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The shipping industry faces a large challenge as it needs to significantly lower the amounts of Green House Gas emissions at the same 

time as it is expected to meet the rising demand. Traditionally, optimizing the fuel consumption for ships is done during the ship design 

stage and through operating it in a better way, for example, with more energy-efficient machinery or optimizing the speed or route. 

During the last decade, the area of machine learning has evolved significantly, and these methods are applicable in many more fields 

than before. The field of ship efficiency improvement is by using Machine Learning methods is significantly progressing due to the 

available big volumes of data from online measuring, experiments and computations. This amount of data has made machine learning a 

powerful tool that has been successfully used to extract information and complex patterns that can be translated into attractive ship 

energy savings. This article, therefore, presents an overview of past history, current developments, and emerging opportunities of 

Machine Learning for ship efficiency. This article covers the fundamentals of Machine Learning and discusses the methodologies 

available for ship efficiency optimization. Besides, this article reveals the potentials of this promising technology and future challenges. 
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INTRODUCTION 
About 70% of the Earth's surface is covered by water, and 

approximately 90% of all transports are waterborne. In the long 

term, maritime transport will still be the most common option for 

goods, as marine fuels are much cheaper compared to other main 

transport modes, and the amount of cargo can be carried on a ship 

is comparable to 2000 trucks, or 2500 airplanes, or 225 trains 

(Stamatopoulou and Psaraftis 2013). However, for the year 2012, 

global shipping emissions were approximately 938 million tonnes 

CO2 and 961 million tonnes CO2e for GHGs combining CO2, CH4 

and N2O; This signifies around 2.2% of global anthropogenic 

Greenhouse Gases (GHG) (Smith et al. 2014). By 2050, the 

maritime transport segment needs to reduce its total annual GHG 

emissions by 50% compared to 2008 to be in line with the global 

GHG reduction target to limit the global temperature rise to no 

more than 2°C above the pre-industrial level (Cames et al. 

2015). With the trend of global warming, the dominate role of 

waterborne transport means great importance to optimise 

maritime efficiency, thus achieve green shipping. 

Optimising maritime transport has a long history and been an 

ongoing task. Since hundreds of years ago, naval architects have 

started to aspire better hull forms so the ships would feel less 

resistance when operating in water. Although those approaches 

are mainly empirical and based on simplified classic physics, they 

did establish the fundamental theories of naval architecture, 

significantly improved hull design and brought up several 

centuries of maritime blossom. This is then accompanied by the 

optimisation of marine engines after the industrial revolution; by 

improving the engine efficiency, less fuel would be required.  

 

More recently, with the development of computer technique, ship 

design becomes viable using the Computational Fluid Dynamics 

(CFD) method to produce highly realistic sailing simulations 

(Jasak 2017). At the same time, enhancement in satellite 

observation has allowed ships to plan their voyages based on 

weather conditions, which has been improving maritime 

sustainability and safety by always choosing an optimised route. 

During the last decade, many data management frameworks 

supporting distributed storage have been developed. Following 

this big data trend, Machine Learning (ML) has stepped into the 

shipping industry and is transforming it in a way that has never 

been seen before. Big data in this field has been established based 

on Geospatial Data Systems such as Copernicus Marine Service 

(Schuckmann et al. 2018). Those systems integrate historical 

weather data and provide future projections to support voyage 

planning. On top of that, ship fuel consumptions corresponding 

to specific weather conditions can also be recorded. The amount 

of data may no longer be handled together by traditional manual 

methods; instead, ML can help to ascertain the rules within and 

more importantly it gives the chance to give integrated 

operations. Subsequently, ML analyses can point out ways to 
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improve shipping efficiency and reduce emissions. Moreover, 

this process can be automated along with the update of data in 

real-time. 

 

 
Fig. 1 : An conceptional illustration of big-data-oriented shipping 

(CIAOTECH Srl 2019). 

 

Despite the great potential of ML in the shipping field, it may 

sound fearing for people not from a Computer Science 

background to conduct relevant research. In such a context, this 

paper reviews how ML has been applied in this field and has 

facilitated a green shipping industry. As demonstrated in Fig. 1. 

the concept of machine learning in the shipping industry relies on 

a data stream from and to the ships, which is analysed onshore 

(CIAOTECH Srl 2019). It covers relevant applications in naval 

architecture, marine engine design and route planning. Since it is 

a cross-discipline work between Ocean Engineering and 

Computer Science, the present work provides an overview for 

scholars from different fields to better understand the mechanism 

and foresee future research opportunities. As a result, this work 

aims to promote the advancement of ML in waterborne, thus 

towards achieving a zero-emission future. 

 

 

MACHINE LEARNING FUNDAMENTALS 
ML has demonstrated to be a feasible alternative to solve 

conventional engineering problems when development cost and 

time are constraints. In addition, it has demonstrated to be 

effective in solving extremely complex engineering problems that 

the current analysis methods cannot solve.  

According to (Simeone 2017), Machine Learning can be 

implemented when the following applies: 

● ‘The task involves a function that maps well-defined 

inputs to well-defined outputs; 

● Large data sets exist or can be created containing input-

output pairs; 

● The task provides clear feedback with clearly definable 

goals and metrics; 

● The task does not involve long chains of logic or 

reasoning that depend on diverse background 

knowledge or common sense; 

● The task does not require detailed explanations for how 

the decision was made; 

● The task has a tolerance for error and no need for 

provably correct or optimal solutions; 

● No specialised dexterity, physical skills, or mobility is 

required’. 

 

Depending on how the learning task is achieved, machine 

learning algorithms can be classified into Supervised Learning, 

Unsupervised Learning, Semi-supervised Learning and 

Reinforcement Learning. In ML a feature is an input to the model, 

that is a variable which is used for training and for feeding the 

trained model. A label is a true value, what is used for the training 

of the model. (Raschka and Mirjalili 2017). 

 

The term supervised learning represents a tool to classify and 

process data in a relatively simple way. A supervised learning 

algorithm relies on a set of input dataset whose characteristics, 

output and relationship are known and also requires experience 

from the ML-engineer. A learning algorithm then trains a model 

to generate a prediction for the response to new data or the test 

dataset. The most known techniques are linear regression and 

classification techniques. Linear regression is typically used to 

predict relationships between quantitative data. A very common 

example that is used to illustrate its capability is the linear 

relationship between a radiation therapy and a tumour size. The 

classification techniques, on the other hand, predict a relationship 

by analysing data and distinguishing patterns. This technique is 

typically used to predict whether a credit card transaction is 

fraudulent or not.  

 

There are two classes of models in supervised learning, a 

parametric model is when the model has a fixed number of 

parameters and a non-parametric model the parameters grows 

with the amount of training data. Parametric algorithms include 

the linear regression, logistic regression, least shrinkage and 

selection operator regression (LASSO) and linear discriminant 

analysis (LDA), where non-parametric models include gaussian 

process (GP) and Support Vector Machines (SVM). Parametric 

models are faster, but with less flexibility in comparison with 

non-parametric. Linear regression is the linear relationship with 

the model features, it is common to use the ordinary least squares 

method for fitting the model, where each data point residual 

(distance between model fit and training data) is squared.    

Logistic regression is a model that uses a logistic function instead 

of a linear function. The LASSO regression uses shrinkage 

methods to minimize the needed inputs (features) for the model 

response (prediction), and features that have their regression 

coefficient shrunken to zero are excluded.  An LDA calculates the 

mean and variance for each dimension, and is often used in pre-

processing, feature extraction and dimensionality reduction. A 

GP is a non-parametric approach using Bayesian inference over 

many possible functions, which means no prior assumptions are 

made on the functions for training. The SVM works by separating 

the decision boundaries by hyperplanes (support vectors), and the 

most simple SVM is when a two-class data is separated by a linear 

hyperplane (Murphy 2012; Gareth et al. 2013) 
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There are a vast number of different algorithms for machine 

learning, as an example, the popular Python ML-library Scikit-

learn comprises 17 different linear regression (Pedregosa et al. 

2011). Depending on how large the data are, and how strong is 

the connection between the data and the output, a model can be 

chosen out of the experience of the data scientist.  

 

As demonstrated in Fig. 2, the process of ML requires several 

steps depending on the task and type of data. If the amount of data 

is too small it is often not feasible with machine learning, but 

instead it is better with physical modelling. Also, if the model is 

going to be used for classification, clustering or regression, it 

limits the choice of model. In essence, all algorithms are trained 

by minimising the error of the predicted value with the training 

data. 

 

Generally, if the amounts of training data are growing, the 

applicability of artificial neural networks (ANN) demonstrate 

better accuracy. An ANN is inspired of the neurons in a biological 

brain. ANN’s have proven to be successful in many areas, such 

as natural language processing and image classification. It 

consists of units called perceptions that act as thresholds to an 

input, the perceptron can receive multiple inputs, and these are 

multiplied by a weight and passes an activation function. An 

ANN is trained by optimisation of the weights of the perceptrons. 

The network can consist of several layers, which is how deep the 

network is. If the network is larger it generally needs more data 

for training. Generally, a Deep neural network (DNN) is where 

there are several hidden layers between input and output layers 

(Raschka and Mirjalili 2017). 

 

The term unsupervised learning, however, finds structures in data 

which for multiple reasons has not been labelled before. This fact 

makes unsupervised learning attractive in applications where 

there is a large amount of data or where data labels are simply not 

available. The main techniques used in unsupervised learning are 

principal component (used to group datasets with shared 

attributes to extrapolate other data relationships) and cluster 

analysis (which analyses and identifies relationships in the input 

data which are then extrapolated to a new dataset). Principal 

component analysis (PCA) is a commonly used technique for 

dimensionality reduction, in unsupervised learning and in 

exploratory data analysis. It can help identify the correlation 

between features, and works by finding the maximum variance in 

high dimension data and projecting this to fewer dimensions. 

When having a large number of correlated variables a PCA can 

explain these with fewer dimensions. The K-nearest neighbour 

(KNN) is a non-parametric model that can be used as a classifier 

for clustering data, it looks at the points which are closest to the 

nearest centroid (Gareth et al. 2013). 

 

Semi-supervised Learning, on the other hand, can be considered 

a hybrid between supervised and unsupervised learning which 

combines a small amount of labelled data with a large amount of 

unlabelled data which is typically used during the algorithm 

training. The labelled data improves the learning accuracy 

without the necessity of producing a large amount of data that are 

required in a supervised learning algorithm. 

 

As there are numerous different algorithms and frameworks to 

use in the field of ML, the concept of automated Machine 

Learning (AutoML) is growing, these are tools that optimise on 

both the pre-processing, the model selection as well as the tuning 

of hyper-parameters. There are several opensource AutoML 

tools, tree-based pipeline optimisation tool, Autosk-learn, 

AutoWeka and more (Cortes et al. 2013; Olson et al. 2016; 

Kotthoff et al. 2017).  

 

Another approach, called Reinforcement Learning enables an 

algorithm to learn by using a continuous trial and error approach. 

A reinforcement learning algorithm can consist of several 

elements, reward signal, a policy value function and a sometimes 

a model of the environment. The policy is the rules defining the 

actions of the model, the reward signal is what defines the goal of 

Fig. 2: A classification map of various ML techniques and their application examples 

 (reproduce based on information provided on proft.me). 
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the learning problem and the value function is the total reward 

over time. Q-learning is one of several reinforcement learning 

algorithms that optimise the learning outcome by random values 

for the policy, that means actions are off-policy (Sutton and Barto 

2018). This technique is particularly important in the area such as 

active flow control and ship design, which could be used for 

improving the efficiency of ships. 

 

 

APPLICABILITY 
Naval Architecture Design 
In terms of naval architecture, the design of a vessel constitutes 

an essential task to achieve superior hydrodynamic performance 

to minimise fuel consumption. Designing a ship relies on 

sophisticated experimental and computational techniques for 

hydrodynamic performance evaluation of multiple hull sizes and 

shapes; which at the same time require significant time as well as 

expertise setting up the complex problem physics. Traditionally, 

naval architects have obtained a ship hydrodynamic performance 

guidance from existing hull-forms. Linear regression analyses 

have been typically used at the early stages of the design to select 

the hull-form geometric coefficients based on the performance of 

existing vessels. This approach, however, may lead to multiple 

disappointments at later stages of the design since a regression 

approach does not consider the non-linearity relationship between 

performance and geometry. During a later optimisation process, 

which is a critical step in improving the performance of vessels, 

ship designers rely on their personal experience assisted with the 

direct simulations and experiments results. However, this 

traditional approach largely depends on the designer’s skills and 

could make it hard to find the most optimal configuration without 

spending a significant amount of time testing multiple geometry 

combinations during the optimisation phase.  

 

A strong impetus has aimed at turning a tedious ship design into 

a much simpler process. These attempts have been facilitated the 

fast development of artificial intelligence together with the 

availability of High-Performance Computers (HPC); so now a 

semi-automatic ship design process has been made a reality. The 

first applications in the area of machine learning could be 

considered the Holtrop and Mennen’s empirical algorithms which 

present a statistical method to determine the ship resistance based 

on the results of multiple model basin tests. On the other hand, 

pioneers in the area of assisted ship design were Ray and Sha 

(1994). They incorporated accepted naval architectural 

estimation methods, a decision system handler and a non-linear 

optimisation tool with a decision system which identifies the 

weights corresponding to different objectives based on the 

relative importance of the objectives using multi-attribute 

decision-making methods. This approach was used during the 

containership design. However, accurately modelling of non-

linear hydrodynamic phenomena for the purposes of ship design 

is a highly sophisticated task which requires looking into several 

design variants to account for the hydrodynamic performance 

fully. Neural networks, therefore, are applicable for the purpose 

of modelling a phenomenon in which mathematical nature cannot 

be determined, or in which the model is too complicated such as 

in ship hydrodynamics. However, the development of an accurate 

mathematical model requires a sufficient number of observation 

results for a given process so the determined relations can be used 

as a component or a block of computational models. Neural 

networks may also serve for the simplification of some earlier 

developed models in such a way that the variables left in the 

model are only those that are important for a given phase or a 

formulation of a design problem. 

 

Cui et al. (2012) proposed a Q-learning reinforcement learning 

optimisation approach which is based on the human learning 

process and that successfully introduced as a useful tool during 

the ship optimisation phase to improve the searching ability. The 

authors successfully used their reinforcement learning-based 

approach to improving the structural optimisation process of a 

bulk-carrier ship with two objectives of weight and fatigue, which 

was successfully integrated with JAVA and ABAQUS. Their 

algorithm proved to shows great potential to minimise a ship’s 

structure weight (which could be used to minimise ship’s fuel 

consumption). Cepowski (2020) investigated an ANN to estimate 

added resistance in regular head waves with the training data 

obtained through model test experiments. The study showed that 

added wave resistance values predicted by the neural network 

soundly correlated with measured data and had good 

generalisation ability during the first stages of the design to 

minimise ship hydrodynamic resistance in rough seas. However, 

it is essential to remember that the predictions of resistance are 

given in model scale, and therefore, full-scale data is still subject 

to scaling issues. 

 

Going a bit further, Yu and Wang (2018) revolutionised the ship 

design process by creating a set of complex hull forms by using a 

Principal Component Analysis (PCA) approach which generate a 

large number of derived hull forms, which were evaluated 

computationally for their hydrodynamic performance. The results 

from the process were then used to train a Deep Neural Network 

(DNN) to accurately establish the relation between different hull 

forms and their associated performances. Then, based on the fast, 

parallel DNN-based hull-form evaluation, the large-scale search 

for optimal hull forms is performed. By using this approach, the 

authors showed a novel application of machine learning which 

allows first to create an extensive database as well as get fast 

results. Additionally, Yu et al. (2019) designed an algorithm by 

predicting ship dynamics to assist the achievement of a thruster 

& mooring balanced system. 

 

Propulsion Control 
Propulsion efficiency is crucial as it governs how much fuel 

consumption can be actually converted into the ship movement, 

while this efficiency is not static, usually related in what condition 

the ship is operating. Upon such data are collected, ML can come 

in handy here to derive the relationships behind. Petersen et al. 

(2012) demonstrated the usage of ANN and GP for this purpose. 

And yet the total energy consumption of a ship is not only 

dependent on the propulsion, but also the different support 

systems that produce electricity, heating, ventilation and other 

auxiliary demands. Similarly, those relationships can be 

mailto:ucemlhu@ucl.ac.uk


A Review on Applications of Machine Learning in Shipping Sustainability SMC2020, 29 September-2 October, Houston TX  5 

*Corresponding author: ucemlhu@ucl.ac.uk (L. Huang)                                  

established; For example, Yang et al. (2018) created neural 

networks for predicting waste heat recovery performance. By 

analysing how the energy efficiency changes with environmental 

variables, different components can be designed according to 

different kinds of operation that vessels are expected to conduct. 

Another example was given by Raptodimos and Lazakis (2018), 

in which they apply ML to link monitoring data with situations 

where machinery failure could happen, thus enabling diagnostic 

purposes. 

 

Perera and Mo (2016) designed an ML-based automation system 

consisting of a power management architecture for engine and 

propulsion control systems with respect to various engine room 

operations. It achieved a coupling control of different engines’ 

power, ship speed, shaft speed and corresponding fuel 

consumptions. Meanwhile, a marine engine centred data flow 

chart has been established to handle large-scale data sets. 

Thereby, they forged a big data solution that can automatically 

improve the quality of engine strategies and advise bridge crew 

on decisions such as speed selection. Nonetheless, a gap here is 

that different ML approaches can provide notably different 

accuracies in engine performance prediction. In such a context, 

Yuan and Wei (2018) compared the outcomes of ANN and GP in 

this procedure and found out GP provides more accurate data; 

however, as Petersen et al. (2012) indicated, there still lack 

benchmarking cases that can be used to verify different methods, 

thus the conclusion of Yuan and Wei can be one case but cannot 

generally mean GP is best option to optimise shipping energy. 

Ongoing work within this area will focus on improving these 

models, considering the possibility to combine them so that 

different variables can all be dealt with their suitable ML 

methods.  

 

On the other hand, marine diesel engines operating with heavy 

fuel oil or marine diesel oil are not a viable powering solution for 

the shipping industry in terms of the required reduction in GHG 

and pollutants. There have been trends to develop green and 

renewable energies to alternatively power ships. Wu and 

Backnall (2020) designed a hybrid fuel cell and Lithium-ion 

battery propulsion system for vessels. This system achieves 

complementation between the two powering methods: since fuel 

cell has the shortcoming of slow response, Lithium-ion battery 

can cover the ac/deceleration processes; whereas Lithium-ion 

battery is very slow to refill, the fuel cell can be used as the 

primary energy source. They provided simulations to repeat 

previous voyages and proved a minimum 65% GHG emission 

reduction can be achieved by utilising the hybrid system. 

Subsequently, the next obvious question is to determine when to 

swap between the methods in a certain operation scenario. To 

address this, they applied Reinforcement Learning (Wu et al. 

2020) to allocate the optimal strategies for different scenarios. 

Nevertheless, the novel system is just applicable to coastal vessels 

committing short-distance voyages, as it is limited by the total 

amount of fuel carriage. For global cargo shipping, marine diesel 

will still be the dominant energy resource in a couple of decades, 

thus using ML methods to optimise the traditional engine 

efficiency and reduce wastes will still be a worthwhile research 

area. 

Maritime Operations 
In recent years, with the benefits of reducing marine incidents as 

well as optimising energy efficiencies, there have been increasing 

deployments of automated route planning which is currently 

supported by weather routing systems and radar systems. In this 

approach, environmental factors such as the wave height, 

direction, wind and currents as well as densities and temperatures 

of air and water are considered, while radars are normally used to 

identify other vessels and obstacles to secure safety. 

 

 
Fig. 3: Demonstration of variables for ML optimisation 

(GreenSteam 2019) 

 

Voyage Planning Tools (VPT) based on weather systems are 

often achieved by Ship Performance Models (SPM), where 

respond surface of ships is built for various input conditions. Such 

respond surface can be built upon empirical equations using 

extensive data from experiments or simulations, traditionally by 

regression methods, and now compatible with ML.  

 

As shown in Fig. 3, apart from hull design and engine 

performance, the efficiency of a ship is also related to its current 

trim and fouling, Also, choosing an optimised route is essential 

for time and fuel savings (GreenSteam 2019). Tillig (2020) 

proposed an SPM, which is a generic ship energy systems model 

to predict the fuel consumption under operational conditions with 

limited required input of the ship’s characteristics. The model can 

be divided into two main parts: (i) a static part for calm water 

power prediction based on empirical methods and standard 

propeller and hull series as well as the estimation of all required 

ship dimensions and properties using empirical formulas, and (ii) 

a dynamic part for the analysis of the required power under 

realistic operational conditions, including effects from wind, 

waves, current, temperature differences, biofouling and shallow 

water. Based on such an SPM, the VPT can map out the fuel 

consumption of all potential routes and choose the best one: like 

“Google Map” on oceans.  

 

The use of ML for predicting fuel consumption has been 

demonstrated in several studies. Wang et al. (2018) proposed a 

Least Absolute Shrinkage and Selector Operator (LASSO) 

regression predicting the fuel consumption for several container 

ships, with features on ship and weather data extracted from a 

fleet management system. The LASSO regression was able to 

produce better results compared to Support Vector Machines 

(SVR), ANN and GP. Meng et al. (2016) used operational data, 

based on 24 h daily snapshots, from two sister container ships and 

using regression modelling predicting the daily fuel consumption. 

Bal et al. (2016) demonstrated an ANN with training data based 
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on noon-reports from an oil tanker, which was used as an input a 

forecasting model to a decision support system. Ahlgren et. al 

(2019) demonstrated a method predicting the fuel consumption of 

a cruise ship, with an automated mechanism using noon report 

data together with logged machinery data. Gkerekos et al. (2019) 

did a comparative study of different ML methods for predicting 

fuel consumption of two different ships, and demonstrating 

results of R2 scores of ~90 % for noon report data.  

 

Liu and Bucknall (2015) designed an algorithm for planning 

routes of Unmanned Surface Vehicles (USV) that can achieve 

avoiding obstacles. They applied the Fast Marching (FM) method 

that can identify corresponding safe shipping area and forbidden 

area in real-time, to ensure the planned trajectory to not encounter 

any obstacle. The method works in both static environments (with 

natural obstacles, offshore structures etc.) and dynamic 

environments (with other moving vessels). Chen et al. (2019) 

demonstrated the usage of Reinforcement Learning to train 

USVs, in which the ships can be rewarded based on how rational 

the decisions are, and the route optimisation can be done by 

choosing the best reward value; however, their work only 

considered a static environment thus still need to incorporate a 

dynamic environment as Liu and Bucknall did. Similar examples 

can also be found using Deep Learning (see (Perera 2020)). 

 

A combination of both energy saving and obstacle avoidance has 

been done by the VPT of Li et al. (2020a) In their application, an 

SPM has been linked with ice conditions to guide ship navigation 

in the Arctic. On one hand, the VPT can choose a route with the 

least fuel consumption; on the other hand, it receives ice 

conditions from satellite to avoid encountering significant ice 

conditions such as icebergs and ice ridges. It can reroute 

automatically considering the drifting direction of icebergs. 

Following validation, the fuel consumption predicted by their 

model has agreed well with full-scale measurement data (Li et al. 

2020b). The work of Li et al. has demonstrated the excellent 

potential to apply AI technique in this area to handle the non-

negligible ice data and risks, which is motivated particularly by 

the opening of Arctic shipping routes in recent years (Huang et 

al. 2020a; 2020b). Another example of applying ML technique to 

predict ship speed in ice fields has been given by Milaković et al. 

(2019). As ship-ice interactions contain very complex physics, 

using ML in this field has revealed an advantage by using derived 

relationships rather than to run an advance simulation for every 

input condition (Huang et al. 2020c). 

 

 

DISCUSSION 
This review has presented the applicability of Machine Learning 

fundamentals and algorithms in optimizing shipping efficiency. It 

highlighted successful implementations of ML in three main 

fields, which are naval architecture, propulsion control and 

maritime operations: 

 

• In naval architecture, ML algorithms based on statistical 

regression have been traditionally used as part of the design 

process. New applications which facilitate a semi-automatic 

ship design process from a hydrodynamic or structural 

perspective have been made possible. This includes data-

driven optimisation and applied regression techniques that 

are well suited for non-linear problems which are typically 

encountered during the design of a vessel. 

 

• Propulsion control relies on machine learning algorithms to 

establish relationships of fuel consumption with engine 

powers, ship speed, shaft speed, energy wastes and weather 

data, by which an optimal propulsion setup can be advised in 

a given navigation condition. Moreover, green engine 

options such as fuel cells and batteries have been developed 

as alternatives to traditional marine diesel – they are 

optimized by ML. 

 

• From a maritime operations point of view, there have been 

increasing deployments of automated route planning which 

consider factors such as weather forecasts as well as route 

obstacles that can be encountered by ships, being governed 

an objective function of fuel consumption and sailing risks. 

These ML techniques have demonstrated to achieve 

considerable fuel savings. 

 

 

There are several other areas in shipping that can be facilitated by 

ML but not explicit in the three areas classified in the present 

paper, such as underwater vehicles, wave energy converters, 

condition monitoring and maintenance. Ports can leverage on ML 

for real time data from cargo containers, and also minimising the 

manual work of paperwork. Also, not only the fuel consumption 

but also the air emissions and underwater noise can be reduced 

by combining data from an engine performance and routes. 

 

Despite ML algorithms have demonstrated their capabilities in 

ship efficiency, traditional knowledge still dominates the 

maritime industry. One of the reasons could be that the algorithms 

firstly rely on big amounts of data while requiring high 

computational costs. The marine industry has been traditionally 

conservative and still reluctant to share data which does not 

support the data training and validation process of ML. Still, 

creating, optimising and maintaining relevant algorithms will 

require expertise and extensive human inputs, given the fact that 

errors in ship design calculations and marine operations could 

carry catastrophic consequences. Therefore, human validation 

and verification will be needed in the foreseeable future. It is also 

expected that the development of HPC resources, as well as the 

availability of the 5th generation mobile network (5G), will 

facilitate the process, particularly during route-planning that 

requires constant data transmission. In addition, ML techniques 

could be used to link this data with ship structural issues and 

safety incidents. The key to such applications will require 

advanced measurement network and sensors/monitors on ships. 

 

With large databases available to the scientific community, linear 

approaches and old-fashioned empirical functions will be slowly 

substituted by Machine Learning algorithms that consider the 

usually neglected physics non-linearity and complexity. This is 

the case of the current-in-use guideline formulae such as the 
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ITTC-57 and ITTC-78 (ITTC 2008; 2014) which calculate 

friction coefficients based on empirical results from model scale 

experiments and for old ship geometries. In addition, large 

databases could replace the simplest computations such as CFD 

resistance or self-propulsion studies which are constantly used as 

part of the evaluation of ship performance. Improvements in the 

calculation of ship hydrodynamic performance characteristics 

when using ML algorithms could be achieved by the 

implementation of the latest approaches for evaluation of ship 

flows. For example, Yu and Wang (2018) method could see 

further accuracy improvement when combined with the most 

advanced turbulence modelling approach for detailed and 

complex analyses of the flow around ships (Pena et al. 2019) 

which has shown exceptionally accuracy and reliability when 

compared to conventional RANS methods (Pena et al. 2020). Yu 

and Wang’s DNN-based method could therefore achieve higher 

accuracy if trained with enhanced CFD simulation results.  

 

Also, ship design, as still a long and complicated process, is 

expected to be slowly transitioned into an automated process 

which will just require a set of inputs to find the most efficient 

solution with little human intervention and replacing large teams. 

The industry should be aware that such a scenario would cause 

corresponding job cuts. According to a study by World Maritime 

University, the new technologies will likely result in a shift in the 

workforce, rather than a labour reduction (Schröder-Hinrichs et 

al. 2017). On the whole, ML is expected to substantially support 

shipping sustainability. 

 

Based on the above progress, there has arisen an excited scientific 

community and learners who believe that Machine Learning has 

the capability to resolve any kind of practical problem. However, 

this group of people should still be very careful, since the data-

based solution is easy to go a deviated way from classic 

mathematical and physical principles, which should still be 

prerequisite. ML efficiency and efficacy are totally dependant on 

properly selecting the algorithm and the training that is used as 

part of the process. Factors such as the quality and quantity of 

data, the desired outputs and the target function must be 

reasonably selected but those are not guaranteed, and all ML users 

should avoid the laziness of selecting an algorithm without 

sufficient data training. Demonstrating the validity of an 

algorithm should go through a comprehensive validation process 

in multiple problems and geometries to ensure that overfitting or 

underfitting is not an issue.  And yet, to date there has not formed 

conclusive options on which ML algorithm is the best for a given 

application. The development of many algorithms are still in an 

ongoing base and need extensive calibrations. A very possible 

scenario is, as Cheng et al. (2020) demonstrated, that a 

specifically optimal ML technique is a combination of multiple 

basic methods. 
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