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a b s t r a c t 

In sensorimotor integration, the brain needs to decide how its predictions should accommodate novel evidence 
by ‘gating’ sensory data depending on the current context. Here, we examined the oscillatory correlates of this 
process by recording magnetoencephalography (MEG) data during a new task requiring action under intersen- 
sory conflict. We used virtual reality to decouple visual (virtual) and proprioceptive (real) hand postures during 
a task in which the phase of grasping movements tracked a target (in either modality). Thus, we rendered visual 
information either task-relevant or a (to-be-ignored) distractor. Under visuo-proprioceptive incongruence, occip- 
ital beta power decreased (relative to congruence) when vision was task-relevant but increased when it had to 
be ignored. Dynamic causal modeling (DCM) revealed that this interaction was best explained by diametrical, 
task-dependent changes in visual gain. These results suggest a crucial role for beta oscillations in the contex- 
tual gating (i.e., gain or precision control) of visual vs proprioceptive action feedback, depending on current 
behavioral demands. 
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. Introduction 

The integration of sensory inputs with forward or predictive models
f motor control is crucial for bodily actions. In this (Bayesian) sen-
orimotor integration process, the brain adjusts how model predictions
hould respond to novel evidence by ‘gating’ sensory data, depending on
he current context ( Desmurget and Grafton, 2000 ; Friston et al., 2010 ;
örding and Wolpert, 2004 ; Sober and Sabes, 2005 ; Talsma et al., 2010 ).

Such contextual, ‘top-down’ influences on sensory gating are
vinced, for instance, by the recalibration to novel (experimentally ma-
ipulated) visuo-motor mappings. Visuo-motor recalibration has been
ssociated with modulations of activity in visual and proprioceptive
rain areas, which has been interpreted as a temporary augmenta-
ion of visual action feedback ( Balslev, 2004 ; Bernier et al., 2009 ;

asaka and Kakigi, 2012 ). Recently, in line with behavioral studies
howing that cognitive-attentional factors can affect visuo-motor recali-
ration ( Ingram et al., 2000 ; Kelso et al., 1975 ; Redding et al., 1985 ), we
sed fMRI to show that this activity modulation was contextual; i.e., that
t depended on the relative task-relevance of seen or felt hand posture
 Limanowski and Friston, 2020a ). However, as fMRI data provide only
imited information, we could not fully characterize the fast neuronal
echanisms mediating these contextual effects. 

Here, we approached this question by examining cortical oscillations
ith MEG. Oscillations have been linked to neuronal communication in
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any ways ( Bressler and Richter, 2015 ; Buzsáki and Draguhn, 2004 ;
e Vries et al., 2020 ; Donner and Siegel, 2011 ; Fries, 2005 ; Lakatos et al.,
008 ; Salinas and Sejnowski, 2001 ; Spitzer and Haegens, 2017 ). A
idely held belief is that ‘top-down’ processes are communicated via

low oscillatory frequencies ( Arnal and Giraud, 2012 ; Bastos et al.,
015 ; Donner and Siegel, 2011 ; Engel and Fries, 2010 ; Friston et al.,
015 ; Wang, 2010 ). Specifically, oscillations in the ‘alpha’ and ‘beta’
requency ranges have been associated with sensory gating ( Arnal et al.,
011 ; Bauer et al., 2006 , 2012 , 2014; Foxe et al., 1998 ; Foxe and
impson, 2005 ; Fu et al., 2001 ; Haegens et al., 2012 ; Kelly et al.,
006 ; van Ede et al., 2011 ; Wittekindt et al., 2014 ) and controlling the
Kalman) gain or precision of neuronal message passing ( Palmer et al.,
016 ; Palmer et al., 2019 ). Notably, changes in beta power have also
een reported during movements under visuo-proprioceptive conflict
 Lebar et al., 2017 ). Thus, oscillatory changes may indicate exactly the
ort of ‘top-down’ processes that are thought to underlie the contextual
ating of sensory information. However, whether this applies to the con-
extual (i.e., depending on cognitive-attentional factors) gating of visual
ction feedback during visuo-motor conflicts remains unclear. 

Therefore, we recorded MEG data while participants had to syn-
hronize the phase of ‘grasping’ (i.e., repetitive closing-and-opening
ovements) —of their unseen real hand or a seen virtual hand —to

he phase of a virtual target, under varying congruence of propriocep-
ive (real) and visual (i.e., virtual) signals ( Fig. 1 A). Thus, we could
manowski). 
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Fig. 1. Task design and behavioral performance. A: Participants controlled a virtual hand (VH) model via a data glove worn on their real hand (RH), which was 
occluded from view. Their task was to track a 0.5 Hz sinusoidal size-change of a virtual target (the fixation dot) with repetitive ‘grasping’ movements; i.e., close and 
open the hand when the dot decreased and increased in size. Participants were instructed to synchronize either the VH or the RH movements to the target oscillation 
in blocks of 32 s duration. In half of the conditions, the virtual hand moved congruently (C); in the other half, a 500 ms delay was added to the VH movements to 
introduce visuo-proprioceptive incongruence (IC). In these conditions, synchronizing either VH or RH movements with the target precluded synchronization with 
the other; consequently, participants had to select one modality to track. We expected that under visuo-proprioceptive incongruence, visual action feedback should 
be differentially ‘gated’ depending on the instructed task set (VH or RH). B: Participants’ mean ratings (given on 7-point visual analogue scales, shown with standard 
errors of the mean) of perceived task difficulty and attentional focus suggested that visuo-proprioceptive incongruence rendered each task more difficult, and that 
participants complied with task instructions by directing their attention to the respective instructed hand. C: Average movement trajectories of the real (red) and 
virtual (blue) hand in each condition, relative to the target’s oscillation (gray). The individual participants’ averages are shown as thin lines (the averages are based 
on individually calibrated glove data, where the fully open hand position corresponded to maximal dot size, and the fully closed hand position to minimal dot size). 
Crucially, whereas tracking was comparable when the hands moved congruently (VHC, RHC), participants exhibited phase shifts of the rhythmic movements to align 
the virtual hand significantly more strongly with the target in the VHIC condition, and the real hand in the RHIC condition. D: Bar plot showing the corresponding 
average deviation (lag in ms) of the real hand (red) and the virtual hand (blue) from the target in each condition, with associated standard errors of the mean. See 
Methods and Results for details. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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xamine the interaction between sensory (visuo-proprioceptive con-
ruence) and cognitive-attentional (instructed task-relevant modality)
actors. We hypothesized that —specifically under visuo-proprioceptive
onflict —visual feedback should be differentially ‘gated’, depending on
he prevailing cognitive-attentional set ( Corbetta and Shulman, 2002 ;
osner et al., 1978 ). Specifically, visual feedback that conflicted with the
elt hand posture should be augmented when vision was task-relevant
ut attenuated when vision was a distraction from the task. We expected
orresponding diametrical changes in induced low-frequency oscillatory
ower within the cortical visuo-motor hierarchy, and used DCM to dis-
mbiguate between alternative hypotheses about how these were medi-
ted in terms of synaptic efficacy and gain control. 

. Materials and methods 

.1. Participants 

18 healthy, right-handed volunteers (9 female, mean age = 29 years,
ange = 21–39, all with normal or corrected-to-normal vision) par-
icipated in the experiment. Similar sample sizes were used in recent
MRI experiments with analogous virtual reality based grasping tasks
 Limanowski et al., 2017 ; Limanowski and Friston, 2020a ). The experi-
ent was approved by the local research ethics committee (University
ollege London) and conducted in accordance with this approval. 

.2. Experimental design and procedure 

During the experiment, participants sat underneath the MEG scan-
er wearing a non-magnetic data glove on their right hand, which was
laced in a comfortable position on their lap and occluded from view by
 black barber’s gown. The data glove (Fifth Dimension Technologies,
retoria, South Africa; 1 sensor per finger, 8 bit flexure resolution per
ensor, 60 Hz sampling rate, communication with the PC via USB with
pprox. 10 ms delay) measured individual finger flexions via sewn-in
ptical fiber cables; i.e., light was passed through the fiber cables and
o one sensor per finger —the amount of light received varied with fin-
er flexion. Prior to scanning, the glove was carefully calibrated to fit
ach participant’s movement range (if necessary, this was repeated be-
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ween runs). The raw glove data were fed to a photorealistic virtual right
and model ( Limanowski and Friston, 2020a , 2020b ), which was thus
oveable by the participant in real-time with one degree of freedom

flexion-extension) per finger. In this way, vision ( seen hand position
ia the virtual hand) could be decoupled from proprioception ( felt hand
osition). A fixation dot (size: about 0.5° of visual angle) was presented
n front of the virtual hand and was visible at all times (i.e., never oc-
luded by the virtual hand movements). The virtual hand, the fixation
ot, and the task instructions were presented via a projector on a screen
n front of the participant (1024 × 768 pixels resolution, screen dis-
ance to eye 64 cm, image size 40 × 29.5 cm, 32 ms projector latency).
he virtual reality task environment was instantiated in the open-source
D computer graphics software Blender ( http://www.blender.org ) us-
ng its Python programming interface. An eye tracker (EyeLink, SR
esearch) was used to monitor the participants’ eye position online,

o ensure they maintained central fixation and did not close their
yes. 

The participants’ task was to perform repetitive right-hand grasping
ovements paced by the pulsation frequency of a central fixation dot;

.e., effectively a phase matching or non-spatial pursuit task ( Fig. 1 A).
uring the movement blocks, the fixation dot continually decreased-
nd-increased in size sinusoidally (12% change in diameter) with 0.5 Hz
requency. The participants had to track fluctuations in the size of the
ot with repetitive right-hand ‘grasping’ movements; i.e., to close and
pen the hand when the dot got smaller and bigger. Participants were
rained to match their fully open hand position to the maximal dot
ize, and their fully closed hand position to the minimal dot size; in
ther words, they did not track the actual size of the dot the phase
f periodic changes in size. Choosing the fixation dot as the target re-
uired participants to look at the center of the screen —i.e., also at the
irtual hand —under both instructions (see below), and constituted a
non-spatial’ target compared to e.g. targets moving along a trajectory
 Limanowski et al., 2017 ). 

In half of the movement blocks, a visuo-proprioceptive incongruence
as introduced between the participant’s movements and the move-
ents of the virtual hand; i.e., the virtual hand’s movements were de-

ayed with respect to the actual movement by adding a 500 ms lag. In
ther words, the seen and felt hand movements were always incongru-
nt (phase-shifted) in these conditions. The delay was adopted follow-
ng a recent behavioral study using the similar task ( Limanowski and
riston, 2020b ), which showed that participants reliably recognized the
irtual and real hand movements as incongruent when applying this
ag —and significant differences in behavior between conditions. Here,
e likewise ensured that all participants were aware of the incongru-

nce before scanning. 
Crucially, participants had to perform the phase matching task with

ne of two goals in mind: In half of the movement blocks, they had to
atch the target’s oscillatory phase with the virtual hand movements or
ith their unseen real hand movements, respectively. This resulted in
 2 × 2 factorial design with the factors Task (virtual hand vs real hand

ask) and Congruence (congruent vs incongruent VH/RH movement) . 
Each of the four conditions ‘virtual hand task under congruence’

VHC), ‘virtual hand task under incongruence’ (VHIC), ‘real hand task
nder congruence’ (RHC), and ‘real hand task under incongruence’
RHIC) was completed in blocks of 32 s (16 close-and-open move-
ents each) 3 times per run, in randomized order, interspersed with
 s fixation-only periods. Participants completed five runs in total, thus
ompleting 240 movements of 2 s each per condition. The task instruc-
ions (‘VIRTUAL’ / ‘REAL’) were presented 2.5 s before each respec-
ive movement trials for 2 s. Additionally, participants were informed
hether in the upcoming trial the virtual hand’s movements would be

ynchronous (‘synch.’) or delayed (‘delay’). The instructions and the fix-
tion dot in each task were colored (pink or turquoise, the color mapping
as counterbalanced across participants), to help participants remem-
er the current task instruction during each movement trial. Participants
ere trained extensively prior to scanning. 
With these instructions, we aimed to induce a specific cognitive-
ttentional set in our participants; and with it, a different weighting
f visual (vs proprioceptive) movement cues. Specifically, we hypothe-
ized that —under visuo-proprioceptive conflict —visual action feedback
hould be prioritized in the VH vs RH task; i.e., depending on the cur-
ently active ‘top-down’ cognitive-attentional set ( Corbetta and Shul-
an, 2002 ; Posner et al., 1978 ). Note that whereas in the congruent

onditions, both hand movements were identical, and therefore both
ands’ grasping movements could simultaneously be matched to the tar-
et’s oscillatory phase (i.e., the fixation dot’s size change), only one of
he hands’ (virtual or real) movements could be phase-matched to the
arget in the incongruent condition. This necessarily engendered a phase
ismatch of the other hand’s movements: In the VHIC condition, par-

icipants had to adjust their movements to counteract the visual lag;
.e., they had to phase-match the virtual hand’s movements (i.e., vision)
o the target by shifting their real hand’s movements (i.e., propriocep-
ion) out of phase with the target. Conversely, in the RHIC condition,
articipants had to match their real hand’s movements (i.e., propriocep-
ion) to the target’s oscillation, and therefore had to ignore the fact that
he virtual hand (i.e., vision) was out of phase. We hypothesized that
his incongruence would increase task difficulty and require a sustained
ocus of attention on the instructed tracking modality —vision or propri-
ception —vs the non-instructed (‘distractor’) modality. In other words,
isual feedback should be prioritized in the VHIC task (where it had
o be used to recalibrate motor control to a new visuo-proprioceptive
apping) but attenuated in the RHIC task (where it was effectively dis-

racting). In brief, we expected an interaction effect between sensory
congruence) and cognitive-attentional (task) factors. 

After the experiment, participants were asked to indicate —for each
f the four conditions separately —their answers to the following two
uestions: “How difficult did you find the task to perform in the follow-
ng conditions? ” (Q1, answered on a 7-point visual analogue scale from
very easy ” to “very difficult ”) and “On which hand did you focus your
ttention while performing the task? ” (Q2, answered on a 7-point visual
nalogue scale from “I focused on my real hand ” to “I focused on the
irtual hand ”). 

.3. Behavioral data analysis 

To analyze the behavioral change in terms of deviation from the tar-
et (i.e., phase shift from the oscillatory size change), we calculated the
hase shift as the average angular difference between the raw averaged
ovements of the virtual or real hand (averaged over the four fingers)

nd the target’s oscillatory pulsation phase in each condition. The angles
f the fixation dot’s oscillation and the real/virtual hand’s movement cy-
les were calculated using Matlab’s continuous wavelet transform (using
he analytic Morse wavelet and L1 normalization). The first target oscil-
ation cycle of each block was excluded from analysis, because partici-
ants frequently only started moving with the second one. Cycles during
hich the hand movement was omitted (i.e., the fingers remained either
exed or extended across the entire cycle) were also excluded. On aver-
ge, this left 222 trials of 2 s duration each per condition (0.4% omitted
ovements). 

The resulting hand phase shifts for each participant and condition
ere entered into a 2 × 2 repeated measures ANOVA with the factors

ask (virtual hand, real hand) and congruence (congruent, incongruent)
o test for statistically significant group-level differences. Note that the
irtual hand-target alignment directly quantified real hand-target align-
ent, since a larger shift of the real hand corresponds to better align-
ent of the virtual hand with the target. Post-hoc t-tests (two-tailed,
ith Bonferroni-corrected alpha levels to account for multiple compar-

sons) were used to compare experimental conditions. As a control anal-
sis, we compared average movement amplitudes (i.e., the difference
etween maximum extension and maximum flexion per movement cy-
le) between conditions following the same procedure. 

http://www.blender.org
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The questionnaire ratings were evaluated for statistically signifi-
ant differences using a nonparametric Friedman’s test and Wilcoxon’s
igned-rank test (with Bonferroni-corrected alpha levels to account for
ultiple comparisons) due to non-normal distribution of the residuals.

urthermore, we tested whether participants were inconsistent in their
xation; i.e., we tested the recorded eye traces (after removing blinks)

or between-condition differences in average Euclidean distance of mea-
ured fixation from the fixation dot, using a repeated-measures 2 × 2
NOVA analogous to the above. 

.4. MEG data preprocessing and analysis 

We hypothesized that cognitive-attentional modulations of sensory
rocessing in our task should be reflected by changes in induced os-
illatory power within the cortical visuo-motor hierarchy; specifically,
n primary and extrastriate visual cortices input ( Bauer et al., 2006 ;
oxe et al., 1998 ; Foxe and Simpson, 2005 ; Haegens et al., 2012 ;
ebar et al., 2017 ; Limanowski and Friston, 2020a ), temporoparietal
ortex ( Farrer et al., 2008 ; Leube et al., 2003 ; Limanowski et al.,
018 ; van Pelt et al., 2016 ), and the frontoparietal and prefrontal cor-
ices ( de Vries et al., 2020 ; Desmurget et al., 1999 ; Fink et al., 1999 ;
refkes et al., 2004 ; Helfrich and Knight, 2016 ; Limanowski et al., 2017 ;
gawa et al., 2006 ). To test these assumptions, we acquired MEG data
uring the experiment. 

MEG signals were acquired using a 275-channel whole-head setup
ith third-order gradiometers (CTF Omega, CTF MEG International Ser-
ices LP, Coquitlam, Canada) at a sampling rate of 600 Hz. All analyses
ere performed using MATLAB (MathWorks, Natick, MA, United States)
nd SPM12.6 (Wellcome Trust center for Neuroimaging, University Col-
ege London, https://www.fil.ion.ucl.ac.uk/spm/ , ( Litvak et al., 2011 )).
EG data were high-pass filtered (1 Hz), downsampled to 300 Hz, and

poched into trials of 2 s each (each corresponding to a full target os-
illation/grasping cycle). Epochs with z-score amplitudes + - 6 SD of all
rials in any of the channels (8.3% on average) were automatically re-
ected ( Auksztulewicz et al., 2017a ). 

In the first (in sensor space) MEG data analysis, we looked for
pectral power differences between experimental conditions under
steady-state’ assumptions; i.e., treating the spectral profile as a ‘snap-
hot’ of responses induced during condition-specific changes in quasi-
tationary power spectra ( Donner and Siegel, 2011 ; Friston et al., 2019 ;
oran et al., 2008 ). We computed induced power spectra in the 0–98 Hz

ange using a multi-taper spectral decomposition ( Thomson, 1982 ) with
 spectral resolution of ± 2 Hz. The spectra were averaged across tri-
ls using robust averaging ( Litvak et al., 2012 ), log-transformed, and
hen converted to volumetric scalp x frequency images —with two spa-
ial and one frequency dimension ( Kilner and Friston, 2010 ). The re-
ulting images were smoothed with a Gaussian kernel with full width at
alf maximum of 8 mm x 8 mm x 4 Hz and entered into a group-level
eneral linear model (GLM) using a flexible factorial design. The statisti-
al parametric maps obtained from the respective group-level contrasts
ere used to test for significant effects, using a threshold of p < 0.05,

amily-wise error (FWE) corrected for multiple comparisons at the peak
evel. 

Following identification of regionally specific effects, source local-
zation of induced power —in the 12–30 Hz (i.e., ‘beta’, cf. ( Donner and
iegel, 2011 )) range —was performed using a variational Bayesian ap-
roach with multiple sparse priors ( Litvak and Friston, 2008 ). The 6 Hz
ffect for congruent > incongruent was localized separately in the 4–
 Hz range. The (source space) localization results of each participant
ere summarized as 3D images per condition (unsmoothed), and en-

ered into a group-level GLM using a flexible factorial design. Since the
ignificance of the effects on induced responses had already been es-
ablished with the sensor space analysis, the source space results were
isplayed at a threshold of p < 0.005, uncorrected ( p < 0.075 for the
rontal 6 Hz-activation). The ensuing statistical parametric maps were
endered on SPM’s brain template. 
.5. DCM of cross-spectral densities 

The MEG data analysis and the analysis of our participants’ behavior
uggested that —specifically under visuo-proprioceptive conflict —visual
ction feedback was processed (i.e., ‘gated’) differentially depending on
ognitive-attentional factors (i.e., task set). This differential processing
as associated with changes in oscillatory power in the ‘beta’ range
ver visual brain areas; i.e., there was a significant interaction effect.
hese results were, in principle, in line with the proposed role of low-
requency oscillations in gating sensory information flow ‘top-down’
 de Vries et al., 2020 ; Donner and Siegel, 2011 ; Engel and Fries, 2010 ;
riston et al., 2015 ; Klimesch et al., 2007 ; C. Palmer et al., 2016 , 2019).
o explain this effect in terms of underlying neuronal interactions, we
odelled the MEG data with DCM. 

DCM allows one to compare multiple alternative hypotheses (mod-
ls) about how some observed data feature (in our case: spectral power
cross the scalp) was most likely generated by underlying interactions
etween and/or within neuronal populations across a network of brain
ources. To model the (induced) power differences observed in the spec-
ral analyses —in terms of source-localized neuronal interactions —we
sed DCM for cross-spectral densities ( Friston et al., 2012 ; Moran et al.,
007 , 2008, 2009 ). This type of DCM models the synaptic mechanisms
hat generate spectral-domain data features and has been validated with
espect to a range of previous MEG and EEG data ( Auksztulewicz et al.,
017a ; Bastos et al., 2015 ; Hamburg et al., 2019 ; Rosch et al., 2019 ;
haw et al., 2017 ). 

We focused our DCM analysis on the crucial interaction effect identi-
ed in the spectral analysis: Beta power over occipital and temporal sen-
ors decreased in VHIC and increased in RHIC relative to both congruent
onditions. This result was in line with the behavioral results, which also
howed differences between the incongruent, but not congruent, condi-
ions. In other words, the congruent mapping conditions could be seen as
 ‘baseline’ for our task, whereas the visuo-proprioceptive conflict in the
ncongruent conditions led to a task-dependent gating of visual informa-
ion —potentially manifesting as spectral power differences —depending
n the current task set. In the DCM analysis, we therefore modelled the
ffects of each incongruent (i.e., visuo-proprioceptive conflict) condi-
ion relative to the congruent conditions. In other words, we modelled
wo condition-specific effects corresponding to changes in connectivity
uring VHIC or RHIC, respectively, relative to the VHC and RHC condi-
ions. To ensure optimal model fits in the frequency bands in which the
pectral effects were significant (cf. Fig. 2 ), we modelled the 12–30 Hz
ange. 

Sources of interest were chosen based on the source localization of
ignificant power differences between conditions in the above spectral
nalysis (see above and Fig. 2 ). Our DCM architecture ( Fig. 3 A) there-
ore contained the bilateral V1, V5, STS, and the right PFC; which were
dentified as likely sources for the main effects and, most importantly,
or the interaction effect (the bilateral STS and right PFC were iden-
ified as further sources of the interaction effect, when lowering the
tatistical threshold of the projections to p < 0.1). In short, our DCM
ncompassed the key regions of a well-established visuo-motor hierar-
hy ( Cisek and Kalaska, 2010 ; Decety et al., 1994 ; Goodale and Mil-
er, 1992 ; Grafton, 2010 ; Iacoboni and Dapretto, 2006 ; Kilner et al.,
007 ; Makin et al., 2012 ). The reconstructed cortical locations of these
ffects were strikingly similar to the location of blood oxygen level de-
endent (BOLD) signal changes detected in our previous fMRI experi-
ents using similar designs ( Limanowski et al., 2017 ; Limanowski and

riston, 2020a ). 
Each cortical source was modelled as a local patch ( Daunizeau et al.,

009 ; Pinotsis et al., 2012 ) whose responses were generated by a neural
ass model ( Friston et al., 2012 ; Moran et al., 2007 ) comprising three

nterconnected cell populations with excitatory spiny stellate cells (as-
igned to granular layer IV), excitatory pyramidal cells, and inhibitory
nterneurons (occupying both supra- and infra-granular layers). This
ind of model distinguishes between ‘extrinsic’ (‘forward’ and ‘back-

https://www.fil.ion.ucl.ac.uk/spm/
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Fig. 2. MEG spectral differences and corresponding source recon- 
structions. The ‘glass brain’ (maximum intensity) projections show 

the sensor level scalp-frequency maps of induced power differ- 
ences between conditions depending on sensory (Congruence) and 
cognitive-attentional (Task) factors, and their interaction (in each 
plot, the darkest voxel shows the strongest effect along the respec- 
tive projection; the maps are thresholded at p < 0.001, effects sig- 
nificant at p FWE < 0.05 are outlined in green; the top plots have 
one frequency dimension, 0–98 Hz, and one spatial dimension, P- 
A = posterior-anterior, L - R = left-right; the bottom plot has two 
spatial dimensions). The bar plots show the mean-centered esti- 
mates of oscillatory power in each condition from the respective 
peak voxel (strongest effect in scalp-frequency space), in arbitrary 
units and with associated standard errors. VH = virtual hand task, 
RH = real hand task, C = congruent hand mapping, IC = incongru- 
ent hand mapping. The renders show the corresponding source 
localization results using variational Laplace with multiple sparse 
priors (all suprathreshold voxels are colored in red, the intensity 
indicates the respective T statistic value, weighted by a function of 
its distance behind the brain surface). See Results for details. (For 
interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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ard’) between-area connections, and ‘intrinsic’ connections. The lat-
er connections model effects of regional self-inhibition, which is in-
ersely proportional to the input-output balance or ‘excitability’ of a
iven source, and are therefore usually associated with cortical gain
ontrol ( Bauer et al., 2014 ; Pinotsis et al., 2014 ; Ranlund et al., 2016 ;
haw et al., 2017 ). In other words, when regional self-inhibition is re-
axed, the same neuronal population will respond more strongly to the
ame input. Thus, reduced self-inhibition corresponds to increased neu-
onal gain, and vice versa. The resulting network allowed us to order
he sources hierarchically (V1-V5-STS-PFC, with additional lateral con-
ections for bilateral regions, Fig. 3 A), and to test competing hypothe-
es about the type of connectivity modulation underlying the observed
pectral effects. 

For each participant, the resulting model (of coupled neural fields)
as inverted to fit to the complex MEG cross-spectral densities in the 12–
0 Hz range (as summarized by 8 principal eigenmodes) across the scalp.
e excluded one participant (P3) whose data could not adequately be fit

y DCM (i.e., the model inversion ‘flatlined’, resulting in a markedly low
odel evidence as indicated by a free energy that was more than a stan-
ard deviation lower than the group’s average; therefore the estimated
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Fig. 3. DCM architecture. A: A hierarchical cortical network was constructed based on the source localization of significant spectral differences between conditions; 
including the bilateral V1, V5, STS, and the right PFC (shown schematically, cf. Fig. 2 ). B: Individual model fits showing the first principal eigenmode of the prediction 
in sensor space (thin lines) and the corresponding mode of the empirical scalp data (thick lines) for the congruent ‘baseline’, and the VHIC and RHIC conditions. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Bayesian model comparison. A: Using the established network architecture, 7 different candidate models were compared to test whether the condition-specific 
effects of VHIC and RHIC would best be modelled by changes in forward (F), backward (B), and/or intrinsic (i) connections. For each model, only the connections 
modulated by the experimental effect are shown. B: Bayesian model comparison identified Model 4 (condition-specific modulation of local self-inhibition) as having 
the highest free energy, and thus as the most likely explanation for the observed spectral data, with a posterior probability of 92%. C: Bayesian model averages 
of parameter estimates with 95% confidence intervals, indicating changes in local self-inhibition during VHIC and RHIC. Asterisks denote significantly ( p < 0.05) 
reduced inhibition in VHIC relative to RHIC at the respective cortical node. See Results for details. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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onnectivity could not sensibly be used for the subsequent model com-
arison). However, this exclusion did in fact not affect Bayesian model
omparison (the same model still ‘won’ with 87% probability when P3
as included). The individual participants’ model fits —which were the
asis for the Bayesian model comparison of condition-specific changes
n effective connectivity —are shown in Fig. 3 B. 

The aim of our DCM was to disambiguate between alternative expla-
ations for how the observed effects of task instruction during incon-
ruence on beta oscillatory power could have been mediated in terms
f neuronal interactions between cortical regions or by changes in lo-

al cortical gain. Therefore, we asked whether the condition-specific
ffects were best explained by changes in extrinsic (forward and/or
ackward between-region) and/or intrinsic (within-region) connectiv-
ty ( Fig. 4 A). Model comparison was implemented by Bayesian model
eduction ( Friston et al., 2016 ; Friston and Penny, 2011 ), which allows
ne to compare ‘reduced’ models with variations in a subset of the ‘full’
odel’s parameters. In our case, the full model allowed for modulations
f all intrinsic and extrinsic connections, whereas the reduced models al-
owed for modulation of only one connection type, resulting in a model
pace of 7 models ( Fig. 4 A). The model with the greatest evidence (ap-
roximated via variational free-energy) was considered the ‘winning’
odel. The posterior estimates of all reduced models were averaged us-

ng Bayesian model averaging ( Penny et al., 2010 ). To confirm that the
eduction in inhibition during VHIC > RHIC was significant, post-hoc
-tests were used to compare the condition-specific parameter estimates
i.e., their Bayesian model averages), under the most likely model. 

. Results 

.1. Behavioral results 

The participants’ self-reports ( Fig. 1 B) showed that, as expected, par-
icipants found both tasks more difficult under visuo-proprioceptive in-
ongruence (Friedman’s test, 𝜒2 

(3,51) = 39.34, p < 0.001; Wilcoxon’s
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igned rank test, VHIC > VHC, z (17) = 3.65, p < 0.001; RHIC > RHC,
 (17) = 3.31, p < 0.001). There was no significant difference in reported
ifficulty between VHC and RHC, or between VHIC and RHIC ( z s <
.2, n.s. ). Furthermore, as expected, participants focused their attention
ore strongly on the virtual hand during the virtual hand task and more

trongly on the real hand during the real hand task (Friedman’s test,
2 

(3,51) = 47.81, p < 0.001; Wilcoxon’s signed rank test, VHC > RHC,
 (17) = 3.75, p < 0.001) and incongruent (VHIC > RHIC, z (17) = 3.65, p <
.001) movement trials. There were no significant differences between
HC vs VHIC, and RHC vs RHIC, respectively (zs < 1.2, n.s. ). 

The participants’ average movements, and the corresponding devia-
ions from the target’s phase, are shown in Fig. 1 C-D. Participants were
ble to track the 0.5 Hz (2 s per cycle) target oscillation with their
rasping movements in all conditions, staying within ± 24° (~134 ms)
ff the target’s oscillatory phase on average. The power spectra were
omparable across conditions, showing a clear peak at the target fre-
uency of 0.5 Hz (see Supplementary material). Importantly, partic-
pants aligned the virtual hand better with the target under the VH
ask —and, correspondingly, they synchronized the real hand better with
he target under the RH task (ANOVA on hand-target phase synchro-
ization, main effect of ‘task’, F (1,17) = 18.11, p = 0.0005). A signifi-
ant interaction effect between task and congruence ( F (1,17) = 18.46,
 = 0.0005) and a post-hoc t -test showed that this effect was due to
 significantly better virtual hand-target synchronization in the VHIC
han in the RHIC condition ( t (17) = 4.32, p = 0.0004; there was no
ignificant difference between VHC and RHC conditions, t (17) = 0.16,
.s. ). Unsurprisingly, tracking performance was better overall when
omparing congruent to incongruent conditions (ANOVA, main effect
f ‘congruence’, F (1,17) = 136.66, p = 1.5e-9). Participants also evinced
 partial shift of their real hand’s movements during RHIC than dur-
ng RHC ( t (17) = 4.43, p = 0.0004), but this shift was significantly
maller than during the VHIC condition ( t (17) = 4.73, p = 0.0002). Move-
ent amplitudes did not differ significantly between conditions (means

nd standard deviations: VHC = 0.87 ± 0.05, VHIC = 0.86 ± 0.07,
HC = 0.87 ± 0.05, RHIC = 0.86 ± 0.07; ANOVA, all F s < 1, n.s. ). Par-

icipants maintained equal fixation in all conditions (means and stan-
ard deviations of Euclidean distance from fixation dot, in degrees vi-
ual angle: VHC = 1.66 ± 1.44, VHIC = 1.68 ± 1.43, RHC = 1.16 ± 0.87,
HIC = 1.26 ± 0.81; ANOVA, all F s < 1, n.s. ). 

Together, the above results suggest that, as expected, participants
dopted a specific attentional set to prioritize the instructed target
odality, and that this was associated with significantly better target

racking with the instructed modality (vision or proprioception) under
ntersensory conflict. 

.2. MEG results 

In the sensor space analysis, we looked for induced spectral power
ifferences related to the effects of our experimental manipulations;
.e., the differential processing of incongruent vs congruent visual ac-
ion feedback depending on the currently active cognitive-attentional
et (VH or RH task). 

This analysis revealed significant spectral correlates of visuo-
roprioceptive congruence ( Fig. 2 ): Movements under visuo-
roprioceptive incongruence were associated with relatively suppressed
ower in the 18–22 Hz range (peak at 20 Hz) over right temporal sen-
ors ( T = 5.35, p FWE < 0.05). These effects were source-localized to
ilateral temporal regions, focused on the superior temporal sulcus
STS). Conversely, we observed a power increase at 6 Hz ( T = 5.79,
 FWE < 0.05) over frontal sensors during incongruent as compared
ith congruent movements; source-localized to regions in the right
refrontal cortex (PFC). Furthermore, we found a significant effect of
ognitive-attentional task set: During the VH task, compared with the
H task, power in the 12–20 Hz range (peak at 16 Hz) was significantly
uppressed over occipital sensors ( T = 5.53, p FWE < 0.05, Fig. 2 ).
hese effects were source-localized to distinct peaks in the bilateral
rimary (V1) and extrastriate (V3, V5) cortices. The reconstructed
ortical sources of beta suppression during VH (relative to RH) were
lmost identical to the locations of fMRI activations identified in
imilar tasks and contrasts ( Limanowski et al., 2017 ; Limanowski and
riston, 2020a ). 

Crucially, there was a significant interaction effect at 20 Hz over
ccipital sensors ( T = 5.00, p FWE < 0.05). This effect was localized to
he left V1 and the right V5. In other words, the power suppression ob-
erved during the VH relative to the RH task was significantly stronger
uring incongruent > congruent conditions. In fact, beta power suppres-
ion at temporal and occipital sensors was markedly significant in the
HIC - RHIC contrast ( T = 6.35 and 6.96, respectively, both p FWE <

.05), but nonsignificant in the VHC - RHC contrast, even at p < 0.001,
ncorrected. In other words, the spectral effects were largely due to a
ifference between the incongruent conditions —in which there was a
isuo-proprioceptive conflict —with small or no differences between the
ongruent conditions. 

.3. DCM results 

To disambiguate between alternative hypotheses about how the in-
eraction effect in the beta range was mediated in terms of changes
n neuronal message passing among key cortical sources, we modelled
he measured MEG data with DCM for cross-spectral densities. Specif-
cally, we aimed at clarifying the nature of the task-dependent gating
f visual information during VHIC and RHIC, respectively, relative to a
ongruent-movement ‘baseline’. 

Based on the localization of the most likely sources of the observed
pectral power differences, we constructed a hierarchical network com-
rising the bilateral V1, V5, STS, and the right PFC ( Fig. 3 A). Using this
etwork, the model inversion provided overall good fits of the empirical
hole-scalp data in the beta range (except for participant P3 who was

xcluded from further analysis, see Methods). The individual model fits
re shown in Fig. 3 B. 

Based on the established model architecture, we compared alterna-
ive hypotheses about how the identified modulations of induced spec-
ral responses during VHIC and RHIC were caused in terms of neuronal
nteractions. We considered a model space of 7 models ( Fig. 4 A), each
odeling the condition-specific effects as changes in (intrinsic) synap-

ic efficacy within regions and/or (forward and/or backward) synap-
ic connectivity between regions. Model comparison, implemented using
ayesian model reduction, showed that the most likely model (Model
, posterior probability = 92%) described the condition-specific ef-
ects in terms of a modulation of local intrinsic connections ( Fig. 4 B).
n the DCM framework, these connections determine the degree of
elf-inhibition —and therefore determine input-output balance or ex-
itability —in other words, changes of their parameter estimates indicate
hanges in gain control ( Friston et al., 2015 ; Moran et al., 2007 ). The
CM results therefore suggest that, relative to a congruent-movement

baseline’, movements under visuo-proprioceptive conflict were most
ikely associated with changes in cortical gain. 

Crucially, there was a striking asymmetry in the winning model’s
onnectivity estimates for VHIC vs RHIC ( Fig. 4 C): Whereas most of
he intrinsic connections mediated a disinhibition during VHIC relative
o the congruent movements, they showed the opposite effect —an in-
reased self-inhibition —during RHIC. This effect was significant in the
ilateral visual areas (V1 and V5) and in the right STS. In other words,
elative to the baseline condition, cortical gain in visual areas was in-
reased during VHIC and decreased during RHIC. In sum, the DCM re-
ults indicated a contextual effect of cognitive-attentional task set on
ortical gain control within the visuomotor hierarchy. 

. Discussion 

Using a virtual reality based phase matching task under visuo-
roprioceptive incongruence, we induced a cognitive-attentional prior-
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tization of visual vs proprioceptive feedback, as evident from signif-
cant differences in target-tracking performance and self-reported at-
entional allocation. We found that sensory (visuo-proprioceptive con-
ruence) and cognitive (instructed task set) factors and, importantly,
heir interaction effect were associated with significant changes in
ortical oscillatory power —most prominently, in the ‘beta’ frequency
ange. 

By isolating the interaction effect between sensory and cognitive-
ttentional factors, our study design allowed us to advance on previ-
us work on visuo-motor recalibration: Relative to the congruent move-
ent conditions, occipital beta power was suppressed in VHIC but en-

anced in RHIC. Our DCM analysis identified diametrical changes in
he self-inhibition of visual areas as the most likely causes of these
pectral differences, i.e., relaxed self-inhibition during VHIC and in-
reased self-inhibition during RHIC relative to movements without
isuo-proprioceptive conflict. These effects were strongest in visual (V1,
5) and multisensory (right STS) areas, which are all known to pro-
ess visual bodily information ( Farrer et al., 2008 ; Lebar et al., 2017 ;
eube et al., 2003 ; Limanowski et al., 2018 ; Limanowski and Fris-
on, 2020a ). In DCM, the self-inhibition of a given node is inversely
roportional to the excitability of the underlying neuronal population
o its (sensory) inputs; in other words, it reflects cortical gain. 

We, therefore, propose that these results directly reflect the contex-
ual gating of visual bodily action information —during identical (con-
icting) visuo-proprioceptive mapping —for integration with the current
ction plan, depending on the prevalent cognitive-attentional set. In
ther words, we propose that attenuated beta was associated with an
ncreased sensitivity to visual feedback (via increased gain) when vi-
ual feedback had to be incorporated into the goal-directed action plan
VHIC), and conversely, enhanced beta was associated with an attenu-
tion of visual feedback (via reduced neuronal gain of visual brain ar-
as) when the visual movement was an incongruent ‘distractor’ (RHIC).
uch attentional gating was not required in conditions without visuo-
roprioceptive conflict (VHC and RHC). 

Thus, our results support —in a sensorimotor setting —the hypothe-
ized link between beta oscillations and top-down contextual control
n service of conveying behavioral context to lower sensory regions
 Auksztulewicz et al., 2017b ; Bressler and Richter, 2015 ; Buschman and
iller, 2007 ; Clark et al., 2015 ; Donner and Siegel, 2011 ; Friston et al.,

015 ; Spitzer and Haegens, 2017 ). Previous work has shown that
ask-irrelevant sensory brain regions can be disengaged by increasing
ow-frequency oscillatory activity, whereas low-frequency suppression
an make stimulus processing more efficient ( de Vries et al., 2020 ;
rey et al., 2015 ; Jensen and Mazaheri, 2010 ; Klimesch et al., 2007 ;
chubert et al., 2009 ). Although such effects are frequently observed
t ‘alpha’ frequencies, beta oscillations have also been linked to active
uppression of sensory input that is deemed distractive ( de Vries et al.,
018 ; Engel and Fries, 2010 ; Kelly et al., 2006 ). In visual paradigms,
ttention to target stimuli while ignoring distractors suppressed occip-
tal beta band power ( Fries, 2001 ). In multisensory tasks, several stud-
es have reported a negative association between parieto-occipital al-
ha/beta power and attention to visual —as opposed to auditory or tac-
ile —input ( Bauer et al., 2006 , 2012; Foxe et al., 1998 ; Foxe and Simp-
on, 2005 ; Fu et al., 2001 ; Haegens et al., 2012 ; Wittekindt et al., 2014 ).
ur findings now show that beta oscillations can be directly linked to

he ‘top-down’ gating of (conflicting) visual action feedback depending
n current behavioral context by adjusting cortical gain. 

Further support for our interpretation of beta power as being in-
ersely related to sensory gating comes from our finding that the re-
onstructed cortical sources of beta suppression were almost identical to
he locations of BOLD signal increases in very similar ‘vision-prioritizing’
asks ( Limanowski et al., 2017 ; Limanowski and Friston, 2020a ). This
nverse relationship between source-localized beta and the BOLD sig-
al has been reported before ( Moosmann et al., 2003 ; Scheeringa et al.,
011 ; Yuan et al., 2010 ; Zaretskaya and Bartels, 2015 ) and is consistent
ith proposals that a loss of low- relative to high-frequency power may
e associated with brain ‘activation’ detected with fMRI ( Chawla et al.,
999 ; Kilner et al., 2005 ; Laufs et al., 2003 , 2008 ). 

In principle, our results therefore support computational mod-
ls following the ‘predictive coding’ framework, which link slow vs
ast frequency oscillations to asymmetrical message passing of predic-
ions and errors, respectively ( Arnal and Giraud, 2012 ; Bastos et al.,
012 ; Friston, 2008 ; Lee et al., 2013 ; Wang, 2010 ). Our findings also
peak to the relationship between sensory precision or gain control
nd the predictability of sensory inputs ( Auksztulewicz et al., 2017b ;
uksztulewicz and Friston, 2015 ; Kok et al., 2012 ; Press et al., 2020a , b ;
orlett, 2020 ; Limanowski et al., 2019 ; Richter and de Lange, 2019 ;
on et al., 2018 , 2020 ). Although our paradigm focused on the redeploy-
ent of precision or gain control depending on cognitive-attentional

ask set, it implicitly entailed varying ‘predictability’ of visual action
eedback. That is, congruent visual action feedback may be consid-
red more ‘predictable’ due to life-long experience dependent learn-
ng (that, in our case, may have persisted despite extensive training
n both conditions). Previously, movements under visuo-proprioceptive
onflict have been associated with suppressed occipital beta power
 Lebar et al., 2017 ; cf. corresponding BOLD signal increases in the STS
hown by Leube et al., 2003 ; Limanowski et al., 2017 ; Limanowski et al.,
018 ). Furthermore, beta oscillations in the STS have been linked to
he predictability of observed actions ( Pavlidou et al., 2014 ; van Pelt
t al., 2016 ). The beta power suppression in the STS induced by visuo-
roprioceptive incongruence (i.e., our main effect) could therefore in
rinciple be attributed to stimulus predictability. However, the corre-
ponding interaction with task relevance suggests that incongruent (i.e.
onflicting with proprioception) visual input was processed differen-
ially depending on task set. In other words, our results demonstrate
hat when the visual consequences of action are ‘unpredicted’, sensory
ain can be differentially attenuated or augmented in the service of goal-
irected action —through top-down attentional mechanisms, with beta
orrelates in visuomotor areas. 

Furthermore, our results speak to the particular role of beta synchro-
ization in mediating the precision of message passing during motor
ontrol ( Palmer et al., 2016b Palmer et al., 2019 ). However, note that
he desynchronization phenomena in our paradigm originated in the vi-
ual, as opposed to the (somato)motor system; we did not observe mod-
lations of beta power over somatomotor cortices. This was unexpected,
s the attenuation of somatosensory processing during the prioritization
f incongruent vision has been shown previously ( Bernier et al., 2009 ;
imanowski and Friston, 2020b ). Since these studies analyzed single-
rial evoked potentials or fMRI data, the absence of somatomotor oscilla-
ory effects could be due to our focus on induced power during repetitive
ovements —but this speculation remains to be verified by future work.
omplementary task designs could be used to evaluate whether sen-
ory (e.g., visual) and motor beta oscillations serve different functional
oles, as has been speculated ( Kilavik et al., 2013 ; Palmer et al., 2019 ;
ress et al., 2011 ; Tan et al., 2016 ). Such modified task designs could
lso be helpful to determine to what extent the concept of sensory atten-
ation proposed by the active inference framework —i.e., as a general-
zed and multi-modal suppression of sensory input from the effector to
nable movement ( Brown et al., 2013 ) —applies to the visual domain (cf.
asser et al., 2019 ). These results could inform discussions about a po-

ential (temporal) distinction between general effects of sensory attenu-
tion and those based on stimulus predictability in Bayesian (‘predictive
rocessing’) frameworks of action and perception ( Press et al., 2020a ,b;
orlett, 2020 ; Yon et al., 2018 , 2020 ). Furthermore, complementary task
esigns should also be used to clarify whether the (prefrontal) low-theta
ower increase under visuo-proprioceptive incongruence could poten-
ially be related to the prioritization of different target information, as
n visual working memory tasks ( Daitch et al., 2013 ; Johnson et al.,
017 ; Liesefeld et al., 2014 ; Riddle et al., 2020 ; Sauseng et al., 2010 ). 

A potential limitation of our study, which is inherent in our exper-
mental design, is the fact that participants could correct their move-
ents in real-time in the RHIC condition, whereas there was a lag in the
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HIC condition. Varying time delays of visual feedback may introduce
chaotic’ oscillations ( Glass et al., 1988 ; Beuter et al., 1993 ). However,
he power spectra of the executed movements were comparable and did
ot suggest such biases —probably because our participants were exten-
ively trained (i.e., they were familiar with the amount of delay and how
t affected visual feedback during the rhythmic movements). Further-
ore, one would expect cortical signatures of such biases in motor cor-

ex, where we did not observe any significant effects. Finally, our spec-
ral data (and their fit by DCM) suggest that cortical oscillatory power
as diametrically up- or down-regulated during RHIC or VHIC relative

o the congruent mapping conditions. We therefore assume that our re-
ults reflect sensory gain control related to distinct cognitive-attentional
ask sets, but this issue remains to be clarified by future work. Another
otential limitation of our study is that we could only infer attentional
llocation from participants’ self-reports; future work could try to in-
lude more explicit measures of attention. The congruent and incon-
ruent conditions differed in reported task difficulty —as expected —but
ote that we omitted this potential bias by focusing our spectral and
CM analyses on the interaction effect. Finally, it should be noted that
articipants exhibited a partial shift of their grasping phase in the RHIC
ondition, which could indicate a difficulty to fully ignore matching bio-
ogical motion ( Borroni et al., 2005 ; Kilner et al., 2007 , 2003 ). Although
his should be pursued, it does not pose a problem here because behavior
till differed significantly between tasks. 

In conclusion, our findings suggest a critical role for beta oscilla-
ions in sensorimotor integration; i.e., indicating the ‘gating’ of visual
vs proprioceptive) action feedback depending on the current behav-
oral demands. 
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