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Summary
Background: Current therapeutic options for autoimmune hepatitis (AIH) are limited 
by adverse events associated with corticosteroids and thiopurines and the limited ev-
idence base for second- and third-line treatment options. Furthermore, current treat-
ment approaches require long-term exposure of patients to pharmacological agents. 
There have been significant advances in the understanding of the mechanisms un-
derpinning autoimmunity and an expansion in the available therapeutic agents for 
suppressing autoimmune responses or potentially restoring self-tolerance.
Aim: To review the mechanisms and evidence for experimental therapies that are 
being actively explored in the management of AIH.
Methods: We have reviewed the literature relating to a range of novel therapeutic 
immunomodulatory treatment strategies and drugs.
Results: Drugs which block B cell-activating factor of the tumour necrosis factor fam-
ily (BAFF) and tumour necrosis factor α are currently in clinical trials for the treatment 
of AIH. Experimental therapies and technologies to increase immune tolerance, such 
as pre-implantation factor and regulatory T cell therapies, are undergoing develop-
ment for application in autoimmune disorders. There is also evidence for targeting 
inflammatory pathways to control other autoimmune conditions, such as blockade of 
IL1 and IL6 and Janus-associated kinase (JAK) inhibitors.
Conclusions: With the range of tools available to clinicians and patients increasing, 
it is likely that the therapeutic landscape of AIH will change over the coming years 
and treatment approaches offering lower corticosteroid use and aiming to restore 
immune self-tolerance should be sought.
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1  | INTRODUC TION

Autoimmune hepatitis (AIH) manifests as an inflammatory disorder 
of the liver parenchyma and is associated with hypergammaglobu-
linaemia, circulating autoantibodies, specific HLA-DR alleles and 
characteristic histological changes.1-5 AIH may result in a chronic, 
fluctuating hepatitis, potentially leading to progressive fibrosis, cir-
rhosis and chronic liver failure. It may also present as an acute se-
vere hepatitis with the potential for acute liver failure.6 Defined as 
a rare disease, with a prevalence of 11.6-34.5 per 100 000 popula-
tion,7-9 the condition accounts for 5% of elective liver transplants in 
Europe10 and is an indication for liver transplantation in the setting 
of acute liver failure.6,11

Despite a long established evidence base for first-line therapy 
consisting of azathioprine and corticosteroids, and broadly agreed 
second-line therapy with mycophenolate mofetil (Table 1), 15%-20% 
of patients are intolerant of, nonresponsive to or have a contrain-
dication to taking these therapies.12 Both active disease and side 
effects from the currently available treatments are now recognised 
to have a significant negative impact on quality of life for patients, 
with corticosteroids being associated with the greatest reduction in 

health utility.13-15 There is active interest in developing novel ther-
apies that may reduce disease activity, enhance immune tolerance 
and avoid the adverse consequences associated with corticosteroid 
use in AIH.

Advances in our understanding of the mechanisms underpinning 
autoimmune responses and the recognition that similar genetic in-
fluences and effector mechanisms contribute to a wide range of sin-
gle organ and systemic autoimmune diseases16-18 have resulted in a 
range of novel agents for controlling autoimmune responses. Due to 
the overlap in mechanism between different autoimmune disorders, 
it is plausible that treatments effective in one autoimmune disorder 
may be efficacious in AIH and hence should be considered for clin-
ical trials in AIH.

In this review, we summarise the rationale and background to ex-
perimental therapies that have entered clinical trials in AIH, such as 
B cell-activating factor of the tumour necrosis factor family (BAFF) 
targeting therapies, anti-tumour necrosis factor (anti-TNF) therapy, 
pre-implantation factor and strategies that improve regulatory T cell 
function. We also discuss the potential for targeting proinflamma-
tory cytokines IL1 and IL6 and Janus Kinase (JAK) inhibitors, which 
have received attention recently in a range of autoimmune disorders. 

TA B L E  1   Current treatment options for autoimmune hepatitis

Drug class Typical medications Role in AIH

First line Corticosteroids Prednisolone Strong evidence base for induction and maintenance of remission. 
Significant side effect burden.Hydrocortisone

Budesonide

Thiopurines Azathioprine Strong evidence base for induction and maintenance of remission.

Mercaptopurine No formal evidence of efficacy, small case series only. Possibly 
equivalent to azathioprineTioguanine

Second line Mycophenolate mofetil Used for maintenance of remission.
Evidence of efficacy based on case series. RCT vs azathioprine ongoing

Third line Calcineurin 
inhibitors

Tacrolimus
Ciclosporin A

Probably effective in setting of intolerance and nonresponse to 
first- and second-line agents. Evidence from multiple case series. 
Ciclosporin used in paediatrics

Anti-CD20 Rituximab or anti-CD20 
biosimilars

Probably effective in maintenance of remission, evidence from small 
case series

Experimental therapies

Current trials Anti-BAFF Ianalumab Multicentre, randomised placebo-controlled phase II/III trial ongoing

Anti-TNF Infliximab Small case series suggesting efficacy in rescue therapy in difficult-to-
treat patients

Possible future trials Novel peptides Pre-implantation factor Phase I safety study in patients with AIH complete. Experimental only

Treg therapies Adoptive Treg transfer Early phase trials completed in other autoimmune conditions and 
transplantation. Feasible in AIH

Low-dose IL2 Case reports of short-term efficacy in a few patients

Treg stimulators Not tested in AIH, in early phase trials in other autoimmune conditions

No trials currently 
planned

IL1 blockade Canakinumab No reports of use in AIH, ongoing trials in acute alcoholic hepatitis

IL6 blockade Tocilizumab No reports of use in AIH

JAK inhibitors Filgotinib
Ruxolitinib

No reports of use in AIH, increasing use in other autoimmune 
conditions

Abbreviations: BAFF, B cell-activating factor of the tumour necrosis factor family; IL, interleukin; JAK, Janus kinase; RCT, randomised controlled trial; 
TNF, tumour necrosis factor.
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Finally, we discuss the potential approach for investigative studies 
that may bring novel agents into practice in AIH. Any novel therapies 
should only be offered in specialist centres with an interest in AIH, 
experience in clinical trials and within formal prospective clinical tri-
als wherever possible.

Firstly, we will briefly review the current understanding of the 
immunopathogenesis of AIH to illustrate the context for possible 
treatment approaches.

1.1 | Current treatment approaches

The current treatment paradigm in AIH is induction of remission with 
corticosteroids (typically prednisolone 0.5-1 mg/kg) and then main-
tenance of remission with azathioprine started at 1 mg/kg while cor-
ticosteroids are weaned, with the aim of azathioprine monotherapy 
in the long term (Table 1).12,19 Remission is defined as normalisation 
of serum transaminases and IgG with minimal histological activity 
on biopsy (although this is rarely performed to confirm remission).19 
Some patients require long-term low-dose corticosteroids in addi-
tion to azathioprine to maintain remission. Inadequate response to 
azathioprine should prompt consideration of dose optimisation to 
2 mg/kg,19,20 therapeutic drug monitoring for toxicity21 and assess-
ment of treatment concordance.

The majority of patients respond to treatment with cortico-
steroids and azathioprine, with remission rates of 44%-100% ob-
served,13,20,22-25 although these studies often used high doses of 
corticosteroids for maintenance. Despite the potential efficacy 
of this treatment approach, failure to achieve remission is com-
mon; a large, real-world assessment of current treatment in >1200 
patients in the UK demonstrated that biochemical remission was 
achieved in <60% of patients.26 Furthermore, among patients 
in complete biochemical remission, relapse rates of >50%27 and 
significant corticosteroid side effects in 30%-40% of patients13 
are observed, demonstrating that despite current treatment ap-
proaches being potentially effective, a significant proportion of 
patients will continue to experience disease activity or treatment 
toxicity.

Intolerance, inadequate response or contraindication to corti-
costeroid and azathioprine treatment, including a requirement for 
high-dose corticosteroids (>10 mg prednisolone per day) to maintain 
remission, should prompt consideration of second-line therapies. 
Mycophenolate mofetil is typically offered as a second-line agent 
for those patients intolerant to azathioprine (Table 1)28 and although 
there is no high-quality trial evidence to support this approach, there 
are extensive case series data suggesting efficacy.29-42 The efficacy 
of mycophenolate mofetil as a second-line drug for those patients 
with insufficient response to standard therapy is questionable, and 
optimising first-line therapy by checking adherence and drug levels 
needs to be considered. Third-line therapies, including tacrolimus, 
infliximab and anti-CD20 monoclonal antibodies (rituximab), may be 
employed (Table 1) depending upon local availability, monitoring and 
clinician and patient choice.28

Despite this range of treatment approaches, there remain up to 
20% of patients who do not respond adequately to treatment or ex-
perience significant side effects.43,44 There is, therefore, a need for 
novel agents to expand the range of options for patients with AIH 
and their treating clinicians.

2  | IMMUNOPATHOGENESIS OF AIH

The immunopathogenesis of AIH is underpinned by the loss of 
self-tolerance and resultant immune-mediated damage of the liver. 
An increased risk of AIH is associated with a range of genetic vari-
ants; variants at human leucocyte antigen (HLA)-DRB1, -DRB3 and 
-DRB4 loci have most commonly been identified.2,45-47 Non-HLA as-
sociations, including immune regulation or signalling pathways such 
as cytotoxic T lymphocyte antigen 4,48-50 the transcription factor 
STAT4,51 SH2B3,2 Fas52 and the vitamin D receptor,53,54 and several 
cytokine pathways, including TNFα55,56 and transforming growth 
factor-β,57 among others, have been described. A range of environ-
mental factors have been suggested to trigger autoreactive immune 
responses resulting in the loss of self-tolerance in susceptible indi-
viduals, including drugs and viral infections.58

Loss of self-tolerance results from autoreactive CD8 and CD4 T 
cells and B cells recognising autoantigens presented on class I and 
class II HLA leading to their activation and proliferation. B cells ma-
ture into plasma cells and secrete antibodies capable of recognising 
self-antigens, cytotoxic CD8 T cells directly damage tissues and CD4 
T cells secrete a range of proinflammatory cytokines resulting in the 
recruitment and activation of other immune effectors,59 including 
mucosal-associated invariant T cells, natural killer cells and natural 
killer T cells, all of which may be important in AIH.59-61

Adaptive immune responses are typically constrained by a range 
of mechanisms: restriction of antigen presentation, control of (co-)
stimulatory signals, regulatory cytokines and specific cell popula-
tions, termed regulatory cells, which suppress the proliferation and 
activation of adaptive immune effectors. Regulatory CD4 T cells 
(Tregs) and regulatory B cells (Bregs) control T cell responses and 
are important in the maintenance of self-tolerance.62,63 Impairment 
of Treg function and frequency has been recognised as a potential 
factor in AIH64-67 and similarly Breg have been recognised to be im-
portant in a range of autoimmune diseases.68

Immune cell activation in the liver results in changes in the cyto-
kine profile and alteration of the recruitment and activation of other 
immune cell subsets. CD4 T cells typically differentiate into subtypes 
with specific cytokine profiles: Th1 CD4 T cells secrete interferon-γ 
(IFNγ) that induces upregulation of class I and class II HLA expres-
sion, resulting in increased antigen presentation and also stimulates 
CD8 T cells and macrophages resulting in IL1 and TNFα release. Th2 
T cells produce IL4, IL10 and IL13 resulting in B cell maturation.59,60 
The presence of IL6 prevents the differentiation of Treg and results in 
the generation of Th17 cells,69 which have been implicated in AIH.70,71 
Th17 cells secrete IL17 which in turn induces release of IL6 by he-
patocytes72; this may enable a feedback loop increasing pathogenic 
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Th17 cell differentiation.73 Furthermore, the inflamed liver microen-
vironment appears to suppress Treg function directly.59,60,74 The in-
flammatory response in the liver results in an inflammatory infiltrate 
consisting of CD4 and CD8 T cells, B cells, plasma cells, natural killer 
cells, monocytes, macrophages and eosinophils.75

The pathology observed in AIH is a result of the activation of a 
network of cells, signalling pathways, regulatory mechanisms and cy-
tokines from both the innate and adaptive limbs of the immune system. 
This offers a range of therapeutic targets where the inflammatory pro-
cess in AIH may be interrupted and potentially even restore immune 
tolerance. Therefore, therapies with efficacy in other autoimmune dis-
eases that target these pathways may be of use in AIH.

3  | NOVEL THER APIES UNDERGOING 
CLINIC AL A SSESSMENT IN AIH

3.1 | B cell-activating factor of the tumour necrosis 
factor family (BAFF) targeting therapies

The association of hypergammaglobulinaemia and circulating au-
toantibodies with AIH and other autoimmune disorders suggests 
that B cell activity may be an important contributor to autoimmunity. 
Therefore, therapeutic targeting of B cells to reduce the production 
of potentially pathogenic antibodies and B cell antigen-presenting 
activity in autoimmunity76 is an attractive proposition.

Rituximab, an anti-CD20 monoclonal antibody, is an estab-
lished therapy in autoimmune disorders and may have a role in 

the treatment of AIH.77-79 A recent retrospective report collating 
outcomes for 22 patients in Northern Europe and Canada demon-
strated an improvement in liver biochemistry and reduction in 
corticosteroid doses following two 1000 mg doses of rituximab 
given 2 weeks apart (five patients received repeat dosing),80 sug-
gesting that therapeutic targeting of B cells might be a useful ap-
proach in AIH.

Recently, a range of agents targeting BAFF have been developed. 
BAFF is a 285 amino acid protein produced by myeloid cells that may 
be membrane bound or cleaved by proteases producing a soluble 
cytokine. BAFF transmits a B cell survival signal important for B cell 
development (Figure 1) and interacts with three receptors on B cells, 
binding either as multimers or heteromers with a related protein 
called A proliferation-inducing ligand (APRIL).81

While the importance and pathogenic role of B cells and autoan-
tibodies in AIH are debated, several pieces of evidence support the 
therapeutic targeting of B cells. Soluble BAFF levels are elevated in 
AIH and correlate with serum transaminase, immunoglobulin G and 
bilirubin levels, and BAFF levels fall with corticosteroid treatment.82,83 
Similarly, BAFF levels are elevated in a range of autoimmune disor-
ders, including primary biliary cholangitis,84 systemic lupus erythe-
matosus,85-87 rheumatoid arthritis,85,86,88 coeliac disease,89 Sjögren's 
syndrome,90-92 systemic sclerosis,93 myasthenia gravis94,95 and cor-
relate with autoantibody titres.85,86,88,90,91,95,96 BAFF levels are also 
elevated in chronic inflammation in the settings of chronic infection, 
malignancy and allergy.97 Additionally, liver-infiltrating B cells are seen 
in acute AIH, more so than when compared to other conditions, for 
example drug-induced liver injury.98

F I G U R E  1   Proposed immunopathogenic mechanisms in AIH and sites of action of experimental therapies. BAFF, B cell-activating factor 
of the tumour necrosis factor family; JAK, Janus kinase; PIF, pre-implantation factor; Treg, regulatory T cells
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Lack of efficacy or toxicity observed in trials for rheumatologi-
cal disorders has led to the abandonment of several drugs targeting 
BAFF.99,100 Despite this, belimumab, a monoclonal anti-BAFF IgG1, 
has been FDA approved for the treatment of systemic lupus ery-
thematosus based upon favourable trial outcomes.101-103 Blisibimod, 
a peptibody made by the fusion of a BAFF-binding peptide to 
IgG1Fc,104 has been demonstrated to improve fatigue in systemic 
lupus erythematosus, with an acceptable safety profile,100 although 
other clinical benefits were limited.

While no formal testing of targeting the BAFF pathway in AIH 
has been reported to date, a phase II multicentre, randomised, dou-
ble-blind, placebo-controlled trial of an anti-BAFF receptor mono-
clonal antibody (VAY736, ianalumab) (Figure  2A) in patients with 
incomplete response or intolerance to current standard of care is 
underway (ClinicalTrials.gov: NCT03217422). Eighty adult patients 
with type 1 AIH and elevated alanine aminotransferase (ALT) (>1.5X 
upper limit of normal) and elevated IgG, despite (or intolerant of) 
adequate conventional first-line therapy will be randomised to one 
of four arms: placebo, ianalumab 5 mg every 4 weeks, 50 mg every 
4 weeks or 300 mg every 4 weeks for 24 weeks, after which the 
placebo arm will be switched to 150 mg active drug until week 52. 
A second phase of the study aims to enrol 280 patients randomised 
5:2 ianalumab:placebo for 52 weeks. The primary endpoint for both 
study phases is normalisation of ALT at 24 weeks with histological 
assessment at 24 (phase 1 only) and 52  weeks. The study is cur-
rently recruiting for phase 1.

Ianalumab has been trialled in primary Sjögren's syndrome in a 
phase II, placebo-controlled study of 27 patients, demonstrating a 
good safety profile, without observed hepatotoxicity or increased 
infection risk.105 An injection reaction with fever, headache, nau-
sea and chills was common and may have been associated with 
higher circulating B cell frequencies at the time of treatment. 
Nonsignificant, dose-dependent trends towards improved clinical 
measures of disease activity and fatigue were observed.105 The 
phase 2b extension study of 190 patients has been reported in an 
abstract, which described significant improvements in disease ac-
tivity and similar safety profile.106 Ongoing trials in chronic lympho-
cytic leukaemia (ClinicalTrials.gov: NCT03400176), systemic lupus 
erythematosus (ClinicalTrials.gov: NCT03656562) and rheumatoid 
arthritis (ClinicalTrials.gov: NCT02675803) will give further infor-
mation regarding toxicity and tolerability. Advantages of Ianalumab 
include monthly subcutaneous injection making concordance easier, 
with the potential for self-injection at home and modest delivery 
costs. A positive trial outcome would offer robust evidence for B cell 
targeting therapies in AIH and potentially a new third-line agent; the 
results of this trial are awaited with interest.

3.2 | Anti-tumour necrosis factor therapy

Tumour necrosis factors (TNFs) are cytokines produced by mac-
rophages and effector T cells. TNFα activates the NFκB and MAPK 

F I G U R E  2   Mechanism of action of proposed experimental therapies in autoimmune hepatitis. BAFF, B cell-activating factor of the 
tumour necrosis factor family; DC, dendritic cells; IFN, interferon; JAK, Janus associated kinase; LD-IL2, low-dose IL2; PD-L1, programmed 
death ligand-1; PIF, Pre-implantation factor; Treg, Regulatory T cells
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pathways via two receptors and complex signalling pathways, and 
can result in a range of proinflammatory responses (see Figure 2B), 
including cell apoptosis, proliferation or activation, that lead to ne-
crosis and inflammation, depending upon which receptor is bound, 
and cross-talk with other signalling pathways.107 The role of TNFα 
in autoimmune disorders is well established and several pharmaco-
logical agents that inhibit the actions of TNF-α are available, includ-
ing monoclonal antibodies (infliximab and adalimumab) and soluble 
TNF receptor-IgG fusion molecules (etanercept). These drugs have 
established roles in the management of autoimmune and inflamma-
tory disorders including rheumatoid arthritis, inflammatory bowel 
disease and psoriatic arthritis.108

TNFα is important in inflammatory liver disease and there is 
growing evidence implicating it in the pathogenesis of AIH. TNFα-, 
IFNγ- and IL17-secreting T cells are believed to cause or co-ordi-
nate hepatic damage; liver-infiltrating lymphocytes are enriched 
with populations of effector T cells that secrete these cytokines 
in AIH109,110 (Figure 1), and variants in the TNFα gene have been 
associated with AIH.55,56 Also, in a murine model of immuno-in-
flammatory hepatitis induced by the plant lectin concanavalin A, 
TNFα was pivotal in the generation of liver injury.111 Therefore, 
with readily available drugs and evidence for a pathogenic role for 
TNFα, there has been growing interest in antagonism of TNFα to 
treat AIH.

Infliximab has been used as rescue therapy in patients with 
difficult-to-treat AIH; early experience demonstrated reduced in-
flammation; however, high rates of infectious complications were re-
ported.112-114 However, a retrospective report of 11 paediatric cases 
with concomitant autoimmune liver disease (two with AIH and nine 
with autoimmune sclerosing cholangitis) treated with anti-TNF ther-
apy for severe inflammatory bowel disease demonstrated stable or 
improved liver function tests and only a single infective complication 
of asymptomatic cytomegalovirus viraemia.115 There are concerns 
regarding idiosyncratic hepatotoxicity with anti-TNF therapy and 
the impact of this on patients with already impaired liver function 
needs to be carefully considered. In the largest series of 11 patients 
with AIH, some received infliximab following failure of first-line 
therapy with azathioprine or corticosteroids due to intolerance or 
inadequate response and a minority received it due to failure of sec-
ond- and third-line therapies,112 suggesting that infliximab may have 
a role at many points in the treatment algorithm for AIH (Table 1). 
Additionally, there is interest in the use of infliximab for induction 
therapy in AIH, and this is being actively explored in some centres, 
such as in Hamburg, Germany.

In the published experience with infliximab, 5 mg/kg intravenous 
infusion of infliximab at weeks 0, 2, 6 and 10 with ongoing treatment 
administered at monthly intervals has been used.112 When used in 
inflammatory bowel disease, an immunomodulator is typically given 
concurrently to reduce the risk of the generation of anti-drug anti-
bodies leading to reduced efficacy, and this should be considered in 
the setting of AIH. Due to the risk of infection with anti-TNF drugs, 
they should be avoided in the setting of active infection and used 
only in the setting of compensated liver disease. There are now a 

range of biosimilar drugs available and these should be equivalent 
substitutes for infliximab.

3.3 | Pre-implantation factor

Pre-implantation factor is a 15 amino acid peptide secreted by mam-
malian embryos prior to implantation in the uterus.116 It functions to 
maintain pregnancy via a plethora of downstream actions mediated 
by binding to various proteins including insulin-degrading enzyme, 
Kv1.3b potassium channels, protein disulphide isomerases and heat 
shock proteins.117,118

In addition to inducing alterations in the local endometrial tis-
sues, direct trophic effects upon the foetus and neurodevelopmen-
tal and neuroprotective effects,116 pre-implantation factor also acts 
to modulate the maternal immune system, engendering maternal 
tolerance to the allogeneic embryo. This is achieved through pleio-
tropic mechanisms inducing changes in gene expression; including 
upregulation of IL1 receptor-associated kinase 1 binding protein 
and suppression of IL12-receptor subunit β-2, FK506 binding pro-
tein and immunoglobulin G gene and changes in adhesion proteins 
and regulators of apoptosis.117 Pre-implantation factor binds mono-
cytes, activated CD4 and CD8 T lymphocytes and B lymphocytes 
and inhibits lymphocyte proliferation119,120 (Figure 1). Furthermore, 
pre-implantation factor influences lymphocyte cytokine produc-
tion, increasing the production of immunoregulatory IL10, reduc-
ing proinflammatory cytokines, including interferon gamma, and 
induces a shift towards a Th2 profile of CD4 T cells.119,120 Pre-
implantation factor also reduces nitric oxide production by mac-
rophages, thereby reducing oxidative stress, and increases the 
expression of T cell inhibitory molecule PD-L1 by monocytes121 (see 
Figure 2C). Taken together, these data illustrate that pre-implanta-
tion factor is likely to modulate systemic immune responses and en-
hance immune tolerance.

Due to its potential effects on immune tolerance, the impact 
of pre-implantation factor on allo- and autoimmune responses has 
been considered. Pre-implantation factor reduces alloimmune-me-
diated damage in animal models of graft-versus-host disease.121 
Administration of pre-implantation factor is protective against 
death and paralysis in experimental autoimmune encephalitis 
(a model of immune-mediated demyelination)122,123 and is pro-
tective in models of immune-mediated diabetes mellitus124 and 
atherosclerosis.125

Pre-implantation factor was awarded FAST-TRACK status by the 
FDA, and a phase I placebo-controlled study of pre-implantation 
factor administration in 18 patients with AIH demonstrated mini-
mal toxicity.126 Pre-implantation factor may now be taken forward 
to efficacy trials and represents a potential novel therapy for AIH, 
although a phase 2 trial was announced and then withdrawn as the 
manufacturer reported a change in the focus of drug development. 
The advantages of pre-implantation factor are that it is a naturally 
occurring peptide, with no evidence of anti-pre-implantation factor 
antibody formation in the phase I study. The required dosing interval 



     |  7HALLIDAY et al.

is currently unknown, although with a half-life of 91 minutes,126 fre-
quent subcutaneous dosing may be required.

3.4 | Strategies to enhance regulatory T 
cell function

CD4 regulatory T cells (Tregs) are defined by the presence of the 
transcription factor forkhead box P3 (FoxP3)127 and constitutively 
express CD25 (IL2Rα) and cytotoxic T lymphocyte antigen 4. They 
are capable of suppressing effector T cell responses by a variety of 
mechanisms including inhibition of CD28 co-stimulation,128 seques-
tering IL2 via CD25 (thereby depriving effector T cells of this im-
portant stimulatory signal),129 generation of the immunoregulatory 
nucleoside adenosine,130 interleukin (IL) 10 and transforming growth 
factor-β secretion131 and direct cellular cytotoxicity.132,133

Tregs are critical in the balance of self-tolerance and immune 
reactivity. Inability to produce functional Treg due to genetic defi-
ciency of FoxP3 leads to immune dysregulation, polyendocrinopa-
thy, enteropathy X-linked syndrome (IPEX) in humans and scurfy in 
mice, both of which are characterised by systemic autoimmunity and 
lymphoproliferation.134-137 Selective depletion of Treg in adult mice 
leads to a similar phenotype characterised by autoimmune hyper-re-
activity,138 suggesting that Tregs have a pivotal role in both the gen-
eration and maintenance of self-tolerance.

Tregs have been developed as a therapeutic option in autoim-
mune conditions, with focus recently in AIH. Ex vivo expansion, stim-
ulation and transfer of Treg and the administration of low-dose IL2 
are two strategies actively being explored in AIH (Figures 1 and 2D).

3.4.1 | Adoptive transfer of Treg

Due to the importance of Treg in maintenance of self-tolerance, the 
frequency and function of Treg in AIH have been investigated. Data 
on the frequency of Treg in AIH are conflicting,65,66,139-141 but the 
expression of proteins important for suppressive function, such as 
FoxP3, cytotoxic T lymphocyte antigen 4 and IL10, is reduced65,66,139 
and their suppressive activity may be impaired.65-67 Intrahepatic 
Tregs are frequent at the time of diagnosis but decline with treat-
ment142 and may become functionally impaired by an IL2 deficient, 
inflamed, liver microenvironment.74 These data suggest that there 
may be a deficit in Treg function in AIH but further work is required 
to comprehensively define this. Augmentation of Treg function 
represents a potential treatment strategy for AIH irrespective of 
whether a Treg defect is required for the genesis of the disease as 
enhanced Treg function may improve the control of aberrant autoim-
mune responses.

Adoptive Treg transfer has shown early promise in the control 
of autoimmune and alloimmune responses. Two independent phase 
I studies of autologous Treg therapy in type 1 diabetes have demon-
strated an acceptable safety profile, the sustained persistence of 
transferred Treg and possible clinical improvements.143,144 Adoptive 

transfer of autologous, donor-specific Treg following living donor 
liver transplantation has been successful allowing 7/10 patients to 
be weaned off immunosuppression within 3  years of transplanta-
tion.145 Additionally, several studies have demonstrated efficacy 
for adoptive Treg therapy in graft-versus-host disease.146-148 Taken 
together, this body of work illustrates an acceptable safety profile 
and potential efficacy of adoptive Treg transfer in preventing auto-
immune and alloimmune responses.

No trial assessing the efficacy of Treg therapy in autoimmune 
liver diseases has been undertaken to date. However, a study track-
ing the distribution of autologous Treg after infusion in patients with 
AIH demonstrated both the feasibility of autologous Treg generation 
from patients with AIH and the homing of infused Treg to the liver of 
four patients, suggesting that this therapeutic approach is a realistic 
proposition.149

The advantages of this approach include the autologous nature 
of the cell product, which reduces the likelihood of immune re-
sponses against the therapeutic product, and the potential that Treg 
therapies may restore self-tolerance. However, questions relating to 
the durability of Treg themselves, their clinical effect, the potential 
for de-differentiation to nonregulatory effector T cells that could 
exacerbate inflammatory processes and the risk of malignancy and 
infection remain.150 Furthermore, this approach is costly, complex 
and difficult to administer compared to conventional pharmacolog-
ical therapies.

3.4.2 | Low-dose IL2 therapy

Low-dose IL2 therapy is under active investigation as a treat-
ment strategy for a variety of autoimmune disorders. IL2 is a criti-
cal survival factor for T cells and important for their proliferation. 
Treatment with low-dose IL2 exploits the greater IL2 sensitivity of 
Treg, compared to other effector T cells,151 to shift the balance of 
immune responses in favour of regulation.

Low-dose IL2 treatment increases Treg number and activity, 
without significant activation of other effector T cells or toxicity in a 
range of conditions including hepatitis C virus-induced vasculitis,152 
graft-versus-host disease,153 type 1 diabetes,154 alopecia areata155 
and systemic lupus erythematosus.156,157

Evidence for a specific role for IL2 in the pathogenesis of AIH is 
limited. Serum IL2 is higher in paediatric patients with AIH at disease 
onset compared to following treatment and similarly a reduction in 
intrahepatic Treg frequency is noted during treatment.158 However, 
a study of adult AIH patients showed no differences in serum IL2 
levels.159 Treg from patients with AIH do appear to have defective 
responses to IL2, with a failure to increase production of the immu-
noregulatory cytokine IL10 after IL2 treatment.65 Treg from patients 
with AIH may recover function following treatment with IL2. In vitro 
low-dose IL2 treatment of hepatic or peripheral blood lymphocytes 
of patients with autoimmune liver diseases leads to Treg-specific 
expression of effector proteins, without the loss of liver homing 
chemokine receptors.160
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Low-dose IL2 treatment has been reported in patients with 
AIH. Two patients with type 1 AIH who had inadequate response 
to conventional second-line immunosuppressive therapy received 
1  ×  106  IU IL2 subcutaneously for five consecutive days a month 
leading to short-term expansion of the circulating Treg compartment 
with no adverse events.161 A further two patients with AIH were 
included in an open-label trial of low-dose IL2 in a cohort of patients 
with a range of autoimmune disorders, again illustrating that the 
treatment was well tolerated and resulted in increased circulating 
Treg.162 These studies pave the way for the formal assessment of 
low-dose IL2 in AIH.

Modified versions of IL2 are being developed to improve Treg 
selectivity and longevity. Mutated forms of IL2 that selectively 
bind the trimeric, high-affinity receptor IL2 rather than the low-af-
finity dimeric receptor will hopefully enhance Treg selectivity and 
reduce conventional T cell activation, thereby further skewing im-
mune responses towards regulation. Conjugation of IL2 to other 
moieties with the aim of prolonging its plasma half-life is also under 
investigation.163

3.4.3 | Treg stimulators

In addition to the administration of ex vivo expanded Treg and low-
dose IL2 to increase Treg numbers, enhancement of Treg differen-
tiation and stimulation through the use of tolerogenic dendritic cells 
and mesenchymal stem cells164 are being actively explored.

T cell stimulation requires engagement of the T cell recep-
tor with its cognate antigen presented by an antigen-presenting 
cell alongside a co-stimulation signal. Dendritic cells act as anti-
gen-presenting cells and, depending upon the cytokines and other 
signals such as damage and pathogen-associated molecular pat-
terns present when they are exposed to antigen, can acquire a 
tolerogenic or proinflammatory phenotype. Tolerogenic dendritic 
cells maintain Treg populations and can divert naïve conventional 
T cells to become Treg165 or induce anergy in reactive conventional 
T cells,166 hence autologous tolerogenic dendritic cells have been 
tested in autoimmune conditions to change the balance between 
endogenous Treg and conventional T cell responses in favour of 
tolerance. In phase I studies, autologous, ex vivo expanded tolero-
genic dendritic cells have been administered to patients with type 
1 diabetes,167 rheumatoid arthritis168,169 and inflammatory bowel 
disease.170 As well as acceptable safety profiles and feasibility, in-
creased frequencies of circulating Treg, impaired Th1-type T cell 
responses and reduced circulating effector T cell frequency have 
been observed,168,170 suggesting appropriate support for a regula-
tory T cell response can be achieved. Thus, it appears possible that 
endogenous Treg responses can be stimulated in vivo by the use 
of autologous cell therapies, although robust evidence of efficacy 
is awaited.

The development of and increasing experience with Treg ther-
apies, low-dose IL2 technology and dendritic cell therapies mean 
that these have become realistic experimental possibilities for the 

treatment of AIH in the coming years. Targeting the Treg axis rep-
resents an attractive approach in AIH as it may offer immunoregu-
lation without immunosuppression and correct a pathway known to 
be dysfunctional with minimal toxicity.

4  | POTENTIAL FUTURE THER APEUTIC 
TARGETS IN AIH

The pivotal role of IL1, IL6 and that JAK signalling molecules in auto-
immune responses has led to the development of therapies to spe-
cifically target these pathways. Here, we discuss below the evidence 
for these as targets in AIH and consider the potential for testing the 
efficacy of these in the future.

4.1 | Anti-interleukin 1 and anti-interleukin 
6 therapy

IL1 and IL6 are proinflammatory cytokines and antagonism of their 
function may be of benefit in autoimmunity (Figure 2E). IL1α is a cy-
toplasmic and cell surface molecule that is released following cell 
death, whereas IL1β is actively secreted. Both molecules bind the 
IL1 receptor (IL1R1), which is expressed on all nucleated cells, but 
this interaction is competitively inhibited by the binding of IL1 re-
ceptor antagonist (IL1Ra) to IL1R1 or by binding of the cytokine to 
the nonsignalling decoy receptor IL1R2.171 IL1 has pleiotropic ef-
fects upon the neurological, cardiovascular and hormonal systems 
and upon electrolytes and extracellular matrix turnover.171 Within 
the immune system, it induces acute phase protein production and 
recruits neutrophils and macrophages to sites of tissue damage or 
infection.172 IL1 also stimulates T cells resulting in the differentiation 
of Th17 cells173 that are known to be important in many autoimmune 
disorders.

IL6 is produced by a broad range of cells, including most im-
mune and stromal cells.174 The regulation of IL6 expression is 
complex and influenced by many signals including cytokines, such 
as IL1 and TNFs, bacterial and viral products and several well-
described signalling pathways.174,175 IL6 has a broad spectrum of 
actions within the immune system, regulating innate and adaptive 
responses. It is important in regulating the production of acute 
phase proteins176 and the migration of neutrophils to the site of 
inflammation.174 IL6 promotes the survival and expansion of T 
cells177 and induces CD4 T follicular helper cell differentiation,178 
plasma cell formation and antibody production,179 both directly 
and indirectly, via T follicular helper cells. IL6 also induces the sur-
vival and proliferation of Th1 and Th2 CD4 cells and its presence 
prevents transforming growth factor-β-mediated differentiation 
of CD4+ FoxP3+ inducible Treg, instead resulting in the differen-
tiation of Th17 cells.69

Due to the pivotal roles for IL1 and IL6 in inflammation, evi-
dence for their association with autoimmune disorders and liver 
inflammation has been sought. IL1 production is elevated in 
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patients with fulminant hepatic failure180 and alcoholic hepati-
tis,181 and elevated IL1β:IL1RA ratio is observed in severe hep-
atitis C virus-associated inflammation.182 However, elevated IL1 
levels have not been convincingly demonstrated in AIH, and AIH 
is not associated with gene variants in IL1β or ILRa.55,183 Some 
evidence suggests that IL6 may be altered in AIH. However, while 
elevated serum levels of IL6 have been reported to be associated 
with AIH159,184,185 and fall during remission,185 IL6 levels do not 
correlate with disease activity and the association is lost after ad-
justment for other cytokines and clinical parameters. Additionally, 
in another patient cohort, the vast majority of patients had unde-
tectable serum IL6 levels despite active disease.186 In vitro stim-
ulation of peripheral blood mononuclear cells from patients with 
AIH demonstrated a greater capacity for the production of IL6 
(among others) in patients with AIH compared to healthy controls 
or those with hepatitis B infection.187

Ultimately, irrespective of whether variation in IL1 or IL6 are im-
portant in the genesis of AIH, they are key mediators of inflamma-
tion hence antagonism of these pathways may help in the resolution 
of hepatitis.

Therapeutic blockade of the IL1 axis has been successful in sev-
eral conditions and a range of agents are available. These include 
anakinra (a recombinant, modified analogue of IL1Ra) that compet-
itively inhibits IL1 binding to IL1R1, rilonacept (a soluble form of 
IL1R) and canakinumab (a neutralising monoclonal antibody against 
IL1β). Anakinra has moderate benefit in the treatment of rheumatoid 
arthritis188 and psoriatic arthritis189 and may be of use in systemic 
lupus erythematosus,190 ankylosing spondylitis191 and type 1 diabe-
tes,192 although randomised controlled clinical trial data have been 
disappointing.193 Additionally, a range of inflammatory disorders can 
also be controlled with IL1 antagonism194 and there is a multicentre, 
placebo-controlled phase 2 trial of canakinumab in moderate acute 
alcoholic hepatitis underway in the United Kingdom (ClinicalTrials.
gov: NCT03775109).

The IL6 pathway has been targeted in several conditions. 
Tocilizumab is a humanised monoclonal against the IL6 receptor and 
has been approved for use in rheumatoid arthritis following a range 
of positive trial outcomes195 including in patients refractory to an-
ti-TNF therapies.196 Tocilizumab is also efficacious for the treatment 
of systemic lupus erythematosus,197 juvenile idiopathic arthritis198 
and giant-cell arteritis,199 although other agents targeting the IL6 
pathway in systemic lupus erythematosus have been less success-
ful.200 Studies targeting the IL6 pathway in a range of other inflam-
matory conditions have also been completed.175

The toxicity of agents antagonising the IL1 and IL6 pathways has 
been extensively assessed and hepatotoxicity, defined as elevated 
transaminases, has been reported with IL6 antagonism201 but not 
IL1.202 As IL6 is an important mitogen for hepatocytes and is import-
ant in liver regeneration,203 careful timing of IL6 antagonism would 
be needed to avoid disturbing native liver repair mechanisms. Both 
IL1 and IL6 antagonism are associated with increased risks of infec-
tion and suppression of leucocyte counts.194,201 However, these ob-
servations need to be considered in relation to the adverse events, 

including hepatotoxicity and infection, associated with currently 
used therapies in AIH.

The availability of agents that inhibit these key proinflammatory 
cytokines, with associated acceptable safety profiles, offers the op-
tion for clinical trials in AIH and should be actively considered. Initial 
review of existing trial data may illustrate whether any patients with 
AIH have been treated for other indications, and controlled clinical 
trialling in AIH seems appropriate.

4.2 | Janus Kinase inhibitors

Janus Kinases (JAKs), comprising of JAKs 1-3 and tyrosine kinase 2, 
are intracellular kinases that are integral to the signalling pathways 
for many cytokines. After a cytokine binds to its cognate receptor, 
receptor-specific JAKs are activated and phosphorylate themselves 
and the intracellular tail of the receptor. This enables receptor signal-
ling, ultimately leading to the activation of specific members of the 
STAT family of transcription factors (Figure 2F). JAK expression is 
cell specific and the association of particular cytokine receptors and 
JAKs is specific,204 which may allow targeting of each JAK to modu-
late narrow ranges of cytokine signals.

JAKs are important in inflammatory responses and haematopoi-
esis and therefore attention has been focused on the inhibition of 
JAK signalling to limit inflammatory responses in autoimmune and 
inflammatory disorders. Nonselective first-generation JAK inhibitors 
are small molecule enzyme inhibitors that block the function of all 
JAKs (eg tofacitinib and peficitinib) or JAK1 and 2 alone (ruxolitinib 
and baricitinib).205 Efficacy has been demonstrated for tofacitinib in 
the treatment of rheumatoid arthritis,206,207 psoriatic arthritis208 and 
ulcerative colitis,209 although results in Crohn's disease have been dis-
appointing.210,211 Ruxolitinib may reduce symptoms in rheumatoid ar-
thritis (ClinicalTrials.gov NCT00550043) and is effective topically for 
psoriasis.212

A range of second-generation JAK inhibitors, which selectively 
target JAK1 and/or JAK3, remain at early trial stages205 but efficacy 
of filgotinib in rheumatoid arthritis213 and Crohn's disease214 has 
been reported. Problems with leucopoenia are encountered with 
these drugs and their relative sparing of JAK2 prevents blockade of 
the important proinflammatory Th1 cytokines IL12 and IL23.

JAK inhibitors represent a potential treatment for AIH as they 
have the potential to target cytokine producing and responsive lym-
phocytes that are important in liver autoimmunity.60 Furthermore, 
the association of variants in Src Homology 2 adaptor protein 3 
(SH2B3/Lnk) with AIH in genomic studies2,215 and evidence for mu-
tations in SH2B3 driving JAK-STAT signalling216,217 make inhibition 
of JAKs an attractive target.

Other appealing features of these drugs are their rapid onset of 
action and oral route of administration. However, the lack of long-
term safety data, the observations of transaminitis and myelosup-
pression and a concern about long-term cancer risks218 represent 
challenges to their use at present. While there is growing evidence 
that JAK inhibitors may be useful in the management of a range of 
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autoimmune disorders, and they offer an intellectually attractive ap-
proach to managing inflammation in AIH, there has been no formal 
testing to date.

5  | E XPERIMENTAL APPROACH IN AIH

There are many novel treatment approaches that may be applicable 
to AIH in the coming years and with active trials open for anti-BAFF 
receptor and anti-TNF agents in AIH, new treatment options are a 
realistic proposition. Additionally, pharmacological agents targeting 
IL1, IL6, BAFF and JAKs are on the market and large trial databases 
exist that should be analysed to identify patients with AIH who were 
treated for other indications to determine signals of toxicity or clini-
cal benefit in AIH. This approach could inform which drugs could 
next go forward into clinical trialling.

Experimental therapies, including pre-implantation factor, Treg 
therapy and low-dose IL2, are nearing the point where formal clinical 
trials are being established, and these treatments may be available in 
trial settings over the coming years.

There remains a need for new treatment approaches in AIH and 
as our understanding of the dosing, monitoring and toxicity of these 
new drugs become established, the barriers to establishing trials of 
these new agents are reduced. Novel and experimental therapies 
should be offered in specialist units with expertise in the manage-
ment of AIH, experience in the delivery of therapeutic drug trials 
and wherever possible under the auspices of formal prospective 
clinical trials.

The positioning of novel treatments in the management of 
AIH is not straightforward. Currently, the approach of induction 
and maintenance of remission with corticosteroids and azathio-
prine with the aim of corticosteroid-free remission on azathioprine 
monotherapy has a strong evidence base. Despite this, a signifi-
cant proportion of patients do not achieve corticosteroid-free re-
mission,12 experience a significant burden of side effects13-15 and 
have high rates of relapse both on treatment and following cessa-
tion of therapy.13,219 In patients with preserved hepatic synthetic 
function and without evidence of advanced liver disease, it may 
be acceptable to conduct non-inferiority studies comparing newer 
agents against corticosteroids for the induction of remission, es-
pecially once evidence of efficacy is observed in nonresponders, 
as delay in remission is unlikely to be associated with adverse 
outcomes. For patients with an intolerance of, or inadequate re-
sponse to, conventional first-line therapy for the maintenance of 
remission, randomised controlled trials of novel agents should be 
offered. Ianalumab is currently available in a placebo-controlled 
randomised trial in this setting.

Assessment of new agents following the failure of second- or 
third-line treatments has the potential for poor outcomes; this 
group of patients have ‘difficult-to-treat’ disease by definition and 
may be more resistant to treatment meaning that the efficacy of 
novel agents may be underestimated. Furthermore, several tri-
als have been limited by poor recruitment due to the difficulties 

in identifying suitable candidates for enrolment.Thus, there is the 
potential to significantly delay the introduction of novel therapies 
for the treatment of AIH. Therefore, trial designs for novel thera-
peutics should consider their introduction at the point of failure of 
first-line treatments, as well as after second- or third-line failures, 
and consideration should be given to studies assessing new drugs 
for non-inferiority against first-line treatments in patients with low-
risk disease.

6  | CONCLUDING REMARKS

There is an unmet clinical need in AIH for new therapeutic agents 
due to intolerance of, or inadequate response to, conventional 
agents, and the significant side effect burden experienced by 
patients.13-15 Robust evidence for currently used second- and 
third-line agents remains lacking and the pharmacological agents 
available to treat AIH have not been expanded for many years. Due 
to advances in our understanding of the pathophysiology of AIH 
and autoimmunity more broadly, several novel agents are in devel-
opment or have an established role in other autoimmune disorders, 
which may be of use in the management of AIH. The challenge now 
facing the field is the funding and design of effective clinical trials 
that will allow the establishment of these novel agents as third-
line, or potentially earlier, agents in AIH. There is an exciting wealth 
of experimental therapies in development and this, combined with 
the collaborative, international approach to the investigation and 
management of AIH, will hopefully encourage investment from in-
dustry to drive the development of novel therapeutics for this rare 
but important disease.
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