
A Design Method for Object-Oriented Programming

Winnie W. Y. Pun

Thesis subm itted for the degree o f PhD

Department o f Computer Science
University College London

Gower Street, London WC1E 6BT

ProQuest Number: 10797824

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10797824

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

Object-oriented programming has come forth as an important programming paradigm in the

1980’s. As more and more people practise object-oriented programming, the subject of

how to design and develop a system towards an object-oriented implementation becomes

important. There is, therefore, a general demand for a design method which is specially

developed for object-oriented programming.

The theme of this thesis is to develop such a design method. The thesis starts off with a

comprehensive background on object-oriented programming and how it differs from tradi­

tional programming. It also gives a detailed analysis of why existing design methods are

inadequate for object-oriented programming. The thesis then presents the design method

which has been developed in this research. The different stages of the design method and

the various tasks that have to be performed at each stage are discussed thoroughly. The

design method also embeds a design description language which allows system designers to

communicate with each other during the design phase and this is also talked about in the

thesis.

Inheritance is regarded as an important feature found in object-oriented programming. A

design method without substantial support for inheritance is considered to be incomplete.

Therefore, a mechansim which is called the inheritance factorisation process is developed to

assist system designers to construct class hierarchies in object-oriented programming. The

mechanism has a formal model which ensures its correctness. The details of the formal

model and the issues concerning how to use the mechanism forms a crucial part of this

thesis.

To examine the performance of the inheritance factorisation process, a factorisation engine

is implemented and experiments have been carried out. To illustrate how the design method

is used in system designs, two case studies have been carried out and are presented in this

thesis.

The result of this thesis is a design method which guides system designers to organise

the design activities towards an object-oriented implementation. It also forms the basis

of future work which will lead to a computer-aided software engineering environment for

object-oriented programming.

Acknowledgements

I would like to acknowledge my indebtness to my supervisor Russel Winder who assisted,

advised and gave me tremendous support throughout this work. Without his guidance and

continous encouragement, the thesis would not have been the success it is.

The list of people who I want to thank for their help and advices in the last few years are too

numerous to list. I would, however, like to thank the following individuals in particular: John

Campbell, Nigel Chapman, Helen Sharp and Graham Roberts for their invaluable comments

on the first draft of this thesis; Simon Deal who patiently correct my usage of English in

the thesis; Vemon who, probably didn’t realised himself, first introduced the term ‘object-

oriented’ into my life; Mildred, my old friend, who never fails giving me support in good

and bad times.

Last but not least, I would like to thank Paul, my brother, who makes the past few years

more tolerable (it helps to have a brother who is also doing a PhD at the same time). In

addition, I have to thank my parents for giving me the opportunity to make this possible.

Of course, the thesis would not have seen the light of day without the financial assistance

of the Croucher Foundation and the Oversea Research Scholarship; for this I would like to

express my appreciation.

Contents

1 Introduction ... 1

1.1. The Evolution of Software Engineering ... 1

1.1.1. Programming Languages and Design Methods 4

1.1.2. The Road Towards Higher Levels of A bstraction.............................. 6

1.2. Object-Oriented Program m ing.. 7

1.3. An Object-Oriented Design M ethod .. 9

1.4. Thesis Goals .. 9

1.5. Thesis Organisation 10

2 Background ... 12

2.1. What i s ‘Object-Oriented Programming’? ... 13

2.1.1. O b jec t... 14

2.1.2. Class ... 15

2.1.3. Class Inheritance ... 16

2.1.4. A Language that supports Object-Oriented Program m ing................. 19

2.2. Designing Object-Oriented Software .. 19

2.2.1. Data Flow Design Methods .. 20

2.2.2. Data Structure Design Methods ... 22

2.2.3. Transformations of Conventional Design M ethods............................. 24

2.2.4. Entity Relationship M odelling ... 25

2.2.5. Booch and HOOD Design M e th o d .. 27

2.2.6. Mittermeir Object Oriented Software D e s ig n 30

2.2.7. O bjectO ry .. 31

2.2.8. Sum m ary .. 33

2.3. Conclusion ... 35

3 The Design Method .. 36

3.1. Basic Principles of the Design M eth o d ... 36

3.1.1. Attitudes towards D esig n .. 36

i

A Design Method for Object-Oriented Programming Winnie Pun

3.1.2. Analysis and Design 37

3.1.3. M odelling .. 39

3.1.4. Design Description Language ... 41

3.1.5. User Interface Design ... 41

3.1.6. Design in Different Problem D om ains... 42

3.2. An Overview of the Design Method ... 42

3.3. Detailed Description of the Design Method ... 44

3.3.1. The Conceptual Level ... 44

3.3.1.1. Identification of Objects .. 45

3.3.1.2. Identification of Actions .. 46

3.3.1.3. The Two Layers of the Conceptual Level 47

3.3.1.4. Object Interaction Diagrams ... 48

3.3.1.5. Levelled Object Interaction Diagrams 49

3.3.2. The System Level .. 50

3.3.2.1. The Concept of Implementation Objects 51

3.3.2.2. T h e ‘Contain’ Relationship 51

3.3.2.3. The ‘Use’ Relationship .. 53

3.3.2.4. The ‘Inherit’ Relationship.. 55

3.3.2.5. How to Proceed? .. 56

3.3.3. The Specification Level ... 58

3.3.3.1. The Class Structure C h a r t .. 58

3.3.3.2. The Message Structure Chart ... 59

3.4. Other Is su e s .. 61

3.4.1. Data Modelling in Object Oriented Programming 61

3.4.2. Cohesion and Coupling ... 62

3.4.3. Factors for a Good Object-Oriented Design .. 63

3.5. Conclusion .. 64

4 The Inheritance Factorisation Process .. 66

4.1. Background ... 67

4.1.1. Classes and T y p e s .. 67

4.1.2. Inheritance as a Design Issue ... 67

4.1.3. Inheritance in Different Domains of Discourse 68

4.1.4. Inheritance from Different Perspectives .. 69

4.1.5. The Problem in Constructing Class Hierarchies 70

4.2. The Algebraic Model for the Inheritance Factorisation Process 71

4.2.1. Basic Assumptions ... 72

ii

A Design Method for Object-Oriented Programming Winnie Pun

4.2.2. Attributes .. 72

4.2.3. Class Specification ... 73

4.2.4. The Class Hierarchy Construction P rob lem .. 74

4.2.5. Axioms for the Inheritance Factorisation Process 74

4.2.6. Class Hierarchy Expression ... 79

4.2.7. Detecting Mutiple Inheritance ... 80

4.2.8. Class Hierarchy Graphs .. 81

4.2.9. Examples to use the IFP .. 84

4.3. The IFP in Various Inheritance M odels .. 87

4.3.1. The IFP with Name-Compatibility ... 8 8

4.3.2. The IFP with Signature-Compatibility.. 89

4.3.3. The IFP with Behaviour-Compatibility .. 91

4.3.4. The IFP with Priority A ttribu tes.. 93

4.4. Applying the IFP to Systems Design .. 95

4.4.1. In Building a Class Hierarchy from Scratch ... 95

4.4.2. In Adding a New Class to an Existing Class Hierarchies 96

4.4.3. The Importance of Specifications in the IFP ... 98

4.4.4. Incorporating the IFP into the Proposed Design M eth o d 99

4.5. Automating the IFP .. 99

4.6. The Truth of the IFP .. 101

4.6.1. The Techniques of Cluster Analysis and the IFP 101

4.6.2. The Benefits brought by the EFP .. 102

4.7. C onclusion .. 104

5 A Prototype of The IFE ... 105

5.1. An Overview of the Inheritance Factorisation Engine 106

5.2. Data S tructures... 107

5.2.1. The Class Specification .. 107

5.2.2. The Class Hierarchy Expression .. 108

5.3. The Method of Factorisation ... 112

5.3.1. Factorisation Process .. 112

5.3.2. Detecting Multiple Inheritance .. 116

5.3.3. Updating Expressions with Single Inheritance Alone 117

5.3.4. Updating Expressions with Multiple Inheritance.................................. 118

5.4. Complexity of the A lgorithm ... 119

5.5. Other Components in the Automation P ro cess ... 121

5.6. Conclusion .. 121

iii

A Design Method for Object-Oriented Programming Winnie Pun

6 E v a lu a tio n ... 123

6.1. The Inheritance Factorisation Process ... 123

6.1.1. Introductory Examples ... 124

6.1.2. Miscellaneous Examples .. 127

6.1.3. Limitations of the I F P ... 135

6.1.3.1. The Requirement for a Precise Specification 135

6.1.3.2. The Practicability of the IFP .. 138

6.2. The Design Method .. 139

6.2.1. General A ssessm ent... 139

6.2.2. Comparison with Other Existing Design Methods 140

6.2.3. Evaluation by Other Users .. 141

6.3. Conclusion .. 142

7 F u tu re W o rk .. 143

7.1. Immediate Future Work ... 144

7.1.1. The Inheritance Factorisation Process ... 144

7.1.2. Usability of the Design Method ... 144

7.2. Future Work in Long T e rm .. 147

7.2.1. Computer Aided Software Engineering Environm ent........................ 147

7.2.2. The Object-Oriented D atabase ... 149

7.2.3. The Object Management System .. 150

7.2.4. The Development Toolkit for the Design Phase 150

7.2.5. Other Tools ... 153

7.3. Conclusion ... 153

8 C onclusion ... 155

A ppendix A T h e G P S u rg e ry N otes System .. 159

A ppend ix B T h e H om e H e a tin g S y s t e m .. 175

R eferences .. 191

iv

List of Figures

1.1 The Software Development C y c le .. 2

1.2 The Transformation of Different Represenation ... 3

1.3 The Two Programming Paradigms ... 4

1.4 The Evolution of Programming Languages .. 5

1.5 The Roads towards higher Abstractions .. 7

2.1 An Entity-Relationship Diagram .. 26

2.2 Graphical Notations for the Booch’s Diagram ... 28

2.3 Graphical Notations for the HOOD Diagrams ... 29

2.4 A Schematic Conceptual Model of the System’s Use Cases 32

3.1 The ‘Waterfall Model’ for the Software Development Cycle 38

3.2 The ‘Prototype Model’ of the Software Development Cycle 39

3.3 Modelling in Software Development Cycle ... 40

3.4 The Overview of the Design Method .. 43

3.5 The Two Layers of the Conceptual Level ... 47

3.6 An Object Interaction Diagram of the GP S y stem ... 49

3.7 A Levelled Object Interaction Diagram .. 49

3.8 A Levelled Data Flow Diagram .. 50

3.9 The ‘Contain’ Relationship of the Object ‘Room’ ... 52

3.10 An Object which Sends a Message to I ts e lf ... 54

3.11 T h e ‘Use’ Relationship between Objects ... 54

3.12 The Procedure suggested for the System L e v e l.. 57

3.13 An Example of a Class Structure Chart .. 58

3.14 A Message Structure Chart in the GP Surgery System .. 60

3.15 An Example of Message Structured Chart with Private Message 61

4.1 The Algebraic Structure of the I F P ... 80

4.2 The Grammar for the Parser .. 83

4.3 The Class Hierarchy Graph of Example 4.2 ... 8 6

4.4 The Multiple Inheritance Graph for Example 4.3 ... 87

4.5 The IFP in Various Inheritance Models ... 87

4.6 Type Compatibility and Conformance Rules .. 90

v

A Design Method for Object-Oriented Programming Winnie Pun

4.7 The Algebraic Specifcation for the Class ‘Stack’ ... 92

4.8 Adding a New Class as an External Node .. 97

4.9 A Restructuring of a Class Hierarchy ... 97

4.10 The Automation Process of the Inheritance Factorisation Model 100

5.1 The Input and Output of the I F E ... 105

5.2 An Overview of the Algorithm for the Factorisation Engine 106

5.3 A Typical classSpecLink.. 108

5.4 The Data Representation of a Single Inherit Expression... 108

5.5 The Data Representation of a Multiple Inherit E xpression....................................... 109

5.6 The Data Representation for the Initial Class Hierarchy Expression 110

5.7 The Data Representation after the 1st Factorisation .. 110

5.8 The Data Representation of the Normalised E xpression ... 110

5.9 The Data Structure of ‘attlnfoLink’ .. 115

5.10 The attlnfoLink List of Example 5.2... 115

5.11 An AttrlnfoLink that involved Multiple Inheritance .. 117

5.12 The Main Body of the A lgorithm 119

6.1 Input and Output Of Example 6.1 .. 124

6.2 Input and Output of Example 6.2 .. 125

6.3 Input and Output for Example 6 .6 .. 126

6.4 Output for Example 6.4 .. 127

6.5 The Definition of a set of Class Specifications ... 128

6 .6 The Result obtained with Manual IFP ... 128

6.7 Result Obtained from the Automated IFP for Example 6.5 129

6 .8 The Definition of the set of Class Specifications of Example 6 . 6 130

6.9 The Results obtained from the Manual IFP ... 130

6.10 The Results Generated for Example 6 .6 .. 131

6.11 An Extract from the Interviews System Class H ierarchy .. 132

6.12 The Description of the Class Specifications for Example 6.7 133

6.13 The Definitions of the Class Specifications for Example 6.7 134

6.14 The Graph Structure obtained from Example 6.7 .. 134

6.15 The Class Hierarchy Graph without the ‘HMenu’ and ‘VMenu* 136

6.16 The Class Specifications with a Different ‘HMenu’ Class 137

6.17 Result Generated with Different Class Specifications ... 137

7.1 The Structure of the Traditional CASE Environm ent... 148

7.2 The Structure of the CASE Environment for Object-Oriented P rogram m ing 149

7.3 The Primary Software Tools which are derived from the Design Method . 151

7.4 The Graphical Tools in the Design Phase ... 152

A Design Method for Object-Oriented Programming Winnie Pun

7.5 The IFP Box ... 153

vii

List of Tables

5.1 The Adjacency Table before Factorisation.. I l l

5.2 The Adjacency Table after the First Factorisation .. 112

5.3 The Adjacency Table of a Normalised Class Expression .. 112

5.4 The Complexity of an Average Size Problem ... 121

7.1 The Result of the Experiment in table format ... 146

7.2 Scoring Table 146

vili

"There’s always something wrong with a new idea. But you have to be careful o f people

who say there are no new ideas because they’re likely to fool you into never getting

any new ideas."

Marvin Minsky ~

Chapter 1

Introduction

1.1. The Evolution of Software Engineering

The term ‘software crisis’ refers to a number of problems that are encountered in the

development of computer software [Pre87]. These problems range from whether the systems

function properly to how to design and maintain the system. The consequence of the

‘software crisis’ is that a vast amount of money is being spent on developing software.

In fact, Boehm has suggested that the cost of software is increasing at a rate of 12% per

year and that the worldwide annual software costs will exceed $435 billion by 1995 [Boe75,

Boe87].

Although there is not yet a satisfactory solution to the ‘software crisis’, it is believed that

applying sound engineering principles is the best approach to obtain economical software

that is reliable and works efficiently. This approach was introduced in the early 1970’s and

emphasises the use of:

i. comprehensive methods for all phases in software development,

ii. better tools to automate these methods,

iii. better techniques for software quality assurance and

iv. a more formal approaches to control and manage the development process.

As Sommerville [Som89] indicates, “The identification of the software crisis in the late

1960’s and the notion that software development is an engineering discipline led to the view

that the process of software development is akin to the process which has evolved in other

A Design Method for Object-Oriented Programming Winnie Pun

engineering disciplines. Thus, a model of the software development process which was

derived from other engineering activities was suggested”. This basic model o f the software

development process is divided into four stages (See Figure 1.1):

i. the requirement analysis stage,

ii. the system and software design stage,

iii. the implementation stage and

iv. the system testing and maintenance stage.

The process o f software development can, in fact, be viewed as a series of transformations

from one representation to another, each transformation introducing more detail and greater

precision to the representation [ABF85]. Software engineers start off by developing an

abstract model of the solution in their heads. As the development progresses, the abstract

model is transformed into a conceptual model by introducing some primary concepts of the

required com putational model. Once the conceptual model is set up, more details about

the implementation phase, for example, the characteristic of the style of the programming

o

Problems
R equ irem en t Analysis

Phase

Im plem entation
Phase /

System T esting and M aintenance
Phase

Figure 1.1: The Software Development Cycle

2

A Design Method for Object-Oriented Programming Winnie Pun

language chosen for the computational model, are added to the conceptual model which

transforms it into the implementation model. The implementation model is a representation

which software engineers can take away to construct the system model. This kind of

transformation is illustrated in Figure 1.2.

System ModelAbstract Model Conceptual Model Implementation Model

Requirement Analysis Design

Figure 1.2: The TVansformation of Different Represenation

The conceptual model is generally set up at the requirement analysis stage. The transfor­

mation process from the conceptual model to the system model is then carried out in the

design and the implementation phases. With trivial problems, the transformation from the

conceptual model to the implementation model, which takes place in the design phase, is

not that significant. Human minds can cope with the thinking in terms of the programming

language required to construct the system model. The system model can, therefore, be

constructed directly from the conceptual model. However, with complex problems, the

design phase becomes a significant stage in the development process and design methods

become essential to guide software engineers in the transformation of the conceptual model

into the implementation model.

Design methods are responsible for guiding software engineers in the organisation of the

design activities towards a particular implementation. A design method should fulfill at least

the following two goals [ABF85]:

i. defining the language or graphical notations so that software engineers can express

their ideas and conduct a formal communication.

ii. giving rules or hints to guide the transformations smoothly from one stage to

another.

The objective of a design method is to assist software engineers in constructing an implemen­

tation model. As programming language paradigms actually determine patterns of thought

for problem solving [Weg8 8 b], design methods are, therefore, inevitably found to be akin to

the programming style chosen for the implementation phase. Thus, in order to obtain a full

3

A Design Method for Object-Oriented Programming Winnie Pun

picture o f the development of design methods, it is necessary to examine the development

of programming languages first.

1.1.1. P ro g ra m m in g L anguages a n d Design M ethods

Recursive
Function Theory

Human

Declarative.
Programming

T u ring

Machine

Machine

Figure 1.3: The Two Programming Paradigms

Generally speaking, programming languages can be classified into two major paradigms:

the imperative and the declarative. The imperative programming paradigm has a machine

architecture (e.g., von Neuman machine) as the underlying model o f computation. It is

concerned with specifying how a computation is performed as a sequence of state transitions.

On the other hand, the declarative programming paradigm, such as functional programming

and logic programming, has a com pletely different computational model. It is based on

recursive function theory and is concerned with specifying what is to be computed.

As it stands, the declarative programming paradigm probably provides a more natural

approach to solving problems. The languages developed are closer to how people solve

problems because they are not based on the machine architecture but on the methods people

apply to solve problems. W hereas, with the imperative program ming paradigm, people

are obliged to think in terms o f how the machine executes. Although the declarative pro­

gramming paradigm is a better approach when implementing solutions, to execute programs

written in declarative languages efficiently has always been a problem. Since, the imperative

programming paradigm is more widely used in industry and, as it is shown later, object-

oriented programming fits more comfortably in the imperative programming paradigm, the

following discussion about the evolution of programming languages mainly concerns the

imperative programming paradigm.

4

A Design Method for Object-Oriented Programming Winnie Pun

Machine ^ Assembly Procedural / Block Structured
Languages Languages Languages

Figure 1.4: The Evolution of Programming Languages

The evolution of programming languages as illustrated in Figure 1.4, starts with machine

languages^. A machine language is effectively a sequence of bits such as ‘01011100’. As

one can imagine, to write or read a program in l ’s and 0 ’s is a painful task. So in the 1950’s,

assembly language was developed in which mnemonic names were used to stand for binary

codes. The idea of the assembly language as described by Hofstadter [Hof79] is to ‘chunk’

the individual machine language instructions so that one can write a single symbol, such as

‘add’ instead of its binary code, say ‘01011100’. Although a program in assembly language

is not very much different from its machine language equivalent as there is still a one-to-one

correspondence between assembly language instructions and machine language instructions,

assembly language makes the program more legible.

After people had programmed in assembly language for some time, they found that there

were some characteristic structures which kept reappearing in program after program. At

the same time, assembly language was found to be inadequate for handling complicated

programs. Hence, there was a need for higher-level languages which provided the ability

to define new higher level entities. This led to the development of procedural and block-

structured languages^. With procedural languages, there is no longer a straight forward one-

to-one correspondence between the statements in the procedure and the machine language

instructions. A program segment is abstracted in terms of a procedure name and a parameter

list. This procedure name and the parameter list will be expanded into the appropriate

‘chunks’ of instructions by the compiler or the interpreter which are then ready to be executed.

Some people may consider that computer programming was originally done at an even lower level, i.e., connecting wires to
each other, so that the proper operations were ‘hard-wired’ in.

Block-structured languages are a specialisation of procedure languages in which procedures and data declarations are nested
[Weg88b].

5

A Design Method for Object-Oriented Programming Winnie Pun

This advancement from the machine language to the assembly language to the procedural

language can be viewed as the early development of programming languages.

The development of design methods has been closely related to that of the development

of programming languages. When most programs were still written in machine language

and assembly language, they tended to be small and therefore the need for a design method

not that significant. However, when high-level languages were introduced, ways of solving

problems and how to design the programs, emerged as a significant part of the software

development process, for example, the step-wise refinement technique [Wir71], the top-

down design approach etc. These programming and design techniques were later developed

into a design philosophy called the structured design method [Pre87]. Structured design

methods provide a systematic approach to software development and guide system designers

to design solutions towards a procedural implementation.

The fact that the development of design methods is found to be dependent on the development

of programming languages is rather disturbing. History shows that instead of designing

programming languages and hence machines, that match how people think about solutions

to problems, design methods were developed to guide people to think in a way that fits the

programming language designed for the machine. This can probably be explained by the

fact that people are more adaptable. It is easier for people to adjust their thinking to fit how

machines operate than vice versa. Besides, the way in which people think is not as yet fully

understood; each individual may solve the same problem differently. It is, therefore, difficult

to come up with programming languages that suit every human and very expensive to build

machines that execute such languages.

Although the development of programming languages and design methods has not been in the

most natural direction, nevertheless the evolution of programming languages has indicated an

effort to bridge the gap between how people think and how machines operate by advancing

the abstraction technique in programming languages [PeW90].

1.1.2. The Road Towards Higher Levels of Abstraction

Abstraction is the key concept for controlling complexity [Gri79, Sha84, Yeh77]. A good

abstraction is one that emphasises details that are significant and suppresses those that are

immaterial. By having abstraction, one can concentrate on relevant information and ignore

the irrelevant in problem solving.

When one examines the evolution of programming languages closely (see Figure 1.5), it

is not difficult to notice that this evolution is actually heading towards the improvement

of abstraction techniques. The movement from machine language to assembly language

6

A Design Method for Object-Oriented Programming Winnie Pun

provides a higher abstraction. The binary machine code is abstracted into meaningful names.

Again, the development of procedural languages provides an even higher level of abstraction

technique than that of the assembly language. With procedural languages, the implementation

of the procedure is being abstracted under a name and a list of parameters and programmers

can concentrate on the overall organisation of the program.

Improvement of Abstraction Techniques
--- p*.

Machine __ Assembly____ Procedural _ ADT _ Object-Oriented ^
Languages Languages Languages Languages Languages

A

Object-Oriented
^ Design Method ^

Figure 1.5: The Roads towards higher Abstractions

Although the abstraction techniques offered by these procedural languages, such as FOR­

TRAN and Pascal, are quite considerable when compared to the earlier generation of machine

code and assembly languages, when large programs are to be developed and maintained, these

programming languages still fall short in handling the complexity of these programs [Pok89].

Therefore, new programming styles with higher levels of abstraction emerged, abstract data

type programming and object-oriented programming.

1.2. Object-Oriented Programming

Abstract data type programming was developed independently of object-oriented program­

ming. Languages such as CLU [LiG8 6] and Ada [Bar82] are examples of programming

languages that support abstract data types. Abstract data type languages emphasise data

abstraction whilst retaining the same control flow mechanisms developed for procedural

languages. The essence is to package each data structure with its associative operations into

a single construct. The resulting construct contains information necessary to treat the data

structure and its operations as a type.

Object-oriented programming represents another step forward in programming development.

« g1 13
Structured
Design Method

A Design Method for Object-Oriented Programming Winnie Pun

Its basic philosophy is to support programming in abstract data types [B0 0 8 6 , C0 0 8 6 , Mic8 8 ,

PLT87, Ren82, Weg8 8 a] and introduce message passing as the control flow. Here, each data

structure and its associated operations are packaged in a construct known as a ‘class*. Each

object is created as an instance of a class and embeds a set of variables that describes the

state of the object and a set of operations which can act upon that object. Unlike some

abstract data types languages such as Ada, classes are first class citizens and they can be

passed as parameters. Besides, in object-oriented programming classes are also used as

a classification tool which capture the common attributes of a set of objects in a class

definition while ignoring their differences. With this kind of abstraction technique, object-

oriented programming brings with it an enormous increase in expressive power [Kay84]. In

addition, the encapsulation of state and behaviour within an object allows one to model real

world entities that possess state and behaviour [RoG89]. This explains why object-oriented

programming is a natural step forward in the evolution of programming development and

that it helps to bridge the gap between the problem and the solution spaces.

Although the basic principle of object-oriented programming is to encourage the usage

of abstract data types, there are other features found in object-oriented programming that

distinguish it from general abstract data type programming [B0 S8 6 , Pas8 6]. These features

are:

i. Message Passing

Computation in object-oriented programming is achieved by passing messages to

objects. Objects within the system respond to messages by evaluating the method

matching the selector in the message and returning objects as a result. With the

message passing mechanism, an object-centered approach to programming is further

advocated. Instead of active procedures acting on the passive data passed to them,

objects are asked to perform operations that have been assigned to them [C0 0 8 6 ,

Pas8 6].

ii. Inheritance

Inheritance allows new classes to be created from existing classes via specialisation.

The new class that is created as the specialisation is known as the subclass. The

existing class, in this case, is known as the superclass. The subclass is said to

inherit all the instance variables, class variables and methods of its superclass. The

subclass may add more instance variables, class variables and methods on top of

what it inherits. Inheritance enhances the resuability of software and is an important

feature of object-oriented programming.

iii. Dynamic Binding

Dynamic Binding is an essential mechanism which supports polymorphism in

A Design Method for Object-Oriented Programming Winnie Pun

object-oriented programming. In conventional procedural programming languages,

the names o f operators and functions are bound to their operations at compile

time. This leads to the result that an unique name is required for an unique

operation. With dynamic binding, the name of the operators and functions are

bound at run-time. This means that the same name can be used for different

operations. For example, instead of using ‘drawCircle’ for the operation that draw

a circle, ‘drawSquare’ for the operation that draw a square, a generic name ‘draw’

can be used for both operations. Dynamic binding provides a mechanism which

enables the correct piece of code to be executed at run-time.

1.3. An Object-Oriented Design Method

As happened to traditional structured programming in the 1970’s, object-oriented design

methods have been greatly in demand as object-oriented programming became more popular

in the 1980’s. The need for an object-oriented design method can be viewed as two-fold.

i. As mentioned earlier, design methods are responsible for assisting system designers

to organise design activities towards a particular implementation. Since object-

oriented programming introduces new concepts in constructing software, a new

design method is needed to help system designers to construct an object-oriented

implementation model.

ii. Computer Aided Software Environments (CASE) have become more and more

important in contemporary software development process. The environment com­

prises a set of tools which contributes to the automation of the software development

processes. This has enabled dramatic productivity advances in software engineering

[Gib89, McC89]. Although substantial tools have been developed to support

software development in traditional design methods, very few have been developed

for software development in object-oriented programming. In order to develop the

suitable CASE tools to aid object-oriented software development, a proper design

method for object-oriented programming has to be developed first. Such a design

method defines the process to be automated and what sort of tools are required in

the environment.

1.4. Thesis Goals

Object-oriented programming is not a revolution but a natural evolution in software devel­

opment. It is a continuing evolutionary process that has spanned the past three decades.

9

A Design Method for Object-Oriented Programming Winnie Pun

The process started with writing programs in one-lined instruction statements. Then, struc­

tured programming came along which abstracted instruction statements into functions or

modules with parameter lists. When abstract data types programming and object-oriented

programming came, they advanced the abstraction into a higher level in which functions are

abstracted into an object and behaviour is separated from implementations. Such an advent

provides a better integration between human cognition and the programming process. It also

helps to increase productivity, improve reliability and ease system modifications. Further,

object-oriented programming encompasses new programming features such as inheritance to

attack areas that conventional programming has been unable to address satisfactorily.

Although object-oriented programming has become more and more popular, so far a proper

design method to support the construction of object-oriented software has not emerged.

Therefore, the primary goal of this thesis is to develop a design method specially for object-

oriented programming. The characteristic of this design method are:

i. It is dedicated for an implementation in object-oriented programming. It contains

sufficient guidelines to assist system designers to organise the design activities

towards an object-oriented implementation.

ii. It defines the design description language which is used throughout the design

phase.

iii. It has substantial support to help system designers handle inheritance which is an

important feature found in object-oriented programming.

The usage of this design method is then presented in two case studies.

1.5. Thesis Organisation

The remainder of this thesis is organised as follows:

Chapter 2 provides a background to the research. It states the definition of ‘object-oriented

programming’ as used in this thesis. It then analyses why existing design methods are

inadequate to support systems design in object-oriented programming. The analysis includes

both the popular structured design methods and the few newly emerged object-oriented

design methods. The results of the investigation highlight the necessity of this research to

look for a more appropriate design method for object-oriented programming. It also helps

to specify the requirements of such a design method.

Chapter 3 presents the primary framework of the design method developed in this research.

The design method is divided into three levels: the conceptual level, the system level and

10

A Design Method for Object-Oriented Programming Winnie Pun

the specification level. The details of each level and the tasks which are required to be

performed at each level are discussed.

The design method embeds an inheritance factorisation process at the system level. This pro­

cess helps system engineers to construct class hierarchies during the design stage. Chapter 4

discusses the details of this process. The formal model which lies behind the inheritance

factorisation process is presented. The application of such a process in system designs is

also discussed.

In order to examine the performance of the inheritance factorisation process, the first pro­

totype of the factorisation engine is assembled. Chapter 5 describes the implementation of

this prototype. The algorithms which are employed to implement the prototype and their

efficiencies are discussed and compared.

Chapter 6 is the evaluation chapter. Both the inheritance factorisation process and the design

method are evaluated. Plans for further evaluations are also presented in this chapter.

It is recognised that this research is only the first step towards a complete computer aided

software development environment for object-oriented programming. Therefore, Chapter 7

talks about the further work involved in this area.

Chapter 8 is the conclusion of the thesis. It compares the work accomplished in this research

with the original aim of this thesis.

11

“ What is object-oriented programming? My guess is that object-oriented programming

will be in the 1980’s what structured programming was in the 1970’s. Everyone will be

in favour of it. Every manufacturer will promote his products as supporting it. Every

manager will pay lip service to it. Every programmer will practice it (differently). And

no one will know just what it is.”

Object-oriented programming increased in popularity during the 1980’s. As mentioned in

Chapter 1, this new programming paradigm encompasses distinguishing features such as data

abstraction, dynamic binding, information hiding, message passing and inheritance which

are not found in conventional programming. As Auld [Aul89] explains the reason why

object-oriented programming is better than conventional programming style is because “it

attacks the area that traditional methods have been unable to address satisfactory: reusability,

extensibility and modularity”. However, the excellence of object-oriented programming

also causes a casual usage of the term ‘object-oriented’. Stroustrup [Str8 8] mentions that

the term ‘object-oriented’ has become a synonym for ‘good’ and people tend to use it

anywhere they can. Thus, it is necessary to define clearly the definition of ‘object-oriented’

used in this research before any further discussion. This chapter begins with a rigorous

definition of ‘object-oriented programming’. It analyses the features found in object-oriented

programming and highlights the difference between object-oriented programming style and

the conventional procedural programming style.

Once the definition of the term ‘object-oriented programming’ has been stated, one can then

embark on the development of a design method for object-oriented programming. Prior

to this, an investigation of why existing design methods are inadequate for object-oriented

programming is presented. Such an investigation is important because it lays down the

foundation of this research. The investigation is divided into two parts. First of all, it

examines the compatibility of conventional procedural design methods and object-oriented

programming. Then it inspects a few existing ‘object-oriented’ design methods which claim

Tim Rentsch

Chapter 2

Background

12

A Design Method for Object-Oriented Programming Winnie Pun

to be suitable for object-oriented programming. The results obtained from this investigation

show the necessity of this research. It also helps to specify the requirements of the design

method that has to be developed.

2.1. What is ‘Object-Oriented Programming’?

The notion of ‘object’ was first introduced in the programming language Simula [Bir73,

Nyg8 6] in the 1960’s. The basic idea is to have the programming activity developed around

the data structure, ‘object’. An object encapsulates a set of variables that describes the state

o f the object and a set of operations which can act upon the object to change its states.

Although the idea of object-oriented programming was around then, it did not take off as an

important paradigm until the late 1970’s when Smalltalk-80 [Gol83a] appeared.

As more and more people recognised the usefulness of object-oriented programming in

software development, the fundamental concepts and definitions of the term ‘object-oriented’

become misused. In order to impress customers, system designers casually attached the label

‘object-oriented’ to any software they developed and programming languages they used.

In 1988, Peter Wegner published three papers [Weg87, Weg8 8 a, Weg8 8 b] about the defi­

nitions of ‘object-oriented’. In these papers, he successfully differentiated between object-

oriented programming and conventional programming. Furthermore, he distinguished object-

oriented programming from object-based and class-based programming. This has helped to

resolve some controversial issues regarding what object-oriented programming is.

According to Wegner, the term ‘object-oriented’ is defined as:

object-oriented = object + class + class inheritance

This means a programming language is ‘object-oriented’ if and only if it satisfies the

following three criteria:

i. The language supports ‘object’ as a major language feature.

ii. An object is created as an instance of a class and a class is a template that specifies

an interface of operations.

iii. Related classes are grouped into a class hierarchy via inheritance.

After Wegner, a number of other people have attempted to give definitions for the term

‘object-oriented’. For instance, Saunders in his survey paper said that an object-oriented pro­

gramming language should possess: an object creation facility, a message passing capability,

a class capability and inheritance [Sau89]. Blair et al. generalised the basic requirements

for an object-oriented programming language to: encapsulation, set-based abstraction and

13

A Design Method for Object-Oriented Programming Winnie Pun

polymorphism [BGM89]. Since, these alternative definitions are either modified or expanded

from Wegner’s, it is decided that Wegner’s concise definition should be applied in this

research. The following sections serve to explain these three criteria in more detail.

2.1.1. Object

In the new Collins dictionary [Han87], an object is defined as:

i. a tangible and visible thing,

ii. a thing seen as a focus for feelings, thought, etc, and

iii. an aim or objective.

In a way, such a definition has already captured the essence of an object in object-oriented

programming. An object in object-oriented programming is a data entity, a target for

messages, and each object implements a goal. An object is the basic unit of modularity

in object-oriented programming. It is an abstraction of state and behaviour that consists of:

i. a set of variables which describe the state of that object and

ii. a set of operations which can act upon the object to change the state.

It is strongly believed that the major merit of object-oriented programming lies in its direct

correspondence to the real world. The computational model of object-oriented programming

is constructed around objects and their interactions amongst each other. Such a computational

model is a natural metaphor of the real world [B0 0 8 6 , Bor85, Gol83b]. This excellence of

object-oriented programming has, in fact, been recognised in human factors research on

programming languages. Curtis [Cur82] mentions that in a study, it was found that students

spent more time with data manipulations and less time with transfer of control. He identifies

that this as an important point. Conventional programming languages tend to provide massive

control structures with embedded data manipulations. However, the natural human tendency

seems to begin with data manipulations and add control structures as a qualification to the

action. This implies that a programming language which concentrates on data manipulations,

such as object-oriented programming, provides a better integration of programming process

with the structure of human cognition. This is almost certainly one of the reasons for the

success of object-oriented programming in software development.

The definition of an object being an encapsulation of state and behaviour is further extended

in the concurrent programming domain. With concurrent programming [Kah89, ShT83], an

object is viewed as a process that contains a mail address and its behaviour. The mail address

indicates a buffer in which a sequence of messages is stored. The behaviour is denoted by

its actions in response to a communication. Nevertheless, this research concerns the basic

14

A Design Method for Object-Oriented Programming Winnie Pun

definition of an object instead of its various extensions in different problem domains, hence

the definition of an object as an abstraction of state and behaviour is sufficient.

2.1.2. Class

In object-oriented programming, an object is created as an instance of a class. A class is a

template that specifies the state and behaviour of the object belonging to that class. Hence,

a class consists of:

i. a set of variables, and

ii. a set of operations.

At a first glance, the definition of an object is very similar to that of a class. The main

difference between the two actually lies in the fact that a class is a static template which

defines the structure of a group of similar objects, a class exists in program text. Whereas

an object is an active entity and its states are updated at run-time [Mey8 8].

O f course, this is not the only possible approach to look at classes and objects. In Smalltalk

[Gol83a], classes are viewed as objects themselves. The main advantage of treating classes

as objects is that it makes it possible to define class routines which can be applied to all

classes, rather than to all the instances of a given class as standard features do. Further,

there are discussions about ‘classless’ object-oriented programming languages such as Self

[Hew77, UnS87] and Actor [Agh83]. In a ‘classless’ language, an object is created by

copying an existing object, i.e., prototyping. The argument for a ‘classless’ object-oriented

programming language is that it is simpler. It does not require object-oriented programmers

to grasp two concepts namely the ‘is an instance o f’ relationship and the ‘is a kind o f’

relationship which are typical for a ‘class-based’ object-oriented language, in constructing

software.

However, the view taken in this research is that the concept of ‘class’ is a nice structuring

technique which helps system designers to understand the system better. It also reduces the

search space when system designers try to locate a particular object in the system. Besides,

if every object belongs to a class, it guarantees that all objects can be treated as first class

items. With this, objects are allowed to be passed as parameters, a useful programming

feature [Weg8 8 b]. Moreover, it is important to distinguish the description of an object, i.e.,

the class, and the object itself. This is especially true when inheritance is concerned because

with class inheritance, one inherits the structure or the description of an object rather than

its value.

15

A Design Method for Object-Oriented Programming

2.1.3. Class Inheritance

Winnie Pun

Inheritance is an important programming issue introduced by object-oriented programming.

Inheritance is always associated with the specialisation/generalisation relationship between

two classes. Its basic definition in object-oriented programming is analogous to the usual

meaning which is familiar to everybody. For example, if classA and classB share an ‘IS-A’

relationship and classA is more general than classB, i.e. classB needs a larger set of attributes

to describe its behaviour, then classA is defined as the superclass of classB and attributes

defined in classA can be used by classB through inheritance.

Inheritance can be single or multiple. In the case of single inheritance, a subclass has only

one superclass, hence the class hierarchy is a tree form. In the case of multiple inheritance,

a subclass is allowed to have several superclasses which leads to a directed graph hierarchy

structure. Although, it is said that multiple inheritance is extremely useful and provides

more flexibility to object-oriented programmers [Car84, Mey8 8 , Str8 8], it is also believed

by some people that multiple inheritance can lead to very complicated systems which are

difficult to comprehend [BoI82],

Danforth and Tomlinson say [DaT8 8], “a primary motivation for the use of inheritance in

programming is that it provides both a specification structuring mechanism and a means of

reusing specification that is based on common sense notions that are natural to our way of

thinking”. Indeed, the advantages of having inheritance are basically two-fold:

i. Reusability of Software

Inheritance enhances the reusability of software which is an important aspect of

software engineering. Inheritance in object-oriented programming brings along two

kinds of reusability, ‘reusing code’ and ‘reusing specification’ [Joh8 8].

ii. Classification Technique

Inheritance acts as a classification technique which groups related classes together

in a hierarchical structure. This enhances the readability and understandability of

a system.

Although inheritance is such a useful feature, it is also a problematic issue. System engineers

have encountered extensive difficulties in constructing class hierarchies [Joh8 8]. However,

most of the difficulties evolved around the basic questions of how to use inheritance and

what exactly should be inherited. The following discussion gives two different usages of

inheritance. It also highlights two different school of thoughts concerning inheritance.

i. Non-Strict Inheritance

Non-strict inheritance is also known as implementation inheritance or incidental

inheritance [Sak89]. Generally speaking, non-strict inheritance implies code shar-

16

A Design Method for Object-Oriented Programming Winnie Pun

ing. Its essence is to reuse as much of the existing implementation as possible.

Non-strict inheritance is usually found in weakly-typed object-oriented languages

such as Smalltalk. In these languages, the notion of types is implicit and is always

embeded in the notion of class. The term ‘class’, as mentioned before, denotes

the template for a group of objects with common properties. These templates

use symbolic labels to specify the state and the behaviour of a particular class

of objects. Hence, a label either refers to a storage space or a piece of code.

In the case of non-strict inheritance, system designers/programmers determine a

superclass/subclass relationship by:

• applying their intuition to the two classes to decide whether an obvious

TS-A’ relationship exists. For example, the class ‘car’ is naturally a

subclass of the class ‘vehicle’.

• checking whether there exist some properties in the potential superclass

that can be used by^the subclass.

Since there is no type-checking mechanism in a weakly-typed object-oriented

language to check the formal definition of a label, a more casual attitude to

class hierarchies construction is allowed. For example, although it is required that

there must be an ‘IS-A’ relationship between two classes for a superclass/subclass

relationship to be established, there is no penalty for system designers/programmers

that violate this rule. Therefore, a reasonable and meaningful class hierarchy

construction depends very much on the self discipline of the system designers. In

the extreme, one can put two conceptually unrelated classes in the same hierarchy

provided they share some common attributes. For example, in the Smalltalk-

80 system classes, the class ‘semaphor’ is created as a subclass of ‘linked-list’.

Conceptually, there is no obvious relation between ‘semaphore’ and ‘linked-list’

which may lead people to think that they should be put together. One suspects that

the reason for doing this is because the class ‘semaphore’ can be implemented as a

linked-list. This certainly breaks down the possibility of using inheritance as a clas­

sification technique. At the same time, it leads to the formation of a class hierarchy

which is conceptually confusing. Furthermore, if multiple inheritance is applied,

one can get a very unstructured network which is impossible to comprehend.

ii. Strict Inheritance

Strict inheritance is also known as specification/behaviour inheritance, essential

inheritance and subtyping [Sak89]. Strict inheritance not only inherits the labels

and the implementations associated with the labels but also the formal specification

of these labels. The term ‘formal specification’ refers to the abstract data type

17

A Design Method for Object-Oriented Programming Winnie Pun

specification which involves the signature and the semantic meaning (axioms) of

the operations in a class. With strict inheritance, a subclass can be derived from a

superclass if and only if:

• All operations defined in the superclass mean something to the subclass,

i.e. no redundant operations may be inherited.

• Operations which share the same name, types of input and output argu­

ments must do the same thing, i.e. operations which share the same name

must share the same semantics. For example, a ‘stack’ and a ‘queue’ may

have the same operations such as ‘add’ to add an element and ‘delete’ to

remove an element. However, a stack applies a ‘last in first out’ policy

whereas a queue applies ‘first in first out’ policy. The operation ‘delete’

again employs different methods in the implementation. Thus, according

to the definition of strict inheritance, ‘stack’ and ‘queue’ are not directly

related.

As one can see, this kind of inheritance imposes a very strict discipline on building

class hierarchies. A subclass must inherit both the syntactic and the formal semantic

aspects of its superclass. As Meyer says [Mey8 8], this type of complete, non-

ambiguous, precise manner of using inheritance can only be achieved by specifying

the interface of a class in formal specification languages [GoM82].

However, strict inheritance can be partially fulfilled in strongly typed object-

oriented languages such as Eiffel [Mey8 8] and Solve [RWW8 8]. Here, system

engineers not only have to deal with a superclass/subclass relationship but also the

supertype/subtype relationship in constructing class hierarchies. The term ‘type’

denotes the signature of an operation. The language provides type-checking facility

at compile time. Therefore, a strongly-typed object-oriented language prohibits

system designers/programmers from constructing meaningless class hierarchies, at

least to a certain extenri.

Another mechanism which serves the same purpose as inheritance is delegation [Lie8 6 ,

Weg87]. Delegation is always found in ‘classless’ languages. It is a mechanism that

allows objects to delegate properties to one or more ‘successors’. Since in this thesis,

the term ‘object-oriented’ implies object-based, class-based and class inheritance, the fact

that delegation is found in ‘classless’ languages makes it inappropriate to be discussed in

this thesis.

Besides type checking, Eiffel also allows programmers to use assertion statements to guard the semantic compatibility of the
operations.

18

A Design Method for Object-Oriented Programming Winnie Pun

2.1.4. A Language that supports Object-Oriented Programming

The above discussion has stated the definition of the term ‘object-oriented’ as used in

this research. Of course, object-oriented programming also contains other features such

as dynamic binding and message passing as mentioned in Chapter 1. However, these two

features are more to do with implementation and language issues rather than design. Thus,

this research regards object, class and inheritance are the three basic criteria for object-

oriented programming.

Though the term ‘object-oriented’ is now defined properly, it is still insufficient to give a

clear idea as to what an object-oriented programming style is. To most system engineers,

object-oriented software has to be implemented using one of the orthogonal object-oriented

languages such as Smalltalk, C++ or Eiffel. On the other hand, there are programmers

who claim that they can perform object-oriented programming in conventional structured

programming languages such as C, Ada and Pascal [JaK87]. To these programmers, they

have to exhibit extra effort or skill to write programs which are object-oriented. They have

to write extra libraries to attain the object, class concepts and inheritance. The main question

here is, ‘how does one classify a language that supports object-oriented programming?’. The

answer to this question is well-stated in Stroustrup’s paper [Str8 8], “a language supports a

programming style if it provides facilities that make it convenient (reasonably easy, safe, and

efficient) to use that style. A language does not support a technique if it takes exceptional

effort or skill to write such programs; in that case, the language merely enables programs to

use the techniques”.

Therefore, in this thesis, the term ‘object-oriented programming’ refers to a technique which

allows programming in object/class concepts and reuse software via inheritance. Object-

oriented programming has to be supported by an orthogonal object-oriented languages which

comprises of facilities and constructs that help programmers to achieve this technique with

easet.

2.2. Designing Object-Oriented Software

Now that the definition of object-oriented programming is stated, one can investigate how

software can be constructed in object-oriented programming.

The construction of reliable software depends a lot on using a proper design method. A design

method gives guidelines for system designers to organise their design activities towards a

There is on-going research concerns the usability of a programming language such as [Gre89].

19

A Design Method for Object-Oriented Programming Winnie Pun

particular implementation model. At present, most of the popular design methods are of

procedural style. They target software developments which use procedural programming

languages such as Pascal and COBOL. Although some people are currently adopting these

methods in object-oriented programming, it is not a good practice. In order to justify this

claim, the first part of this section analyses why conventional structured design methods

are inadequate for object-oriented programming. As it stands, there are a wide range of

conventional design methods around and they can be basically divided into two types: the

data flow and the data structure design methods. Hence, the analysis mainly concerns these

two types of structured design methods. In additional to this, a few people have suggested that

entity-relationship modelling is useful in object-oriented programming [Pow87]. Therefore,

there is a need to look into the possibility of using entity-relationship modelling in object-

oriented programming.

Apart from conventional design methods, a few so called ‘object-oriented’ design methods

have emerged recently. The main development includes Booch’s object-oriented development

[B0 0 8 6], Robinson’s Hierarchical Object-Oriented Design (HOOD) [Rob89], Mittermeir’s

object-oriented software design [Mit8 6] and Jacobson’s ObjectOry [Jac87]. These design

methods are also examined in detail in this section to see whether they support object-

oriented development to a satisfactory level.

Hence, the rest of this chapter serves as a detailed survey on whether these existing design

methods are adequate for object-oriented programming.

2.2.1. Data Flow Design Methods

Stevens and Constantine were probably the earliest proposers of using data flow design in

designing a system [Pre87] but it was Yourdon and Myers who widely propagated the method

[YoC75]. Data flow design methods use ‘functional decomposition’ as the backbone but also

focus on the movement of data in a system. It is widely used in data-processing.

Data flow design methods consist of a set of graphical notations which help to develop a

structured functional specification from an user requirement, for example, data flow diagrams,

structured English mini specifications and structure charts. The first step of the data flow

design method is to use data flow diagrams to model the movement of data through a

particular system. These data flow diagrams are later transformed to corresponding program

structures in the form of structure charts. There are data dictionaries which work along with

the data flow diagrams to give precise definitions of the terms used in the data flow diagrams.

The best way to find out whether a particular design method can be used in object-oriented

programming is to actually design a system in the design method and implement it in

20

A Design Method for Object-Oriented Programming Winnie Pun

an object-oriented language. However, to carry out such investigations for each design

method mentioned in this chapter is time consuming. At the beginning of this research,

use was made of the fact that 35 second year Computer Science undergraduates at UCL

have to design a system using Yourdon’s design method and implemented in C++ as their

Software Engineering coursework. Therefore, their courseworks were conveniendy used in

this research to analyse whether data flow design methods are adequate for object-oriented

programming. When examining their courseworks, attention was paid to any significant

effects cast from the design phase onto the implementation phase.

As a result, two observations were obtained from examining the students’ courseworks:

i. The coding of most students showed that they were actually writing procedural

programs in an object-oriented language, C++. They had not exploited the use

of classes as data abstraction technique and inheritance as a means of achieving

software reuse.

ii. A few students’ implementations bore some kinds of object-orientation. However,

their design specifications showed no direct correspondence to the decisions they

made for the implementation phase.

Therefore, it seems that data flow design methods are not suitable for object-oriented

programming^. The main reasons for this inadequacies are:

i. The basic concept of data flow design methods is to model a system in terms

of data and transformation processes. It emphasises what input data and output

data exist in a system and how the input data is transformed into the output data,

i.e., identifying the required transformation processes in the system. This is very

different from the basic model found in object-oriented programming. In object-

oriented programming, one is concerned with the set of objects and the interactions

amongst these objects in a system. Data flow design methods do not support the

identification of objects and interactions of the system. There is no guidelines about

how to construct an object, classifying an object and the concept of inheritance does

not exist.

ii. Furthermore, data flow design methods are targeted at a procedural implementation

in which modules are generated around operations; data structures are distributed

between resulting routines. However, in object-oriented programming the reverse

occurs and the emphasis is on data structures; modularisations and operations are

generated around data structures.

A discussion of this analysis on whether data flow design is adequate for object-oriented programing can be found in [PuW89a].

21

A Design Method for Object-Oriented Programming Winnie Pun

Such an analysis of the students’ coursework not only has shown that data flow design

methods are inadequate for object-oriented programming but also has highlighted the issues

one has to pay attention to when developing a design method for object-oriented program­

ming, for example, the identification and the construction of objects, the identification of the

interactions between objects. These are very useful in setting up the specification for the

design method for object-oriented programming.

2.2.2. Data Structure Design Methods

Data structure design methods are said to be useful for systems with well understood

data structures [RPT84]. They produce a program structure by designing input/output data

structures. A strong representation of this type of design method is Jackson System Design

(JSD) [Jac83].

JSD is a design method that covers system development from definition through design

into the production phase [Bi085]. Unlike data flow design methods, it does not start with

functional requirements but concentrates on modelling the real world. The development

steps of JSD can be classified into three stages: the modelling stage, the network stage and

the implementation stage.

The modelling stage is to specify the model of the real world. It further subdivides into

two steps, the entity-action and the entity-structure steps. In the entity-action step, all the

entities and actions involved in a system are identified. In JSD terminology, an entity is

characterised by the action which it performs or suffers. An action is always performed or

suffered by one or more entities. An action must take place in the real world at a specific

instant of time. The action not only occurs in the system itself but also in reality. The

entity-structure step specifies how the actions are ordered within an entity. It defines the

ordering of actions that describes the life cycle of the entity. This step also contains a set

of graphical notations which supports the three classical algorithm/programming constructs:

iteration, sequence and selection.

In JSD, the entity structures constructed in the first stage are regarded as model processes.

The network stage concerns how to connect new processes to these model processes to form

a network. New processes can be added to model processes either by state vector connection

or data stream connection. This stage is further subdivided into three steps:

i. the initial model step which simulates the real world in terms of communicating

model processes.

ii. the simulation of the real world resulting from the above steps provides the basis

on which the system functions are to be specified. In this step, the developer inserts

22

A Design Method for Object-Oriented Programming Winnie Pun

the required system functions into the model in the form of function processes.

iii. system timing step which specifies the timing constraints in the system for use in

the next step.

The implementation stage of JSD emphasises two important issues:

i. how to run the processes that comprise the specification?

ii. how to store the data that they contain?

An important point in the JSD design method is that it conceptually assumes that every

entity runs on an individual processor. For example, each book in a library is a process

that runs on a processor. Of course, this is not yet feasible. Hence, the main theme of the

implementation stage is to transform such a design into a form that can be realised on the

target programming language, operating system and computer.

The main reasons why JSD is said to be a potential design method for object-oriented

programming are:

i. its entity-action step is about identifying entities and actions involved in a system

and this is analogous to the step concerns identifying objects and interactions as

found in object-oriented programming,

ii. its network stage concerns how to connect new processes to model processes to

form a network and this can be viewed as identifying the interactions amongst

objects in object-oriented programming.

However, when one examines the method more closely, JSD is not a good candidate for

object-oriented programming as it seems to be. Firstly, although both JSD and object-

oriented programming emphasises identifying entities/objects and actions within a system,

there is a difference between the term ‘entities’ used in JSD and the term ‘objects’ used in

object-oriented programming. According to JSD, an entity has to contain an ordered set of

actions. In other words, an entity in JSD is just like a process which is defined as a sequence

of actions. But in object-oriented programming, an object is defined as a set of variables

which describes its state and a set of operations which describes its behaviour. The order of

the operations is not required. Although, there are papers which mentioned that the object-

oriented paradigm is similar to the process-paradigm and that one can be incorporated in

the other [Str86a], it is strongly felt that to treat an object as a process imposes unnecessary

constraints on the user. Moreover, object-oriented programming emphasises reuse. One way

to achieve this is to design the object as general as possible so that its properties can be

reused through inheritance. If one has to define the order of operations for an object, the

object becomes specific to a particular application and difficult to reuse. Therefore, it seems

23

A Design Method for Object-Oriented Programming Winnie Pun

that JSD is much more of a ‘modelling approach’ than it is an ‘object-oriented approach’.

It emphasises creating time-based models of real world entities and models of their ‘real

world’ interactions. Whereas, the objects found in object-oriented programming should not

be designed based on their life cycles within a particular application.

2.2.3. Transformations of Conventional Design Methods

Since conventional structured design methods cannot be used directly in object-oriented

programming, a few people have proposed some transformation techniques to convert speci­

fications which are generated from conventional design methods to be used in object-oriented

programming. For example, Alabiso [Ala88] has presented a transformation for data flow

analysis models to object-oriented designs. Ward [War89] has introduced a method to

integrate object-orientation with structured analysis and design. Poo et al. [PLK89] and

Elizabeth et al. [EHZ89] have investigated how to modify JSD to be used in specifying

object-oriented systems. The reasons for modifying conventional design methods to be used

in object-oriented programming are two-fold:

i. Most system designers have been using these conventional design methods for a

while. They are familiar with these design methods and may be unwilling to adopt

a new design method.

ii. A popular and adequate design method for object-oriented programming has not

yet emerged.

These people believe that changing the notations of the specifications in existing conventional

design methods or re-interpreting a design specification in an object-oriented manner is

sufficient to obtain an object-oriented design. This belief is analogous to the one which said

that object-oriented programs can be written in procedural languages such as C and Pascal

[JaK87]. As mentioned earlier, to write object-oriented programs in procedural languages

may be possible but the extra efforts and skill required from the programmers are tremendous.

Likewise, in order to perform a sensible transformation between the two different paradigms,

the system designer has to be an experienced user of the structured design method, to be

completely familiar with object-oriented programming, and to fully understand how the

transformation works. Besides, just carrying out a transformation on a structured design

specification to an object-oriented design specification is definitely not enough to construct

object-oriented software successfully. Design has a lot to do with thinking and organising.

To acquire a precise implementation model, the designer has to be aware of object-orientation

in the early stages of the software development.

24

A Design Method for Object-Oriented Programming

2.2.4. Entity Relationship Modelling

Winnie Pun

Entity-relationship modelling [Che76, Eas86] is a data modelling technique. It is used in

the analysis phase of the software development cycle. It is complementary to methods such

as Yourdon, JSD or SADT. Methods like data-flow design provide a global analysis for

the system with emphasis on the data flows in to and out of a process. Entity-relationship

modelling, however, concentrates on analysing what is in the data store. The technique, in

principle, models a system using three building blocks: entities, relationships and attributes.

Entity-relationship modelling concentrates on the fundamental data items of a system. It

analyses how these items are related to each other and examines the properties they possess.

This corresponds to certain characteristics of object-oriented programming. Both entity-

relationship modelling and object-oriented programming emphasise the identification and

interaction of objects within a system. Furthermore, in object-oriented programming, the

term ‘object’ is defined as a distinct element and resembles the ‘entity’ in entity-relationship

modelling.

With respect to the relationship issue, there are three different kinds of ‘relationships’ found

in object-oriented programming:

i. Inheritance

This kind of relationship is found between two distinct classes. For example, if

‘bus’ is defined to be the subclass of ‘vehicle’ then the object of the class ‘bus’

will inherit all the properties of class ‘vehicle’.

ii. Instantiation

This kind of relationship is found between objects and classes. For example, Bus

No.27 can be defined as an instance of the ‘bus’ class.

iii. Interaction

This kind of relationship is found between objects and objects. It is normally

denoted when one object sends messages to another object.

In entity-relationship modelling, there is only one kind of relationship and that is the

association between entities. For example, ‘attend’ might be a relationship set between

the entity sets ‘Student’ and ‘Course’. This relationship is analogous to the ‘interaction’

relationship found between two objects in object-oriented programming. As mentioned

earlier, the ‘interaction’ relationship found in object-oriented programming concerns message

passing. Thus, the next step is to see whether the relationship in entity-relationship modelling

gives an insight to the kind of messages that should be included in a certain object.

Consider an object-oriented programmer using the entity-relationship modelling technique

25

A Design Method for Object-Oriented Programming Winnie Pun

to analyse a system that dealt with school records. One may end up with diagrams such

as that shown in Figure 2.1. To interpret this diagram in an object-oriented way, one may

feel that the ‘School’ and the ‘Teacher’ are two distinct classes. The relationship ‘employ’

tells us that one or more messages^ concerning this relationship should be implemented. For

example, one could include a message ‘employed_by’ in the ‘Teacher’ class. By sending

this message to a particular teacher e.g., ‘Teacher_A employed_by:’, one will receive the

school which Teacher_A teaches at. It is also valid to include a message ‘employed_by’

which takes an argument, e.g., ‘Teacher_A employedJby: School_A’. This message returns a

boolean value which indicates whether Teacher_A is employed by School_A or not. At the

same time, it appears that it is perfectly correct for a programmer to choose to implement

the related message in the class ‘School’. For example, one could implement a message

‘employ’ in the ‘School’ class so that ‘School_A employ:’ returns a list of teachers who are

employed at that school.

Student

SchoolTeacher

Course

HeadTeacher

attend

Figure 2.1: An Entity-Relationship Diagram

From the above example, it seems that messages have to be implemented whenever a

relationship is detected. However, there are still problems:

i. A relationship is an association between two entities. If we are going to implement

messages concerning a relationship, which entity set (class) should these messages

belonged to?

ii. Is there any difference which class such messages is assigned to?

iii. What about including such messages in both classes?

The term ‘message’ is originated in Smalltalk and it means a request for an object to carry out one of its operation.

26

A Design Method for Object-Oriented Programming Winnie Pun

Besides, there are three kinds of relationship found in object-oriented programming. How­

ever, entity-relationship modelling only addresses the ‘interaction’ relationship explicitly.

Consider the previous example, the experienced object-oriented programmer has probably

already noticed that the ‘HeadTeacher’ class is a subclass of the ‘Teacher’ class and the

‘Teacher’ class is a subclass of the ‘Person’ class. This kind of relationship, ‘inheritance’,

is not included in entity-relationship modelling. The ‘inheritance’ relationship, however,

is regarded as an important issue in object-oriented programming. It contributes a great

deal to achieving reusability. Thus, it seems important to provide a notation to express this

relationship in the analysis/design phase. Indeed, some people are trying to achieve this by

extending the E-R notation to capture the inheritance relationship as well [War89].

Generally speaking, Entity-Relationship modelling is effectively used to analyse static aspects

of a system. It concerns the data stores and the relationships between different data stores.

Whilst it may help to identify some of the objects in an object-oriented system, especially

the static ones, it does not help to analyse the interaction between objects, the dynamic part

of a system.

Just as in conventional programming, entity-relationship modelling cannot be used on its

own in constructing an information system. The modelling technique only models the data

relations in the system. To be useful, the design method must provide a framework in which

the architecture of such an information system can be constructed. Hence, entity-relationship

modelling alone is insufficient to construct an object-oriented system.

2.2.5. Booch and HOOD Design Method

Booch was one of the earliest people to look into the development of an object-oriented

design method. In 1986, he published a paper [B0 0 8 6] which states that an object-oriented

design method should consist of the following steps:

i. identifying the objects and their actions.

ii. identifying the operations that may be acted upon the objects.

iii. identifying the relationships between objects and operations.

iv. examining the detailed design to give implementation descriptions for objects.

These steps are then reiterated recursively in order to obtain a complete design. In fact,

this set of steps has summarised the essential procedures for object-oriented design and

is regarded as the basic framework for most of the other object-oriented design methods

[Lor8 6]. Booch’s method also provides some graphical notations for system designers to

represent the program components and packages (see Figure 2.2).

27

A Design Method for Object-Oriented Programming Winnie Pun

Generic Package Subprogram Generic Subprogram

(\
Subsystem

V J
Figure 2.2: Graphical Notations for the Booch’s Diagram

HOOD was developed by the European Space Agency (ESA) as a design method in the

ESA Software Engineering Lifecycle. It is very similar to the Booch’s design method,

in fact, HOOD is usually regarded as an extension of the Booch’s method. The design

method is interfaced with SADT in the analysis/requirement phase and is targeted at the Ada

programming language in the implementation phase. It is divided into four stages:

i. Definition and analysis stage.

ii. Revise the definition and analysis stage in natural language.

iii. Identify the nouns and verbs from the natural language specification to be objects

and actions of the system.

iv. Refine the design and produce a formal object description skeleton to be ready for

coding. The object description skeleton concerns interfacing in Ada syntax and

semantics.

HOOD, also incorporates a graphical notation to allow systems <iasigners to express their idea

in diagrams (see Figure 2.3). There are at least three computer-aided software engineering

(CASE) toolsets which have been developed to support HOOD [Rob89].

28

A Design Method for Object-Oriented Programming Winnie Pun

Object Name Heater

Operation_l
O pera tion !

Figure 2.3: Graphical Notations for the HOOD Diagrams

As it stands, the fundamental problem with these two methods is that they are targeted at

systems which are to be implemented in the programming language Ada [Bar82]. Now

whilst whether Ada is an object-oriented programming language is still a debatable issue

[Tou87, Weg87], it is generally felt that design methods which are geared towards Ada

implementation do not fully support the features found in object-oriented programming.

As Pressman [Pre87] mentions in his book, “The object-oriented design method of Booch

is oriented towards software development in programming languages such as Ada. The

method does not address a number of important object-oriented concepts (e.g., inheritance,

messages) that can serve to make object-oriented design even more powerful”. Besides, a

good design method should not be closely bound to a particular programming language, these

two methods have already demonstrated inflexibility in this sense. In the case of HOOD

design method, its inflexibility is even more obvious. Robinson, him self stated in his paper

[Rob89], “ESA has decided to use SADT for requirements analysis for the Columbus Space

Station project software, and Ada had been selected as the main programming language

for onboard and ground software. Some sort of PDL was planned for the detailed Design

Phase, so HOOD had to fit between SADT and PDL with Ada as the target programming

language ’̂ .

There are also criticisms about the graphical notation employed in the B ooch’s method.

Some people have expressed concern about the program components and package notations.

They say that these notations require certain details which are not easy to use with automated

graphical editing system [Som89].

All these points imply that Booch’s and HOOD design methods are not true object-oriented

design methods and do not fully support object-oriented system developments.

This au tho r’s italics

29

A Design Method for Object-Oriented Programming Winnie Pun

2.2.6. Mittermeir Object Oriented Software Design

Mittermeir described an object-oriented method for large scale software design in 1986

[Mit86]. His object-oriented design method adopted the conceptual modelling language,

CML [Mit82] which is based on a semantic data base method to support the requirement

analysis and conceptual design. The design method is divided into three steps:

i. Object identification step.

ii. Network step.

iii. Disaggregration/specification step.

The object identification step consists of three substeps:

i. reality capture to identify objects of reality which are relevant for the system to be

developed

ii. attribute capture to identify the properties of each object

iii. normalisation to rule out functional dependencies within an object

The network stage is used to identify the interaction between the objects in the system. It is

also responsible for setting up the message passing communication amongst objects in the

system. This step results in specifying objects’ interfaces and guiding designers as to how

to actually implement the object interactions’ connection structure.

The disaggregation/specialisation step consists of two substeps:

i. the object disaggregation substep is to decompose the objects into subobjects.

ii. the object specialisation substep determines the speciality classes of the generalised

objects that are defined earlier in the design phase.

As it stands, the object-oriented design method suggested by Mittermeir addresses impor­

tant object-oriented features such as message passing and inheritance. Although the basic

framework of the Mittermeir design method is similar to that of Booch, Mittermeir has

refined each step in the framework in more detail. For example, the object identification

step is further divided into three substeps. It suggests that the identified objects should be

categorised into input/output, initiating/passive, and referenced/consumed objects. Hence,

the Mittermeir design method is more an object-oriented design method than Booch’s design

method.

However, the method suggested by Mittermeir is still inadequate for object-oriented system

development. As a design method, it defines what should be done in each step but does

not specify the interface between each step. For example, how to present the information

30

A Design Method for Object-Oriented Programming Winnie Pun

obtained in the object identification step to the network step is not specified. Hence, again,

the design method lacks a means of continuity which allows system designers to go from

one step to the next comfortably.

Furthermore, although inheritance is regarded as an important issue in object-oriented pro­

gramming, this issue is not emphasised or supported enough in the design method.

2.2.7. ObjectOry

ObjectOry [Jac87] is a development method for large systems. It is divided into two phases:

i. system analysis.

ii. system design.

The system analysis phase is used to set up the conceptual model for the system design

phase. The system analysis phase is divided into three sub-factories:

i. Entity modelling - this is used to model the static aspects of the system. The result

of the modelling is shown in a conceptual diagram in which nodes correspond to

entities and arcs correspond to relations.

ii. Use cases modelling - “A use case is a special sequence of transaction, performed

by the user or the system in a dialogue”. The result of the use cases modelling is

a kind of conceptual diagram which denotes the relation of use cases and entities.

There are two kinds of relations:

• the built-on relation which is found between different use cases. It

indicates a use case is a specialisation of a more general use case. The

built-on relation, in fact, highlights the inheritance relation between two

use cases.

• the access relation which is found between entities and use cases. It

highlights those entities which can be accessed by a use case.

The conceptual diagrams generated from use cases modelling is mainly used as

the specification in discussions between developers and clients (see Figure 2.4).

They are also used internally to check whether the developed system meets the use

requirements.

31

A Design Method for Object-Oriented Programming Winnie Pun

uco

UC2UC1

UC4
UC3

E2

Figure 2.4: A Schematic Conceptual Model of the System’s Use Cases

iii. Service modelling - A service is a cluster of similar parts of use cases. Service

modelling is important to identify a suitable structure for the system. As a result,

three types of relation are identified between services:

• the IS-A relation means that a service is a specialisation of another, this

indicates the inheritance relation between two services.

• the extension relation simply indicates that a service is an extension of

another.

• the interaction relation denotes the communication between two services.

The result of the system analysis phase yields three kinds of conceptual diagrams, those for

entities, use cases and services. These diagrams are then used as the input for the system

design phase. The system design phase is again divided into three sub-factories:

i. system level design

This is used to identify the system structure. It is further sub-divided into four

sub-factories: system structuring, use case design, use case testing and system

testing.

ii. block design

A block in the system is constructed as a factory. Note that a block is said to be

implemented as a class in object-oriented programming.

iii. component level design

This is where system components are built.

As it stands, ObjectOry can be regarded as a promising approach for object-oriented system

development. The method covers both the analysis and the design phase. Each phase is

32

A Design Method for Object-Oriented Programming Winnie Pun

sub-divided into several stages. The details of each stage are clearly defined and the input

and output of each stage is specified. The design method highlights some object-oriented

features, for example, the blocks used in the design phase will be implemented as classes

using object-oriented programming. Also, the method encourages the inheritance relations

to be expressed in the analysis stage. Further, ObjectOry is a user-oriented design method.

The use cases concept in the method help to develop a user-driven system.

However, ObjectOry is not a design method which is specially developed for object-oriented

programming. In fact, the method incorporates three independently developed techniques:

i. block design.

ii. conceptual modelling.

iii. object-oriented programming.

This is probably the reason why ObjectOry looks so complicated. Further, as Jacobson

mentions in his paper [Jac87], the framework of this design method originates from Ericsson

Telecom and is widely used in the telecommunication industry. Thus, one can easily find

some phases and descriptions in the design method that are specially aimed at telecommunica­

tion software. For example, a service is defined as an indivisible ordering packet of functions

for a specific system. The term ‘packet’ is one oriented to telecommunication. In addition

to this, there are a large number of terms and concepts used in the design method such

as use cases, services, factories, etc which are new to system designers. The consequence

of this is that system designers who are not in the telecommunication industry may find

the method difficult to understand and follow. This also means that system designers who

are familiar with current structured design methods such as Yourdon’s and JSD will have a

difficult transition to object-oriented design.

The method encourages the expression of inheritance relations in the analysis phase but there

is no general guideline of how it should be handled, especially in the design phase. It is

strongly felt that some sort of support should be given in the design phase to ease the job

of designers in handling inheritance and designing class hierarchies.

2.2.8. Summary

In software engineering, design is the process of applying various techniques and principles

for the purpose of defining a system to solve a given problem. The system should be defined

in sufficient detail to permit its physical realisation. A design method should help system

designers to organise the design activities towards such a definition. It should decompose

the design activities into distinct and ordered tasks, providing tools appropriate to each task

and criteria for the correct completion of the task. More importantly, it should set up the

33

A Design Method for Object-Oriented Programming Winnie Pun

appropriate implementational model for the implementation phase. Hence, the design method

should embody the same model as the implementation language so that the transition from

the design phase to implementation phase is straight forward.

With conventional structured design methods, the design method organises the design activity

towards an implementation in a procedural programming language. It targets an implemen­

tational model in which modularity and abstraction lies within an operation; functional

abstraction. The decomposition of the system is based on its functionality. The graphical

constructs and notations provided by these design methods are geared towards procedural

programming. In object-oriented programming, the modularity and abstraction lies within an

object. This kind of mismatch, therefore, forms the basis of why these conventional design

methods are inappropriate to be used in object-oriented programming.

Although transformation techniques have been developed to allow specifications generated

from conventional design methods to be used in object-oriented design, as the fundamental

philosophy of these design methods and object-oriented programming are different, they do

not seem to provide a satisfactory solution.

In the case of the existing ‘object-oriented’ design methods, it was found that these existing

design methods do facilitate the development of object-oriented software to a certain extent.

They all agree on a common framework which emphasises the identification of objects and

their corresponding actions within the system. However, most of the development of these

design methods are not dedicated to object-oriented programming. Whilst some of them

are developed as a design method to fit in a pre-defined software environment, others were

developed for a particular programming language. For example, the development of HOOD

had to be consistent with a software environment which takes SADT as the requirement

analysis method and Ada as the programming language. In this case, the development of a

true object-oriented design method becomes less important than a design method that fits in a

pre-defined environment. The consequence of this is that not only the resulted design method

is inflexible to use, but also that it does not fully support the main features of object-oriented

programming.

One of the important feature in object-oriented programming is inheritance. A design method

for object-oriented programming should fully support this feature. It should have guidelines

and even software tools to help system designers to construct the inheritance hierarchies.

However, as one can see, the four existing object-oriented design methods do not support

inheritance to an acceptable extent, for example Booch’s design method and HOOD which

are bound to the programming language Ada. Since Ada itself is not a true object-oriented

programming language, it does not support inheritance. Hence, the design methods which are

34

A Design Method for Object-Oriented Programming Winnie Pun

targeted at Ada as the implementation language do not support inheritance t . The Mittermeir

method and ObjectOry have discussed inheritance in their design process but do not provide

full support or guidelines for system designers to handle inheritance.

2.3. Conclusion

This chapter has defined clearly the term ‘object-oriented’ as used in this research. It has

analysed why existing design methods are inadequate for object-oriented programming. The

result of the analysis highlights that an alternative design method for object-oriented pro­

gramming has to be developed. Such a design method should emphasises object-orientation

awareness in the early stage of the design phase. The method should contain adequate support

for system designers to handle inheritance. The method would guide system designers to

organise the design activities towards an object-oriented implementation. Chapter 3 of this

thesis gives a detailed description of the design method which has been developed according

to this specification.

The importance of inheritance, in fact, has recognised by some of the authors of the existing object-oriented design methods
recently. In June, 1989, Booch gave a seminar in London and said that he realised that a shortcoming of his design method was
having no support for inheritance. Hence, he has extended his method to cover this issue so that it caters for more orthogonal
object-oriented programming languages such as Smalltalk-80 and C++.

“A systematic approach to design simplifies the process and results in software which

is understandable, verifiable and reliable without stifling the creativity o f the software

engineer."

~ Ian Sommerville ~

Chapter 3

The Design Method

The previous chapter highlighted the deficiencies of existing design methods when applied

to object-oriented programming. Therefore, the primary goal of this research is to develop a

design method which is specially targeted towards an implementation in an object-oriented

language. Such a design method would form the core of an integrated object-oriented

software development environment.

This chapter serves the purpose of describing the primary framework for the design method

resulting from this research. It starts off by discussing the goals and defining the scope of

such a design method. It then gives an overview of the design method prior to a detailed

discussion. This chapter concludes with a discussion of other issues which are related to

object-oriented systems design.

3.1. Basic Principles of the Design Method

The design method developed in this research is specifically tailored for object-oriented

programming. Before describing the design method itself, it is important to first define the

design principles of this method. This also serves to explain how certain design decisions

are made with respect to this method.

3.1.1. Attitudes towards Design

Like most design, software design is a creative process. It requires a certain amount of

experience and intuition from the software engineers. Software engineers seldom find that

they can attain a good design at the first attempt. A good design is always the result of a

36

A Design Method for Object-Oriented Programming Winnie Pun

number of preliminary designs. As Sommerville says [Som89], “Design cannot be learned

from a book - it must be practised and learned by experience and study of existing systems”.

A design method cannot be expressed as a formula which when followed it, guarantees a

successful design. What a design method can do is to provide enough guidelines for system

designers to organise the design activities towards a particular goal. It guides the designer

in getting from one point to another in the design phase. It provides clear instructions about

what to do next whenever there are a large number of choices.

Therefore, the main principle of the design method in this research is to provide a set of

guidelines to help system designers to organise the design process towards an implementation

in an object-oriented programming language. The design method does not impose rules to

hinder the creativeness of the designer.

Most system designers have some knowledge about existing structured design methods.

Although it has been found that these design methods are inadequate when applied to object-

oriented programming, it is better to have the design method bear some similarities to existing

design methods when possible. In this way, system designers are familiar with the design

method and this will bring down the learning curve. Therefore, the design method from this

research tries to use constructs which are already be familiar to system designers.

Further, the design method is designed to serve as a teaching aid for the novice in object-

oriented programmer. It helps them to understand the philosophy and characteristics of the

object-oriented programming paradigm. For the experts in object-oriented programming, the

design method also serves as a documentation tool. It aims to assist them to document and

realise each stage in the design process.

3.1.2. Analysis and Design

Software development always begins with a problem thought to be solvable by a computer

system. It then goes through a process in which the solution is presented in software. During

the development process, a sequence of decisions have to be made which leads to a target

system that can be assembled and used.

The classic life cycle for software development is known as the ‘waterfall model’. This is

illustrated in Figure 3.1. The ‘waterfall model’ demands a systematic, sequential approach

to software development which starts off with the requirement analysis phase and progresses

through design, coding and testing.

37

A Design Method for Object-Oriented Programming Winnie Pun

Design

Maintenance

Figure 3.1: The ‘Waterfall Model’ for the Software Development Cycle

de Marco [deMar78] said, “In the specific domain of computer systems development, analysis

refers to the study of some applications, usually leading to the specification of a new system”.

System analysts need to understand the problem domain and its development environment.

Although it is often suggested that the requirement analysis phase is to find out ‘what’ is to

be implemented and the design phase is to figure out ‘how’ to implement it, it is impossible

to carry out a detailed analysis and to produce a precise requirement specification without

some design activities. System analysts not only interact with the clients and the end-users t,

but also communicate a lot with software engineers. Hence, the requirement analysis phase

is always found to overlap with the design phase.

In fact, the distinction between the analysis and the design phases is even more blurred

in object-oriented programming. It is generally agreed that object-oriented programming is

more suitable for prototyping [DiM87, Mey88, Som89] (see Figure 3.2). Hence, the classic

‘waterfall model’ is no longer applicable in the development of object-oriented programs.

The software development cycle for object-oriented programming has been described as a

In this thesis, clients are people who want to construct the computer systems, end-users are people who actually use the
computer systems when it is constructed.

38

A Design Method for Object-Oriented Programming Winnie Pun

‘recursive/parallel’ cycle in which the various phases in the development cycle overlap each

other. The requirement analysis phase and the design phase are no longer independent.

Quick Design

Build Prototype

Eviliute and
Refine Requirements

Engineer Product

Figure 3.2: The ‘Prototype Model’ of the Software Development Cycle

This characteristic has, in fact, been recognised in this research. The design method

developed encourages interactions between the analysis and the design phases. The design

method assumes that the requirement analysis and the feasibility study of the system have

been carried out and a set of requirement specifications is ready prior to using the design

method. However, the first part of the design method specifies how the conceptual model

should be set up and used in the rest of the design phase.

3.1.3. Modelling

A model is a representation, usually on a smaller scale, of a device, system, structure etc.

Modelling is regarded as an effective mechanism for the technical analysis of software

systems. In fact, the different phases in software development can be viewed as the different

processes required to construct different models.

39

A Design Method for Object-Oriented Programming Winnie Pun

System Design

data modelling

Conceptual Model Implementation Model

Jtefairxmeni An&tytts

Figure 3.3: Modelling in Software Development Cycle

As shown in Figure 3.3, the software development process begins with the requirement

analysis phase. The aim of the requirement analysis phase is to find out what exactly the

client wants. This leads to the construction of a conceptual model of the software system. A

conceptual model is basically a high level abstract representation of the system. It presents

a system view which is understood by clients and expected by end-users. In the later

stage of the software development, such a conceptual model has to be transformed into an

implementation model. An implementation model is a representation of the system with

respect to the implementation environment o f the system, e.g., the kind of implementation

language one is going to use. The implementation model generally acts as a reference model

for programmers to implement the system.

To transform the conceptual model to the implementation model is, therefore, the objective

o f the design phase. In a way, the design process can also be viewed as a collection of

modelling processes. For example, it may involve data modelling, control modelling and

process modelling of the system.

In view of this, the design method of this research specifies the kind of conceptual model

required in the first stage of the design phase. The design method then provides guidelines

for system designers to transform the conceptual model into an implementation model.

O f course, the implementation model accomplished here is one which is suitable for an

implementation in an object-oriented programming language.

40

A Design Method for Object-Oriented Programming

3.1.4. Design Description Language

Winnie Pun

As mentioned earlier, the software development process involves constructing appropriate

models at different stages. These models are normally specified using a design description

language. The design description language can either be textual, graphical or both. As it is

widely agreed that the human mind acquires information at a significantly higher rate from

notations in pictures than by reading text [Cha80, Rae85], models are usually specified in a

graphical form.

Besides graphical and textual description languages, specifications can be specified in a

very formal, mathematical approach, i.e. formal specification languages, which is very

popular in the formal methods community. The main advantage of formal specifications

is that they have a precise meaning [LiG86]t. With a formal system specification and

a complete formal programming language definition, it may be possible to prove that a

program conforms to its specification. This can demonstrate that certain classes of errors are

absent [Som89]. However, formal specifications have not been widely used because they

require system developers to have a familiarity with discrete maths and logic. Besides, it

is hard to demonstrate that the development of a formal system specification will reduce

software development costs.

Nevertheless, it has been decided in this research that to attain visibility in a design is

more important. Hence the design method developed tends to use graphical constructs in

specifying the models. These graphical constructs are easy to learn. With the help of

graphical editors, users should not find that they have to spend too much time on manually

drawing the graphical constructs and can spend most of their time on the main system design.

3.1.5. User Interface Design

In the early days, the user interface was not regarded as part of the system design. Often,

system designers either treated the user interface design as a separate issue or left it untill

the end of the system development. This observation can be further supported by the fact

that most of the traditional design methods do not include user interface design as part of the

design method. However, in order to attain a successful and usable system, system designers

should focus on user interface design at an early stage of the design phase [GoL85, Kli77].

Besides, a user-oriented approach to system design helps to reduce conflict and promote

cooperation between users and designers [Luc71].

1 Formal semantics can sometimes found in graphical notations such as Petri Nets [Pet77].

41

A Design Method for Object-Oriented Programming Winnie Pun

Therefore, the design method developed in this research brings in user interface issues at

an early stage of the system design. It emphasises that user interface design is not only

important but also has to be looked at at an early stage.

3.1.6. Design in Different Problem Domains

Just like all other design methods, it is unwise to think that the design method developed

in this research can be applied to all cases of object-oriented systems design. Software

systems can be grouped into different domains depending on their characteristics. There are

specific systems such as concurrent systems, distributed systems, real-times systems. Each

of these specific systems emphasises different aspects in the system development. There is

no one method which can cater for systems in all problem domains. In fact, when one looks

into the development history of structured design methods, one finds that a general purpose

structured design method such as Yourdon’s method was first introduced, then modified and

further developed to fit different problem domains. For example, Post [Pos86, War89] has

modified the structured method to apply in the real-time industrial software development.

Gomaa [Gom84] has extended the Structured Analysis/Structured Design method (SASD)

for real-time systems.

Therefore, the primary aim of this research is to obtain the general framework of the design

method for object-oriented programming. It is believed that the design method will have to

be developed further in order to fit in special domains such as building concurrent systems.

3.2. An Overview of the Design Method

This section gives an overview of the design method before a more detailed discussion is

givent.

As shown in Figure 3.4, the design method is basically divided into three levels:

i. the conceptual level,

ii. the system level and

iii. the specification level.

A summary of this section can be found in [PuW89b, PuW90a].

42

A Design Method for Object-Oriented Programming Winnie Pun

Implementation
Model

Conceptual
Model

Class Structure
Charts and
Message Structure
Charts

User and Functional
Requirements

System Level Specification LevelConceptual Level

Figure 3.4: The Overview of the Design Method

The design method has been developed to fit into a ‘prototyping’ software development

environment. Thus different phases in the process overlap with each other. Because of this,

the design method not only covers the design phase but also part of the analysis phase.

A set of requirement specifications needs to be ready prior to using the design method.

With the requirement specifications, system designers go through the stages suggested in the

method to produce a set of design specifications. This set of design specifications will then

be taken by the programmers and implemented in an object-oriented language. Due to the

characteristic of the ‘prototyping’ model, the three levels mentioned in the design method

are re-iterated throughout the design phase.

The design method starts off with the conceptual level. The main objective of the conceptual

level is to identify the objects and operations occuring in the application layer of the system.

The designers obtain information from the clients, analyse it and construct the conceptual

model for the application. Such a conceptual model is presented by object-interaction

diagrams.

Once the conceptual model of the application is set up, system designers enter the system

level. The system level is where the implementation model of the application is assembled.

There are three issues which are of interest at this level:

i. object inclusion,

ii. object interaction and

iii. class inheritance.

The system level is mainly concerned with how an object is constructed and since an object

43

A Design Method for Object-Oriented Programming Winnie Pun

in object-oriented programming is created as an instance of a class, it is also concerned with

how to construct a class. This leads to the identification of the set of variables and the set of

operations that belong to a class. As well as this, the interactions between classes, especially

existing system classes must be taken into account when constructing classes. For example,

a class can be created as a subclass of an existing system class. In some cases, it may even

lead to the construction of new class hierarchies. Further, it is also necessary to understand

the interactions amongst the objects at the system level. All this information can be recorded

in the object-interaction diagrams.

With the information obtained from the conceptual and the system levels, system designers

should be able to specify the objects and the interaction between objects. This kind of

information is presented in the ‘class structure chart’ and the ‘message structure chart’ at

the specification level. In fact, these charts will be taken as design specifications by the

programmers to implement the system.

3.3. Detailed Description of the Design Method

This section of the thesis presents the details of the individual stages of the design method. It

discusses the objective of each stage and the steps required in order to achieve the objective in

a comprehensive manner. Throughout the discussion, examples drawn from the development

of a ‘GP Surgery Notes System’ and a ‘Home Heating System’ are used to illustrate the ideas

central to the design method. Both these systems were developed with this object-oriented

design method. The usage of the design method in developing these two systems can be

found in Appendix A and Appendix B.

3.3.1. The Conceptual Level

The conceptual level is regarded as the front end of this design method. Its main objective

is to set up the conceptual model of the application. The objects and interactions involved in

the application layer of the system are identified and presented as the conceptual model of

the system. The conceptual model, as defined earlier, is a representation of the system which

is mutually agreed between system analysts and clients. It contains very little information

about the implementation of the system.

The conceptual level can also be viewed as the back-end of the requirement analysis

phase in the software development process. The requirement analysis phase itself is a

complicated process. It ranges from interviewing clients and end-users and analysing their

needs to specifying both the functional behaviour of the proposed system and non-functional

requirements that must be met [Bor85]. As the requirement analysis phase is a complex

44

A Design Method for Object-Oriented Programming Winnie Pun

one, various methods and techniques have been developed to ease the task of analysts.

Some of the more popular ones are Structured Analysis [Mar78], SADT [RoS76], SREM

[SSR85] and SSADM [AsG90]. There are also requirement analysis methods which are

specially for user-interface design such as TAKD [Joh85]. Obviously, to attain a complete

and consistent software development process, it is better to have the requirement analysis

method compatible with the design method. Therefore, a better candidate for a requirement

analysis method to complement this design method would be one which is object-oriented.

One of the earliest attempts to introduce object-orientation into requirement analysis and

specifications is probably that of Borgida [Bor85]. In his paper, he suggests using an object-

oriented framework to construct the requirement model. Recently, serious effort has been

made to try to attain an object-oriented analysis method. For example, Shlaer and Mellor

[ShM8 8], Coad and Yourdon [CoY90] have published work on object-oriented analysis.

Bailin [Bai89] has proposed a method of analysing requirements for object-oriented software

which evolved from structured analysis and serves as an alternative to structured analysis

when the use of object-oriented design is foreseen. Although, these requirement analysis

methods are not widely used yet, it is generally agreed that an object-oriented requirement

analysis method is needed to complement the object-oriented design method.

As stated earlier, most of the activities in the requirement analysis will not be considered in

this design method. Hence, the details about object-oriented analysis will not be discussed

here. The design method assumes that the functional and the non-functional requirement

specifications are ready. With the requirement specifications, the design m ethod, startsoff by

identifying the proper objects and interactions to construct the desired conceptual model. In

a way, the relationship between the analysis and the design phases suggested by this design

method is that the design method makes use of the information obtained in the analysis

phase to construct the conceptual model. The model is specified in the language defined by

the method.

3.3.1.1. Identification of Objects

Most of the literature about object-oriented programming [B0 0 8 6 , Cox8 6 , Pre87] agrees that

the initial step in object-oriented programming is to identify the objects involved in the

system. Although everyone knows that this is the first step to carry out, no one knows

exacdy how to proceed.

In 1983, Abbot [Abb83] proposed a method to identify objects and actions from informal

requirement specifications written in English language. He suggested that the norms and

noun phrases in an informal English description of the system are good indicators of the

45

A Design Method for Object-Oriented Programming Winnie Pun

objects and their classifications. Abbott’s method, in fact, has been included in certain object-

oriented design methods such as Booch’s method and HOOD. However, the general feeling

about Abbott’s method is that it may be taken as the starting point to identify objects but

the pinpointing of the relevant objects still relies very much on the intuition and experience

o f the system designers themselves, i.e., the ‘human magic’ of design.

Hence, it seems that there is no one formula which can be applied to identifying objects in

a system. It all depends on ones understanding of what an object is. Therefore, the primary

step taken in this method is to state clearly what an object is at the conceptual level.

In object-oriented programming, an object represents an entity in the user’s mental conception

of the real world. An object is an encapsulation of:

i. a set of variables which describe its state, and

ii. a set of operations that can act upon the object to alter its state.

An object is a model of an entity in reality, it is not a value, an action or a time. To determine

whether an entity in the application should be regarded as an object in the system, one has

to make sure that the entity has a state that undergoes some actions in the application. For

example, in the GP system of the Appendix A, ‘the Patient Card Database’ is an object. It

embeds operations such as ‘add’, ‘delete’ etc, which can be invoked by other objects in the

application. Also, as mentioned in Chapter 2, an object does not hav e a time factor, i.e., the

order of the actions within an object is irrelevant. This distinguishes the object defined in

object-oriented programming and an entity defined in the Jackson System Method.

Further, in this design method, objects are classified into two different types: application

objects and implementation objects. At the conceptual level, system designers are interested

in identifying the application objects. Here, application objects refer to objects which are

found in the application layer of the system. These are objects which are understood by the

clients and end-users in the system. For example, the ‘Patient Card Database’, and the ‘GP

M enu’ are application objects identified at the conceptual level.

The application objects at the conceptual level are different from the implementation objects

at the system level. Briefly, implementation objects are identified at the system level and

are concerned more with the implementation model. This is discussed in more detail in

Section 3.3.3.1.

3.3.1.2. Identification of Actions

In addition to identifying objects in the system, system designers have to identify the

appropriate interactions between these objects. Abbott [Abb83] again suggests that the

46

A Design Method for Object-Oriented Programming Winnie Pun

verbs in the informal specifications of the system are good indicators of the actions involved

in the system but like identifying objects, it also depends a lot on the intuition of the system

designers.

Besides, in order to find out the interactions in the system, the developer may need to consider

the functionality of the application stated in the requirement specifications. For example in

the ‘GP Surgery System’ found in Appendix A, the requirement specification mentions that

the system should allow users to update, and retrieve information about a patient. Hence,

the object ‘Patient Card Database’ should have operations such as ‘add card’, ‘read card’ to

act upon it. Although there are suggestions which said that functional decomposition is not

an appropriate strategy for object-oriented programming [Mey8 8], some of the interactions

can be deduced from the functional approach. For example, by examining the ‘read card’

operation and thinking about how the operation ‘read card’ works, the developer will identify

that ‘search card’ should also be an operation acting upon the ‘Patient Card Database’.

3.3.1.3. The Two Layers of the Conceptual Level

User Interface Layer,

User Transparent Layer,

Figure 3.5: The Two Layers of the Conceptual Level

Almost all systems developed involve interactions with end-users at some stage, thus the

user-interface design is actually part of the design phase. In order to highlight this issue and

bring in user-interface design at the early stage of the design phase, the conceptual level is

deliberately divided into two layers, the user-interface and the user-transparent layers (see

Figure 3.5).

i. The User Interface Layer

This layer contains application objects which communicate and interact directly

with end-users. It provides a visual presentation of what the system is to the

47

A Design Method for Object-Oriented Programming Winnie Pun

end-users. Objects such as forms and menus are typical interfacing objects.

ii. The User Transparent Layer

This layer contains application objects which are transparent to the end-users. As

far as the end-users are concerned, they do not directly interact with these objects.

For example, in the GP system, the ‘Patient Card Database’ is transparent to end-

users.

Since the conceptual level is divided into two layers, system designers are obliged to arrange

the identified objects into these two layers. The connection between these two layers is via

message communication amongst objects in the two layers.

The separation of the conceptual level into two layers not only highlights the importance

of user-interface design in general system design, but also gives more flexibility to system

designers. As the importance of user-interface design becomes more and more recognised,

methods have emerged to assist system designers in the design of better interfaces. The

object-oriented paradigm has been introduced in this particular area. For example the Model-

View-Controller (MVC) [Tre84], Presentation, Abstraction and Control (PAC) [Cou87] are

two different frameworks which apply the object-oriented paradigm to user-interface man­

agement. By separating the conceptual level into two layers, the user-interface layer can

be extracted and handled by interface experts. As long as the user-interface layer provides

a proper interface, i.e., the message communication to interact with objects in the user-

transparent layer, the conceptual model of the application is still correct. This approach

certainly gives a better result as experts are handling that part of the design at which they

are good.

3.3.1.4. Object Interaction Diagrams

Once objects and their interactions have been identified and classified, the conceptual model

of the application can be set up. The design method uses object interaction diagrams to

specify the conceptual model. The object interaction diagram is a kind of graphical notation

used at the conceptual level. It allows designers to express the results of systems analysis

diagrammatically. The graphical notation of the diagram is very simple. There are basically

two different constructs (see Figure 3.6):

i. ‘circles’ denote objects which are involved in the system,

ii. arcs indicate that there are interactions between the objects. Note that these

interactions would be further analysed at the system level and the information

about what interactions, i.e., which message, is then realised. At that point, arrows

are added to the arcs to show the direction of the flow of messages (see Figure 3.7).

48

A Design Method for Object-Oriented Programming Winnie Pun

User Interface Layej
T o rtn

System Wit

User Transparent Layei

Figure 3.6: An Object Interaction Diagram of the GP System

3.3.1.5. Levelled Object Interaction Diagrams

Users

Patient Card

>GP System Mem

Authorisation Activity

Search

icnt Card Activity Menu%

Figure 3.7: A Levelled Object Interaction Diagram

Very often, an object is actually an abstraction of several other objects. For example, a ‘GP

M enu’ may not be a single-level menu but one which contains several sub-menus. It may

49

A Design Method for Object-Oriented Programming Winnie Pun

contain a sub-menu called ‘Patient Card Activity Menu’ which allows users to select an

option to interrogate the patient card database. It may also contain another sub-menu called

‘Authorisation Activity Menu’ which allows users to select an option to enquire about who

can do what with the GP system.

To reveal the structure of this abstraction, an object can be expanded into another set of

object interaction diagrams as shown in Figure 3.7.

This kind of multi-level diagram is particularly useful in specifying large systems. In a

way, it is similar to that of levelled data flow diagrams [deMar78]. In the structured analysis

and design method, when a system is too large for its data flow diagrams to be shown on a

single page, the system is partitioned into sub-systems as shown in Figure 3.8.

no Build ^

ya tid Updati new matter record

3 0 Replace Record

2 0 Build Mailer
Area >

.card

r2 E£?
1.3 Reformat^

Figure 3.8: A Levelled Data Flow Diagram

A levelled data flow diagram allows the system to be partitioned in a process-oriented fashion

whereas a levelled object interaction diagram partitions the system in an object-oriented

fashion. The levelled object interaction diagrams are used more often at the system level

when more implementation objects are revealed by identifying the ‘contain’ relationship in

the system (see Section 3.3.2.2).

3.3.2. The System Level

The system level is regarded as the core of this design method. As stated earlier, the

objective of a design method is to transform the conceptual model of an application to

50

A Design Method for Object-Oriented Programming Winnie Pun

its implementation model. The system level in this design method is responsible for

carrying out the necessary tasks to accomplish this goal. Briefly, it has to identify the

set of implementation objects and how they interact in the implementation model. In order

to achieve this, system designers begin by considering the three important relationships

associated with an object.

i. the ‘contain’ relationship,

ii. the ‘use’ relationship and

iii. the ‘inherit’ relationship.

This section describes what must be done at the system level. It first explains the concept

of the implementation objects appear at this level. It then talks about the three relationships

associated with an object and their importance in constructing the implementation model.

The identification of the implementation objects and the three relationships contribute to the

construction of the class structure. After presenting what have to be done at this level, it

then suggests how to proceed with these tasks in an effective way.

3.3.2.1. The Concept of Implementation Objects

In section 3.3.1, it is mentioned that objects are classified into application objects and

implementation objects in this design method. Application objects are mainly objects found

in the application layer of the system and are fairly obvious to be identified. Implementation

objects are objects which are going to appear in the implementation model. They have to

be constructed as instances of a class in the implementation stage.

Although the objects which are identified at the conceptual level are very likely to be

implementation objects at the system level, this is not always the case. For example, ‘user’

is an object identified in the conceptual model but such an object becomes transparent in

the implementation model. Besides, additional objects may be needed in order to complete

the set of implementation objects for the implementation model. For instance, one may

need an object called ‘error state’ to determine which type of error has occured and its

corresponding actions. Probably, it is better to view application objects as a small subset of

the implementation objects. In order to obtain the complete set of implementation objects,

system designers have to work on identifying relationships such as ‘contain’, ‘use’ and

‘inherit’ which are discussed in full detail in the following sections.

3.3.2.2. The ‘Contain’ Relationship

The ‘contain’ relationship is a one to many relationship amongst objects. As mentioned

earlier, an object may be an abstraction of a set of objects, hence an object may contain a

51

A Design Method for Object-Oriented Programming Winnie Pun

set o f other objects. For example, in the ‘GP Surgery System ’ o f Appendix A, although the

‘GP System ’ itself is an object, it contains objects such as ‘GP M enu’ and ‘Patient Card

D atabase’. Thus, there is a ‘contain’ relationship between the ‘GP System ’ and the ‘GP

M enu’ as well as the ‘Patient Card D atabase’. Another example is found in the ‘Home

Heating System ’ of Appendix B, the object ‘Room ’ which contains a few objects such as

the ‘W aterValve’, the ‘Tem pSensor’, the ‘DesiredTemp’ and the ‘OccupiedSensor’. All these

objects bear a ‘contain’ relationship with the object ‘R oom ’.

The main objectives of realising the ‘contain’ relationship are:

i. to highlight some more implementation objects that are required for the im plemen­

tation model,

ii. to reveal the underlying structure of an object, hence the structure of its corre­

sponding class.

Des lrecfTe m p j) ' :

<CT~WaterValvĈ .

Figure 3.9: The ‘Contain’ Relationship of the Object ‘Room’

The ‘contain’ relationship is extremely useful in constructing a class. As stated earlier, a

class is a template which contains a set of instance variables and a set of operations. The

objects which are identified in the ‘contain’ relationship are variables in the class structure.

This piece of information is particularly useful at the specification level when specifying the

class structure chart.

The identified ‘contain’ relationships have to be expressed explicitly in the object inter­

action diagram. It is expressed in a levelled object interaction diagram as m entioned in

Section 3.3.1. For example, the ‘contain’ relationships found in the ‘room ’ object mentioned

52

A Design Method for Object-Oriented Programming Winnie Pun

above is denoted as Figure 3.9.

3.3.2.3. The ‘Use’ Relationship

The ‘use’ relationship is a one to one relationship between two objects. In fact, the ‘use’

relationship is denoted by the message passing between two objects. In object-oriented

programming, objects communicate by sending messages to each other. When objectA

sends a message to objectB, one can say that objectA uses objectB to achieve some goal and

a ‘use’ relationship is then established. The ‘use’ relationship also highlights the direction

of the message flows, it distinguishes which is the sender and which is the receiver.

Again, the ‘use’ relationship can be used to identify more implementation objects for the

implementation model. At the same time, it also highlights which operations/messages t are

required for a particular object. For example, in the ‘GP Surgery System’ of Appendix A, a

‘use’ relationship is found between the ‘Patient Card Form’ and the ‘Patient Card Database’.

Once the end-user finishes filling the ‘Patient Card Form’, the ‘Patient Card Form’ then

sends a message, ‘add patient’, to the ‘Patient Card Database’. Here, it highlights that ‘add

patient’ has to be defined as an operation which acts upon the object ‘Patient Card Database’.

In other words, the class ‘Patient Card Database Class’ from which the object ‘Patient Card

Database’ is instantiated, has to define the operation ‘add patient’.

The ‘use’ relationship is usually found between an object and its contained objects, i.e.,

the sender always contains the receiver. For example, in the ‘Home Heating System’ of

Appendix B, the ‘Room’ contains a ‘WaterValve’. When the system wants to open the water

valve, it has to send a message ‘openWaterValve’ to the object ‘Room’. The object ‘Room’

then sends a message ‘openValve’ to the ‘WaterValve’ which it contains. Hence, within the

method of the message ‘openWaterValve’, a ‘use’ relationship is detected between the object

‘Room’ and the object ‘WaterValve’.

Also, it is possible that an object has a ‘use’ relationship with an object which is not contained

within that object, i.e., a sender can send messages to a receiver without physically containing

the receiver. In this case, the sender has to know the reference of the receiver. In the example

of the ‘GP System’ of Appendix A, the ‘Patient Card Database’ and the ‘Patient Card Form’

are two objects that are physically created and reside in the ‘GP System’. In order to allow

the ‘Patient Card Form’ to send the message ‘add patient’ to the ‘Patient Card Database’,

The terra ‘message’ originates from Smalltalk-80 [Gol83b]. Messages represent the interactions between the components of
the system.

53

A Design Method for Object-Oriented Programming Winnie Pun

the ‘Patient Card Form’ has to know the reference of the ‘Patient Card Database’. In most

programming languages, this is done by passing the references of the receiver to the sender.

In addition, the ‘use’ relationship can also occur between an object and itself, i.e., an object

can send a message to itself to perform certain tasks (See Figure 3.10).

ObjectA.

Figure 3.10: An Object which Sends a Message to Itself

This situation usually occurs when the set of operations cannot be accessed by outside

objects. These operations/messages are introduced to support the implementation of other

operations/messages. For example, error messages that are used more than once can be

specified as private messages in order to create the literal message string only once. These

operations are named differently in different programming languages, e.g. they are called

private member functions in C++ [Str8 6 b], private message category in Smalltalk [Gol83b]

and non-export features in Eiffel [Mey8 8], As messages can be either private or public, when

a ‘use’ relationship between an object and itself is identified, one has to decide whether such

a message should be implemented as a private message or not.

addPatieru

Patient Card
Database

Figure 3.11: The ‘Use’ Relationship between Objects

Like the ‘contain’ relationship, the ‘use’ relationship has to be expressed in object interaction

54

A Design Method for Object-Oriented Programming Winnie Pun

diagrams. It is denoted by an arc and arrow in which the arrow shows the direction of the

message flow. This is illustrated in Figure 3.11.

3.3.2.4. The ‘Inherit’ Relationship

The realisation of the ‘contain’ and the ‘use’ relationships assists system designers in

highlighting the objects and interactions found in the implementation model. At the same

time, it helps to model the structure of the required classes. However, all the information

obtained from these two relationships is application-oriented. The information is derived

from the characteristics and functionality of the application. As this information is very

specific to a particular application, it is unlikely that the classes generated directly from the

two relationships can be reused in other applications. Hence, this design method brings about

a third relationship, the ‘inherit’ relationship, which has to be realised by system designers

to attain reusable classes.

When classA is related to classB and classA is more general than classB, i.e., classB needs

a larger set of attributes to describe its behaviour, then it is said that classA has an ‘inherit’

relationship with classB. Here, classA is the superclass and classB is the subclass in this

‘inherit’ relationship and classB inherits all the attributes that are defined for classA. The

‘inherit’ relationship of a particular class can either be a one to one or a many to one

relationship depending on whether single inheritance or multiple inheritance is considered.

The ‘inherit’ relationship is particularly important in object-oriented programming because it

distinguishes object-oriented programming from class-based and object-based programming

[Joh8 8 , Weg8 8 a]. As the ‘inherit’ relationship allows a subclass to reuse the properties

defined in the superclass, it enhances the reusability of software which is regarded as

important in software engineering [Fis87, Joh8 8 , Mey87].

In Johnson’s paper [Joh8 8], he says, “Software reuse does not happen by accident, even

with object-oriented languages. System designers must plan to reuse old components and

must look for new reusable components”. Handling the ‘inherit’ relationship is indeed

the responsibility of the system designers. In fact, with the ‘inherit’ relationship, system

designers cannot simply construct a class structure just by realising the ‘contain’ and the

‘use’ relationship. They have to compare the class structure with those which already exist

in the development environment and see whether an ‘inherit’ relationship can be established.

They may even need to design a whole class hierarchy in order to cater for future reuse. To

carry out these tasks is not easy. Beck et al. [OBH8 6] accentuates the difficulty in handling

the ‘inherit’ relationship by saying, “Even our researchers who use Smalltalk everyday do not

often come up with generally useful abstractions from the code they use to solve problems.

Useful abstractions are usually created by programmers with an obsession for simplicity, who

55

A Design Method for Object-Oriented Programming Winnie Pun

are willing to rewrite code several times to produce easy-to-understand and easy-to-specialise

classes”.

As the ‘inherit’ relationship is so crucial and difficult to handle in object-oriented pro­

gramming, a design method specially developed for object-oriented programming has to

provide some kind of guidelines or procedures to help system designers deal with inheritance.

One of the deficiencies of existing object-oriented design methods is that they do not have

enough support for inheritance, thus extra attention is paid to this area in this research. In

order to help system designers handle inheritance, a manipulation process which is called

the ‘inheritance factorisation process’ has been developed to assist system designers in

constructing class hierarchies. The manipulation process is supported by a formal algebraic

structure to ensure its correctness. Such a process can also be automated and allows system

designers to specify a set of class specifications for which an optimal class hierarchy will be

constructed automatically.

The ‘inheritance factorisation process’ is very important in this design method. It highlights

one of the most important features which makes this design method different from the other

object-oriented design methods. Therefore, the details about the inheritance factorisation

process are to be found in Chapter 4.

3.3.2.5. How to Proceed?

Up until now, this section has mainly described what should be done at the system level in

order to accomplish the implementation model. However, the sequence of how these tasks

should proceed has not yet been discussed.

Actually, it is difficult to specify the sequence of these tasks particularly in a prototyping

approach. One cannot really say that system designers should identify all the implementation

objects before they start with realising the ‘contain’, ‘use’ and ‘inherit’ relationships of the

system. Somehow, these tasks seem to occur simultaneously. Probably, the best approach

is to apply the ‘recursive/parallel’ cycle to these tasks. The conceptual model which is

obtained from the conceptual level provides a good starting point for this cycle. With the

application objects identified in the conceptual model, system designers can begin to evaluate

each application object and see whether it is indeed an implementation object. Then, system

designers can examine each implementation object in turn and try to identify the ‘contain’

and the ‘use’ relationships associated with it. On the identification of each relationship, some

more implementation objects and interactions may be picked out. These objects are then

joined in the queue of the implementation objects to be examined later. This procedure is

illustrated in Figure 3.12.

56

A Design Method for Object-Oriented Programming Winnie Pun

Object 1.1,
Implementation
objects that are
identified from
the ‘contain'
and the ‘use’
relationship

Object 1

Application objects that
become implementation
object

Object 2

Object 3,

Object *4,

Figure 3.12: The Procedure suggested for the System Level

A concrete example of such a procedure can be demonstrated with the ‘Home Heating

System’ of Appendix B. The conceptual model of the ‘Home Heating System’ contains

objects such as ‘Furnace’, ‘Timer’, ‘Heat Flow Regulator’ and a number of rooms. These

objects are also confirmed as implementation objects for the implementation model. First of

all, the system designer examines the ‘contain’ relationship of the object ‘Room’. It is found

that the object ‘Room’ contains other objects, ‘WaterValve’, ‘TempSensor’, ‘DesiredTemp’,

and ‘OccupiedSensor’. These objects once identified are then grouped into the set of

implementation objects which are going to be inspected later. The next thing to do is to

pick out the ‘use’ relationship of the ‘Room’ object. From the conceptual model, the system

designers notice that the ‘Heat Flow Regulator’ sends a message, ‘getCurrentTemp’, to the

‘Room’ object to obtain its current temperature. Hence, the operation, ‘getCurrentTemp’

has to be defined in the object ‘Room’, i.e., the class ‘Room’. The system designer then

looks into how ‘getCurrentTemp’ is constructed and finds that to accomplish such a task,

the object ‘Room’ has to send a message ‘getTemp’ to the object ‘TempSensor’. If more

implementation objects are identified in this step, they are again included into the group of

implementation objects which have to be examined later. This process is repeatly executed

until all existing implementation objects are examined. Once this is completed, the system

designer can look at the ‘inherit’ relationship of individual implementation objects.

57

A Design Method for Object-Oriented Programming Winnie Pun

3.3.3. The Specification Level

At the system level, system designers have to identify the set of implementation objects

and realise the three relationships associated with each object. Although most of this

information is recorded in the object interaction diagrams, when comes to the specification

level, it is better to present it in a form in which programmers can easily visualise its

implementation structures. As in object-oriented programming, there are two types of

implementation structures, the class structure and the message structure. The class structure

mainly concerns the set of variables, the set of operations and the class hierarchy associated

with it. The message structure mainly concerns the method of a particular operation/message

in a particular class.

In order to specify these two structures for the implementation phase, the design method has

a specification level in which system designers have to present the implementation model

in two individual kinds of design specifications, the ‘class structure chart’ and the ‘message

structure chart’.

3.3.3.I. The Class Structure Chart

Class Name: PadenlCardForm

Description: This is the form which contains the fields specified for a patient card.
End-users have to fill in these fields in order to create a new form.
Information of this form will be displayed if users want to search a
particular patient record.

A ttributes: PatientCardDatabase - this variable refers to the particular database of
this GP System.

acceptForm - this operation is carried out when users finish filling in a
form and press the accept key. The operation includes
putting the information from the form in to the database.

clearForm - this operation when called will clear the current form,

quit Form- this operation when called will end the displaying of the form.

Class H ierarchy:

Form ^ PahtntCardForm

Inherited A ttributes: FormNsme - the name of the form created.
Helds - the fields in that form is arranged as a linked list
FormMenu - there is a menu attached to the form.
NoOfFields - the number of fields in the form
CurrentField - this variable points to the current field in the form.
ficldContent - this variable stores the coatents of a field.
create Form - this operation create the form.
getFieldContent - obtain die value of a particular field

Figure 3.13: An Example of a Class Structure Chart

The class structure chart is a document which records detailed information about a particular

58

A Design Method for Object-Oriented Programming Winnie Pun

class. The information required in the chart includes the class name, the description of the

class, the set of variables and the set of operations that belong to that class. In addition, the

class structure chart also contains the corresponding class hierarchy graph. The graph shows

the superclass and subclass relationships associated with the class described by the chart.

As it stands, the class structure chart is a summary of the information obtained from the

system level in the design method. At the system level, system designers have to identify the

set of implementation objects for the implementation model. This set of objects determines

which class structure charts one has to construct. In addition, the system designer has

to identify the ‘contain’ relationship which gives information about the set of variables

belonging to a particular class. By realising the ‘use’ relationship, information about the set

of operations belonging to that class is found and by working on the ‘inherit’ relationship,

the corresponding class hierarchy graph for the chart is developed.

3.3.3.2. The Message Structure Chart

The message structure chart is a graphical notation which allows system designers to specify

the method of a message/operation in a particular class. It is used as a visual program

description to define the sequence of message passing and the control information within a

method. The graphical notations of the message structure chart are:

i. Rectangular Boxes

A rectangular box represents an individual object/class. The box which is of

current interest is divided into two compartments. The first compartment denotes

the class name, the second contains the current operation/message for which a

method is going to be defined^. Other rectangular boxes in the message structure

chart denotes the message receivers of some messages and only contain the objects’

name.

ii. Dashed Rectangular Boxes

Sometimes, the message receiver belongs to the same class as the message sender.

In order to denote this, a dashed rectangular box is used for such a message receiver.

iii. Curved Rectangular Boxes

This kind of box denotes the superclass of the class which is of current interest.

iv. Interaction Connections

An interaction connection between boxes is denoted by an arc with an arrow which

points from a sender to a receiver.

In this thesis, this kind of rectangular boxes is shown in black to distinguish with the rest of the boxes which denote message
receivers.

59

A Design Method for Object-Oriented Programming Winnie Pun

v. A Diamond

A diamond denotes an alternative path. It is a selector construct and used to

represent an ‘i f ’ statement or a ‘case’ statement.

vi. An Ellipse Loop

An ellipse loop is an iteration construct which denotes a repetition of execution.

GP System

c

t
G P M enu ~|
| User Window*)

| System W indow |
| Patient C ard Form"!

| Patient Card Database |

getSelection

Search CardByC OB

<t> o 4> <s> 4>

De eteCar. f

*• G P System £

Se irchCard ryName

1 - i f Che user's selection is to add a patient card.
2 - i f the user's selection is to delect a patien t card.

3 • i f the user's selection is to search a card by date o f birth.
4 ■ i f the user’s selection is to search a card by name.

5 - i f the user’s selection is to quit the system

Figure 3.14: A Message Structure Chart in the GP Surgery System

The information recorded as object interaction diagrams gives knowledge about how the

m essage structure charts should be constructed. The ‘use’ relationships which are identi­

fied at the system level denote the messages which are sent between the sender and the

receiver. Very often, the identified ‘use’ relationship is part of the method in a particular

operation/message of a particular class. Figure 3.14 illustrates the method of the operation,

‘invoke’ for the ‘GP System ’ class.

As mentioned earlier, an object can send a message to itself. Very often, this situation usually

occurs when such a message is actually a private message, i.e., it is not an operation/message

60

A Design Method for Object-Oriented Programming Winnie Pun

in which other objects can invoke. It is useful to mention that such an operation/message

is a private one by putting the word ‘private’ after the operation name in the class structure

chart. Programmers who read this message structure chart will immediately know that such

operation has to be included in the private message category. This is illustrated in Figure 3.15.

These message structure charts are the design specifications which programmers use in order

to implement the system.

edirForm acceptForm

Figure 3.15: An Example of Message Structured Chart with Private Message

3.4. Other Issues

Now that the details of the different levels of the design method developed in this research

have been discussed, the following sections talk about some of the issues which are also

important in object-oriented systems design.

3.4.1. Data Modelling in Object Oriented Programming

Data modelling plays an important role in traditional system developments. Many software

systems require a large and efficient database to store data for the systems. A database

system is concerned with the manipulation of data in the system. Besides the fundamental

operations on data, such as insertion and deletion, a database system is also responsible for

managing the integrity of data, reducing redundancy and avoiding any data inconsistency

[Dat75]. Because of its nature, the development o f a large database is always treated as

a separate design issue from the rest o f the system design. The rest o f the system design

61

A Design Method for Object-Oriented Programming Winnie Pun

interacts with the database via the data manipulation language provided by the database

system, e.g., SQL [Dat75]. Furthermore, the different arrangements of data in the database

always result in different database systems. Generally speaking, they can be categorised into

three approaches.

i. the relational approach,

ii. the hierarchical approach and

iii. the network approach.

Each of these approaches has its own good points and bad points. The data modelling

process is, therefore, to model the data in a software system using one of these approaches.

One of the general problems found in traditional software is the mismatch between the

programming language of the application program and the query language of the database

system [Ban8 8 , LRV8 8]. As Bancilhon says, “Application development requires the commu­

nication between a relational query language and a programming language. These two types

of languages do not mix well: they have different types, they have different computational

models, relational systems are set-at-a-time while programming languages are record-at-

a-time. Solving the mismatch requires integrating database and programming language

technology” [Ban8 8].

It has been suggested that the solution of such a problem can be found in object-oriented

programming. In fact, intensive research has been carried out in object-oriented databases

for the past few years [Ala89, BCG87]. The discussion about the development of object-

oriented databases and its important issues are outside the scope of this thesis. However, the

important point which is related to this research is that object-oriented programming bridges

the gap between application programs and database systems which is found in traditional

software systems. In object-oriented databases, data is treated as an object. What used to

be the data modelling in the conventional system development process now becomes object

modelling. Since object modelling is already part of the system development in an object-

oriented software development, one does not need to specially emphasise data analysis and

data modelling as found in traditional development methods.

3.4.2. Cohesion and Coupling

In conventional system developments, there are two fundamental elements which contribute

to ‘good’ software. These are:

i. high degree of cohesion,

ii. low degree of coupling.

62

A Design Method for Object-Oriented Programming Winnie Pun

Cohesion is a measure of the strength of association of the elements inside a unit. A high

degree of cohesion means that the elements in that unit are strongly associated with the

unit in order to achieve a goal. Coupling is related to cohesion. It is a measure of the

interdependence of program units. A low degree of coupling indicates that the program

units are highly independent of each other.

In conventional software development, system designers have to work hard in order to ensure

their designs exhibit a high degree of cohesion and a low degree of coupling. However, it is

found that in object-oriented software development, these two features almost come free with

the paradigm [Som89]. In object-oriented software, the basic unit is an object. An object

is an entity which contains a set of variables and a set of operations which can act upon it.

Since the operations defined are going to be embedded in the object, it naturally demonstrates

a high degree of cohesion. Every object is an abstraction in itself. The representation of

the object and the implementation of its operations are hidden from external components.

Therefore, it displays a low degree of coupling.

3.4.3. Factors for a Good Object-Oriented Design

The main theme in object-oriented software revolves around the construction of classes.

Hence the design of the class interface and the class hierarchies are the main factors that

contribute to a good object-oriented design.

Concerning the design of the class interface, Lieberherr et al. [LHR88] have defined the

Law of Demeter which provokes a good style of object-oriented programming. The Law

states that:

For all classes C, and for all methods M attached to C, all objects to which M sends a

message must be instances of classes associated with the following classes:

i. the argument classes of M (including C),

ii. the instance variable classes of C.

It is said that by following the Law of Demeter, one can naturally achieve coupling control,

information hiding, information restricting, localisation of information, narrow interfaces and

structural induction. In fact, the design method of this thesis has included the basic idea of

the Law of Demeter in the design phase. The ‘use’ relationship mentioned in this design

method indirectly achieves what the Law of Demeter has proposed. The ‘use’ relationship

mentions that a sender can send messages to its receivers if:

i. the sender physically contains the receiver,

ii. the sender knows the reference of the receiver,

63

A Design Method for Object-Oriented Programming Winnie Pun

iii. the sender and the receiver are the same object.

Considering the class hierarchy construction, it is believed that a good class hierarchy design

should be a design which has many reusable classes. Hence a good design is normally one

which contains a fair number of smaller classes and the class hierarchy is deep and narrow.

O f course, one should not take it to an extreme. As indicated by Linton et al. [LCV87], a

large class hierarchy may overwhelm programmers, especially when there are many levels of

subclasses. Users of this class hierarchy have trouble grasping the many different classes and

their inherited behaviour. Hence, a deep and narrow class hierarchy may achieve more reuse

but it is better to keep the depth level to about seven so that users will not find it difficult to

use [Mil56]. Besides a sensible depth, Johnson [Joh8 8] has identified that a well-developed

class hierarchy should have the following characteristics:

i. the top of the class hierarchy should be abstract and

ii. the subclasses should be specialisations.

These issues have been taken into considerations when developing the inheritance factorisa­

tion process which helps system designers in constructing class hierarchies. This is discussed

in details in Chapter 4.

3.5. Conclusion

What has been described in this chapter is the preliminary framework of a design method

which is specially targeted towards object-oriented programming. The design method is

divided into three levels:

i. The conceptual level assists system designers to analyse and examine the appli­

cation in an object-oriented fashion. It is further divided into two layers, the

user-interface and the user transparent layers.

ii. The system level concentrates on some of the important issues in the construction

of an implementation model. For example, the identification of the implementation

objects, the realisation of the ‘contain’, ‘use’ and ‘inherit’ relationships.

iii. The specification level concerns the production of design specifications of the

system. These specifications are passed to the programmers to implement the

system in the implementation phase.

The design method has also specified the design description language which is used by

system designers for communication during the design phase. At the conceptual and the

system levels, system designers express their design ideas in object-interaction diagrams. At

64

A Design Method for Object-Oriented Programming Winnie Pun

the specification level, system designers are requested to specify their design specifications

in class structure charts and message structure charts.

Now that the framework of the design method has completed, one can look into the support of

handling inheritance in this design method. As it stands, an inheritance factorisation process

has been developed to be incorporated into the design method which assists system designers

in constructing class hierarchies. The details of this process is discussed in Chapter 4.

65

“The major point, which almost doesn’t need stating, is that you must not do anything

which is outside the rules. We might call this restriction the Requirement of Formality.”

~ Douglas Hofstadter ~

Chapter 4

The Inheritance Factorisation Process

It has been reiterated several times that inheritance is very important in object-oriented

programming. Inheritance enhances reusability of software and provides a simple and

elegant organisational discipline for objects. Although inheritance is a useful feature, it

is also the subject of a great deal of controversy [MiR87, TGP89]. System designers always

encounter problems in constructing class hierarchies. In order to provide a more adequate

design method for object-oriented programming, a formal manipulation process which is

called the inheritance factorisation process (IFP), has been developed within the design

method. The IFP is developed to help system designers in constructing class hierarchies.

This manipulation process can be automated so that system designers need only specify the

related class specifications and an optimal class hierarchy will be generated.

This chapter is mainly about the inheritance factorisation process. It starts off with a

description about the background of the inheritance factorisation process. It then describes

the formal model which lies behind the inheritance factorisation process. Once the basic of

the formal model is set up, this chapter further explores how such a model can be extended

to cater for different inheritance models. It also investigates how the inheritance factorisation

process can be used in the system design phase and how to incorporate the process into the

design method described in Chapter 3. In addition to this, one of the attractive feature of

developing the inheritance factorisation process is that it can be automated. This chapter,

hence, also discusses how the process can be automated. The chapter is concluded with a

discussion about what exactly IFP is and how the software development in object-oriented

programming benefits from it.

66

A Design Method for Object-Oriented Programming

4.1. Background

Winnie Pun

This section starts off with a discussion about the background behind the factorisation process.

It discusses some controversial issues concerning inheritance, for example, the difference

between the term ‘class’ and the term ‘type’; should inheritance be an implementation

issue or a design issue; the various inheritance models in different domains, etc. After

that, it describes some of the general problems encountered by system designers in handling

inheritance. It defines what the problems are and discusses the attitudes taken in this research

towards these problems.

4.1.1. Classes and Types

The term ‘class’ is introduced in object-oriented programming languages such as Simula

and Smalltalk. It is used to denote the specification of classes of objects with common

behaviour. The term ‘type’ has long been known in conventional programming languages

such as Pascal. It is used to categorise objects according to their usage and behaviour. As the

term ‘type’ and ‘class’ are similar, it causes confusion when they co-exist in a programming

language.

In weakly-typed object-oriented programming languages such as Smalltalk, the concept

of ‘type’ is transparent. An object is an instance of a class and there is only the class

hierarchy to be considered concerning inheritance. However, in strongly-typed object-

oriented programming languages such as Eiffel [Mey8 8] or Solve [RWW8 8], an object is

not only an instance of a class but also associated with a type. For example, in Eiffel, there

are two kinds of types in its type system: there are the four simple types, namely integer,

boolean, character and real; any other type must be defined by a class declaration and will be

called a class type. In this case, there may be two kinds of hierarchies: the class hierarchy

and the type hierarchy, i.e., subclassing and subtyping. The difference between these two

kinds of hierarchies is that the class hierarchy is defined in terms of template modifications

whereas the type hierarchy is defined in terms of constraints that determine a subset of the

set defined by the parent predicates [Weg8 8 b]. However, classes can be viewed as a special

kind of type. Class-based languages automatically have an associated type system and class

hierarchies of object-oriented languages automatically have associated type hierarchies. The

concept of ‘type’ is mainly motivated by type checking. Hence, in this thesis, inheritance is

primarily defined as a mechanism for template modification rather than subtyping.

4.1.2. Inheritance as a Design Issue

There is always some concern about whether inheritance should be regarded as a design issue

67

A Design Method for Object-Oriented Programming Winnie Pun

or an implementation issue, i.e., whether it should be handled in the design phase or the

implementation phase. Johnson [Joh8 8] believes that it is the responsibility of the system

designers to plan the class hierarchy to achieve maximum reuse. However, not everyone

agrees with this. Brachman [Bra83] suggests that inheritance is purely an implementation

issue.

In fact, it is difficult to decide which side gives a correct view. As mentioned earlier, object-

oriented programming applies a ‘prototyping’ software development cycle. Not only is the

boundary between the requirement analysis and the design phase not clearly defined but

the boundary between the design and the implementation phase is also not well separated.

As LaLonde et al. say, ‘Traditionally, design is segregated as an activity separate from

implementation. This has served to clarify the two activities and create two classes of

people: designers and programmers. In object-oriented systems, the two groups must be

integrated; i.e., a designer-programmer, say to be called design engineers, is needed to effect

a proper design; lower level programmers can still be used for the simpler parts” [BRL8 8]. If

one applies such a view about design and implementation phase, inheritance should be taken

care of in the design phase. In addition to this, the design method resulting from this research

requires that the output of the design phase should be a set of design specifications. These

design specifications should have all the implementation details so that when programmers

take away the specifications, they can implement the system with confidence. Therefore, it

is decided that working on the inheritance hierarchies should be an activity in the design

phase.

4.1.3. Inheritance in Different Domains of Discourse

It is generally agreed that the fundamental problem of inheritance is: what exactly is inherited

in an inheritance relation. The answer to this problem is, in fact, found to be different in

different domains of discourse.

As mentioned in Camese’s thesis [Car84], inheritance systems are used in domains other than

general programming. One of the domain in which inheritance is widely used is ‘knowledge

representation’ in artificial intelligence [Hut89, Tou8 8].

In general, when people talk about inheritance systems, they seldom distinguish which

domain they are referring to. However, there are significant differences between inheritance

systems in different domains which may affect the answer of ‘what exactly is being inherited’.

For instance, the main difference between inheritance in general programming and inheritance

in knowledge representation lies in the abstractions which are associated with the objects

that are defined. In general programming, the abstraction includes two sets: the set of

variable names which describes the state of the object and the set of operation names which

68

A Design Method for Object-Oriented Programming Winnie Pun

describes the operations that can act upon the object. Whereas in knowledge representation,

the abstraction encodes the normative information about the object [Tou8 8], For example

to illustrate this in general programming, the class of elephants may contain variable names

such as ‘colour’, ‘weight’ and some operations such as ‘changeColour’ to update the colour

of an elephant. In knowledge representation, the class of elephants contains some true facts

about an elephants, e.g., ‘its colour is grey’ and ‘it has four legs’.

In fact, this key difference leads to different areas of interest concerning inheritance systems.

A classical area of research in inheritance systems in artificial intelligence and database

systems is ‘how to handle inheritance with exception’. In the above example of the class of

elephants, ‘its colour is grey’ is a piece of information which is generally true. However,

there are cases in which the colour of an elephant is white, say if the elephant is a royal

elephant. In this case, researchers working on such an inheritance system have to develop

mechanisms to handle exception cases like this [Bor8 8 , Tou8 8]. This problem, however,

does not occur in the general programming domain. For example, ‘grey’ and ‘white’ are

just values of the variable ‘colour’ and may vary with different elephants.

As one can see, the answer to ‘what should one inherit in an inheritance relationship?’

depends on which domain one is referring to. In the general programming domain, one

inherits the structure of a class and the structure is expressed in a set of variables and a

set of operations. As far as this research concerns, it is limited to look at the inheritance

systems in the general programming domain. Hence, one tends to inherit the structure of a

class.

4.1.4. Inheritance from Different Perspectives

The above section has analysed the different inheritance models in different problem domains.

In fact, the inheritance model may vary even in the same problem domain.

In the general programming domain, the subclass is said to inherit the structure of the

superclass. The structure of a class is expressed in either variable names or operation

names. These names are simply some symbols and the meaning of these symbols depends

on how one perceives inheritance. As it is mentioned in Chapter 2, there are basically

two perspectives in viewing inheritance: non-strict inheritance and strict inheritance [Sak89,

Sny87, Weg8 8 b].

Non-strict inheritance simply implies code-sharing. The main objective of non-strict inheri­

tance is to reuse as much of existing implementation as possible. With such an inheritance

model, the symbol which describes an operation denotes a particular piece of code, i.e., one

is inheriting a piece of code. Non-strict inheritance tends to encourage a casual attitude

69

A Design Method For Object-Oriented Programming Winnie Pun

towards class hierarchies constructions. As the main purpose of this inheritance model is

to reuse as much code as possible, it allows two conceptually unrelated classes to be put in

the same hierarchy. It may even allow an inheritance relationship to be established between

two classes provided there is one common piece of code that these two classes can share.

Strict inheritance not only concerned with inheriting the code but also the formal meaning

associated with the class. By formal meaning, one refers to the abstract data type specification

description which incorporates the sort, the signature and the equation of the class. With such

an inheritance model, the subclass not only inherits the code but also the formal semantic of

the structure of its superclass. Further, strict inheritance does not allow a casual inheritance

relationship to be set up. A subclass has to share all the properties defined in its superclass.

When determining which perspective should be considered in the inheritance factorisation

model, it is found that whether it is the piece of code and/or the formal semantics that is

inherited is not that important. By varying the representation of an attribute and a class

specification, the inheritance factorisation process can support various kinds of inheritance

models. The details of this is discussed in Section 4.3. What is more important is to

discourage the casual construction of class hierarchies. Hence, an inheritance relationship

cannot be established if two classes only share a few properties. A subclass can only be

created if the set of attributes that describes its structure is a proper superset of attributes of

its superclass.

4.1.5. The Problem in Constructing Class Hierarchies

In object-oriented programming, software reuse is mainly attained via inheritance. In order to

achieve maximum reuse, the fundamental step is to construct a well-defined class hierarchy

that reflects maximum reuse.

The construction of a class hierarchy probably seems trivial on the surface. When system

designers have to construct a class hierarchy from two related classes, class A and class B,

what they usually do is to factorise out the common properties between these two classes

to construct the superclass, class AB [B0 0 8 6 , Bor8 8 , Weg8 8 b]. This ‘ad hoc’ method

of constructing class hierarchies seems to work fine when there are only a small number

of classes involved and when the description of the classes are specified in a monotonic

incremental fashion. For example, suppose one is asked to form a hierarchy between two

classes, ‘Point’ and ‘HistoryPoint’ which are specified as below^:

Details for this example can be found in Camese’s thesis [Car84].

70

A Design Method for Object-Oriented Programming Winnie Pun

Point: create, location, move, display;

HistoryPoint: create, location, move, display, history;

In this case, system designers can easily identify that the class ‘Point’ is going to be the

superclass and the class ‘HistoryPoint’ is its subclass.

However, the problem of constructing class hierarchies becomes non-trivial when it involves

many classes and even more prominent if the classes are specified in a way which is not

monotonic incremental. For example, if a class hierarchy has to be constructed not only from

the class ‘Point’ and the class ‘HistoryPoint’ but also with two other classes, ‘BoundedPoint’

and ‘BhPoint’ which are specified as follows:

BoundedPoint: create, move, display, location, max, min;

BhPoint: create, move, display, location, history, max, min, boundHistory;

In this case, the ‘ad hoc’ method alone is beginning to be inadequate to construct the class

hierarchy successfully. System designers may find that they have to try several times before

a satisfactory solution is obtained. In order to provide a better way for system designers to

construct class hierarchies, a more ‘algorithmic’ approach to handle the construction of class

hierarchies is introduced in this research. A mechanism called the ‘inheritance factorisation

process’ (IFP) has been developed to assist system designers to construct class hierarchies.

The IFP has been developed to assist system designers in generating an optimal class

hierarchy in a quicker and more efficient way than using the ‘ad hoc’ method. The class

hierarchies generated from the IFP accentuates a hierarchical organisation of maximum

reusability and hence minimum duplication of common properties defined amongst the classes

in the hierarchy. It is believed that with the IFP, system designers need only specify the

conceptual class specifications involved in a hierarchy and an optimal class hierarchy graph

will be generated.

4.2. The Algebraic Model for the Inheritance Factorisation Process

The manipulation process provided in the IFP is based on an algebraic structure which

is specially defined for constructing class hierarchies. The fundamental principle of the

IFP is, in fact, inspired by the ‘ad hoc’ method described in the previous section. If one

examines the ‘ad hoc’ method more closely, it is easy to see that the essence of constructing

class hierarchies is to identify the appropriate superclasses and the corresponding ‘inherit’

relationship. The identification of superclasses involves factoring out common attributes

amongst the involved classes [B0 0 8 6 , Bor8 8 , Weg8 8 b]. The factorised attributes are then

grouped together to form the superclass. The IFP uses this idea as the basis and extends

71

A Design Method for Object-Oriented Programming Winnie Pun

it further to obtain the basic framework of a systematic manipulation process. This section

serves to discuss the formal aspects which lie behind the IFPt.

4.2.1. Basic Assumptions

It is assumed that the inheritance model in the inheritance factorisation process has the

following characteristic:

Assumption 4.1

Inheritance with cancellation is not allowed in the inheritance model of the IFP. Hence a

subclass has to inherit all the attributes defined in its superclass.

Assumption 4.2

An optimal class hierarchy is one which refers to maximum reusability of properties

defined in the superclass, i.e., m inim um replication of properties in class specifications.

Assumption 4.3

The inheritance model applied to the IFP is only suitable for use in the general program­

ming languages domain.

4.2.2. A ttrib u te s

Definition 4.1

An attribute is a symbol which denotes a feature or a property found in a class specifi­

cation. In general programming languages domain, the label which describes the state of

an object or the operation which can act upon an object is regarded as an attribute.

It is not enough just to look at the label of an attribute, it is also necessary to examine

the semantic of the attribute to determine its class hierarchy. However, the semantic of an

attribute varies with different inheritance models. This is further discussed in Section 4.3.

Assumption 4.4

To simplify the model, it is assumed that there exists a mechanism to check the semantic

equivalence of two attributes. When system designers use the same label for two

attributes, these two attributes are said to be semantically equivalent.

1 A summary of this section can be found in [PuW90].

72

A Design Method for Object-Oriented Programming Winnie Pun

Assumption 4.5
The ordering of the attributes in a class specification is not significant. For example, the

class ‘PointA’ is the same as the class ‘PointB’ in the following example.

PointA: create, display, location, move;

PointB: display, location, create, move;

For most programs this assumption is completely valid; the order of members of a data

structure can be rearranged, the program recompiled and it will work just as before. However,

there is a class of programs - low level systems software - for which this assumption might

not be valid. An example might be a disc driver. The control/status register structure is

fixed by the hardware so the order of the members of the data structure describing this is

fixed. However, it is believed that the way in which an object-oriented program would deal

with this would not involve exhibiting this fixed structure at the language level.

Definition 4.2
The universe o f attributes, A , is the set of all attributes.

A = {a,}

4.2.3. Class Specification

Definition 43
A class specification is a set of mutually exclusive attributes.

Ci = & 2 > ® 3) • • • i

where a, G A and c* e V(A) .

Definition 4.4
The power set of the universe of attributes, V{A), is the set of all possible subsets of A.

In the model, V(A) represents the universe o f class specifications and is denoted by C.

<f>c e C is the empty class specification, i.e., the class specification with no attributes.

Definition 4.5
A conceptual class specification is a class specification which contains all the attributes

necessary to describe the class. There is no inheritance to be taken into account.

73

A Design Method for Object-Oriented Programming Winnie Pun

Definition 4.6
An implementation class specification is a class specification which contains only the

attributes over and above those that will be drawn from superclasses. It is assumed that

the inheritance relations are known in order to be able to construct the conceptual class

specification from the implementation class specification.

Example 4.1

The following example highlights the difference between conceptual and implementation

class specifications:

The conceptual class ‘vehicle’ contains attributes age and maxspeed. The conceptual

class ‘car’ contains attributes age, maxspeed and fuel. If the class ‘car’ inherits from

the class ‘vehicle’ then the implementation class ‘i-vehicle’ is the same as the conceptual

class ‘vehicle’ and the implementation class ‘i-car’ contains only the attribute fuel.

Definition 4.7
The power set of the universe of class specifications, V(V(A)) , is the set of all possible

subsets of C. V(V(A)) is the universe o f all possible sets o f class specifications and is

denoted by S. <f>s € S is the empty set of class specifications.

4.2.4. The Class Hierarchy Construction Problem

Definition 4.S
An initial set o f class specifications, Si 6 5 , contains all the conceptual class specifications

involved in a particular class hierarchy construction problem.

Definition 4.9
A class hierarchy construction problem for an initial set of class specifications, 5 *, is to

generate the corresponding optimal class hierarchy which reflects maximum reusability

of attributes and hence minimum duplication of attributes for the set 5 *. The optimal

class hierarchy which is generated is an implementation class hierarchy. The inheritance

relationship identified in this hierarchy are between implementation superclasses and

subclasses.

4.2.5. Axioms for the Inheritance Factorisation Process

This subsection describes the inheritance factorisation process and presents the essential

axioms and operators. The characteristic of the operators are discussed here as well.

74

A Design Method for Object-Oriented Programming Winnie Pun

Axiom 4.1

Individual sets of class specifications, «i, • • •, sn can be grouped into a particular set, s'.

s' = Si + 1- sn

or in terms of class specifications, it is

{ c i , C2, • • •, cn} = { c i } + {02} H b {cn}

The combine operator, + , can be viewed as the set union operator on any set of class

specifications, «i.

The signature of the combine operator, + , is,

+ : S x S —► S

or in terms of A , it is:

+ : V(P(A)) x P(P(A)) P{P{A))

Since the combine operator, + , is in fact the set union operator, it automatically possesses

the properties of the set union operator. Hence, the combine operator, + , is associative,

commutative and has an identity, <f>s .

{co} + { c i} = { c i } + {co}

and

{ c 0} + ({ c i} + {C2}) = ({co} + { c i}) + {c 2}

and

” 1“ { c o , • • • , c n } = { c 0) * ' ’ j c n } - f - <f>s — { c o , ' j c n }

Axiom 4.2

Common attributes in a combinator subexpression can be factorised out to the left and

form the superclass of the original classes. Attributes which are common in the most

number of classes should be factorised out first.

{ c i } H b {cn } = Co' <t ({ c i '} + b {c n'})

i f f Va.i. flj G Co' —► &i G Ci A • • ■ A flj G cn

The semantics of this operation are in terms of set union and set intersection:

{ c i } + b {cn } = C o ' <g ({ c i ' } + b {cn'})

n

i f f co = P | Ci an d c i = c0' U c i', • • •, cn = c0' U c„'
t= i

75

A Design Method for Object-Oriented Programming Winnie Pun

This axiom introduces the single inherit operator, « 4. This operator describes the single

inheritance relationship. Here, the axiom shows that the class specification c\' inherits from

c0' to give c i , c2' inherits from c0' to give c2, etc. At a first glance, the single inherit

operator, <4, appears to be simply the set union operator on a set of attributes. However, the

single inherit operator, <4, is more than this. It identifies which is the superclass and which

is the subclass via its signature. In the example above, c0' is the superclass specification,

ci', • • •, cn' are the implementation subclass specifications and ci, • • • ,cn are the conceptual

subclass specifications.

The signature of the single inherit operator, <4, is:

<4 : C x 5 —> S

or in terms of A ,

<4 : V{A) x V(V(A)) -> V{V{A))

Proposition 4.1
The single inherit operator, <4, is non-commutative.

Proof:
This follows from the fact that the right and left operands are from different sets,

hence the single inherit operator, <4, is non-commutative.

QED

It is important that the single inherit operator, <4, is non-commutative since it is this that

distinguishes a superclass from a subclass in a subexpression.

Proposition 4.2
The single inherit operator, <4, is non-associative.

Proof:
Again, the signature of the single inherit operator, <4, implies the non-associative

property of this operator.

QED

Proposition 43
The empty class specification, <f>c, is the left identity of the single inherit operator, <4.

4>c ^ 4 { c j, • • •, Cn} = { c i, • • •, Cn }

76

A Design Method for Object-Oriented Programming Winnie Pun

Proof:
If <f>c <i {ci, • • •, cn} = {ci, • • •, cn} is false then <t>c contains at least one attribute. Since

<f>c is an empty class specification, there is a contradiction.

QED

Proposition 4.4
A set of class specifications which contains only the empty class specification, {4>c},

inherits from a class specification, c», always gives a set of class specification that contains

one element {<:<}.

Ci <, {<t>c} = { c j

Proof:
If Ci <4 {4>c} = {ci} is false, then <f>c must contains at least one attribute. Since (f>c is an

empty class specification, there is a contradiction.

QED

Proposition 4.5
An empty set of class specification, <£,, inherits from a class Ci giving a set of class

specifications that contains only one element c*.

Ci <» <i>t = {c t }

Proof:
If a <4 (j>s = {a } is false, then <j>t contains at least one class specification. Since <t>„ is

an empty set of class specifications, there is a contradiction.

QED

It should be noted that although such an expression is valid, it is redundant and would

not normally occur in an inheritance expression.

With these axioms and propositions, one can handle any class hierarchy construction prob­

lems which involves only single inheritance. However, multiple inheritance has become

more and more popular these days. Multiple inheritance allows a subclass to have more

than one superclass. To support multiple inheritance in the inheritance factorisation model,

another axiom is needed.

77

A Design Method for Object-Oriented Programming Winnie Pun

Axiom 4.3

For multiple inheritance, the subclass is inherited from two or more superclasses.

{co} = ({c^} H 1- { C n '}) < m Cq

i f f n > l a n d Oi G c i A • • • A a™ € c j -* a*,- •• ,0 ,* € co

This axiom can also be looked at in terms of set operators.

n

{co} = ({ci'} + h {cn' » <m Co' i f f Co = |J Ci and n > 1
t = 0

By definition, the result obtained from a multiple inheritance subexpression is always a

singleton set, Si, containing only one class specification.

Axiom 4.3 introduces the multiple inherit operator, <m, which describes the multiple in­

heritance relationship. As with the single inheritance operator, the multiple inherit operator

distinguishes which are the superclasses and which is the subclass in the inheritance expres­

sion. For example,

{C3} = {ci/ ,C2/}< m C3'

Here, the class specification c3' multiply inherits from the class specifications c i' and c2' to

give c3. c i' ,c 2' and c3' are the implementation class specifications. c3 is a conceptual class

specification.

The signature of the multiple inherit operator, <m, is:

<m : S x C —► S

or in terms of A ,

<m : V(V{A)) x V{A) -> V(V(A))

Proposition 4.6

The multiple inherit operator, <m, is non-commutative.

Proposition 4.7
The multiple inherit operator, <m, is non-associative.

Proof:
Again, the signature of the multiple inherit operator, <m, implies the non-commutative

and non-associative properties of the operator. QED

A Design Method for Object-Oriented Programming Winnie Pun

Proposition 4.8

A class specification, c*, multiple inheriting from an empty set of class specifications

gives a set of class specifications containing only c*.

4*s Cj — {cj}

Proof:

If <m ci = {cx} is false then (f>t contains at least one class specification. Since <)>, is

an empty set of class specifications, there is a contradiction.

QED

Such an expression is valid but redundant and would not normally occur in the

manipulation process.

4.2.6. Class Hierarchy Expression

Definition 4.10
A class hierarchy expression, (, is an expression constructed from any sets of class

specifications, the combine operator, +» the single inherit operator, <4, and the multiple

inherit operator, <m. Parentheses are used to group into subexpressions. For example,

£ = Co <S ({ c i } + { c 2 })

Definition 4.11
An initial class hierarchy expression, (/ , of a particular class hierarchy construction

problem, is a class hierarchy expression constructed from the corresponding initial set of

class specifications, Si, alone.

Definition 4.12
A normalised class hierarchy expression, (h , is a class hierarchy expression to which

no further factorisation can be applied (See Definition 4.13). The interpretation of this

expression is that it provides maximum reusability and minimum duplication of attributes.

For example,

Cn = {o i , 0 2 } <* ({{^3) <1 4} } + { { 0 5 }})

79

A Design Method for Object-Oriented Programming Winnie Pun

IFP =

Sorts : A
V(A)
V(V(A))

Opns : + : V{V{A)) x V(V(A)) -> V{V{A))
« , : V{A) x V{V{A)) — V(V{A))
<m : n v w) X V(A) V(V(A))

Egns . Co j C\ , • • • , cn , Co »* ■ *, c n , (f>c £ P(.A .)
{ c 0} , • • •, { c n } , {co, • • ■ , Cn}, <t>, E V(V(A))

1* {co} + 1" {cn} = {co, • " , Cn}
2. { c i} + -------- h {cn } = Co' <j ({ c i '} + ----1- {Cn '})

iff Va*. o* G Co' —► € Ci A • • • A a; £ c„
i.e ., c0' = n r = i c» a n d c i = c0 / U c 1 , J- - - , c n = c0' U c B'

3 . {c 0} = ({ c i '} H------ h {c„ '}) <W c0' w h ere n > 1

iff V(Z, . • • • flpj. G Ci A • • • A Clm € Cn * O*, * " * , G Co
i.e ., c0 = U r=pct'

4 . {co} + { c i } = { c i} + {co}
5 . {c 0} + ({ c i} + { c 2}) = ({c0} + { c i}) + { c 2}
6- {co } + <l>s = <t>$ + {c o } = {co }
7 . (f>c < j { C i , • , C n } — { c i , • , C n }

8 . Ci <f>s = { c i }
9 . c i { 4>c} = { c j
1 0 . { c i , • • •, Cn} «m (f>c = {co} w h ere c0 = (J"= l c{

Figure 4.1: The Algebraic Structure of the IFP

Figure 4.1 is a summary of the algebraic structure of the IFP. Although there are other

interesting mathematical properties concerning the algebraic structure of the IFP, it is outside

the scope of this thesis to investigate them all. The main objective of developing the algebraic

structure is to support the development of a tool to assist system designers in constructing

class hierarchies. The structure as presented above is sufficient for this purpose so further

investigation will not be carried out here.

Definition 4.13

The inheritance factorisation process is a process which takes an initial class hierarchy

expression and applies only the definitions, propositions and Axiom 4.1 to Axiom 4.3

for manipulation. The factorisation process continues until a normalised class hierarchy

expression is obtained.

4.2.7. Detecting Multiple Inheritance

Handling multiple inheritance in the IFP is not quite as straight forward as handling single

80

A Design Method for Object-Oriented Programming Winnie Pun

inheritance. First of all, one needs to know whether multiple inheritance exists in the class

hierarchy construction problem and then transform the current subexpression into one which

reflects the multiple inherit relationship. The following is a summary of how multiple

inheritance is detected in the manipulation process and what should one do when such a

situation comes up.

During the inheritance factorisation process using only single inheritance, one may encounter

subexpressions in which common attributes can be factorised in two or more different ways.

For example,

f = { a i} < * ({ { a 2, a 3, a 5}} + { {a3, a 6)a 8} } + { { a 4, a 6, a 8}} + { { a2, a 7}})
= { a i} < t ({“ 3} <« ({{02, a 5}} + {{ct6 i ^s}}) + {{^4) 06, a 8}} + { { a2, 07}}) [&vi]

o r = { a i} < t ({ a 2} <, ({{03, a 5}} + { { a7}}) + {a6, a 8} <, ({{03}} + {{04}})) [£/V2]

Here, there are two valid ways to factorise out common attributes. This, in fact, indicates

that multiple inheritance has been detected.

When multiple inheritance is detected, one can identify the superclasses involved in each

multiple inheritance relationship. In the above example, from the expressions Cn i and £^2,

one can deduce that {03}, {a2} will be the superclasses involved in the multiple inheritance

relationship of the set of class specification {{0 2 , 0 3 , 05}}, and {a3}, {a6, a8} will be the

superclasses involved in the multiple inheritance relationship of the set of class specification

{{o3 ,a 6,a 8}}. Now, instead of factorising out the common attributes, one has to expand

the subexpression to capture the corresponding single inheritance and multiple inheritance

subexpressions. The steps to follow are:

For each individual class specification involved in the subexpression, do the following:

1. If the class specification can inherit from more than one class specification, trans­

form it to a subexpression which involves the multiple inherit operator.

2. Otherwise, transform it to a subexpression which involves the single inherit oper­

ator.

Hence, the resulted expression from the above example will be:

Cn = { < * 1 } <4 (({ { f l 2 } } + { { 0 3 } }) <171 { 0 5 } + ({ { 0 3 } } + { { ® 6 , a 8 } }) < m <t>c + { ^ 6 , a 8 } { { a 4 } }

+ {^2} <$ {{0 7}})

4.2.8. Class Hierarchy Graphs

The above discussion provides a manipulation process which allows one to form an initial

class hierarchy expression from the set of class specifications involved in a particular class

81

A Design Method for Object-Oriented Programming Winnie Pun

hierarchy construction problem and transform it into a normalised class hierarchy expres­

sion. Although this normalised class hierarchy expression reflects the single inheritance and

multiple inheritance relationships in the optimal class hierarchy, these relations are often best

expressed in a graphical form [Bol79, BoM76]. This section describes how to transform a

normalised class hierarchy expression to its normalised class hierarchy graph.

Definition 4.14
A graph, G, is a pair G = {V,E) where V is a finite set of vertices and E is a set of

unordered pairs of distinct vertices.

Definition 4.15
A directed graph is a pair G = (V,E), where V is a finite set of vertices and E is a set

of ordered pairs of vertices.

Definition 4.16
A class hierarchy graph is a directed graph, Gh — {V,E) where

V - {l>i, • • "Un}

f : V —* C

E = {(vijUj)} where v<,Vj E V

and f{vi) <s Sj and f{vj) E Sj where Sj E S

or S{ <m f (vj) and f(vi) E where S{ E S

The normalised class hierarchy graph stems from the normalised class hierarchy expres­

sion which is generated from the IFP. Such a class hierarchy graph is for implementation

and is different from the conceptual class hierarchy graph.

Obtaining the set of vertices is straight forward. One just need to gather the individual class

specifications found in the normalised class hierarchy expression.

To obtain the set of edges is only straight forward if the normalised class hierarchy expression

is simple. For example, a trivial normalised class hierarchy expression such as, co'<, ({ci'} +

{c2'}), can be transformed to c0' <4 {c^, c2'}. Hence from the semantics of the single inherit

operator and the definition of the class hierarchy graph, one can deduce the set of vertices,

V, and the set of edges, E , are:

V = { c o W .c a ' }

E = {(co', Cl'), (co7, c2')}

82

A Design Method for Object-Oriented Programming Winnie Pun

Hence, the class hierarchy graph, Gh = (V}E) is generated.

However, most of the normalised class hierarchy expressions are more complicated. They

are made up of various kinds of subexpressions. In this case, one needs to have a function,

V(£n), which takes in the normalised class hierarchy expression and generates the set of

vertices and the edges for the graph. The following is an overview of the algorithm applied

by the function, V ^ n)-

Algorithm 4.1
In order to obtain the set of edges from the class hierarchy expression, one need to define

a grammar which acts as the basis for a syntax analyser of the expression. The syntax

analyser recognises the elements of a class hierarchy expression and generates the set of

edges accordingly. The following shows the grammar of the syntax analyser.

ClassHierExpr ClassSpec ‘<a’ SubExpr *$’
SubExpr ‘<m’ ClassSpec ’$ ’

SubExpr T SubExpr y
SubExpr ‘+ ’ SubExpr
ClassSpec ‘<*’ SubExpr
SubExpr ‘cm’ ClassSpec
{ ClassSpec *}’

ClassSpec : attributes ‘}’

attributes attributes ATTRIBUTE
| ATTRIBUTE *}’

Figure 4.2: The Grammar for the Parser

The grammar above shows that the symbol ‘$’ is the termination symbol. A class

hierarchy expression is made up of subexpressions. A subexpression can be one which

contains the combine operator and/or the single inherit operator and/or the multiple inherit

operator. Each of these subexpressions has a list of active class specifications attached to

it. An active class specification is a class specification which would be involved in the

generation of edges once a single/multiple subexpression is recognised.

The whole objective of the syntax analyser is to recognise the different types of subex­

pressions and perform the necessary tasks. This is described by the following.

1. ClassSpec *<,’ SubExpr

When a subexpression with a single inherit operator, i.e., the single inherit

83

A Design Method for Object-Oriented Programming Winnie Pun

subexpression is recognised, a set of edges, (vi} VjJ, (vi fvj3), • • •, (u,-, vJn) are

generated in which is the class specification on the left hand side of the

single inherit operator and vjx, vj2, • • •, vjn are the active class specifications of

the SubExpr on the right hand side of the single inherit operator.

ClassSpec ‘<4’ SubExpr

Such a single inherit subexpression is then reduced to another SubExpr itself.

The list of active class specifications attached to this resulting SubExpr contains

only Vi because semantically Vi is the superclass of vjx, vj2, • • •, vJn and the

graph is constructed in a bottom-up fashion, hence what is involved in the next

construction is the superclass in this single inherit subexpression.

2. SubExpr ‘<m’ ClassSpec

When a subexpression involves a multiple inherit operator, i.e., the multiple

inherit subexpression is recognised, a set of edges (vi l , Vj), • • •, (vin, v j) are gen­

erated in which • • • ,Vin are the active class specifications from the SubExpr

on the left hand side of the multiple inherit operator and vj is the ClassSpec on

the right of the operator.

SubExpr ‘<m’ ClassSpec

Such a multiple inherit subexpression is then reduced to another SubExpr itself.

The list of active class specifications attached to this resulting SubExpr contains

all the superclasses vt l , • • •, derived from the multiple inherit subexpression.

3. SubExpr *+* SubExpr

When a subexpression involves a combine operator, i.e., the combine subex­

pression is recognised, it is reduced to another SubExpr. The list of active class

specifications of the new SubExpr is simply a concatenation of the active class

specifications found in the two SubExprs of the combine subexpression.

4. ClassSpec *}’

‘ClassSpec’ is a class specification. When a ClassSpec is recognised, it is

reduced to a SubExpr with a list of active specifications containing only that

class specification.

4.2.9. Examples to use the IFP

Now that the details of the formal manipulation process have been presented, it is time to give

some examples showing how the manipulation process is used to construct the class hierarchy

84

A Design Method for Object-Oriented Programming Winnie Pun

graph. This section presents two examples that show how the IFP is applied to different

class hierarchy construction problems. The examples also illustrate how the normalised class

hierarchy expression obtained is transformed to a graph. Example 4.2 shows its action for

single inheritance and Example 4.3 shows its action for multiple inheritance. More concrete

examples of the usage of the IFP can be found in Chapter 6 .

Example 4.2

In this example, a class hierarchy is constructed for the class specifications set, s, =

{ c o , c i , c 2 , c 3 } where c o = { 0 1 , 0 2 , 0 3 , 0 4 , 0 5 } , c i = { 0 1 , 0 9 , 0 1 0 } , C 2 = { 0 1 , 0 2 , 0 s } and c 3 =

{ a x , o 2 , o g , a 7 } , the inheritance factorisation process will be:

— {co, *-1) -̂2) £3}
— {co} + {c i} + {c2} + {c3}
= { { f l i t 0 2) a 3 , 0 4 , a 5 } } + { { f l i , O g , O i o } } + { { o i , 0 2 , O s } } + { { 0 1 , 0 2 , a 6 , 0 7 } }

= { a i } < 4 ({ { o 2 > 0 3 , 0 4 , a 5 } } + { { o 9 , a i o } } + { { a 2 , a 8 } } + { { a 2 , 0 6 , 0 7 } })

= { a l } < 4 ({ { ° 9> O io } } + ({ 0 2 } < 4 ({ { a 3> O 4, 0 5 } } + { { a s } } + { { 0 6) 0 7 } }))) [£n]

By introducing c4' = {ai}, ci' = {0 9 , 010}, c5' = {a2}, c0' = {0 3 , 0 4 , 05}, c2' = {a8} and

c3' = {0 6 , 07} as the implementation class specifications of this hierarchy, the normalised

class hierarchy expression, (N , can be re-written as:

£n = C4' < 4 ({ c i '} + {cs <t ({co'} + {C2'} + {<*'})))

The set of vertices for the hierarchy graph is,

V — {co , Ci , C2 , C3 , C4 , C5 }

and the set of edges, E, is

E = { (c 4', c i') , (c4#, c5'), (c5', c0'), (c5', c2'), (c5', c3')}

The corresponding class hierarchy graph is shown in Figure 4.3.

85

A Design Method for Object-Oriented Programming Winnie Pun

Figure 4.3: The Qass Hierarchy Graph of Example 4.2

Example 4.3

In this example, a class hierarchy is constructed for the set o f class specifications, s* =

{co, Cl, C2, C3}. If Co = {a i, 02, 03, O5}, Cl = {01,03,06,08}, C2 = { a i , 04, 06, Os} and C3 =

{ o i ,a 2,a 7} then the factorisation process will be:

= {co, C l,c2,c 3}
— {co} + {ci} + {c2} + {c3}
= {{a li a 2, a 3, O5}} + {{a l, q3, O6, ° 8}} + {{Qi, a 4, 06, 08}} + {{°li a 2i a 7}}
= { a i } ({ { a 2 , 0 3 , 0 5 } } + { { 0 3 , 0 6 , a 8 } } + { { a 4 , 0 6 , a s } } + { { a 2 , 0 7 } })

= { a i } < , ({ 0 3 } < 5 ({ { a 2 > 0 5 } } + { { a 6 , a 8 } }) + { { 0 4 , 0 6) 0 8 } } + { { o 2 , 0 7 } }) [£ a t i]

= { 0 1 } ({ o 2 } ({ { 0 3 , 0 5 } } + { { a 7 } }) + { a 6 , a s } < 4 ({ { 0 3 } } + { { 0 4 } })) [^ 2]

Now since two valid normalised expessions are obtained, we know that multiple in­

heritance has been detected. In this case, Axiom 4.3 is used to obtain the appropriate

expression.

£ N — { 0 1 } (({ { 0 2 } } + { { 0 3 } }) < m { 0 5 } + ({ { 0 3 } } + {{oo, 0 8 } }) < m <j>c + { 0 6 , 0 8 } { { 0 4 } }

+ { 0 2 } <5 { { 0 7 } })

By introducing c4' = {o i} , c5' = {o2}, c6' = {a3}, c0' = {a5}, c / = {a6,o 8}, c2' = {a4},

c3' = {a7}, as the implementation class specifications o f this hierarchy, the normalised

class hierarchy expression, fjv, can be re-written as:

£n = C4' <t (({05'} + {c8'}) <m C0' + ({C6'} + {c/}) <m <f>c + C7' <3, {c2'} + C5' <, {C3'})

The following set o f vertices and edges are obtained:

V — {c 4 , C 5 , C 6 , Cq , c7 , C 2 , C 3 , 0 C}

86

A Design Method for Object-Oriented Programming Winnie Pun

E — {(c4 , C5), (C4 , Cq), (C4 >0 7), (C5 , Co)j (c6 j Cq), (C5 , ^c)> (^7 » ^c)j (^5 > C3)» (^7 1 C2)}

The corresponding class hierarchy graph is shown in Figure 4.4.

Figure 4.4: The Multiple Inheritance Graph for Example 4.3

4.3. The IFP in Various Inheritance Models

IFP

Name-Compatible
IFP

Signature-Compatible
IFP

Behaviour-Compatible
IFP

Figure 4.5: The IFP in Various Inheritance Models

The previous section has discussed in detail the formal model which lies behind the in­

heritance factorisation process. As it stands, the formal model is deliberately generalised

to allow further modifications and extensions. This is especially true when comes to the

definition of an attribute.

Currently, the model of the IFP states that a class specification is specified in terms of a

collection of attributes. An attribute, in its simplest form, is a name of an operation. Two

attributes are said to be semantically equivalent and can be factorised out if their names are

the same. It is assumed that there exists a mechanism to check for the equivalence of the

attributes. All these, of course, have over-generalised the model and have not taken into

87

A Design Method for Object-Oriented Programming Winnie Pun

considerations of the meaning behind the names. As it stands, besides name-compatibility,

there are other meanings which can be used to give a more precise definition for the semantic

equivalence o f two attributes e.g. signature-compatibility and behaviour-compatibility (see

Figure 4.5).

These various definitions of the equivalence of two attributes are, in fact, related to what

exactly one inherits in an inheritance model, i.e., the nature of the inheritance model. This

section gives a full account of the semantic of an attribute with respect to different inheritance

models. It defines the definition of the semantic equivalence for attributes in different

inheritance models. It also discusses about how the IFP can accommodate different models.

4.3.1. The IFP with Name-Compatibility

The name-compatible IFP is the simplest kind of model that one can obtain in the IFP

universe. It requires only the name of two attributes to be the same for a valid factorisation.

It is assumed that each name has an unique meaning attached to it and the meaning is

intuitively understood by people. Hence, one can attach the same name to two attributes if

they refer to the same meaning. Although this kind of IFP is very flexible to use, it induces

various ambiguities in usage.

The ambiguities arise as a name seldom refers to only one meaning and a connotation can

always be presented by several names. For example, one may use the word ‘node’ to refer to

a vertex in a graph. At the same time, one may use the word ‘vertex’ to mean the same thing.

Although the name ‘vertex’ and ‘node’ are different in syntax, they mean the same thing and

should be factorised out in the IFP. However, if one only goes for a mechanism which checks

for the syntax, the names ‘vertex’ and ‘node’ will not be factorised out. Besides, ambiguities

can arise when people use abbreviations. For example, some people use ‘phone-no’ instead

of ‘telephone-number’. Again, simply checking the syntax of the names leads to a failure

in the factorisation process.

There is not yet a perfect solution to solve such an intuitive mismatch. Nevertheless, there

are a few precautions which system designers can take to reduce the ambiguities involved.

Firstly, a good choice of names for the attributes contributes significantly to readability

and understandability of the meaning of an attribute. It is suggested that one should strive

for names which are clean, direct and avoid using dummy names such as ‘foo’ which

either means nothing or everything. At the same time, software tools can be developed to

provide common definitions for attributes. One can develop an attribute dictionary which is

analogous to the traditional data dictionary. The attribute dictionary stores the definitions of

the attributes and their aliases. When specifying a new class specification, system designers

88

A Design Method for Object-Oriented Programming Winnie Pun

are required to consult the attribute dictionary to avoid any confusions in the meaning of an

attribute.

The name-compatible IFP is normally found in the non-strict inheritance model which implies

code-sharing. What is being inherited here is a piece of code or a memory location. Hence,

an attribute is a name that refers to a piece of code. Two attributes are said to be semantically

equivalent and hence can be factorised out if their names denote the same piece of code.

This seems to give more concrete grounds to compare two attributes. Unlike the above

discussion which states that a name indicates an intuitive meaning and is too abstract to

compare, a name in the non-strict inheritance model refers to a piece of code. One can only

use the same name for the attributes if the attributes refer to the same memory location and

the same piece of code. However, the name-compatible IFP is only straight forward in a

non-strict inheritance model when code is not allowed to be overwritten. When the model

allows code to be overwritten to preserve the name being used, a more complicated IFP

results. The IFP with overwriting implies that the IFP should allow users to specify the

priority of attributes and this is discussed in more detail in Section 4.3.4.

4.3.2. The IFP with Signature-Compatibility

The name-compatible IFP is more suitable for weakly-typed languages such as Smalltalk

[Gol83b] and LOOPS [WeQ84]. However, for strongly-typed languages such as Eiffel

[Mey88], Trellis/Owl [Kil89, OHK87] and SOLVE [RWW88], name-compatibility alone

becomes inadequate. To rectify this situation, one has to take into consideration of the

signature corresponding to each name as well, hence the signature-compatible IFP.

An attribute in the signature-compatible IFP not only embodies the intuitive meaning of the

name and the implementation that is attached to the name but also takes into account the

signature associated with that attribute. The signature conveys information about the types

involved in an attribute. For example, the attribute *int fo o ’ means that ‘foo’ has a type

‘int’. Also, *int add(int a)' indicates that ‘add’ is a function that takes in an object of type

‘int’ and returns an object with a type ‘int’.

In the signature-compatible IFP, two attributes are said to be semantically equivalent if the

syntax of the attributes denotes the same intuitive meaning, the same piece of code and their

corresponding signatures are compatible. Note that when signature is considered, one tends

to say that two signatures are compatible instead of two signatures are equal. This is because

two signatures need not be equal to be compatible. There are two situations when signatures

can be said to be compatible:

i. Subtyping

89

A Design Method for Object-Oriented Programming Winnie Pun

The concept of subtyping has been discussed earlier in this chapter. Subtyping

is similar to that of subclassing; the elements of a subtype also belong to its

supertype. Therefore, ‘typeA’ is said to be compatible to ‘typeB’ if there is a direct

inherit relationship between ‘typeA’ and ‘typeB’. For example, if one examines the

following two operations:

'‘add: int int —*• int’

ladd: real real —> real'

The signature of these two operations are not equal because they expect different

types of input and output arguments. However, the signature of these two operations

are said to be compatible because the type ‘int’ is a subtype of the type ‘real’. This

kind of compatibility is also known as inclusion polymorphism [CaW85].

ii. Conformance

The concept of subtyping is often considered restricted in the sense that it requires

two types to have a direct ‘inherit’ relationship before they are regarded as compati­

ble. For example, Figure 4.6 shows that ‘typeB’ is compatible with ‘typeA’ because

it is a direct descendent of ‘typeA’. However, ‘typeC’ can never be compatible to

‘typeA’ because they are in different branches in the hierarchy.

A * '

Figure 4.6: Type Compatibility and Conformance Rules

In order to relax this situation, one can introduce appropriate conformance rules

to the type system. The conformance rules define when and how a type can be

conformed to another type. With the correct conformance rules, two types do not

need to have a direct inherit relationship in order to be compatible. This kind of

compatibility is also known as coercion polymorphism [CaW85].

With signature-compatible IFP, it seems that in order to decide whether two attributes are

semantically equivalent and hence can be factorised out, one has to take considerations of

the conformance rules defined for the type system.

Now that the definition of semantic equivalence of two attributes in the signature-compatible

90

A Design Method for Object-Oriented Programming Winnie Pun

IFP is defined, one can examine how to support a mechanism to check for the equivalence

in the IFP. There are basically two ways to handle it. An easy way in which the current

IFP model still applies is to require system designers to do the checking. Two attributes can

only be labelled with the same name if:

i. they share the same intuitive meaning,

ii. they refer to the same piece of code and

iii. the corresponding signatures of the attributes are compatible.

In this case, system designers are responsible for attaching the right label to the attributes.

The checking mechanism in the IFP only needs to check for the syntactic equivalence of the

two names.

The other more efficient way to handle the signature-compatible IFP is to modify the syntax

of an attribute to capture the signature of the attribute as well. An attribute is no longer

represented by a name alone but also the types of its input and output arguments. For

instance, the previous example about the operation ‘add’ can have the syntax, int add(int).

In this case, the checking mechanism in the IFP has to be modified so that it does not only

check for the syntactic equivalence of the names but also look into the types defined for such

a name. The type-checking mechanism found in compilers would be useful in implementing

the checking mechanism of the EFP.

As the signature-compatible IFP concerns type hierarchies as well as class hierarchies, the

signature-compatible IFP is less flexible than the name-compatible IFP since it involves type-

checking of the attributes. However, type checking is more supportive of the programmer’s

intentions and yields a more expressive and structured hierarchy.

4.3.3. The IFP with Behaviour-Compatibility

The behaviour-compatible EFP can be considered as the ultimate IFP. It is related to the

strict inheritance model mentioned earlier in this chapter. Here, a class specification should

specify the behaviour of a particular class. To define the precise behaviour of a class is

rather difficult [Weg88b]. One of the mechanisms for specifying behaviour is by algebraic

specification. In order to achieve strict inheritance in the EFP, a class specification should,

therefore, be defined in terms of algebraic specifications [EhM85]. An example of such

algebraic specification is illustrated in Figure 4.7.

91

A Design Method for Object-Oriented Programming Winnie Pun

Stack-

Sorts: Stack, Integer

Opns: create : —* Stack
push : Stack Integer —>Stack
top : Stack —»• Integer u Integererror
pop : Stack —► Stack u Stackerror

Axioms: top(push(s,i)) = i
top(create) = Integererror
pop(push(s,i)) = s
pop(create) = Stackerror

Figure 4.7: The Algebraic Specification for the Class ‘Stack’

As one can see, when a class specification is defined algebraically, it involves defining the

sorts, the operations and the equations of that class specification. Here, sorts simply refer to

the types involved in the class specification. Operations are the actions which are defined

for the class specification. Each operation is denoted by an operation name and the signature

associated with it. Equations define the relationships between the operations within the class

specification.

Behaviour-compatible IFP is very different from name-compatible and signature-compatible

IFP. In fact, there are complications in extending the basic IFP model to cover the behaviour-

compatible IFP model. In the basic IFP model, a class specification is defined as a collection

of attributes which are of the same kind, i.e., they can all be viewed as operations defined

for a particular class. This definition applies both to the name-compatible and the signature-

compatible IFP. Although in the signature-compatible IFP one may need a richer syntax to

include the signature as well as the name for an attribute, the attributes described in a class

specification still belong to the same kind. However, in the behaviour-compatible IFP, a

class specification involves three different kinds of attributes namely, sorts, operations and

equations.

Class Specification = (Sorts, Operations, Equations)

As one can imagine, some of the definitions in the basic IFP model have to be modified to

cater for the behaviour-compatible IFP. First of all, the definition of a class specification has

to be re-defined.

92

A Design Method for Object-Oriented Programming Winnie Pun

Definition 4.17

A behaviour-compatible IFP class specification is a collection of three different types of

attributes,

Ci = {sti, • • •, 5 tj} U { o p i , • • • , opm} U { eqx, • • • , e g n }

where sti € S T i , opi € OVi and eqi G €Qi

and ST i C Sorts, OVi C Operations and C Equations.

Further, the axiom which governs the factorisation of common attributes has to be modified.

Axiom 4.4

For behaviour-compatible IFP,

{ci} + ----- (- {cn } = Co' <1 ({ci'} -I- h {Cfi/})

n n n

i f f FTo = f | ST i and O V0 = f | OVi and SQ0 = f l £ a
» = i i = i i = i

It is generally agreed that writing a formal specification is a difficult task [LiG86]. Hence

although the behaviour-compatible EFP presents a precise and non-ambiguous inheritance

model, it is hard to achieve. Concerning the class specifications, there is research going on

investigating how to use algebraic specifications to specify a class, such as OBJ2 [GoM82,

Shu89]. Concerning the mechanism to check whether a factorisation can be taken place

between two class specifications, one basically needs to check the three kinds of attributes

associated with each class specification instead of one as in the name-compatible and the

signature compatible IFP. It is outside the scope of this thesis to give the details of how to

attain the behaviour-compatible IFP. However, this thesis has demonstrated such a model is

plausible.

4.3.4. The IFP with Priority Attributes

The basic IFP model treats all the attributes as having the same priorities when it comes

to factorisation. However, it is more practical to grant different priority values to different

attributes according to the knowledge system designers have about the attribute and the

nature of the development environment. In this case, system designers can specify that a

particular attribute must not be factorised under certain circumstances. This serves to give

more flexibility to the inheritance factorisation model. Such flexibility is found to be very

useful with inheritance models that allow code to be overwritten.

93

A Design Method for Object-Oriented Programming Winnie Pun

Inheritance models which allow code to be overwritten are common in the inheritance world.

They permit the names to be preserved while the implementation attached to that name is

altered. For example, with the code overriding, the class ‘circle’ and the class ‘rectangle’ in

the same class hierarchy can have an operation named ‘draw’ and yet the algorithm to draw

a circle and a rectangle is different. In the basic IFP model, in order to distinguish that the

‘draw’ operation in the class ‘circle’ has a different implementation from that of the class

‘rectangle’, one needs to name the operation with different names such as ‘drawCircle’ and

‘drawRectangle’ respectively. This, of course, is valid but clumsy. With priority attributes,

in order to highlight the fact that the operation ‘draw’ in the class ‘circle’ has a different

implementation from that of the class ‘rectangle’, one can assign a lower priority value to

the operation ‘draw’ so that when factorisation takes place, it will not be factorised out.

In this case, the name of the operation is still preserved and yet they can have different

implementations.

Moreover, if one considers the inheritance model which supports only single inheritance, the

ability to define the priority of the attributes in factorisation becomes extremely useful. As

indicated in Section 4.2, it is possible for the inheritance factorisation to yield more than one

normalised class hierarchy expression. If multiple inheritance is supported then this indicates

that a multiple inheritance hierarchy exists. However, in some cases, multiple inheritance

is not accommodated. Here, one has to choose a more suitable class hierarchy expression

amongst various normalised hierarchy expressions obtained. Again, with priority attributes,

one can define the priority value of factorisation for each attribute according to the nature of

the development environment. In this case, system designers can obtain a unique normalised

class hierarchy expression by taking into the account the priority of the attributes. In order

to illustrate the usefulness of the priority attributes, Example 4.4 is a revisit of Example 4.3

but this time it is assumed that the IFP does not support multiple inheritance.

Example 4.4

In this example, a class hierarchy is constructed for the set of class specifications, s* =

{ c o , C i , C 2 , C 3 } . If C o — { o i , 0 2 , O 3 , O 5 } , C l — > O 3 , 0 6 , O g } , C 2 — 1 O 4 , 0 6 , O g } <tnd C 3 —

{ai, a2, <1 7 } then the factorisation process will be:

Ci — {cqjC\, C2)C3 }
— { co} + { c i} + { c 2} + {c3}

= {{oi, a2) 0 3 , o5}} + {{ai, 0 3 J 0 6 . os}} + {{oi, 0 4 . 0 6 , o8}} + {{ai, a2 , 0 7 }}
= {0 1 } < 4 ({{o2) 0 3 , a5}} + { { 0 3 , a6 , og}} + { { < 2 4 , 0 6 , og}} 4- {{o2, 0 7 } })

— { 0 1 } ({0 3 } ({{ 0 2 , o5}} + {{a6, o8}}) + {{o 4 , 0 6 , ag}} + {{ 0 2 , 0 7 }}) [£/vi]
or = {0 1 } <f ({a2} < 4 ({{ 0 3 . 0 5 }} + {{ 0 7 }}) + {0 6 , ag} < 4 ({{ 0 3 }} + {{a4}})) [£^2]

Here, the IFP has generated two valid normalised expressions, £jvi and Cn2 - Suppose the

94

A Design Method for Object-Oriented Programming Winnie Pun

attribute a3 denotes an operation in which its corresponding code would be overwritten by

the inheriting class. If the degree of reusability is measured by how many pieces of code are

being reused then the class hierarchy generated from fo i has a lower degree of reusability

than that of (n 2 because the code of a3 is not going to be reused. As the basic IFP model

defines that an optimal class hierarchy is one which achieves maximum reusability, a better

choice of normalised expression for an optimal class hierarchy, in this case, is Cn2 -

To modify the IFP model so that it can recognise Cn2 as a more suitable candidate for a

normalised class hierarchy expression, one has to install the capability to specify priority

values in the IFP. If system designers can specify that the attribute o 3 has a lower priority

value, o3 will not be factorised out when an ambiguity is detected. In this way, ^ 2 is

automatically selected as the normalised class hierarchy expression. The current IFP, though,

has not been developed to cater for this. This section has demonstrated such an improvement

of the IFP is possible and useful.

4.4. Applying the IFP to Systems Design

The main objective of developing the IFP is to help system designers handle inheritance in

object-oriented programming. With respect to inheritance in object-oriented programming,

one of the main task one needs to do is to identify the ‘inherit’ relationship of the class one

wants to construct. This usually involves two kinds of activities.

i. System designers have to check whether there exists a suitable class hierarchy for

the new class to attach to. If a suitable class hierarchy is not found, a new class

hierarchy has to be constructed from scratch.

ii. If a suitable class hierarchy for the class one wants to construct is identified, the

class is then added to such an existing class hierarchy.

This section discusses how the IFP can be applied in these two design activities. After

that, it discusses how the design behaviour of the system designers may be changed as a

consequence of using the IFP. It also mentions how the IFP is incorporated into the design

method proposed in Chapter 3.

4.4.1. In Building a Class Hierarchy from Scratch

In the application system design domain, system designers seldom find that they have to

construct new class hierarchies from scratch [Joh8 8]. Normally, the system development

environment already has a rich set of class hierarchies in which system designers can find

a suitable class hierarchy for the new class to attach to. Even if one cannot find a suitable

95

A Design Method for Object-Oriented Programming Winnie Pun

class hierarchy, application system designers tend to create the new class as the subclass of

the universal superclass ‘Object’ instead of working on a new class hierarchy from scratch.

The construction of new class hierarchies from scratch is found to be more common in

composing the system development environment for applications to build on. Here, system

designers have to provide a good environment for software development. This involves

supplying adequate class hierarchies in which classes for the application can be built. As

it stands, the basic model of the IFP is actually more appropriate for system designers in

constructing class hierarchies from scratch. With the IFP, system designers do not need

to work out all the abstract classest involved in the class hierarchy nor do they need to

compare and contrast the classes to identify the superclasses. They only need to specify the

conceptual class specifications involved in a class hierarchy construction problem and the

corresponding optimal class hierarchy is then generated.

4.4.2. In Adding a New Class to an Existing Class Hierarchies

As mentioned above, it is more common for system designers to add a new class to an

existing class hierarchy. Hence, it is important to examine what the system designers need

to do with the IFP when adding a new class to an existing class hierarchy.

In the IFP, a class hierarchy is presented as a graph. The addition of a new class means

that a new node is added to a graph. The new node can be added as an external node or an

internal node. The structure of the graph may be changed according to whether it is added as

an internal or an external node. Consequently, system designers have to use IFP differently

depending on whether the structure of the graph is going to be changed or not.

A good object-oriented software development environment should provide a set of well-

defined class hierarchies which reflects maximum reuse. These hierarchies should have the

abstract classes at the top of the class hierarchy and concrete classes at the bottom [Joh88].

Thus, when a new concrete class is added to a well-defined class hierarchy, it is always

added as an external node. This is illustrated as Figure 4.8.

When a class is simply added as an external node, no restructuring of the graph is required.

The new class specification is usually a simple incremental modification of an existing class

specification in the hierarchy. All this implies that there is no need to perform a new

factorisation on the conceptual class specifications in the existed graph and the new class

specification. A simple graph-walking algorithm, based on comparing the attributes of the

In Johnson’s paper [Joh88], he defines an abstract class as one that seldom has instances, only its subclasses have instances.
The root of a class hierarchy is usually abstract classes while the leaves are never abstract

96

A Design Method for Object-Oriented Programming Winnie Pun

class specifications, can be developed to append the new class to the existing class hierarchy

graph.

Figure 4.8: Adding a New Class as an External Node

Figure 4.9: A Restructuring of a Class Hierarchy

However, the addition of a new class may sometimes lead to a restructuring of an existing

class hierarchy. This happens when the class hierarchy itself is not yet well-defined, i.e., the

addition of the new class simply identifies more abstract classes at the top of the hierarchy

to give a better hierarchy structure with higher degree of reusability. This is especially true

if the addition of the new class means that the class hierarchy will transform from a single

inheritance hierarchy to a multiple inheritance hierarchy as shown in Figure 4.9.

The class hierarchy on the left hand side of Figure 4.9 is constructed from conceptual class

97

A Design Method for Object-Oriented Programming Winnie Pun

specifications, cq = {ao,ai}, ci = {0 0 , 0 2 , 0 3} and C2 = {0 0 , 02 , 04}.

£ i — { ^ 0 , ^ 1 , ^ 2 }

= { { 0 0 , O i } } + { { o 0 , 0 2 , 03}} + { { o o , 0 2 , a 4 } }

= { a o } < s ({ { o i } } + { { 0 2 , 03}} + { { 0 2 , a 4 } })

= W < , ({ { a i } } + { 0 2 } < , ({ { 0 3 } } + { { o 4 } }))

If c0' = { a i } , c i ' = { o 3 } , c 2 ' = { o 4 } , c 3 ' = {a0} and c 4 ' = {a2}, then the corresponding

hierarchy graph is shown on the left hand side of Figure 4 .9. Now, the new class specification

c 5 = { 0 0 , 0 1 , 0 3 , 0 5 } is added to this class hierarchy. As c 5 is not a simple incremental

modification of any existing class specifications, the factorisation process has to be repeated

with c 0 , c i , c 2 , c 5 .

— { C 0 . C 1 , C 2 , C 5 }

= { { o o , o i } } + { { a o , 02,03}} + { { 0 0 , 02, a 4 } } + { { o q , a i , 03, a 5 } }

= { a o } < t ({ { ® i } } + { { a 2 > 0 3 } } + { { 0 2 , a 4 } } + { { 0 1 , 0 3 , o 5 } })

= {ao} <t ({ai} <s ({0C} + {{03, a5}}) + {02} <, ({{03}} + {{o4}}))
or = {a0} < , ({{ai}} + {03} < t ({ { 0 2 } } + {{01,05}}) + {{a2,a4}})

The factorisation indicates that multiple inheritance is detected and by Axiom 4 .3, the

normalised class hierarchy expression is:

{ao} <, ({a i} <4 {4>c} + ({{02}} + {{°3}}) <m 0c + {02} <« {{a4}} + ({{ai}} + {{03}}) <m {a5})

By having c5' = {a5}, the new graph is presented on the right hand side of Figure 4 .9.

As it stands, the restructuring of a class hierarchy should not affect the objects which have

been created based on the old class hierarchy. The structure of the class from which the

objects have been instantiated should remain the same. The only thing which has altered is

the inheritance path. The new class hierarchy should provide a more efficient inheritance

path which gives a higher degree of reusability. Because of this, when there is a restructuring

of a class hierarchy, all the inheritance paths of the defined classes of the previous hierarchy

have to be updated.

4.4.3. The Importance of Specifications in the IFP

The development of the inheritance factorisation process has highlighted the point that system

designers should look at class hierarchy manipulations from a different angle. Up till

now, system designers have applied ‘ad hoc’ methods and intuition in constructing class

hierarchies. They spend more time comparing the similarities and differences amongst

various classes than working on the precise properties and attributes of these classes. This

has led to the construction of ill-defined class hierarchies with little reuse. Since the class

98

A Design Method for Object-Oriented Programming Winnie Pun

hierarchies are not well-defined, it is more likely for these class hierarchies to be reorganised

whenever a new class is added to them.

Unlike the ‘ad hoc’ method, the IFP emphasises the importance of having correct class

specifications. As Liskov and Guttag once said [LiG8 6], “The art of writing a specification

sheds light on the abstraction being specified by focusing attention on the properties of

that abstraction. This use can be enhanced by careful attention to properties that might be

overlooked”. This is indeed the essence of the IFP. By relieving system designers of any

mechanical processes in constructing class hierarchies, the IFP encourages system designers

to pay more time and attention on identifying the correct properties and characteristics of

individual classes. The generation of a reasonable class hierarchy relies very much on

specifying the classes correctly in the first place. This point is currently overlooked by most

system designers.

4.4.4. Incorporating the IFP into the Proposed Design Method

The inheritance factorisation process is developed as part of the design method mentioned in

Chapter 3. The design method requires system designers to identify the ‘inherit’ relationship

at the system level. This can be done by using the inheritance factorisation process. When

the system designers have confirmed the set of implementation objects, they have to decide

whether these objects can be instantiated using existing classes or not. Very often, new classes

have to be constructed in which case inheritance factorisation process can be used. The

inheritance factorisation process would help them to construct the necessary class hierarchies

and hence to identify the required ‘inherit’ relationships. This information is required to

construct the class structure chart and the message structure chart at the specification level.

Further, this design method forms the backbone of a CASE environment for object-oriented

programming. In this case, the inheritance factorisation process lays down the foundation

of a tool which helps system designers in constructing class hierarchies. The tool which

is called the factorisation engine can be incorporated into the CASE environment. This is

discussed briefly in the next section but in more detail in Chapter 5.

4.5. Automating the IFP

Automation in CASE has become more and more important in recent years. It has attained

dramatic productivity advances in software engineering. Automation not only concerns

code generation in the implementation phase but also comes as the front-end of the system

analysis phase [Mar8 8]. As it stands, the inheritance factorisation process is only a manual

manipulation process. System designers will benefit more if such a process can be automated.

99

A Design Method for Object-Oriented Programming Winnie Pun

The automation process can eventually be incorporated into the CASE environment for

object-oriented programming. This section describes the various stages which are required

to develop such an automation process.

r J A i! B c j
L \ / j

Clast Spec £<£rortl

1

d t u specifications

r
edges,
vertices

1 Class Spec Parser J Factorisation Engine^K I Graph Generator

L......................
•dgei*
vtrtice* 1 A 1 ̂ c ;

nonnalised experssion ! / \ !i D j

Figure 4.10: The Automation Process of the Inheritance Factorisation Model

The automation of the IFP involves five components:

i. Class Specification Editor

The class specification editor allows system designers to define the set of class

specifications involved in a particular class hierarchy construction problem. The

editor consists of a template which prompts users to fill in the required information

about a class specification. Basically, users have to specify the individual class

name and the attributes belonging to that particular class. The following is an

example of a class specification in the name-compatible IFP.

Point: create, display, move, locate;

ii. Class Specification Parser

Once the set of class specifications is defined, it is passed through the class

specification parser. The responsibility of the parser is three-fold.

• It has to verify the correctness of the defined specifications, e.g., whether

the attributes found within a class specification are mutually exclusive.

• When the verification process is finished, the parser has to generate a

symbol table for the corresponding set of class specifications. The symbol

table contains the name of the classes involved and the description of the

individual attributes.

• However, the most important task of the parser is, in fact, to generate an

initial expression from the set of class specifications for the inheritance

100

A Design Method for Object-Oriented Programming Winnie Pun

factorisation process.

iii. Inheritance Factorisation Engine

The inheritance factorisation engine is the main component in the whole automation

process. Its construction is based on the formal model mentioned in Section 4.2.

The inheritance factorisation engine takes in the initial expression and applies an

algorithm based on the inheritance factorisation model to factorise out common

attributes. When a set of common attributes is factorised out, it indicates that

a new superclass in the class hierarchy has been generated. The factorisation

process continues until the expression cannot be factorised further. The output of

the factorisation engine is a normalised class hierarchy expression. The normalised

class hierarchy expression will then go into the graph generator in which an optimal

graph is generated.

iv. The Graph Generator

The main function of the graph generator is to take the normalised expression and

generate the corresponding set of vertices and edges. By having this set of vertices

and edges, the corresponding class hierarchy graph can be produced.

As one can see, the core component of the automation of the IFP is the development of the

inheritance factorisation engine. In order to demonstrate such automation and examine the

performance of the IFP, a prototype of the inheritance factorisation engine was constructed.

The implementation details of the inheritance factorisation engine is found in Chapter 5.

4.6. The Truth of the IFP

When the idea of the inheritance factorisation process was first introduced, a number of

people showed enthusiasm for it. Most of them recognised that it could be useful, con­

tributing to the design and being a part of the development environment for object-oriented

programming. A few of them suggested that the IFP is similar to the techniques of cluster

analysis. Hence, it is important to have this section to define what exactly the EFP is and is

not.

4.6.1. The Techniques of Cluster Analysis and the IFP

The technique of cluster analysis [Eve80] is a classification scheme for grouping objects

into a number o f classes such that objects within classes are similar in some respect and

unlike those from other classes. The objects or individuals are described by a set of numerical

measures. There are various methods of cluster analysis, e.g., Q-analysis, typology, grouping,

classification, numerical taxonomy and unsupervised pattern recognition. Such a variety of

101

A Design Method for Object-Oriented Programming Winnie Pun

names is due to the popularity of cluster analysis in various fields such as psychology,

zoology, biology, artificial intelligence and information retrieval. The technique of cluster

analysis is regarded as a useful tool to search for natural groupings in the data.

The details about the technique of cluster analysis are outside the scope of this thesis.

However, the basic idea of cluster analysis is to find the similarity coefficient or distance

measures of each variable between two entities. The grouping of the entities depends totally

on these coefficients. For example, the following table shows how the three entities are

specified by some numerical values in a set of chosen variables.

Item/Variables height weight

1. M. Smith 6 6 1 2 0
2. W. Blogg 76 130
3. M. Storm 70 150

Hence, by obtaining the similarity coefficients t;

S 1 2 = 0 . 334 , S13 = 0 . 466 , S 2 3 = 0 . 2 0 0

one can then group similar items together by comparing the similarity coefficient.

As it stands, the technique of cluster analysis is very different from that of the IFP, as it

serves as a classification of similar objects into classes. The classification depends on the

quantitative factors assigned to each variable. Whereas in the IFP the objective is not about

grouping similar objects into classes but to identify how the classes are related to each other

in the class hierarchy. Although each class is described in terms of attributes which is similar

to that in the cluster analysis, the comparison does not rely on any quantitative measure of

the attributes. There is no similarity coefficient in the IFP. A class either has an attribute or

does not have it. Besides, the result of the IFP not only highlights the ‘inherit’ relationships

between different classes in the hierarchy but also identifies all the necessary abstract classes

which are required to build the hierarchy. Therefore, there is little similarity between the

technique of cluster analysis and the IFP.

4.6.2. The Benefits brought by the IFP

After declaring what the DFP is not, this section states what the IFP is by discussing the

objectives of developing the IFP and the benefits which is brought by the EFP to object-

oriented programming

1 The details of how to obtain the coefficient can be found in [Eve80].

102

A Design Method for Object-Oriented Programming Winnie Pun

The IFP allows system designers to specify the related class specifications involved in a class

construction problem and the corresponding optimal class hierarchy is then generated. The

generation of the optimal class hierarchy means that the following goals have been achieved:

i. The IFP has identified all the abstract classes required for a class hierarchy.

ii. The description of these abstract classes are obtained as a result of the IFP.

iii. The ‘inherit’ relationships amongst these abstract classes are also identified.

The development of the IFP has been found to be beneficial to the construction of class

hierarchies in various ways:

i. The IFP has relieved system designers of any mechanical process so that they

can concentrate more on specifying the correct properties and characteristics of

individual classes in the course of constructing class hierarchies.

ii. As indicated by Johnson [Joh8 8], “Finding new abstraction is difficult. • • • Humans

think better about the concrete examples then about abstractions”. Hence, the

identification of the abstract classes is a non-trivial task. However with the EFP,

system designers do not need to worry about finding the correct abstract classes.

All the abstract classes required in a particular class hierarchy and their descriptions

are automatically generated as a result of the IFP.

iii. The EFP has a formal model as its basis. This feature of the EFP is very impor­

tant because it means that provided the class specifications given by the system

designers are complete and correct, the class hierarchies generated from the EFP

should be consistent and well-defined. The result can help to resolve some of the

problems that occur in the construction of class hierarchies, such as minimising the

restructuring of class hierarchies when a new class is added to an existing class

hierarchy.

iv. The ‘ad hoc’ method tends to encourage system designers to apply a top-down

design approach. When system designers have to create new class hierarchies, they

have to start with the root node, the internal nodes and then the leaf nodes. This

limitation imposes unnecessary constraints on system designers in designing the

class hierarchy especially in the case of reuse in which a middle-out or bottom-up

approach is required. The EFP, however, offers more flexibility to system designers

in constructing class hierarchies. It allows system designers to apply bottom-up

and middle-out approach to design class hierarchies. In fact, system designers need

only to specify the conceptual class specifications and an optimal class hierarchy

is then generated. The IFP is not aware of whether a top-down, bottom-up or

middle-out approach is being applied.

103

A Design Method for Object-Oriented Programming

4.7. Conclusion

Winnie Pun

This chapter has discussed the details of the inheritance factorisation process. The inher­

itance factorisation process has been developed to help system designers construct class

hierarchies in object-oriented programming. It provides a systematic manipulation which

system designers can apply in constructing class hierarchies, guaranteering the generation of

an optimal class hierarchy.

Besides giving the details of the formal model which lies behind the manipulation process,

this chapter has also demonstrated the flexibility of the inheritance factorisation model. It

shows how the basic model can be extended to cover both the non-strict inheritance and the

strict inheritance. It has examined how the IFP can be used in constructing class hierarchies

from scratch and adding new classes to an existing class hierarchies. As these two activities

are found in the system design process, hence it has established the value o f the IFP in

system designs. In addition to this, this chapter has also showed that such a process can be

automated. The implementation of the automation process is found in Chapter 5.

104

“On the other hand, we cannot ignore efficiency”

~ Jon Bentley ~

Chapter 5

A Prototype of The IFE

conceptual class specifications

1 1 1

I I I
A normalised class hierarchy expression

Figure 5.1: The Input and Output of the IFE

Chapter 4 has described the formal model which lies behind the inheritance factorisation

process. Such a process is a manual manipulation process which provides a systematic

approach to constructing class hierarchies. Although this manual process helps system

designers attain an optimal class hierarchy in an efficient manner, designers will benefit

more if such a process can be automated. As suggested in Chapter 4, such an automation

relies heavily on the implementation of a factorisation engine. As part of this research, the

first prototype inheritance factorisation engine has been assembled in the C++ programming

language on a SUN 3. It was constructed from the basic model of the inheritance factorisation

process. Hence, it only supports name-compatible IFP with no priority of factorisation for

attributes. The prototype engine was designed to take in a collection of conceptual class

specifications as input, and generate a normalised class hierarchy expression as output (see

Figure 5.1). This chapter, therefore, discusses various implementations of the factorisation

engine and compares their efficiency.

105

A Design Method for Object-Oriented Programming Winnie Pun

5.1. An Overview of the Inheritance Factorisation Engine

The algorithm which is suggested from the inheritance factorisation process for the factori­

sation engine can be summarised in Figure 5.2.

For i = n; i > 1; i-

True

False

More than one
way to factons

Factorise out attributes which are
common to ‘i’ class specifications

Single Inheritance.
1. Update the class hierarchy expression

for this factorisation..

Multiple Inheritance is detected
1. Obtain all the superclasses for

the rest of die factorisation process.
2. Inspect each class specification and

identify the corresponding single
and multiple inherit link with the
obtained superclasses.

3. Exit the loop.

Figure 5.2: An Overview of the Algorithm for the Factorisation Engine

Here, the factorisation engine has to factorise out common attributes and check for multiple

inheritance. This procedure is iterated for i = n, • • •, i = 2 , where n is the number of

conceptual class specifications involved in the class hierarchy construction problem. This

ensures that attributes which are common to more class specifications will be factorised

out first. The procedure halts when no more factorisation can be carried out, i.e., i — 2

or multiple inheritance is detected. When multiple inheritance is detected, the factorisation

process employs another method to identify the rest of the inherit links and superclasses of

the hierarchy graph (see Axiom 4.3). The details of the implementation of these methods

can be found later in this chapter.

106

A Design Method for Object-Oriented Programming Winnie Pun

From the algorithm, it is apparent that in order to implement the factorisation engine, the

following issues have to be tackled :

i. Define the data structure of :

• the class specification and

• the class hierarchy expression

ii. Define the method :

• to carry out the factorisation process,

• to detect multiple inheritance,

• to update expressions which involve single inheritance alone and

• to update expressions which involve single and multiple inheritance.

The following sections discuss these issues in details.

5.2. Data Structures

5.2.1. The Class Specification

A class specification is defined as a set of attributes. The desirable data representation

for a class specification is in terms of boolean values. Each possible attribute of a class

specification is represented by a boolean value to indicate whether or not the attribute is

in a particular class specification. For example, in a particular class hierarchy construction

problem which involves three class specifications, c0 ,c i,c 2, where c0 = {a0, oi, a2, a3}, cx =

{ao.a^asjag} and c2 = {0 0 , 07}. The data representation of these class specifications would

be:

a o a i a 2 0 3 CL4 0 5 0 6 0 7 0 8 CLg

Co = 1 1 1 1 0 0 0 0 0 0

Cl = 1 1 0 0 0 0 0 0 1 1

C2 = 1 0 0 0 0 0 0 1 0 0

As shown later, such a boolean representation actually makes the identification of superclasses

and the update of the class hierarchy expression very easy.

107

A Design Method for Object-Oriented Programming

5.2.2. T he C lass H ie ra rch y E xpression

Winnie Pun

classSpecLink classSpec supe rClassLink subClassLink nextLink

Figure 5.3: A Typical classSpecLink

A class hierarchy expression denotes the ‘inherit’ relationship between superclasses and

subclasses. There are basically two kinds of data representation one can use. The straight

forward one is to implement the class hierarchy expression as a linked list. The linked list

would be made up of links called ‘classSpecLink’. Each classSpecLink is composed of four

fields: classSpec, superClassLink, subClassLink and nextLink as shown in Figure 5.3.

The field ‘classSpec’ contains the data representation of a particular class specification

and as discussed above, it is a boolean representation. The fields ‘superClassLink’ and

‘subClassLink’ are pointers that point to the immediate superclass and the immediate sub­

class links of that class specification respectively. The field ‘nextLink’ points to the next

classSpecLink of that class specification. Hence, the data representation of a typical class

hierarchy expression which involves single inheritance only, such as c0' <« ({ci'} + c2' < 4

({c3'} + {c4'} + {C5'})) is shown in Figure 5.4.

Figure 5.4: The Data Representation of a Single Inherit Expression

The data representation for a class hierarchy expression which also involves multiple inher­

itance as well as single inheritance, such as c0' < 4 (ci' + ({c2'} + {c3'}) <m c4') is shown in

Figure 5.5.

108

A Design Method for Object-Oriented Programming Winnie Pun

Link that shcrws
jnuJriple inheriance

iru

Figure 5.5: The Data Representation of a Multiple Inherit Expression

The data representation of a class hierarchy expression in the form of a linked list works

well. One can generate the set of edges of the corresponding graph by transversing the

linked list. However, the updating of the linked list can be quite cumbersome. Each time a

factorisation is carried out, all the links of the linked list have to be updated to reflect the

result of the factorisation. The following example attempts to show the complexity involved

in updating the linked list when factorisation takes place.

E xam ple 5.1

This example assumes that a class hierarchy has to be constructed from conceptual class

specifications c0) r 1 ,c 2 ,c 3 where c0 = {o0, a x, a2, a3}, cx = {0 0 , 0 4 , 0 5 }, c2 = {a0 , a 2 ,o 6}

and c3 = {0 ,1, 0 7 }. The factorisation process of these class specifications are:

6
— {Co, cx,c 2 ,c3}
= {co} + {cx} + {c2} + {c3}
= {{o o , a x, a 2, a 3} } 4- { { o 0 , 04, 0 5 } } + { {a o , a 2, a o } } + { {a o , 0 7 }}
= {ao} < 5 ({{a i> a 2, a3}} + {{a4, a3}} + {{a2, ag}} + {{0 7 }})
= {ao} <j ({a2} ({{ax, a3}} + {{a6}}) + {{a4, a 5}} + {{0 7 }})) [£at]

These various stages of the factorisation process when represented in a linked list are shown

in Figure 5.6, 5.7 and 5.8 respectively.

109

A Design Method for Object-Oriented Programming Winnie Pun

11110000 10001100 10100010 H 10000001 M 0

Figure 5.6: The Data Representation for the Initial Class Hierarchy Expression

t t t
10000000

01110000 00001100 -► 00100010 M 00000001 ■

Figure 5.7: The Data Representation after the 1st Factorisation

▼ t t
10000000

00100000 00001100 00000001

01010000 00000010

Figure 5.8: The Data Representation of the Normalised Expression

The data representation for the initial class hierarchy expression as shown in Figure 5.6

indicates that no inherit relationship is expressed. The first factorisation of these class

specifications factorises out the superclass for co ,c i,c 2 ,c3. Hence the linked list has to be

updated to show this superclass/subclass link. Also the contents o f the class specifications

have to be updated to reflect the corresponding subclasses. This is illustrated in Figure 5.7

110

A Design Method for Object-Oriented Programming Winnie Pun

The next factorisation factorises out common attributes of the first and the third link. Hence,

a superclass is found and the contents of the first and the third link have to be updated as

well as the link of the linked list. This is shown in Figure 5.8.

As one can see, the update of the linked list representation can be quite complicated especially

if the factorisation itself is non-trivial. Therefore, it is necessary to look for a simpler

data representation for the class hierarchy expression. An alternative to represent the data

structure of the class hierarchy expression is in terms of an adjacency matrix. As mentioned

in Chapter 4, a class hierarchy expression embeds the structure of the hierarchy graph.

Hence, it is reasonable to examine the data structure of a graph when looking for the

data representation of the class hierarchy expression. A graph is expressed in terms of a

set of vertices and a set of edges. The set o f vertices is always represented as an array,

e.g., vertices[]. The set of edges can be represented as an adjacency table, e.g., edges[][].

Edges[v][w] has a boolean value ‘true’ if and only if an edge is detected from node[v] to

node[w], i.e., node[v] is the immediate superclass of the node[w].

When the class hierarchy expression is directly expressed in terms of a graph structure, the

update of the expression or the graph itself becomes trivial. To illustrate this, the previous

example used to show the complexity involved in updating the linked list representation is

reused. Before any factorisation takes place, the adjacency table contains the four conceptual

class specification, c0) c i, c2, c3 and they are stored in v0, ui, v 2 and u3 as shown in Table 5.1.

vertices vo Vl v 2 V3

v0 = 11110000 0 0 0 0
v i = 10001100 0 0 0 0
v 2 = 10100010 0 0 0 0
v3 = 10000001 0 0 0 0

Table 5.1: The Adjacency Table before Factorisation

The first factorisation factorises out the superclass from these four specifications. This

superclass is then stored in v4, the contents of v 0 , t>i, v 2 and v3 have to be updated to contain

the subclasses yielded by the factorisation. The adjacency table also has to be updated to

show the superclass/subclass link generated from such factorisation (see Table 5.2).

The next factorisation factorise out the superclass from v 0 and v 2. The corresponding

superclass of this factorisation is stored in u5 and the contents of v 0 and v2 have to be

updated. Again the adjacency table has to be updated to show the new edges resulted from

the factorisation. This is shown in Table 5.3.

I l l

A Design Method for Object-Oriented Programming Winnie Pun

vertices v o V i v2 V3 v4

v0 = 01110000 0 0 0 0 0
vi = 00001100 0 0 0 0 0

v2 = 00100010 0 0 0 0 0
v3 = 00000001 0 0 0 0 0
v4 = 10000000 1 1 1 1 0

Table 5.2: The Adjacency Table after the First Factorisation

vertices vo V l v2 V3 v4 V5

v0 = 01010000 0 0 0 0 0 0
vi = 00001100 0 0 0 0 0 0
v2 = 00000010 0 0 0 0 0 0
v3 = 00000001 0 0 0 0 0 0
v4 = 10000000 0 1 0 1 0 1

v5 = 00100000 1 0 1 0 0 0

Table 5.3: The Adjacency Table of a Normalised Class Expression

As it is illustrated above, updating the adjacency table is easier than that of a linked list.

Although adopting the adjacency table representation requires more memory space, the ease

in updating makes it worthwhile.

5.3. The Method of Factorisation

Having decided upon the data structures for class specifications and class hierarchies, one

can concentrate on the method of factorisation.

5.3.1. Factorisation Process

The obvious way to implement the whole factorisation process is to follow the manual

manipulation process closely. Hence, factorisation is performed to identify common attributes

for i = n class specifications, then » = n - l ,» = n — 2 , •••, * = 2 . Since the algorithm

does not know which *i* class specifications to factorise, various combinations of V class

specifications have to be tried out. For example, if a class hierarchy construction problem

that involves six class specifications, co,ci,c2,c3 ,c4 ,c5, the algorithm starts off by looking

for a factorisation that involves all the six class specifications:

1st factorisation, i = n; i.e., i = 6 ,

^ 0) C i , ^ 2 , C 3 , C 4 , C 5
V : /

112

A Design Method for Object-Oriented Programming Winnie Pun

Once the factorisation amongst all the class specifications is complete, the algorithm is

reiterated but this time it looks for factorisation for any five class specifications. Since the

number of r combinations from n objects is, nCr , i.e., (n_ ^ !r!» numher of factorisations

one has to carry out here is 6C5 which is 6 .

2nd factorisation, i — n - 1; i.e., i = 5,

Co, Cl, C2, C 3, C4 C5
s - , , - - , —........—

Co, Cl, C2 , C3, C5 C4

Co, Cl, C2 , C4, C5 C3

Co, C l, C3, C 4, C5 C2
----------- '

Co, C2, C3, C4, C5 Ci
----------- '

C l, C2, C3, C4, C5 Co
----------- '

As the factorisation progresses, the number of combinations which have to be checked

increases sharply. With this algorithm, the worst case indicates that all the possible combi­

nations have to be tried out. Therefore, the order of complexity of this algorithm tends to

be exponential.

Order of complexity ~]C?= 2 nCV
~ 2n

For this reason, this algorithm which directly implements the inheritance factorisation process

is almost certainly too costly to implement. In order to automate the factorisation process,

one has to look for a more efficient algorithm.

When one examines the problem more closely, it is not difficult to find that the inefficiency

of the algorithm lies in the fact that it has to try out all possibilities, i.e., the algorithm

does not know which class specifications to factorise. Therefore, it seems that a promising

approach to obtain a better algorithm is to work on eliminating the redundant factorisation

attempts that occur. In order to do this, one needs to find a way to obtain the information

about the exact class specifications involved in a factorisation. As mentioned earlier, a set

of conceptual class specifications is presented in terms of boolean values.

Exam ple 5.2

For example, a class hierarchy construction problem which involves class specifications,

C o = { 0 0 , 0 1 , 0 2 , 0 3 } , c i = { 0 0 , 0 1 , 0 4 } , C 2 = { 0 0 , 0 5 , 0 5 , 0 7 } , and C 3 = { u o , ° 5 , ° 8 } have the

113

A Design Method for Object-Oriented Programming

data structures as follows:

Winnie Pun

a o O i a2 <*3 (Z4 0 5 06 a 7 Os
Co = 1 1 1 1 0 0 0 0 0
Ci = 1 1 0 0 1 0 0 0 0
C2 = 1 0 0 0 0 1 1 1 0
C3 = 1 0 0 0 0 1 0 0 1

By inspecting this data structure horizontally, one can obtain information about which

attributes are found in a particular class specification. Also, by inspecting the data structure

vertically, one can obtain information about what class specifications contain a certain

attribute. If one extends the data structure by adding an extra row which stores the frequency

of the occurrence of each attribute amongst the class specifications, one can directly obtain

information about which attributes occur in m class specifications.

a 0 0 1 02 0 3 C14 o 5 0 6 a 7 08
Co = 1 1 1 1 0 0 0 0 0
Cl = 1 1 0 0 1 0 0 0 0
C2 = 1 0 0 0 0 1 1 1 0
C3 = 1 0 0 0 0 1 0 0 1
freq = 4 2 1 1 1 2 1 1 1

When one examines the factorisation problem again, to factorise out common attributes

amongst m class specifications is, in fact, to obtain the attributes that occur in m class

specifications. With the above extended data structure, by inspecting the frequency row in

the table, one can find out the attributes which occur in m class specifications and by going

horizontally, one can identify which class specifications are involved in a factorisation of m

class specifications. For example, if one wants to factorise out attributes that are common

to two class specifications, one examines the row that contains the frequency value and pick

out those which has a value of 2 . As shown in the above extended data structure, attributes

ai and a 5 have a frequency of 2 . Now, in order to find out which class specifications are

involved in such a factorisation, one can examine the column in which the attribute a i and

a 5 reside and identify those class specifications which have a boolean value of ‘true’. In the

above example, factorisations of two class specifications occur between class specification

c0, ci and c2, c3. Note that the order of which set of class specifications is being factorised

first is not important.

Although this way of using the extended class specification does allow the identification of

the class specifications that are involved in a particular factorisation and hence reduce the

complexity of the algorithm, such an algorithm can be improved further. The current data

representation actually contains redundant information which is never used in the factorisation

114

A Design Method for Object-Oriented Programming Winnie Pun

process. For example, as the factorisation process is only interested in attributes which occur

in more than one class specification, all the attributes which have a frequency value of *1*

are found to be redundant. Besides, the data representation contains indirect information for

a factorisation. In order to find out which class specifications are involved in a factorisation,

one has to examine the boolean value of each class specification before knowing which

class specifications are relevant. In order to improve the efficiency further, one can specially

generate the relevant information of the factorisation by scanning the data representation of

the class specifications. The relevant information can be stored as a linked list which is made

up of links called ‘attlnfoLink’. Each ‘attlnfoLink’ contains four fields: attribute, frequency,

nextAtt and csLink. This is illustrated in Figure 5.9.

attribute frequency nextAtt csLink

Figure 5.9: The Data Structure of ‘attlnfoLink’

Figure 5.10: The attlnfoLink List of Example 5.2.

The field ‘attribute’ stores the attribute of that attlnfoLink. The frequency field stores

the number of times such an attribute occurs in the corresponding set of conceptual class

specifications. The nextAtt is a pointer which points to the next attlnfoLink of the list.

The csLink is a pointer which points to the corresponding list of class specifications that

contain such attributes. Note that this csLink list is made up of links called csLink. A

csLink contains two fields, the first field stores the index of the class specification it refers

to and the second field is a pointer points to the next csLink. Hence, the attlnfoLink list of

Example 5.2 has the data structure shown in Figure 5.10.

Furthermore, the links can be arranged in a decreasing order of frequency value. This

115

A Design Method for Object-Oriented Programming Winnie Pun

fulfils the requirement that the attributes which are common in most class specifications are

factorised first.

5.3.2. Detecting Multiple Inheritance

As the IFP supports multiple inheritance as well as single inheritance and the method

employed to factorise an expression with multiple inheritance is different from that of

single inheritance, one needs a mechanism to check whether multiple inheritance exists

in a particular expression before factorisation is carried out. This subsection describes an

algorithm which is used to detect multiple inheritance.

Multiple inheritance occurs when a class specification has more than one immediate super­

class. In the factorisation process, this is indicated by the fact that a class specification can

be factorised in two or more different ways simultaneously.

Say if Si = {c0, ex, • • •, cn} is the set of class specifications involved in a factorisation

process. If at a particular instant, s, can be factorised in two ways: one way of factorisation

involved the set of class specifications = {c0, ci, • • •, c^}, and the other way involved

s*2 = {co.ci.-'-.Cj} then multiple inheritance has been detected. To describe it more

formally, multiple inheritance occurs if:

D si2 7 ̂ <f> and and Si2 £

The algorithm for detecting multiple inheritance employed by the IFE is, therefore, based

on the above description.

Figure 5.11 shows an attrlnfoLink that involved multiple inheritance. Here, the first factori­

sation involved factorising attributes that are common in five class specifications. Before

one can perform this factorisation, one has to check whether multiple inheritance occurs in

this factorisation, i.e., examine whether any class specifications involved in this factorisation

also occur in other factorisations later on. As indicated in Figure 5.11, the set of class

specifications involved in factoring out a 0 is sao = {c0, ci, c2, c3, c4}. This set of class

specifications is then used to check against the other sets of class specifications in the

attrlnfoLink list, for example, sai = {c0, c\, c3} is the set of class specifications involved in the

factorisation of the attribute o i, s„ 2 = {ci, c2, c3} is the set of class specifications involved in

the factorisation of the attribute a2 and saa = {ci, c2} is the set of class specifications involved

in the factorisation of the attribute a 3. Since sai, sa3,s a3 are subsets of sao, then according

to the previous specified conditions for multiple inheritance, no multiple inheritance occurs

when factorising out the attribute o0.

116

A Design Method for Object-Oriented Programming Winnie Pun

Figure 5.11: An AttrlnfoLink that involved Multiple Inheritance

After factorising the attribute a 0, one goes down the attrlnfoLink list attempting to factorise

out the attribute ax. Again, before the factorisation, one has to check whether multiple

inheritance occurs. This time, it is found that s ai n sa7 ^ <j) and sai sfl2 and saj £ sa i,

therefore multiple inheritance is detected at this point.

5.3.3. Updating Expressions with Single Inheritance Alone

After one has checked whether multiple inheritance occurs in a particular factorisation, the

next step is to perform the factorisation and update the expression. The method to update

an expression that involved single inheritance is straight forward. It consists of two steps:

obtaining the superclass and updating the contents of the subclasses.

i. Obtaining Superclass

In each factorisation, the factorisation engine has to factorise out the common

attributes for a collection of class specifications as their superclass. Since a class

specification is a set of attributes, the superclass of a particular factorisation can

be obtained by finding the intersection set of attributes amongst a collection of

class specifications. As the class specifications are represented as boolean values,

in order to find the intersection of a collection of class specifications, one has to

carry out a boolean ‘A N D ’ operation on these class specifications.

771

Super(c0, • • - ,cm) = / \ c*
i=0

117

A Design Method for Object-Oriented Programming Winnie Pun

where Super(c0, • • -,cm) is the superclass for the class specifications c0> • • •, cm.

ii. Updating the Contents of the Subclasses

Once the superclass is identified, its corresponding subclasses can be obtained by

carrying out a boolean ‘E X C L U S IV E O R ’ operation on the corresponding class

specification. Hence,

C o ' = Co xor S u p e r io r •• ,cm)
ci' = ci xor Super(c0) • •• ,cm)

Cm' = cm xor Super(cor • -,cm)

where c / is the subclass for c*.

After carrying out these two steps, one has to go back to the attrlnfoLink list and continue

with the next factorisation.

5.3.4. Updating Expressions with Multiple Inheritance

If multiple inheritance is detected in a particular factorisation, one has to apply a different

method to update the expression (See Axiom 4.3). Such a method involves identifying all

the superclasses found in the rest of the factorisation process. These superclasses are then

checked against every class specification to obtain the proper single inherit and multiple

inherit links amongst them.

Figure 5.11 is again used to illustrate this. When multiple inheritance is detected, one wants

to factorise out the attribute ax, the method to update the expression is as follows. Firstly,

the superclass of the class specifications, S S i = 5uper(c0,c i ,c 3), involved in factorising the

attribute ai is obtained and stored in the list of superclasses called Superclasses. Then,

one goes down to the next link in the attrlnfoLink list and extracts out the superclass of the

class specifications involved in factorising the next attribute which in this case is a 2. If this

superclass, SS2 = Super(ci,c2 , c3), has not yet been stored in Superclasses, one then stores

that in the list. The same procedure is repeated with each link for the rest of the attrlnfoLink

list. In the end, Superclasses contains all the superclasses that can possibly be obtained in

the factorisation process. Now that the list of superclasses is obtained, the next step is to

find out which class specification has a single inherit and/or multiple inherit relationship with

which superclass. This can be done by simply checking every class specification in turn with

the list of superclasses, Superclasses. For example, by checking c0 with Superclasses, one

finds that c0 has a single inherit link with 5 5 1, but when checking cx with Superclasses,

ci is found to have superclasses 5 5 i and 5 5 2, therefore cx has a multiple link with S S 1 and

118

A Design Method for Object-Oriented Programming Winnie Pun

S S 2 and the expression is updated accordingly. Since this method of updating an expression

with multiple inheritance embeds the factorisation for the rest of the process, the expression

obtained with this update is the normalised expression and the process is terminated at this

point.

5.4. Complexity of the Algorithm

As the individual methods required to implement the factorisation engine have been dis­

cussed, this section analyses the complexity of the algorithm. The main body of the algorithm

can be summarised as the following program extract which is written in C++ syntax in

Figure 5.12:

genAttrlnfoO;

for (i=l; ((i < = noattrlnfoLink) kk (Not Finish)); i++)
{

if (chkMultiplelnherit(i) != True)
updateSinglelnherit(i);

else
{

updateWultiplelnheritCi);
Finish = True;

>

>

Figure 5.12: The Main Body of the Algorithm

Let n be the number of class specifications and m be the number of attributes involved in a

particular class hierarchy construction problem. The function ‘genAttrlnfoO’ scans the set of

class specifications in a class hierarchy construction problem and generates the corresponding

‘attlnfoLink’ list. Hence, the order of complexity of this function,

Q(genAttrlnfo) ~ m x n

The function ‘chkMultipleInherit()’ checks whether multiple inheritance exists. It has to

check before each factorisation actually takes place, hence it is inside the ‘for’ loop. This

function has to check the current factorisation with the rest of the factorisation recorded in

the attrlnfoLink list, therefore, depending on i which is the current number of iterations of

the loop, the order of this function is,

O(chkMultiplelnherit) — m —i

119

A Design Method for Object-Oriented Programming Winnie Pun

The ‘updateSinglelnheritO’ involves finding out the superclass of a particular factorisation

and updating the corresponding subclasses. This procedure has an order of complexity of

n. The ‘updateMultiplelnheritO’ involves finding out the superclasses for the rest of the

factorisation process and then identifying the single and multiple inherit links for each class

specification. This routine has an order of complexity of (m - 1) + (m - i) x n.

Hence, in the worst case, the order of complexity of this algorithm used to implement the

IFP is:

Q(IFP) ~ m x n

and is therefore reasonably efficient.

In order to show the significant improvement of this algorithm, selected class hierarchies

found in the Interviews library are used to illustrate thist.

Interviews [LCV87, LVC89, V1L88] is a library of C++ classes that defines common

interactive objects and composite strategies. There are about 150 classes involved in the

construction of the library. The three main class hierarchies found in the library are:

i. Interactors - this class hierarchy contains interactive classes such as buttons and

scenes.

ii. Resources - this class hierarchy contains resource classes such as fonts and brush.

iii. Graphics - this class hierarchy contains classes such as circle and polygon.

The value of n, i.e., the number of classes required to construct the class hierarchy can be

obtained by counting how many external nodes and internal nodes that contain only one

subclass in the class hierarchy. The reason why one does not need to count all the internal

and external nodes of the class hierarchy as the value of n is because the IFP is capable of

identifying the abstract classes which tend to be situated at the top of the hierarchy. These

abstract classes do not need to be specified for the class hierarchy construction problem. The

value of m, i.e., the number of attributes involved in a class hierarchy can be obtained by

examining the definition of the classes. Assuming the external node of the longest branch of

a class hierarchy contains the largest number attributes, one can have a rough idea of what

‘m ’ is by summing up all the public and protected member functions of all the superclasses

of the longest branch and add this value to the number of member functions found in the

The reason why Interviews is chosen in this case is because Interviews presents an average size of a system in which class
hierarchies are constructed from scratch. Besides, information about the classes and attributes of Interviews can be easily
accessed.

120

A Design Method for Object-Oriented Programming Winnie Pun

external node. Table 5.4 gives a rough idea of the order of complexity obtained for the three

class hierarchies found in Interviews.

Interactors Resources Graphics

n 37 27 14

m 134 28 177

E ?=2 - 2" ~ 1.37 x 1011 ~ 1.34 x 107 ~ 16000

0(1 FP) ~ n x m ~ 5000 ~ 750 ~ 2500

Table 5.4: The Complexity of an Average Size Problem

The value obtained above has shown that even for an average size problem, there is a

significant improvement of this algorithm compared with the exponential complexity of the

algorithm suggested in section 5.3.1.

5.5. Other Components in the Automation Process

The automation of the inheritance factorisation process is constructed around the inheritance

factorisation engine. Now that the implementation of the factorisation engine has been dis­

cussed, one can look at the other components and how they are assembled in the automation

process.

The class specification editor mainly allows system designers to input the conceptual class

specifications of a particular class hierarchy construction problem. The class specification

description is then passed through the class specification parser in which the required data

structures are generated for the inheritance factorisation engine. The factorisation engine

takes these data structures and performs the necessary tasks to yield a set of vertices and edges

for the corresponding optimal class hierarchy graph. These sets of vertices and edges are

then directed to a graph generator in which the corresponding graph is generated. Currently,

the prototype of the editor, the parser and the factorisation engine are completed. Although

the graph generator has not been constructed, there is existing software which can be used

to build the graph generator [Dea89].

5.6. Conclusion

This section has demonstrated that the inheritance factorisation process can be automated.

The automation relies heavily on assembling the inheritance factorisation engine. The

121

A Design Method for Object-Oriented Programming Winnie Pun

implementation details of such an engine have been discussed, and the efficiency of such an

implementation has been analysed. The evaluation of the inheritance factorisation process

and the design method as a whole is examined in the next chapter.

122

“Does this apply always, sometimes, or never?”

Sidney Harris

Chapter 6

Evaluation

Now that the design method for object-oriented programming has been developed, it is time

to assess what has been achieved in this research. As the development of an inheritance

factorisation process plays a significant role in this design method, the evaluation process is

actually divided into two parts. First of all, it assesses the performance of the inheritance

factorisation process. Then it evaluates the design method as a whole. The evaluation

process emphasises two aspects:

i. It examines whether the IFP and the design method perform as intended.

ii. It investigates the usability of the IFP and the design method.

6.1. The Inheritance Factorisation Process

The original aim of the inheritance factorisation process was to assist system designers to

construct class hierarchies. Therefore, the evaluation process for the IFP is mainly concerned

with whether such an objective has been fulfilled or not.

The evaluation process is divided into three parts. The first part is to examine the functionality

of the factorisation engine. Here, arbitrary examples are randomly chosen to feed into the

engine. The output of the engine which is a class hierarchy graph is then examined. As

the examples involved in the first part of the evaluation process are abstract examples, one

can only examine the syntax or the structure of the generated graph. In order to examine

the semantics of the generated graphs, concrete examples which are drawn from reality are

used in the second part of the evaluation process. Here, three concrete examples are used to

compare the class construction process in using the traditional ‘ad hoc’ method, the manual

IFP and the automated IFP. The aim of this part o f the evaluation process is to highlight the

123

A Design Method for Object-Oriented Programming Winnie Pun

efficiency of using the automated IFP. The third part of the evaluation process is to examine

the current limitations of the IFP.

6.1.1. Introductory Examples

Example 6.1

Example 6.1 is a simple example that examines the functionality of the factorisation en­

gine. The conceptual class specifications, c0, c 1, c2 and c3 can be obtained from tracing the

inheritance path which ends with vertex[0], vertex[l], vertex[2] and vertex[3].

Inputs axe:

cO:a0,al,a2,a3,a4;
cl:a0,a3,a5;
c2:aO,al,a4,a6,a7;
c3:a0,a3.a8;

Outputs are:

Vertices are:

vertex [0] = {a2}
vertex[l] - {a5}
vertex [2] = -Ca6,a7}-
vertex[3] = {a8}
vertex [4] = {aO}
vertex [5] = {a3}
vertex [6] = -Cal,a4}

Edges are:

(vertex[4]
(vertex[4]
(vertex[5]
(vertex[5]
(vertex[5]
(vertex[6]
(vertex[6]

.vertex[5])

.vertex[6])

.vertex[0])

.vertex C l])

.vertexC3])

.vertex CO])

.vertexC2])

vertex [5] veitex[6]

vertex[3]

<c j)

veitcx[l] vertex [0]

Figure 6.1: Input and Output Of Example 6.1

124

A Design Method for Object-Oriented Programming

Example 6.2

Example 6.2 contains a large number of class specifications and attributes.

Winnie Pun

Inputs are:

cO:aO.al,a2,a3,a4,a5,a7,a9,alO;
cl:aO,a2,a4,a6,a8, al2;
c2:a0,al;

Outputs axe:

c3:aO,al,a3,a5,a7,a8,a9;
c4:a0,al,a2,a4,a5,al0;
c5:aO,al.a2,a3,a4,a5,a9;

Vertices are:

vertex[0] = O
vertex[l] = {a6,al2}
vertex[2] = {}
vertex[3] = O
vertex[4] = {}
vertex[5] = {}
vertex[6] = {aO}

Edges are :

(vertex[6]
(vertex[6]
(vertex[6]
(vertex[6]
(vertex[6]
(vertex[6]
(vertex[6]
(vertex[7]
(vertex[7]
(vertex[7]

.v e r te x [7])

.v e r te x [8])

.vertexC lO])

.v e r te x [11])

.v e r te x [12])

.v e r te x [13])

.v e r te x [14])

.v e r te x [0])

.v e r te x [2])

.v e r te x [3])

vertex[7] = {al}
vertex[8] = {a2.a4}
vertex[10] = {a5}
vertex[11] = {a3,a9}
vertex[12] - {a7}
vertex[l3] = {alO}
vertex[14] = {a8}

(vertex[7],
(vertex[l3]
(vertex[7],
(vertex[l3]
(vertex[8],
(vertex[l4]
(vertex[8],
(vertex[l4]
(vertex[8],
(vertex[l2]

vertex[4])
.vertex[0])
vertex[5])
.vertex[4])
vertex[0])
,vertex[l])
vertex[l])
,vertex[3])
vertex[4])
.vertex[3])

(vertex[8],
(vertexClO]
(vertexClO]
(vertex[10]
(vertexClO]
(vertex[ll]
(vertex[ll]
(vertexCll]
(vertex[l2]

vertex[5])
,vertex[0])
,vertex[3])
.vertex[4])
,vertex[5])
,vertex[0])
.vertex[3])
.vertex[5])
,vertex[0])

vertex[7] veitex[8] vertex[10] v e itex [ll] vertex[12] veitex[13]

veitex[3]

(c3>
vertex[4] veitex[5]

(c4)

Figure 6.2: Input and Output of Example 6.2

In this example, the conceptual class specifications, c0, c i,c2, 03, 04,05 can be obtained by

A Design Method for Object-Oriented Programming Winnie Pun

tracing the inheritance path that ends with vertex[0], vertex[l], vertex[2], vertex[3], vertex[4],

vertex[5]. This example, particularly, demonstrates the efficiency of the factorisation engine

as such a hierarchy is difficult to construct by hand.

Exam ple 6.3

Example 6.3 involves the construction of a class hierarchy which has no common attributes

to form the root of the graph.

Inputs are:

c0:a0,a2,a4,a6;
cl:a0,al,a2,a4,a5;
c2:aO,al,a5,a7,a3;
c3:al.a2,a3;

Outputs are:

Vertices are: Edges are :

vertex[0] = {a6> (vertex [4],vertex[0]) (vertex [6].vertex[3])
vertex[2] = {a7,a8} (vertex[4],vertex[l]) (vertex[7],vertex[0])
vertex[3] = {a3> (vertex[4],vertex[2]) (vertex[7].vertexCl])
vertex[4] = {a0> (vertex[5],vertex[0]) (vertex[8],vertex[l])
vertex[5] = {a2> (vertex[5].vertex[1]) (vertex [8].vertex[2])
vertex[6] = {al} (vertex [5].vertex[3])
vertex[7] = {a4} (vertex[6].vertex Cl])
vertex[8] = {a5} (vertex[6].vertex[2])

veitex[8]veitex[5] vertex [6]

vertex[2] vertex[l] vertex[0]

(c o)

vertex[3]

(c 3>

Figure 6.3: Input and Output for Example 6 . 6

Exam ple 6.4

Example 6.4 is the last example in this part of the evaluation process. The example contains

126

A Design Method for Object-Oriented Programming Winnie Pun

class specifications that have no common attributes, therefore no inherit relationships, i.e.,

no information about edges is generated because there are none.

Inputs cure:

cO:aO,al,a2,a3,a4;
cl:a5,a6,a7;
c2:a8,a9,al0;
c3:all,al2,al3;

Outputs are:

Vertices are:

vertex[0] = {a0,al,a2,a3,a4}
vertex [l] = {a5,a6,a7}
vertex[2] = {a8,a9,al0}
vertex[3] = {all,al2,al3}

Figure 6.4: Output for Example 6.4

As shown from the above four examples, the factorisation engine works properly. It has

fulfilled its task of taking in a set of class specifications and generating the corresponding

hierarchy graph.

6.1.2. Miscellaneous Examples

In this part of the evaluation process, concrete examples are shown so that not only the

structure but the semantics of the graph can be examined. There are three examples involved.

The first two are trivial examples involving single inheritance and multiple inheritance

respectively. The third example is a more complicated one. All three examples are used to

compare the construction process when using the ‘ad hoc’, the manual IFP and the automated

IFP.

Example 6.5

Example 6.5 is a simple class hierarchy construction problem with single inheritance alone.

The problem is to construct an optimal class hierarchy for three classes, the ‘Student’, the

‘Undergraduate’ and the ‘Graduate’ classes. With traditional ‘ad hoc’ approach, system

designers already have some conceptual ideas about the three classes when they encountered

the problem. Intuitively, they know that the ‘Graduate’ class and the ‘Undergraduate’ class

are more specific than the ‘Student’ class. Hence, even before specifying the properties of

127

A Design Method for Object-Oriented Programming Winnie Pun

these classes, system designers could confidently say that the ‘Student’ class is going to be

the superclass for the ‘Graduate’ and the ‘Undergraduate’ class.

However, with the IFP, one needs proper specifications to start with (see Figure 6.5).

Student:StudentId,Name ,Age ,Address,Phone,Level.EnrollStudent,DropStudent,
FindStudent,ChangeAddrs,ChangePhone,ChangeLevel;

Graduate:Program,Name,Age,Advisor,Studentld,Address,Department,Phone,
Level,EnrollStudent,DropStudent.FindStudent,ChangeAddrs,
ChangePhone,ChangeLevel.EnrollGraduate,DropGraduate,ChgProgram,
ChgAdvisor,ChgDept;

UnderGraduate:Status.School.Year.StudentId,Name,Age.Address.Phone,Level,
EnrollStudent,DropStudent,FindStudent.ChangeAddrs,ChangePhone,
ChangeLevel,EnrollUg,DropUg,ChgStatus,ChgYear,ChgSchool;

Figure 6.5: The Definition of a set of Class Specifications

With the manual IFP, the procedure to obtain the optimal class hierarchy is shown in

Figure 6 .6 .

{student.Graduate.Undergraduae}
= {student}+{Graduate}+{Undergraduate}
= {{Studentld,Name,Age.Address.Phone,Level.EnrollStudent.DropStudent.FindStudent,

ChangeAddrs,ChangePhone,ChangeLevel}}+{{Program,Name,Age,Advisor,
Studentld,Address.Department.Phone.Level.EnrollStudent.DropStudent.FindStudent,
ChangeAddrs,ChangePhone,ChangeLevel,EnrollGraduate,DropGraduate,ChgProgram,
ChgAdvisor,ChgDept}}+ {{Status,School,Year,Studentld,Name,Age,Address.Phone,
Level.EnrollStudent.DropStudent.FindStudent.ChangeAddrs,ChangePhone,
ChangeLevel,EnrollUg.DropUg,ChgStatus,ChgYear,ChgSchool}}

= {Studentld,Name,Age,Address,Phone.Level.EnrollStudent.DropStudent.FindStudent,
ChangeAddrs, ChangePhone, ChangeLevel}<34 ({{Status, School, Year, Enr ollUg .DropUg,
ChgStatus,ChgYear,ChgSchool}} + {{Program,Advisor,Department.EnrollGraduate,
DropGraduate,ChgProgram,ChgAdvisor,ChgDept}}+{<^c})

Figure 6 .6 : The Result obtained with Manual IFP

One can see that using the manual IFP is not very efficient and the manipulation process can

be fairly tedious when there are a large number of attributes involved. However, with the

help of the factorisation engine, the result can be obtained in a more efficient manner. System

designers only need to specify the involved class specifications as input to the factorisation

128

A Design Method for Object-Oriented Programming Winnie Pun

V e r tic e s a re :

vertex[l] = {Program.Advisor.Department,EnrollGraduate,DropGraduate,
ChgProgram,ChgAdv is or,ChgDept}

vertex[2] = {Status.School,Year,EnrollUg,DropUg,ChgStatus,ChgYear,
ChgSchool}

vert ex[3] = {StudentId,Name,Age,Addres s,Phone,Level,EnrollStudent,DropStudent,
FindStudent,ChangeAddrs,ChangePhone,ChangeLevel}

Edges are:

(vertex[3].vertex[l])
(vertex [3].vertex[2])

veitex[3] (Student)

veitex[2]
(Undergraduate)

vertex[l]
(Graduate)

Figure 6.7: Result Obtained from the Automated IFP for Example 6.5

engine and the set of vertices and edges of the corresponding hierarchy graph are then

generated (see Figure 6.7).

Exam ple 6 .6

In Example 6 .6 , the class hierarchy construction problem involves multiple inheritance. It

contains four class specifications, BoundedPt, Point, HistoryPt and BhPoint. In this example,

the names of the classes involved do not convey obvious enough meanings or concepts

about the definitions of the class specifications. Hence system designers cannot construct

the hierarchy graph just by looking at the names but have to specify the involved classes.

With the ‘ad hoc’ method, system designers probably start with the class ‘Point’ because it

seems to be a very general class. The class ‘Point’ should be able to create, locate, move

and display a point. Hence, these would be the attributes belong to the ‘Point’ class. A

‘BoundedPt’ is simply a ‘Point’ with two attributes: ‘min’ and ‘max’ to define the boundary

of a point. A ‘HistoryPt’ is also a ‘Point’ but has an attribute ‘history’ which gives the

history information. A ‘BhPoint’ is a ‘Point’ with both the capability of the ‘BoundedPt’

and the ‘HistoryPt’ (see Figure 6 .8). Therefore, it is logical to construct the class ‘Point’

A Design Method for Object-Oriented Programming Winnie Pun

to be the superclass in which the ‘BoundedPt’ and the ‘HistoryPt’ inherited from. Since

the ‘BhPoint’ should contain the capabilities of both the ‘BoundedPt’ and the ‘HistoryPt’,

hence, it should be multiply inherited from the ‘BoundedPt’ and the ‘HistoryPt’ classes.

BoundedPt:min.max,create.locate,move.display;

Point:create,locate,move,display;

HistoryPt:locate.move,create,display.history;

BhPoint:create,locate.move,min,display,max,history.boundHistory;

Figure 6 .8 : The Definition of the set of Class Specifications of Example 6 . 6

With the manual IFP, the manipulation is shown in Figure 6.9

{BoundedPt.Point.HistoryPt.BhPoint}
= {BoundedPt}+{Point}+{HistoryPt}+{BhPoint}
= {{min,max,create.locate.move,display}}+{{create .locate .move.display}}+

{{locate.move,create,display,history}}+{{create,locate.move,min.display,
max.history.boundHistory}}

= {locate .create .display ,move}<3, ({{min,max}} + {<̂ c} + {{history}} + {{min,max,history,
boundHistory}})

= {locate.create.display,move}<, ({0c}+{min,max}<4({<̂ c}+{{history.boundHistory}}) +
{{history}}) [£N1]

= {locate .create .display, mo ve}<4 ({<̂ c}+{history}<4 ({$c}+{{min,max,boundHistory}}) +
{{min,max}}) [(N2]

since multiple inheritance is detected, hence the normalised expression is:

= {locate, create, display ,move}<4 ({<̂ c}+{history}<J{$c}+{min,max}<J4{<̂ c}+
({{hist ory }}+{{min,max}})<3m {boundHistory})

Figure 6.9: The Results obtained from the Manual IFP

With the factorisation engine, the class specifications are input into the engine to generate

the set of vertices and edges for the corresponding graph (see Figure 6.10).

The results from Example 6.5 and Example 6 .6 indicate that the same hierarchy graph is

obtained with the ‘ad hoc’, the manual IFP and the automated IFP methods. The ‘ad hoc’

method is found to be a better choice if the names of the classes actually convey some

meanings that contributes to the identification of the superclass/subclass link. However,

130

A Design Method for Object-Oriented Programming Winnie Pun

Vertices are: vertex[3] = {boundHistory}
vertex[4] = {create,locate,move,display}
vertex[5] - {history}
vertex[6] = {min,max}

Edges are: (vertex[4].vertex[5])
(vertex[4],vertex[6])
(vertex[5],vertex[3])
(vertex[6],vertex[3])

vertex[6] (BoundedPoint)(H istoryPoint) veitex[5]

Figure 6.10: The Results Generated for Example 6 . 6

depending on individual experience, a name may mean different things to different people.

Hence, with the same collection of classes, different hierarchy graphs may be constructed by

different people. The IFP provides a more systematic and consistent approach in constructing

class hierarchies. With the IFP, the same graph is generated everytime with the same set

of class specifications. When the manual IFP is compared with the automated one, it is

obvious that if the problem involves a large number of classes and attributes, the manual

manipulation becomes tedious and mistakes may easily be introduced. The automated IFP is

an isomorphism of the manual IFP with the manipulation process carried out automatically

by the factorisation engine. System designers benefit more with the automated IFP.

Example 6.7

The above two examples are carefully chosen such that the conceptual classes specifications

are all the classes needed for the hierarchy graph. However in reality, system designers may

find that they have to identify the appropriate abstract classes before they can build the class

hierarchy. The following example tries to illustrate this point and also demonstrates how the

131

A Design Method for Object-Oriented Programming Winnie Pun

procedure to identify the correct abstract classes is actually carried out automatically by the

IFP.

In te rac to r

A djuster

Figure 6.11: An Extract from the Interviews System Class Hierarchy

This example is based on the library classes found in Interviews Version 2.4 [Lin88, LVC89].

Interview's is a library which provides classes that support the design and implementations

of user interfaces. It is object-oriented and is written in C++ [Str86b]. The library runs

on top of the X window system [Sch86]. In Interview s, part of the system class hierarchy

contains the Menu class and the Dialog class as shown in Figure 6.11. This example shows

that by giving the conceptual class specifications, HBox, VBox, Dialog, HM enu and VMenu

alone. The IFP generates a class hierarchy structure which matches the one given in the

Interviews library. The descriptions of these classes and their attributes are summarised in

Figure 6.12.

Note that the specifications defined for this example are modified from that o f Interviews.

This is because the class specifications found in Interview s contain implementation details

which are unknown to the system designers at the stage of using the IFP. For example, the

attributes o f the specifications found in Interview s are categorised into private, protected and

public category as required by the C++ programming language. This is unnecessary when

using the IFP. Therefore, the class specifications defined for this experiment is a simplified

version of that found in Interviews itself.

The trial starts off by specifying the class specifications for the IFP. This is shown in

Figure 6.13.

132

A Design Method for Object-Oriented Programming Winnie Pun

The class ‘HMenu’ is a menu in which its menu items are arranged horizontally.
It contains the following attributes:

HMenuCreate - creates an instance of the horizontal menu.
Insert - insert a menu item to the menu.
Compose - build the box representation of the menu.
GetSelection - return the current selected item.
Handle - the handle operation reads events in until a button is released,

passing the events to the appropriate menu item.
Change - notify there is a change of the shape.
Remove - remove the object from the scene.
Draw - draw the object.
Lower - put the object behind any objects that overlapping it.
Raise - raise the object to the front, i.e., makes it visible.
Resize - change the size of the object.

The class 'VMenu* is similar to that of ‘HMenu’ except that it has a different
create operation called ‘VMenuCreate’ and it creates vertical menus.

The class 'Dialog’ is a dialogbox which handles input from the user. Like the
'HMenu’ and the 'VMenu’ class, the 'Dialog’ class contains attributes Change,
Remove, Lower, Raise, Draw and Resize. Besides these, it contains two other
attributes:

CreateDialog - create the dialog box.
buttonState - this is to indicate the state of the button.
Accept - This sets the dialog button state to zero and loop reading events

until the button state’s value becomes non-zero, i.e. , the user
presses the button.

Then, there is the 'HBox’ class. The ‘HBox’ class basically groups the interactor
objects into a horizontal box. It has attributes Change, Remove, Lower, Raise
as mentioned earlier. Besides, it has the following operations:

CreateHBox - create the horizontal box.
DrawBox - draw all the interactor objects within the box.
Align - aligning all the interactor objects within the box.
align - an instance variable which specifies how to align

the interactor objects.
ResizeBox - change the size of the box.
ComputeHBoxShape - obtain the shape of the horizontal box.
PlaceHBox - put the horizontal box on the scene.

The ‘VBox’ class is similar to that of ‘HBox’ except that it has a different
create operation, compute box shape operation and place box operation which is
nauned as CreateVBox, ComputeVBox and PlaceVBox.

Figure 6.12: The Description of the Class Specifications for Example 6.7

When these class specifications are fed into the factorisation engine, the set of vertices and

edges are then produced. This is shown in Figure 6.14. If the class hierarchy graph of

Figure 6.14 is compared to that of Figure 6.11, it is found that they share the same graph

structure. Further, when the contents of the vertices in Figure 6.14 are checked against those

133

A Design Method for Object-Oriented Programming Winnie Pun

HMenu:HMenuCreate, I n s e r t , Compose, G e tS e le c tio n , Change, H andle, Remove, L o se r , R a ise ,
D raw .R esize;

VMenu:VMenuCreate, I n s e r t , Compose, G etS elec t io n , Change, H andle, Remove,L o se r , R a is e ,
D raw ,R esize;

D ia lo g : C rea teD ia lo g , A c c e p t.b u tto n s ta te .C h a n g e , R em ove .L oser.R aise .D ras.R esize ;

HBox: CreateHBox, A lign ,a lign .D rasB ox .R esizeB ox , ComputeHBoxShape, Change.Remove,
L oser.R aise,P laceH B ox;

VBox:CreateVBox,Align,align,DrasBox,ResizeBox,Com puteVBoxShape.PlaceVBox,
Change, Remove, L o se r , R a ise ;

Figure 6.13: The Definitions of the Class Specifications for Example 6.7

Vertices are:
vertex[0] = {HMenuCreate}
vertex[l] = {VMenuCreate}
vertex[2] = {CreateDialog,Accept.buttonstate}
vertex[3] = {CreateHBox,ComputeHBoxShape.PlaceHBox}
vertex[4] - {CreateVBox,ComputeVBoxShape.PlaceVBox}
vertex[5] = {Change,Remove,Loser,Raise}
vertex[6] = {Dras.Resize}
vertex[7] - {Align,align,DrasBox,ResizeBox}
vertex[8] = {Insert.Compose.GetSelection,Handle}

Edges are:
(vertex[5].vertex[6]) (vertex[7].vertex[3]) (vertex[5].vertex[7])
(vertex[7] ,vertex[4]) (vertex[6] ,vertex[2]) (vertex[8] ,vertex[0])
(vertex[6],vertex[8]) (vertex[8],vertex[l])

veitex[5] (Scene)

(MonoScene) vertex[6]

(M enu)
vertex[2]

(Dialog)
veitex[8] vertex[3]

(HBox)

veitex[l]
(VM enu)

Figure 6.14: The Graph Structure obtained from Example 6.7

134

A Design Method for Object-Oriented Programming Winnie Pun

in Figure 6.11, the vertices in Figure 6.14 are found to be matched to that in Figure 6.11.

For example, vertex[5] is found to be matched to the class Scene and the vertex[6] is found

to be matched to the class MonoScence. This indicates that the same graph that is found in

Interviews, which is constructed with the ‘ad hoc* method by experienced object-oriented

programmers, can be generated by the IFP.

More importantly, this example has highlighted an advantage of using the IFP in constructing

class hierarchies. To construct the same graph with the ‘ad hoc’ method, system designers

have to apply a top-down design approach. They have to identify the necessary abstract

classes in constructing class hierarchies. Abstract classes are classes that seldom have

instances and are always situated higher up in the class hierarchy [Joh8 8]. As humans

think better about the concrete examples than abstractions, the identification of the abstract

classes is never an easy task [Joh8 8].

For instances, ‘Scene’ and ‘MonoScene’ are two abstract classes found in the class hierarchy

(see Figure 6.11) and they are not as apparent as classes such as ‘Box’ or ‘Menu’. Hence,

system designers may encounter difficulties in constructing the hierarchy. However, with the

IFP, system designers do not need to worry about identifying abstract classes. As shown in

Figure 6.14, the required abstract classes for the class hierarchy such as vertex[5], vertex[6]

and vertex[7] are automatically highlighted in the factorisation process. This also means

that the IFP allows more flexibility in constructing class hierarchies. Not only the top-down

design approach can be applied but also the middle-out and bottom-up. In this sense, the

IFP has demonstrated its contribution in constructing class hierarchies.

6.1.3. Limitations of the IFP

Of course, it is unwise to be dogmatic about the usage of the IFP. As it stands, there are

some shortcomings found in the IFP which limit its usage. These inadequacies are, in fact,

more to do with the philosophical issues than the technical issues of the IFP.

6.I.3.I. The Requirement for a Precise Specification

The factorisation engine is simply a tool that takes in a set of class specifications and

generates the corresponding hierarchy graph as output. The structure of the generated graph

is governed by the manipulation rules defined for the factorisation engine. As these rules

are pre-defined, the generated graph solely depends on the input data, i.e., the set of class

specifications.

If Example 6.7 is carried out with a slightly different set of class specifications, e.g., ‘M enu’,

135

A Design Method for Object-Oriented Programming Winnie Pun

‘Dialog’, ‘HBox’ and ‘VBox’ alone, a different class hierarchy graph is then obtained. This

is shown in Figure 6.15.

vertex[5] (Scene)

(M onoScene) vertex[6]

veitex[8]
(M enu)

veitex[4]
(VBox)

Figure 6.15: The Class Hierarchy Graph without the ‘HMenu’ and ‘VMenu’

As one can see, the basic structure of the graph is still preserved but the class ‘HMenu’

and ‘VMenu’ are not identified. This indicates that the IFP is capable o f identifying classes

which are higher up in the class hierarchy but not those which are below the given conceptual

classes. In other words, the IFP can identify the abstract classes in the class hierarchy but

not the conceptual classes other than those which are given for the IFP in the first place.

However, with the ‘ad hoc’ method, system designers may know that since a ‘Menu’ class

is in the hierarchy, intuitively, a ‘HMenu’ and a ‘VMenu’ class will be the subclasses of it.

Not only is the set of the class specifications important to the construction of the hierarchy

graph but also the individual specifications for each class, i.e., the attributes which belong to

a particular class. Say in the previous trial, if in Example 6.7, the system designer forgot to

define the ‘Remove’ and the ‘Draw’ operation for the ‘HMenu’ class (see Figure 6.16),

a different class hierarchy graph is then generated from the IFP. This is illustrated in

Figure 6.17.

In order to obtain a reasonable class hierarchy, system designers have to provide a reasonable

set of class specifications for the factorisation engine in the first place. These class specifi­

cations have to be carefully constructed so that they contain all the properties of a particular

class. However, to understand a class thoroughly and be able to identify all the properties

of that class is not an easy task. This is the reason why the concrete examples used in this

part of the evaluation process are comparatively trivial than those used in the first part of

the evaluation process. It is always difficult to come up with a set of fully specified class

specifications.

136

A Design Method for Object-Oriented Programming Winnie Pun

HMenu:HMenuCreate,Insert,Compose,GetSelect ion,Change,Handle.Lower,Raise,
Resize;

VMenu:VMenuCreate,Insert,Compose,GetSelect ion,Change,Handle.Remove.Lower,Raise,
Draw,Resize;

Dialog:CreateDialog,Accept.buttonstate,Change,Remove,Lower,Raise.Draw,Resize;

HBox:CreateHBox.Align,align,DrawBox.ResizeBox,ComputeHBoxShape,Change,Remove,
Lower,Raise.PlaceHBox;

VBox:CreateVBox,Align,align,DrawBox,ResizeBox,ComputeVBoxShape,PlaceVBox,
Change,Remove,Lower,Raise;

Figure 6.16: The Class Specifications with a Different ‘HMenu’ Class

Vertices are:
vertex[0] = {HMenuCreate} vertex[l] = {VMenuCreate}
vertex[2] = {CreateDialog,Accept,buttonstate} vertex[6] = {Remove}
vertex[3] = {CreateHBox,ComputeHBoxShape.PlaceHBox} vertex[7] = {Resize}
vertex[4] = {CreateVBox,ComputeVBoxShape,PlaceVBox} vertexClO] = {Draw}
vertex[5] = {Change,Lower,Raise}
vertex[8] - {Insert,Compose,GetSelection,Handle}
vertexCll] = {Align,align,DrawBox,ResizeBox}

Edges a re :
{ v e r te x [5] .v e r t e x [6]}
{ v e r te x [5] , vertexC lO]}
{ v ertex C 6], vertexC 2]}
{ v e r te x C 7].v e r te x CO]}
{ v e r te x C 8].v e r te x CO]}
{vertexC lO],vertexC 2]}

{vertex C 5],v ertex C 7]}
{ v e rtex C 5], v e r te x C ll]}
{vertexC 6] ,vertexC 3]}
{ v e r tex C 7].v e rte x C l]}
{vertexC 8] , v e rte x C l]}
{ v e r te x C ll] .v e rte x C 3]}

{v ertex C S], vertexC 8]}
{ v e rtex C 6].v e rte x C l]}
{ v ertexC 6],vertexC 4]}
{ v ertex C 7], vertexC 2]}
{ v e rtex C lO].v e rte x C l]}
{ v e r te x C l l] , vertexC 4]}

ve itex [ll] veitex[7]

vertex[3]
(HBox)

veitex[2]
(Dialog)

vertex[4]
(VBox)

Figure 6.17: Result Generated with Different Class Specifications

137

A Design Method for Object-Oriented Programming

6.I.3.2. The Practicability of the IFP

Winnie Pun

Although the basic model of the inheritance factorisation process is soundly based, whether

it is generally applicable to systems design in object-oriented programming is still uncertain.

The uncertainty concerning the practicability of the IFP is three fold:

i. The IFP requires a set of well-defined class specifications in order to obtain a well-

defined class hierarchy and this is not easy to achieve. This may put off system

designers from using the IFP.

ii. The conventional behaviour in constructing class hierarchies is based on intuition.

A top-down approach which identifies the superclass first and then appends sub­

classes later is employed. However, with the IFP, different attitudes in constructing

class hierarchies are introduced. The IFP encourages system designers to concen­

trate on specifying the characteristics of the classes. It suggests the hierarchy be

constructed at one time instead of a ‘build a little and append the rest’ approach.

As it is always difficult for human to abandon their old habits and take up a new

approach, there may be difficulties in persuading them to use the IFP.

iii. It is discussed in Chapter 4 that most system designers find that they have to append

a new class to an existing class hierarchy. As the current BFP does not cater for

the activity of adding a new class to an existing class hierarchy, the current IFP

may not be as useful as it should be.

Besides, the graph obtained from the IFP is, in fact, governed by the manipulation rules

defined in the formal model. At the moment, the formal model is fairly rudimentary. It

defines an optimal graph as a graph that represents minimum duplication of attributes, i.e.,

maximum reusability. It also assumes that multiple inheritance is more desirable than single

inheritance. Hence, if multiple inheritance is detected in a class hierarchy construction

problem, the graph that exhibits the multiple inheritance relationship is chosen as the optimal

graph. All these assumptions have restricted the structure of the graph that is generated

from the IFP. In reality, there are situations when system designers prefer to have a single

inheritance graph than a multiple inheritance one. Further, a higher degree of resuability

does not always give graph that is optimal to everyone.

When comparing the IFP to the ‘ad hoc’ method, the ‘ad hoc’ method tends to give more

flexibility to system designers constructing class hierarchies in this aspect. The intuitive

knowledge and the experience of the system designers are employed in constructing class

hierarchies using the ‘ad hoc’ method so that system designers can tailor the graph to their

own definitions of ‘optimal’. It is believed that the IFP will be more practical if it is

modified to allow users to exercise their intuitive knowledge and desire in constructing the

138

A Design Method for Object-Oriented Programming Winnie Pun

class hierarchy. Perhaps, an expert-system like front-end is required for the IFP so that

system designers can specify the rules about how the graph should be generated. This kind

of extension and modification has to be part of the future work.

6.2. The Design Method

As indicated by Rosson and Gold [RMK8 8], too little is known about the complexities of

design practices, thus it is difficult to set out to test hypothesis about the effects of particular

design methods, i.e., to evaluate a design method. The evaluation of the design method

developed in this research, therefore, tends to be informal. First of all, it checks whether this

design method has satisfied the general goal of a design method. Then, it examines whether

the objectives of developing this design method have been achieved or not. It also compares

this design method to existing design methods to highlight the improvement of the design

method. Of course, an important part of the evaluation of the design method has to be based

on user performance. Currently, two case studies have been carried out to demonstrate the

usage of this design method. These two case studies can be found in Appendix A and B.

Other plans have been set up to involve other system designers besides the developer to

examine the usability of the design method. These evaluation plans are discussed later in

this section.

6.2.1. General Assessment

As has been reiterated several times, design is a creative process. The design process involves

generating ideas and trying them out. A design method can be regarded as a general guideline

which helps system designers to develop these ideas at different stages in the design process.

The design method also helps in organising the design activities to capture and express these

ideas. The design method arising from this research certainly has achieved this basic goal

of a design method. The design method extends from the last part of the analysis phase

to the beginning of the implementation phase. This gives a continuity notion in the system

development. The design method splits the design phase into three stages, the conceptual

level, the system level and the specification level. Each stage has a specific goal to achieve.

The tasks which are assigned for individual stages are defined clearly in the design method.

The accomplishment of each task at individual stages and the proceeding from one stage to

the next adds more details to the implementation model. The results of individual design

stages are to be expressed in design documents such as the object interaction diagrams and

the class structure charts. The graphical notations of these documents are well-defined so

that system designers can communicate in a semi-formal and unambiguous manner.

139

A Design Method for Object-Oriented Programming Winnie Pun

Beside the general objective, this design method has a specific objective to achieve. The

design method has been specially developed for object-oriented implementations. Therefore,

the design method has to encompass guidelines that help system designers solve problems

which are specific to object-oriented programming. For example, the design method should

discuss how to construct objects and class hierarchies. As it stands, this design method has

also achieved this specific aim. There are detailed descriptions about how to identify objects

and the appropriate relationships which lead to the construction of objects. Further, the design

method has incorporated an algorithm which is called the ‘inheritance factorisation process’

that guides system designers to construct well-defined class hierarchies. The development of

the inheritance factorisation process has made this design method more adequate than other

existing object-oriented design methods in supporting object-oriented programming.

The success of a good design method needs the complement of appropriate software tools

for recording and managing the results of analysis, design and implementation. Hence, the

next step of this research is to develop the necessary tools to support the design method.

The future work concerning this aspect is discussed in Chapter 7.

6.2.2. Comparison with Other Existing Design Methods

Most of the existing design methods are function-oriented and were developed long before

the flourishing of object-oriented programming. Therefore, they are inadequate for giving

guidelines in designing systems which are targeted at object-oriented programming. This

design method, having achieved the general and specific goals as mentioned in the above

section, has demonstrated its suitability in serving as a design method for object-oriented

programming.

When comparing this design method with other object-oriented design methods, it is found

that this design method has remedied the inadequacies that are identified in other object-

oriented design methods. These can be classified into the following four areas:

i. Some of the existing object-oriented design methods such as the earlier version of

the Booch and the HOOD methods have been developed for a specific programming

language, Ada. This results in design methods which are not general enough to be

used by other systems that are targeted at other programming languages. Moreover,

according to this research, Ada is not regarded as an object-oriented programming

language. Therefore the design methods which are specially developed for it, are

inadequate for object-oriented programming. The design method which emerges

from this research, however, is not targeted at any particular programming language

but a programming paradigm. Therefore, it is comparatively more flexible than the

Booch and the HOOD design methods.

140

A Design Method for Object-Oriented Programming Winnie Pun

ii. One of the criticism of existing object-oriented design methods is that they do

not have enough details to guide system designers to design their systems in

an object-oriented fashion. Most of them only contain graphical notations and

not the procedures which tell system designers when to do what in the design

phase. This design method gives enough guidelines for system designers to proceed

through the whole design phase. It begins with emphasising the construction of a

conceptual model for the application and ends with the design specifications which

the programmers can take away and implement the system with.

iii. Also, one or two object-oriented design methods introduce unnecessary new terms

and diagrammatic notation to the system designers. This does not help them to

grasp the philosophy of the object-oriented design in a reasonable short time. The

development of this design method recognised that many system designers already

have a strong background in structured design methods. In order to bring down

the learning curve and provide a smooth transition for these system designers, this

design method employs graphical constructs which are similar to those in structured

design methods. For example, the object interaction diagrams are similar to the

data flow diagrams and the class structure charts remind system designers of the

structure charts found in structured design methods.

iv. However, a more important improvement of the design method over other object-

oriented design methods is that it provides substantial support in handling inheri­

tance. None of the existing object-oriented design methods have enough support

to handle inheritance in the design phase. This design method provides a formal

manipulation process to assist system designers to construct class hierarchies. This

has confirmed the reason why this design method is better in supporting systems

design in object-oriented programming when compared to other existing design

methods.

6.2.3. Evaluation by Other Users

The usage of this design method has been demonstrated with the two case studies which can

be found in Appendix A and Appendix B. However, as these two case studies are carried

out by the developer of the design method, it may give a biased judgement on the usability

of the design method. Therefore, it is decided that the design method must be assessed by

system designers other than the developer. As the evaluation which involved other users

especially those from industry will be a long process, it was decided that such an evaluation

process will not be included in this research. Nevertheless, the plan to carry out this kind

of evaluation is discussed Chapter 7 as part of the future work.

141

A Design Method for Object-Oriented Programming

6.3. Conclusion

Winnie Pun

This chapter discusses the evaluation on the inheritance factorisation engine and the design

method. The evaluation attempts to examine the functionality and the usability of both the

factorisation engine and the design method.

Concerning the inheritance factorisation engine, various examples have been used to demon­

strate the functionality of the factorisation engine. The pros and cons in using the engine

to generate the required class hierarchy have also been discussed. It is believed that the

factorisation engine forms the basis of a CASE tool which assists system designers to

construct class hierarchies.

Concerning the design method, the usage of the design method in systems design is demon­

strated with two case studies found in Appendix A and B. The virtues of the design method

have been highlighted through a comparison with other design methods.

Due to the time constraint and the current status of this research, the evaluation of the

usability with other users have not been carried out. However, it is realised that such an

evaluation is important and plans to carry them out in future are discussed in Chapter 7.

142

“The same thrill, the same awe and mystery, comes again and again when we look at
any question deeply enough. With more knowledge comes a deeper, more wonderful

mystery, luring one on to penetrate deeper still. Never concerned that the answer may

prove disappointing, with pleasure and confidence we turn over each new stone to

find unimagined strangeness leading on to more wonderful questions and mysteries -

certainly a grand adventure/ ”

Now that the work concerning this piece o f research has been presented and discussed, it is

time to talk about the future work that should follow.

With respect to the immediate future work, there is the extension and modification of the

inheritance factorisation process and the evaluation of the usability of both the factorisation

engine and the design method. Such an evaluation will provide valuable feedback which

can improve the method further. To design the experiments for such an evaluation is a long

term process as it involves detailed study of design, how to specify usability in measurable

terms and how to analyse the data obtained. Although giving a detail account of the design

of these experiments is outside the scope of this research, it is possible to outline these

experiments and discuss some important issues that these experiments have to take care of.

With respect to future work in the long term, the design method of this research has provided

part of the backbone for a computer aided software engineering (CASE) for object-oriented

programming. The design method has specified the tasks which have to be performed in the

design phase. At the same time, it has highlighted the tools which are required to support

the design phase in the CASE environment. To develop these tools will be part of the work

in the future.

This chapter, therefore, explores the future work in these two categories.

Richard P. Feynman

Chapter 7

Future Work

143

A Design Method for Object-Oriented Programming

7.1. Immediate Future Work

Winnie Pun

7.1.1. The Inheritance Factorisation Process

As mentioned both in Chapter 4 and Chapter 6 , the current status of the factorisation process

only supports the construction of class hierarchies from scratch. However, very often, system

designers find that they want to add new classes to existing class hierarchies. Therefore,

the prime interest of the immediate future work is to extend the current model to cover this

aspect. Further, by introducing priority attributes factorisation gives more flexibility to the

users. Hence, the prototype of the factorisation engine has to be modified to support these

two features before any tests concerning the usability of the model could be carried out.

The tests on whether the factorisation process is practical or not can, in fact, be incorporated

in the evaluation of the usability of the design method which is discussed in section 7.1.2.

If the result of the evaluation proves to be positive, more work can be carried out with the

factorisation process. This includes extending the model to support signature-compatible IFP

and behaviour-compatible IFP as mentioned in Chapter 4. In addition, one can start looking

into how to modify the IFP so that it can automatically generate the required data structures

with respect to the implementation language.

7.1.2. Usability of the Design Method

The design method of this research has defined the procedure of the design phase which

leads to the construction of an object-oriented implementation model. Before this method

can be refined in more detail and extended further, one needs to set up experiments to test

the usability of the design method.

It is difficult to define what usability means exactly and hence specify usability in measurable

terms. However, the criteria for usability can be summarised into two areas [Goo87]:

i. Ease of use,

ii. The functions provided match the task requirements.

Concerning the ease of use, there are a number of issues governing it:

i. Martin [Mar73] has written that a user’s ability to use a system depends on the

ease with which he/she can communicate with it, i.e., whether the design method

has provided sufficient means for communication.

ii. Very often, the means of communication of a design method are graphical and

textual constructs. The design method specifies the rules that govern the usage of

144

A Design Method for Object-Oriented Programming Winnie Pun

these constructs. To examine whether these graphical and textual constructs are

easy to use is another test to check the usability of the design method.

iii. One of the aims of a design method is to divide the design activity into manageable

sub-tasks. Hence, to see whether a design method is easy to use, one has to check

whether the users feel comfortable and confident about how to achieve these sub­

tasks.

iv. Besides dividing the sub-tasks, the design method also specifies the procedures to

achieve these sub-tasks. To check whether these procedures are clearly defined and

easy to follow also leads to an answer of whether the design method is easy to use.

Considering the functionality of a design method, again there are a few issues governing it:

i. The main objective of a design method is to set up the correct implementation

model. Therefore, a way to check whether the design method has achieved its

required functionality is to examine how well the design method helps in setting

up an implementation model for object-oriented programming. The following are

a few questions which may lead to answers about whether the design method helps

to set up the correct implementation model for object-oriented programming.

• Does the design method help to identify the objects and actions of a

system?

• Has the design method provided enough guidelines in constructing a

class?

• Does the design method provide enough facilities to help system designers

in building class hierarchies?

• Do the users feel that they have the confidence to take away the design

specifications and implement the system directly?

ii. Besides checking whether the design method helps in setting up the required

implementation model, another area needs to be examined is whether the design

method helps in modelling the problem.

In order to compare the usability of this design method and other design methods with

respect to setting up the correct implementation model for object-oriented programming, the

experiments should be designed to include other design methods, for example, a few popular

conventional design methods and some object-oriented design methods.

The above description of the experiment is summarised into Table 7.1.

145

A Design Method for Object-Oriented Programming Winnie Pun

This Method Yourdon JSD HOOD ObjectOry

Ease of Use
1. ease of communication
2. graphical and textual

constructs easy to use
3. manageable and easy to follow

sub-tasks
4. clearly defined procedure

Functionality
1. help to identify objects and

actions
2. help to construct classes
3. help to build class hierarchies
4. problem modelling

Table 7.1: The Result of the Experiment in table format

In addition, usability is also affected by the types of tasks to be accomplished. Therefore,

different types of problems must be set for the experiments, for example, typical object-

oriented problems, information-oriented problems and real-time systems etc. Further, the

characteristics that make a design method usable for one set of users may be unusable for

another. Hence, there will be four groups of subjects for each design method, the novice

users of both the object-oriented programming and the design method (Group A), the experts

of both the object-oriented programming and the design method (Group B), the novice users

of the object-oriented programming but experts in the design method (Group C) and lastly

the experts of the object-oriented programming and novice of the design method (Group D).

To compare the results obtained, subjects might be requested to give a score for each item.

The score ranges from 4 which is perfect to 0 which is no evidence of any support (see

Table 7.2).

4 Perfect
3 Good
2 Average
1 Poor
0 No evidence of any support

Table 7.2: Scoring Table

Obviously, the design method which scores highest in all the problems and for all the four

different groups of subjects achieves most usability.

As indicated above, the experiments concerning the usability of the design method involve a

large number of subjects and will require at least a year to carry out. The above discussion

does not attempt to give a full-blown design of the expetiwents but to outline many of the

issues that would have to be addressed.

146

A Design Method for Object-Oriented Programming Winnie Pun

Once the experiments are performed and the results are analysed, one can modify and improve

the method accordingly. Currently, one may find that the design method is suitable for small,

general purpose application domains. The appropriateness of such a design method in large

applications and specific problem domains needs further investigations. In fact, the history

of structured design development has reflected this trend of development. When structured

design methods were first introduced in early 1970’s, they did little in the area of such

things as interrupts design and scheduling of concurrent processes. An extended, ‘real-time’

flavour of structured design methods only emerged in the early 1980’s. Although it is said

that object-oriented programming is good for implementing concurrent systems, extending

this design method to cater for concurrent programming would be part of the future work.

7.2. Future Work in Long Term

Computer aided software engineering (CASE) has become increasingly important in recent

years. It is now recognised that with the large range of automated facilities provided in CASE

environments, the productivity of software engineers has improved dramatically [Som89].

In order to know what automated facilities to be provided in the design phase, one needs

to know what tasks system designers have to perform during the design phase. As a design

method defines the procedures one has to carry out in the design phase [McC89], it indirectly

decides what tools one requires in the design phase of the CASE environment. Thus, the

design method has a vital role to play in CASE environments. As it stands, the design method

resulting from this research is tailored for object-oriented programming. It, therefore, forms

the basis of a CASE environment for object-oriented programming. This section discusses

possible future work necessary to achieve this objective. It starts off by presenting an

overview of a CASE environment for object-oriented programming. It then briefly discusses

the individual components that are found in such an environment. The components which

are directly related to the design method are then investigated in more detail.

7.2.1. Computer Aided Software Engineering Environment

Software development comprises a number of activities which cover requirement analysis,

design, implementation and testing [How82, McD85]. In a CASE environment, there are a

large set of automated facilities which assist software engineers with the task of software

development. Contemporary software development environments can be classified into four

categories [DEF87]:

i. Language-centered Environments

These environments are built around one particular language and the tools supported

147

A Design Method for Object-Oriented Programming Winnie Pun

are suitable for that particular language only, e.g., Smalltalk-80 [Gol83b], Cedar

[SZH85].

ii. Structure-oriented Environment

These environments employ techniques that allow users to manipulate structures

directly, e.g., Cornell Program Synthesizer [Rep84], Pecan [Rei84].

iii. Toolkit Environment

These environments provide a set of tools for the coding phase of the software

development cycle, e.g., PCTE [GMT87], Unix [DHM84].

iv. Method-based Environments

These environments are built around a particular development method. The tools

provided support for a broad range of activities which are defined by the design

method, e.g., SADT [Ros85], PSL/PSA [TeI77].

As each of these kinds of environment actually covers part of the development phase, it seems

logical to merge these capabilities to achieve a highly interactive, tailorable, multiple-user,

full life-cycle environment [DEF87]. Such an environment should support all stages of the

software development process from initial feasibility studies to operations and maintenance.

User Interface

Development Support Tools

Object Management

Database System

Operating
System

Figure 7.1: The Structure of the Traditional CASE Environment

Current CASE environments are generally built around a database management system

[Som89] as illustrated in Figure 7.1. All the tools supported in such environments output

148

A Design Method for Object-Oriented Programming Winnie Pun

information to and collect information from the database. In addition, the database system

supports information retrieval tools which can collate and present component information

which is generated at different stages of the life-cycle.

As it stands, the structure o f a CASE environment for object-oriented programming (see

Figure 7.2) is similar to that of the traditional one. This is not surprising as object-oriented

programming is a natural evolution of traditional programming. However, it is believed that

certain components o f this environment will have to be changed and modified to give a more

consistent and sophisticated CASE environment for software engineers.

User Interface

Implementation T«*ti ng
Methods

Tools . & Tools'Object Management

Object -Oriented >
n arah ase

Operating
System

Figure 7.2: The Structure of the CASE Environment for Object-Oriented Programming

7.2.2. The Object-Oriented Database

In the traditional software engineering environment as shown in Figure 7.1, the inner layer

is the database layer. It provides all the data storage facilities for project information

and allows relationships between project entities to be defined and maintained. Although

traditional databases such as hierarchical, network and relational have been widely used in

this layer, they were designed to support alphanumeric data, formated into records. While

this may be appropriate for typical information management system applications; they are not

really appropriate for applications such as mechanical, computer-aided design and computer-

aided software engineering, which relies on complex and non-record oriented data [Atw89].

149

A Design Method for Object-Oriented Programming Winnie Pun

Therefore, an object-oriented database is more likely to be used in the next generation of

environments [AnH87, Som89]. This is especially true if one is aiming towards a CASE

environment for object-oriented programming.

Object-oriented databases are considered to be more powerful than traditional databases. Tra­

ditional databases such as the relational database are inadequate in representing the complex­

ity of the real world [DKL86], as there are difficulties in matching the real world complexity

to flat data structures. The object-oriented database, however, emphasises persistent storage

of objects and provides a higher level of abstraction. This gives the capability to express

the complexity involved in modelling the real world. Besides, in conventional software

development, programming languages and databases are not fully integrated. ‘Embedded

languages’ are always required to allow the application, which is written in general purpose

programming languages, to access the databases systems. These kinds of bridges are usually

awkward, and provide limited functionality. The object-oriented database, however provides

a tighter coupling between data management and programming language facilities which

results in a safer and higher performance system [AnH87, K1189].

Currently, object-oriented database are not yet commercially used. However, there is a lot

of research going on in this area [Atw85, Loc87]. Some of these works are concerned with

how to modify relational databases to support object-oriented features [BPR88, Rum87]. It

is strongly believed that the object-oriented database is going to be a crucial component of

CASE environments for object-oriented programming and hence will play an important part

in future work concerning this research.

7.2.3. The Object Management System

The object management system [Zdo86] is responsible for providing control over name spaces

and the configuration control of objects within the development environment. With the object

management system, the user may simply refer to environment objects using local names

with the system handling the mapping to the database layer. Configuration control or version

control is very important within the environment. Designers always need to generate and

experiment with multiple versions of a design, before selecting one that satisfies the design

requirements [ChK86]. The object management system should also provide concurrency

control for cooperative work among a team of software engineers.

7.2.4. The Development Toolkit for the Design Phase

The object-oriented database and the management system described above are used to store

and manage the objects created by the software tools in the development process. As has

150

A Design Method for Object-Oriented Programming Winnie Pun

been reiterated several times, the development process generally covers the requirement

analysis phase, the design phase, the implementation phase and the testing phase. Each of

these different phases require different methods and tools to support it. For example, the

implementation phase may need debuggers, compilers, browsers, and syntax-directed editors

to support the programming task. As it stands, any future work involved in developing

the complete toolkit is quite substantial. Firstly, it would entail the developm ent o f proper

methods for object-oriented requirement analysis, design, implementation and testing. These

methods, as mentioned earlier, will then define the sorts of toolkit needed for the different

phases o f the development process. Since this research concerns mainly the design phase in

the development process, there is not sufficient information to start discussing the toolkits for

other phases and the integration of these toolkits into the CASE environment. Nevertheless,

this section examines the software tools for the design phase which are derived from the

design method discussed in this research.

The Design Method for Object-Oriented Programming

--------------------------System Level -► Specification LevelConceptual Level

Figure 7.3: The Primary Software Tools which are derived from the Design Method

The result of this research has produced a design method which is specially targeted for

object-oriented programming. The design method encourages the usage o f graphical nota­

tions to document the design process. It introduces the inheritance factorisation process to

assist the construction of class hierarchies. Hence, the tools which have to be developed to
/■

support the design process defined by this design method can be divided into two categories:

i. Graphical Tools

The design method suggests that the conceptual model o f the design phase should

be presented as object-interaction diagrams. Besides, the design specifications have

to be presented as class structure charts and message structure charts. This suggests

that an object-interaction diagram editor, a class structure chart editor and a message

151

A Design Method for Object-Oriented Programming Winnie Pun

structure chart editor have to be developed. These editors should have some syntax

checking facilities. The documents and specifications created with these editors can

be regarded as objects which will be managed by the object management system

and stored in the object-oriented database in the environment.

Object Management
System

Object Interaction
Diagram Editor G ass Structure

.Chart Editor .
Message Structure
Chart Editor

Figure 7.4: The Graphical Tools in the Design Phase

As suggested in Chapter 3, the object-interaction diagrams are not only the doc­

uments found in the design phase but also the analysis phase. Therefore, it is

believed that the object-interaction diagram editor should be used in the analysis

phase of the development process.

ii. Tools for the inheritance factorisation process

The inheritance factorisation process plays a vital role in the design method which

has emerged from this research. The tools required to support this process can be

grouped into a black box called the IFP box. The box will contain an editor to

specify the class specifications needed, the factorisation engine that generates the

normalised hierarchy expression and the graph generator which produces the class

hierarchy graph. As these tools are used to help system designers design the class

hierarchies, they would not interact with the object-oriented database nor the object

management system. However, the IFP box will interact with the class structure

chart editor to automatically generate the required class structure chart. Besides,

there might be a possibility that the IFP can be improved to generate the required

class data structures automatically. In this case, the IFP box may interact with the

tools found in the implementation phase (see Figure 7.5).

152

A Design Method for Object-Oriented Programming Winnie Pun

Implementation
Phase

Design Phase

IFP Box

editor}?
Q u i Structure
Chart Editor . \J (engine)/ ^nilyser^)

Figure 7.5: The IFP Box

In addition to these tools that are obviously required for the design method, there may

be other auxiliary tools that are helpful for the system designers. For example, an object

dictionary which allows system designers to examine and enter the definition of a particular

object; filter-browser in the IFP box to give information about available classes in the system;

design analyser tool which analyses the efficiency of a particular design by examining the

object-interaction diagrams.

7.2.5. Other Tools

Besides tools that are required to support the different stages of the development phase,

project management tools are also essential in the CASE environment. The objective of the

project management is to provide a framework that enables the manager to make reasonable

estimates of resources, cost and schedule. Most of these tools, such as those that help

engineers to estimate budgets, to generate status reports and to plan project schedules already

exist in traditional CASE environments. Part of the future work may involve investigating

whether these tools can be reused in an environment for object-oriented programming.

7.3. Conclusion

This chapter has outlined the immediate future work with respect to this research. The im­

mediate future work involves the extension and modification of the inheritance factorisation

process and examining the usability of the design method. An overview of the experiments

which are required to be carried out to test the usability of the design method has been

discussed.

153

A Design Method for Object-Oriented Programming Winnie Pun

With the current research in object-oriented system analysis, object-oriented implementation

and the fact that this research has developed a design method for object-oriented program­

ming, the natural direction for any long term future work has to be conducted towards an

object-oriented CASE environment. This chapter has also discussed some of the future work

that would be necessary to achieve this goal. Such a discussion is by no means a full account

of what one can do in the future. As most of the related work concerning this research is

still in its infancy, it is believed that there is a long way to go before a sophisticated and

acceptable CASE environment for object-oriented programming will emerge.

154

“When a scientist doesn’t know the answer to a problem, he is ignorant. When he has

a hunch as to what the result is, he is uncertain. And when he is pretty darn sure of

what the result is going to be, he is still in some doubt. We have found it o f paramount

importance that in order to progress we must recognise our ignorance and leave room

for doubt. Scientific knowledge is a body of statements of varying degrees of certainty

- some most unsure, some nearly sure, but none absolutely certain.”

When examining programming development history, it is found that modular programs were

first introduced in the early 1970’s via the technique of stepwise refinement. This kind of

technique was then developed into structured programming which emphasised functional

decomposition, i.e., the modularity of these programs was function-oriented. In the early

1980’s, object-oriented programming emerged as the next phase in the evolution of pro­

gramming. If one takes the term ‘structured programming’ in its more general sense,

one can even view object-oriented programming as a part of the evolution of structured

programming. Instead of being function-oriented, object-oriented programming provides

new ways to structure programs, such as classes and class hierarchies. These provide a

higher level of abstraction which increases the expressive power of software engineers in

modelling the real world. Besides providing a higher level of abstraction for modularising

a system, object-oriented programming also has other desirable features such as message

passing, class inheritance and dynamic binding which secure it an important place in the

programming evolution.

Just as its ancestor, structured programming with the function-oriented approach, object-

oriented design methods are in great demand as object-oriented programming becomes more

and more popular. The need for a design method is even more apparent when developing

large systems. A design method generally lays down the ground rules for software engineers

to organise design activities towards a particular implementation. It defines the tasks involved

in the design phase and specifies the design description language for the engineers to

~ Richard P. Feynman ~

Chapter 8

Conclusion

155

A Design Method for Object-Oriented Programming Winnie Pun

communicate with each other. As it stands, the kinds of design methods which are currently

well-defined, popularly used and widely supported with CASE tools are those which target

traditional structured programming such as data flow and data structure design methods.

This research has revealed that these design methods are inadequate for supporting program­

ming activities which are targeted towards object-oriented implementation. The main reason

for this is that they tend to apply ‘functional decomposition’ in modularisation. Modules are

generated around operations and data structures are distributed between resulting routines.

However, for object-oriented programming, the reverse occurs and the emphasis is on data

structures. Modularisation and operations are generated around important data structures.

Further, these structured design methods do not support the distinguishing features of object-

oriented programming such as class inheritance.

As traditional design methods are inadequate to support design for object-oriented program­

ming, work has been carried out to develop a design method which is suitable for object-

oriented programming. Although a few examples of such design methods have emerged,

they are shown in this research to be unsatisfactory. The main criticism lies in the fact

that most of them are targeted at the programming language Ada. In addition, all of them

are found to be inadequate in supporting the class inheritance feature of object-oriented

programming. Therefore, the primary aim of this research has been to develop a better

design method for object-oriented programming. Such a design method should have the

following characteristics:

i. The design method should support designs for object-oriented implementatioa

ii. The design method should have sufficient guidelines to assist system designers to

handle class inheritance.

iii. The design method should reuse appropriate ideas from traditional design methods,

if possible, to bring down the learning curve.

As revealed in this thesis, the primary framework of such a design method has been attained

by this research. The design method which has emerged from this research aims at assisting

system designers to organise the design activities towards an implementation model for

object-oriented programming. It is divided into three levels:

i. The conceptual level assists system designers analyse and examine the application

in an object-oriented fashion,

ii. The system level concerns the construction of the implementation model. The

confirmation of the implementation objects, the identification of the ‘contain’, ‘use’

and the ‘inherit’ relationships contribute in defining the structure of the classes

involved in the system.

156

A Design Method for Object-Oriented Programming Winnie Pun

iii. The specification level is responsible for the production of design specifications

which are going to be passed on to the implementation phase.

The design method has also specified the design description languages such as the object-

interaction diagram, the message structure chart and the class structure chart which system

designers use for communication.

Beside defining the design process and specifying the design description language for object-

oriented programming, one of the major achievements of this design method is that it has

identified a way to guide system designers in constructing class hierarchies. The construction

of class hierarchies plays a very important role in designing an object-oriented system. In the

past, system designers have relied very much on their intuition and experience in constructing

class hierarchies. This design method, however, has introduced a more algorithmic approach

to tackling the problem. A process called ‘inheritance factorisation process’ has been

developed to assist system designers in constructing class hierarchies.

The inheritance factorisation process has an algebraic model which lies behind it. Such an

algebraic model ensures that the output of the inheritance factorisation process is correct,

consistent and well-defined. With the inheritance factorisation process, system designers are

only required to provide the related class specifications and the corresponding optimised class

hierarchy is then generated. Although the current algebraic model may be too general, the

possibility to extend and improve the basic model has been discussed in this thesis. Further,

the development of the inheritance factorisation process has suggested the construction of

class hierarchies can be automated to a certain extent. Such an idea has been demonstrated

by implementing an inheritance factorisation engine as part of the work of this research. The

performance of using this inheritance factorisation engine in constructing class hierarchies

has also been investigated.

The result of a piece of research of this sort is seldom conclusive. Very often, it triggers the

beginning of another piece of research. Therefore, it comes as no surprise that the design

method obtained from this research is found only to be the backbone of future research. This

future research concerns the development of a computer-aided engineering environment for

object-oriented programming. Some of this future work has been discussed briefly in the

thesis.

Generally speaking, the contributions of the research reported in this thesis are two-fold:

i. It has introduced and explored a more algorithmic approach to constructing class

hierarchies in object-oriented programming. This approach forms the basis of a

CASE tools which assists system designers to handle inheritance in object-oriented

programming.

157

A Design Method for Object-Oriented Programming Winnie Pun

ii. This new approach to constructing class hierarchies is part of the design method

developed in this research. The design method is specially developed for systems

design aimed at object-oriented implementation. Although the design method

emerging from this research may not yet be perfect, it is a more adequate design

method for object-oriented programming when compared with other existing design

methods. Further, it provides the primary framework in which extensions and

modifications can be carried out. It also lays down the ground work for the

development of the CASE environment for object-oriented programming.

During this period of research, a lot of people have shown great enthusiasm for this work.

A few of them have enquired about the possibility of using this design method in their

developments. A student at the Dutch Open University has actually used this design method

in developing a hypertext system for electronic courseware in Smalltalk-80 and found the

design method is useful. Therefore, there are reasons to believe that given more time, this

research could be extended and modified to be beneficial for software developers. After <a)i,

design methods as popular and well-supported as Yourdon’s and Jackson’s methods have

taken more than ten years to become established and adopted in the industrial world.

158

Appendix A

The GP Surgery Notes System

This appendix contains one of the two case studies which have been carried out in this

research. This particular case study is about the development of a GP Surgery Notes System.

The requirement specification for the system is shown below. Examples of the design

documents which are generated at different stages of the design phase are shown in the rest

of this appendix.

The Requirement Specification

The GP Surgery Notes System is a computerised version o f the current card system. The

cards have fields for surname, other names, address, date o f birth, house telephone, work

telephone, allergies, prescriptions, history, illness history and general notes.

As well as searching fo r a given person, one often needs to search the file by date o f birth,

address.

The specification given above though not in detail, provides enough information to actually

design and implement a system.

159

invoke

User GPSystem
addACard

deleteACard

searchACard

Conceptual Level: The Overview of the GP System

160

A Design Method for Object-Oriented Programming Winnie Pun

User Interface
LevelSystem Window

UserWindow
GPMenu

PatientCardForm

User Transparent
Level

PatientCardDatabase

Conceptual Level: The Identified Application Objects of the GP System

161

A Design Method for Object-Oriented Programming Winnie

, d GPMenu

Authorisation
Activity Menu

PatientCand
ActivityMenu

System Level: The ‘Contain’ relationship of the GPMenu

A Design Method for Object-Oriented Programming Winnie Pun

PatientCard Activity
Menu

Search Menu

System Level: The ‘Contain’ relationship of the PatientCardActivityMenu

163

A Design Method for Object-Oriented Programming Winnie Pun

GPMenu

PatientCard
ActivityMenuSystemWindow

invoke
invoke

displayMsg,

invoke

GPSystem

Authorisation
ActivityMenuinvoke.

^invoke,
\editForm,

quitFaH™ceP,Form’

invoke,

deletePatient
PatientCardForm

findByName,

getMsg
HndByDOB,

aaddPatient

PatientCardDatabase

UserWindow

System Level: The ‘Use’ relationships of the GPSystem

164

A Design Method for Object-Oriented Programming Winnie Pun

Class Name:

Description:

Attributes:

GPSystem

GPSystem is a computerised version of the traditional note card
system. The card contains details of a patient. The system allows
users to add a patient card, search a patient card by name and date
of birth. The system also allows users to delete a card and update
a card.

System Window - the window space to display any message from
the system.

UserWindow - the window space to read in any input from users.

PatientCardDatabase - this is the database which stores the patient
cards.

PatientCardForm - this is the form which users have to fill in when
they want to add a new card or display the
information of a patient card.

GPMenu - this is the menu which users select their action options,
invoke - this is the operation to invoke the GP System.
addACard • this is the operation to add a new patient card.
deleteACard - this is the operation to delect an exist card.
searchCardbyName - search a patient card by the surname,
searchCardByDOB - search a patient card by date of birth.

Class Hierarchy:

GPSystem

Inherited Attributes: NONE

Specification Level: The Class Structure Chart (CSC) of the GPSystem

165

A Design Method for Object-Oriented Programming Winnie Pun

Class Name: GPMenu

Description: GPMenu is the system menu of the GPSystem. It contains two
submenus which allow users to access the PatientCardDatabase
and to access the Authorisation of the PatientCardDatabase.

Attributes: PatientCardActivityMenu -this is the submenu which contains
menu options that allows end-users
to consult the PatientCardDatabase.

AuthorisationActivityMenu -this is the submenu which contains
menu options that allows authoris­
ed users to access the authorisation
of the PatientCardDatabase.

HandleUserChoice - to execute the appropraite commands
according to the users Selection.

Class Hierarchy:

HMenu ------------- ► GPMenu

Menu

\
VMenu

Inherited Attributes: invoke - this is the operation to invoke the menu.
display - this is the operation to display the menu.
getSelecdon - this is the operation to obtain the menu

option selected by users.
insertMenuItem - this is the opertaion to add a menu

item to the menu,
compose - this is the operation to collect the menu

items and compose the menu.

Specification Level: The Class Structure Chart of the GPMenu

166

A Design Method for Object-Oriented Programming Winnie Pun

Class Name: PatientCardForm

Description: This is the form which contains the fields specified for a patient card.
End-users have to fill in these fields in order to create a new form.
Information of this form will be displayed if users want to search a
particular patient record.

Attributes: PatientCardDatabase - this variable refers to the particular database of
this GP System.

acceptForm - this operation is carried out when users finish filling in a
form and press the accept key. The operation includes
putting the information from the form into the database.

clearForm - this operation when called will clear the current form,
quit Form- this operation when called will end the displaying of the form.

Class Hierarchy:

Form --------------------- PatientCardForm

Inherited Attributes: FormName - the name of the form created.
Fields - the fields in that form is arranged as a linked list.
FormMenu - there is a menu attached to the form.
NoOfFields - the number of fields in the form
CurrentField - this variable points to the current field in the form.
fieldContent - this variable stores the contents of a field.
createForm - this operation create the form.
getFieldContent - obtain the value of a particular field.

Specification Level: The Class Structure Chart of the PatientCardForm

167

A Design Method for Object-Oriented Programming Winnie Pun

Class Name: PatientCardDatabase

Description: This is the database which stores the records of the GP system.

Attributes: createPCDatabase - this operation invokes the appropriate database.
findByName - this operation searchs the patiend card record by the

patient’s surname.
findByDob - this operation searchs the patient card records by the

date of birth of
addPatient - this operation adds a patient card record to the database.
deletePatient - this operation delects a patient card from the database.
updatePatient - this operation updates a patient card in the database.

Class Hierarchy:

VirtualFile PatientCardDatabase

Inherited Attributes: FileName - the name of the corresponding file.
CurList - the list of records.
RecSize - the size of each record.
openFile - this operation opens the appropriate file and

read the records from the file.
fileRead - this operation reads the next record.
fileWrite - this operation writes a record.
fileExist - this operation checks whether a given file

exists or not.
fileClose - this operation close a file, this includes put

back the list of records at run time into the
corresponding files.

Specification Level: The Class Structure Chart of the PatientCardDatabase

A Design Method for Object-Oriented Programming Winnie Pun

c
invoke

GP Menu
User Window \

System Window
Patient Card Form

Patient Card Database

getSelection

Search C ardB y DOB

<£> <4> <i> <t> 4>
addCc

GP Menu

rd
Delet Card

1 GP System [

Sear

*

exit

hCardi >vName

1 - if the user's selection is to add a patient card.
2 - if the user's selection is to delect a patient card.
3 - if the user’s selection is to search a card by date of birth.
4 - if the user's selection is to search a card by name.
5 - if the user’s selection is to quit the system

Specification Level: The Message Structure Chart (MSC) of the ‘invoke’ operation in the GPSystem

169

A Design Method for Object-Oriented Programming Winnie Pun

editForm acceptForm

PatientCardForm

Specification Level: The MSC of the ‘addCard’ operation in the GPSystem

170

A Design Method for Object-Oriented Programming Winnie Pun

add Patient

getHead

getNe.xtgetContent

PatientCard
Database

Fields

(Fields is an instance of
the class linked list) CurField Fields

(Fields is an instance of
the class linked list)

1 - if it is not the end of the field list

Specification Level: The MSC of the ‘acceptForm’ operation in the PatientCardForm

171

A Design Method for Object-Oriented Programming Winnie Pun

^ Virtu a l F i l e ^

fileWrite

PatientCardDatabase

'addPatient

Note that the VirtualFile class is the superclass of the PatientCardDatabase class.

Specification Level: The MSC of the ‘addPatient’ operation in the PatientCardDatabase

172

A Design Method for Object-Oriented Programming Winnie Pun

getMsg
ere lteP C F orm

fndByName

displayMsg

SystemWindow PatientCardFormUserWindow PatientCard
Database

Note: displayMsg is to display a message in the SystemWindow to
request users to enter the patient's name to be searched.
getMsg is an operation to get the patient’s name which is entered
by the users in the UserWindow.

Specification Level: The MSC of the ‘searchCardbyName’ operation in the GPSystem

173

A Design Method for Object-Oriented Programming Winnie Pun

c

getHead

<£>is Equal

getN ext

CurList
CurList

findByName

NameOfCurPatientRec
(this is an instanceof the string
class)

1 - if it is not the end of the list.

Specification Level: The MSC of the ‘findByName’ operation in the PatientCardDatabase

174

A Design Method for Object-Oriented Programming Winnie Pun

Appendix B

The Home Heating System

This appendix contains another case study of the design method. This case study concerns

the development of a Home Heating System. The requirement specification of the system

is below. The implementation of the system is not completed yet but examples of some of

the design documents which are produced at different stages of the design phase are shown

in this appendix.

The Requirement Specification

The Home Heating System described in this appendix was modified from the system proposed

by S. White for the 1984 Embedded Computer System Requirements Workshop. The system

has also been used as a case study in Booch’s object oriented design method [B0 0 8 G].

The Home Heating System is responsible for regulating the in-flow of heat to individual

rooms of the home in an attempt to maintain a working temperature established for each

room. The working temperature for each room is calculated by the system as a function

of a single desired temperature, which is set by the user, and whether or not the room is

occupied. If the room is occupied, the working temperature is set to the desired temperature.

If the room is vacant, the working temperature is set to 5 degrees F less than the desired

temperature. Each room of the house is equipped with a sensor that continously measures

temperature. Each room also has an infra-red heat sensor that continously determines whether

or not the room is occupied.

The user interface provides input/output devices to permit the user to control and monitor

the Furnace System. The following input devices are provided:

• heat switch

The heat switch controls the status of the Furnace System. When the heat switch

is turned to ‘ON’, and the fault reset switch is ‘ON’, and at least one room needs

heat, the furnace system is activated. When the master switch is turned to ‘OFF’,

the furnace system is deactivated.

175

A Design Method for Object-Oriented Programming Winnie Pun

• desired temperature input device

The desired temperature input device continuously provides the value of the desired

temperature set by the user.

• fault reset switch

The fault reset switch is automatically turned ‘OFF’ by the heat flow regulator upon

the detection of either a fuel flow or combustion state fault. The furnace cannot

be activated when the fault reset switch is ‘OFF’. The user can ‘reset’ a fault by

setting the fault reset switch to ‘ON’.

The following display devices are provided:

• fault indicator

The fault indicator is turned on upon the detection of either a fuel flow or com­

bustion state abnormality.

• furnace status indicator

The furnace status indicator displays the on/off status of the furnace.

The system has a timer which provides a continuously incrementing count, one increment

for every second of elapsed time.

Heat is provided to each room of the house by circulating hot water. The water is heated by

the furnace system. Each room is equipped with a water valve that controls the flow of hot

water into the room. The valve can be commanded to either full open or full closed.

The furnace system includes an oil combustion chamber, a combustion air blower, a water

temperature sensor, and a boiler. The furnace heats water in the boiler which can then

be circulated to one or more rooms of the house. The furnace is alternately activated and

deactivated by the heat flow regulator as needed to maintain the required temperature for

each room.

To activate the furnace:

1. The system activates the blower motor.

2. The system monitors the blower motor speed and when it reaches a predetermined

RPM it opens the oil valve and ignites the oil.

3. When the water temperature reaches a predetermined value, the system opens the

appropriate room water valves permitting the heated water to circulate through

those rooms.

4. The furnace status indicator is turned on.

To deactivate the furnace:

176

A Design Method for Object-Oriented Programming Winnie Pun

1. The system closes the oil valve and then, after 5 seconds, stops the blower motor.

2. The system turns off the furnace indicator.

3. The sysem closes all the room water valves.

A fuel-flow status sensor and an optical combustion sensor signal the system if abnormalities

occurs, in which case the system deactivates the furnace, turns the fault reset switch off,

turns on the fault indicator, and closes all room water valves.

The heat flow regulator is a computer sysem that interacts with the other components of

the home heating sysem to determine heating requirements for each room of the home and

control the in-flow of heat necessary to satisfy those requirements.

The heat flow regulator maintains a working temperature which it establishes for each room.

The working temperature for each room is calculated by the system as a function of a single

desired temperature and whether or not the room is occupied. If the room is occupied,

the working temperature is set equal to the desired temperature. If the room is occupied,

the working temperature is set equal to the desired temperature. If the room is vacant, the

working temperature is set equal to 5 degress F less the desired temperature. The heat flow

regulator shall continue with this activity without regard to the state of the furnace.

The home flow regulator shall determine that a given room needs heat whenever:

room temperature < working temperature - 2 degress F and

shall determine that a given room does not need heat whenever:

room temperature > working temperature + 2 degrees F

The heat flow regulator will continue with this activity without regard to the state of the

furnace. If the furnace is not active, the heat flow regulator shall activate the furnace and

route heat whenever the heat switch and the fault reset switch are both ‘ON’ and at least

one room needs heat. The activation procedure shall be as specified above in the furnace

description. If the furnace is active, the heat flow regulator shall deactivate the furnace

whenever either the heat switch or the fault reset switch is ‘OFF’ or no rooms need heat.

The deactivation procedure shall be as specified above in the furnace description.

The heat switch can be turned ‘ON’ and ‘OFF’ by the user. The fault reset switch is turned

‘OFF’ by the heat flow regulator upon the detection of either a fuel flow or combustion state

abnormality. The user can ‘reset’ a fault by setting the fault reset switch to ‘ON’.

177

A Design Method for Object-Oriented Programming Winnie Pun

User Interface Level

DesiredTempInputDevia^ ^ ^aultlndicato ^

Timer

^FaultResetS witch
HeatS witch Fumancelndicator

HeatRowRegulator^
umance

Room

User Transparent level

Conceptual Level: The Overview of the Home Heating System

178

A Design Method for Object-Oriented Programming Winnie

/^Rjmance^X

C g ilV a lg)

^^C^busdonChamber^ Boiler

WateiTempSenso^ Cl[]combustionAirBlower^>

t

System Level: The ‘Contain’ relationship of the Furnace

A Design Method for Object-Oriented Programming Winnie Pun

Room

TempSensor

WaterValveOccupiedSensor

DesiredTemp

System Level: The Contain’ relationship of the Room

180

A Design Method for Object-Oriented Programming Winnie Pun

getStatusHeatFlowRegulator
Ieactivate

getStatus
isOccupied

activate

getCurrentTemp
HeatSwitch getDesiredTemp

getStatus

Fum an ce

Room

System Level: The ‘Use’ relationship of the HeatFlowRegulator

A Design Method for Object-Oriented Programming Winnie Pun

OilCombustionChamber
closeValve

openValve
OilValve checkFuelFlow

flowOil
Fumance

etBlowerSpeed

' openWaterValve

,icloseWaterValve
>enBlower

closeBlower

showOnRoom

showOff

Fumancelndicator

System Level: The ‘Use’ relationship of the Furnace

182

A Design Method for Object-Oriented Programming Winnie Pun

operiValves
closeValves

Room

WaterValves

etCurrenfTempgetStatus

getDesiredTemp

setDesiredTemp
TempSensor

DesiiedTemp

OccupiedSensor

System Level: The ‘Use’ relationship of the Room

183

A Design Method for Object-Oriented Programming Winnie Pun

Class Name: HomeHeatSystem

Description: The HomeHeatSystem regulates the in-flow of heat to individual
rooms of the home in an attempt to maintain a working temperature
established for each room. The working temperature for each room
is calculated by the system as a function of a single desired temp,
and whether or not the room is occupied. If the room is occuptied,
the working temperature is set to the desired temperature. If the
room is vacant, the room temperature is set to 5 degrees less than
the working temperature.

Attributes: Rooms - this is the list of rooms within the Home.
Furnace - this is the furnace in the system.
HeatFlowRegulator - the heat flow regulator in the system.
HomeHeatlnterface - this is the user interface of the system,
invoke - this opertaion invokes the system.
powerUp - this operation actually turns on the heat switch, i.e.,

it initialises the heat flow regulator.

Class Hierarchy:
HomeHeatSystem

Inherited Attributes: NONE

Specification Level: The Class Structure Chart of the HomeHeatSystem

184

A Design Method for Object-Oriented Programming Winnie Pun

HeatFlowRegulator

The heatflowRegulator is a computer system tht interacts
with the other components of the home heat system to
determine heating requirements for each room of the home
control the in-flow of heat necessary to satisfy those
requirements.

thisFumace - the references to the furnace in the home heat
system.

thisListOfRooms - the references to the rooms concerned in the
home heat system.

chkHeatRequired - this may be a private operation which take a
room as a parameter and check whether this
room requires heating up or not.

run - the heat flow regulator will start running when this
operation is invoked.

Class Hierarchy:

HeatFlowRegulator

Inherited Attributes: NONE

Specification Level: The Class Structure Chart of the HeatFlowReguIator

Class Name:

Description:

Attributes:

185

A Design Method for Object-Oriented Programming Winnie Pun

Class Name: Room

Description: A Room is part of a home that can be independently heated.

Attributes: OccupiedSensor - a sensor which tells whether there is someone in
the room.

DesiredTemp - this is a variable that stores the value of the desired
temp. The temp is set by the users.

WaterValve- this is a valve which allows water to flow in when open.
TempSensor - this is a temperature sensor which gives the temp of

the room.
isOccupied - this operation returns a boolean value to tell whether the

room is occupied or not.
getDesiredTemp - obtain the desired temp that is set by users for this

room.
setDesiredTemp - allow users to set the desired temp for a room.
closeWaterValve - close the water valve when the room is warm

enough.
openWaterValve - open the water valve to allow hot water to flow

into the room.

Class Hierarchy:

Room

Inherited Attributes: NONE

Specification Level: The Class Structure Chart of the Room

186

A Design Method for Object-Oriented Programming Winnie Pun

Class Name: Furnace

Description: A Furnace is part of the Home Heating System. When it is activated,
it turn on the blower motor, monitor the motor speed and whne
the speed reaches a predetermined speed, it opens the oil valve and
ignites the oil. When the water tempeature reaches a predetermined
value, the system opens the water valve of appropriate rooms to
allow heated water to circulate through those rooms.

Attributes: Boiler - the boiler in the furnace
Blower - the blower in the furnace
OilValve - the oil valve in the furnace
CurrentStatus - this is the variable which tells the current status of

the furnace
WaterTempSensor - A temperature sensor which gives the temp

of the water.
invoke - this is the operation to invoke the furnace, it creates the

corresponding boiler, blower and oilValve and initialise
the status to ‘off

activate - this operation is to activate the furnace, it updates the
status of the furnace accordingly. It turns on the boiler
and the oilValve if necessary and keep track of the
blower speed. It also keeps track of the water temperature
and circulate heated water to the required rooms accordingly,

deactivate - this operation is to deactivate the furnace. It closes the oil
valve, halts the blower and closes the water valves of all
the rooms.

getStatus - obtain the current status of the furnace.

Class Hierarchy:

Furnace

Inherited Attributes: NONE

Specification Level: The Class Structure Chart of the Furnace

187

A Design Method for Object-Oriented Programming Winnie Pun

HeatFlowRegulator

activate
getARoom

addARoomchkHeatRequire

HeatFlowRegulatori thisFumacethisListOfRooms RequiredHeatRooms

1 - if the room required to be heated up.
2 - after checking all the rooms in the system and if there is one

room required to be heated up, the system has to activate the
furnace.

Specification Level: The MSG of the ‘run’ operation in the HeatFlowRegulator Class

188

A Design Method for Object-Oriented Programming Winnie Pun

invoke

getSpeed

Blower

Predetermined
Blower Speed

openValve

turnOn
getTemp

CT

Oil Valve Boiler
Water Temp

Sensor

getRoom

openWfter
Valve

Required Heat
Rooms

Room

> JU
isEqual

r i

getSpeed

r i

isEqual

t '
_ _ ,

getTemp

r

Blower Predetermined
Water Temp

Water Temp
Sensor

1 - if the speed obtained from the blower is not equal to the predetermined speed.
2 - if the temp from the water sensor is not equal to the predetermined temp.

Specification Level: The MSG of the ‘activate’ operation in the Furnace Class

189

A Design Method for Object-Oriented Programming Winnie Pun

. 'deactivate ■* \

c lo se Valve

getTime C T

r i f

Oil Valve Timer

stops

X
isE qual

getTime

5 sec Timer

getR oom

Blower Rooms

1 - if the time obtained from the timer is not equal to 5 sec.

Specification Level: The MSG of the ‘deactivate’ operation in the Furnace Class

closeW ater

Valve

Room

190

A Design Method for Object-Oriented Programming Winnie Pun

References

[Abb83] Abbott, R. J., “Program Design by Informal English Descriptions,” Communi­

cations o f the A C M 26 (11) (November 1983), pp. 882-895.

[Agh83] Agha, G., “An Overview of Actor Language,” SIG PLAN N otices 18 (6) (June

1983), pp. 58-67.

[Ala8 8] Alabiso, B., ‘Transformation of Data Flow Analysis Models to Object-Oriented

Design,” in Proceedings o f the OO PSLA’88 Conference, ACM Press, October

1988, pp. 335-353.

[Ala89] Alagic, S., Object-Oriented Database Programming, Springer-Verlag, 1989.

[ABF85] Alderson, A., Bott, M. F. & Falla, M. E., “An Overview of the ECLIPSE

Project,” in IEEE Software Engineering Series 1: Integrated Project Support

Environments, John McDermid, ed., 1985, pp. 101-113.

[AnH87] Andrews, T. & Harris, C., “Combining Language and Database Advances in an

Object-Oriented Development Environment,” in Proceedings o f the O O PSLA’87

Conference, Norman Meyrowitz, ed., ACM Press, October 1987, pp. 430-440.

[AsG90] Ashworth, C. & Goodland, M., SSAD M : A Practical Approach, McGraw Hill,

1990.

[Atw85] Atwood, T. M., “An Object-Oriented DBMS for Design Support Applications,”

in Proceedings o f the IEEE 1st International Conference on Computer A ided

Technology 85, 1985, pp. 299-301.

[Atw89] Atwood, T., “An Introduction to Object-Oriented Database Management Sys­

tem,” H O TLIN E on Object-Oriented Technology 1 (l)(N ov 1989), pp. 11-12.

[Aul89] Auld, W., “That Object of Design,” System International 17 (6) (June 1989),

pp. 83-88.

191

A Design Method for Object-Oriented Programming Winnie Pun

[Bai89] Bailin, S. C., “An Object-Oriented Requirements Specification Method,” Com­

munications o f the A C M 32 (5) (May 1989), pp. 608-623.

[Ban8 8] Bancilhon, F., “Object-Oriented Database Systems,” in Proceedings o f the 7th

A C M SIG ACT-SIG M O D -SIG ART Sym posium on Principles o f Database Sys­

tem , Austin, Texas, March 1988, pp. 152-162.

[BCG87] BanerJee, J., Chou, H-T., Garza, J. F., Kim, W., Woelk, D. & Ballou, N., “Data

Model Issues for Object-oriented Applications,” A C M Transactions on Office

Information System s 5(1) (Jan 1987), pp. 1-26.

[Bar82] Barnes, J. G. P., Programming in Ada, Addison-Welsey Publishing Company,

1982.

[BRL8 8] Beck, K., Raghavan, R., LaLonde, W. R. & Weinreb, D., “Panel: Experiences

with Reusability,” in Proceedings o f the O O PSLA’88 Conference, ACM Press,

September 1988, pp. 372-376.

[Bi085] Birrell, N. D. & Ould, M. A., A Practical Handbook for Software Development,

Cambridge University Press, 1985.

[Bir73] Birtwistle, G. M., Simula Begin, Auerbach, 1973.

[BPR8 8] Blaha, M. R., Premerlani, W. J. & Rumbaugh, J. E., “Relational Database Design

Using An Object-Oriented Methodology,” Communications o f the A C M 31 (4)

(April 1988), pp. 414-427.

[B0 S8 6] Bobrow, D. G. & Stefik, M., “Object-oriented Programming: Themes and Vari­

ations,” The A I M agazine 6(1986), pp. 40-62.

[Boe87] Boehm, B. W., “Improving Software Productivity,” IEEE Computer 20(9)

(1987), pp. 43-58.

[Boe75] Boehm, B. W., “Software and its Impact: A Quantitative Assessment,” Data­

mation 21 (5) (May 1975), pp. 48-59.

[Bol79] Bollobas, B ’ela, Graph Theory A n Introductory Course, Springer-Verlag, 1979.

[BoM76] Bondy, J. A. & Murty, U. S. R., Graph Theory with Applications, The Macmil­

lan Press Ltd, 1976.

192

A Design Method for Object-Oriented Programming Winnie Pun

[B0 0 8 6] Booch, G., “Object-Oriented Development,*’ IEEE Transactions on Software

Engineering 12 (2) (Feb 1986), pp. 211-217.

[Bor85] Borgida, A., “Knowledge Representation as the Basis for Requirements Speci­

fications,” IEEE Computer 18 (4) (April 1985), pp. 82-91.

[Bor8 8] Borgida, A., “Modeling Class Hierarchies with Contradictions,” in A C M Sig-

m od International Confem ece on M anagements o f Data, September 1988, pp.

434-443.

[BoI82] Boming, A. & Ingalls, D. H. H., “A Type Declaration and Inference System for

Smalltalk,” in Conference Record o f the 9th A C M Sym posium on Principles o f

Programming Languages, 1982, pp. 133-141.

[Bra83] Brachman, R. J., “What IS-A Is and Isn’t: An Analysis of Taxonomic Links in

Semantic Networks,” IEEE Computer 16 (10) (October 1983), pp. 30-36.

[BGM89] Blair, G. S., Gallaghen, J. L & Malils, J., “Genericity vs Inheritance vs Dele­

gation vs Conformance vs ...,” loum al o f Object-Oriented Programming 2 (3)

(Sept/Oct 1989), pp. 11-17.

[Car84] Cardelli, L., “A Semantics of Multiple Inheritance,” in Proceeding o f the Con­

ference on the Semantics o f Datatypes, June 1984, pp. 51-67.

[CaW85] Cardelli, L. & Wegner, P., “On Understanding Types, Data Abstraction, and

Polymorphism,” A C M Computer Surveys 17 (4) (December 1985), pp. 471-

522.

[Car84] Camese, D., “Multiple Inheritance in Contemporary Programming Languages,”

Doctoral Dissertation TR-328, MIT Laboratory for Computer Science, Cam­

bridge, MA., 1984.

[Cha80] Chapin, N., “Graphic Tools in the Design of Information Systems,” in System

A nslysis and Design: A Foundation fo r the 1980’s, Cotterman, ed., North-

Holland, 1980, pp. 121-162.

[Che76] Chen, P. P-S., “The Entity-Relationship Model - Towards a Unified View of

Data,” A C M Transactions on Database System s 1(1) (March 1976), pp. 9-36.

193

A Design Method for Object-Oriented Programming Winnie Pun

[ChK8 6] Chou, H-T. & Kim, W., “A Unifying Framework for Version Control in a

CAD,” in Proceedings o f the Twelfth International Conference on Very Large

Data Bases, August 1986, pp. 336-344.

[CoY90] Coad, P. & Yourdon, E., Object-Oriented Analysis, Yourdon Press Computing

Series, Englewood Cliffs, New Jersey, 1990.

[C0 0 8 6] Cook, S., “Languages and object-oriented programming,” Software Engineering

Journal 1 (2) (March 1986), pp. 73-80.

[Cou87] Coutaz, J., “The Construction of User Interfaces and the Object Paradigm,” in

Proceedings o f the ECOOP'87 Conference, 1987, pp. 135-144.

[Cox8 6] Cox, B. J., Object Oriented Programming: A n Evolutionary Approach, Addison

Wesley, 1986.

[Cur82] Curtis, B., “A Review of Human Factors Research on Programming Languages

and Specification,” in Human Factors in Computer Science Conference Paper,

1982, pp. 212-218.

[DaT8 8] Danforth, S. & Tomlinson, C., “Type Theories and Object-Oriented Program­

ming,” A C M Computing Surveys 20(1) (March 1988), pp. 29-72.

[DEF87] Dart, S. A., Ellison, R. J., Feiler, P. H. & Habermann, A. N., “Software Devel­

opment Environments,” IEEE Computer 20(ll)(N ovem eber 1987), pp. 18-28.

[Dat75] Date, C. J., A n Introduction to Database System s (3rd Edition), Addison Welsey,

1975.

[Dea89] Deal, S., “The Specification and Recognition of Optimal Layout Configurations

for Graph Structures,” University College London, University of London, Ph.D.

Thesis, 1989.

[deMar78] deMarco, T., Structured Analysis and System Specification, Yourdon Inc., New

York, December 1978.

[DKL8 6] Derrett, N., Kent, W. & Lyngback, P., “Some Aspects of Operations in an

Object-Oriented Database,” IEEE Database Engineering (1986).

[DiM87] Diederich, J. & Milton, J., “Experimental Prototyping in Smalltalk,” IEEE

Softw are 4 (3) (May 1987), pp. 50-64.

194

A Design Method for Object-Oriented Programming Winnie Pun

[DHM84] Dolotta, T. A., Haight, R. C. & Mashey, J. R., “Unix Time-Sharing System:

The Programmer’s Workbench,” in Interactive Programming Environments, D

R Barstow, H E Shrobe & E Sandewall, ed., McGraw Hill, New York, 1984,

pp. 353-369.

[Eas8 6] Easteal, C., “Information Systems - Data Models,” The Open University Press,

Course Notes for M205 Fundamentals of Computer for the Open University,

1986.

[EhM85] Ehrig, E. & Mahr, B., Fundamentals o f Algebraic Specifications 1 Equations

and Initial Semantics, Springer-Verlag, 1985.

[EHZ89] Elizabeth, M., Hull, C., Zarea-Aliabadi, A. & Guthrie, D. A., “Object-Oriented

Design, Jackson System Development (JSD) Specification and Concurrency,”

Software Engineering Journal 3 (2) (March 1989), pp. 79-86.

[Eve80] Everitt, B., Cluster Analysis, Halsted Press, 1980.

[Fis87] Fischer, G., “Cognitive View of Reuse and Redesign,” IEEE Software 4 (4)

(July 1987), pp. 60-72.

[GMT87] Gallo, F., Minot, R. & Thomas, I., “The Object Management System of PCTE

as a Software Engineering Database Management System,” SIG PLAN Notices

22(1) (Jan 1987), pp. 12-15.

[Gib89] Gibson, M. L., “The CASE Philosophy,” B yte 14 (April 1989), pp. 209-218.

[GoM82] Goguen, J. A. & Meseguer, J., “Rapid Prototyping in the OBJ Specification

Language,” Software Engineering N otes 1 (3) (1982), pp. 75-84.

[Gol83a] Goldberg, A., Smalltalk-80: Interactive Programming Environment, Addison

Wesley, 1983.

[Gol83b] Goldberg, A., Smalltalk-80: The Language and its Implementation, Addison

Wesley, 1983.

[Gom84] Gomaa, H., “A Software Design Method for Real-Time Systems,” Communi­

cations o f the A C M 27 (9) (September 1984), pp. 938-949.

[Goo87] Goodwin, N., “Functionality and Usability,” Communciations o f the A C M 30

(3) (March 1987), pp. 229-233.

195

A Design Method for Object-Oriented Programming Winnie Pun

[GoL85] Gould, J. D. & Lewis, C., “Designing for Usability: Key Principles and What

Designers Think,” Communications o f the A C M 28 (3) (March 1985), pp. 300-

311.

[Gre89] Green, T. R. G., “Cognitive Dimensions of Notations,” in Proceedings o f the

Fifth Conference o f the British Computer Society Human-Computer Interaction

Specialist Group, A Sutcliffe and L Macaulay, ed., Sept 1989, pp. 443- 460.

[Gri79] Gries, D., “Current Ideas in Programming Methodology,” in Research Directions

in Software Technology, Peter Wegner, ed., MIT Press, 1979, pp. 254-275.

[Han87] Hanks, W. T. ML. andP., ed., The N ew Collins Concise Dictionary o f the English

Language, Guild Publishing London, 1987.

[Hew77] Hewitt, C., “Viewing Control Structures as Patterns of Passing Messages,”

Artiticial Intelligence 8 (1977), pp. 323-364.

[Hof79] Hofstadter, D. R., Godel, Escher, Bach: A n Eternal Golden Braid, Penguin

Book, 1979.

[How82] Howden, W. E., “Contemporary Software Development Environments,” Com­

munications o f the A C M 25 (5) (May 1982), pp. 318-329.

[Hut89] Hutchinson, A., “Inheritance and kinds of slots,” The Computer Journal 32(1)

(1989), pp. 63-67.

[Jac83] Jackson, M., System D evelopm ent, Prentice Hall, 1983.

[JaK87] Jacky, J. P. & Kalet, I. J., “An Object-Oriented Programming Discipline for

Standard Pascal,” Communications o f the A C M 30 (9) (September 1987), pp.

772-776.

[Jac87] Jacobson, I., “Object Oriented Development in an Industrial Environment,” in

Proceedings o f the OOP S L A ’87 Conference, ACM Press, October 1987, pp.

183-191.

[Joh85] Johnson, P., ‘Towards a Task Model of Messaging: An Example of The Ap­

plication or TAKD to User Interface Design,” in Proceedings o f the H C I’85

Conference, Cambridge Press, 1985, pp. 46-62.

[Joh8 8] Johnson, R. E., “Designing Reusable Classes,” Journal o f Object-Oriened Pro­

gramm ing 1 (2) (June/July 1988), pp. 22-35.

196

A Design Method for Object-Oriented Programming Winnie Pun

[Kah89]

[Kay84]

[Kil89]

[Kli77]

[LRV8 8]

[LHR8 8]

[Lie8 6]

[Lin8 8]

[LCV87]

[LVC89]

[LiG8 6]

[Loc87]

Kahn, K., “Objects - A Fresh Look,” in Proceedings o f the Third European Con­

ference on Object-Oriented Programming, 1989, Stephen Cook, ed., Cambridge

University Press, Cambridge, England, July 1989, pp. 207-223.

Kay, A., “Computer Software,” Scientific Am erican 251 (3) (September 1984),

pp. 41-47.

Kilian, M., “A Model for Integrating Trellis with an Object-Oriented Database,”

in Proceedings o f the 2nd International Workshop on Distribution and Objects,

DECUS Muchen, April 1989, pp. 141-159.

Kling, R., “The Organizational Context of User-Centered Software Designs,”

M IS Quarterly 1 (1977), pp. 41-52.

Lecluse, C., Richard, P. & Velez, F., “Cfe an Object-Oriented Data Model,” in

A C M SIGM OD International Conference on M anagement o f Data, Sept 1988,

p p . 424-434.

Lieberherr, K., Holland, I. & Riel, A., “Object-Oriented Programming: An

Objective Sense of Style,” in Proceedings o f the OO PSLA’88 Conference, ACM

Press, September 1988, pp. 323-334.

Lieberman, H., “Using Prototypical Objects to Implement Shared Behavior in

Object Oriented System,” in Proceedings o f the OOPSLA’ 86 Conference, 1986,

pp. 214-223.

Linton, M., Interview s Reference M anual (Version 2.4), Computer Systems Lab­

oratory, Departments of Electrical Engineering and Computer Science, Stanford

University, Stanford, August 1988.

Linton, M. A., Calder, P. R. & Vlissides, J. M., “Interviews: A C++ Graphical

Interface Toolkit,” Proceedings o f the C++ Workshop 22 (2) (1987).

Linton, M. A., Vlissides, J. M. & Calder, P. R., “Composing User Interfaces

with Interviews,” IEEE Computer 22 (2) (Feburary 1989), pp. 8-22.

Liskov, B. & Guttag, J., Abstraction and Specification in Program Development,

MIT Press, 1986.

“Special Issues on Object-Oriented Databases,” A C M Transactions on Office

Information System s 5(1) (January 1987).

197

A Design Method for Object-Oriented Programming Winnie Pun

[Lor8 6] Lorensen, W., “Object-Oriented Design,” General Electric Co, CRD Software

Engineering Guidelines, 1986.

[Luc71]

[Mar8 8]

[Mar73]

[McC89]

[McD85]

[Mey8 8]

[Mey87]

[Mic8 8]

[Mil56]

[MiR87]

[Mit82]

[Mit86]

Lucas, H. C., “A User-Oriented Approach to System Design,” in Proceedings

o f the National A C M Conference, ACM Press, 1971, pp. 325-338.

Martin, C. F., “Second-Generation CASE Tools: A Challenge to Vendors,” IEEE

Software 5 (2) (March 1988).

Martin, J., Design o f M an-Computer Dialogues, Prentice-Hall, Englewood Cliffs

N.J., 1973.

McClure, C., “The CASE Experience,” B yte 14 (April 1989), pp. 235-246.

McDermid, J., ed., Integrated Project Support Environm ents, IEE Software

Engineering Series 1, 1985.

Meyer, B., Object-oriented Software Construction, Prentice-Hall, 1988.

Meyer, B., “Reusability: The Case for Object-Oriented Design,” IEEE Software

4(1) (March 1987), pp. 50-64.

Micallef, J., “Encapsulation, Reusability and Extensibility in Object-Oriented

Programming Languages,” Journal o f Object-Oriented Programming 1 (1) (April

1988), pp. 12-35.

Miller, G. A., “The Magical Number Seven, Plus or Minus Two: Some Limits

on Our Capacity for Processing Information,” The Psychological R eview 63 (2)

(March 1956), pp. 81-97.

Minsky, N. H. & Rozenshtein, D., “A Law-Based Approach to Object-Oriented

Programming,” in Proceedings o f the OOPSLA’87 Conference, ACM Press,

October 1987, pp. 482-493.

Mittermeir, R. T., “CML-Graphs - A Notation for Systems Development,” in

Cybernetics and System Research. Proceedings o f the 6th European M eeting

on Cybernetics and Sysem s Research, R Trappl, ed., North Holland, 1982, pp.

803-309.

Mittermeir, R. T., “Object-Oriented Software Design.,” in Software Engineering

Environm ent - Proceedings o f the international workshop on software engineer­

ing environment., China Academic publishers, ed., 1986, pp. 51-64.

198

A Design Method for Object-Oriented Programming Winnie Pun

[Nyg8 6] Nygaard, K., “Basic Concepts in Object Oriented Programming,” SIG PLAN

N otices 21 (10) (October 1986), pp. 128-132.

[OHK87] O ’Brien, P. D., Halbert, D. C. & Kilian, M. F., “The Trellis Programming

Environment,” in Proceedings o f the OOPSLA’87 Conference, ACM Press,

October 1987, pp. 91-102.

[OBH8 6] O ’Shea, T., Beck, K., Halbert, D. & Schmucker, K. J., “Panel On: The Leam-

ability of Object-Oriented Programming Systems,” in Proceedings o f the OOP-

SL A '86 Conference, November 1986, pp. 502-504.

[Pas8 6] Pascoe, G. A., “Elements of Object-Oriented Programming,” B yte 11 (8) (1986),

pp. 139-144.

[Pet77] Peterson, J. L., “Petri Nets,” Computing Surveys 9 (3) (September 1977), pp.

223-251.

[PeW90] Petre, M. & Winder, R., “On Languages, Models and Programming Styles,”

The Computer Journal 33 (2) (April 1990), pp. 173-180.

[Pok89] Pokkunuri, B. P., “Object Oriented Programming,” SIG PLAN N otices 24(11)

(November 1989), pp. 96-101.

[PLK89] Poo, C-C. D., Loh, W. L. & Kazmi, P., “An Approach to Object-Oriented System

Specificat^lBased on the Jackson System Development Method,” Department of

Information Systems and Computer Science, National University of Singapore,

Technical Report TR11/89, Nov 1989.

[Pos8 6] Post, J., “Application of a Structured Methodology to Real-Time Industrial

Software Development,” Software Engineering Journal 1 (6) (November 1986),

pp. 222-235.

[Pow87] Power, L., “Workshop on the Specification and Design of Objects,” in OOP-

S L A ’87 Addendum to the Proceedings, 1987, pp. 7-16.

[Pre87] Pressman, R. S., Softw are Engineering: A Practitioner's Approach, McGraw-

Hill series in Software Engineering and Technology, 1987.

[PLT87] Pugh, J. R., LaLonde, W. R. & Thomas, D. A., “Introducing Object-Oriented

Programming into the Computer Science Curriculum,” A C M SIG CSE Bulletin

19(2)(Feburary 1987), pp. 98-102.

199

A Design Method for Object-Oriented Programming Winnie Pun

[PuW90a] Pun, W. & Winder, R., “A Design Method for Object-Oriented Implementation,”

in BIG RE (awaitingpublication), Stephen Cook and J Bezivin, ed., 1990.

[PuW90b]

[PuW89a]

[PuW89b]

[Rae85]

[RPT84]

[Rei84]

[Ren82]

[Rep84]

[RWW8 8]

[Rob89]

[Ros85]

Pun, W. & Winder, R., ‘‘A Model for Inheritance Factorisation in Object-

Oriented Systems,” Formal Aspects o f Computing (accepted to be published) 2

(4) (1990).

Pun, W. & Winder, R., “Using Data Flow Design Method in Object-Oriented

Programming: It’s Pros and Cons,” The OOPS Report 2 (2) (April 1989), pp.

3-9.

Pun, W. & Winder, R., “A Design Method for Object-Oriented Programming,” in

Proceedings o f the 3rd European Conference on Object-Oriented Programming,

Stephen Cook, ed., July 1989, pp. 225-240.

Raeder, G., “A Survey of Current Graphical Programming Techniques,” IEEE

Software Engineering 18 (August 1985), pp. 11-26.

Ramamoorthy, C. V., Prakash, A., Tsai, W-T. & Usuda, Y., “Software Engineer­

ing: Problems and Perspectives,” IEEE Computer 17 (10) (October 1984), pp.

191-209.

Reiss, S. P., “Graphcial Program Development with PECAN,” SIG PLAN N o­

tices 19 (May 1984), pp. 30-41.

Rentsch, T., “Object-Oriented Programming,” SIG PLAN Notices 17 (9) (1982),

pp. 51-57.

Reps, T., “The Synthesizer Generator,” SIG PLAN Notices 19 (5) (May 1984),

pp. 42-48.

Roberts, G. A., Winder, R. L. & Wei, M., “The Solve Object-Oriented Program­

ming System for Parallel Computers,” Dept of Computer Science, University

College London, RN/89/7, October 1988.

Robinson, P., “Hierarchic Object Oriented Design Method - HOOD,” Seminar

Notes of OOPS 23, London, UK, April 1989.

Ross, D. T., “Applications and Extensions of SADT,” IEEE Software 2(2)

(April 1985), pp. 25-34.

200

A Design Method for Object-Oriented Programming Winnie Pun

[RoS76] Ross, D. T. & Schoman, K. E., “Structured Analysis for Requirements Defi­

nition,” IEEE Transactions on Software Engineering SE-3 (January 1976), pp.

6-15.

[RoG89] Rosson, M. B. & Gold, E., “Problem-Solving Mapping in Object-Oriented

Design,” in Proceedings o f the OOPSLA’89 Conference, October 1989, pp.

7-10.

[RMK8 8] Rosson, M. B., Maass, S. & Kellogg, W. A., “The Designer As User: Building

Requirements for Design Tools from Design Practice,” Communications o f the

A C M 31 (11) (November 1988), pp. 1288-1297.

[Rum87] Rumbaugh, J., “Relations as Semantic Constructs in an Object-Oriented Lan­

guage,” in Proceedings o f the OO PSLA’87 Conference, ACM Press, October

1987, pp. 466-481.

[Sak89] Sakkinen, M., “Disciplined Inheritance,” in Proceedings o f the Third European

Conference d ii Object-Oriented Programming, 1989, Stephen Cook, ed., Cam­

bridge University Press, Cambridge, England, July 1989, pp. 39-56.

[Sau89] Saunders, J., “A Survey of Object-Oriented Programming Languages,” Journal

o f Object-Oriented Programming 1 (6) (Mar/Apr 1989), pp. 5-11.

[SSR85] Scheffer, P. A., Stone, A. H. & Rzepka, W. E., “A Case Study of SREM,” IEEE

Computer 18 (4) (April 1985), pp. 47-54.

[Sch8 6] Schifler, R. W., “The X Window System,” A C M Transactions on Graphics 5

(2) (April 1986), pp. 79-109.

[ShT83] Shapiro, E. & Takeuchi, A., “Object-Oriented Programming in Concurrent Pro­

log,” N ew Generation Computing 1 (1983), pp. 25-48.

[Sha84] Shaw, M., “Abstraction Techniques in Modem Programming Languages,” IEEE

Software 1 (10) (Oct 1984), pp. 10-26.

[ShM8 8] Shlaer, S. & Mellor, S. J., Object-Oriented System s Analysis: M odeling the

World in Data, Yourdon Press, 1988.

201

A Design Method for Object-Oriented Programming Winnie Pun

[Shu89]

[Sny87]

[Som89]

[Str8 6 a]

[Str8 6 b]

[Str8 8]

[SZH85]

[TGP89]

[TeI77]

[Tou87]

[Tou8 8]

[Tre84]

[UnS87]

Shutt, R. N., “A Rigorous Development Strategy Using the OBJ Specification

Language and the MALPAS Program Analysis Tools,” in Proceedings o f the

2nd European Software Engineering Conference, G Goos & J Hartmanis, ed.,

Springer-Verlag, University of Warwick, Conventry UK, September 1989, pp.

262-291.

Snyder, A., “Inheritance and the Development of Encapsulated Software Com­

ponents,” in Research Directions in Object-Oriented Programming, B. Shriver

& Peter Wegner, ed., MIT Press, 1987, pp. 165-188.

Sommerville, I., Software Engineering (Third Edition), Addison-Welsey, 1989.

Strom, R., “A Comparison of the Object-Oriented and Process Paradigm,”

SIG PLAN N otices 21 (10) (October 1986), pp. 88-97.

Stroustrup, B., The C++ Programming Language, Addison Wesley, 1986.

Stroustrup, B., “What is Object-Oriented Programming?,” IEEE Software 5(3)

(May 1988), pp. 57-76.

Swinehart, D. C., Zellweger, P. T. & Hagmann, R. B., “The Structure of Cedar,”

SIG PLAN Notices 20 (7) (July 1985), pp. 230-244.

Taenzer, D., Ganti, M. & Podar, S., “Problems in Object-Oriented Software

Reuse,” in Proceedings o f the Third European Conference on Object-Oriented

Programming, Stephen Cook, ed., Cambridge University Press, 1989, pp. 25-38.

Teichroew, D. & HI, E. A. H., “PSL/PSA: A Computer-aided Technique for

Structured Documentation and Analysis of Information Processing Systems,”

IEEE Transaction o f Software Engineering 3 (Jan 1977), pp. 41-48.

Touati, H., “Is Ada an Object-oriented Programming Language?,” SIG PLAN

Notices 22 (5) (May 1987), pp. 23-26.

Touretzky, D. S., The M athemactics o f Inheritance System s, Pitmans, 1988.

Trebaul, M. J., “Smalltalk: The User Interface (A Translated Paper),” A ctes des

Joumees Afcet-Inform atique, Langages Orientds Ob je t (1984).

Ungar, D. & Smith, R., “Self: The Power of Simplicity,” in Proceedings o f the

OO PSLA’87 Conference, ACM Press, 1987, pp. 227-242.

202

A Design Method for Object-Oriented Programming Winnie Pun

[V1L88] Vlissides, J. M. & Linton, M. A., “Applying Object-Oriented Design to Structure

Graphics,” in C++ Confemece Proceedings 1988, 1988.

[War89] Ward, P. T., “How to Integrate Object Orientation with Structured Analysis and

Design,” IEEE Software 6 (2) (March 1989), pp. 74-82.

[Weg87] Wegner, P., “Dimensions of Object-Based Language Design,” in Proceedings o f

the OOPSLA’87 Conference, 1987, pp. 168-182.

[Weg88a] Wegner, P., “The Object-Oriented Classification Paradigm ,” in Research Direc­

tions in Object-Oriented Programming, MIT Press, ed., 1988, pp. 479-560.

[Weg88b] Wegner, P., “Object-Oriented Concept Hierarchies (Draft Paper),” July 1988.

[WeQ84] Weil, W. & Quayle, M. A., “The Friendly LOOPS Primer,” 1984.

[Wir71] Wirth, N., “Program Development by Stepwise Refinement,” Communications

o f the A C M 14 (4) (April 1971), pp. 221-227.

[Yeh77] Yeh, R. T., Current Trends in Programming M ethodology. Volume 1: Software

Specification and Design, Prentice-Hall, New Jersey, 1977.

[YoC75] Yourdon, E. & Constantine, L., Structured Design, Yourdon, Inc., New York,

1975.

[Zdo86] Zdonik, S., “Object Management Systems for Design Environment,” in IEEE

Database Engineering 1986, 1986, pp. 259-266.

203

