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Abstract 13 

Purpose 14 

Intramuscular fat infiltration is a dynamic process, in response to exercise and muscle health, 15 

which can be quantified by estimating fat fraction (FF) from Dixon MRI. Healthy hip abductor 16 

muscles are a good indicator of a healthy hip and an active lifestyle as they have a fundamental 17 

role in walking. The automated measurement of the abductors’ FF requires the challenging task 18 

of segmenting them. We aimed to design, develop and evaluate a multi-atlas based method for 19 

automated measurement of fat fraction in the main hip abductor muscles: gluteus maximus 20 

(GMAX), gluteus medius (GMED), gluteus minimus (GMIN) and tensor fasciae latae (TFL). 21 

Method 22 

We collected and manually segmented Dixon MR images of 10 healthy individuals and 7 23 

patients who underwent MRI for hip problems. Twelve of them were selected to build an atlas 24 

library used to implement the automated multi-atlas segmentation method. We compared the 25 

FF in the hip abductor muscles for the automated and manual segmentations for both healthy 26 

and patients groups. Measures of average and spread were reported for FF for both methods. 27 

We used the root mean square error (RMSE) to quantify the method accuracy. A linear 28 

regression model was used to explain the relationship between FF for automated and manual 29 

segmentations.  30 

Results 31 

The automated median (IQR) FF was 20.0(16.0-26.4) %, 14.3(10.9-16.5) %, 15.5(13.9-18.6) 32 

% and 16.2(13.5-25.6) % for GMAX, GMED, GMIN and TFL respectively, with a FF RMSE 33 

of 1.6%, 0.8%, 2.1%, 2.7%. A strong linear correlation (R2=0.93, p<0.001, m=0.99) was found 34 



3 
 

between the FF from automated and manual segmentations. The mean FF was higher in patients 35 

than in healthy subjects.  36 

Conclusion 37 

The automated measurement of FF of hip abductor muscles from Dixon MRI had good 38 

agreement with FF measurements from manually segmented images. The method was accurate 39 

for both healthy and patients groups. 40 

Keywords: hip abductors, multi-atlas segmentation, Dixon, fat fraction, muscle 41 

segmentation; fat infiltration 42 
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Automated Measurement of Fat Infiltration in the Hip Abductors from 44 

Dixon Magnetic Resonance Imaging 45 

1. Introduction 46 

The hip abductor muscles have a fundamental role in running, walking, standing and other 47 

human daily activities (1, 2), and can be considered a good indicator of a healthy hip and an 48 

active lifestyle.  49 

An increase of intermuscular adipose tissue (IMAT) and intramuscular fat (IMF) is associated 50 

with loss of strength and mobility dysfunction (3), making it an important marker for muscle 51 

health. Fat infiltration in skeletal muscles is linked to aging/sarcopenia (4–6), orthopaedic 52 

conditions (7, 8), muscular dystrophies (9, 10) and physiological disorders (11–13); and can be 53 

observed and quantified with magnetic resonance imaging (MRI) (6, 10, 12), a more objective 54 

assessment method than the commonly used manual functional tests. 55 

Fat-water separation techniques, such as Dixon MR imaging (14–17), provide fat-only and 56 

water-only images which can be used to estimate a fat fraction (FF) image that quantifies fat 57 

content. FF from Dixon images has been successfully used to assess fat infiltration in the thigh 58 

muscles in different scenarios (11, 13, 18). The measurement of FF in individual muscles 59 

requires the labelling or segmentation of them, which is a difficult task to automate as 60 

individual muscles share similar intensity/contrast values.  61 

Multi-atlas methods have proved to be the most successful method for automatically 62 

segmenting the thigh muscles (19–23). In the case of the hip abductors, this is a more 63 

challenging task due to its more complex and heterogeneous anatomy, and only a small number 64 

of semi-automated (24, 25) and automated methods (26, 27) have been presented. To date, 65 

multi-atlas methods have not shown to be accurate enough to be able to measure small and 66 

medium differences in muscle volume. However, the segmentation accuracy required for 67 
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automated measurement of FF is lower than for volume, since a mean intensity value within a 68 

label is measured. In addition, changes in muscle composition are proportionally larger than 69 

changes in volume, and a better predictor for mobility and muscle strength than volume 70 

changes (3, 28–31). We hypothesize that the combination of an optimized multi-atlas 71 

segmentation method and Dixon MRI of the pelvis can achieve accurate FF measurements of 72 

the abductor muscles, and that this accuracy is sufficient to study cross-sectional differences in 73 

muscle composition.  74 

We aimed to evaluate an automated method for measurement of fat fraction in the main hip 75 

abductor muscles: gluteus maximus (GMAX), gluteus medius (GMED), gluteus minimus 76 

(GMIN) and tensor fasciae latae (TFL). To do this we 1) collected and manually segmented 77 

Dixon MR images of 10 healthy individuals and 7 patients who underwent MRI for hip 78 

problems; 2) designed and implemented a multi-atlas based method for segmentation of the hip 79 

abductor muscles; 3) measured the FF in the muscles for both manually and automatically 80 

segmented Dixon images; 4) evaluated the performance of the automated method using the FF 81 

values from the manual segmentations as a reference; and 5) compared the FF results in both 82 

healthy and patient groups for both methods. 83 

  84 
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2. Materials and Methods 85 

In this work, we designed, developed and evaluated an automated method to measure fat 86 

fraction in the hip abductor muscles. In Figure 1, a flowchart describing the procedure to 87 

implement and evaluate our method is shown. Dixon MRI scans from 10 healthy subjects and 88 

7 patients with diseased hips were collected and GMAX, GMED, GMIN and TFL were 89 

manually segmented in the Dixon images. We used scans from subjects with both healthy and 90 

diseased hips in order to evaluate our method in different scenarios and with a higher variability 91 

of fat infiltration. Twelve out of the 17 segmented images were used to create an atlas library, 92 

which was employed in our automated multi-atlas based method for the segmentation of the 93 

hip abductor muscles. The latter was used to segment the 17 Dixon scans. Finally, the FF in 94 

each muscle was computed for the automatically and manually segmented images. The 95 

accuracy of the automated FF measurements were evaluated using the FF values from the 96 

manual segmentations as a reference. The segmentation performance was assessed using the 97 

segmented images.  98 

2.1 Study Subjects and Data Acquisition 99 

We studied Dixon MRI scans from a group of healthy volunteers (HV) and a group of patients 100 

with diseased hips. The group of healthy subjects consisted of 10 subjects recruited for a study 101 

looking at the effects of marathon running in the hip joints. This group went through a 102 

standardized MRI protocol, including a Dixon scan of the full pelvis. For the patients’ group, 103 

we retrospectively collected 7 scans of patients with OA or other hip conditions that had a full 104 

pelvis Dixon MRI scan in the past. The demographic characteristics of the two groups are 105 

shown in Table 1. All subjects consented to the study. 106 

The MR images for the HV group were acquired on a 3T scanner (Siemens Magneton Vida, 107 

Erlangen, Germany) using a body coil. The scanning protocol consisted of standard clinical 108 
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sequences for the hips; axial Dixon (slice thickness 1.5 mm, spacing between slices 1.95 mm, 109 

repetition time (TR) 4570 msec, echo time (TE) 45 msec, number of excitations 1, number of 110 

echoes 14, flip angle 120°) and axial T1‐weighted turbo spin echo (slice thickness 3.0 mm, 111 

spacing between slices 3.3 mm, TR 895 msec, TE 8.9 msec) sequences of the pelvis. The Dixon 112 

sequence was especially designed to assess gluteal muscles and had a field of view (FOV) that 113 

covered axially from 3 cm below the lesser trochanter to the top of the iliac crest. The voxel 114 

size was 0.47×0.47×1.95 mm3. 115 

The Dixon sequence in the patients’ scans had the same parameters used for the healthy 116 

volunteers group, except for three cases that were scanned with lower resolution to 117 

accommodate the sequence in the restricted acquisition time. In the latter, the voxel size was 118 

1.19×1.19×3.3 mm3. 119 

2.2 Fat Fraction in the Hip Abductors 120 

We computed the FF, as a measure of fat infiltration, in each hip abductor muscle using the fat 121 

and water images of the Dixon sequence. The FF of each abductor is defined as: 122 

𝐹𝐹𝑙[%] =
1

𝑁𝑙
∑

𝐹𝑖

𝑊𝑖+𝐹𝑖
100%𝑖 𝜖 𝑆𝑙

 (1) 123 

where FFl is the fat fraction in the labelled muscle l, i is the index of each of the Nl voxels in 124 

the set Sl that represent the label l; and Fi and Wi are the values of voxel i in the fat and water 125 

images respectively. 126 

In the proposed method, the labels for each muscle are obtained with a fully automated multi-127 

atlas segmentation algorithm. Next, a mask is generated from each label and is eroded with a 128 

spherical structuring element of radius 1 voxel to avoid the muscle edges.  Finally, the FF in 129 

each muscle is computed using the eroded mask and equation (1). The FF from manually 130 

segmented images were also included to validate the method. 131 
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A graphical example of the estimation of the FF in the right GMAX from a Dixon scan is 132 

shown in Figure 2. The in-phase image is used in the segmentation, while the water and fat 133 

images in the FF calculation. 134 

2.3 Manual Segmentation 135 

A single experienced operator labelled GMAX, GMED, GMIN and TFL muscles on the in-136 

phase image of every scan. The out-of-phase image was also used to aid the labelling process. 137 

A different label was used for left and right muscles, rounding up 8 labels per atlas. IMAT was 138 

excluded while IMF was included as part of each muscle. The segmentation was carried out in 139 

Simpleware™ ScanIP (Version 2018.12; Synopsys, Inc., Mountain View, USA), an FDA and 140 

CE marked 3D image processing software for medical scan data. 141 

2.4 Automated Multi-Atlas Segmentation 142 

The automated labelling of the hip abductor muscles, needed to estimate their FF, is based on 143 

a multi-atlas segmentation method, which was developed in C# and implemented in a plugin 144 

for Simpleware™ ScanIP (Version 2018.12; Synopsys, Inc., Mountain View, USA). In our 145 

implementation every atlas in the library is registered to the image to be segmented (target 146 

image); the registered atlases are sorted in descending similarity order; the labels of the 5 most 147 

similar atlases are propagated to the target image space; and subsequently fused into a single 148 

label for each muscle using majority voting (32). The atlas library consisted of 12 atlases, 10 149 

of which corresponded to the HV and two were patients with relatively high BMI to add 150 

anatomical variability. Each atlas consisted of the in-phase Dixon image and a manually 151 

segmented labels image. The total number of atlases included in the library was chosen taking 152 

into account segmentation performance and processing time factors. In Appendix A, the impact 153 

of the library size on the segmentation performance is assessed.  154 
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Before running the multi-atlas segmentation, a data preparation stage is executed, where a bias 155 

field inhomogeneity correction filter (33) is applied to correct for low frequency intensity non-156 

uniformities in the images. 157 

For the image registration, a rigid followed by a B-spline non-rigid registration (34) was 158 

implemented using SimpleElastix (35, 36). The normalized cross-correlation (NCC) was used 159 

as similarity metric and the cost function (negative NCC) was minimized using the adaptive 160 

stochastic gradient descent algorithm (37) with 2000 iterations and 2048 samples. A pyramidal 161 

scheme of four layers with down-sampling factors of 8, 4, 2 and 1 was employed to improve 162 

the registration. These parameters have been previously optimized to achieve better 163 

segmentation performance. 164 

The registered atlases were sorted in descending order of similarity to the target, which was 165 

quantified using the global normalized cross-correlation (GNCC). The 5 most similar atlases 166 

(with highest GNCC values) were selected and their labels propagated to be fused with majority 167 

voting. The number of selected atlases was chosen empirically based on segmentation 168 

performance (see Appendix A). Voxels where there was not a unique label with the highest 169 

number of votes were labelled as undecided, which were subsequently assigned to the closest 170 

label using distance maps.  171 

In a post-processing stage, a soft-tissue intensity mask was applied to remove subcutaneous fat 172 

voxels from the labels. As IMF voxels could be excluded with this mask, a morphological close 173 

operation is applied to generate a soft-tissue mask that excludes background and subcutaneous 174 

fat tissue voxels, but preserve IMF voxels. 175 

2.5 Evaluation 176 

We assessed the performance of our method by comparing the FF obtained from the 177 

automatically segmented images to the manually segmented, for 17 individuals. In those cases 178 
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where the target scan was one of the atlases in the library, the atlas was removed before 179 

executing the automated segmentation. The in-phase Dixon image was used as target image for 180 

every case. 181 

We computed measures of average (mean and median) and spread (standard deviation (SD) 182 

and interquartile range (IQR)) for FF for each muscle for the manually and automatically 183 

segmented images for the full set of scans, and split by HV and patients groups. We generated 184 

boxplots for each of these groups.  185 

A linear regression model was fit to the data to evaluate the correlation between the FF from 186 

the automated and manual segmentations, where the coefficient of determination (R2) was used 187 

to indicate the level of correlation. In addition, we performed a Bland-Altman analysis that 188 

compared the FF from automated and manual segmentations for every muscle. 189 

To quantify the overall accuracy of the FF measurements, we used the root mean square error 190 

(RMSE): 191 

𝑅𝑀𝑆𝐸𝑚 = √
1

𝑁
∑(𝐹𝐹𝐴𝑚𝑖 − 𝐹𝐹𝑀𝑚𝑖)2

𝑁

𝑖=1

 192 

where RMSEm is the root mean square error in muscle m (between GMAX, GMED, GMIN and 193 

TFL), N is the total number of samples of muscles m analysed (equal to two times the number 194 

of scans analysed); and FFAmi and FFMmi are the frat fraction from automated and manual 195 

segmentations respectively for the sample i of muscle m. 196 

In addition, the Dice Similarity Coefficient (DSC), the Relative Volume Difference (RVD), 197 

sensitivity and precision were used to assess the segmentation performance independently of 198 

the FF accuracy. Sensitivity and precision metrics were defined as: 199 
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𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 200 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 201 

where TP, FP and FN are the number of true positive, false positive and false negative voxels 202 

respectively for each label l. 203 

  204 
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3. Results 205 

In Figure 3, boxplots of the FF in each abductor muscle for the 17 cases assessed (34 muscles 206 

per boxplot) are shown for the manually and automatically segmented images. For the 207 

manually segmented images, the median (IQR) FF values were 19.6 (15.9-23.3)%, 13.8 (11.4-208 

16.0)%, 14.9 (12.0-17.3)% and 14.7 (12.9-20.6)% for GMAX, GMED, GMIN and TFL 209 

muscles respectively; while we obtained median (IQR) of 20.0 (16.0-26.4)%, 14.3 (10.9-210 

16.5)%, 15.5 (13.9-18.6)% and 16.2 (13.5-25.6)% for the automatically segmented images, 211 

showing good agreement between the two segmentations. The agreement was reasserted by the 212 

linear regression model fit to the data (Figure 4), where a strong linear correlation (R2=0.93, p 213 

< 0.001, m=0.99) was found between the FF from automated and manual segmentations.  214 

In Table 2, the median (IQR), mean (±SD) and RMSE values are reported for FF for both 215 

manual and automated segmentations for each groups of scans. The mean (±SD) DSC and 216 

RVD values, used to assess segmentation, are also presented in the table. In Figure 5, mean 217 

(±SD) values of the segmentation performance metrics are presented for each muscle, which 218 

show that the performance was variable between muscles, being more accurate in larger 219 

muscles as GMAX and GMED (mean DSC of 0.93 and 0.88 respectively), and less accurate 220 

and more variable in GMIN and TFL (mean DSC of 0.93 and 0.88 respectively). The 221 

segmentation Precision had a similar trend than the DSC values with mean values of 0.93, 0.89, 222 

0.79 and 0.84 for each muscle respectively. This is a relevant metric for the FF measurement 223 

as represents how many voxels have been wrongly labelled as part of a given muscle.  The 224 

relative lower segmentation performance for the smaller muscles had a big impact on the 225 

volume measurements (RVD values in Table 2). However, the FF RMSE, obtained from the 226 

same set of images, was relatively low for every muscle under study and with a lower 227 

variability compared to the DSC and Precision values. The FF RMSE for all subjects was 1.6%, 228 

0.8%, 2.1% and 2.7% for GMAX, GMED, GMIN and TFL respectively. 229 
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A Bland-Altman analysis that compares the FF measurements for automated and manual 230 

segmentations is shown in Figure 6 for every muscle. The discrepancy was very low for GMED 231 

and low for GMAX with 95% confidence intervals of [-1.4%, 1.7%] and [3.1%, 3.4%] 232 

respectively; while higher for GMIN and TFL, which also had a mild positive bias of 233 

approximately 1%.  Figure 6 also shows that a greater error was observed in the measurements 234 

of the patients group (plotted with circles), but for higher mean FF values. 235 

Figure 7 shows boxplots for FF values for the HV and patients groups, for the manually (a) and 236 

automatically (b) segmented images. When analysing the results divided by groups, there was 237 

good agreement in the median (IQR) FF values for the HV and patients groups between the 238 

manually and automatically segmented images. For example, we automatically measured 239 

median (IQR) GMAX FF values of 19.5 (15.2-21.2)%, and 22.6 (16.4-28.2)% for the HV and 240 

patients groups respectively; while the reference values from the manually segmented images 241 

were 19.1 (15.5-21.2)% and 21.8 (16.9-28.4)%. The full results can be found in Table 2. 242 

The good agreement between the automated and manual measurements can be also seen when 243 

comparing the FF values between the two groups under study, where the patients group had a 244 

higher FF in every muscle, especially in GMIN and TFL. The mean FF difference between the 245 

patients and HV groups in the automated measurements was 2.9%, 3.7%, 5.5% and 6% for 246 

GMAX, GMED, GMIN and TFL respectively; while 3.7%, 4.0%, 8.0% and 4.3% for the 247 

manually segmented images. These FF differences between the two groups means a higher fat 248 

infiltration in the patients group in the range of 20-50% relatively to the HV group. In Figure 249 

8, we show two cases for each group with labels of the FF from manual and automated 250 

segmentations next to each muscle. Case A is a good representation of the average subject in 251 

the HV group, while subject C corresponds to the outlier measurements in Figure 7 for GMAX 252 

and TFL in the HV group. For the patients group, we chose cases without (B) and with high fat 253 
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infiltration (D). The images also show the outline of the labels from the automated 254 

segmentation. 255 

  256 
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4. Discussion 257 

This is, to the best of our knowledge, the first work to evaluate the automated measurement of 258 

FF of the main hip abductor muscles using a multi-atlas based method and Dixon MRI. The 259 

proposed method delivered similar values to a manual method in terms of mean (±SD) FF 260 

values for each muscle and RMSE. The FF measurements also showed good agreement with 261 

those obtained from manually segmented images in terms of correlation and values distribution 262 

in the HV and patients group. The use of a multi-atlas segmentation method to label each 263 

muscle and Dixon imaging proved to be accurate enough to assess muscle composition, despite 264 

having a sub-optimal accuracy in terms of muscle volume.  265 

4.1 Fat Fraction Accuracy 266 

In terms of accuracy, the FF RMSE, when using the FF from manually segmented images as a 267 

reference, was low for the four abductors muscles, although less accurate in GMIN and TFL. 268 

Similarly, the segmentation performance was lower for GMIN and TFL, but in this case the 269 

difference was higher respect to GMAX and GMED. The lower segmentation performance in 270 

these two muscles had a relative low impact on the FF estimation but a high impact on the 271 

volume measurements (high RVD values). The lower impact of the segmentation errors on the 272 

FF estimation was expected as a wrongly labelled voxel introduces only a partial error since 273 

the FF for a given muscle is a mean value within a set of voxels, which have a reduced range 274 

of values (approximately 10%-30% in most of the cases). Another reason for the higher FF 275 

accuracy compared to the volume measurements is that the majority voting label fusion strategy 276 

and the post-processing mask tends to reduce the sensitivity and increase the precision of the 277 

segmentation, which is beneficial for FF estimation but produces an underestimation of the 278 

computed volume. 279 

 280 
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4.2 Segmentation Accuracy 281 

When comparing our segmentation method to the small number of works available in the 282 

literature on hip abductor muscles segmentation, we obtained similar or marginally better 283 

performance in terms of DSC values. For example, Ranzini et al (38) used a combination of 284 

MRI and CT images to segment the hip muscles in patients with total hip replacement, where 285 

mean DSC values of 0.91, 0.85, 0.83 and 0.80 were obtained for GMAX, GMED, GMIN and 286 

TFL on the healthy side; but lower DSC values were reported when using only MR images. In 287 

the same context, Yokota et al (39) presented a multi-atlas segmentation method for the 288 

segmentation of the hip and thigh muscles from CT images, achieving mean DSC values of 289 

0.89, 0.82 and 0.64 for GMAX, GMED and GMIN respectively, and 0.92, 0.87 and 0.70 when 290 

using a computationally demanding multi-stage method. Baudin et al (40) reported a median 291 

DSC values of 0.80 for the segmentation of TFL from MRI but with high variability, including 292 

cases with very low DSC values (from 0.1 to 0.5). IMF was measured only in the first of these 293 

works, however the authors used an intensity-based method from T1-weighted images, which 294 

is not quantitative as our FF measurements from Dixon images, and therefore its accuracy 295 

cannot be quantified. 296 

4.3 Differences between Healthy Volunteers and Patients 297 

When comparing the HV with the patients group, we observed a considerable increase of the 298 

FF in the four abductor muscles for the patients group for both manually and automatically 299 

segmented images. This is concordant with data on FF measurement of thigh muscles, which 300 

has shown a correlation between FF and muscle health (3, 6, 41). In this preliminary study, we 301 

present and evaluate a method that can accurately measure FF in the abductor muscles to 302 

compare two different groups of individuals. The increased FF levels in the patient group could 303 

be due to a reduced level of mobility, but also because of age differences between the two 304 
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groups, as fat infiltration in the thigh and calves has been associated with sarcopenia and aging 305 

(3, 6, 31). 306 

4.4 Differences between Muscles 307 

In the HV group, the fat content in GMAX was higher than in the other abductor muscles and 308 

this was observed equally for both the automated and manual segmentations. The higher IMF 309 

in GMAX can be also noticed by visual inspection in Figure 8. GMED and GMIN had similar 310 

FF values, which is not surprising as they are functionally equivalent and have similar 311 

characteristics. On the other hand, GMAX, which is a powerful extensor of the hip, has a 312 

different functionality and fibre composition than the other gluteal muscles (42), and this could 313 

explain the difference in FF values. Differences in IMF content within a muscle group have 314 

also been detected in the calves (29, 31, 43). 315 

4.5 Fat Fraction vs Volume 316 

FF proved to be a suitable metric for automated and quantitative assessment of muscles. 317 

Another potential metric to automatically evaluate individual muscles is volume (44, 45), 318 

however the measurement of volume requires a higher accuracy as changes in muscle size are 319 

much smaller between healthy subjects and patients (46, 47) than for FF. An additional 320 

advantage of FF is that it is independent of the subject size and hence suitable for establishing 321 

baseline values for healthy subjects. 322 

4.6 Limitations 323 

A limitation of the present method is the small number of patients included in the atlas library, 324 

which had impact on the FF accuracy for this group. Increasing the number of subjects in the 325 

atlas library could also overcome the lower accuracy in the TFL muscle by accounting for the 326 

greater anatomical variability of this muscle. 327 
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A second limitation of this work is the inclusion of only patients with OA. Patients with more 328 

severe disease would present a higher muscle fat infiltration that could involve a greater 329 

proportion of the full muscle. This would present a greater challenge for the multi-atlas 330 

segmentation algorithm and demand the introduction of new strategies to address their 331 

automatic segmentation. 332 

5. Conclusion 333 

We present a multi-atlas based method that automatically estimates FF in the hip abductor 334 

muscles from Dixon MR images, as a measure of fat infiltration. The method showed very 335 

good accuracy and agreement with the FF from manually segmented images. The error in the 336 

FF measurements was low. The mean FF in the hip abductors was considerable higher in a 337 

small group of orthopaedic patients than in healthy volunteers. This solution adds a further tool 338 

to enable clinicians, physiotherapists and sport scientists to measure and monitor the results of 339 

their various surgical and exercise interventions aimed at the rehabilitation patients with 340 

musculoskeletal disease.  341 

  342 
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Appendix A – Library Size and Atlas Selection 476 

The library size and number of selected atlases for label fusion and propagation was optimized 477 

by comparing mean (±SD) DSC values for different configurations. Library sizes from 8 to 17 478 

atlases were evaluated, where for the case of size 17, the effective size of the library was 16 as 479 

each case to be segmented was removed from the library before running the segmentation. 480 

When incrementing the library size, first the 10 HV scans were used, followed by the patients 481 

with highest BMI (as the HV had a lower BMI) and keeping gender approximately balanced 482 

For each library size, different number of selected atlases for label propagation and fusion were 483 

compared. In Figure A.1, the mean (±SD) DSC values for all the muscle labels are plot for 484 

different library sizes and number of selected atlases. We selected a library size of 12 atlases 485 

and the use of the 5 most similar atlases in the label fusion as the optimal configuration since 486 

there were only marginal gains when increasing the library size and it came at the cost of higher 487 

segmentation times (computation times are approximately proportional to the number of atlases 488 

in the library).  489 

    490 
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Tables 491 

 Volunteers N Age 

[years] 

Group 1 

Healthy 

Volunteers 

Female 6 31.2 

(20-43) 

Male 4 27.0 

(22-35) 

Group 2 

Patients 

Female 4 60.5 

(37-77) 

Male 3 64.0 

(45-75) 

Table 1. Demographics of the healthy volunteers and patients group. The age values 492 

correspond to mean (min-max) values. 493 
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   GMAX GMED GMIN TFL 

      Manual Automated Manual Automated Manual Automated Manual Automated 

Healthy 

Volunteers 

Fat 
Fraction 

[%] 

Mean 

(±SD)  

19.9 

(6.0) 

19.7 

(5.5) 

12.9 

(3.0) 

12.9 

(3.0) 

14.0 

(2.8) 

14.1 

(2.8) 

15.8 

(6.8) 

17.5 

(7.7) 

Median 

(IQR) 

19.1 

(15.5-21.2) 

19.5 

(15.2-21.2) 

11.9 

(10.6-15.6) 

13.0 

(10.5-15.6) 

14.3 

(11.8-16.3) 

14.7 

(11.4-16.0) 

14.2 

(12.2-16.5) 

15.7 

(13.7-19.5) 

RMSE 
[%] 

0 1.3 0 0.7 0 0.8 0 2.3 

DSC 
Mean 

(±SD) 
1 

0.94 

(0.02) 
1 

0.88 

(0.03) 
1 

0.83 

(0.04) 
1 

0.81 

(0.05) 

RVD 
Mean 

(±SD) 
0 

-1.9 

(3.8) 
0 

-1.8 

(8.8) 
0 

2.7 

(12.3) 
0 

-3.8 

(19.5) 

Patients 

Fat 

Fraction 
[%] 

Mean 
(±SD) 

22.8 
(6.4) 

23.4 
(6.7) 

16.6 
(4.5) 

16.9 
(4.3) 

19.5 
(7.2) 

22.1 
(8.1) 

21.8 
(9.0) 

21.8 
(8.4) 

Median 
(IQR) 

21.8 
(16.9-28.4) 

22.6 
(16.4-28.2) 

15.1 
(12.0-20.8) 

15.4 
(13.2-21.3) 

15.4 
(14.4-26.9) 

19.4 
(15.0-29.9) 

19.7 
(13.5-27.9) 

24.4 
(12.6-27.8) 

RMSE 

[%] 
0 2.1 0 0.9 0 2.3 0 3.1 

DSC 
Mean 
(±SD) 

1 
0.91 

(0.01) 
1 

0.88 
(0.02) 

1 
0.78 

(0.05) 
1 

0.76 
(0.06) 

RVD 
Mean 
(±SD) 

0 
-2.1 
(6.5) 

0 
-5.2 
(6.7) 

0 
3.8 

(15.8) 
0 

-16.4 
(21.1) 

Healthy 

Volunteers 

+ 

Patients 

Fat 
Fraction 

[%] 

Mean 

(±SD) 

21.1 

(6.3) 

21.2 

(6.2) 

14.4 

(4.1) 

14.6 

(4.1) 

16.2 

(5.7) 

17.4 

(6.8) 

18.3 

(8.2) 

19.3 

(8.1) 

Median 

(IQR) 

19.6 

(15.9-23.3) 

20.0 

(16.0-26.4) 

13.8 

(11.4-16.0) 

14.3 

(10.9-16.5) 

14.9 

(12.0-17.3) 

15.5 

(13.9-18.6) 

14.7 

(12.9-20.6) 

16.2 

(13.5-25.6) 

RMSE 

[%] 
0 1.6 0 0.8 0 2.1 0 2.7 

DSC 
Mean 

(±SD) 
1 

0.93 

(0.02) 
1 

0.88 

(0.02) 
1 

0.81 

(0.05) 
1 

0.79 

(0.06) 

Sensitivity 
Mean 

(±SD) 
1 

0.93 

(0.03) 
1 

0.87 

(0.05) 
1 

0.83 

(0.06) 
1 

0.78 

(0.12) 

Precision 
Mean 
(±SD) 

1 
0.93 

(0.04) 
1 

0.89 
(0.02) 

1 
0.79 

(0.09) 
1 

0.84 
(0.08) 

RVD 
Mean 

(±SD) 
0 

-2.0 

(5.0) 
0.0 

-3.1 

(8.1) 
0.0 

3.1 

(13.6) 
0.0 

-9.0 

(20.9) 

Table 2. Overall results for fat fraction from manually and automatically segmented images. 495 

The mean (±SD), median (IQR) and RMSE values are reported for healthy volunteers, patients 496 

and all subjects together. The DSC, Sensitivity, Precision and RVD values for the segmentation 497 

performance are also reported. 498 

 499 

 500 

 501 

  502 
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Figures 503 

 504 

Figure 1. Flowchart describing the procedure to implement and evaluate our method for 505 

automated measurement of fat fraction in the hip abductor muscles. 506 
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 507 

Figure 2. Estimation of fat fraction in the hip abductors muscles from a Dixon scan. The in-508 

phase image is used in the segmentation of the hip abductors, which can be done manually or 509 

automatically. A FF image is obtained from the fat and water Dixon images. For each 510 

segmented muscle, its label is applied as a mask to the FF image and the mean FF is estimated 511 

within the mask voxels. 512 
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 513 

Figure 3. Boxplots of the FF in each of the hip abductor muscles for 17 cases (34 muscles). 514 

The FF boxplots from the manually and automatically segmented are shown next to each other 515 

for each muscle. 516 
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 517 

Figure 4. FF in each of the hip abductor muscles from automated segmentations plotted against 518 

FF from manually segmented images. A different marker is used for each muscle. The case for 519 

automated=manual is shown in a dashed line and a liner regression fit to the data in a solid line. 520 

 521 



32 
 

 522 

Figure 5. Mean (±SD) of DSC, Sensitivity and Precision segmentation performance metrics 523 

for GMAX, GMED, GMIN and TFL. 524 
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 525 

Figure 6. Bland-Altman analysis of the FF for each muscle comparing automated and manual 526 

segmentations. On the x axis the mean FF for each case and in the y axis the FF discrepancy 527 

between automated and manual segmentations. The HV cases are with crosses, while the 528 

patients with circles. 529 

 530 

 531 

Figure 7. Boxplots of FF in each muscle for the HV and patients groups from a) manually and 532 

b) automatically segmented images. 533 
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 534 

Figure 8. Example of FF values in 2 cases from the HV group (A and C) and 2 from the 535 

patients group (B and D). The FF values from the manual and automatically segmented 536 

images are shown for every muscle (Manual/Automated). The labels for each muscle 537 

correspond to the automated segmentation.  538 
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 539 

Figure A.1. Mean (±SD) DSC values as a function of the number of selected labels for label 540 
fusion, for different library sizes. 541 

 542 


