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Abstract— A distributed leader-following consensus control
framework is proposed for a linear system. The linear system
is first transformed into a regular form. Then a linear sliding
mode is designed to provide high robustness, and the corre-
sponding consensus protocol is proposed in a fully distributed
fashion. When matched disturbances are present, it can be
demonstrated that the system states reach the sliding mode in
finite time and consensus can be achieved asymptotically using
Lyapunov theory and the invariant set theorem. Simulation
results validate the effectiveness of the proposed algorithm.

I. INTRODUCTION

Today is the information era, and fully exploiting available
information is a key concern. As a consequence, distributed
systems have been studied and developed. In a distributed
system, there are several agents forming a network which
allows agents to exchange information in order to achieve
a given goal. This process is usually called cooperative
control. Typical collective behaviors resulting from such
cooperative control include synchronization [1]-[3], flock-
ing [4]-[6], swarming [7]-[9] and consensus [10]-[12]. The
consensus control of distributed multi-agent systems is a
topic that has received much attention in the literature. In
general, consensus control focuses on how the agents come to
agreement on certain quantities using their own information
together with information received from their neighbours.
Distributed consensus control can be widely used in practice
for diverse applications including control of motion [13],
sensor networks [14], robot planning [15] and smart grids
[16]. In research on distributed consensus control, the study
of leader-following consensus control is of great significance.
For instance, in the process of guiding missiles to hit a target,
the target is taken as the leader, whereas the missiles, denoted
as the followers, track the target until it is hit. In this way
leader-following consensus is achieved [17].

From the viewpoint of the current literature, leader-
following distributed consensus control mainly focuses on
simple systems such as single and double integrator systems.
Early work on the single integrator model [18]-[20] consid-
ered system states such as voltage or output power and it was
concluded that consensus can be reached if the network is
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connected. The double integrator model [21]-[23] typically
is considered to be a dynamic mechanical system, where the
states are position and velocity. Corresponding distributed
consensus control frameworks based on more general linear
system representations are now being developed. To motivate
such developments, consider distributed systems within the
chemical process control industry. Here different sub-systems
can have different dynamics, so it is necessary to design a
framework for distributed linear systems which can represent
more general classes of systems. In [24], distributed tracking
control is considered for multi-agent systems with linear
dynamics using two discontinuous controllers with static
and adaptive coupling gains. In [25], the leader-follower
consensus tracking problem is explored for linear multi-agent
systems with unknown external disturbances; in this case
a state observer and disturbance observer are deployed in
the scheme. In the above literature, distributed consensus for
general linear systems is addressed, but design issues remain.
Specifically, the consensus protocols typically require the
Laplacian matrix to have non-zero eigenvalues. Calculating
these eigenvalues results in a heavy computational load,
particularly for large scale networks, and the exact weights
of the communication graph should be known to every agent
[26].

Uncertainty always exists in practical systems due to
unmodeled dynamics, parameter variations and external dis-
turbances [27]. In [28], nonlinear multi-agent systems are
considered where it is required that each follower node has
a lower triangular structure and the developed continuous
control which is a function of the system states and con-
sensus error may be difficult to implement in practice. Any
control strategy should have high robustness to counteract
uncertainty whilst still being straightforward to implement.
Sliding mode control is well known to possess these char-
acteristics [29]-[31]. There are a few papers considering a
sliding mode approach to the distributed consensus problem.
The distributed finite-time consensus problem for second-
order multi-agent systems is investigated based on integral
sliding mode protocols in [32]. In [33], distributed leader-
following consensus for fractional-order multi-agent systems
is studied using sliding mode control. In [34], sliding mode
control is designed for second order multi-agent systems
where uncertainty is not considered and the nonlinear term
is required to satisfy a linear growth condition. Further, a
distributed tracking problem for first order systems is also
considered using second order sliding mode techniques [35].
This paper will consider the distributed consensus problem
for linear systems from the viewpoint of sliding mode



control. A typical linear sliding surface is selected to achieve
consensus asymptotically for linear systems. The sliding
motion is usually divided into two phases. In the reaching
phase, the system states are driven to the sliding surface,
and after that, the system states converge to the equilibrium
point asymptotically. The contribution of this paper is as
follows: a special regular form is proposed, which makes
the consensus sliding surface design feasible. Then a fully
distributed leader-following control framework is developed
in terms of the sliding mode control principle. Finally, the
system consensus is analyzed by using the Lyapunov method
and the invariant set theorem.

The rest of this paper is arranged as follows. In Section II,
some preliminaries and the problem formulation are stated.
In Section III and IV, the sliding mode surface and the
sliding mode control are designed respectively. In Section V,
simulation results and corresponding analysis are presented.
Finally, the conclusions are drawn in Section VI.

II. PRELIMINARIES AND PROBLEM
FORMULATION

Graph theory will be used to illustrate the communication
among agents. Let ¥ = (¥,&,47) denote an undirected
graph of order N consisting of a set of vertices ¥ =
{vi,v2,...,vn}, a set of undirected edges & C ¥ x ¥, and
a weighted adjacency matrix ./ = (a;;) .- An undirected
edge &;; in the undirected graph ¢ is denoted by a pair of
unordered vertices (v;,v;), which indicates that v; and v; can
communicate with each other. The weights a;; =a;;= 1 in the
weighted adjacency matrix o7 if and only if the edge (vi,v;)
exists, and a;; = a;;=0 otherwise. Define a;; = 0 when i = j.
A path is a sequence of connected edges in a graph, and a
graph is connected if there is a path between every pair of
vertices [36].

Consider a distributed multi-agent system with one leader

and N—1 followers. The leader is labelled as 1, and the
followers are labeled as 2,---,N. The leader has no in-
coming information from the followers, but if there exists
an interconnection between the leader and the jth follower,
ayj=ajr = 1, where j:2,'~~ ,N.
Remark 1. It should be noted that the case where aj; =
aji = 1 will only be used in the consensus proof, and the
leader is never influenced by followers in the controller
implementation.

1, and 0, denote n-dimensional column vectors with all
the entries being 1 and O respectively. 0,x, denotes an n X n
square matrix with all entries being 0.

The dynamics of the agents have the following form:

X,':A)Ci+B(M,'+d,’) (1)

where i=1,--- )N, x; € R" and u; € R™ denote the state and
the control input of the ith agent respectively, d; € R™ denotes
the matched disturbances and uncertainties, A € R"*" and
B € R™™ are system matrices.

In this paper, for ease of exposition, it is assumed that
all the agents have the same system matrix (A,B) but are
subject to different disturbances. It should be pointed out

that the results can be applied to agents with different system
matrices by slight modification.
Assumption 1. The pair (A,B) is controllable in (1).

The system (1) can be transformed into a suitable regular
form by a state transformation 7', which can be obtained
using the method in the Appendix.

_ T
a=T"'x=[z 25 ] (2)
Hence the following dynamics can be obtained:

zit (1) = An2zia (1) (3)
2o (t) = Ag1zi1 (1) +Axzip (1) +Bou; (t) + & (¢)

where z;1 (t) € R*™™™, zp(t) € R™, u; (t) € R™, & (t) € R™,
Ap ER(n—m)Xm’ Asy ERmX(n—m)’ Ayy € RM¥M By ¢ RMXm ig
nonsingular.

Assumption 2. §; (1) € R™ denotes the matched disturbances
and uncertainties and satisfies the following condition:

& <5 4)

where f3; > 0 is a constant.

Assumption 3. The leader’s control input is assumed to
be bounded, and there exists u (t) = uj (z11,212,¢) driving
z11 (1) = 81 (1), z12(t) = & (¢) in system (3), where & (1)
and 0, () are functions of time. That is to say, the states of
the leader, which are directly controlled by the control input
uj (t), will not be influenced by the followers.

Assumption 4. The undirected graph is connected.

Lemma 1 [37]. Consider (1), the following statements are
equivalent.

(a) The pair (A, B) is controllable.

(b) The controllability matrix Q. = [ B | AB | --- | A""'B |
has rank n (full row rank).

(c) The n x (n+ m) matrix [ M —A B ] has full row rank
at every eigenvalue A4; of A.

Theorem 1. Under Assumption 4, the system (1) is control-
lable if and only if Ay in (3) is full row rank.

Proof. 1t can be seen that rank| 4/ —A B | =n for
system (1) by Assumption 1 and Lemma 1. Because of the
special structure of system (3) and using the fact that B; is
nonsingular, it follows that

M —An 0
—Ay MI—Apn B

:mnk[ )4] Al ]er

rank[ M—A B ] = rank

(5)

which indicates that
rank[ M—A B ] :n<:)rank[ M A ] =n—m (6)

Due to the controllability properties of system (1), it
can be obtained that rank[ MI—A B ] =n< rankQ,. =

rank[ B | AB | --- | A""'B | =n, then for system (2):
rank[ M A ] =n-ms
rankQ.
= Vank|: A ‘ O(nfm)x(nfm)AIZ ‘ ‘ O?n__n:n_)i(n_m)AIZ :|
=n—m

(7)



According to (7), Aq2 is row full rank. That is to say, the
system (1) is controllable if and only if A, is row full rank
in system (3). Then n —m < m because of Aj; € R(n—m)xm
Definition 1 [25]. The leader-following consensus in the
distributed multi-agent system (3) is said to be achieved if for
any initial conditions, tl:ngo lxi (1) =x1 ()| =0,i=1,2,--- N
Remark 2. In Definition 1, i = 1 always qualifies as a
special case. This is consistently assumed in this paper unless
otherwise stated.

Definition 2. sgn(.) : R — R¥ is a sign function that
defined as sgn (y) = [sgn (y1),sgn(y2),...,sgn (vr)]", where
y=D1y2 ol

Lemma 2 [38]. Consider the autonomous system x = f (x)
with f continuous, and let V (x) be a scalar function with
continuous first partial derivatives. Assume that V (x) — oo
as ||x|| — o, and V (x) < 0 over the whole state space. Let %
be the set of all points where V (x) =0, and .# be the largest
invariant set in . Then all solutions globally asymptotically
converge to .# as t — oo.
Lemma 3 [39]. If aj,a,--

n 1/q n 1/p
(£4)"< (i)
i=1 i=1

ITII. SLIDING MODE SURFACE DESIGN

-,a, >0 and 0 < p < g, then

The switching function is defined in the following form:

—-c Z aij (Zﬂ

— 20 (1) + AL (21 (1) =z (1))
(8)

where ¢ > 0 influences the convergence rate and the ampli-
tudes of the states and the control input. The corresponding
sliding surface is

Si = 112

2, N} 9)

T T T T \T .
{(ZZU'"7ZN1’Z22""’ZN2) |si =0,Vi=

where s; is defined in (8).

Theorem 2. Under Assumption 4, if the states in (3) can
reach the sliding surface (9), then the leader-following
consensus in the distributed multi-agent system (3) can be
asymptotically achieved.

Proof. When the states reach the sliding mode, it can be
obtained that

N
n(t)=c ;aij (ij (t)

— 22 (1) + AT, (21 (1) =20 (1))

(10)
Combining the first equation in (3) and (10), it follows
that
i (1) =Anza(t) (11)
() =Gi(1)

where §,( ) —CJZ aij (ij (t) —Zi2( )+A12 (Zjl ( ) <il (t)))

The consensus problem is transformed into the following
stabilisation problem.

(12)

T
A
where f & (et el ) =z (1) =2 (1), e (1)

T
(6?1,---"3?,"1) =z (t) —z12(1)-

Based on the definition of the error in (12), {;(¢) can be
re-expressed as

A

D=c Y as (0 -0 +4T (0 - 0)) (13)
“ ij\€j i 12\%j i

A Lyapunov candidate function is chosen as

n—m pe4 —

N N n— ¢ a 1 N T
Z Z Z / k €k Caljydy+ 5 Z (ef?) ef? (14)
0 i=2

i=2 j=1k=

N\—‘

Note that a;; = aj;, then the derivative of V (x) is
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(15)
The analysis of (15) is presented as follows:
(a) V (¢) is radially unbounded over ¢ and e?.
(b) Since the undirected graph is connected, if V =0, then
eip:e?p,p:l, mVl;é],thatlse —e Ase1 0, it

can be obtained that ¢? = eﬁ’ =0.

(c) In the second equation of (12), éﬁ’ (1) =

Gi(t), then (1) =



i(t), Vi# j. Since a;j = ajj, it follows that

N
560 = LY can (60 et 145 (60 ~er0)

i=2 j=
lN & b( b b b
Zan” ej(t)—ej(t)+e(t)—ej(t)
1 2/
Z Z cajj (eﬁ7 (t) —l—ef-’ (1) —el]’- (t))
i=2 j=
=0
(16)
Thus ¢ = 0, and ( Le'e = 0 ac
cordingly. Under the conditlon that el-b = elj?,
N
Gi(t)  becomes (i(t) = ALY a; (ej?—e?), S0
=1

N N
c Y (ALen) Al ¥ ay (es—e) = 0, and it follows
=

N N
that —5 L 'gla,-j (A1T2 (ef —e?)) A12 (e —e ) =0, which
requires Aj, e?fejf> = 0. Since Ajp is row full rank
by Theorem 1, it can be established that AlT2 is column

full rank. Because AlT2 g Rmx(n—m) (e? —e?) e R™™ and
n—m < m, consider taking n —m linear independent rows

n—m)x(n—m) ,

from A%, to form a new matrix 212 € R( then

~T
A, <e‘}—e?) = 0. Thus it can be seen that e —ef = 0.

Therefore AIT2 (e“- —ef) =0 results in e —ef =0, which

i i
becomes ef = e9. As e{ = 0, it can be obtained that

~

elf{ = eq = O

1 J °

On the basis of the above analysis and Lemma 2, it
can be seen that tle||e§‘ ®)] =0, lle||ef (t)|| = 0. Fi-

nally Tim |51 (1) — 211 ()| = 0. Tim [z (1) — 212 ()| =0, i =
1,2,---,N. That is, }Lrgo\|x,(t) —x1 ()| =0, i=2,---,N.
Under Assumption 4, when the states in (3) reach the slid-
ing surface (9), the leader-following consensus is achieved
asymptotically.

IV. SLIDING MODE CONTROL DESIGN

Let the sliding mode control law be
uj (1) = By (tteq; (1) +ttn; (1))

tegj (1) = ¢ Y aje (zr2 =22 + AL (11 —2j1))

&= (17)
—A21zj1 —A2zj
linj (1) = —1;sgn (s;)
where j=2,---,N,k=1,--- N, n; > B;.

Theorem 3. Under Assumptions 2, 3 and 4, the sliding mode
control law (17) can drive the system states in (3) onto the
sliding surface (9) in finite time.

Proof. Substitute the second equation of (3) into (8), then
the sliding function can be represented as follows:

N
sj=2zp—c Z aji (z2—zjp+AD (21 —=251))
k=1
N
=A21zj1 +Anzp+c Z ajk (Zkz —Zj2 +A1Tz (Zkl *Zjl))
k=1

N
T
—Anizji —Anzp +unj+§j—c Z ajx (22 —zjo + A1,

(201 = 271)) i

:unj+§j=j:27"'7N‘

(18)
A Lyapunov candidate function is constructed as
1y 7
V(’):EZ(SJ') Sj (19)
j=2

Differentiating (19), combining (18) and Lemma 3 yeilds

sgn sj) Z (20)

J=2 Jj=2

where —1n; +; <0 <0.

Therefore, the system states reach the sliding surface in
finite time using the control law (17) [38].
Remark 3. Tt should be noted that the control law (17) is
only applicable to the followers and the leaders states are
not influenced by the followers.

V. SIMULATION AND ANALYSIS

Consider a distributed multi-agent system with 4 agents,
whose topology connection is shown as Fig.1. Here @ repre-
sents the leader, @@® represent the followers. The weighted

0100
y { can be obtained as o/ — | 1 0 11
agjacency matrix can be obtained as = 010 0
0100

(2)
¥ @

Fig. 1. The topology connection with 4 agents

The dynamics [40] of each agent is given by

2 10 10 2 16
Xi = 1 4 5 |x+] 05 25 |u (21)
-2 -8 -9 -1 =7



The corresponding dynamics in the regular form

can be obtained by the state transformation 7 =
35 2
-1 05 05
| 0 -2 -1
0 0
Zin (1) zi1 (1)
| ia(0) [m@ }+ (1) g u; (1)
(22)

as follows: when

; , and when ¢ >

where the states of the leader are show
0<t<50, z11(t) =1t, z12(t) = r}

50, z11 (t) =50, z12(¢) = [ 8 } The initial states of the
3
5wt

0
, 241(0) = =1, z42(0) = 0

followers are zp1 (0) =2, z22(0) = {

22 (0) = [ (1) . un (0) =

1 2 3
) ,u,,3(0):[3 ,un4(0):{4 ,c=13,1n;=10

j=2,3,4). Disturbances d; = 0.5sin () are applied to the
system when ¢ > 75.
The simulation results are shown in Figs. 2-5.

Expected trajectory

Fig. 2. The tracking trajectories z;

Expected trajectory

Fig. 3. The tracking trajectories zj»

Figs. 2-3 show the tracking performance. It can be seen
that the followers track the expected trajectory, so that leader-
following consensus is achieved. The system exhibits good
robustness when the disturbances are present. Fig.4 shows

0 10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

Fig. 5. The sliding modes s;

the control inputs, which are bounded. Fig. 5 illustrates that
the state errors first approach the sliding surface and then
asymptotically converge to zero along it.

VI. CONCLUSIONS

In this paper leader-following consensus is achieved for a
linear multi-agent system. A consensus protocol is proposed
based on a sliding mode strategy. The system states first
reach the sliding surface and consensus is achieved asymp-
totically. In future work, the directed topology graph will be
introduced, and mismatched disturbances and uncertainties
will also be considered.

APPENDIX
According to [38] and [40], let B = [b1,ba,...,bn),
and assume that n linear independent column
vectors of the controllability —matrix Q. are

b1,Abq,... ,Avl_lbl;bg,Abz, . ,AUZ_lbz; ...3b,Aby, ... ,Avl_l
b;, where V1 + U2+ ...+ VU, =n.

A%~ 1p, can be represented as the linear combination of
{bhAbl yee ,Avl_lbl;bz,Abg, . ,sz_lbz; o 3bi,Aby, .
A”k_lbk}, where k=1,2,...,[ with [ <m.

Based on the linear combination given above, the corre-
sponding bases are derived as follows.

vp—1 k—1 v;

A%l = — Z ocijjbk—l— Z Z Yeji€ij
j=0 i=1 j=1

(23)



where oy; and ¥;;; are the characteristic polynomial coeffi-
cients.
Define the corresponding basis as

A

ex1 = A% b+ 0y, 1A% b+ + Qg by
A

ey = Avk_2bk + Olk,uk,IAvk_3bk + ...+ ogoby

(24)

Then the state transformation matrix 7 can be obtained

as:

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

T =lei,ean,... e, . ] (25)

n
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