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Abstract

Iterative screening is a process in which screening is done in batches, with each batch filled by using machine learning to
select the most promising compounds from the library based on the previous results. We believe iterative screening is
poised to enhance the screening process by improving hit finding while at the same time reducing the number of compounds
screened. In addition, we see this process as a key enabler of next-generation high-throughput screening (HTS), which
uses more complex assays that better describe the biology but demand more resource per screened compound. To
demonstrate the utility of these methods, we retrospectively analyze HTS data from PubChem with a focus on machine
learning—based screening strategies that can be readily implemented in practice. Our results show that over a variety of
HTS experimental paradigms, an iterative screening setup that screens a total of 35% of the screening collection over as
few as three iterations has a median return rate of approximately 70% of the active compounds. Increasing the portion
of the library screened to 50% yields median returns of approximately 80% of actives. Using six iterations increases
these return rates to 78% and 90%, respectively. The best results were achieved with machine learning models that
can be run on a standard desktop. By demonstrating that the utility of iterative screening holds true even with a small
number of iterations, and without requiring significant computational resources, we provide a roadmap for the practical
implementation of these techniques in hit finding.
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Combining these two developments requires new methods
that allow more efficient use of time and resources.

An iterative approach can be used as an alternative to the
brute-force approach of screening the full library.’ In iterative
screening, the results from the fraction of the library so far
screened are used as the input to a machine learning agent,
which generates predictions that are used to select the next
screening subset.’ Iterative screening has been shown

Introduction

The current drug discovery paradigm is, to a large extent,
focused on high-throughput screening (HTS), an approach
in which large libraries of compounds are screened against
the target of interest to identify suitable starting points for
development.'? The hit rate in a typical HTS is relatively
low, typically less than 1% in most assays,’ requiring large
compound libraries to generate a sufficient number of hits
for drug development programs to progress. The size of

these libraries results in a high cost of screening as well as
long lead times for campaigns. It is not uncommon for a
screening campaign’s costs to run into the hundreds of thou-
sand dollars.

With the advent of more disease relevant, but also more
complex, phenotypic readouts in screening,* the cost per
screened compound has often increased. In our experience,
a cost in excess of $1.50 per well is not uncommon. Clearly,
there is a need for methods that increase the return rate for
these screens. In addition, more chemical space than ever is
now easily available for purchase, and there is a desire to
query an ever-increasing amount of chemical matter.
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Table |. PubChem HTS Data Sets Used in This Study.

Number of Active Total Number of
PubChem AID Compounds Compounds Usage Target Technology
596 1391 69,668 Development MAPT Fluorescence
628 2179 63,656 Development CHRMI Fluorescence
893 5649 73,912 Development Hadh2 Fluorescence
894 6428 148,481 Development HPGD Fluorescence
938 1794 72,026 Development TSHR Fluorescence
995 707 70,898 Development MAPKI AlphaScreen
449739 4230 104,728 Development CACNAIH Calcium fluorescence
624255 4582 76,537 Development Trypanosoma cruzi proliferation Luminescence
1345083 6153 93,211 Development Tox, HEK 293 Cell Titer Glo
598 5142 85,200 Validation H69AR inhibition Cell Titer Glo
488969 2166 105,151 Validation Grm8 Calcium fluorescence
1259354 1804 75,924 Validation ILIRLI AlphaLISA

previously to greatly enhance the efficiency of HTS.” A
plethora of different approaches for iterative screening have
been reported, and a detailed review is available elsewhere.’

An iterative approach has previously been impractical
because of the high labor costs associated with manually
cherry-picking compounds from a screening deck, but recent
advances in screening automation have made custom selec-
tion of compounds more broadly feasible, paving the way
for artificial intelligence in the form of machine learning to
drive the screening decisions. There is also an intrinsic trad-
eoff between the optimal number of compounds selected for
the next iteration for the machine learning agent (ideally, it
would operate with a iteration size of one, updating the
model and improving its predictive power with the results
from a single compound) and the practical feasibility of the
screen. Although some efforts have been made previously to
streamline this process, for example, through the picking of
plates rather than compounds,® there is a need for a thorough
evaluation of these methods in a practically feasible setting.

Earlier studies have shown that iterative screening can
greatly improve the efficiency of screening, with a high por-
tion of all active compounds found while screening only a
small part of the library. In this study, we build on these
previous results and discuss how these methods can be
practically applied. We investigate both the influence of dif-
ferent machine learning algorithms and the effects of limit-
ing the number and size of iterations to what we believe is
practically feasible in most modern lab settings.

Materials and Methods
HTS Data and Compound Representation

HTS data sets were downloaded from PubChem and used as
provided after removal of duplicated compounds IDs.” We
selected the data sets to have no fewer than 50,000 tested
compounds and to represent a diverse set of assay technologies

and targets. Compounds were assigned an active or inactive
label based on the PubChem annotations; any ambiguous
compounds were labeled inactive. The data sets used in this
study are listed in Table 1.

Compounds were represented using three different
methods: extended connectivity fingerprints,'® chemical/
physical descriptors, and molecular graphs. The combina-
tion of fingerprints and chemical/physical descriptors
were used to train all methods except for the graph convo-
lutional networks that used the molecular graphs. The fin-
gerprints were 1024-bit Morgan fingerprints with radius 2
from RDKit.!"" Ninety-seven chemical/physical descrip-
tors were calculated with the RDKit as well, and these
descriptors have previously been described and used with
good results.!?> Molecular graphs were constructed as
PyTorch tensors.'3 Each node (representing an atom) had
75 features.'*

To evaluate the diversity of the hits, generic Murcko
scaffolds were calculated using the RDKit (MurckoScaffold
module). Generic scaffolds ignore atom type and bond type
when identifying the scaffold.

Machine Learning Methods

We applied a range of different machine learning algo-
rithms: random forest (RF),'S support vector machine
(SVM),'® light gradient boosting machine (LGBM),'” deep
neural network,'® and graph convolutional neural network.
All algorithms were implemented in Python using scikit-
learn,'” lightgbm, PyTorch, and PyTorch Geometric.

For RF, SVM, and LGBM, a simple hyperparameter tun-
ing was completed using scikit-optimize.?’ Deep learning
models were hand tuned with early stopping implemented
on test/train loss curves. Detailed parameters used for the
respective algorithm are shown in Supplementary Table
S1. A central theme of HTS data is an extreme data imbal-
ance, with active compounds composing a minority of all
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Figure |. Mean recovery of active compounds versus
percentage of library screened for different machine learning
methods. An initial iteration of 10% were followed by steps of
5%. Shaded areas show the 68% confidence interval.

training examples.?! This was addressed by adjusting the
loss contributions of each example.

Iterative Screening Strategy

Each experiment starts with the initial iteration, consisting
of 10% or 15% of the compound library selected using
LazyBitVectorPick from RDKit’s MaxMinPicker module,??
which picks a diverse set of compounds from a random
starting point. Based on the results of the screen on this ini-
tial compound set, a model is trained and used to predict the
hit probability for remaining compounds in the library. This
prediction is used in selecting the set of compounds for the

next iteration. We evaluated iteration set sizes of 5% and
10% of the total library. Following each such iteration, the
model is updated with the new information, and new pre-
dictions are made to select the next set of compounds.

After training on labeled data, models were used to gen-
erate probabilistic predictions for the activity of remaining
unlabeled compounds. These predictions were ranked from
high to low. To generate the list of compounds to be tested
in the next iteration, a selection strategy operates on the
ranked compounds. This strategy has two components. The
first exploits the predictions to choose the compounds most
likely to be hits for the next round of screening. The second
explores the remaining compounds in the library to expand
the model’s understanding of the behavior of untested com-
pounds by randomly selecting compounds from this pool.
For a given iteration with size X, the exploitation sample is
of size 0.8X, and the exploration sample makes up the
remaining component.

To estimate the robustness of the strategy, the entire iter-
ative screening method was repeated three times for each
data set, each time with different random starting points.

Results

Based on 10% of the library as the initial batch, we evalu-
ated the ability of different machine learning algorithms to
recover actives across the nine different development data
sets (Table 1). In each step, the algorithms selected an addi-
tional 5% of the library. The average retrieval is shown in
Figure 1.

The retrieval of active compounds at 35% and 50% of
the library is shown in Figure 2. These results indicate that
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Figure 2. Percentage actives recovered with the respective machine learning algorithms at 35% (left) and 50% (right) of the library
screened. An initial iteration of 10% was followed by steps of 5%. Plotted data include all three repeats for each data set.
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Figure 3. Mean recovery of active compounds versus
percentage of library screened for different machine learning
methods. An initial iteration of 15% was followed by steps of
10%. Shaded areas show the 68% confidence interval.

random forest had a slightly better performance on average
across all data sets, retrieving a median of 78% of the active
compounds (a full table of the average and median recovery
is provided in the supplementary information).

Some variability between the different data sets was
observed, with the best performing reaching 80% of actives
recovered at 35% of the library screened and the worst only
55%. However, this lower recovery was observed for only
one of the nine data sets (AID_628), which can be more
clearly observed in Supplementary Figure S1.

To investigate whether the number of iterations could be
further reduced, we applied a strategy screening that used
an initial batch of 15% of the library followed
by two additional iterations of 10%. Again, RF was the
best-performing algorithm, recovering a median of 71% of
the active compounds at 35% of the library screened
(Figure 3).

We also used three additional data sets (Table 1) to vali-
date the best-performing setup (RF). The results confirmed
the previous results with an average retrieval of 71% of the
active compounds at 35% of the library screened when
using a 10% of the library as the initial iteration followed by
additional iterations of 5%. For these data sets, we also cal-
culated the recovery of Murcko scaffolds® to evaluate the
hit diversity (Figure 4). The percentage of scaffolds recov-
ered closely followed the recovery of active compounds.

Discussion

Our results indicate that HTS can be greatly enhanced by
the addition of iterative screening, in line with what has
been shown previously.’ In our hands, the hit rate in the
iterative screening was just greater than twice that of nor-
mal (random) screening, recovering a median of 78% of the

Figure 4. Recovery of Murcko scaffolds on the test data sets,
three replicates were performed each with a set of starting
compounds selected with LazyBitVectorPicker using a random
starting seed. An initial iteration of 10% was followed by steps
of 5%.

active compounds when 35% of the library had been
screened. We chose to focus on 35% of the library because
this is a small enough fraction to make a large impact on the
overall screening burden but at the same time allows for the
identification of a large portion of the hits in our experi-
ments. Evaluation of the hit diversity in terms of Murcko
scaffolds also showed that we recovered diverse hits.

We wanted to design the approach to minimize the num-
ber of iterations required as this was deemed to pose the
biggest practical limitation to the implementation of itera-
tive screening. Based on our experience, up to three itera-
tions is manageable without causing too much additional
work in the form of compound picking and plating. This is
fewer iterations than has been reported in most other itera-
tive screening studies,>’* although some examples exist.?
Using these settings, screening an initial 15% of the library
followed by two additional iterations of 10%, we demon-
strate that up to about 70% of the active compounds can be
recovered while screening only 35% of the library. This rep-
resent a major saving of both cost and effort, especially for
more advanced and costly assays, and it represents a level
of improvement that, in our opinion, enables many more
complex assay setups and provides the potential for better
exploring chemical space.

Although smaller iterations give a higher retrieval of
active compounds (78% vs. 71% when using 5% and 10%
of the library in each iteration, respectively), we believe that
three iterations of 15%, 10%, and 10% is a reasonable trad-
eoff in most settings. However, if maximal performance is
sought, reducing the number of compounds screened in
each iteration and increasing the number of iterations is
recommended.
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Similarly, if the objective is to reduce the number of
screened compounds as much as possible, an even smaller
library fraction should be considered. However, for these
applications, other considerations become important, such
as the diversity of the identified hits. Screening of a very
small fraction might risk compromising the hit diversity
despite enrichment of the total number of actives.

Clearly, these methods can be used for in-house com-
pound collections, but perhaps more excitingly, they can be
used to select compounds for each iteration to be purchased
from a vendor catalogue. This not only circumvents the
need for an in-house library and automated compound plat-
ing, making screening more accessible to academic (or
other resource constrained) groups, but also unlocks access
to a much larger chemical space for compound picking. The
downside to using an external supplier is the lead time to
source the new plates, resulting in a delay between itera-
tions of up to a few weeks. An additional benefit to iterative
screening methods, for both in-house and externally sourced
libraries, is the potential to include various filters when
selecting the compounds. If the library contains compounds
that are undesirable for the project at hand, these can easily
be excluded because the compounds are picked individually
anyway.

Potential practical challenges remain and must be con-
sidered before embarking on an iterative screening cam-
paign. Although good results can be obtained with just three
iterations, there are logistical challenges with screening
iteratively, as compound picking can be resource intensive
and the interim analysis of screening data will potentially
require more time for quality control and data management.
If the lead time to produce the next iteration of plates is
long, for example, if the compounds are ordered for each
iteration, there is also a need for a process to maintain or
reinstate cell cultures and to monitor assay performance.
Although these are real issues, we believe that the increase
of more cost-intensive assays will alter the balance in favor
of iterative screening as compound-handling costs become
dwarfed by other costs. In addition, the time requirement
for some assays will be such that a full HTS cannot be
enacted.

Throughout the iterative screening process, monitoring
the process and evaluating whether the screening is on track
are key. Because the difficulty in hit finding varies for dif-
ferent targets (variable hit rate), it is challenging to know a
priori if sufficient hits will be generated for a machine
learning approach to be efficient. For example, if after the
first iteration of screening no hits have been identified, we
would recommend either stopping the screening efforts or
committing to screening the remainder of the library. An
alternative approach is to try to leverage the continuous
assay readout for machine learning, as there are examples
of iterative paradigms using weak signals in the screening

data to enrich actives in subsequent iterations.?® The perfor-
mance of the iterative process can also be monitored and
compared with the initial hit rate of the first batch; if the
second iteration does not appear to deliver an increased hit
rate, a switch to a full screen can be enacted.

Rewardingly, our experiments show that the method is
not that sensitive to the selected machine learning algorithm
(Figures 1 and 2). However, on average, RF had slightly
better performance across the data sets. Recently, there has
been substantial interest in deep learning methods for vari-
ous predictive tasks, including applications in drug discov-
ery.”’ Although these methods might improve the predictions
in certain settings, our results show that a deep learning
method does not necessarily produce better results than
more light-weight machine learning algorithms. This is, in
many ways, good news, as methods such as RF are much
faster to train and require less specialized knowledge to
implement. Although we make no claims to have discov-
ered the optimal method for iterative screening, the perfor-
mance observed is more than sufficient to warrant the use of
iterative screening. The method suggested in this article is
able to retrain and predict the compounds for the next itera-
tion in a matter of a few hours on most modern computers.

Iterative screening methods are sometimes not adopted
because of concerns that hits will be missed when the whole
library is not screened. Although this might be correct if all
compounds that could ever be accessed were contained in
the library, if other compounds could be considered, an iter-
ative screening approach screening the same number of
compounds as the initially considered library would almost
certainly be far superior. Indeed, it is better to understand
the benefits of iterative screening in terms of cost per hit.
For any given budget, this method returns more than double
the number of hits than can be expected using today’s HTS
approach. This increased efficiency in terms of dollars per
hit offers major benefits to small or resource-limited organi-
zations. If a smaller number of compounds are screened
with higher efficiency across an entire organization, that
organization can pursue more programs with the same bud-
get (in theory tripling the number of targets screened) while
also significantly reducing the depletion of the compound
library.

In conclusion, we show that iterative screening has
matured to a point at which it is practically feasible to
implement in the screening organization. Using well-estab-
lished machine learning approaches, iterative screening can
deliver significant boosts in screening efficacy and unlock
more advanced and costly assays for large-scale screening.
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