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Abstract

Parkinson disease is the most common neurodegenerative movement disorder, estimated

to affect one in twenty-five individuals over the age of 80. Mutations in glucocerebrosidase 1

(GBA1) represent the most common genetic risk factor for Parkinson disease. The link

between GBA1 mutations and α-synuclein accumulation, a hallmark of Parkinson disease,

is not fully understood. Following our recent finding that Gba1 mutations lead to increased

α-synuclein accumulation in mice, we have studied the effects of a single injection of mouse

α-synuclein pre-formed fibrils into the striatum of Gba1 mice that carry a L444P knock-in

mutation. We found significantly greater formation and spread of α-synuclein inclusions in

Gba1-transgenic mice compared to wild-type controls. This indicates that the Gba1 L444P

mutation accelerates α-synuclein pathology and spread.

Introduction

Parkinson disease (PD) is the most common neurodegenerative movement disorder, esti-

mated to affect 4% of individuals over 80 years of age [1]. The most common risk factor for PD

are mutations in the glucocerebrosidase 1 (GBA1) gene, which encodes an enzyme (GCase)

that is involved in glycolipid metabolism. It has been estimated that at least 7–10% of non-Ash-

kenazi PD individuals have a GBA1 mutation (PD-GBA1) [2]. Although the molecular mecha-

nisms by which GBA1 mutations increase PD risk are still unclear, it is likely that α-synuclein

accumulation plays an important role.

The link between GCase deficiency, α-synuclein accumulation and neurodegeneration in

the substantia nigra has recently been explored in a heterozygous Gba1 mouse model carrying
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a L444P knock-in mutation (L444P/+ mice) [3]. A significant decrease in GCase activity was

associated with increased α-synuclein accumulation, but with no other PD pathology [3].

Intriguingly, overexpression of human α-synuclein in the substantia nigra resulted in signifi-

cantly greater loss of nigral dopaminergic neurons in L444P/+ mice than in their wild-type lit-

termates [3]. These results indicate that the Gba1 L444P mutation alone is not sufficient to

induce overall PD pathology but requires an additional factor such as overexpression of α-

synuclein. This may contribute to the partial penetrance of GBA1 mutations causing PD; it is

estimated that only 30% of individuals with GBA1 mutations will develop PD by the age of 80

[2].

The mechanism of accumulation of misfolded fibrillar α-synuclein into inclusions (known

as Lewy bodies (LB) and Lewy neurites (LN)) is not completely clear [4, 5]. Emerging evidence

shows that misfolded fibrillar α-synuclein is capable of self-propagation and spreading (lead-

ing to subsequent accumulation) between interconnected regions of the brain, suggesting that

cell-to-cell transmission of pathological forms of α-synuclein plays a crucial role in PD patho-

genesis [4]. The presence of even low levels of aggregated or fibrillar α-synuclein (seeds)

greatly enhances α-synuclein polymerization into amyloid fibrils [5]. Synthetic α-synuclein

pre-formed fibrils (αSYN-PFFs), i.e. laboratory-generated seeds, have been shown to initiate

fibrillization and aggregation of soluble endogenous α-synuclein in primary neuronal cultures

derived from wild-type mice [6]. More importantly, a single intracerebral injection of

αSYN-PFFs greatly accelerates the onset of neuropathological symptoms in transgenic mice

expressing the human α-synuclein A53T mutation [5]. Further, a single intrastriatal injection

of αSYN-PFFs is capable of initiating α-synuclein spreading and accumulation in wild-type

mice, leading to the development of PD-like α-synuclein pathology in the anatomically-inter-

connected brain regions, further confirming the contribution of cell-to-cell transmission in α-

synuclein pathology [4].

The objective of this study was to analyze the effect of mouse-αSYN-PFF injection into the

striatum of L444P/+ mice. Four months post-injection, we observed significantly increased

formation and spread of α-synuclein deposits in L444P/+ mice compared to their wild-type lit-

termates, indicating that the L444P mutation enhances aggregation of endogenous α-synuclein

into pathological deposits.

Materials and methods

Mice

B6;129S4-Gbatm1Rlp/Mmnc (000117-UNC) mice expressing a heterozygous knock-in L444P

mutation in the murine Gba1 gene (L444P/+ mice) were compared to their wild-type litter-

mates [3, 7]. Only male animals were used in the study. Mice were treated in accordance with

local ethical committee guidelines and the UK Animals (Scientific Procedures) Act 1986. All

procedures were carried out in accordance with Home Office guidelines (UK) and in compli-

ance with the ARRIVE guidelines. Breeding, maintenance and all the experimental procedures

concerning both L444P/+ mice and their wild-type littermates were covered by the project

licence 70/7685 issued by the United Kingdom Home Office. This study was approved by the

Animal Welfare and Ethical Review Body, University College London.

Injection material and stereotaxic injections

Purification of recombinant mouse α-synuclein and in vitro fibril assembly were performed as

previously described [4]. Three-month old mice were anesthetized with isofluorane inhalation

and stereotactically injected in the right dorsal striatum (co-ordinates: +0.2mm relative to

bregma, +2.0mm from midline, +2.6mm beneath the dura) with 2.5μl of either αSYN-PFFs

PLOS ONE α-synuclein pre-formed fibrils increase α-synuclein formation and spread in L444P Gba1 mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0238075 August 24, 2020 2 / 9

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by the

Parkinson’s UK grants G-1403 and G-1704, and

Medical Research Council (MRC) grants MR/

M006646/1 and MR/N028651/1. A.H.V.S. is

supported by the NIHR University College London

Hospitals Biomedical Research Centre.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0238075


(5μg), α-synuclein monomers (5μg) or sterile PBS, as previously described [4]. Four L444P/+
mice and ten wild-type littermates were injected with αSYN-PFFs, four L444P/+ mice and five

wild-type littermates were injected with α-synuclein monomers, and four L444P/+ mice and

five wild-type littermates were injected with sterile PBS.

Immunohistochemistry

Mice were killed by CO2 inhalation four months post αSYN-PFF injection, brains were

extracted, post-fixed in 4% paraformaldehyde in PBS at 4˚C for one week, then cryoprotected

and stored in 30% sucrose (Sigma-Aldrich) in PBS supplemented with 0.1% NaN3 (Sigma-

Aldrich) at 4˚C. Coronal brain sections (30µm) were cut using a freezing sledge microtome

(Bright). Free-floating section immunohistochemistry was performed as previously described

[3], but with the following modifications. 1. Antigen retrieval was achieved by incubating the

sections in 70% formic acid at room temperature for 20 minutes. 2. Sections were incubated

for 72 hours at 4˚C with rabbit primary antibody specific to α-synuclein phosphorylated at

Ser129 (p-αSYN) (Abcam, ab59264) diluted at 1:2000 in PBST. 3. Sections were washed in PBS

and mounted on SuperFrost1 Plus microscope slides (Thermo Scientific) after staining was

developed.

Experimental design and statistical analyses

To measure the extent of α-synuclein pathology, the number of p-αSYN-positive deposits

were counted in two brain regions (striatum and cingulate/motor cortex) in L444P/+ mice

(n = 4) and wild-type littermates (n = 10). Counting was performed in the hemisphere ipsilat-

eral to the injection site at three different coronal planes per animal (AP +1.4, +0.1, -0.5mm

from the bregma). A series of counting probes (40x40x10µm) arranged in a two-dimensional

array spaced at 300µm intervals were superimposed on the analyzed brain region, and p-

αSYN-positive LB- and LN-like structures contained within the counting probe were counted

under a 100x objective on an Olympus BX53 microscope. To minimize the effect of subjective

bias when assessing the results of αSYN-PFF injection, the counting of p-αSYN-positive

deposits was assessor-blind. The number of p-αSYN deposits was normalized to the volume of

the probe and an average of all probe sites was calculated for each animal as a biological repli-

cate for statistical purposes. The Student t-test was used to compare p-αSYN species densities

between L444P/+ and wild-type mice.

Results

The distribution of p-αSYN deposits (considered here as markers of synucleinopathy) was

analyzed throughout the brains of wild-type and L444P/+ mice four months post αSYN-PFF

injection.

Widespread p-αSYN pathology was observed in the brains of αSYN-PFF-injected wild-type

mice in the form of LB- and LN-like structures. In the hemisphere ipsilateral to the injection,

the highest concentration of p-αSYN-positive inclusions was found in the cortex (especially

the parietal, insular, perirhinal and entorhinal cortices and layer 5 of the motor cortex) and in

the amygdala (Figs 1A and 1B and S1A and S1B). Prominent accumulation of p-αSYN was

also observed in the striatum, layer 2 of the motor cortex, layer 5 of the cingulate cortex and in

the substantia nigra pars compacta (SNpc) (Figs 1C, 2A–2C and S1C and S2A–S2C). Although

similar regions were affected in the hemisphere contralateral to the injection site, pathology in

most analyzed regions was less prominent than in the equivalent ipsilateral region, and was

completely absent in the SNpc. Within the motor cortex, pathology in the contralateral
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hemisphere was more prominent in layer 2 of the motor cortex in relation to layer 5 than in

the ipsilateral hemisphere (Figs 2A–2C and S2A–S2C).

αSYN-PFF inoculation of L444P/+ mice resulted in p-αSYN pathology in the same brain

regions as in wild-type littermates. The density of p-αSYN deposits, however, appeared to be

higher than in wild-type mice in several regions, including the motor, cingulate, perirhinal

and entorhinal cortices, amygdala and SNpc (Figs 1A–1C, 2B and 2C and S1A–S1C, S2B and

S2C). The extent of p-αSYN pathology was estimated in the ipsilateral hemisphere in the stria-

tum and in the cortical area including the cingulate and motor cortex by counting LB- and

LN-like deposits in αSYN-PFF-injected L444P/+ and wild-type mice. There was a trend for an

increase in p-αSYN deposits in the striatum of L444P/+ mice compared to wild-type litter-

mates, but this was not statistically significant (Student t-test, p = 0.23) (Fig 2D). However, a

Fig 1. p-αSYN inclusions in the perirhinal cortex, amygdala and substantia nigra in αSYN-PFF-injected wild-type

and L444P/+ mice. (A) Increased p-αSYN pathology in the perirhinal cortex at the level of 2.2mm posterior to the

injection site (-2.0mm from the bregma) in the ipsilateral hemisphere of L444P/+ mice compared to their wild-type

control littermates. (B) Increased p-αSYN pathology in the lateral amygdaloid nuclei at the level of 2.2mm posterior to

the injection site (-2.0mm from the bregma) in the ipsilateral hemisphere of L444P/+ mice compared to their wild-type

control littermates. (C) Increased p-αSYN pathology in substantia nigra pars compacta at the level of 3.7mm posterior

to the injection site (-3.5mm from the bregma) in the ipsilateral hemisphere of L444P/+ mice compared to their wild-

type control littermates. Scale bars = 25µm. Representative images shown. In total ten +/+ and four L444P/+ mice were

analyzed.

https://doi.org/10.1371/journal.pone.0238075.g001
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significant increase in the number of p-αSYN deposits was observed in the cortex of L444P/+
mice compared to wild-type littermates (45000±7000 vs. 96000±19000 LB-like inclusions/

mm3) (Student t-test, p = 0.008) (Fig 2E).

No p-αSYN pathology was observed after PBS or α-synuclein monomer injection in the

brains of L444P/+ and wild-type mice (data not shown).

Discussion

This is the first study to analyze the effect of mouse αSYN-PFFs in the brains of Gba1 L444P/+
mutant mice. Using this model, we showed that GCase deficiency greatly increases formation

of pathological p-αSYN deposits in transgenic mice following αSYN-PFF injection.

We observed widespread p-αSYN pathology in the form of LB- and LN-like deposits

throughout the brains of wild-type and L444P/+ mice four months post-injection with

αSYN-PFFs, but not with PBS or α-synuclein monomers. This observation is in line with pre-

vious studies, which showed that a single intracerebral injection of αSYN-PFFs is sufficient to

induce α-synuclein spreading in wild-type mice, and to accelerate progression of PD-like

pathology in transgenic mice expressing the human α-synuclein A53T mutation [4, 5, 8]. Our

results further confirm that αSYN-PFFs are capable of inducing α-synuclein spreading and

accumulation, leading to robust α-synuclein pathology in anatomically-interconnected brain

regions.

We next assessed the effects of αSYN-PFFs on the formation of p-αSYN inclusions in the

absence and presence of GCase deficiency. The aim of this was to determine whether the 30%

decrease of GCase activity observed in the brains of L444P/+ mice would enhance α-synuclein

pathology in vivo [3]. We observed more prominent accumulation of p-αSYN deposits in sev-

eral brain regions (including the motor, cingulate, perirhinal and entorhinal cortices, and the

amygdala and substantia nigra pars compacta) in L444P/+ mice compared to wild-type litter-

mates. We then determined the number of LB- and LN-like deposits in the striatum and corti-

cal area of L444P/+ and wild-type mice, and observed significant increases in the number of p-

αSYN deposits in the cortex of L444P/+ mice. Taken together, these results indicate that

GCase deficiency considerably increases accumulation and spread of pathological α-synuclein.

Several lines of evidence might explain how GCase deficiency increases formation of p-

αSYN deposits. It has been shown that GCase reduction alters the formation and/or stability

of α-synuclein polymers through glycosphingolipid accumulation, increasing the level of α-

synuclein monomers that might subsequently misfold and aggregate into p-αSYN inclusions

[9]. It has also been reported that in neuronal cultures derived from mice containing the Gba1
L444P mutation and human α-synuclein, GCase deficiency significantly decreases the rate of

α-synuclein degradation leading to α-synuclein accumulation [10]. Moreover, it has been sug-

gested that the L444P mutation might increase total α-synuclein levels by prolonging the half-

life of both endogenous α-synuclein and externally-delivered α-synuclein possibly by reducing

Fig 2. p-αSYN inclusions in the striatum and cortex (secondary motor and cingulate cortices) in αSYN-PFF-injected wild-type and L444P/
+ mice. (A) Increased p-αSYN pathology in the striatal tissue at the level of 0.6mm anterior to the injection site (+0.8mm from the bregma) in

the ipsilateral and contralateral hemispheres of L444P/+ mice compared to their wild-type control littermates. (B) Increased p-αSYN pathology

in the cortical tissue at the level of 0.6mm anterior to the injection site (+0.8mm from the bregma) in layer 5 of the secondary motor cortex in the

ipsilateral and in layer 2 of the secondary motor cortex in the contralateral hemisphere of L444P/+ mice compared to their wild-type control

littermates. (C) Increased p-αSYN pathology in the cortical tissue at the level of 0.6mm anterior to the injection site (+0.8mm from the bregma)

in the cingulate cortex in the ipsilateral and contralateral hemispheres of L444P/+ mice compared to their wild-type control littermates. (D)

Quantification of p-αSYN-positive deposits in the ipsilateral striatum of wild-type and L444P/+ mice reveals a non-statistically significant

difference between the genotypes (Student t-test, p = 0.23). (E) Quantification of p-αSYN-positive deposits in the ipsilateral motor and cingulate

cortices of wild-type and L444P/+ mice reveals a statistically significant difference between the genotypes (Student t-test, �p = 0.008). Scale

bars = 25µm. Representative images shown. Ten +/+ and four L444P/+ mice were analyzed in total.

https://doi.org/10.1371/journal.pone.0238075.g002

PLOS ONE α-synuclein pre-formed fibrils increase α-synuclein formation and spread in L444P Gba1 mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0238075 August 24, 2020 6 / 9

https://doi.org/10.1371/journal.pone.0238075.g002
https://doi.org/10.1371/journal.pone.0238075


its lysosomal degradation [3]. In turn, these increased intraneuronal α-synuclein levels might

promote α-synuclein assembly, subsequently enhancing α-synuclein aggregation into p-αSYN

inclusions. These explanations may well also apply to αSYN-PFFs [11].

Altogether, our results indicate that GCase deficiency considerably enhances accumulation

of pathological α-synuclein and favors spreading of its aggregates. It is of interest that the

results described here have a clinical correlate in that PD patients with L444P Gba1 mutations

have earlier onset of disease, more rapid progression and increased cognitive dysfunction [12].

Our findings offer novel insight into how Gba1 mutations might contribute to PD develop-

ment and progression.

Supporting information

S1 Fig. p-αSYN inclusions in the perirhinal cortex, amygdala and substantia nigra in

αSYN-PFF-injected wild-type and L444P/+ mice. (A) Increased p-αSYN pathology in the

perirhinal cortex at the level of 2.2mm posterior to the injection site (-2.0mm from the

bregma) in the ipsilateral hemisphere of L444P/+ mice compared to their wild-type control lit-

termates. (B) Increased p-αSYN pathology in the lateral amygdaloid nuclei at the level of

2.2mm posterior to the injection site (-2.0mm from the bregma) in the ipsilateral hemisphere

of L444P/+ mice compared to their wild-type control littermates. (C) Increased p-αSYN

pathology in substantia nigra pars compacta at the level of 3.7mm posterior to the injection

site (-3.5mm from the bregma) in the ipsilateral hemisphere of L444P/+ mice compared to

their wild-type control littermates. Scale bars = 100µm. Representative images shown. In total

ten +/+ and four L444P/+ mice were analyzed.

(TIF)

S2 Fig. p-αSYN inclusions in the striatum and cortex (secondary motor and cingulate cor-

tices) in αSYN-PFF-injected wild-type and L444P/+ mice. (A) Increased p-αSYN pathology

in the striatal tissue at the level of 0.6mm anterior to the injection site (+0.8mm from the

bregma) in the ipsilateral and contralateral hemispheres of L444P/+ mice compared to their

wild-type control littermates. (B) Increased p-αSYN pathology in the cortical tissue at the level

of 0.6mm anterior to the injection site (+0.8mm from the bregma) in layer 5 of the secondary

motor cortex in the ipsilateral and in layer 2 of the secondary motor cortex in the contralateral

hemisphere of L444P/+ mice compared to their wild-type control littermates. (C) Increased p-

αSYN pathology in the cortical tissue at the level of 0.6mm anterior to the injection site

(+0.8mm from the bregma) in the cingulate cortex in the ipsilateral and contralateral hemi-

spheres of L444P/+ mice compared to their wild-type control littermates. Scale bars = 100µm.

Representative images shown. Ten +/+ and four L444P/+ mice were analyzed in total.

(TIF)

S3 Fig. Lack of p-αSYN inclusions in the perirhinal cortex, cingulate cortex and striatum

in PBS-injected wild-type mice. (A) No p-αSYN pathology in the perirhinal cortex at the

level of 2.2mm posterior to the injection site (-2.0mm from the bregma) in the ipsilateral hemi-

sphere of wild-type controls. (B) No p-αSYN pathology in the cortical tissue at the level of

0.6mm anterior to the injection site (+0.8mm from the bregma) in the cingulate cortex in the

ipsilateral hemisphere of wild-type controls. (C) No p-αSYN pathology in the striatal tissue at

the level of 0.6mm anterior to the injection site (+0.8mm from the bregma) in the ipsilateral

hemispheres of wild-type controls. (B) Scale bars at low magnification = 100µm. Scale bars at

high magnification = 25µm. Representative images shown. Ten wild-type mice were analyzed

in total.

(TIF)
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S4 Fig. Additional images of p-αSYN inclusions in the striatum, amygdala and substantia

nigra in αSYN-PFF-injected wild-type and L444P/+ mice. (A) Increased p-αSYN pathology

in the striatal tissue at the level of 0.6mm anterior to the injection site (+0.8mm from the

bregma) in the ipsilateral and contralateral hemispheres of L444P/+ mice compared to their

wild-type control littermates. (B) Increased p-αSYN pathology in the lateral amygdaloid nuclei

at the level of 2.2mm posterior to the injection site (-2.0mm from the bregma) in the ipsilateral

hemisphere of L444P/+ mice compared to their wild-type control littermates. (C) Increased p-

αSYN pathology in substantia nigra pars compacta at the level of 3.7mm posterior to the injec-

tion site (-3.5mm from the bregma) in the ipsilateral hemisphere of L444P/+ mice compared

to their wild-type control littermates. Scale bars = 50µm. Representative images shown. In

total ten +/+ and four L444P/+ mice were analyzed.

(TIF)

S5 Fig. Additional images of p-αSYN inclusions in the cortex (secondary motor and cingu-

late cortices) in αSYN-PFF-injected wild-type and L444P/+ mice. (A) Increased p-αSYN

pathology in the cortical tissue at the level of 0.6mm anterior to the injection site (+0.8mm

from the bregma) in layer 5 of the secondary motor cortex in the ipsilateral and in layer 2 of

the secondary motor cortex in the contralateral hemisphere of L444P/+ mice compared to

their wild-type control littermates. (B) Increased p-αSYN pathology in the cortical tissue at the

level of 0.6mm anterior to the injection site (+0.8mm from the bregma) in the cingulate cortex

in the ipsilateral and contralateral hemispheres of L444P/+ mice compared to their wild-type

control littermates. Scale bars = 50µm. Representative images shown. Ten +/+ and four L444P/
+ mice were analyzed in total.

(TIF)
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