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ABSTRACT
The 1D Ly α forest flux power spectrum P1D is sensitive to scales smaller than a typical galaxy survey, and hence ties to the
intergalactic medium’s thermal state, suppression from neutrino masses, and new dark matter models. It has emerged as a
competitive framework to study new physics, but also has come with various challenges and systematic errors in analysis. In this
work, we revisit the optimal quadratic estimator for P1D, which is robust against the relevant problems such as pixel masking,
time evolution within spectrum, and quasar continuum errors. We further improve the estimator by introducing a fiducial power
spectrum, which enables us to extract more information by alleviating the discreteness of band powers. We meticulously apply
our method to synthetic Dark Energy Spectroscopic Instrument (DESI) spectra and demonstrate how the estimator overcomes
each challenge. We further apply an optimization scheme that approximates the Fisher matrix to three elements per row and
reduces computation time by 60 per cent. We show that we can achieve per cent precision in P1D with 5-yr DESI data in the
absence of systematics and provide forecasts for different spectral qualities.

Key words: methods: data analysis – intergalactic medium – quasars: absorption lines.

1 IN T RO D U C T I O N

Through absorption lines in quasar spectra, the Ly α forest technique
can probe matter in vast volumes far into the past and at smaller
scales than galaxy surveys, that are shaped by the thermal state of
the gas and reionization history of the universe (Hui & Gnedin 1997;
Gnedin & Hui 1998). Connecting flux fluctuations in quasar spectra
to physical parameters relies on multiple demanding steps in a typical
analysis. The first step is to summarize the statistical information
contained in millions of pixels across thousands of spectra using the
correlation function or the power spectrum. Second, one relies on
numerical simulations to relate the matter fluctuations to the neutral
hydrogen that reionizes until z ∼ 6 to obtain mock quasar spectra.
The physical parameters are then mapped to the statistics using large
numbers of these mocks with different parameters. The final step
constrains physical parameters by performing a likelihood analysis
on the observed statistics using this mapping and a prior.

The Ly α forest technique already proved to be fruitful. The
Extended Baryon Oscillation Spectroscopic Survey (eBOSS) (Daw-
son et al. 2016) and its predecessors successfully measured baryon
acoustic oscillations in large-scale 3D correlations of the Ly α forest
(Slosar et al. 2011, 2013; Busca et al. 2013; Font-Ribera et al. 2014;
Delubac et al. 2015; Bautista et al. 2017; du Mas des Bourboux et al.
2017; Blomqvist et al. 2019; de Sainte Agathe et al. 2019). It has
also emerged as a promising tool to investigate intergalactic medium
(IGM) thermal evolution (Boera et al. 2019; Walther et al. 2019),
to constrain neutrino masses (Croft, Hu & Dave’ 1999; Seljak et al.
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2006; Palanque-Delabrouille et al. 2015a, b; Yeche et al. 2017) and
to probe the nature of dark matter (Boyarsky et al. 2009; Viel et al.
2013; Baur et al. 2016; Iršič et al. 2017a; Garzilli et al. 2019).

The line-of-sight flux power spectrum of the Ly α forest has been
at the frontier in new physics by being sensitive to medium to small
scales. McDonald et al. (2006), Palanque-Delabrouille et al. (2013),
and Chabanier et al. (2019) measured this 1D power spectrum at
large to medium scales (0.001 s km−1 ≤ k ≤ 0.02 s km−1) using
thousands of quasar spectra, whereas Viel et al. (2013), Iršič et al.
(2017b), Walther et al. (2017), Boera et al. (2019), and Day, Tytler &
Kambalur (2019) pushed the measurement to smaller scales (k ≤
0.1 s km−1) using few but high-resolution spectra.

These recent works utilize three different methods in power
spectrum estimation. Palanque-Delabrouille et al. and Chabanier
et al. applies fast Fourier transforms (FFT), which require all pixels
to be present, equally spaced, and have uniform noise and resolution.
These conditions are rarely met in real spectra due to masking
of sky emission lines, high column density absorbers (HCD), bad
pixels, and sometimes metal contamination. As a result, Chabanier
et al. apply up to 20 per cent corrections to their power spectrum
estimates. In their small-scale measurement, Walther et al. and Day
et al. use Lomb–Scargle periodogram (Lomb 1976; Scargle 1982)
as this method allows for masking. However, neither method is
able to weight pixels with respective noise estimates and cannot
account for the time evolution within a spectrum without splitting
the spectrum into multiple chunks; and both are limited by S/N and
resolution in their quasar samples. Third method is the likelihood
maximization. Palanque-Delabrouille et al. also implemented a
direct maximization of the likelihood function, which they found
sensitive to the implementation details and noise in spectra. Our
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focus in this paper is the faster and more stable quadratic maximum
likelihood estimator (QMLE), which McDonald et al. applied while
splitting the spectra into two chunks because of computational limi-
tations. However, with recent developments in computing, QMLE
promises its full strength by careful application to 1D power
spectrum.

Our work focuses on developing and applying an improved QMLE
to measure the 1D power spectrum. We meticulously apply the
formalism to maximize the information extraction. Our method
readily handles the redshift evolution by interpolating pixel pairs
to two redshift bins. This enables us to keep the full forest and all
pixel pairs. We also introduce a baseline estimate that improves
the accuracy by alleviating discrete band powers. As The Dark
Energy Spectroscopic Instrument (DESI; Levi et al. 2013; DESI
Collaboration 2016) comes online to find abundance of quasar
spectra, our improved QMLE can exploit the most information and
make the best measurement.

This paper is organized under six sections. We summarize relevant
general and specific formula for QMLE in Section 2. This section
also briefly discusses a continuum limit to clarify what QMLE
actually yields. Section 3 outlines the algorithm and further provides
details on our implementation, including validation with synthetic
spectra. We then move to applying our method to simulated simple
DESI data in Section 4. In this section, we examine the effects
of gaps and continuum errors, the advantage of fiducial power,
Fisher matrix approximation, and 5-yr forecasts for DESI with
different spectral qualities. Section 5 discusses the finer details of
our method, such as interpretation of QMLE results, its advan-
tages and possible problems. Finally, we summarize this work in
Section 6.

2 ME T H O D

The optimal power spectrum estimator was extensively studied by
Hamilton (1997), Tegmark, Taylor & Heavens (1997), Tegmark et al.
(1998), and Seljak (1998). We first assign a Gaussian probability
distribution that depends on parameters θα for measuring a data
set x. We define the likelihood function L as twice the logarithm
of this probability and pursue the most likely parameters θ̂α for a
fixed x

L(x; θα) = − ln det C − xTC−1x, (1)

where C = C(θα) ≡ 〈xxT〉. The most likely parameters θ̂ can be
found by maximizing this likelihood function: L,α(θ̂ ) = 0, where
comma represents a partial derivative, which can be iteratively solved
using the Newton–Raphson method:

θ̂ (X+1)
α = θ̂ (X)

α −
∑
α′

〈
L,αα′

〉−1
∣∣∣
θ̂ (X)

L,α′ (θ̂ (X)), (2)

where X is the iteration number. Note that we compute the en-
semble average of the second derivative (which is the Fisher
matrix) instead of using the full curvature matrix as has been the
convention.

Our goal is to estimate the power spectrum of the observed spectra,
so we take θα to be the power spectrum estimates. Furthermore, we
would like to estimate deviations from a fiducial power spectrum
such that P(k, z) = Pfid(k, z) + ∑

αwα(k, z)θα , where wα(k, z) are
the functional forms for deviations and θα are the amplitudes (Font-
Ribera, McDonald & Slosar 2018). Then, the covariance matrix is the
sum of signal and noise as usual, C = S + N; and by extension S =
Sfid + ∑

α Qαθα , where Qα = ∂C/∂θα . The fiducial power needs to
be subtracted from the estimate. We denote its contribution by tα

below, which can be immediately calculated by substituting N →
N + Sfid to the quadratic estimator equation in the references.

θ̂ (X+1)
α =

∑
α′

1

2
F−1

αα′ (dα′ − bα′ − tα′ ), (3)

where

dα = xTC−1QαC−1x, (4)

bα = Tr(C−1QαC−1N), (5)

tα = Tr(C−1QαC−1Sfid), (6)

and the estimated Fisher matrix is

Fαα′ ≡
〈

∂2L
∂θα∂θα′

〉
= 1

2
Tr(C−1QαC−1Qα′ ). (7)

The covariance matrices in the right-hand side of equation (3) are
computed using parameters from the previous iteration θ (X)

α .

2.1 Ly α forest specifics

In the Ly α forest analysis, our data set x is a collection of pixels
representing the normalized flux fluctuations δF . Assuming different
quasar spectra are uncorrelated, the covariance matrix becomes
block diagonal, where only the correlations within a spectrum
are non-zero.1 For example, stacking three quasar spectra δ1,2,3

yields

δF =
⎛
⎝δ1

δ2

δ3

⎞
⎠ → C =

⎛
⎝C1 0 0

0 C2 0
0 0 C3

⎞
⎠ . (8)

This block diagonal structure simplifies equation (3) as well: The
Fisher matrix Fαα′ and the expression in parentheses can be computed
for each quasar, then accumulated, i.e. F = ∑

q Fq , etc.
The correlation (signal) between pixels depends on their velocity

separation, underlying power spectrum, and spectrograph window
function. We convert a pixel’s wavelength to velocity using logarith-
mic spacing.

vi = c ln(λi/λ̄) (9)

zi = (1 + z̄)evi /c − 1, (10)

where λ̄ and z̄ are the median wavelength and the median redshift of
the spectrum, respectively.2 In general, the signal is multiplied with
a resolution matrix R, such that s̃ = Rs and therefore S̃ = RSRT

(Bolton & Schlegel 2010). DESI will provide this resolution matrix
in its pipeline, which will be one of QMLE’s strengths for future
analyses. For the rest of the paper, we make the approximation that
the resolution does not change with wavelength. Then, the signal
becomes the correlation function convolved with the spectrograph
resolution, which is the power spectrum multiplied with the spectro-
graph window function W(k) in Fourier space.

Sfid
ij =

∫ ∞

0

dk

π
cos(kvij )W 2(k)Pfid(k, zij ), (11)

1The 3D analysis inherently needs these correlations between spectra, so this
would not hold true.
2The pivot point does not matter as long as v = cln λ, and therefore the Ly α

rest-frame wavelength can also be used instead of the median wavelength of
the spectrum.
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where vij ≡ vi − vj and 1 + zij ≡ √
(1 + zi)(1 + zj ). The spectro-

graph window function is given by

W (k) = e−k2R2/2sinc(k�v/2), (12)

where R is the 1σ resolution and �v is the pixel width, both in
velocity units.

We now move on to defining power spectrum-related specifics
from data-related specifics. In theory, wα(k, z) can be any function,
but we adopt top-hat k bands with kn as bin edges and linear
interpolation for z bins with zm as bin centres: w(mn)(k, z) = H(k
− kn)H(kn + 1 − k)Im(z), where α ≡ (mn), H(x) is the Heaviside
step function, and Im(z) is the interpolation kernel. We chose the
linear interpolation for its smoothness over top hats. However, this
mandates distributing pixel pairs into two redshift bins. One can
imagine using higher order terms (such as cubic interpolation) to
make the function smoother, and hence more accurate, but this
will obviously make the calculation more complex. In the end, the
linear interpolation is a good compromise between accuracy and
complexity.

Im(z) =

⎧⎪⎨
⎪⎩

z−zm−1
zm−zm−1

, zm−1 < z < zm

zm+1−z

zm+1−zm
, zm < z < zm+1

0 , otherwise

(13)

Note that this is 1 when z = zm and 0 when z = zm ± 1. The derivative
matrix for redshift bin m and wavenumber bin n is then

Q
(mn)
ij = Im(zij )

∫ kn+1

kn

dk

π
cos(kvij )W 2(k). (14)

We compute these matrices for as many redshift bins as necessary
for a given spectrum.

Finally, we assume that the noise of every pixel is independent.
This results in a diagonal noise matrix with Nii = σ 2

i , where σ i is the
pipeline noise divided by the continuum and the mean normalized
flux F̄ (z).

2.2 Continuum limit

It is sufficient to take the estimated power as Pest(kc
n, zm) =

Pfid(kc
n, zm) + θ(n,m) in our analysis, where kc

n is the bin centre.
However, in order to further improve our intuition, let us discuss
what equation (3) constructs in detail. First, we should differentiate
between the underlying true power Ptrue of data and the fiducial
power Pfid of the estimator; these two are not necessarily the
same. For simplicity, let us ignore redshift dependence, spectrograph
resolution and noise, and adopt band powers for wn(k) = H(k −
kn)H(kn + 1 − k). In the continuum limit, matrix multiplications can be
converted into integrals. Then, equation (3) becomes the following at
iteration X:

θ (X+1)
n =

∫ kn+1

kn

dk γ (X)
n (k)[Ptrue(k) − Pfid(k)], (15)

γ (X)
n (k) = 1

P 2
(X)(k)

[∫ kn+1

kn

dk

P 2
(X)(k)

]−1

, (16)

where P(X) is exactly the fiducial power at the first iteration, and
approaches to the true underlying power Ptrue by the last iteration.
Thus, this estimator gives us an inverse variance weighted average
of the residuals at each iteration. As these residuals gets smaller, the
effect of averaging gets smaller as well.

3 IMPLEMENTATI ON

QMLE implementation presents challenges in memory, CPU time,
numerical stability, and confident validation of the results. In this sec-
tion, we clarify our implementation decisions in order to overcome
such challenges.

We will refer Palanque-Delabrouille et al. (2013) as PD13,
Walther et al. (2017) as W17, and McDonald et al. (2006) as M06
from now on.

3.1 Algorithm

At every iteration, the algorithm for each spectrum is as follows:

(i) Compute the covariance matrix using the previous iteration’s
θ̂ estimates, then invert the covariance matrix. Note that the fiducial
signal matrix stays fixed.

(ii) Compute weighted data vector y = C−1δF , then dα = yTQα y.
(iii) Compute C−1QαC−1, then bα and tα using equations (5)

and (6).
(iv) Compute Fisher matrix using equation (7). Note that this needs

to consider all redshift bins that the spectrum spans.

We then sum dα , bα , tα , and Fαα′ of every quasar. Finally, we
invert F and find θ̂ estimates using equation (3). We check for
convergence by comparing these results to the previous iteration
using the expressions in Section 3.3.

One can bootstrap QMLE results easily by saving Fαα′ and (dα

− bα − tα) of each spectrum to a file. Since each spectrum is
treated independently, there is no need to recompute these for every
realization. One can generate as many bootstrap realizations as
needed on spectrum level, and then simply add these saved quantities
with repetition to find a bootstrapped estimate. This treatment is
exact at the first iteration, and should be a good approximation at
convergence.

We find that using a smooth weighted spline in step (i) makes the
algorithm numerically stable. This smoothing spline is performed on
(k, P = Pfid + θ ), and it can be more reliable if performed on (ln k,
ln P) while non-positive values are removed.

This algorithm can be implemented using only three matrices for
each quasar: One holds the covariance matrix and its inverse, and the
other two temporarily hold the derivative and fiducial signal matrices.
Holding all matrices in memory for a quasar at a time can improve
computation time when memory is the lesser concern, which we find
possible in our tests.

This method demands substantial CPU time, and therefore some
optimization mechanisms are noteworthy. First, instead of integrating
Sfid and Qα when needed, we create lookup tables once and
interpolate. Moreover, every spectrum can be computed in parallel
as they are assumed independent. Each CPU should have near-
equal workload for efficient parallelization. Matrix operations scale
as O(N3

D), where ND is the number of pixels in a spectrum. Let
us define NB as the number of total bins to which a spectrum
contributes. Then, the Fisher matrix calculation will require NB(NB

+ 1)/2 matrix multiplications for that spectrum. Hence, we use
Tcpu = N3

DNB (NB + 1) as an estimate for computation time, and
distribute spectra accordingly.

We use GSL3 for interpolation, integration, matrix inversion;
Intel’s MKL library4 for matrix multiplication; and we compile with

3https://www.gnu.org/software/gsl/
4https://software.intel.com/en-us/mkl

MNRAS 497, 4742–4752 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/4/4742/5892573 by U
niversity C

ollege London user on 25 Septem
ber 2020

https://www.gnu.org/software/gsl/
https://software.intel.com/en-us/mkl


Optimal P1D estimate 4745

Table 1. Top: PD13 BOSS likelihood fitting parameters. Bottom: This work
fitting combined PD13 and W17 data with Lorentzian decay added.

A n α B β k1 (km s−1)

0.06 −2.55 −0.10 3.55 −0.28 –
0.066 −2.685 −0.22 3.59 −0.18 0.53

OPEN-MPI5 for parallelization. Smooth weighted spline is constructed
using SCIPY.6

3.2 Fiducial power spectrum

We exploit a baseline estimate of power spectrum in our analysis as
discussed in Section 2. PD13 provide a fitting function with best-
fitting parameters. We further modify their fitting function with a
Lorentzian decay:

kP (k, z)

π
= A

(k/k0)3+n+α ln k/k0

1 + (k/k1)2

(
1 + z

1 + z0

)B+β ln k/k0

, (17)

where k0 = 0.009 km s−1 and z0 = 3.0. However, PD13 measures
power spectrum up to 0.02 km s−1, so their parameters are not valid
on small scales. We combine W17’s power spectrum estimates, and
fit the resulting data set. Our modification reduces χ2

ν from 16.5 to
5.6. Even though the fit should not be used for scientific purposes, it
should be sufficient for a baseline estimate. Table 1 shows our fitting
parameters.

Our implementation is also equipped with taking a tabulated
fiducial power as input. This feature gives greater freedom in the
choice of fiducial. We use this to eliminate any discord between
synthetic data and the estimator; and to investigate different choices
as fiducial.

3.3 Convergence

We choose a convergence criterion that summarizes the overall
fluctuations between iterations. For this purpose, we calculate the
weighted average of the changes between iterations using estimated
Gaussian errors. In other words, we define convergence when

�χ =
√√√√ 1

N

∑
α

(�θ̂α)2

F−1
αα

(18)

or

�χF =
√

1

N
(�θ̂)TF(�θ̂ ) (19)

becomes smaller than χ c = 0.01, where �θ̂α ≡ θ̂ (X+1)
α − θ̂ (X)

α and
N is the total number of bins. Both expressions return close
values and reach convergence at the same iteration in almost all
cases.

3.4 Validation

We use lognormal mocks for validation. These semirealistic spectra
are crucial to examine the accuracy, precision, and efficiency of our
method.

We generate lognormal mocks by using a modified version of M06.
These realizations approximately produce theoretically expected

5https://www.open-mpi.org
6https://www.scipy.org

mean flux redshift evolution (Faucher-Giguére et al. 2008; Becker
et al. 2013) and power spectra similar to PD13 and W17.

(i) Generate a long high-resolution Gaussian random grid with
equal spacing in velocity v, zero mean, and unit variance.

(ii) FFT this grid and multiply with
√

P (k)/dv to obtain δ̃b(k),
where dv is the grid spacing in velocity units and the power
spectrum is

P (k) = (k/k0)n−α ln(k/k0)

1 + (k/k1)γ
, (20)

where k0 = 0.001 s km−1, k1 = 0.04 s km−1, n = 0.5, α = 0.26,
and γ = 1.8. Inverse FFT and save the variance of this grid σ 2. This
is a crude Gaussian base for baryon fluctuations δb(v) with defined
power spectrum at z0 = 3.

(iii) Multiply with a redshift evolution factor a(z). Such that
δb(z) = a(z)δb and σ 2(z) = a2(z)σ 2.

a2(z) = 58.6

(
1 + z

1 + z0

)−2.82

(21)

(iv) Apply a squared lognormal transformation to approximate the
non-linear and non-Gaussian H I column density field.

n(z) = e2δb(z)−σ 2(z) (22)

(v) Transform this to optical depth τ by multiplying with another
redshift-dependent function.

τ (z) = 0.55

(
1 + z

1 + z0

)5.1

n(z) (23)

(vi) Finally, the flux is F(z) = e−τ (z).
(vii) Smoothing F(z) with a Gaussian kernel and resampling it on

to the observed wavelength grid will result in a spectrograph function
in equation (12).

The mean flux and power spectrum of these mocks can be
analytically computed. Using one-point probability of the base
Gaussian random field δ, we can write down the following integral
for the mean flux:

F̄ (z) = 1

σ
√

2π

∫ ∞

−∞
exp

[
− δ2

2σ 2
− x(z)e2a(z)δ

]
dδ, (24)

where we have defined

x(z) ≡ 0.55

(
1 + z

1 + z0

)5.1

e−a2(z)σ 2
. (25)

Although, we have found a closed form using saddle point integration
(see Appendix A), it deviates from the truth for z � 3 up to 4 per cent.
It is more accurate to just integrate this expression; and Gauss–
Hermite quadrature provides a reliable fast integration.

Power spectrum expression needs two-point probability. We start
with flux fluctuations δF (v, z) = F (v, z)/F̄ (z) − 1, then express the
correlation function ξF as an integral over two Gaussian random δs
assuming all pixels are at the same redshift. We drop z for clarity.

1 + ξF (vij ) =
∫

e−δT C−1δ/2

2π
√

det C

FiFj

F̄ 2
dδ, (26)

where

C =
(

σ 2 ξG(vij )
ξG(vij ) σ 2

)
, (27)

and ξG(v) is the correlation function of the base Gaussian field.
To convert this expression into Gauss–Hermite quadrature with
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Figure 1. The relative error in our measurements from 100 lognormal
catalogues where each has 1000 spectra in every redshift bin. Our method
reaches sub per cent level precision in the absence of any systematic. Bins go
up to the Nyquist frequency.

two variables, we apply Cholesky decomposition C = LLT and
transform δ = √

2L · y, where

L =
(

σ 0
ξG(v)

σ
σ

√
1 − ξG(v)2

σ 4

)
. (28)

Here is the final expression for completeness:

1 + ξF (v) =
∫

e− y2 1

πF̄ 2(z)
exp

[−x(z)
(
e2aδ1 + e2aδ2

)]
d y. (29)

We perform an initial test in the absence of redshift distribution
and resolution effects. We start with a long fine grid (dv = 0.43̄ km
s−1, N = 220), and generate mocks that are discretely distributed in
redshift. For validation, we pick four redshifts (2.2, 2.4, 2.6, 2.8),
and simulate 100 catalogues where each catalogue has 1000 spectra
in every redshift bin. These spectra are exactly centred at these
redshifts. We set the spectrograph resolution R = 71 600 to diminish
its effect, limit the spectral length to half of the bin size �z = 0.1,
and finally resample to pixel size of �v = 20.8 km s−1. Fig. 1 shows
our results. Our method reaches sub per cent level accuracy in the
absence of any systematic.

4 D ESI -LITE SPECTRA

To test the feasibility of our method for future DESI spectra,
we generate semirealistic data set using the following simplifying
assumptions:

(i) We set the observed wavelength grid between 3600 and 9800
Å. This means the closest forest pixel is at z = 1.96.

(ii) We create a logarithmically spaced wavelength grid with �v =
30 km s−1.7 Our grid spacing corresponds to a Nyquist frequency of
0.1 s km−1.

7DESI will use linear wavelength spacing in its pipeline, but QMLE does not
require equal velocity spacing.

(iii) We assume a constant resolution power of R = 3200 (≈94 km
s−1 FWHM in velocity units) for all spectra at all wavelengths.

(iv) We add Gaussian random errors with σ = 0.7 to F, which is
approximately S/N = 2 Å−1.

(v) We set the minimum redshift of an Ly α quasar to 2.1 and the
maximum to 4.4, and pick random redshifts from a distribution n(z)
(DESI Collaboration 2016; Palanque-Delabrouille et al. 2016). We
always limit the forest to [1050 Å, 1180 Å] range in quasar’s rest
frame.

(vi) Finally, we assume DESI will observe 800 000 quasar spectra.

We choose 12 redshift bins between 2.0 and 4.2 with �z = 0.2.
First 5 k bins are linearly spaced with �klin = 0.001 s km−1, and
the following 14 bins are logarithmically spaced with �klog = 0.1.
Hence, 0.0005 s km−1 ≤ k ≤ 0.112 s km−1.

Fig. 2 shows power spectrum estimates for each redshift bin with
error bars from the diagonal elements of the inverse Fisher matrix.
The chi-square using the full Fisher matrix is χ2/ν = 248/228,8

which implies a valid agreement with the truth. We measure the power
spectrum to sub per cent accuracy at lower redshifts, but the accuracy
and precision get progressively worse towards high redshifts due
to declining quasar numbers. We also expected noise and window
function corrections to dominate at high k as the noise power crosses
the signal at kN ≈ 0.025 s km−1.9 This constitutes our foundation as
validation of our method.

We would like to stress a subtle point here. First of all, the
estimator constructs correct covariance matrices in the first iteration
by using the true power as fiducial input. This means we also have
the correct Fisher matrix and expect θ ≈ 0 after the iteration.
However, the convergence criteria in equation (18) will still yield
nearly 1 due to the statistical fluctuations of the power spectrum (note
Var[θα] ∼ F−1

αα ). Therefore, when the estimator goes into the second
iteration, it misidentifies these intrinsic fluctuations as corrections
to the covariance matrices and readjusts the Fisher matrix. The
smoothing spline ameliorates this digression, though imperfectly.

Fisher matrix calculation consumes the most time as it requires
calculating Qα matrices and multiplying them O(N2) many times.
We identified that at least 46 per cent of the total time goes into the
Fisher matrix (see Fig. 3). Moreover, we also found that the Fisher
matrix is a band matrix that is prominently tridiagonal for individual
k and z bins. We normalize the Fisher matrix with respect to its
diagonal elements for a clear representation in Fig. 4, which is for
k = 0.0071 s km−1 bin, but represents a typical redshift dependence.10

This tridiagonal shape is due to keeping the full forest and distributing
pixel pairs into two redshift bins. This structure weakly persists
between k bins for a given z bin as well. Given Fisher matrix is the
longest step, limiting its calculation to only these terms will speed
up the estimation significantly by decreasing the number of matrix
multiplications to O(N ). We consider this optimization scheme and
how well it performs in Section 4.4. It is also worth pointing out that
the Fisher matrix does not depend on the data, but only on the input
power spectrum. Therefore, one could also choose a common Fisher
matrix for analysis with many simulations.

8We performed nine independent runs and found χ2 fluctuating around 228
as expected. The value 248 is from our first run, and not a special case.
9This kN roughly corresponds to PN/

√
Nqso = P1D, where the noise power

is PN = (
σ�v/F̄ (z)

)2
with Nqso = 100 000 for all redshift bins and P1D is

obtained analytically.
10The lowest k bin is weakly coupled (∼ 1 per cent) to an additional redshift
bin.
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Optimal P1D estimate 4747

Figure 2. Power spectrum estimates from 800 000 DESI-lite spectra. Error bars from the diagonal of the inverse Fisher matrix. Dotted line in each upper panel
is the true power. Noise begins to dominate in grey shaded area, k > kN = 0.025 s km−1. The estimates reach per cent-level accuracy in lower redshift bins.
However, last redshift bins are poorly estimated due to significant decline in statistics. The χ2 calculated from diagonal (all) elements is 240 (248) for 228
degrees of freedom.

We also computed the power spectrum covariance matrix with
5000 bootstrap realizations using the results of the first iteration
as discussed in Section 3.1. We found that the diagonals of the
covariance matrix estimated from this bootstrap procedure agreed
within per cent level with the formal estimates from the Fisher matrix
except for the high-redshift bin where we do not have enough quasars
to compute robust bootstrap errors. This bootstrapping procedure
therefore provides a straightforward test of the assumptions under-
lying the error estimates from the Fisher matrix.

4.1 Gaps in spectra

An advantage of our estimator is that it works in pixel space and can
therefore robustly handle missing data in the spectrum. In order to

test how masking affects our results, we remove continuous regions
from some spectra. We assign 15 per cent probability of having a
high HCD in a spectrum, matching Noterdaeme et al. (2012). If a
spectrum has an HCD, we randomly pick a central wavelength and
mask 12.5 A◦ on each side by setting the flux to the mean value (δF =
0). We apply this random masking procedure to 100 000 spectra.
We perform a run where masked pixels are removed by assigning
large errors, and another run without removing these pixels for
comparison.

Fig. 5 shows our results in two redshift bins. The masking
suppresses power at small scales, but propagates to all scales.
The run without any correction yields extremely poor results with
χ2 ∼ 4000. When we correct for these pixels by assigning large
errors, the power spectrum estimates yield χ2 = 234, close to the
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46%

15%

36%

4%

Inverting C Matrices
Calculating Q Matrices
Calculating Weighted Q Matrices
Calculating Fisher Matrix

Figure 3. Percentage of time spent in different steps for 800 000 DESI-lite
spectra. The weighted Q matrices are C−1QαC−1. Fisher matrix calculation
consumes the most time, which also requires calculating Qα matrices as
prerequisite. The time for remaining steps is insignificant.

Figure 4. The normalized Fisher matrix between redshift bins for k =
0.0071 s km−1 bin. The off-diagonal terms are approximately 40 per cent.
Only neighbouring redshift bins dominate the Fisher matrix, since a pixel
pair is split into two bins.

original case. This confirms our method is robust against gaps in
spectra.

4.2 Continuum marginalization

In a typical pipeline, the real observable flux f(λ) is divided by
the quasar continuum C(λ) to obtain the normalized flux F(λ) for
each spectrum. Furthermore, flux fluctuations are obtained by diving
this with the mean normalized flux F̄ (λ). The errors in this process
propagate to mostly large scales and are called the continuum errors
in Ly α nomenclature.

Our quadratic estimator is armed with marginalization capability
to suppress these offsets (appendix B, Slosar et al. 2013). By

Figure 5. The effect of gaps in P1D for two redshift bins z = 2.2 and z =
3.0. Points labelled ‘Mask’ are corrected measurements by large pixel errors,
whereas ‘Gap’ points have unchanged errors. For clarity, we slightly shift z =
3.0 points and omit error bars from uncorrected results. The masking error
propagates to all scales.

modifying the covariance matrix to C′ = C + N t tT, where N is
large and t is the mode we want to marginalize out, one can show that
C′−1(δ′

F + α t) ≈ C−1δ′
F , where the new data vector δ′

F is orthogonal
to t . This effectively removes any information from data that is in
mode t .

We will focus our attention to the continuum fitting Slosar et al.
(2013) uses. They fit the flux of each quasar q with fq (λo) =
Aq (λo)C(λr )F̄ (λo)(1 + δF,q ), where λo is the observed wavelength
and λr is the rest-frame wavelength. C(λr) and F̄ (λo) are determined
globally, whereas the function Aq has two free parameters for each
quasar:

Aq (λ) = aq + bq

ln λ − ln λ1

ln λ2 − ln λ1
, (30)

where λ1, 2 are the beginning and the end of the forest in a given
spectrum. These two quasar specific parameters source most of the
error assuming the global functions are more robust.

To replicate these continuum errors, we add an error η(λ) to each
quasar’s flux fluctuations δF(λ). We limit the form of η(λ) to the
equation above in order to perform a controlled test. We randomly
generate the two parameters from a Gaussian distribution with σ =
0.1. We run eight independent sets of 100 000 spectra.

We add a large constant N0 to all elements of the covariance
matrix to marginalize the amplitude, and N1 t tT to marginalize the
slope, where t = ln (λ/λLy α).

Fig. 6 presents the average of eight runs. The continuum errors
mostly contaminate large scales. The largest scale k = 5 × 10−4

s km−1 bins show big offsets, whereas the following k bin is less
affected. When we marginalize these two continuum terms with N0 =
N1 = 1000, results go back to the expected values. As a side effect,
marginalization increases the error in the first bin by 25–45 per cent.

4.3 Choice of fiducial

We already established in the previous sections that using the true
power as fiducial yields correct results. In this section, we investigate
how different fiducial power influences results by considering two
additional cases. First, we run the estimator without any fiducial
power. Second, imagining a realistic pipeline, we fit equation (17)
to these no fiducial results, and employ this best-fitting function as
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Figure 6. Average power spectra of eight runs at z = 2.2 and z = 3.2
with and without marginalizing continuum errors. The continuum errors
highly contaminate the first two k bins at k = 5 × 10−4 s km−1 and k =
1.5 × 10−3 s km−1. The remaining scales are less affected. By marginalizing
two continuum modes, we are able to correctly estimate the power at these
scales. Average errors of eight runs at k = 5 × 10−4 s km−1 bin increase by
25–45 per cent. The change in the second bin is insignificant.

200

280

360

440

520

600

Iteration 1 Iteration 2 Iteration 3

228
DoF

No Fiducial Input
True Fiducial
Re-Fitted Fiducial

Figure 7. Comparing average χ2 of eight runs for three different fiducials
using respective Fisher matrices. True fiducial yields the correct answer in
one iteration and outperforms other cases as expected. Not using any prior
naturally starts away from the truth, but converges to the correct power
immediately. Using the results from no prior to construct a better fiducial (re-
fitted fiducial) decisively surpasses no fiducial case. Repeating this analysis
with true Fisher matrix yields the same conclusion. In that case, χ2 stays
constant over three iterations with values close iteration two and three of this
figure. This implies that the first iteration yields good P1D and subsequent
iterations correct the error estimates.

fiducial. In order to run multiple independent realizations, we use
eight subsamples of 100 000 spectra.

We compare χ2 for every case using respective Fisher matrices,
which can be seen in Fig. 7. True fiducial yields the correct answer
in one iteration and is the best estimate as expected. Not using any
prior naturally starts away from the truth, but converges to the correct
power immediately while being relatively a poor fit. Using the results
from no prior to construct a better fiducial decisively outperforms no
fiducial case, which we found to hold for all eight runs.

The χ2 analysis above weights absolute errors with respective
Fisher matrices. The differences in these matrices partially source
the χ2 trend in Fig. 7. In order to decouple error accuracy from P1D

Table 2. Our model power spectrum and precision forecasts for 5-yr DESI
survey for fixed kf = 2.5 × 10−3 s km−1. The precision is defined as error
divided by signal: e/P1D. For reference, metal contamination constitutes 5–15
per cent of the Ly α power in reality.

z P1D(kf) Precision Precision Precision
(km s−1) S/N = 1 Å−1 S/N = 2 Å−1 S/N = 4 Å−1

2.0 10.2 1.31 per cent 0.44 per cent 0.22 per cent
2.2 13.4 1.08 per cent 0.37 per cent 0.20 per cent
2.4 17.5 1.12 per cent 0.40 per cent 0.23 per cent
2.6 22.8 1.24 per cent 0.46 per cent 0.27 per cent
2.8 29.5 1.46 per cent 0.56 per cent 0.34 per cent
3.0 37.8 1.87 per cent 0.74 per cent 0.45 per cent
3.2 48.3 2.50 per cent 0.99 per cent 0.62 per cent
3.4 61.4 3.34 per cent 1.32 per cent 0.82 per cent
3.6 77.6 4.82 per cent 1.89 per cent 1.15 per cent
3.8 97.7 8.67 per cent 3.32 per cent 1.98 per cent
4.0 123.0 22.00 per cent 8.14 per cent 4.63 per cent
4.2 153.0 95.30 per cent 33.30 per cent 18.10 per cent

accuracy, we also calculate all χ2s using the true Fisher matrix. We
find this quantity still distinguishes different fiducials as before with
values close to the last two iterations of the initial analysis, and stays
approximately flat over three iterations. This indicates that QMLE
yields good P1D at the first iteration even for no fiducial case, but it
does not improve at subsequent iterations. Evidently, these iterations
mostly correct the error estimates. This behaviour is reasonable given
the weights in equation (15) stay approximately constant across bins,
and therefore are unaffected by band power corrections. The only way
to overcome the band power discretization is through integrating a
fiducial power.

To summarize, the key points are as follows: (1) even with no
fiducial, the power spectrum is correctly recovered, (2) a simple
iteration quickly gets the correct Fisher matrix, and (3) a good fiducial
yields better power spectrum and error estimates.

4.4 Fisher matrix approximation

Each quasar’s Fisher matrix requires NB(NB + 1)/2 matrix mul-
tiplications, where NB is the number of total bins to which this
spectrum contributes. However, Fig. 4 tells us that only few elements
are dominant in the Fisher matrix. Moreover, we see this structure
in all cases, i.e. different fiducial powers, masking, and continuum
marginalization.

While the sparsity structure of the Fisher matrix appears to be quite
generic, the exact details (as to the number of non-zero elements)
do appear to depend on the total signal to noise of the sample. For
the DESI-like data considered in this work, we find that including a
single off-diagonal element in the k − and z − directions works very
well. Specifically, for every (kn, zm) pair we calculate (kn + 1, zm) and
(kn, zm + 1) elements besides the diagonal. That reduces the number
of matrix multiplications to 3NB, which will boost the speed. Note
that this should also be taken into account in load balancing.

We test this optimization scheme on 800 000 spectra. We find
that the resulting χ2 is not changed while the average time per
iteration decreases by 64 per cent and the time spent in Fisher matrix
calculation per iteration drops by 95 per cent.

Even though we do not have an exact prescription for computing
the number of non-zero elements, the above discussion suggests a
procedure by which one starts to fill in the Fisher matrix from the
diagonals outwards and stops when the overall relative contribution
is below a chosen threshold.

MNRAS 497, 4742–4752 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/4/4742/5892573 by U
niversity C

ollege London user on 25 Septem
ber 2020
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4.5 5-yr forecasts

We would like to make simple predictions for future DESI perfor-
mance using our simple spectra. We run two additional cases where
S/N = 1 Å−1 and S/N = 4 Å−1 on 800 000 spectra. In order to
speed up our analysis, we turn on the Fisher optimization scheme.
We perform only one iteration with true power as fiducial.

We compare P1D estimates for different redshifts at a fixed
wavenumber kf = 2.5 × 10−3 s km−1. Our results are summarized in
Table 2. This prediction is under ideal circumstances, hence further
complications should be added for accuracy. For example, metal
contamination constitutes 5–15 per cent of the Ly α forest power
(Day et al. 2019).

We provide the model power spectrum and the full Fisher matrices
in the electronic form. A summary of the Fisher matrices is in Table 3.

In the noise dominated limit, the covariance matrix is C ≈ N,
and so the Fisher matrix scales as N−2. Assuming the noise is
uncorrelated and Gaussian with standard deviation σ , this means
that the Fisher matrix is proportional to F ∝ σ−4 = (S/N)4 (or
the precision scales as (S/N)2), where we substituted the definition
S/N≡ 1/σ . We confirmed that this scaling holds true for high k values
in the Fisher matrix.

5 D ISCUSSION

We would like to start our discussion by highlighting the differences
between QMLE and FFT. As we have shown in Section 2.2, QMLE
finds inverse variance weighted averages across bins. Measuring
deviations from a baseline power further lessens the averaging, so that
QMLE yields near exact P1D(k). On the other hand, FFT estimator
computes simple averages. For wide enough bins, this does not equal
to P1D(k). Therefore, it is important to note that these two methods
will not fully agree unless special circumstances are met, because
they compute mathematically different quantities.

Systematic errors are the significant uncertainty source in P1D

analysis. We have considered three such error sources: (1) HCD
absorbers, (2) metal contamination, and (3) continuum fitting. Using
our method, we showed that HCDs can be masked without further

complications. Modelling their contribution can now be solely a
theoretical question as they are biased tracers in reality. However,
metal contamination is more complicated as they are not easily
separable from data like HCDs. Metal contamination estimates will
inevitably bring statistical errors; and these errors can be fairly
higher than our simple forecasts. Nevertheless, all methods face this
challenge. Third, continuum errors can be more complicated than our
simple model, but we believe these errors can still be marginalized
with careful investigation. Even though marginalization washes out
some information, it still enables us to keep the largest scales in P1D.
Furthermore, DESI will supply plenty of spectra to study and better
understand these errors in the future.

Two additional error sources not considered here are uncertainties
in the estimates of the resolution and the noise. Although, we used a
simple Gaussian form of the spectrograph resolution and a diagonal
noise matrix, the QMLE formalism allows us trivially extend this
to more complicated forms, such as described in Bolton & Schlegel
(2010). We defer a complete analysis, including a sensitivity analysis
to resolution and noise misestimations to future work.

A disadvantage of our method over a direct FFT method is the
additional computational time. However, we demonstrated that these
calculations are now practical even for surveys of the scope of DESI,
as we were able to perform multiple runs of full DESI-like data in
a small cluster of 30 nodes with 24 cores each. We also introduced
an optimization scheme that brings down the CPU time significantly.
We think this cost is reasonable given QMLE’s capacity to overcome
Ly α forest specific challenges. Further computational speedups
such as using GPUs are likely possible; we defer these to later
work.

6 SU M M A RY

The Ly α forest has emerged as a unique and competitive tool to
investigate the large-scale structure of the universe. This technique
can probe cosmological parameters on large scales, while being
sensitive to the thermal state of the IGM, neutrino masses, and new
dark matter models on small scales. This small-scale physics enriches
the 1D and 3D power spectrum of the Ly α forest.

Table 3. Our Fisher matrix forecasts for 5-yr DESI survey for different spectral qualities. The subscript in F refers
to the S/N value. The full table and model power spectrum can be found in the electronic submission of this article.

(zi, ki) (zj, kj) F1 F2 F4

[, (s km−1)] [, (s km−1)] (s2 km−2) (s2 km−2) (s2 km−2)

(2.0, 5.00 × 10−4) (2.0, 5.00 × 10−4) 6.02867 × 101 6.51197 × 102 3.66215 × 103

(2.0, 5.00 × 10−4) (2.0, 1.50 × 10−3) 6.63624 × 100 6.52238 × 101 3.02865 × 102

(2.0, 5.00 × 10−4) (2.2, 5.00 × 10−4) 2.12509 × 101 2.30833 × 102 1.33759 × 103

(2.0, 1.50 × 10−3) (2.0, 1.50 × 10−3) 6.54364 × 101 6.00179 × 102 2.47973 × 103

(2.0, 1.50 × 10−3) (2.0, 2.50 × 10−3) 5.99838 × 100 5.43360 × 101 2.19731 × 102

(2.0, 1.50 × 10−3) (2.2, 1.50 × 10−3) 1.97400 × 101 1.75264 × 102 6.90261 × 102

(2.0, 2.50 × 10−3) (2.0, 2.50 × 10−3) 6.38029 × 101 5.69068 × 102 2.25086 × 103

(2.0, 2.50 × 10−3) (2.0, 3.50 × 10−3) 5.83666 × 100 5.28085 × 101 2.13079 × 102

(2.0, 2.50 × 10−3) (2.2, 2.50 × 10−3) 1.92028 × 101 1.65626 × 102 6.24662 × 102

(2.0, 3.50 × 10−3) (2.0, 3.50 × 10−3) 6.29898 × 101 5.69389 × 102 2.29742 × 103

(2.0, 3.50 × 10−3) (2.0, 4.50 × 10−3) 5.74635 × 100 5.31461 × 101 2.21748 × 102

(2.0, 3.50 × 10−3) (2.2, 3.50 × 10−3) 1.89681 × 101 1.66002 × 102 6.39374 × 102

(2.0, 4.50 × 10−3) (2.0, 4.50 × 10−3) 6.21816 × 101 5.77621 × 102 2.43005 × 103

(2.0, 4.50 × 10−3) (2.0, 5.65 × 10−3) 5.85085 × 100 5.58077 × 101 2.44502 × 102

(2.0, 4.50 × 10−3) (2.2, 4.50 × 10−3) 1.87450 × 101 1.68881 × 102 6.78999 × 102

(2.0, 5.65 × 10−3) (2.0, 5.65 × 10−3) 8.19711 × 101 7.90781 × 102 3.53432 × 103

(2.0, 5.65 × 10−3) (2.0, 7.11 × 10−3) 6.07740 × 100 6.05452 × 101 2.85148 × 102

...
...

...
...

...
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In this work, we studied the optimal quadratic estimator (QMLE)
for P1D by first formulating its generic and Ly α specific expressions,
offered an analytic continuum limit formula to depict what QMLE
calculates and a straightforward way to bootstrap its results. Under
the simplest terms, QMLE finds an inverse variance weighted average
power for each bin. We then outlined the implementation in detail by
providing our step-by-step algorithm. We here underline two of our
decisions that mitigates the systematics and numerical instabilities:
(1) we fed smoothed estimates to the covariance matrix, and (2) we
picked a convergence criteria that weights changes between iterations
by the error estimates. Then, we described our synthetic spectra and
provided analytic expressions for what they construct. These analytic
expressions were crucial to ascertain the performance of QMLE.

We generated DESI-oriented synthetic spectra in order to perform
comprehensive tests. These mocks assumed constant resolution (R =
3200) and noise at all wavelengths, and limited the quasar redshift
range to zqso ∈ [2.1, 4.4] with pixel width c�ln λ = 30 km s−1. A
summary of our findings is as follows:

(i) Using 800 000 of these spectra with S/N = 2 Å−1, we first
showed that the power spectrum could be accurately measured with
1 per cent precision. This number declined towards higher redshifts
due to diminishing statistics. This proved the absence of biases in
our algorithm.

(ii) We randomly masked �λ = 25 Å region of 15 per cent of spec-
tra, and showed that this masking badly affected the measurement
when untreated, and proved QMLE was robust against its effects
on 100 000 mocks. As real analyses would mask bad pixels and
high-density absorbers, this strength is invaluable to P1D analysis.

(iii) We introduced continuum errors by adding wavelength-
dependent error η(λ) ∼ 10 per cent to flux fluctuations δF. This error
function η(λ) had two independent parameters for each quasar: am-
plitude and slope. Using eight independent runs with 100 000 spectra
each, we demonstrated that these continuum errors contaminate first
two k bins, but QMLE could marginalize out the noisiest modes, and
recover these scales.

(iv) We presented, both analytically and by using 100 000 spectra,
how a baseline model improved the accuracy. This fiducial power
enables us to integrate over bins and to lessen the discretization of
band powers. Our proposed unbiased procedure to find this fiducial
power is to first measure the power spectrum without any input, then
find the best-fitting analytic function on these results. We showed
this feature significantly boosted our measurements.

(v) Finally, we found that computation was mostly spent on Fisher
matrix calculation. We also found that Fisher matrix had a simple
structure, which allowed us to come up with an optimization scheme
that reduced the computation time by 60 per cent.

This work represents an initial step towards analysing the up-
coming Lyman α data sets with surveys like DESI. The quadratic
estimator formalism allows us to optimally use all the available data
(even with varying S/N) and to effectively mitigate systematic errors
like those arising from an imperfect continuum estimate. We address
several practical issues with implementing a QMLE power spectrum
code for the Lyman α forest. Future work will use these results and
the codes described here to analyse both existing high-resolution data
as well as upcoming DESI data.
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A P P E N D I X A : SA D D L E PO I N T
APPROX IMATION FOR THE MEAN FLUX O F
L O G N O R M A L MO C K S

We can find a closed analytic form for the mean flux in equation (24)
using saddle point approximation assuming the integrand is large
around its maximum. We start by finding the derivatives of the
function in the exponential:

φ(δ) ≡ − δ2

2σ 2 − xe2aδ, (A1)

φ′(δ) = − δ

σ 2
− 2axe2aδ, (A2)

φ′′(δ) = − 1

σ 2
− 4a2xe2aδ, (A3)

where the z dependence of x(z) and a(z) is suppressed for clarity.
Solving for the maximum φ

′
(δ∗) = 0 yields −δ∗ = 2aσ 2xe2aδ∗ , for

which the solution is given by the Lambert W function.

δ∗(z) = − 1

2a
W

(
4a2σ 2x

)
(A4)

Note that δ∗ < 0. Substituting this solution back into φ and φ
′′

yields

φ(δ∗) = δ∗
2aσ 2

(1 − aδ∗), (A5)

φ′′(δ∗) = −1 − 2aδ∗
σ 2

. (A6)

Now we can approximate the integration around the maximum.

F̄ (z) ≈ 1
σ
√

2π

∫ δ∗+ε

δ∗−ε
exp

[
φ(δ∗) + (δ−δ∗)2

2 φ′′(δ∗)
]
dδ, (A7)

≈ eφ(δ∗ )√
2πσ 2

∫ ∞
−∞ exp

[
φ′′(δ∗) δ2

2

]
dδ = eφ(δ∗ )√

−φ′′(δ∗)σ 2
, (A8)

and note that −φ
′′
(δ∗)σ 2 = 1 − 2a(z)δ∗(z). We can further define

d∗(z) = a(z)δ∗(z) and σ (z) = a(z)σ to simplify this expression.

F̄ (z) ≈ [1 − 2d∗(z)]−1/2 exp

{
d∗(z)[1 − d∗(z)]

2σ 2(z)

}
. (A9)

As noted in the main section, this approximation starts to deviate
from the truth at z � 3 up to 4 per cent. It would be interesting to use
this function as a fitting template for the real data.
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