
PHYSICAL REVIEW MATERIALS 4, 083808 (2020)

Role of long-range exact exchange in polaron charge transition levels: The case of MgO
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Predicting the degree of localization and calculating the trapping energies of polarons in insulators by density
functional theory (DFT) is challenging. Hybrid functionals are often reparametrized to obtain accurate results
and the a priori selection of these parameters is still an open question. Here we test the accuracy of several
range-separated hybrid functionals, all reparametrized to produce an accurate band gap, by calculating the
charge transition levels (CTLs) of experimentally well-studied hole polaron defect centers in MgO. We show
that the functional with screened long-range exact exchange is moderately but consistently more accurate than
functionals which do not include long-range exact exchange. We provide evidence that the source of the improved
accuracy is the eigenvalue associated with the valence band maximum of the bulk material. We discuss the extent
to which this accuracy relates to Koopmans’ compliance of the defect energy level.
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I. INTRODUCTION

Point defects in insulators and semiconductors can have
several charge states, owing to the trapping of extra electrons
or holes. Their energies are characterized by charge transition
levels (CTLs) [1,2], which are formally defined as the Fermi
energy at which the formation energy of two different charge
states of a defect center are equal. Density functional theory
(DFT) is often used to assist in identifying and characterizing
defects corresponding to experimentally measured CTLs, as
well as to predict the CTLs of defects in a given material [3].
DFT typically provides reasonably reliable results for deep
states in the band gap, but struggles with shallow states [4].
Challenging examples are the so-called polaron states, where
electrons or holes are trapped by significant lattice polar-
ization, either in a perfect crystal [5,6] or at pre-existing
defects [7,8]. Polarons play crucial roles in various material
properties, e.g., conductivity [5,9], chemical reactivity [10],
and optical absorption and emission [11,12]. In the context
of polarons, the energy difference between the conduction
(valence) band and the CTL of an electron (hole) polaron
defect is the trapping energy of the polaron.

The difficulties of DFT in describing small polaron states,
such as hole polarons which localize on a single oxygen ligand
of a defect in metal oxides, are well documented [13–15].
Local or semilocal functionals typically fail qualitatively for
small polarons by predicting, erroneously, that the charge
carrier is delocalized over several lattice sites. Several clever
schemes have been suggested to solve this problem [16,17].
Within standard DFT, hybrid functionals are a natural solu-
tion to this problem as they can properly localize polarons,
though only if a large enough fraction of exact exchange is
used [13–15]. This raises the question of how to choose an
appropriate fraction of exact exchange in hybrid functionals
to yield accurate CTLs for small polarons.

It has been suggested that the fraction of exact exchange
in a hybrid functional should be fit to reproduce the bulk
fundamental band gap of a material [18]. This would re-
duce the derivative discontinuity [19–21] of the functional
for this material and thus the curvature of the functional
with respect to a fractional number of electrons [22–24],
which has been linked to the spurious delocalization of small
polarons [16,25]. However, while this procedure produces
fitted hybrid functionals that may localize small polarons,
experience has shown that CTLs of defects calculated by
such functionals are inaccurate [26]. This has been linked
to the fact that CTL calculations depend on the position of
the band edges, and the valence band maximum (VBM) and
conduction band minimum (CBM) eigenvalues for different
hybrid functionals, which are fit for the band gap, can shift
by several tenths of an eV [27]. Thus the question can be
rephrased as: Which of the hybrid functionals fit to the correct
band gap would yield the best positions of the band edges and
thus the most accurate CTLs for small polarons?

Recently it has been proposed that the fraction of exact
exchange can be tuned to satisfy Koopmans’ theorem for a
localized defect level in a supercell [28–33]. Koopmans’ the-
orem in DFT [19,34], also known as the ionization potential
theorem, says that the highest occupied Kohn-Sham eigen-
value (in this case the occupied defect level) should be equal to
the ionization potential calculated by total energy differences
(i.e., by the �-SCF method). It has been shown that this is syn-
onymous with removing the curvature of the total energy with
respect to a fractional number of electrons [23]. Specifically,
the recent work of Deák et al. [28] fitted two parameters that
control the amount of exact exchange in the Heyd-Scuseria-
Ernzerhof (HSE) hybrid functional [35] so as to reproduce
the bulk fundamental band gap and satisfy Koopmans’ the-
orem for a defect. HSE is a range-separated functional which
formally has no long-range exact exchange, i.e., no exact
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exchange contribution arising from the long-ranged part of the
Coulomb interaction. Their fitting procedure effectively led
to setting the range-separation parameter to zero, such that it
essentially became a global hybrid functional resembling the
Perdew-Burke-Ernzerhof hybrid functional (PBE0) [36,37]
with a somewhat modified fraction of exact exchange.

Long-range exact exchange is known to affect eigenvalues
more than total energy differences [3,38–40]. This can be
seen in Ref. [28] where satisfying Koopmans’ theorem was
in large part achieved by correcting the positions of the
eigenvalues. This observation, together with experience which
shows that long-range exact exchange is crucial to satisfying
Koopmans’ theorem for finite systems while still retaining the
overall accuracy of the functional [41], leads us to hypothesize
that using screened long-range exact exchange in a range-
separated hybrid functional [42–45] may be a key ingredient
to improving the position of VBM and CBM eigenvalues in
CTL calculations and thus in the accurate prediction of the
trapping energies of small polarons.

To test this hypothesis we use several range-separated
hybrid functionals with different long-range behavior, each
fit to obtain the fundamental band gap, to calculate the CTLs
of hole polarons. Polarons self-trap in many materials, e.g.,
halides, oxides, cuprates, or manganates [46,47], but their
CTLs are often controversial. Since we are seeking quantita-
tive comparison, in this work we chose to focus on a prototypi-
cal dielectric material MgO and to investigate two well studied
defect centers which form hole polarons: a substitution of a
lithium atom on a magnesium site, called an [Li] center, and
a magnesium vacancy, called a V center [48]. We investigate
potential sources of deviations of obtained CTLs from exper-
imental measurements, especially the position of the VBM
eigenvalue and the satisfaction of Koopmans’ theorem. We
demonstrate that a functional with screened long-range exact
exchange yields somewhat improved CTLs over functionals
that do not have long-range exact exchange.

II. METHODOLOGY

A. Selection of functionals

In this study we use several range-separated hybrid func-
tionals which address short- and long-range exchange dif-
ferently, as summarized in Fig. 1. The first type is the HSE
functional [35], which includes an amount of exact exchange
in the short range that diminishes with increasing interelectron
distance such that it has no long-range exact exchange. HSE,
as well as reparametrized versions of it, have been used
extensively in the literature to study defect properties [3,18].

The second type is the PBE0 truncated long-range (PBE0-
TC-LRC) functional [49], which uses a constant fraction of
exact exchange in the short range until a specified cut-off
distance, at which it sets exact exchange to zero. It has been
used in several defect studies and generally yielded results that
successfully reproduced experimental findings [31,50,51]. In
this study, PBE0-TC-LRC has the fraction of exact exchange
set such that it has approximately the correct 1

ε∞r behavior [52]
until exact exchange is cutoff at an intermediate range.

The third type of functional is the screened range-separated
hybrid (SRSH) [42,44,45], which is similar to HSE in terms

FIG. 1. Amount of exact exchange included in the three func-
tionals investigated in this work as a function of the interelectron
separation r. All three functionals are fit to reproduce the band gap of
MgO: fitted HSE (orange filled circles), PBE0-TC-LRC (green x’s),
and SRSH (blue triangles). HSE in its original form (orange open
circles and dashed line) is also shown here for reference. The vertical
dotted line is the distance between neighboring Mg and O atoms.

of being range separated, but more general in that the amount
of exact exchange approaches a set fraction, instead of zero,
at long range [53]. It has been shown to reproduce optical
spectra obtained in GW-BSE calculations for semiconductors
and insulators [42,54], and its ability to satisfy Koopmans’
theorem for gas phase molecules and then reproduce the band
gap for molecular solids has been well documented [43,55].
SRSH sets the fraction of long-range exact exchange so that it
has the correct 1

ε∞r asymptotic behavior for large r.
For technical reasons the CP2K software package [56]

is used for PBE0-TC-LRC calculations and the plane wave
Vienna ab initio simulation package (VASP) [57] is used for
SRSH calculations. To establish a baseline comparison, we
use both codes to calculate defect properties with the HSE
functional and a reparametrized HSE functional (fitted to
reproduce the band gap of MgO). We find that the codes agree
to ∼0.1 eV for CTL calculations.

B. CP2K calculations

CP2K uses a primary Gaussian basis set mixed with
an auxiliary plane-wave basis set [58]. Double-ζ Gaussian
basis sets [59] were used for all atomic species, along-
side Goedecker-Teter-Hutter (GTH) pseudopotentials [60]. To
check the convergence of the basis set, a bulk cell of MgO was
calculated with the GTH triple-ζ basis set, and the band gap
was found to agree to within 0.04 eV. The V center (0/−1)
CTL was also calculated with the triple-ζ basis set and was
found to agree with the double-ζ basis set result to within
0.06 eV.

The auxiliary plane-wave cutoff was set to 8843 eV
(650 Ry). In CP2K, the auxiliary plane-wave cutoffs set the
coarseness of the multigrid used for representing certain quan-
tities. These are converged so as to ensure that energy is calcu-
lated reliably within the auxiliary plane-wave representation,
and also to ensure an efficient mapping of Gaussian functions
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to grids of different coarseness. The plane-wave cutoff is
converged until single-point energy calculations change by
less than 0.01 eV. The basis-set error (in CP2K) therefore is
mostly due to the Gaussian, rather than plane-wave, basis set.

The auxiliary density matrix method (ADMM) [61] is
employed to increase the efficiency of nonlocal exchange
calculation. The ADMM approximation replaces the Gaussian
basis set with a smaller set of faster decaying basis functions
(the auxiliary basis set) to speed up evaluation of the electron
repulsion integrals (ERIs). The auxiliary density matrix P̂ is
constructed from the primary density matrix P. In general,
there is an error introduced by the substitution of the correct
density matrix for a smaller auxiliary matrix. The ADMM
approximation accounts for this error by assuming it can be
accurately captured using a GGA level of approximation.
Stated mathematically,

EHFX[P] ≈ EHFX[P̂] + (EGGA[P] − EGGA[P̂]). (1)

A full description of the implementation of the PBE0-TC-
LRC functional can be found in [49], here we give a brief
overview of the functional. In a periodic system, with a given
k-point mesh, the Hartree-Fock exchange is calculated as

EX = − 1

2Nk

∑
i, j

∑
k,k′

∫∫
φk

i (r)φk′
j (r)g(|r − r′|)

×φk
i (r′)φk′

j (r′)d3rd3r′, (2)

with, conventionally, g(|r − r′|) = 1
|r−r′| . In a �-point calcula-

tion, Eq. (2) reduces to

E�
X = −1

2

∑
i, j

∫∫
φ0

i (r)φ0
j (r)g(|r − r′|)

×φ0
i (r′)φ0

j (r′)d3rd3r′. (3)

In the PBE0-TC-LRC functional, the potential g(|r − r′|) is
replaced by the truncated Coulomb operator,

gTC(|r − r′|) =
{ 1

|r−r′| , |r − r′| � Rc,

0, |r − r′| > Rc.
(4)

Beyond the cutoff radius Rc, a “long-range correction” (LRC)
is applied to replace the lost long-range exchange interaction.
This correction is calculated using the long-range part of
a semilocal density functional. Specifically, the spherically
averaged PBE exchange hole ρSA

x (r, u) is used. The long-
range correction to the exchange energy is then

EPBE-LRC
X [ρ] = 1

2

∫
ρ(r)dr

∫ ∞

RC

4πuρSA
x (r, u)du. (5)

where u is the electron-electron distance. This then allows
us to write the full expression for the exchange-correlation
energy as

EPBE0-TC-LRC
XC = αEHF-TC

X + αEPBE-LRC
X

+ (1 − α)EPBE
X + EPBE

C , (6)

where EHF-TC
X is given by Eq. (3) with g(|r − r′|) substituted

by the truncated Coulomb interaction gTC, and α is the fraction
of exact exchange.

C. VASP calculations

VASP calculations use PBE-based projector-augmented
waves (PAWs) for treating core electrons [62]. The lithium
PAW includes the 1s states as valence. The plane-wave cutoff
used is 600 eV and the k-grid/supercell size (in the case of
a gamma-point calculation) is 4×4×4. The electronic self-
consistency threshold is set to 10−5 eV and the number of
FFT grid points along one axis is set to twice the number
of plane waves. With these parameters, band gaps are con-
verged to 0.02 eV, the ion-clamped dielectric constant ε∞ is
converged to ±0.002, and the dielectric constant including
ionic screening ε0 is converged to ±0.02 [63], VBM and
defect eigenvalues, as well as total energy differences between
defect centers of different charges, are converged to about
0.003 eV (with respect to the plane-wave cutoff), and forces
are converged to about 10−5 eV/Å. When performing ionic
relaxations, forces are relaxed to 0.02 eV/Å.

The SRSH functional [43] partitions the exchange part of
the Coulomb interaction using the identity [64]

1

r
= α

erfc(γ r)

r︸ ︷︷ ︸
xx

+ (1 − α)
erfc(γ r)

r︸ ︷︷ ︸
KSx

+ 1

ε∞

erf (γ r)

r︸ ︷︷ ︸
xx

+
(

1 − 1

ε∞

)
erf (γ r)

r︸ ︷︷ ︸
KSx

, (7)

with exchange owing to the first and third terms treated by
the exact exchange operator (xx) and exchange owing to
the second and fourth terms treated by semilocal exchange
(KSx), in our case based on the PBE functional. Here α

is the parameter controlling how much short-range exact
exchange to use and is set to 0.25, as in the PBE0 and
HSE functionals; ε∞ is the high-frequency dielectric constant
and controls how much long-range exact exchange to use;
and γ is the range-separation parameter that determines the
transition of the amount of exact exchange from α to 1

ε∞
with

increasing r.
The full form of the SRSH exchange-correlation functional

is then

ESRSH
xc = αESR

xx + (1 − α)ESR
KSx

+ 1

ε∞
ELR

xx +
(

1 − 1

ε∞

)
ELR

KSx + EKSc, (8)

where the superscripts denote short-range (SR) and long-
range (LR) components and KSc denotes (semi)local corre-
lation.

D. Computational procedures

First, we fit the HSE, PBE0-TC-LRC, and SRSH function-
als to the experimental band gap of MgO, 7.8 eV [65–69],
using a conventional unit cell of MgO with the experimental
lattice constant, 4.21 Å. The rationale for fitting all functionals
based on the same lattice parameter is that this removes the
indirect effect of the lattice parameter on each functional. This
facilitates the comparison of the degree to which different
functionals satisfy Koopmans’ theorem. Calculations of the
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TABLE I. Parameters set for each functional tested. Fitted HSE, PBE0-TC-LRC, and SRSH have all been parametrized to reproduce
the experimental band gap of MgO at the experimental lattice parameter. α is the short-range fraction of exact exchange used. γ is the
range-separation parameter. 1/ε∞ is the fraction of long-range exact exchange used. Rc is the truncation radius used to cut off exact exchange.
alat is the relaxed lattice parameter for each functional (except for HSE which used the experimental lattice parameter). Eg is the fundamental
band gap when using the lattice parameter alat. ε∞ is the computed ion-clamped dielectric constant which is used in the image charge correction
when calculating deviation from Koopmans’ theorem.

Functional parameters alat (Å) Eg (eV) ε∞

HSE (CP2K/VASP) α = 0.25, γ = 0.2 Å−1 4.23/4.21 6.34/6.48 2.52/2.91
Fitted HSE (CP2K) α = 0.445, γ = 0.2 Å−1 4.20 7.81 2.39
Fitted HSE (VASP) α = 0.432, γ = 0.2 Å−1 4.17 8.16 2.77
PBE0-TC-LRC α = 0.325, Rc = 6.0 Å 4.21 7.77 2.47
SRSH α = 0.25, 1

ε∞ = 0.33, γ = 0.75 Å−1 4.19 7.94 2.87

zero-point renormalization of the band gap for MgO yield val-
ues of 0.22–0.53 eV [70–72]. In light of this range, and the fact
that it is not clear how to include zero-point renormalization
effects into a CTL calculation self-consistently, we choose not
to include the zero-point renormalization in the value of the
experimental band gap for the fitting procedure. For the fitted
HSE functional, the fraction of exact exchange in the short
range is increased until the correct band gap is obtained. For
PBE0-TC-LRC, the fraction of exact exchange is set to be
0.325, which has been used in previous studies [51,73] and,
given the experimental high-frequency dielectric constant of
3.0 [74–76], is also close to 1

ε∞
. The cutoff radius for the exact

exchange is increased until the correct band gap is obtained.
For SRSH, the long-range fraction of exact exchange is set
based on the experimental high-frequency dielectric constant
to be 0.33 [77]. The range-separation parameter γ is fit so
that the band gap is reproduced. A summary of the parameters
used for each functional is given in Table I.

Second, we relax the lattice parameter for the fitted HSE,
SRSH, and PBE0-TC-LRC functionals. For HSE we use
the experimental lattice parameters to avoid additional errors
that would complicate comparisons between the two soft-
ware packages. The relaxed lattice parameters and the band
gaps using the relaxed lattice parameters are also listed in
Table I.

Third, we calculate ε∞ and ε0 for use in image charge
corrections of charged supercells. The reason we use calcu-
lated dielectric constants rather than the experimental values
is that this causes calculations checking the satisfaction of
Koopmans’ theorem (also called Koopmans’ compliance) for
small finite supercells to approach the limit of an infinite
supercell more rapidly. In both VASP and CP2K, ε∞ is
calculated by the change in polarization in response to a small
electric field using a gamma point calculation for a cell of
fixed geometry (see Table I). ε0 is calculated in VASP using
the same approach, but with the ions allowed to move in
response to the electric field.

Fourth, we create 4×4×4 cubic supercells, which contain
512 atoms, with an [Li], V, or F (an oxygen vacancy) center
defect and relax the geometry (all calculations are done at the
� point). [Li]0 and V−1 centers have a hole trapped on one
of the six oxygen ions surrounding the defect. This causes
distortions of the order of 0.1 Å for nearby ions, as well
as long-range distortions several unit cells away. For this

reason, CTL calculations require large supercells to accurately
calculate total energy differences. In order to relax the ionic
positions to the global minimum, we start with an initial guess
in which we move neighboring Mg ions 0.1 Å away from the
hole-localizing oxygen ion. The initial guess is created using
the atomic simulation environment (ASE) package [78].

Finally, CTLs and Koopmans’ compliance errors are cal-
culated for the defects as described below. CP2K is used
to check the size of the supercell needed to converge CTL
energies. It is found that CTL energies calculated using Eq. (9)
for the 5×5×5 supercell (1000 atoms) differ very little from
those computed with the 4×4×4 (512 atoms) supercell, with
the CTL energies increasing by no more than 0.05 eV for
the larger supercells. The image charge correction applied to
these calculations varies slowly with supercell size and differs
by no more than 0.03 eV between the 5×5×5 and the 4×4×4
supercells.

Additionally, we quantify the amount of the hole polaron
charge residing on a single oxygen atom using Bader charge
analysis [79]. This analysis, while physically intuitive, is still
just one way to characterize the degree of hole localization
and we attach more importance to the change of localization
from functional to functional rather than to absolute values.
When calculating Bader charges using VASP, we include the
charge density associated with the core electrons and make
sure that the Bader charge is converged to 0.01 electrons
with respect to the FFT grid used to evaluate the charge
density.

E. Charge transition levels

Charge transition levels (CTLs) are formally defined as the
Fermi energy level at which the formation energies of a defect
center D for two charge states q1 and q2 are equal [1–3].
This means that if the Fermi energy εF is lower than the
CTL [denoted as εD(q1/q2)], then the defect is in the state
Dq1 . If the Fermi energy is higher than εD(q1/q2), then the
defect is in the state Dq2 . CTLs are calculated via the following
equation [1–3,80]:

εD(q1/q2) = (E [Dq2 ] + Ecorr(q2)) − (E [Dq1 ] + Ecorr(q1))

q1 − q2

− [εVBM[H0] + �VDH ], (9)
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where E [Dq1 ] is the total energy of the defect with charge
state q1 (q1 > 0 means that the defect state is positively
charged), Ecorr is an image charge correction (see Sec. II F),
εVBM[H0] refers to the valence band maximum of the neutral
host system, and �VDH is the difference in the electrostatic
potential between the neutral defect system and the neutral
host system [81]. The convention used here defines the CTL
with respect to the valence band. Thus εD(q1/q2) is the energy
it takes to move an electron from the valence band into the
unoccupied defect level [1]. It should be noted that the ionic
positions are relaxed when calculating each E [Dq] in Eq. (9).
We calculate VDH via the electrostatic potential of the core of
an atom far away from the defect [82].

Koopmans’ compliance is trivially obeyed for delocalized
orbitals in (semi)local functionals [25,83] and one could
equally use εVBM[H0] or E [H0] − E [H1] in Eq. (9) [80],
where E [H1] is the total energy of the bulk host with one
electron removed [84]. We see that while this is also true for
hybrid functionals (see Fig. 1 of the Supplemental Material
(SM) [85]), they approach the bulk limit more slowly than
semilocal functionals. The SRSH functional has a significant
deviation of −0.3 eV from Koopmans’ compliance for a
4×4×4 supercell. We find that the eigenvalue of the VBM
converges more rapidly with respect to the size of the super-
cell, thus we choose to use the VBM eigenvalue instead of a
�-SCF calculation in Eq. (9).

F. Image charge correction

For a total energy calculation of a system with a net charge
that uses periodic boundary conditions, a compensating jel-
lium background is added to the calculation to prevent the
Hartree term from diverging. This spuriously lowers the total
energy of charged systems and a correction term Ecorr must be
included [86,87]. Various correction schemes exist [82,88,89]
and we choose the Lany-Zunger correction [1,80] for CTL
calculations:

Ecorr(q) = (1 + f )
αq2

2εL
, (10)

where α = 2.8373 is the Madelung constant for a simple cubic
periodic array of point charges in jellium [86], L is the length
of one side of the supercell, and ε is the dielectric screening
constant. The factor f takes into account the second radial mo-
ment of the defect charge distribution. When f = 0 the Lany-
Zunger correction reduces to a monopole correction. Due to
screening in bulk systems, it was observed that the dipole term
could be taken into account by setting f = −0.33 [1,80,82].

If the total energy being corrected has relaxed ionic posi-
tions, we use the static dielectric constant ε0. Calculating ε0 is
expensive, so we use the ε0 calculated by SRSH for all VASP
calculations. A 10% variation in ε0 would cause less than a
0.03 eV change in the image charge correction. Additionally
the value of ε0 calculated by SRSH (8.57) is close to the bulk
experimental value (9.83) [90]. When correcting calculations
which do not relax the ionic positions, we use the high-
frequency dielectric constant ε∞. However, it has recently
been pointed out that there may be errors associated with this
procedure [91].

G. Checking Koopmans’ compliance

Deviation from satisfying Koopmans’ theorem [also called
Koopmans’ compliance (KC)] for a given defect center D, as it
changes from charge state q to q + 1, is calculated as follows.
We compare the �-SCF vertical (fixed-ion) ionization energy
for a defect with the eigenvalue that is being depopulated,
which is associated with the localized charge on the defect.
This comparison takes the form

�K[Dq] = (E [Dq+1] + Ecorr(q + 1)) − (E [Dq] + Ecorr(q))

+
(

εho[Dq] − 2

q
Ecorr(q)

)
, (11)

where image charge corrections Ecorr have been added where
needed [92] and εho[Dq] is the highest occupied orbital for the
defect with charge state q. When using the eigenvalue from
a charged supercell we apply the image charge correction as
derived in Ref. [27], as can be seen in the last term on the
right-hand side of Eq. (11). It should be noted that both the Dq

and Dq+1 calculations in Eq. (11) use the same ionic positions,
chosen to ensure that the orbital of the state being depopulated
is localized for both calculations.

For the [Li] center, we calculate �K[[Li]−1] using the
relaxed ionic positions of the [Li]0 state. Unfortunately, we
cannot calculate �K[V−2] because of difficulties associated
with the ionic positions. The relaxed ionic positions of the
V−2 state do not break the symmetry of the lattice; if we
use this configuration to calculate �K[V−2], the calculation
of E [V−1] does not converge because the hole cannot be
localized on a single site due to symmetry. The relaxed ionic
positions of the V−1 state ionically screen the excess −1
charge; if we use this configuration to calculate �K[V−2], it is
unclear what image charge correction to use for E [V−2] as the
excess charge is only partially ionically screened. To remove
doubt, we calculate �K[V−1] using the V center with bulk
ionic positions so that we can use ε∞ in Ecorr. In addition to
[Li] and V centers, we calculate �K for the oxygen vacancy
defect, called an F center, in order to check if �K for a given
functional is the same for several different defects. For the F
center, we calculate �K[F0] using the relaxed ionic positions
of the F0 state.

For calculating �K , we use the Makov-Payne monopole
correction, i.e., f = 0 in Eq. (10) [86,87]. This was found
previously to remove the supercell size dependence of the
KC calculations more rapidly [81]. We confirm this finding in
Fig. 2 by calculating �K[F0] and �K[[Li]−1] for unrelaxed
supercells of increasing size. As can be seen in the figure, KC
calculations are very sensitive to the type of image charge
correction used, which for our calculations is of the same
order of magnitude as the deviation from KC.

Other methods of calculating KC are discussed in the
Supplemental Material (SM). All methods agree to within
0.1 eV, which provides confirmation of the validity of the
calculations. In addition, band decomposed charge densities
of the wave functions of the polarons are used to confirm
visually that the highest occupied wave function for charge
state q is similar to the difference in the charge density
between the two charge states [93]. We note that deviation
from KC is not strongly sensitive to the atomic positions or
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FIG. 2. Deviation from Koopmans’ compliance for unrelaxed Li
centers (open circles) and F centers (pluses) with respect to the in-
verse supercell size using the SRSH functional. An n×n×n supercell
has an inverse supercell index of 1/n. Lines are linear fits of the F
center data. Black solid line: Data without image charge corrections.
Red dashed line: Data with Lany-Zunger charge corrections. Blue
dotted line: Data with Makov-Payne monopole corrections.

lattice parameter. A 1% change in the lattice parameter of the
F center leads to a 3% change in KC.

III. RESULTS AND DISCUSSION

A. Calculated CTLs compared to experiment

CTLs for [Li] and V centers calculated using each func-
tional, as well as experimental CTL values, are given in
Table II. Even for these well-studied defects, some discrep-
ancies exist in the literature. Therefore, a detailed review of
available experimental results is given in the Supplemental
Material [85]. In addition, we show the �-SCF values be-
tween the different charge states [the first term on the right-
hand side of Eq. (9)] and the VBM eigenvalue of the host
system in order to identify the cause of differences in the CTL
between functionals.

First, we note that HSE CTL results obtained using the
two codes in Table II differ by ±0.1 eV. This is likely a
consequence of the difference between the VASP PAWs and
the pseudopotentials used in CP2K and the level of numer-

ical convergence. The difference between the CTL values
calculated by the two codes increases slightly for the fitted
HSE functionals because they are independently fitted and the
lattice parameter relaxes to a somewhat different value. While
CTL values calculated by VASP and CP2K can be compared
directly, �-SCF and εVBM values cannot be compared directly
because in each code they are shifted by an arbitrary constant
to maintain an average electrostatic potential of zero. These
shifts are different mainly because of the use of different
pseudopotentials in the two codes.

Second, we see that all the fitted functionals predict larger
CTLs than the experimental values, but that the CTLs of
SRSH are somewhat closer to experiment than those attained
by using fitted HSE or PBE0-TC-LRC, even taking into
account a 0.1 to 0.2 eV difference between the codes. This
trend is even clearer when comparing only VASP results, i.e.,
SRSH with fitted HSE. Additionally, we see that the enhanced
accuracy of CTLs produced by SRSH, compared to the VASP
HSE results, is essentially due to the position of the VBM
eigenvalue.

We can rule out trivial explanations for the difference
in CTL values. First, each functional uses a relaxed lattice
parameter that is slightly different and this affects the band
gap (see Table I) and the VBM eigenvalue. However, we also
calculated CTLs using the experimental lattice parameter. We
found that the CTL values did not change when using the
experimental lattice parameter and that the VBM eigenval-
ues were still responsible for the differences between CTLs.
Second, differences in pseudopotentials can affect computed
values, but they cannot explain our findings because our
conclusions hold independently for the VASP and CP2K data.

In light of this, the difference in the calculated VBM
eigenvalues is directly related to the functional used. Despite
having very different forms of short-range exact exchange,
fitted HSE and PBE0-TC-LRC produce very similar CTLs, �-
SCF values, and VBM eigenvalues (using CP2K). Therefore,
it is reasonable to conclude that the inclusion of screened
long-range exchange is the distinguishing feature between
SRSH and the other two fitted functionals. In the next section
we offer a plausibility argument for why SRSH’s improved
CTL is caused by an improved VBM eigenvalue due to
including long-range exact exchange, rather than by a simple
cancellation of errors.

TABLE II. Charge transition levels (CTLs) for [Li] and V centers in MgO using different functionals. The CTL calculation is composed of
a �-SCF term [the first term on the right-hand side of Eq. (9)] minus the VBM eigenvalue (we neglect here the potential alignment term which
is of the order of 0.02 eV). Values are given in eV. Experimental results are taken from Refs. [9,94–96] for [Li] centers and Refs. [7,97,98] for
V−1 centers, see the Supplemental Material for more details.

ε[Li](0/ − 1) εV(−1/ − 2) �-SCF (Li) �-SCF (V) εVBM[H ]

HSE (VASP) 0.34 0.98 2.27 2.87 1.94
SRSH 0.96 1.63 2.24 2.89 1.29
Fitted HSE (VASP) 1.07 1.82 2.27 2.99 1.21
HSE (CP2K) 0.40 0.85 3.58 4.02 3.18
PBE0-TC-LRC 1.21 1.88 3.57 4.24 2.36
Fitted HSE (CP2K) 1.23 1.92 3.55 4.25 2.34
Expt. 0.7 1.3–1.6
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FIG. 3. Total energy (including image charge corrections) of a
carbon atom in vacuum as a function of the fractional charge of
the atom using different functionals. The lines connect the total
energies at q = 1 to q = 0, and q = 0 to q = −1. Thus the slope
of the line segment from (1, 0) is minus the ionization potential, as
calculated by �-SCF, and the slope of the line segment from (0, −1)
is minus the electron affinity. Deviation from Koopmans’ compliance
is visually demonstrated by the deviation of the total energy from
the straight lines for fractional charges, i.e., curvature. HSE displays
significant curvature, whereas optimally tuned HSE (OT-HSE), i.e.,
HSE adjusted to be Koopmans’ compliant, is piecewise linear, albeit
at the cost of yielding the wrong ionization potential and electron
affinity. The optimally tuned range-separated hybrid functional (OT-
RSH), owing to inclusion of long-range exact exchange, is both
Koopmans’ compliant and predicts the correct ionization potential
and electron affinity. Here the HSE and the experimental data [99]
were shifted so that the total energy at q = 0 equals that of OT-RSH,
to facilitate the comparison. Calculations were performed using
VASP.

B. Relation of the highest occupied eigenvalue to Koopmans’
compliance and long-range exact exchange: An analogy

to an atomic system

To understand the effect of long-range exact exchange on
the eigenvalue of the highest occupied orbital, it is instruc-
tive to consider an isolated atom and analyze it in terms
of KC. There are several reasons why this is illuminating:
(i) atoms typically feature large deviations from Koopmans’
theorem [23]; (ii) the image charge correction, with f = 0 and
ε = 1 in Eq. (10), becomes very accurate [86]; (iii) hybrid
functionals can be tuned to satisfy Koopmans’ theorem un-
equivocally for these systems [24,41]; and (iv) their analysis
is not complicated by dielectric screening, ionic relaxation,
and comparing an eigenvalue of one system (the bulk) with
total energy differences of another system (a supercell with
a defect). Here we consider the lowest triplet state of carbon
atom

In Fig. 3 we show total energy as a function of a frac-
tional number of electrons for HSE, optimally tuned HSE
(OT-HSE), and the optimally tuned range-separated hybrid
functional (OT-RSH) for a carbon atom. The term “optimally
tuned” denotes nonempirical adjustment of the functional’s
parameters so as to satisfy KC, as opposed to all other

reparametrized functionals explored in this article, which
were fit to reproduce the band gap. More specifically, optimal
tuning sets the functional’s parameters to satisfy �K[C0] = 0
in Eq. (11) (see the SM for more details). We also note that
OT-RSH includes full long-range exact exchange so as to
satisfy the correct asymptotic 1/r behavior in vacuum. It is
apparent in Fig. 3 that the total energy using the HSE func-
tional has significant curvature, but that the �-SCF ionization
energy and electron affinity, as indicated by the endpoints, are
very close to experiment. Next, we see that both OT-HSE and
OT-RSH are piecewise linear on the line segment q ∈ (1, 0),
confirming that they satisfy �K[C0] = 0. OT-HSE corrects
the eigenvalue of the highest occupied orbital by greatly
increasing short-range exact exchange, and this causes the
ionization energy and electron affinity predicted by OT-HSE
to be inaccurate (the endpoints and the slopes do not agree
with experiment). This means that the eigenvalue gap between
the highest occupied molecular orbital and the lowest unoc-
cupied molecular orbital (HOMO-LUMO gap) of OT-HSE is
incorrect, even though Koopmans’ theorem is obeyed. On the
other hand, OT-RSH corrects the eigenvalue using long-range
exact exchange and does not noticeably affect the ionization
potential and electron affinity predicted by �-SCF [3,38,39],
meaning that Koopmans’ theorem is obeyed and the HOMO-
LUMO gap is also correct. Since the real ionization process
moves an electron out to infinity, it makes physical sense
that enforcing the correct long-range behavior by including
the right fraction of long-range exact exchange improves the
accuracy of the eigenvalues for the right reason, without neg-
atively affecting the ionization potential and electron affinity
calculated by �-SCF [24].

Returning to MgO, SRSH yields a VBM eigenvalue which
improves the calculated CTLs while yielding essentially the
same �-SCF values as HSE. In contrast, fitted HSE and
PBE0-TC-LRC yield VBM eigenvalues that cause the CTLs
to be somewhat overestimated and yield �-SCF values for the
V center which differ from those given by HSE, further con-
tributing to the overestimation of the CTLs. This is the same
overall behavior as for the carbon atom. This strongly suggests
that SRSH yields improved CTLs because including screened
long-range exact exchange improves the VBM eigenvalue of
the bulk system.

Based on the above considerations, we suggest that for
functionals with screened long-range exact exchange, the
overall amount of exact exchange that makes the bulk system
Koopmans’ compliant will also yield the correct band gap.
One can then tune either quantity to achieve accurate VBM
eigenvalues. We clarify that, as noted earlier, Koopmans’
compliance is trivially obtained for the bulk system in the
infinite supercell limit. Here a functional being Koopmans’
compliant for the bulk means that the exchange-correlation
functional is not missing a derivative discontinuity for that
parametrization of exact exchange. How to calculate the de-
viation from Koopmans’ compliance for a bulk system is an
active area of research [83,100]. Lorke et al. [101] reported a
related finding, where a hybrid functional fit to have the cor-
rect long-range behavior and band gap was also Koopmans’
compliant for a defect. Screened long-range exact exchange
is most relevant for ionic insulators owing to their relatively
small high-frequency dielectric constant. In contrast, the fact
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TABLE III. Deviation from Koopmans’ compliance for several defects, in eV; charge transition levels (CTLs), in eV (from Table II for
convenience); degree of localization of the polaron, measured by the fraction of the hole charge localized on one oxygen site as calculated by
Bader charge analysis.

�K[[Li]−1] �K[V−1] �K[F0] ε[Li](0/ − 1) εV(−1/ − 2) Loc. [Li]0 Loc. V−

HSE (VASP) 0.81 − 0.69 0.34 0.98 0.53 0.62
SRSH 0.18 0.06 0.13 0.96 1.63 0.59 0.66
Fitted HSE (VASP) 0.09 0.24 0.45 1.07 1.82 0.68 0.72
HSE (CP2K) 0.89 − 0.64 0.40 0.85 0.69 0.78
PBE0-TC-LRC 0.10 0.15 0.44 1.21 1.88 0.82 0.87
Fitted HSE (CP2K) 0.25 0.24 0.61 1.23 1.92 0.87 0.9

that HSE yielded accurate band gaps, obeyed Koopmans’
theorem, and yielded accurate CTLs for materials with a large
high-frequency dielectric constant [30], may indicate that
having no exact exchange in the long-range is an acceptable
approximation.

C. Relation between Koopmans’ compliance of defect systems
and the accuracy of calculated CTLs

Given that we fit the functionals in this study to the band
gap and not to KC, we investigate the relationship between
the KC for the defect system and the accuracy of the CTLs,
as summarized in Table III. We see that fitting the functional
to yield the correct band gap does indeed reduce the deviation
from KC. We also see that functionals with lower �K (i.e.,
less convex) predict larger CTLs as well as greater localization
of the hole on a single oxygen site. More quantitatively, the
differences in KC between the functionals for the [Li] center
match the differences between corresponding CTL values as
calculated by VASP. The trend is less clear for KC of the V
centers, especially since HSE was not able to localize the hole
at all. This can be attributed to the fact that the KC calculations
are not using the same geometry as the CTLs, and hence are
looking at the different character of polaron localization.

While it is clear from �K data for HSE that gross deviation
from KC yields inaccurate CTLs, two observations lead us
to suggest that the KC of the defect system is not directly
indicative of the accuracy of the calculated CTL, in particular
for functionals that do not have screened long-range exact
exchange. First, the deviation from KC of SRSH for the [Li]
defect is about 0.1 eV worse than the KC of fitted HSE
(calculated by VASP), despite the fact that the [Li] CTL cal-
culated by SRSH is closer to experiment. Second, KC varies
by 0.3 eV between defects using the fitted HSE functional.
The first observation may be simply due to errors in the image
charge corrections and by itself does not prove that the KC of
a defect does not directly indicate the accuracy of the CTL
value. Image charge corrections are still an area of active
research [91] and it is somewhat surprising that Makov-Payne
corrections reduce the size dependence of �K calculations
better than Lany-Zunger corrections. Thus, it is possible that
better corrections exist that can shift our KC calculations.

However, the second observation shows that a more subtle
problem also plays a part in explaining why in our case the
calculated KC is somewhat worse for the SRSH functional,
despite it having more accurate CTLs. A distinction must
be made between the eigenvalue being examined in �K

calculations, which belongs to the localized defect, and the
VBM eigenvalue of the bulk system, which is used in the
CTL calculations. There is only one value of α for the fitted
HSE functional that will minimize the derivative discontinuity
for the bulk VBM eigenvalue [22]. The variation in �K
associated with different defects for the fitted HSE functional
indicates that the α that minimizes the derivative discon-
tinuity of the VBM is likely not the same α that reduces
�K[[Li]−1]. Thus the error in a CTL calculation due to the
VBM eigenvalue is not directly correlated to satisfaction of
KC for a given defect. We note that others have also observed
that different defects require somewhat different fractions
of exact exchange to satisfy Koopmans’ theorem [29] and
that a better image charge correction is unlikely to greatly
reduce the variation of �K for different defects. The fact
that SRSH has a smaller spread in KC between defects may
be a further indication that including screened long-range
exact exchange facilitates the possibility of satisfying several
conditions simultaneously.

Finally, in Table III we can also see that all the hybrid func-
tionals investigated here localize hole polarons in relaxed [Li]
and V centers in MgO, even HSE, which shows significant
convexity (�K > 0). There are two hints that SRSH describes
polaron localization more accurately. First, functionals with
increased short-range exact exchange yield greater localiza-
tion of the polaron, as reported in Table III. In the case of the
V center we see that the larger amount of short-range exact
exchange corresponds to larger �-SCF components and that
this contributes to the overestimation of the V center CTL
(see Table II). Therefore large amounts of short-range exact
exchange may be overlocalizing the hole polaron. Second,
the SRSH functional does not localize self-trapped holes in
MgO, in agreement with experimental evidence [11,98,102],
whereas the PBE0-TC-LRC functional does localize a self-
trapped hole, albeit with a small trapping energy of 0.36 eV.

D. Remaining sources of error

While the SRSH functional yields the most accurate CTLs,
it is still 0.25 eV larger than experiment for [Li] centers and
possibly also for V centers, raising the question of what the
remaining sources of error are. Pseudopotentials and code
implementations can give a 0.2 eV error, as demonstrated
by the the CTL energies of the independently fitted HSE
functionals calculated by both DFT codes. The supercell
size may not be fully converged. This is partly due to the
use of approximate image charge corrections. It may also
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be due to errors introduced by elastic effects when per-
forming ionic relaxation, stemming from the finite size of
the supercell. CTLs calculated using a larger supercell size
(5×5×5) increased by no more than 0.05 eV. Based on the
SRSH �K values for different defect centers, we estimate
that the KC error of the VBM eigenvalue is of the order
of 0.1–0.2 eV. Beyond numerics, zero-point renormalization
and other phonon-electron coupling effects may need to be
explicitly included for improved accuracy and obviously the
approximate functional itself introduces an error.

IV. CONCLUSION

We calculated charge transition levels of several well-
studied hole polaron defects in MgO with several hybrid func-
tionals. The results provide clear evidence that a functional
fitted to the fundamental band gap of the material yields
somewhat more accurate CTLs, as compared to experiment, if
it includes screened long-range exact exchange. We attribute
this improvement mainly to an improved VBM eigenvalue. In
addition, we do not find a direct correlation between the accu-
racy of a CTL and the degree to which Koopmans’ theorem is
satisfied for that defect for the fitted hybrid functionals.

Based on these results, for low dielectric constant ma-
terials, we recommend calculating defect CTLs, and pos-
sibly also trapping energies of self-trapped polarons, using

range-separated hybrid functionals with screened long-range
exact exchange, fit to the bulk band gap. This method of se-
lecting the parameters of a hybrid functional does not depend
on image charge corrections, and it is computationally cheaper
than fitting the parameters based on Koopmans’ compliance of
a defect, while achieving similar or possibly even better accu-
racy. Because the improvement obtained upon using screened
long-range exact exchange is not large, we suspect that any
hybrid functional which includes a fraction of long-range
exact exchange close to 1/ε∞ will produce reasonable results
when fit to the band gap. However, further work is needed
to assess whether the conclusions drawn from this initial test
case generally hold true for wide band gap insulators.

ACKNOWLEDGMENTS

The authors acknowledge support by a Weizmann-UK
grant. L.K. is the incumbent of the Aryeh and Mintzi Katmann
Professorial Chair. J.S. and A.L.S. acknowledge funding pro-
vided by the UK Engineering and Physical Sciences Research
Council (EPSRC) under Grants No. EP/K01739X/1 and No.
EP/P013503/1 and by the Leverhulme Trust RPG-2016-135.
Computer facilities on the ARCHER UK National Supercom-
puting Service have been provided via the UKs HPC Materials
Chemistry Consortium (EPSRC Grants No. EP/L000202 and
No. EP/R029431).

[1] S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008), note
that Eq. (2) therein should have +EV and not −EV .

[2] C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851
(2004).

[3] C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G.
Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys.
86, 253 (2014).

[4] A. Alkauskas, M. D. McCluskey, and C. G. Van de Walle,
J. Appl. Phys. 119, 181101 (2016).

[5] I. G. Austin and N. F. Mott, Adv. Phys. 50, 757 (2001).
[6] D. Emin, in Polarons (Cambridge University Press,

Cambridge, 2013), p. 211.
[7] O. F. Schirmer, J. Phys.: Condens. Matter 18, R667 (2006).
[8] O. F. Schirmer, J. Phys. Condens. Matter 23, 334218 (2011).
[9] M. M. Tardío, R. Ramírez, R. González, and Y. Chen,

Phys. Rev. B 66, 134202 (2002).
[10] N. A. Richter, F. Stavale, S. V. Levchenko, N. Nilius, H.-J.

Freund, and M. Scheffler, Phys. Rev. B 91, 195305 (2015).
[11] K. A. Kalder, T. N. Kyarner, C. B. Lushchik, A. F. Malysheva,

and R. V. Milenina, J. Appl. Spectrosc. 25, 1250 (1976).
[12] A. J. E. Rettie, W. D. Chemelewski, D. Emin, and C. B.

Mullins, J. Phys. Chem. Lett. 7, 471 (2016).
[13] G. Pacchioni, F. Frigoli, D. Ricci, and J. A. Weil, Phys. Rev. B

63, 054102 (2000).
[14] J. Lægsgaard and K. Stokbro, Phys. Rev. Lett. 86, 2834 (2001).
[15] J. L. Gavartin, P. V. Sushko, and A. L. Shluger, Phys. Rev. B

67, 035108 (2003).
[16] S. Lany and A. Zunger, Phys. Rev. B 80, 085202 (2009).
[17] W. H. Sio, C. Verdi, S. Poncé, and F. Giustino, Phys. Rev. Lett.

122, 246403 (2019).

[18] J. B. Varley, A. Janotti, C. Franchini, and C. G. Van de Walle,
Phys. Rev. B 85, 081109(R) (2012).

[19] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev.
Lett. 49, 1691 (1982).

[20] J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
[21] L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).
[22] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy,

Phys. Rev. B 53, 3764 (1996).
[23] T. Stein, J. Autschbach, N. Govind, L. Kronik, and R. Baer,

J. Phys. Chem. Lett. 3, 3740 (2012).
[24] L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer,

J. Chem. Theory Comp. 8, 1515 (2012).
[25] P. Mori-Sánchez, A. J. Cohen, and W. Yang, Phys. Rev. Lett.

100, 146401 (2008).
[26] S. Lany and A. Zunger, Modell. Simul. Mater. Sci. Eng. 17,

084002 (2009).
[27] W. Chen and A. Pasquarello, Phys. Rev. B 88, 115104 (2013).
[28] P. Deák, Q. Duy Ho, F. Seemann, B. Aradi, M. Lorke, and T.

Frauenheim, Phys. Rev. B 95, 075208 (2017).
[29] G. Miceli, W. Chen, I. Reshetnyak, and A. Pasquarello,

Phys. Rev. B 97, 121112(R) (2018).
[30] P. Deák, B. Aradi, T. Frauenheim, E. Janzén, and A. Gali,

Phys. Rev. B 81, 153203 (2010).
[31] A. R. Elmaslmane, M. B. Watkins, and K. P. McKenna,

J. Chem. Theory Comput. 14, 3740 (2018).
[32] T. Gake, Y. Kumagai, and F. Oba, Phys. Rev. Materials 3,

044603 (2019).
[33] S. Kokott, S. V. Levchenko, P. Rinke, and M. Scheffler,

New J. Phys. 20, 033023 (2018).
[34] J. P. Perdew and M. Levy, Phys. Rev. B 56, 16021 (1997).

083808-9

https://doi.org/10.1103/PhysRevB.78.235104
https://doi.org/10.1063/1.1682673
https://doi.org/10.1103/RevModPhys.86.253
https://doi.org/10.1063/1.4948245
https://doi.org/10.1080/00018730110103249
https://doi.org/10.1088/0953-8984/18/43/R01
https://doi.org/10.1088/0953-8984/23/33/334218
https://doi.org/10.1103/PhysRevB.66.134202
https://doi.org/10.1103/PhysRevB.91.195305
https://doi.org/10.1007/BF00618667
https://doi.org/10.1021/acs.jpclett.5b02143
https://doi.org/10.1103/PhysRevB.63.054102
https://doi.org/10.1103/PhysRevLett.86.2834
https://doi.org/10.1103/PhysRevB.67.035108
https://doi.org/10.1103/PhysRevB.80.085202
https://doi.org/10.1103/PhysRevLett.122.246403
https://doi.org/10.1103/PhysRevB.85.081109
https://doi.org/10.1103/PhysRevLett.49.1691
https://doi.org/10.1103/PhysRevLett.51.1884
https://doi.org/10.1103/PhysRevLett.51.1888
https://doi.org/10.1103/PhysRevB.53.3764
https://doi.org/10.1021/jz3015937
https://doi.org/10.1021/ct2009363
https://doi.org/10.1103/PhysRevLett.100.146401
https://doi.org/10.1088/0965-0393/17/8/084002
https://doi.org/10.1103/PhysRevB.88.115104
https://doi.org/10.1103/PhysRevB.95.075208
https://doi.org/10.1103/PhysRevB.97.121112
https://doi.org/10.1103/PhysRevB.81.153203
https://doi.org/10.1021/acs.jctc.8b00199
https://doi.org/10.1103/PhysRevMaterials.3.044603
https://doi.org/10.1088/1367-2630/aaaf44
https://doi.org/10.1103/PhysRevB.56.16021


DAHVYD WING et al. PHYSICAL REVIEW MATERIALS 4, 083808 (2020)

[35] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118,
8207 (2003); 124, 219906 (2006).

[36] C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
[37] M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029

(1999).
[38] Z. Zheng, D. A. Egger, J.-L. Brédas, L. Kronik, and V.

Coropceanu, J. Phys. Chem. Lett. 8, 3277 (2017).
[39] M. E. Casida and D. R. Salahub, J. Chem. Phys. 113, 8918

(2000).
[40] T. B. de Queiroz and S. Kümmel, J. Chem. Phys. 141, 084303

(2014).
[41] T. Stein, H. Eisenberg, L. Kronik, and R. Baer, Phys. Rev. Lett.

105, 266802 (2010).
[42] S. Refaely-Abramson, M. Jain, S. Sharifzadeh, J. B. Neaton,

and L. Kronik, Phys. Rev. B 92, 081204(R) (2015).
[43] S. Refaely-Abramson, S. Sharifzadeh, M. Jain, R. Baer,

J. B. Neaton, and L. Kronik, Phys. Rev. B 88, 081204(R)
(2013).

[44] L. Kronik and J. B. Neaton, Annu. Rev. Phys. Chem. 67, 587
(2016).

[45] L. Kronik and S. Kümmel, Adv. Mater. 30, 1706560 (2018).
[46] A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel,

D. M. Ramo, H. M. Rønnow, G. Aeppli, and C. Renner,
J. Phys.: Condens. Matter 19, 255208 (2007).

[47] J. T. Devreese and A. S. Alexandrov, Rep. Prog. Phys. 72,
066501 (2009).

[48] Y. Chen and M. Abraham, J. Phys. Chem. Solids 51, 747
(1990).

[49] M. Guidon, J. Hutter, and J. VandeVondele, J. Chem. Theory
Comput. 5, 3010 (2009).

[50] O. A. Dicks and A. L. Shluger, J. Phys.: Condens. Matter 29,
314005 (2017).

[51] J. Strand, S. K. Chulkov, M. B. Watkins, and A. L. Shluger,
J. Chem. Phys. 150, 044702 (2019).

[52] J. H. Skone, M. Govoni, and G. Galli, Phys. Rev. B 93, 235106
(2016).

[53] HSE can be thought of as a special case of the SRSH functional
with ε∞ → ∞.

[54] D. Wing, J. B. Haber, R. Noff, B. Barker, D. A. Egger, A.
Ramasubramaniam, S. G. Louie, J. B. Neaton, and L. Kronik,
Phys. Rev. Materials 3, 064603 (2019).

[55] A. K. Manna, S. Refaely-Abramson, A. M. Reilly, A.
Tkatchenko, J. B. Neaton, and L. Kronik, J. Chem. Theory
Comput. 14, 2919 (2018).

[56] J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T.
Chassaing, and J. Hutter, Comput. Phys. Commun. 167, 103
(2005).

[57] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[58] G. Lippert, J. Hutter, and M. Parrinello, Mol. Phys. 92, 477

(1997).
[59] J. VandeVondele and J. Hutter, J. Chem. Phys. 127, 114105

(2007).
[60] S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703

(1996).
[61] M. Guidon, J. Hutter, and J. VandeVondele, J. Chem. Theory

Comput. 6, 2348 (2010).
[62] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[63] For dielectric calculations the self-consistency threshold was

raised to 10−8 eV and the convergence value reported includes
convergence with respect to supercell size.

[64] This is equivalent to the more compact representation in pre-
vious papers [42], where the xx and KSx terms are combined
and α + β = 1/ε.

[65] R. Whited, C. J. Flaten, and W. Walker, Solid State Commun.
13, 1903 (1973).

[66] D. M. Roessler and W. C. Walker, Phys. Rev. 159, 733 (1967).
[67] N.-P. Wang, M. Rohlfing, P. Krüger, and J. Pollmann,

Appl. Phys. A 78, 213 (2004).
[68] A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, and F.

Bechstedt, Phys. Rev. B 80, 035112 (2009).
[69] L. X. Benedict, E. L. Shirley, and R. B. Bohn, Phys. Rev. Lett.

80, 4514 (1998).
[70] J. P. Nery, P. B. Allen, G. Antonius, L. Reining, A. Miglio, and

X. Gonze, Phys. Rev. B 97, 115145 (2018).
[71] W. R. L. Lambrecht, C. Bhandari, and M. van Schilfgaarde,

Phys. Rev. Materials 1, 043802 (2017).
[72] G. Antonius, S. Poncé, E. Lantagne-Hurtubise, G. Auclair, X.

Gonze, and M. Côté, Phys. Rev. B 92, 085137 (2015).
[73] D. Z. Gao, A.-M. El-Sayed, and A. L. Shluger,

Nanotechnology 27, 505207 (2016).
[74] I. M. Boswarva, Phys. Rev. B 1, 1698 (1970); O. Madelung,

Semiconductors: Data Handbook, 3rd ed. (Springer, Berlin,
2004).

[75] J. C. Phillips, Phys. Rev. Lett. 20, 550 (1968); N. W. Ashcroft
and N. D. Mermin, Solid State Physics (Holt, Rinehart and
Winston, New York, 1976).

[76] M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).
[77] The difference between the long-range behavior set for PBE0-

TC-LRC and SRSH is due to using previous work. We do not
think that changing the long-range fraction by 0.005 will have
any meaningful effect.

[78] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R.
Christensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer,
C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen,
J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K.
Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen,
L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt,
M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M.
Walter, Z. Zeng, and K. W. Jacobsen, J. Phys.: Condens.
Matter 29, 273002 (2017).

[79] W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens.
Matter 21, 084204 (2009).

[80] C. Persson, Y.-J. Zhao, S. Lany, and A. Zunger, Phys. Rev. B
72, 035211 (2005).

[81] T. R. Durrant, Ph.D. thesis, University College London, 2019.
[82] H.-P. Komsa, T. T. Rantala, and A. Pasquarello, Phys. Rev. B

86, 045112 (2012).
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