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Abstract

Background: The AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of cellular energy
homeostasis. As a nexus for transducing metabolic signals, AMPK cooperates with other energy-sensing pathways
to modulate cellular responses to metabolic stressors. With metabolic reprogramming being a hallmark of cancer,
the utility of agents targeting AMPK has received continued scrutiny and results have demonstrated conflicting
effects of AMPK activation in tumorigenesis. Harnessing multi-omics datasets from human tumors, we seek to
evaluate the seemingly pleiotropic, tissue-specific dependencies of AMPK signaling dysregulation.

Methods: We interrogated copy number variation and differential transcript expression of 92 AMPK pathway genes
across 21 diverse cancers involving over 18,000 patients. Cox proportional hazards regression and receiver operating
characteristic analyses were used to evaluate the prognostic significance of AMPK dysregulation on patient
outcomes.

Results: A total of 24 and seven AMPK pathway genes were identified as having loss- or gain-of-function features.
These genes exhibited tissue-type dependencies, where survival outcomes in glioma patients were most influenced
by AMPK inactivation. Cox regression and log-rank tests revealed that the 24-AMPK-gene set could successfully
stratify patients into high- and low-risk groups in glioma, sarcoma, breast and stomach cancers. The 24-AMPK-gene
set could not only discriminate tumor from non-tumor samples, as confirmed by multidimensional scaling analyses,
but is also independent of tumor, node and metastasis staging. AMPK inactivation is accompanied by the activation
of multiple oncogenic pathways associated with cell adhesion, calcium signaling and extracellular matrix
organization. Anomalous AMPK signaling converged on similar groups of transcriptional targets where a common
set of transcription factors were identified to regulate these targets. We also demonstrated crosstalk between pro-
catabolic AMPK signaling and two pro-anabolic pathways, mammalian target of rapamycin and peroxisome
proliferator-activated receptors, where they act synergistically to influence tumor progression significantly.
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Conclusion: Genetic and transcriptional aberrations in AMPK signaling have tissue-dependent pro- or anti-tumor
impacts. Pan-cancer investigations on molecular changes of this pathway could uncover novel therapeutic targets
and support risk stratification of patients in prospective trials.
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Background

The AMP-activated protein kinase (AMPK) is an evolu-
tionary conserved key player responsible for energy sens-
ing and homeostasis. Orthologous copies of AMPK
prevail universally as heterotrimeric complexes where
the human genome encodes two genes for the o catalytic
subunit, two P regulatory subunit genes and three y sub-
unit genes. Historically, AMPK was discovered as a cru-
cial regulator of lipid metabolism [1]. Since then, AMPK
is implicated in a wide variety of fundamental metabolic
processes as well as in metabolic diseases such as cancer
and diabetes [2]. The first link between AMPK and can-
cer was identified through the tumor-suppressive func-
tion of LKBI, which is upstream of the mTOR pathway
[3]. The tumor-suppressive roles of AMPK were
pharmacologically demonstrated by the application of
metabolic inhibitors such as the anti-diabetic metformin
and the mimetic of AMP, AICAR [4-6]. Numerous
studies have since compellingly established the promis-
cuous nature of these pharmacological agents, whereby
the inhibition of cancer cell proliferation occurs through
non-specific AMPK-independent avenues [7, 8].

In contrast to the tumor-suppressive results from
pharmacological studies, genetic experiments on cancer
cells have credibly demonstrated that AMPK activation
is crucial for tumor progression and survival [9-12]. A
myriad of metabolic stressors, such as oxygen
deprivation, nutrient starvation and oxidative stress, ex-
ists within the tumor microenvironment. Metabolic re-
programming during carcinogenesis would thus trigger
AMPK activation to enable cells to survive under condi-
tions of stress typically found in the tumor microenvir-
onment, hence conferring an overall tumor-promoting
effect. AMPK is also shown to support cancer growth
and migration through crosstalk with other pro-oncogenic
pathways. For instance, overexpression of oncogenes MYC
and SRC or the loss of the tumor suppressor folliculin
could lead to AMPK activation [13-17].

Genetic and pharmacological studies have paved the
way for our understanding of the function of AMPK in
cancer. However, anti- and pro-neoplastic features of
AMPK remain controversial potentially due to the over-
simplification of AMPK-modulated processes in in vitro
and non-human in-vivo models. The genetic and clinical
landscape of AMPK signaling has not been systematic-
ally investigated. Thus, our study aims to address an

unmet need to rigorously investigate the role of AMPK
in diverse cellular context using multi-omics data from
actual tumors where we examined somatic copy number
alterations, transcriptional and clinical profiles of tumors
from 21 cancer types. Our analyses of clinical samples at
scale would complement evidence from pharmacological
and genetic studies to better elucidate the multi-faceted
and cell-specific nature of AMPK signaling on tumor
progression.

Methods

AMPK pathway genes and cancer cohorts

Ninety-two AMPK pathway genes were retrieved from
the Kyoto encyclopedia of genes and genomes (KEGG)
database (Additional file 1). Clinical, genomic and tran-
scriptomic datasets of 21 cancers involving 18,484 pa-

tients were downloaded from the Cancer genome atlas
(TCGA) [18].

Copy number variation, differential expression,
multidimensional scaling and survival analyses

Detailed methods of the above analyses were previously
published and thus will not be repeated here as per the
journal guidelines [19-26]. To summarize, discrete amp-
lification and deletion indicators for copy number vari-
ation analyses were obtained from GISTIC gene-level
tables [27]. GISTIC values of + 1 and — 1 were annotated
as shallow amplification and shallow deletion (heterozy-
gous) events respectively. GISTIC values of +2 and -2
were annotated as deep amplification and deep (homo-
zygous) deletion events respectively. Multidimensional
scaling analyses and permutational multivariate analysis
of variance (PERMANOVA) were performed using the R
vegan package. Survival analyses were performed using
Cox proportional hazards regression and the log-rank
test. Sensitivity and specificity of the 24-AMPK-gene set
were assessed using receiver operating characteristic
analyses. Differential expression analyses were per-
formed on patients stratified into high- (4th quartile)
and low- (Ist quartile) expressing groups using the 24-
gene-set to determine the transcriptional effects of
anomalous AMPK signaling.

Pathway and transcription factor analyses
Genes that were differentially expressed (DEGs) between
the 4th and 1st quartile patient groups were mapped to
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KEGG, Gene Ontology and Reactome databases using g:
profiler [28] to ascertain biological processes and signal-
ing pathways that were enriched. The Enrichr tool [29,
30] was used to map DEGs to the ChEA and ENCODE
transcription factor (TF) databases to identify TFs that
were significantly enriched as regulators of the DEGs.

Calculating the 24-AMPK-gene score, peroxisome
proliferator-activated receptors (PPAR) score and
mammalian target of rapamycin (mTOR) score
AMPK scores were calculated from the mean expression
of the following genes: SLC2A4, FOXO3, PPP2CB,
PIK3CD, CAB39L, CCNA1, FBP1, FBP2, FOXOI1, HMGC
R, IRS2, PIK3R1, SIRTI, TBCiD1, PPARGCIA,
PPP2R2C, MLYCD, PFKFB3, PPP2R2B, PRKAA2, LEPR,
CAB39, IRS1 and PFKFBI. PPAR scores for each patient
were calculated by taking the mean expression of PPAR
signature genes: PLINS, PPARG, ACADM, GK, CPT2,
SCP2, ACAAI, APOAI, PPARA, ACOX2, ANGPTL4,
FABP3, PLIN2, AQP7, ACSL1, FABP5, ACADL, and
PCK2 [19]. mTOR/PI3K/AKT scores for each patient
were calculated using the following equation: mTOR/
PI3K/AKT score= AKT +mTOR + GSK3 + S6K + S6 —
PTEN [31].

All figures were generated using R version 3.6.3 and
Adobe Illustrator version CS6.

Results

Pan-cancer genomic and transcriptional alterations of
AMPK pathway genes

Focusing on the genomic and transcriptomic landscape
of 92 genes associated with AMPK signaling retrieved
from KEGG across 21 cancer types involving 18,484 pa-
tients (Additional file 1), we interrogated somatic copy
number alterations (SCNA) and mRNA expression (see
Additional file 2 for a flowchart illustrating the study de-
sign). To determine the effects of genomic alterations in
AMPK pathway genes, we classified genes as having
high-level amplifications (gains), low-level amplifications,
deep (homozygous) deletions and shallow (heterozygous)
deletions. To evaluate pan-cancer patterns of SCNAs,
we considered genes that were gained or lost in at least
20% of samples within a cancer type and in at least one-
third of cancer types, i.e., at least seven cancer types. A
total of 46 genes were recurrently amplified, while 49
genes were recurrently lost (Fig. 1; Additional file 3).
AMPK is the central regulator of cellular energy levels,
which controls a number of downstream targets, an ex-
ample being the nuclear receptor HNF4A. Remarkably,
HNF4A was found to be the most amplified gene; identi-
fied as being recurrently amplified in >20% of samples
in all 21 cancers (Fig. 1; Additional file 3). This is
followed by CFTR (18 cancer types) and four other genes
that were amplified in 17 cancer types (ADIPOR2, LEP,
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PRKAG2 and RHEB) (Fig. 1; Additional file 3). In
contrast, PPP2R2A was the most deleted gene found in
>20% of samples across 17 cancers, followed by the de-
letion of SLC2A4 in 16 cancers and five additional genes
(FOXO03, PPP2CB, PPP2R2D, PPP2R5C and PPP2RSE)
in 15 cancer types (Fig. 1; Additional file 3). Among all
cancer types, the highest number of amplified AMPK
pathway genes was observed in esophageal carcinoma
(ESCA; 44 genes) followed by bladder cancer (BLCA; 42
genes) and lung cancer (41 genes in both lung squamous
cell carcinoma [LUSC] and adenocarcinoma [LUAD])
(Fig. 1). Glioma tumors (GBMLGG), in contrast, had
only five genes that were recurrently amplified (Fig. 1).
In terms of somatic deletions, LUSC and ESCA both had
49 genes deleted while no recurrent deletions were ob-
served in papillary renal cell carcinoma (KIRP) (Fig. 1).

We reasoned that SCNAs associated with transcrip-
tional alterations could be considered as putative gain-
or loss-of-function events. Differential expression
analyses between tumor and non-tumor samples in each
cancer revealed that 15 and 39 genes were significantly
upregulated and downregulated in at least seven cancer
types respectively (Additional file 4). Of these differen-
tially expressed genes, seven and 24 genes were also
recurrently amplified and deleted respectively (Venn dia-
gram in Fig. 1). Both gene sets were mutually exclusive,
i.e., the genes either had gain-or-function or loss-of-
function features, but not both.

Molecular underpinnings of patient survival involving
putative loss-of-function AMPK pathway components

We next investigated the impact of transcriptional dys-
regulation of the putative gain- and loss-of-function
genes identified previously on patient survival outcomes
across all cancer types. Employing Cox proportional haz-
ards regression, we observed that all 31 genes (seven
gain-of-function and 24 loss-of-function genes), were
prognostic in at least one cancer type (Fig. 2a). The
highest number of prognostic genes was observed in
glioma (GBMLGG) tumors (26/31 genes), while none of
the 31 genes were significantly associated with overall
survival outcomes in ESCA and cholangiocarcinoma
(CHOL) (Fig. 2a). Intriguingly, although ESCA had the
highest number of SCNAs (Fig. 1), none of the genes
harbored prognostic information, suggesting that alter-
ations in AMPK signaling components have minimal
roles in driving tumor progression and patient out-
comes. FBP1 was significantly associated with overall
survival outcomes in 10 cancers while PPP2R2C and
PPP2R2B in 8 cancers (Fig. 2a). FBP2 is the least prog-
nostic gene in only one cancer type, cervical squamous
cell carcinoma and endocervical adenocarcinoma; CESC
(Fig. 2a).



Chang and Lai BMC Cancer (2020) 20:773

Page 4 of 15

Fraction deleted | I I I I 1
0

[ Somatic deletions ] [ Somatic amplifications ]
o o o o = s o o o =
g & 8 § 8 r=mmr | f = 8 & 8 d 8 [ F = =——r— =7 =1
] || PPP2R2A 1 [ B | | L}
. SLC2A4 1 .
- PosSes -
¥
| = PPP2R2D B
PPP2R5C |
PPP2R5E . =
[ - EIF4EBP1 - e
X - [ 1] L PFKFB4 1 .
m . PIK3CD 1
] SREBF1 1 .
[ CAB39L 1 .
CCNA1 1 .
CCNA2 '
BP1 1
BP2 1
@ FOXO1 @ ]
2 FKL <} ~]
H PPP2R3C £ X
= RAB14 < -
3 SC1 3 T .
1 5
z - PIK3R1 H -
2 PPP2R1B £ r—
e | - SIAT1 Qa "
] STK11 K |
® TBC1D1 ®
EF2
ELAVL1
PPARGC1A
PPP2R2C m]
MLYCD
1 = | PFKFB3
= L KP
1 ] PPP2CA
1 ] PPP2R2B
- PRKAAZ
RAB118 .
| LEPR -
] PIK3R3
] CAB39
] IRS1 1
PFKFB1 1
PIK3R2 1
| PRKAG3
RABBA
sC2
SCNAfraction 19 Number of cancers SCNA fraction 5, PEEEEEE T ===  Numberof cancers
0.75
Deep amplification I Putative Deep amplification I 050 Putative
loss-of-function genes gain-of-function genes
Shallow amplification Shallow amplification 025 ~
y
No alteration No alteration (
39| 7 8
Shallow deletion Shallow deletion \
N
Deep deletion I Deep deletion I
Lost Downregulated Gained Upregulated

Fraction amplified | I I I 1
0

02 04 06 08 1.0

Fig. 1 The landscape of somatic copy number alterations of AMPK pathway genes. Heatmaps depict (a) fraction of samples within each cancer
type that harbor somatic deletions and (b) somatic amplifications. Forty-nine genes are recurrently deleted in at least 20% of tumors within each
cancer and in at least seven cancer types. Forty-six genes are recurrently amplified in at least 20% of tumors within each cancer and in at least
seven cancer types. Stacked bar charts on the y-axes illustrate the fraction of samples that possess copy number variation of a gene under
consideration grouped by shallow and deep deletions or ampilifications. Stacked bar charts on the x-axes illustrate the fraction of samples within
each cancer type that contain shallow and deep deletions or amplifications. The bar charts on the right of each heatmap depict the number of
cancer types with at least 20% of samples affected by gene deletions and amplifications. The Venn diagrams demonstrate the identification of 24
putative loss- and seven gain-of-function genes from gene sets that are somatically altered and differentially expressed. Cancer cohorts analyzed
with corresponding TCGA abbreviations are listed in parentheses: bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical

STES (599) and UCEC (370)

squamous cell carcinoma and endocervical adenocarcinoma (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal
carcinoma (ESCA), glioblastoma multiforme (GBM), glioma (GBMLGG), head and neck squamous cell carcinoma (HNSC), kidney chromophobe
(KICH), pan-kidney cohort (KIPAN), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular
carcinoma (LIHO), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), pancreatic adenocarcinoma (PAAD), sarcoma (SARQ),
stomach adenocarcinoma (STAD), stomach and esophageal carcinoma (STES) and uterine corpus endometrial carcinoma (UCEC). Number of
samples for each cancer type are indicated in parentheses: BLCA (408), BRCA (10939), CESC (304), CHOL (36), COAD (285), ESCA (184), GBM (153),
GBMLGG (669), HNSC (520), KICH (66), KIPAN (889), KIRC (533), KIRP (290), LIHC (371), LUAD (515), LUSC (501), PAAD (178), SARC (259), STAD (415),

Given the prevalence of loss-of-function phenotypes in
determining clinical outcomes (Fig. 2a), we proceeded to
examine the combined impact of all 24 loss-of-function
genes on patient survival and oncogenic dysregulation.
To determine the extent of AMPK pathway variation
across the 21 cancers, we calculated ‘pathway scores’ for
each of the 18,484 tumor samples by taking the mean
transcript expression values of the 24 genes: SLC2A4,
FOXO03, PPP2CB, PIK3CD, CAB39L, CCNAI, FBPI,
FBP2, FOXO1, HMGCR, IRS2, PIK3R1, SIRT1, TBCI1DI,
PPARGCI1A, PPP2R2C, MLYCD, PFKFB3, PPP2R2B,
PRKAA2, LEPR, CAB39, IRS1 and PFKFBI1. We observed
interesting patterns when cancers were ranked from low

to high, based on their median pathway scores (Fig. 2b).
GBMLGG had the highest median pathway score, while
BLCA and CESC were found at the lower end of the
spectrum (Fig. 2b). As expected, Kaplan-Meier analysis
revealed a significant difference in overall survival be-
tween glioma patients (P <0.0001) stratified by low and
high 24-gene pathway scores (Fig. 2c). Interestingly, the
contribution of AMPK signaling in cancer prognostica-
tion is cancer-type dependent. As in glioma, log-rank
tests revealed that patients with high 24-gene scores had
significantly improved survival outcomes in breast can-
cer (P =0,0026) and sarcoma (P =0.021) (Fig. 2c). In
contrast, high expression of the 24 genes was associated
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Fig. 2 Prognostic significance of AMPK loss- and gain-of-function genes. a Heatmap illustrates significant hazard ratio values from Cox
proportional hazards regression analyses on the 24 loss-of-function and seven gain-of-function genes across all cancers. b The distributions of 24-
AMPK-gene scores in each cancer are illustrated in the boxplot. Cancers are sorted from low to high median scores. Refer to Fig. 1 legend for
cancer abbreviations. ¢ Kaplan-Meier analyses and log-rank tests revealed the prognostic significance of the 24-AMPK-gene set in four cancer
types. Patients are stratified into Q1 (1st quartile) and Q4 (4th quartile) groups based on their 24-gene scores for log-rank tests. d
Multidimensional scaling analyses of the 24-gene set depicted in 2-dimensional space. Significance differences in the distribution between tumor
and non-tumor samples are confirmed by PERMANOVA

with increased mortality rates in stomach adenocarcin-
oma (P =0.033) (Fig. 2c). These results were in agree-
ment when independently validated using the Cox
regression approach: breast (hazard ratio [HR] = 0.397;
P =0.0028), glioma (HR=0.430; P <0.0001), sarcoma
(HR=0.379; P =0.021) and stomach (HR=1.825; P =
0.034) cancers (Additional file 5). Since the 24-gene
score could be used to stratify patients into high- and

low-risk groups, we predict that when considered to-
gether, gene expression values could discriminate tumor
from non-tumor samples. Although analysis could not
be performed on sarcoma (this dataset only had two
non-tumor samples), multidimensional scaling analyses
and PERMANOVA tests of breast (P <0.001), glioma
(P <0.001) and stomach (P < 0.001) cancers revealed sig-
nificant separation between tumor and non-tumor
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samples in two-dimensional space (Fig. 2d). Overall, this
suggests that the 24-gene set could be harnessed as a
diagnostic biomarker for early cancer detection.

To determine the independence of the 24-gene set
from other clinicopathological features, we employed
multivariate Cox regression and observed that the 24-
gene set is independent of tumor, node and metastasis
(TNM) staging (where available) in breast (HR =0.403;
P =0.0043) and stomach cancers (HR = 1.835; P = 0.038)
(Additional file 5). Similarly, Kaplan-Meier analyses and
log-rank tests confirmed that the 24-gene set allowed
further risk stratification of patients with tumors of the
same TNM stage: breast (P < 0.0001) and stomach (P =
0.022) (Fig. 3a). Furthermore, we observed that within a
histological subtype of sarcoma, leiomyosarcoma, pa-
tients with elevated AMPK signaling had significantly
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consistent with our previous observation that high
pathway scores were associated with good prognosis in
sarcoma (Fig. 2c).

We next explored the predictive performance
(sensitivity versus specificity) of the 24-gene set in all
four cancer types using receiver operating characteristic
analysis. The area under the ROC curve (AUC) is an in-
dication of how well the gene set could predict patient
survival, which ranges from 0.5 to 1. We found that the
combined model uniting both 24-gene set and TNM sta-
ging outperformed the 24-gene set when considered on
its own in breast cancer patients (AUC = 0.749 vs. 0.699)
(Fig. 3b). For stomach cancer, the 24-gene set only
contributed to a marginally higher AUC when used in
combination with TNM staging when compared to the
24-gene set alone (AUC=0.714 vs. 0.700). (Fig. 3b).

better survival outcomes (P =0.0072) (Fig. 3a); AUCs of the 24-gene set in glioma and sarcoma were
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Fig. 3 The 24-AMPK-gene set is independent of tumor stage and histological subtype. a Kaplan-Meier analyses of patients grouped by tumor,
node and metastasis (TNM) stage (breast and stomach cancers) or by the histological subtype of leiomyosarcoma and the 24-gene score. For
leiomyosarcoma, the log-rank test reveals a significant difference in survival rates between 1st and 4th quartile patients. b Receiver-operating
characteristic (ROC) analyses on the 5-year predictive performance of the 24-gene set. ROC curves generated by the 24-gene set are compared to
curves generated from both 24-gene set and TNM staging, where available, or histological subtype. AUC: area under the curve




Chang and Lai BMC Cancer (2020) 20:773

0.840 and 0.757 respectively (Fig. 3b). Within the leio-
myosarcoma histological subtype, AUC was even higher
at 0.869 (Fig. 3b).

Oncogenic transcriptional alterations associated with
AMPK pathway inactivation

AMPK pathway inactivation was associated with altered
survival outcomes in patients (Figs. 2 and 3). We predict
that this could be due to broad transcriptional dysregu-
lation arising from abnormal AMPK signaling. To inves-
tigate this phenomenon, we performed differential
expression analyses between patients stratified by the
24-gene set into high (4th quartile) and low (1st quartile)
expression groups and found that an outstanding num-
ber of 122 common genes that were significantly differ-
entially expressed in all four cancer types (Fig. 4a). The
highest number of differentially expressed genes (DEGs)
was observed in stomach cancer (2496 genes), followed
by sarcoma (1842 genes), glioma (1523 genes) and breast
cancer (1086 genes) (Fig. 4a; Additional file 6). The
DEGs were mapped to KEGG, Gene Ontology and
Reactome databases to determine whether they were as-
sociated with any functionally enriched pathways. Intri-
guingly, all four cancer types share similar patterns of
functional enrichments (Fig. 4b and c). For instance, bio-
logical processes associated with cell communication,
signal transduction, cell differentiation, cell signaling,
cell adhesion and cell morphogenesis were enriched in
all four cancers (Fig. 4c). In terms of specific signaling
pathways, calcium signaling, cAMP signaling, and pro-
cesses associated with extracellular matrix organization
were among the most enriched (Fig. 4c).

To further identify potential transcriptional regulators
of the DEGs, we mapped the DEGs to ENCODE and
ChEA transcription factor (TF) binding databases. Re-
markably, we identified common TFs, shared across all
four cancers, that were implicated as direct binding part-
ners of the DEGs (Fig. 4c). Five TFs, SUZ12, SMAD4,
REST, EZH2 and NFE2L2, were found to be enriched in
all four cancers, suggesting that transcriptional dysregu-
lation of tumors with aberrant AMPK signaling involved
direct physical associations of these TFs with target
DEGs (Fig. 4c). Curiously, FOXM1 and E2F4 were
enriched only in glioma tumors, which deserves further
exploration in the next section. Overall, our analyses
demonstrated that impaired AMPK signaling resulted in
common patterns of oncogenesis, which affect the sever-
ity of cancer and consequently, mortality rates in
patients.

Downstream targets of EZH2, NFE2L2, REST, SMAD4 and
SUZ12 were associated with survival outcomes

Pathways modulating energy homeostatic may transduce
signals to influence other cognate signaling modules.
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EZH2, NFE2L2, REST, SMAD4 and SUZ12 were all im-
plicated as common transcriptional regulators of DEGs
in glioma, sarcoma, breast and stomach cancers, suggest-
ing that altered AMPK signaling converged on similar
groups of transcriptional targets. Of all the target DEGs
of the aforementioned TFs, 8, 10, 24, 12 and 48 genes
were found to be common targets of EZH2, NFE2L2,
REST, SMAD4 and SUZ12 respectively in all four can-
cers (Fig. 5a). Concatenating all five gene sets yielded 71
unique genes, i.e., genes that were binding targets of
more than one TF were considered only once. To gain
further insights into how AMPK inactivation influences
tumor progression, we performed Cox regression ana-
lyses to determine the association between each of the
71 genes and survival outcomes. The highest number of
prognostic genes was observed in glioma; 66 genes (61
good prognoses and five adverse prognoses) (Fig. 5b). In
contrast, 54 out of 71 genes were associated with adverse
prognosis in stomach cancer (Fig. 5b). These observa-
tions were consistent with the 24-AMPK-gene set being
positive and negative prognostic factors in glioma and
stomach cancer respectively (Fig. 2), which mirrored the
behavior of DEGs identified as a result of aberrant
AMPK signaling (Fig. 4c). Of the 71 genes, only 15 and
ten were significantly associated with survival outcomes
in sarcoma and breast cancer respectively (Fig. 5b). Col-
lectively, our results suggest that the AMPK pathway
and its interaction with other signaling modules are key
determinants of patient outcomes in multiple cancer

types.

Prognostic significance of joint AMPK pathway activity
and transcriptional levels of five oncogenic TFs in

patients with glioma

Having discovered the importance of the 24-AMPK gene
set, we sought to explore the crosstalk between AMPK
signaling and TF activity in glioma. As previously men-
tioned, glioma had the highest 24-AMPK-gene score
(Fig. 2b) with a vast majority of the genes conferring
prognostic information (Fig. 2a). Moreover, 66 of the 71
transcriptional targets of the five common TFs identified
in patients with altered AMPK signaling were signifi-
cantly associated with survival outcomes in glioma (Fig.
5b). Additionally, TFs FOXM1 and E2F4 were identified
to be enriched only in glioma tumors (Fig. 4c). Thus, we
predict that a joint model uniting AMPK and TF expres-
sion profiles would allow further delineation of patients
into additional risk groups and if so, allowing combined
targeting of AMPK and candidate TFs for therapeutic
action. As done previously, we calculated AMPK scores
for each patient based on the mean expression of the 24
genes. Interestingly, we found that AMPK scores were
significantly negatively correlated with TF expression
levels in glioma: E2F4 (rho =-0.48, P <0.0001), EZH2
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Fig. 4 AMPK inactivation drives oncogenic transcriptional alterations in diverse biological processes and signaling modules. a Venn diagram
illustrates the number of differentially expressed genes (DEGs) between 1st and 4th quartile patients, as stratified using the 24-AMPK-gene set, in
four cancer types. A total of 122 DEGs were common in all four cancers. b Dot plots depict the number of significantly enriched pathways and
biological processes upon the mapping of DEGs to KEGG, Gene Ontology and Reactome databases. Each dot represents an enriched event. c
Ontologies that exhibit similar patterns of enrichment across four cancers are shown. DEGs are also mapped to ENCODE and ChEA transcription
factor (TF) databases to determine enriched TF binding associated with DEGs

(rho=-0.57, P <0.0001), FOXM1 (rho=-049, P <
0.0001), SMAD4 (rho=-0.18, P <0.0001) and SUZI2
(rho=-0.23, P <0.0001) (Fig. 6a). We subsequently
categorized patients into four groups using the median
cutoff of the AMPK scores and TF expression values: 1)
low-low, 2) high-high, 3) low AMPK score and high TF
expression and 4) high AMPK score and low TF expres-
sion. Log-rank tests revealed that patients stratified into
the four groups had survival rates that were significantly
different: E2F4 (P < 0.0001), EZH2 (P < 0.0001), FOXM1
(P <0.0001), SMAD4 (P <0.0001) and SUZI2 (P <
0.0001) (Fig. 6b). For E2F4, EZH2, FOXM1I and SUZI12,
patients with low AMPK scores and high TF expression
performed the worst: E2F4 (HR=3.916; P <0.0001),
EZH2 (HR=4.004; P <0.0001), FOXMI (HR =5.268;
P <0.0001) and SUZI2 (HR=2.197; P <0.0001) (Fig.
6¢). For SMAD4, patients within the low-low category
had the highest mortality rates (HR =3.326; P < 0.0001)
(Fig. 60).

Crosstalk between AMPK and other anabolic-related
pathways, PPAR and mTOR

AMPK’s anti-anabolic and pro-catabolic activities may
work in concert with other metabolic pathways. To
investigate the synergistic effects of AMPK and two pro-
anabolic pathways, peroxisome proliferator-activated re-
ceptors (PPAR) and mammalian target of rapamycin
(mTOR) signaling in tumor progression, we calculated
PPAR and mTOR pathway scores (detailed in the
methods section) for each glioma tumor. Low AMPK
scores were associated with poor outcomes in glioma
(Fig. 2). To evaluate AMPK and PPAR or mTOR as
combined models, patients were separated into four
groups using the median cutoff, as mentioned previ-
ously. Interestingly, when AMPK and PPAR scores were
collectively used for patient stratification, we found that
patients with low AMPK and high PPAR scores had the
highest death rates (HR = 11.308, P < 0.0001), confirming
that PPAR hyperactivation is associated with poor out-
comes in glioma tumors with low AMPK activity [19]
(Fig. 7). In contrast, when considering mTOR activity,
patients with low AMPK and low mTOR scores per-
formed the worst (HR =3.023, P <0.0001) (Fig. 7). The
results overall suggest that the AMPK pathway could act
synergistically with PPAR and mTOR signaling to influ-
ence cancer progression significantly.

Discussion

While the role of AMPK in energy-sensing is well
understood, its full potential in metabolic diseases such
as cancer remains an open topic of debate. Despite ex-
tensive efforts spent on elucidating the role of AMPK
signaling [2, 9, 11], there remains no consensus on
whether AMPK promotes or suppresses tumor progres-
sion. Exploiting a rich reservoir of pan-cancer datasets
afforded to us by TCGA, we performed a thorough
examination of genomic and transcriptomic profiles of
92 AMPK pathway genes in diverse cancer types. Our
current understanding of AMPK signaling is fueled by
genetic studies in cell lines and animal models [2]. Al-
though useful in determining causal relationships, results
from in vitro cell lines and animal models may have lim-
ited translational relevance as they do not accurately re-
flect human pathology [32]. Animal models may offer
additional mechanistic insights, but limitations in ethics
and costs remain. Moreover, the complexity of human
cancers is not accurately modeled in animals; less than
8% of results from animal models are translated to clin-
ical trials [33]. Despite analyses on tumor genetic data-
sets providing mostly correlative outcomes, they remain
valuable in understanding disease-specific molecular
pathology when interrogated at scale on large patient
groups [34—37], and when results are considered in rela-
tion to those obtained from cell lines and animal
models.

Employing pan-cancer population data, our study
identified conserved and unique patterns of AMPK sig-
naling across diverse cancer types. Analyses at two mo-
lecular levels (genetic and transcriptional) yielded a
more comprehensive depiction of AMPK signaling,
where we identified genes that were both somatically al-
tered and differentially expressed. These putative loss-
or gain-of-function genes are more likely to impact
tumor progression as they are altered at both macromol-
ecular levels. As reported in other studies, we confirmed
that AMPK signaling could either be oncogenic or
tumor suppressive depending on the cellular context. In-
tuitively, since AMPK is anti-anabolic, its function may
not be fitting for tumor growth and proliferation. This is
consistent with reports demonstrating AMPK’s tumor
suppressive activity [38, 39]. A study on lymphoma dem-
onstrates that AMPK downregulation induces the
Warburg effect and hypoxia signaling in mice [40].
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Fig. 5 Prognostic significance of DEGs targeted by enriched TFs. a Venn diagrams illustrate the extent of overlap between DEGs targeted by
EZH2, NFE2L2, REST, SMAD4 and SUZ12 across four cancers. b Forest plots depict DEGs that are significantly associated with overall survival
outcomes. Hazard ratios are denoted as purple squares while pink bars represent the 95% confidence intervals. Significant Wald test P values are

indicated in blue

AMPK is proposed to act as a metabolic gatekeeper to
limit cancer cell division; hence, its loss of function
would contribute to tumor aggression because of the
loss in metabolic checkpoints [40, 41]. AMPK regulates
the tumor-suppressive function of the serine/threonine
kinase LKB1. Ablation of LKBI results in enhanced risk
of developing gastrointestinal, lung and skin squamous
cell cancers [42, 43]. Moreover, AMPK is shown to in-
hibit PI3K/AKT/mTOR signaling, which is activated in
many cancers [39, 44]. Also, metabolic inhibitors such as
metformin, which indirectly activates AMPK could sup-
press tumor growth via autophagy induction and mTOR

inhibition [39, 45]. Metformin is shown to inhibit the
proliferation of estrogen receptor o (ERa) negative and
positive breast cancer cell lines through AMPK stimula-
tion [46]. However, when tested in mice models, metfor-
min contributes to enhanced tumor progression and
increased angiogenesis, providing us with a glimpse of
potential pro-neoplastic effects of AMPK activation [46].

In our study, we observed that high levels of AMPK
pathway activity were associated with better outcomes in
glioma, breast cancer and sarcoma (Fig. 2); corroborating
previous results on the tumor-suppressive function of
AMPK. Conversely, the opposite is true in stomach
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Fig. 6 Prognostic relevance of candidate TFs and the 24-AMPK-gene set in glioma. a Scatter plots illustrate significant negative correlations
between AMPK scores and TF expression levels in glioma. Patients are separated and color-coded into four categories based on median AMPK
and TF scores. Density plots appended to the y- and x-axes demonstrate the distribution of AMPK and TF scores. b Log-rank tests are performed
on the four patient groups to demonstrate the utility of combined AMPK and TF scores in patient stratification. ¢ Univariate Cox regression
analyses are performed to compare patient groups where significant P values are highlighted in bold. CI: confidence interval
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Fig. 7 Crosstalk between AMPK signaling and PPAR or mTOR pathways in glioma. a Log-rank tests are performed on patient groups separated
into four categories based on median AMPK and PPAR or mTOR scores. b Univariate Cox regression analyses are performed to compare patient
groups where significant P values are highlighted in bold. CI: confidence interval

cancer, where AMPK activation contributes to adverse
outcomes (Fig. 2). It has now been increasingly clear that
AMPK activation can also be pro-tumorigenic [10].
Double knockout of AMPKal and AMPKa2 in mouse
embryonic fibroblasts result in impaired tumor forma-
tion [47]. AMPK knockdown in pancreatic cancer cells
impairs anchorage-dependent growth and reduces cell
viability under glucose deprived conditions [48]. AMPK
signaling induces cell migration in prostate cancer cells
[49] while AMPK knockdown inhibits cell proliferation
and promotes apoptosis [50]. In liver cancer cells re-
trieved from primary mouse tumors, AMPK activity is
required for Myc-driven carcinogenesis [16]. Taken to-
gether, these studies suggest that AMPK activation due
to metabolic stress within the tumor microenvironment
is crucial for the survival of cancerous cells.

Although 19 of the 21 cancers had at least one gain-
of-function or loss-of-function gene that correlated with
survival outcomes, glioma tumors were most influenced
(Fig. 2a). The consequence of dysregulated AMPK sig-
naling was further explored in glioma, where the 24-
AMPK-gene set and each of the five TFs (identified as
regulators of AMPK-associated DEGs) were considered
jointly for patient stratification. We observed oncogenic
roles of E2F4, EZH2, FOXMI and SUZ12 - patients with
high expression of these TFs had higher mortality rates
(Fig. 6b). Since the 24-AMPK-gene set was a positive
prognostic factor in glioma where high expression of the
genes was associated with better outcomes (Fig. 2c), gli-
oma patients harboring low AMPK scores and high
oncogenic TF scores performed the worst. Our results
are confirmed by other reports on the crosstalk between
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AMPK signaling and E2F4, EZH2, FOXMI or SUZI2
and their effects on oncogenic progression [51-54]. Our
analyses on SMAD4 in glioma revealed a likely tumor-
suppressive role of the gene (Fig. 6b), which is corrobo-
rated by another study demonstrating reduced SMAD4
expression during glioma tumor progression [55]. When
merged with the anti-neoplastic effects of AMPK activa-
tion, 5-year survival rates were improved by almost 30%
compared to individuals within the low-low category
(Fig. 6b). SMAD4 protein expression is lost in gastric
cancer cells and loss of expression in primary gastric
adenocarcinomas are associated with poor survival [56].
SMAD#4 is also commonly inactivated in gastrointestinal
cancers [57, 58]. Restoration of SMAD4 expression in
pancreatic cancer cells inhibits tumor function in vivo
by influencing angiogenesis through decreased VEGF ex-
pression [59].

Conclusion

Our study has demonstrated that there is far from a sin-
gle unifying role of AMPK signaling in cancer progres-
sion. Harnessing multiplatform datasets, this study
provides a comprehensive depiction of how AMPK sig-
naling is manifested in a variety of cancers. We antici-
pate that this repertoire of organized data would be
explored by the research community to devise additional
research plans aiming to better understand the roles of
AMPK in cancer development. We demonstrated that
the pro- or anti-neoplastic effects of AMPK activation is
cancer-type dependent. Targeting AMPK for treating
metabolic diseases such as diabetes has been well estab-
lished. Also, the potential for targeting AMPK in cancer
therapy has been elegantly reviewed [8]. However, since
AMPK activation is a double-edged sword, careful con-
siderations need to be in place before AMPK can be
viably deployed in clinical settings. Our study provides a
comprehensive catalog of clinically actionable genetic
variations which could be used for patient stratification
in prospective clinical trials testing the capabilities of
AMPK antagonists or agonists as potential treatments
for cancer.
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