different at a 5% level.

the portfolios were created using a subset of 10 equities, these may have individually over or
underperformed the index in the period under investigation. A neutral portfolio consisting
of these 10 equities in proportions equal to their market weights, which corresponds to the
No Views portfolio, can however be used.

Total returns on the portfolios are of the same order of magnitude as total returns on the
QQQ index and are therefore considered reasonable. The fact that returns on the QQQ are
far below the returns on some portfolios can be attributed to the fact that the 10 equities
which were selected turned out to have outperformed the index and is not indicative of the
success of any algorithm.

The (annualized) Sharpe Ratio of the QQQ Fund is 0.93 when calculated against the ETF’s
benchmark3. When annualized, the ratio presented in Table 6.8, calculated against the
risk-free rate, is 0.86. The ratios would not be expected to be equal due to the different
approaches used, but the fact that they are similar provides some comfort that the correct
methodology was applied.

Of greater interest is a comparison to the No Views portfolio constructed using a Black-
Litterman algorithm allocating a weight to each equity corresponding to its market capital-
ization.

The portfolio with the highest return, Sharpe ratio, andM2 is the Equal Weights portfolio,
which allocates 10% of the portfolio to each equity. The Sharpe Ratio of that portfolio is
significantly different from the Sharpe Ratio of the No Views portfolio at a 5% level.

3https://screener.fidelity.com/ftgw/etf/goto/snapshot/performance.jhtml?symbols=QQQ
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The B-GARCHportfolio also has a higher Sharpe Ratio than theNoViews portfolio, however
the difference is not significantly different at a 5% level.

All other portfolios either match or underperform the benchmark portfolio on a risk adjusted
basis.

6.7 Discussion
This experiment has demonstrated how Bayesian networks may be used to generate views
which can be used to construct portfolios. In support of the efficient market hypothesis, the
portfolios constructed in this experiment did not outperform their benchmark nevertheless
the performance of the portfolios were not far from their benchmark. Further research may
therefore yield better results.

The scientific analysis platformwhich can be used to easily explore and compare models was
finalized. Further research should be performed using different factors as input to Bayesian
networks. The platform can also easily accommodate other machine learning models.

As seen in Table 6.7, most weight is given to only five stocks due to the large difference in
market capitalization between these companies and the five others. Perhaps equity selection
was more important than expected. Taking size into account when making equity selection
may be useful in future work.
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Chapter 7

Conclusions and Future Research

This chapter concludes the thesis and presents the key findings of its experi-
ments. It summarizes the contributions of this work, and identifies areas of
further research drawn from this thesis.

7.1 Summary
The main objective of this thesis was to investigate how Bayesian networks could be used
to generate views that result in portfolios with lower risk or higher returns compared to a
benchmark neutral market portfolio. In current approaches to asset management, views are
subjective, time-consuming, and expensive to produce. This thesis aimed to improve on
current approaches. Bayesian networks were explored because they enable the measurement
of the uncertainty of predictions as well as the inclusion of expert knowledge through the
use of a prior.

A second objective was to develop a scientific platform incorporating machine learning in
portfolio management, in order to rapidly test machine learning models and improve the
communication of research results with the investment community.

The thesis was divided into three experiments. The first focused on the development and
testing of a Black-Litterman portfolio model as well as the scientific platform. The second
focused on the development and testing of a number of Bayesian networks to generate views.
The third combined the results of the first two into a comprehensive tool capable of using
different machine learning models and portfolio analysis models.

7.1.1 A Benchmark Portfolio Using Traditional Algorithms
The first experiment established benchmarks against which other models were compared.
It begins the development of the scientific platform detailed in Figure 6.1, focussing on the
portfolio construction model, its audit trail, and back testing. Data used were the prices of all
equities which comprised the NASDAQ-100 over the period from 31/12/1994 to 30/09/2017.
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A custom benchmark was necessary because, in Experiment 3, a small subset of all equities
in the NASDAQ-100 was used. A direct comparison to either the NASDAQ-100 Index or
the QQQ ETF which tracks the NASDAQ-100 could therefore have been biased.

Two portfolios were created: one by equal weighting all equities, another using a Black-
Litterman portfolio construction model without views. The scientific analysis platform was
presented via a web front-end, along with Excel-based audit trails generated automatically
from the python code.

7.1.2 Generating Views Using a Bayesian Network
The second experiment explores the use of Bayesian networks to generate views for the
Black-Litterman model developed in Experiment 1, and develops the tools necessary to
understand and evaluate the predictions. The Bayesian networks use a number of different
functional forms for the relationship between factors and returns: linear regression, AR(1),
GARCH, EGARCH, and EGARCHM.

This experiment explored different tools to build the Bayesian network, finally selecting
PyMC3 . Another strong option would have been STAN, although recent develops with
Pyro using PyTorch may make that the best option in the future.

The factors considered by the Bayesian network include changes in oil prices, credit spreads,
the term structure of interest rates, and a stress index.

Implementations GARCH, EGARCH, and EGARCHM in Bayesian networks were tested on
synthetic data generated in Microsoft Excel to verify that models were able to recover the
original known parameters of the process. All models were then implemented to generate
predictions for monthly returns of APPL shares from 30.07.1999 to 30.09.2017. Predictions
were compared to realized returns. Correlation coefficients between predicted and realized
returns were low and sometimes negative. It was not possible to provide evidence that
predicted returns and realized returns were similarly distributed. Only linear regression,
AR(1), and EGARCH-M provided reasonable estimates of the uncertainty of predictions.
The predictions may still be useful, for example if, when combined with the market returns
predicted by the Black-Litterman model, they result in a ranking of the equities which
corresponds to realized returns. Experiment 3, using the predictions in the context of
portfolio construction, will enable further conclusions.

While the main objectives of this experiment were met, further research is required in order
to implement Bayesian networks in a portfolio management context.

7.1.3 Algorithmic Asset Management System
This experiment aimed to investigate how views generated using a Bayesian network could
be useful in portfolio construction, and to finalize the scientific analysis platform developed
throughout this thesis. Following the platform, a subset of 10 equities which were part of the
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NASDAQ-100 Index were selected based on correlation of returns with returns of the Index.
The features of a set of factors was extracted using principal component analysis. Bayesian
networks with statistical and Bayesian GARCH, EGARCH, and EGARCHM models were
used as input to aBlack-Litterman portfolio constructionmodel to create six sets of portfolios.
The performance of these portfolios over the period from 31 July 2016 to 1 August 2019 with
daily rebalancing was compared to a neutral portfolio created using a Black-Littermanmodel
with no views, and an equally weighted portfolio. Sharpe ratios, Modigliani risk-adjusted
performance, the Herfindahl-Hirschman Index, as well as common statistical measures were
used to understand the performance of the portfolios.

This experiment demonstrates how Bayesian networks may be used to generate views and
how those views can be used to construct portfolios. It applies this approach with Bayesian
networks in realistic daily trading conditions, utilizes these views to create portfolios using
a Black-Litterman portfolio optimization model, and demonstrates tools to compare the
performance of these portfolios. In support of the hypothesis that markets are efficient, the
portfolios constructed in this experiment were below though close to their benchmark. This
may be considered further validation of the efficient market hypothesis.

This experiment finalizes the analysis platform developed throughout this thesis. The
platform has full flexibility to use different means of analysis, algorithms for generating
views, portfolio management models, and data sets. This platform can be used to easily
explore and compare different models for any of the critical roles identified in this approach.

While the main objectives of this experiment were met, further research is required in order
to build Bayesian networkswhich better predict returns as well as estimates of the uncertainty
of the predictions in a portfolio management context.

7.2 Contributions
This thesis provides important contributions to the scientific body of knowledge.

First, this thesis presents a scientific analysis platform which can guide the use of machine
learning in asset management. This platform can be used as a clear communication tool
with members of the asset management industry as it represents an approach they would
understand. This thesis also presents in detail one way the platform may be implemented.

Second, this thesis appears to be the first complete exploration of the use of Bayesian
networks in asset management which reports on the results of the performance of the
portfolios constructed using the models. Previous work appears to be limited to one model,
and does not report on the performance of portfolios constructed using themodel predictions.
Lack of conclusive results, as was the case in this thesis, may explain this absence.
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7.3 Future Work
This section discusses future work which should be undertaken based on the results obtained
in this thesis.

Using the scientific analysis platform presented in Figure 3.4, future work should focus on
factors, data, dimensionality reduction, and algorithms for the prediction of risk and returns.
In addition, it should consider some of the issues identified in this thesis.

Future research should consider the use of a broader range of factors, as discussed in Section
6.5.2.1. Research is currently being undertaken at UCL to focus on this creation of a different
set of factors based on news. As part of that research, these new sets of factors would be used
in the platform to relatively quickly compare the performance of portfolios generated with
and without these factors. Further research should consider factors for which data of the
required frequency is not available. Missing data could be modelled separately or within the
Bayesian network itself, as a separate model. For example, perhaps inflation could usefully
be modelled using simple regression within the Bayesian network.

Future research should aim to replicate and extend the results of this thesis by applying the
approach to different asset classes. Focussing on specific industries may be useful as some
may be more easily modelled than others. In particular, it may be possible to make use of
expert knowledge in some industries to specify better models. Another focus could be to
consider companies with high market capitalization separately from those with small market
caps, as the approach may be better suited to smaller or larger companies. In general, it may
be possible to find assets whose returns can be predicted with a higher level of confidence.
For example, more news data may be available for some companies, and therefore their
returns may be more susceptible to prediction.

The time required for prediction will be a constraint for the foreseeable future. Dimensional-
ity reduction will therefore remain an issue which should be investigated in future studies. It
can be addressed, for example, by either selecting only those factors which are most relevant
to a specific equity in the specific economic and trading environment at the time for which
the prediction is made, by distilling relevant features from a broader range of factors, or
using both approaches at the same time.

Future research should investigate different algorithms for the prediction of risk and return.
Different functional forms for the relationships between factors and returns should be con-
sidered. Candidates include different functional forms in the GARCH family of models.
Other algorithms including deep learning, reinforcement learning, or Generative Adversar-
ial Networks should be investigated. Many approaches may be used without substantially
modifying the platform presented in Figure 3.4. Work which includes an investigation of
very long tuning times could be interesting.
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Finally, this research had limitations which could be taken into consideration in future work.

Portfolios constructed in the third experiment were concentrated in five out of a total of ten
equities. Future work could consider using equities of similar market capitalization to avoid
this situation.

This research only uses closing prices. The added complexity of taking closing bid-ask
spreads into account by “selling” at the lower bid price and “buying” at the higher ask price
would be useful once models can be shown to useful. This should be included in future
work.



Appendix A

Notation

The following notation is used throughout this thesis.

n number of assets
w an (n× 1) vector of weights for all assets in a portfolio
w∗ an (n× 1) vector of weights in an efficient portfolio
µ an (n× 1) vector of mean asset returns, in excess of the risk free rate
µ0 the required portfolio (excess) return
µp mean portfolio (excess) return
µm mean (excess) return of a benchmark or market portfolio
Σ the (n× n) non-singular covariance matrix of asset (excess) returns
Σp Sample variance matrix including impact of views
σm volatility of a benchmark or market portfolio.
σ2
p portfolio variance
δ risk aversion parameter
Π an (n× 1) vector of equilibrium excess returns
τ scalar value indicating the uncertainty of the CAPM prior
k number of views
P a (k × n) matrix of asset weights within each view;

for absolute views, the sum of the weights is 1, otherwise 0
Q a (k × 1) matrix of the returns for each view
Ω a (k × k) matrix of the covariance of the views
M an (n× n) posterior variance matrix

Table A.1: Notation



Appendix B

Acronyms

The following acronyms are used in this thesis.

CVaR Conditional Value-at-Risk or Expected Shortfall
EGARCH Exponential generalized autoregressive conditional heteroskedasticity process
EGARCH-M EGARCH in Mean process
EMH Efficient Market Hypothesis
FRED Federal Reserve Bank of St-Louis
GARCH Generalized autoregressive conditional heteroskedasticity process
GARCH-M GARCH in Mean process
HMC Hamiltonian Monte Carlo
MCMC Markov Chain Monte Carlo
MVA Model-View-Adapter architectural pattern
NUTS No U-Turn Sampler
SAAS Software as a Service
VaR Value-at-Risk

Table B.1: List of acronyms



Appendix C

Data

Source of daily equity prices.



Index Ticker Company From To Yahoo Quandl None
1 AAL American Airlines Group 31/12/2014 30/09/2017 AAL
2 AAPL Apple Inc. 31/03/1995 30/09/2017 AAPL
3 ABGX Abgenix, Inc. 31/12/2000 31/12/2002 ABGX
4 ACCOB Adolph Coors Company 31/03/1995 31/12/1995 ACCOB
5 ADBE Adobe Systems Inc. 31/03/1995 30/09/2017 ADBE
6 ADCT ADC Telecommunications, Inc. 31/03/1995 31/12/2003 ADCT
7 ADI Analog Devices 31/12/2012 30/09/2017 ADI
8 ADLAE Adelphia Communications Corp. 31/12/1999 30/06/2002 ADLAE
9 ADP ADP, Inc. 31/12/2008 30/09/2017 ADP

10 ADPT Adaptec, Inc. 31/03/1995 31/12/2000 ADPT
11 ADRX Andrx Group 31/12/2001 31/12/2002 ADRX
12 ADSK Autodesk, Inc. 31/03/1995 31/12/1999 ADSK
13 ADTN ADTRAN, Inc. 31/12/1996 31/12/1998 ADTN
14 AEOS American Eagle Outfitters, Inc. 31/12/2006 31/03/2007 AEOS
15 AESC AES Corp. 31/03/1995 30/09/1996 AESC
16 AGREA American Greetings Corp. 31/03/1995 31/03/1998 AGREA
17 AKAM Akamai Technologies, Inc. 30/04/2006 31/12/2009 AKAM
18 AKLM Acclaim Entertainment, Inc. 31/03/1995 31/12/1996 AKLM
19 ALEX Alexander & Baldwin, Inc. 31/03/1995 31/12/1995 ALEX
20 ALTR Altera Corp. 30/09/1995 31/10/2015 ALTR
21 ALXN Alexion Pharmaceuticals 31/05/2011 30/09/2017 ALXN
22 AMAT Applied Materials, Inc. 31/03/1995 30/09/2017 AMAT
23 AMCC Applied Micro Circuits Corp. 31/12/1999 31/12/2002 AMCC
24 AMFM Chancellor Media Corp. 31/03/1998 30/09/1999 AMFM
25 AMGN Amgen Inc. 31/03/1995 30/09/2017 AMGN
26 AMLN Amylin Pharmaceuticals 31/01/2006 31/12/2008 AMLN
27 AMZN Amazon.com, Inc. 31/12/1998 30/09/2017 AMZN
28 ANDW Andrew Corp. 31/03/1995 31/12/1999 ANDW
29 APCC APC Corp. 31/03/1995 31/12/2000 APCC
30 APOL Apollo Group 31/03/1998 31/12/2000 APOL
31 ARBA Ariba, Inc. 31/12/2000 31/12/2001 ARBA
32 ASAI Atlantic Southeast Airlines, Inc. 31/03/1995 31/12/1996 ASAI
33 ASND Ascend Communications, Inc. 30/09/1996 30/06/1999 ASND
34 ASTA AST Research, Inc. 31/03/1995 31/12/1995 ASTA
35 ATHMQ At Home Corp. 31/03/1999 31/12/2001 ATHMQ
36 ATML Atmel Corp. 31/03/1995 31/12/2002 ATML
37 ATVI Activision Blizzard 31/12/2005 30/09/2017 ATVI
38 ATYT ATI Technologies Inc. 31/12/2003 31/10/2006 ATYT
39 AVGO Broadcom Limited 31/12/2011 30/09/2017 AVGO
40 AWIN Allied Waste Industries, Inc 31/03/1998 31/12/1998 AWIN
41 BBBY Bed Bath & Beyond Inc. 31/12/1996 30/09/2017 BBBY
42 BEAS BEA Systems, Inc. 31/12/2000 30/04/2008 BEAS
43 BGEN Biogen, Inc. (Old) 31/03/1995 31/12/2003 BGEN
44 BIDU Baidu.com, Inc. 31/12/2007 30/09/2017 BIDU
45 BIIB Biogen, Inc. 31/12/2000 30/09/2017 BIIB
46 BMC BMC Software, Inc. 31/03/1995 31/03/2001 BMC
47 BMET Biomet, Inc. 31/03/1995 31/07/2007 BMET
48 BMRN BioMarin Pharmaceutical 31/07/2015 30/09/2017 BMRN
49 BNET Bay Networks, Inc. 31/03/1995 31/03/1996 BNET
50 BOBE Bob Evans Farms, Inc. 31/03/1995 31/12/1996 BOBE
51 BOST Boston Chicken, Inc. 31/12/1995 31/03/1998 BOST
52 BRCD Brocade Communications Systems 31/03/2001 31/12/2003 BRCD
53 BRCM Broadcom Corp. 31/12/2000 30/11/2015 BRCM
54 BRNO Bruno's Inc. 31/03/1995 30/09/1995 BRNO
55 BVSN BroadVision, Inc. 31/12/1999 31/12/2001 BVSN
56 CA CA, Inc. 31/05/2008 30/09/2017 CA
57 CATP Cambridge Technology Partners 31/03/1998 31/12/1999 CATP
58 CBRL CBRL Group Inc. 31/03/1995 31/12/1999 CBRL
59 CDNS Cadence Design Systems 31/12/2005 31/12/2008 CDNS
60 CDWC CDW Corp. 31/12/2001 31/10/2007 CDWC
61 CECO Career Education Corp. 31/12/2003 31/12/2005 CECO
62 CEFT Concord EFS, Inc. 31/12/1996 31/12/2002 CEFT
63 CELG Celgene Corp. 31/07/2005 30/09/2017 CELG
64 CEPH Cephalon, Inc. 31/12/2001 31/12/2004 CEPH



65 CERN Cerner Corp. 31/07/2009 30/09/2017 CERN
66 CEXP Corporate Express, Inc. 31/12/1996 31/12/1999 CEXP
67 CHIR Chiron Corp. 31/03/1995 30/04/2006 CHIR
68 CHKP Check Point Ltd. 31/12/2000 30/09/2017 CHKP
69 CHRS Charming Shoppes, Inc. 31/03/1995 31/12/1995 CHRS
70 CHRW C. H. Robinson Worldwide, Inc. 31/12/2002 31/12/2015 CHRW
71 CHTR Charter Communications, Inc. 31/12/2001 31/12/2002 CHTR
72 CIEN CIENA Corp. 30/09/1999 31/12/2003 CIEN
73 CKFR CheckFree Corp. 31/12/2005 31/12/2007 CKFR
74 CMCSA Comcast Corp. Class A Common 31/12/2002 30/09/2017 CMCSA
75 CMCSK (Old) Comcast Corp. (Old) 31/03/1995 31/12/2002 CMCSK (Old)
76 CMGI CMGI, Inc. 31/03/1999 31/12/2001 CMGI
77 CMVT Comverse Technology, Inc. 31/03/1999 28/02/2007 CMVT
78 CNET CNET Networks, Inc. 30/06/1999 31/12/2001 CNET
79 CNTO Centocor, Inc. 31/03/1995 31/12/1999 CNTO
80 CNXT Conexant Systems, Inc. 30/09/1999 31/12/2002 CNXT
81 COMR Comair Holdings, Inc. 31/12/1998 31/12/1999 COMR
82 COMS 3Com Corp. 31/03/1995 31/12/2001 COMS
83 COST Costco Wholesale Corp. 31/03/1995 30/09/2017 COST
84 CPWR Compuware Corp. 31/03/1995 31/12/2004 CPWR
85 CRUS Cirrus Logic, Inc. 31/03/1995 31/03/1998 CRUS
86 CSCC Cascade Communications Corp. 30/09/1996 30/09/1997 CSCC
87 CSCO Cisco Systems, Inc. 31/03/1995 30/09/2017 CSCO
88 CSX CSX Corporation 29/02/2016 30/09/2017 CSX
89 CTAS Cintas Corp. 31/03/1995 30/04/2011 CTAS
90 CTRP Ctrip 31/12/2010 31/07/2012 CTRP
91 CTRX Catamaran Corp. 31/12/2012 31/07/2015 CTRX
92 CTSH Cognizant Technology Corp. 31/12/2004 30/09/2017 CTSH
93 CTXS Citrix Systems, Inc. 31/03/1998 30/09/2017 CTXS
94 CYTC Cytyc Corp. 31/12/2001 31/12/2002 CYTC
95 DELL Dell, Inc. 31/03/1995 31/10/2013 DELL
96 DIGI DSC Communications Corp. 31/03/1995 30/09/1998 DIGI
97 DISCA Discovery Comms Class A 31/12/2005 31/12/2008 DISCA
98 DISH Dish Network, Inc. 31/12/1999 31/12/2010 DISH
99 DLTR Dollar Tree, Inc. 31/12/1998 31/12/2000 DLTR

100 DTV DirecTV 30/04/2008 31/07/2015 DTV
101 DURA Dura Pharmaceuticals, Inc. 31/03/1998 31/12/1998 DURA
102 EA Electronic Arts 31/03/1995 31/12/2012 EA
103 EBAY eBay Inc. 31/12/1999 30/09/2017 EBAY
104 EFII Electronics for Imaging, Inc. 31/12/1996 31/12/1999 EFII
105 ENDP Endo International 31/12/2015 31/07/2016 ENDP
106 EQIX Equinix, Inc. 31/12/2012 31/03/2015 EQIX
107 ERIC Ericsson Telephone Company 31/03/1998 31/12/2003 ERIC
108 ESRX Express Scripts, Inc. 31/12/2001 30/09/2017 ESRX
109 EXDSQ Exodus Communications, Inc. 31/12/2000 31/12/2001 EXDSQ
110 EXPD Expeditors Int'l, Inc. 31/12/2002 31/12/2015 EXPD
111 EXPE Expedia, Inc. 31/12/2005 31/12/2014 EXPE
112 FAST Fastenal Co. 31/12/1996 31/12/1999 FAST
113 FB Facebook, Inc. 31/12/2012 30/09/2017 FB
114 FDLNB Food Lion, Inc. 31/03/1995 30/09/1999 FDLNB
115 FFIV F5 Networks 30/04/2011 31/12/2014 FFIV
116 FHCC First Health Group Corp. 31/03/1995 31/12/1999 FHCC
117 FISV Fiserv, Inc. 31/12/1996 30/09/2017 FISV
118 FLEX Flextronics Int'l Ltd. 31/12/2000 31/12/2012 FLEX
119 FLIR FLIR Systems 31/07/2008 31/12/2011 FLIR
120 FMCN Focus Media Holding 31/12/2007 31/01/2009 FMCN
121 FORE FORE Systems, Inc. 30/09/1996 30/06/1999 FORE
122 FORT Fort Howard Corp. 31/12/1996 30/09/1997 FORT
123 FOSL Fossil Inc. 31/12/2011 31/12/2013 FOSL
124 FOXA 21st Century Fox Class A 31/01/2009 30/09/2017 FOXA
125 FSLR First Solar, Inc. 31/12/2008 30/04/2012 FSLR
126 FWLT Foster Wheeler AG 31/07/2007 31/12/2010 FWLT
127 GART Gartner Group, Inc. 31/12/1995 31/03/1998 GART
128 GATE Gateway 2000, Inc. 31/12/1995 30/06/1997 GATE
129 GBLX Global Crossing Ltd. 30/09/1999 31/12/2000 GBLX



130 GEMS Glenayre Technologies, Inc. 31/12/1995 31/03/1998 GEMS
131 GENZ Genzyme Corp. 31/03/1995 31/05/2011 GENZ
132 GIDL Giddings & Lewis, Inc. 31/03/1995 31/12/1996 GIDL
133 GILD Gilead Sciences, Inc. 31/12/2001 30/09/2017 GILD
134 GMCR Keurig Green Mountain 31/05/2011 31/12/2012 GMCR
135 GMSTE Gemstar-TV Guide International 31/12/1999 31/12/2002 GMSTE
136 GNCI General Nutrition Companies, Inc. 31/12/1995 31/12/1998 GNCI
137 GNTX Gentex Corp. 31/12/2002 31/12/2004 GNTX
138 GOLD Randgold Resources 31/12/2011 30/11/2013 GOLD
139 GOOGL Alphabet Inc. Class A 31/12/2005 30/09/2017 GOOGL
140 GRMN Garmin Ltd. 31/12/2003 31/12/2015 GRMN
141 HBOC HBO & Company 31/03/1995 31/03/1999 HBOC
142 HGSI Human Genome Sciences, Inc. 31/12/2000 31/12/2003 HGSI
143 HOLX Hologic 31/12/2007 31/12/2010 HOLX
144 HONI Hon Industries Inc. 31/03/1995 31/12/1995 HONI
145 HSIC Henry Schein, Inc. 31/12/2002 31/12/2004 HSIC
146 IACI IAC/InterActiveCorp 31/03/1998 30/09/1998 IACI
147 ICOS ICOS Corp. 31/12/2001 31/12/2003 ICOS
148 IDTI Integrated Device Technology, Inc. 31/12/2001 31/12/2002 IDTI
149 IDXX IDEXX Laboratories, Inc. 31/12/1995 31/03/1998 IDXX
150 IFMX Informix Corp. 31/03/1995 31/03/1998 IFMX
151 ILMN Illumina, Inc. 31/12/2008 31/12/2011 ILMN
152 IMCL ImClone Systems Inc. 31/12/2001 31/12/2002 IMCL
153 IMNX Immunex Corp. 31/03/1998 30/09/2002 IMNX
154 INCY Incyte Corp 31/10/2015 30/09/2017 INCY
155 INEL Intelligent Electronics, Inc. 31/03/1995 31/12/1995 INEL
156 INFY Infosys Ltd 31/12/2006 31/12/2012 INFY
157 INKT Inktomi Corp. 31/12/2000 31/12/2001 INKT
158 INTC Intel Corp. 31/03/1995 30/09/2017 INTC
159 INTU Intuit, Inc. 31/12/1995 31/03/1998 INTU
160 ISIL Intersil Corp. 31/12/2003 31/12/2005 ISIL
161 ISRG Intuitive Surgical Inc. 28/02/2006 30/09/2017 ISRG
162 ITWO i2 Technologies, Inc. 31/12/1999 31/12/2002 ITWO
163 JBHT J. B. Hunt, Inc. 31/03/1995 31/12/1996 JBHT
164 JCOR Jacor Communications Inc. 31/03/1998 30/06/1999 JCOR
165 JD JD.com 31/07/2015 30/09/2017 JD
166 JDSU JDS Uniphase Corp. 30/06/1999 31/12/2006 JDSU
167 JNPR Juniper Networks 30/09/2000 31/10/2009 JNPR
168 JOYG Joy Global 31/01/2006 31/12/2011 JOYG
169 KELYA Kelly Services, Inc. 31/03/1995 31/12/1996 KELYA
170 KHC Kraft Heinz Co 31/03/2013 30/09/2017 KHC
171 KLAC KLA-Tencor Corp. 31/03/1995 29/02/2016 KLAC
172 KMAG Komag, Inc. 31/12/1996 31/03/1998 KMAG
173 LAMR Lamar Advertising Co. 31/12/2002 31/12/2008 LAMR
174 LBTYA Liberty Global plc Class A 31/12/2004 31/12/2009 LBTYA
175 LCOS Lycos, Inc. 30/06/1999 31/12/2000 LCOS
176 LEAP Leap Wireless International 31/10/2007 31/12/2008 LEAP
177 LGNT LEGENT Corp. 31/03/1995 30/09/1995 LGNT
178 LGTO Legato Systems, Inc. 31/12/1999 31/12/2000 LGTO
179 LIFE Life Technologies 31/12/2001 31/12/2005 LIFE
180 LINB LIN Broadcasting Corp. 31/03/1995 31/12/1995 LINB
181 LLTC Linear Technology Corp. 31/03/1995 30/09/2017 LLTC
182 LNCR Lincare Holdings Inc. 31/12/1998 31/12/1999 LNCR
183 LOGI Logitech 28/02/2007 31/12/2010 LOGI
184 LOTC Lotus Development Corp. 31/03/1995 30/09/1995 LOTC
185 LRCX Lam Research 31/03/1995 31/12/1996 LRCX
186 LVLT Level 3 Communications 30/09/1998 31/12/2001 LVLT
187 MAR Marriott International, Inc. 30/11/2013 30/09/2017 MAR
188 MAT Mattel, Inc. 31/12/2009 30/09/2017 MAT
189 MCCRK McCormick & Company, Inc. 31/03/1995 30/06/1999 MCCRK
190 MCHP Microchip Technology 30/06/1997 31/12/2013 MCHP
191 MCIC MCI Communications Corp. 31/03/1995 31/03/1998 MCIC
192 MCIP MCI, Inc. 31/12/2004 31/01/2006 MCIP
193 MCLD McLeodUSA Inc. 31/12/1998 31/12/2001 MCLD
194 MDLZ Mondelēz International 31/07/2012 30/09/2017 MDLZ



195 MEDI MedImmune, Inc. 31/12/1999 30/06/2007 MEDI
196 MERQE Mercury Interactive Corp. 31/12/2000 31/01/2006 MERQE
197 MFNX Metromedia Fiber Network, Inc. 31/12/1999 31/12/2001 MFNX
198 MFST MFS Communications Company, Inc. 30/09/1995 31/12/1996 MFST
199 MICC Millicom Int'l Cellular 31/05/2006 31/05/2011 MICC
200 MLHR Herman Miller, Inc. 31/03/1995 31/12/1996 MLHR
201 MLNM Millennium Pharm. Inc. 31/12/2000 31/12/2005 MLNM
202 MMEDC MultiMedia, Inc. 31/03/1995 31/12/1995 MMEDC
203 MNST Monster Beverage 31/12/2007 31/12/2009 MNST
204 MOLX Molex Inc. 31/03/1995 31/12/2005 MOLX
205 MRVL Marvell Technology Group 31/12/2003 31/12/2012 MRVL
206 MSFT Microsoft Corp. 31/03/1995 30/09/2017 MSFT
207 MTEL Mobile Telecommunication Tech. 31/03/1995 31/12/1996 MTEL
208 MU Micron Technology, Inc. 31/12/1995 31/12/1999 MU
209 MWW Monster Worldwide, Inc. 31/12/2000 31/12/2003 MWW
210 MXIM Maxim Integrated Products 31/12/1995 31/10/2007 MXIM
211 MYL Mylan, Inc. 31/12/2009 30/09/2017 MYL
212 NCLH Norwegian Cruise Line Holdings 31/12/2015 30/09/2017 NCLH
213 NDSN Nordson Corp. 31/03/1995 31/12/1995 NDSN
214 NETA Network Associates, Inc. 31/12/1996 31/12/2000 NETA
215 NFLX Netflix 31/12/2010 31/12/2012 NFLX
216 NIHD NII Holdings 31/12/2005 31/12/2011 NIHD
217 NOBE Nordstrom, Inc. 31/03/1995 30/06/1999 NOBE
218 NOVL Novell, Inc. 31/03/1995 31/12/2001 NOVL
219 NSCP Netscape Communications Corp. 30/06/1997 31/03/1999 NSCP
220 NSOL Network Solutions, Inc. 31/12/1999 30/06/2000 NSOL
221 NTAP NetApp, Inc. 31/12/1999 30/09/2017 NTAP
222 NTES NetEase 31/03/2016 30/09/2017 NTES
223 NTLI NTL Inc. 31/12/1998 31/12/2000 NTLI
224 NUAN Nuance Communications Inc. 31/12/2011 31/12/2013 NUAN
225 NVDA NVIDIA Corp. 30/06/2001 31/12/2004 NVDA
226 NVLS Novellus Systems Inc. 31/03/2001 31/12/2005 NVLS
227 NWAC Northwest Airlines Corp. 30/09/1995 31/12/2000 NWAC
228 NXPI NXP Semiconductors 31/12/2013 30/09/2017 NXPI
229 NXTL Nextel Communications, Inc. 31/03/1995 31/08/2005 NXTL
230 OFIS U.S. Office Products Company 30/09/1997 31/12/1998 OFIS
231 ORCL Oracle Corp. 31/03/1995 31/07/2013 ORCL
232 ORLY O'Reilly Automotive, Inc. 31/12/2008 30/09/2017 ORLY
233 OSSI Outback Steakhouse, Inc. 31/03/1995 31/03/1998 OSSI
234 OXHP Oxford Health Plans, Inc. 31/03/1996 31/12/1998 OXHP
235 PAGE Paging Network, Inc. 31/03/1995 31/03/1998 PAGE
236 PAIR PairGain Technologies, Inc. 31/12/1996 31/12/1998 PAIR
237 PALM Palm, Inc. 31/12/2000 31/12/2001 PALM
238 PAYX Paychex, Inc. 31/03/1995 30/09/2017 PAYX
239 PCAR PACCAR Inc. 31/03/1995 30/09/2017 PCAR
240 PCLN The Priceline Group 31/10/2009 30/09/2017 PCLN
241 PDCO Patterson Companies 31/12/2002 31/12/2010 PDCO
242 PDLI PDL Biopharma Inc 31/12/2001 31/12/2002 PDLI
243 PETM PetSmart 31/12/1995 31/03/1998 PETM
244 PHSY PacifiCare Health Systems, Inc 31/03/1995 31/12/2000 PHSY
245 PHYB Pioneer Hi-Bred International, Inc. 31/03/1995 31/12/1995 PHYB
246 PHYC PhyCor, Inc. 31/12/1996 31/12/1998 PHYC
247 PIXR Pixar Animation Studios 31/12/2002 31/05/2006 PIXR
248 PMCS PMC - Sierra, Inc. 31/12/1999 31/12/2002 PMCS
249 PMTC Parametric Technology Corp. 31/03/1995 31/12/2001 PMTC
250 PPDI PPD, LLC. (Pharmaceutical) 31/12/2008 31/12/2009 PPDI
251 PRGO Perrigo Company plc 31/03/1995 31/12/1996 PRGO
252 PSFT PeopleSoft, Inc. 31/12/1995 31/12/2004 PSFT
253 PTCM Pacific Telecom, Inc. 31/03/1995 30/09/1995 PTCM
254 PTEN Patterson-UTI Energy, Inc. 31/12/2002 31/12/2004 PTEN
255 PYPL PayPal Holdings 30/11/2015 30/09/2017 PYPL
256 QCOM Qualcomm, Inc. 31/03/1995 30/09/2017 QCOM
257 QGEN Qiagen 31/12/2009 31/12/2011 QGEN
258 QLGC QLogic Corp. 31/12/1999 31/12/2005 QLGC
259 QNTM Quantum Corp. 31/03/1995 30/09/1999 QNTM



260 QTRN Quintiles Transnational Corp. 31/12/1996 31/12/2000 QTRN
261 QVCA Liberty Interactive 31/10/2006 30/09/2017 QVCA
262 QWST Qwest Communications Int'l 30/09/1998 31/12/1999 QWST
263 RATL Rational Software Corp. 31/12/2000 31/12/2002 RATL
264 RDRT Read-Rite Corp. 31/12/1995 31/12/1996 RDRT
265 REGN Regeneron Pharmaceuticals 31/12/2012 30/09/2017 REGN
266 RFMD RF Micro Devices, Inc. 31/12/1999 31/12/2003 RFMD
267 RHAT Red Hat, Inc. 31/12/2005 31/12/2006 RHAT
268 RIMM Research in Motion 31/12/2003 31/12/2012 RIMM
269 RNWK RealNetworks, Inc. 31/12/1999 31/12/2001 RNWK
270 ROAD Roadway Services, Inc. 31/03/1995 31/12/1995 ROAD
271 ROST Ross Stores Inc. 30/06/1997 31/12/1999 ROST
272 RPOW RPM, Inc. 31/03/1995 31/03/1998 RPOW
273 RTRSY Reuters Group PLC 31/03/1998 31/12/1999 RTRSY
274 RWIN Republic Industries, Inc. 30/09/1996 30/06/1997 RWIN
275 RXSD Rexall Sundown, Inc. 31/03/1998 31/12/1999 RXSD
276 RYAAY Ryanair 31/12/2002 31/12/2004 RYAAY
277 SANM Sanmina Corp. 31/12/1998 31/12/2005 SANM
278 SBAC SBA Communications 31/12/2012 30/09/2017 SBAC
279 SBUX Starbucks Corp. 31/12/1996 30/09/2017 SBUX
280 SDLI SDL, Inc. 31/12/1999 31/03/2001 SDLI
281 SEBL Siebel Systems, Inc 30/06/1999 28/02/2006 SEBL
282 SEPR Sepracor Inc. 31/12/2001 31/12/2002 SEPR
283 SHLD Sears Holdings Corp. 30/09/2004 31/12/2013 SHLD
284 SHLM A. Schulman, Inc. 31/03/1995 31/12/1996 SHLM
285 SIAL Sigma-Aldrich Corp. 31/03/1995 31/12/2000 SIAL
286 SIRI Sirius XM Radio, Inc. 31/12/2004 31/12/2008 SIRI
287 SNDK SanDisk Corp. 31/12/2003 31/12/2008 SNDK
288 SNDT SunGard Data Systems, Inc. 31/12/1996 30/06/1997 SNDT
289 SNPS Synopsys Inc. 31/12/1996 31/12/2000 SNPS
290 SPLS Staples Inc. 31/03/1995 31/12/2015 SPLS
291 SPOT PanAmSat Corp. 31/12/1997 30/09/2004 SPOT
292 SRCL Stericycle, Inc. 31/12/2007 30/09/2017 SRCL
293 SSCC Smurfit-Stone Container Corp. 30/09/1997 31/12/2005 SSCC
294 SSSS Stewart & Stevenson Services, Inc. 31/03/1995 31/12/1996 SSSS
295 STEI Stewart Enterprises, Inc. 30/09/1997 31/12/1999 STEI
296 STJM St. Jude Medical, Inc. 31/03/1995 31/12/1996 STJM
297 STLD Steel Dynamics 31/12/2007 31/12/2009 STLD
298 STRM StrataCom, Inc. 31/03/1995 30/09/1996 STRM
299 STRY Stryker Corp. 31/03/1995 30/09/1997 STRY
300 STRZA Starz Inc. 31/01/2013 31/03/2013 STRZA
301 STX Seagate Technology Holdings 30/11/2008 30/09/2017 STX
302 SUNW Sun Microsystems 31/03/1995 31/07/2009 SUNW
303 SWKS Skyworks Solutions 31/08/2015 30/09/2017 SWKS
304 SYBS Sybase, Inc. 31/03/1995 31/12/1998 SYBS
305 SYMC Symantec Corp. 31/12/2001 30/09/2017 SYMC
306 TCOMA Tele-Communications, Inc. 31/03/1995 31/03/1999 TCOMA
307 TECD Tech Data Corp. 31/03/1998 31/12/1999 TECD
308 TECUA Tecumseh Products Company Class A 31/03/1995 31/12/1995 TECUA
309 TEVA Teva Pharmaceutical Industries 31/12/2002 31/05/2012 TEVA
310 TLAB Tellabs, Inc. 31/03/1995 31/05/2008 TLAB
311 TMUS T-Mobile US Inc 31/12/2015 30/09/2017 TMUS
312 TRIP TripAdvisor 31/12/2013 30/09/2017 TRIP
313 TSCO Tractor Supply Company 31/12/2013 30/09/2017 TSCO
314 TSLA Tesla Motors, Inc. 31/07/2013 30/09/2017 TSLA
315 TW Time Warner Inc (Old) 31/12/1995 30/09/1996 TW
316 TXN Texas Instruments, Inc. 30/04/2012 30/09/2017 TXN
317 TYSNA Tyson Foods, Inc. Class A 31/03/1995 31/12/1997 TYSNA
318 UAUA UAL Corp. 31/03/2007 31/07/2008 UAUA
319 ULTA Ulta Salon, Cosmetics & Fragrance Inc 31/12/2015 30/09/2017 ULTA
320 URBN Urban Outfitters 31/12/2005 31/12/2006 URBN
321 USHC U.S. Healthcare, Inc. 31/03/1995 30/09/1996 USHC
322 USRX U.S. Robotics Corp. 30/09/1995 30/06/1997 USRX
323 VCELA Vanguard Cellular Systems, Inc. 31/03/1995 31/12/1996 VCELA
324 VIAB Viacom Inc. 31/05/2012 30/09/2017 VIAB



325 VIP VimpelCom Ltd. 31/10/2013 31/12/2015 VIP
326 VISX VISX, Inc. 30/06/1999 30/09/2000 VISX
327 VKNG Viking Office Products, Inc. 31/03/1995 30/09/1998 VKNG
328 VMED Virgin Media 31/12/2004 31/12/2008 VMED
329 VOD Vodafone Group plc 31/12/2009 30/09/2017 VOD
330 VRSK Verisk Analytics 31/12/2012 30/09/2017 VRSK
331 VRSN VeriSign 30/06/2000 31/12/2012 VRSN
332 VRTS VERITAS Software Corp. 31/12/1998 31/07/2005 VRTS
333 VRTX Vertex Pharmaceuticals 31/12/2006 30/09/2017 VRTX
334 VSTR VoiceStream Wireless Corp. 31/12/1999 30/06/2001 VSTR
335 VTSS Vitesse Semiconductor Corp. 31/12/1998 31/12/2002 VTSS
336 WBA Walgreens Boots Alliance 31/03/2015 30/09/2017 WBA
337 WCLX Wisconsin Central Transportation 31/12/1996 31/12/1998 WCLX
338 WCOEQ WorldCom, Inc. 31/03/1995 30/09/2002 WCOEQ
339 WCRX Warner Chilcott 31/12/2008 31/12/2012 WCRX
340 WDC Western Digital 31/12/2012 30/09/2017 WDC
341 WFM Whole Foods Market, Inc. 31/12/2002 31/12/2008 WFM
342 WMTT Willamette Industries, Inc. 31/03/1995 31/12/1996 WMTT
343 WTHG Worthington Industries, Inc. 31/03/1995 31/12/1999 WTHG
344 WYNN Wynn Resorts Ltd. 31/12/2004 31/12/2015 WYNN
345 XLNX Xilinx, Inc. 31/03/1995 30/09/2017 XLNX
346 XMSR XM Satellite Radio Holdings Inc. 31/12/2004 31/12/2007 XMSR
347 XOXO XO Communications, Inc. 31/12/1999 31/12/2001 XOXO
348 XRAY DENTSPLY International Inc. 31/12/2002 31/12/2013 XRAY
349 YELL Yellow Corp. 31/03/1995 31/12/1995 YELL
350 YHOO Yahoo! Inc. 31/03/1998 30/09/1998 YHOO

Count 189 22 139



Appendix D

PGMPY Implementation

Implementation begins with a first simple Naive Bayesian network exploring the network
presented in Figure D.1, beginning with an implementation of the Parameter Estimation
class using pgmpy which treats data as discrete.

D.1 Results
Figure D.2 presents a web page showing the forecast returns and variance of a simple
Bayesian network implemented using pgmpy. The web page is created using the Django
framework (see Section 3.3.4). It presents the current projected result and variance for period
N + 1 as well as the previous projected result at end of period N − 1 for period N and the
actual result of period N . The performance of the algorithm can then be determined based

Rn+1

VOX VDE VCR VAW

Figure D.1: Naive Bayesian network exploring ETF’s as economic predictors. ETF’s are described
in Table D.1

ETF Sector

VOX Communication
VDE Energy
VCR Consumer Discretionary
VAW Materials

Table D.1: Economic sectors of Vanguard ETF’s.



D.2. DISCUSSION 133

upon a comparison of the predicted versus realized results. Figure D.2 also presents the
Sharpe ratio (Sharpe, 1994), which is a measure of performance associated with risk-taking.
It is calculated as SharpeRatio = E[Ra −Rf ]/σa where Ra is the asset return, Rf is the
risk-free rate1, and σa is the standard deviation of the asset excess return.

Figure D.2: Equity returns and variance forecast from simple Bayesian network

D.2 Discussion
The prototypes developed using PGMPY led to the conclusion that other solutions such as
PyMC3 were better suited to the needs of this research for two reasons. First, this thesis
required the ability to use custom functional forms for the relationship between factors and
returns. PGMPY was not flexible in this regard. Second, inference was far slower than
PyMC3 . For these reasons, PGMPY was rejected.

1See Section 3.2.4



Appendix E

Impact of Increased Sample Size in Tuning
EGARCHModels

This appendix explores the impact of increasing the sample size for tuning. The number of
samples used for tuning improves inference by helping ensure that search over the parameter
sample space is efficient. However it increases the time required for training.

Predictions for the monthly returns of Apple shares (ticker AAPL) were performed from
30.06.1999 to 31.05.2005 using 1,000, 6,000, and 50,000 samples for tuning. In addition,
one prediction was made using 500,000 samples for tuning. In all cases, the samples used
for tuning were discarded and the model was used to generate four chains of 6,000 useful
samples.

The times required for generating one prediction for one time point increased from between
15 and 75 minutes when using 1,000 samples for tuning to between 12 and 18 hours when
using 500,000 samples.

Table E.1 presents one prediction using the four different sampling sizes. All predictions
are very close to each other, considering the standard deviation of

As can be seen in Figure E.1, predictions are almost always very similar, whatever the
number of samples used for tuning.

Size Prediction Standard Deviation

500000 -0.01919 0.03879
50000 -0.01789 0.03869
6000 -0.01899 0.03787
1000 -0.02073 0.03770

Table E.1: Predicted monthly return of AAPL stock on 30.06.1999 for different sampling sizes.
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Figure E.1: Comparison of predictions using 1K, 6K, and 50K samples for tuning.

As can be seen in the right parts of the traceplots in Figure E.2, increasing the number of
samples used for tuning does improve the search over the parameter space. The chains also
appear to converge better with increasing sample sizes, as can be seen in the left part of each
traceplot.

The cost of an improved search over the parameter space afforded by increased sample sizes
for tuning is an increase in training time which may be prohibitive if training 10 equities for
200 dates.
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(a) 1K Samples. (b) 6K Samples.

(c) 50K Samples. (d) 500K Samples.

Figure E.2: Traceplots using different sample sizes for tuning.
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