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Abstract

Object-oriented programming has come forth as an important programming paradigm in the 

1980’s. As more and more people practise object-oriented programming, the subject of 

how to design and develop a system towards an object-oriented implementation becomes 

important. There is, therefore, a general demand for a design method which is specially 

developed for object-oriented programming.

The theme of this thesis is to develop such a design method. The thesis starts off with a 

comprehensive background on object-oriented programming and how it differs from tradi­

tional programming. It also gives a detailed analysis of why existing design methods are 

inadequate for object-oriented programming. The thesis then presents the design method 

which has been developed in this research. The different stages of the design method and 

the various tasks that have to be performed at each stage are discussed thoroughly. The 

design method also embeds a design description language which allows system designers to 

communicate with each other during the design phase and this is also talked about in the 

thesis.

Inheritance is regarded as an important feature found in object-oriented programming. A 

design method without substantial support for inheritance is considered to be incomplete. 

Therefore, a mechansim which is called the inheritance factorisation process is developed to 

assist system designers to construct class hierarchies in object-oriented programming. The 

mechanism has a formal model which ensures its correctness. The details of the formal 

model and the issues concerning how to use the mechanism forms a crucial part of this 

thesis.

To examine the performance of the inheritance factorisation process, a factorisation engine 

is implemented and experiments have been carried out. To illustrate how the design method 

is used in system designs, two case studies have been carried out and are presented in this 

thesis.

The result of this thesis is a design method which guides system designers to organise 

the design activities towards an object-oriented implementation. It also forms the basis 

of future work which will lead to a computer-aided software engineering environment for 

object-oriented programming.
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"There’s always something wrong with a new idea. But you have to be careful o f people 

who say there are no new ideas because they’re likely to fool you into never getting 

any new ideas."

Marvin Minsky ~

Chapter 1 

Introduction

1.1. The Evolution of Software Engineering

The term ‘software crisis’ refers to a number of problems that are encountered in the 

development of computer software [Pre87]. These problems range from whether the systems 

function properly to how to design and maintain the system. The consequence of the 

‘software crisis’ is that a vast amount of money is being spent on developing software. 

In fact, Boehm has suggested that the cost of software is increasing at a rate of 12% per 

year and that the worldwide annual software costs will exceed $435 billion by 1995 [Boe75, 

Boe87].

Although there is not yet a satisfactory solution to the ‘software crisis’, it is believed that 

applying sound engineering principles is the best approach to obtain economical software 

that is reliable and works efficiently. This approach was introduced in the early 1970’s and 

emphasises the use of:

i. comprehensive methods for all phases in software development,

ii. better tools to automate these methods,

iii. better techniques for software quality assurance and

iv. a more formal approaches to control and manage the development process.

As Sommerville [Som89] indicates, “The identification of the software crisis in the late 

1960’s and the notion that software development is an engineering discipline led to the view 

that the process of software development is akin to the process which has evolved in other
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engineering disciplines. Thus, a model of the software development process which was 

derived from other engineering activities was suggested”. This basic model o f the software 

development process is divided into four stages (See Figure 1.1):

i. the requirement analysis stage,

ii. the system and software design stage,

iii. the implementation stage and

iv. the system testing and maintenance stage.

The process o f software development can, in fact, be viewed as a series of transformations 

from one representation to another, each transformation introducing more detail and greater 

precision to the representation [ABF85]. Software engineers start off by developing an 

abstract model of the solution in their heads. As the development progresses, the abstract 

model is transformed into a conceptual model by introducing some primary concepts of the 

required com putational model. Once the conceptual model is set up, more details about 

the implementation phase, for example, the characteristic of the style of the programming

o

Problems
R equ irem en t Analysis 

Phase

Im plem entation  
Phase /

System T esting  and M aintenance 
Phase

Figure 1.1: The Software Development Cycle

2
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language chosen for the computational model, are added to the conceptual model which 

transforms it into the implementation model. The implementation model is a representation 

which software engineers can take away to construct the system model. This kind of 

transformation is illustrated in Figure 1.2.

System ModelAbstract Model Conceptual Model Implementation Model

Requirement Analysis Design

Figure 1.2: The TVansformation of Different Represenation

The conceptual model is generally set up at the requirement analysis stage. The transfor­

mation process from the conceptual model to the system model is then carried out in the 

design and the implementation phases. With trivial problems, the transformation from the 

conceptual model to the implementation model, which takes place in the design phase, is 

not that significant. Human minds can cope with the thinking in terms of the programming 

language required to construct the system model. The system model can, therefore, be 

constructed directly from the conceptual model. However, with complex problems, the 

design phase becomes a significant stage in the development process and design methods 

become essential to guide software engineers in the transformation of the conceptual model 

into the implementation model.

Design methods are responsible for guiding software engineers in the organisation of the 

design activities towards a particular implementation. A design method should fulfill at least 

the following two goals [ABF85]:

i. defining the language or graphical notations so that software engineers can express 

their ideas and conduct a formal communication.

ii. giving rules or hints to guide the transformations smoothly from one stage to 

another.

The objective of a design method is to assist software engineers in constructing an implemen­

tation model. As programming language paradigms actually determine patterns of thought 

for problem solving [Weg8 8 b], design methods are, therefore, inevitably found to be akin to 

the programming style chosen for the implementation phase. Thus, in order to obtain a full

3
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picture o f the development of design methods, it is necessary to examine the development 

of programming languages first.

1.1.1. P ro g ra m m in g  L anguages a n d  Design M ethods

Recursive 
Function Theory

Human

Declarative.
Programming

T u ring

Machine

Machine

Figure 1.3: The Two Programming Paradigms

Generally speaking, programming languages can be classified into two major paradigms: 

the imperative and the declarative. The imperative programming paradigm has a machine 

architecture (e.g., von Neuman machine) as the underlying model o f computation. It is 

concerned with specifying how a computation is performed as a sequence of state transitions. 

On the other hand, the declarative programming paradigm, such as functional programming 

and logic programming, has a com pletely different computational model. It is based on 

recursive function theory and is concerned with specifying what is to be computed.

As it stands, the declarative programming paradigm probably provides a more natural 

approach to solving problems. The languages developed are closer to how people solve 

problems because they are not based on the machine architecture but on the methods people 

apply to solve problems. W hereas, with the imperative program ming paradigm, people 

are obliged to think in terms o f how the machine executes. Although the declarative pro­

gramming paradigm is a better approach when implementing solutions, to execute programs 

written in declarative languages efficiently has always been a problem. Since, the imperative 

programming paradigm is more widely used in industry and, as it is shown later, object- 

oriented programming fits more comfortably in the imperative programming paradigm, the 

following discussion about the evolution of programming languages mainly concerns the 

imperative programming paradigm.

4
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Machine ^ Assembly Procedural / Block Structured
Languages Languages Languages

Figure 1.4: The Evolution of Programming Languages

The evolution of programming languages as illustrated in Figure 1.4, starts with machine 

languages^. A machine language is effectively a sequence of bits such as ‘01011100’. As 

one can imagine, to write or read a program in l ’s and 0 ’s is a painful task. So in the 1950’s, 

assembly language was developed in which mnemonic names were used to stand for binary 

codes. The idea of the assembly language as described by Hofstadter [Hof79] is to ‘chunk’ 

the individual machine language instructions so that one can write a single symbol, such as 

‘add’ instead of its binary code, say ‘01011100’. Although a program in assembly language 

is not very much different from its machine language equivalent as there is still a one-to-one 

correspondence between assembly language instructions and machine language instructions, 

assembly language makes the program more legible.

After people had programmed in assembly language for some time, they found that there 

were some characteristic structures which kept reappearing in program after program. At 

the same time, assembly language was found to be inadequate for handling complicated 

programs. Hence, there was a need for higher-level languages which provided the ability 

to define new higher level entities. This led to the development of procedural and block- 

structured languages^. With procedural languages, there is no longer a straight forward one- 

to-one correspondence between the statements in the procedure and the machine language 

instructions. A program segment is abstracted in terms of a procedure name and a parameter 

list. This procedure name and the parameter list will be expanded into the appropriate 

‘chunks’ of instructions by the compiler or the interpreter which are then ready to be executed.

Some people may consider that computer programming was originally done at an even lower level, i.e., connecting wires to 
each other, so that the proper operations were ‘hard-wired’ in.

Block-structured languages are a specialisation of procedure languages in which procedures and data declarations are nested 
[Weg88b].

5
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This advancement from the machine language to the assembly language to the procedural 

language can be viewed as the early development of programming languages.

The development of design methods has been closely related to that of the development 

of programming languages. When most programs were still written in machine language 

and assembly language, they tended to be small and therefore the need for a design method 

not that significant. However, when high-level languages were introduced, ways of solving 

problems and how to design the programs, emerged as a significant part of the software 

development process, for example, the step-wise refinement technique [Wir71], the top- 

down design approach etc. These programming and design techniques were later developed 

into a design philosophy called the structured design method [Pre87]. Structured design 

methods provide a systematic approach to software development and guide system designers 

to design solutions towards a procedural implementation.

The fact that the development of design methods is found to be dependent on the development 

of programming languages is rather disturbing. History shows that instead of designing 

programming languages and hence machines, that match how people think about solutions 

to problems, design methods were developed to guide people to think in a way that fits the 

programming language designed for the machine. This can probably be explained by the 

fact that people are more adaptable. It is easier for people to adjust their thinking to fit how 

machines operate than vice versa. Besides, the way in which people think is not as yet fully 

understood; each individual may solve the same problem differently. It is, therefore, difficult 

to come up with programming languages that suit every human and very expensive to build 

machines that execute such languages.

Although the development of programming languages and design methods has not been in the 

most natural direction, nevertheless the evolution of programming languages has indicated an 

effort to bridge the gap between how people think and how machines operate by advancing 

the abstraction technique in programming languages [PeW90].

1.1.2. The Road Towards Higher Levels of Abstraction

Abstraction is the key concept for controlling complexity [Gri79, Sha84, Yeh77]. A good 

abstraction is one that emphasises details that are significant and suppresses those that are 

immaterial. By having abstraction, one can concentrate on relevant information and ignore 

the irrelevant in problem solving.

When one examines the evolution of programming languages closely (see Figure 1.5), it 

is not difficult to notice that this evolution is actually heading towards the improvement 

of abstraction techniques. The movement from machine language to assembly language

6
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provides a higher abstraction. The binary machine code is abstracted into meaningful names. 

Again, the development of procedural languages provides an even higher level of abstraction 

technique than that of the assembly language. With procedural languages, the implementation 

of the procedure is being abstracted under a name and a list of parameters and programmers 

can concentrate on the overall organisation of the program.

Improvement of Abstraction Techniques
------------------------------------------------------------------------------------------------------------------------------------------- p*.

Machine __  Assembly____ Procedural _ ADT _ Object-Oriented ^
Languages Languages Languages Languages Languages

A

Object-Oriented 
^  Design Method ^

Figure 1.5: The Roads towards higher Abstractions

Although the abstraction techniques offered by these procedural languages, such as FOR­

TRAN and Pascal, are quite considerable when compared to the earlier generation of machine 

code and assembly languages, when large programs are to be developed and maintained, these 

programming languages still fall short in handling the complexity of these programs [Pok89]. 

Therefore, new programming styles with higher levels of abstraction emerged, abstract data 

type programming and object-oriented programming.

1.2. Object-Oriented Programming

Abstract data type programming was developed independently of object-oriented program­

ming. Languages such as CLU [LiG8 6 ] and Ada [Bar82] are examples of programming 

languages that support abstract data types. Abstract data type languages emphasise data 

abstraction whilst retaining the same control flow mechanisms developed for procedural 

languages. The essence is to package each data structure with its associative operations into 

a single construct. The resulting construct contains information necessary to treat the data 

structure and its operations as a type.

Object-oriented programming represents another step forward in programming development.
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Its basic philosophy is to support programming in abstract data types [B0 0 8 6 , C0 0 8 6 , Mic8 8 , 

PLT87, Ren82, Weg8 8 a] and introduce message passing as the control flow. Here, each data 

structure and its associated operations are packaged in a construct known as a  ‘class*. Each 

object is created as an instance of a class and embeds a set of variables that describes the 

state of the object and a set of operations which can act upon that object. Unlike some 

abstract data types languages such as Ada, classes are first class citizens and they can be 

passed as parameters. Besides, in object-oriented programming classes are also used as 

a classification tool which capture the common attributes of a set of objects in a class 

definition while ignoring their differences. With this kind of abstraction technique, object- 

oriented programming brings with it an enormous increase in expressive power [Kay84]. In 

addition, the encapsulation of state and behaviour within an object allows one to model real 

world entities that possess state and behaviour [RoG89]. This explains why object-oriented 

programming is a natural step forward in the evolution of programming development and 

that it helps to bridge the gap between the problem and the solution spaces.

Although the basic principle of object-oriented programming is to encourage the usage 

of abstract data types, there are other features found in object-oriented programming that 

distinguish it from general abstract data type programming [B0 S8 6 , Pas8 6 ]. These features 

are:

i. Message Passing

Computation in object-oriented programming is achieved by passing messages to 

objects. Objects within the system respond to messages by evaluating the method 

matching the selector in the message and returning objects as a result. With the 

message passing mechanism, an object-centered approach to programming is further 

advocated. Instead of active procedures acting on the passive data passed to them, 

objects are asked to perform operations that have been assigned to them [C0 0 8 6 , 

Pas8 6 ].

ii. Inheritance

Inheritance allows new classes to be created from existing classes via specialisation. 

The new class that is created as the specialisation is known as the subclass. The 

existing class, in this case, is known as the superclass. The subclass is said to 

inherit all the instance variables, class variables and methods of its superclass. The 

subclass may add more instance variables, class variables and methods on top of 

what it inherits. Inheritance enhances the resuability of software and is an important 

feature of object-oriented programming.

iii. Dynamic Binding

Dynamic Binding is an essential mechanism which supports polymorphism in



A Design Method for Object-Oriented Programming Winnie Pun

object-oriented programming. In conventional procedural programming languages, 

the names o f operators and functions are bound to their operations at compile 

time. This leads to the result that an unique name is required for an unique 

operation. With dynamic binding, the name of the operators and functions are 

bound at run-time. This means that the same name can be used for different 

operations. For example, instead of using ‘drawCircle’ for the operation that draw 

a circle, ‘drawSquare’ for the operation that draw a square, a generic name ‘draw’ 

can be used for both operations. Dynamic binding provides a mechanism which 

enables the correct piece of code to be executed at run-time.

1.3. An Object-Oriented Design Method

As happened to traditional structured programming in the 1970’s, object-oriented design 

methods have been greatly in demand as object-oriented programming became more popular 

in the 1980’s. The need for an object-oriented design method can be viewed as two-fold.

i. As mentioned earlier, design methods are responsible for assisting system designers 

to organise design activities towards a particular implementation. Since object- 

oriented programming introduces new concepts in constructing software, a new 

design method is needed to help system designers to construct an object-oriented 

implementation model.

ii. Computer Aided Software Environments (CASE) have become more and more 

important in contemporary software development process. The environment com­

prises a set of tools which contributes to the automation of the software development 

processes. This has enabled dramatic productivity advances in software engineering 

[Gib89, McC89]. Although substantial tools have been developed to support 

software development in traditional design methods, very few have been developed 

for software development in object-oriented programming. In order to develop the 

suitable CASE tools to aid object-oriented software development, a proper design 

method for object-oriented programming has to be developed first. Such a design 

method defines the process to be automated and what sort of tools are required in 

the environment.

1.4. Thesis Goals

Object-oriented programming is not a revolution but a natural evolution in software devel­

opment. It is a continuing evolutionary process that has spanned the past three decades.

9
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The process started with writing programs in one-lined instruction statements. Then, struc­

tured programming came along which abstracted instruction statements into functions or 

modules with parameter lists. When abstract data types programming and object-oriented 

programming came, they advanced the abstraction into a higher level in which functions are 

abstracted into an object and behaviour is separated from implementations. Such an advent 

provides a better integration between human cognition and the programming process. It also 

helps to increase productivity, improve reliability and ease system modifications. Further, 

object-oriented programming encompasses new programming features such as inheritance to 

attack areas that conventional programming has been unable to address satisfactorily.

Although object-oriented programming has become more and more popular, so far a proper 

design method to support the construction of object-oriented software has not emerged. 

Therefore, the primary goal of this thesis is to develop a design method specially for object- 

oriented programming. The characteristic of this design method are:

i. It is dedicated for an implementation in object-oriented programming. It contains 

sufficient guidelines to assist system designers to organise the design activities 

towards an object-oriented implementation.

ii. It defines the design description language which is used throughout the design 

phase.

iii. It has substantial support to help system designers handle inheritance which is an 

important feature found in object-oriented programming.

The usage of this design method is then presented in two case studies.

1.5. Thesis Organisation

The remainder of this thesis is organised as follows:

Chapter 2 provides a background to the research. It states the definition of ‘object-oriented 

programming’ as used in this thesis. It then analyses why existing design methods are 

inadequate to support systems design in object-oriented programming. The analysis includes 

both the popular structured design methods and the few newly emerged object-oriented 

design methods. The results of the investigation highlight the necessity of this research to 

look for a more appropriate design method for object-oriented programming. It also helps 

to specify the requirements of such a design method.

Chapter 3 presents the primary framework of the design method developed in this research. 

The design method is divided into three levels: the conceptual level, the system level and

10



A Design Method for Object-Oriented Programming Winnie Pun

the specification level. The details of each level and the tasks which are required to be 

performed at each level are discussed.

The design method embeds an inheritance factorisation process at the system level. This pro­

cess helps system engineers to construct class hierarchies during the design stage. Chapter 4 

discusses the details of this process. The formal model which lies behind the inheritance 

factorisation process is presented. The application of such a process in system designs is 

also discussed.

In order to examine the performance of the inheritance factorisation process, the first pro­

totype of the factorisation engine is assembled. Chapter 5 describes the implementation of 

this prototype. The algorithms which are employed to implement the prototype and their 

efficiencies are discussed and compared.

Chapter 6  is the evaluation chapter. Both the inheritance factorisation process and the design 

method are evaluated. Plans for further evaluations are also presented in this chapter.

It is recognised that this research is only the first step towards a complete computer aided 

software development environment for object-oriented programming. Therefore, Chapter 7 

talks about the further work involved in this area.

Chapter 8 is the conclusion of the thesis. It compares the work accomplished in this research 

with the original aim of this thesis.

11



“ What is object-oriented programming? My guess is that object-oriented programming 

will be in the 1980’s what structured programming was in the 1970’s. Everyone will be 

in favour of it. Every manufacturer will promote his products as supporting it. Every 

manager will pay lip service to it. Every programmer will practice it (differently). And 

no one will know just what it is.”

Object-oriented programming increased in popularity during the 1980’s. As mentioned in 

Chapter 1, this new programming paradigm encompasses distinguishing features such as data 

abstraction, dynamic binding, information hiding, message passing and inheritance which 

are not found in conventional programming. As Auld [Aul89] explains the reason why 

object-oriented programming is better than conventional programming style is because “it 

attacks the area that traditional methods have been unable to address satisfactory: reusability, 

extensibility and modularity”. However, the excellence of object-oriented programming 

also causes a casual usage of the term ‘object-oriented’. Stroustrup [Str8 8 ] mentions that 

the term ‘object-oriented’ has become a synonym for ‘good’ and people tend to use it 

anywhere they can. Thus, it is necessary to define clearly the definition of ‘object-oriented’ 

used in this research before any further discussion. This chapter begins with a rigorous 

definition of ‘object-oriented programming’. It analyses the features found in object-oriented 

programming and highlights the difference between object-oriented programming style and 

the conventional procedural programming style.

Once the definition of the term ‘object-oriented programming’ has been stated, one can then 

embark on the development of a design method for object-oriented programming. Prior 

to this, an investigation of why existing design methods are inadequate for object-oriented 

programming is presented. Such an investigation is important because it lays down the 

foundation of this research. The investigation is divided into two parts. First of all, it 

examines the compatibility of conventional procedural design methods and object-oriented 

programming. Then it inspects a few existing ‘object-oriented’ design methods which claim

Tim Rentsch

Chapter 2

Background 
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to be suitable for object-oriented programming. The results obtained from this investigation 

show the necessity of this research. It also helps to specify the requirements of the design 

method that has to be developed.

2.1. What is ‘Object-Oriented Programming’?

The notion of ‘object’ was first introduced in the programming language Simula [Bir73, 

Nyg8 6 ] in the 1960’s. The basic idea is to have the programming activity developed around 

the data structure, ‘object’. An object encapsulates a set of variables that describes the state 

o f the object and a set of operations which can act upon the object to change its states. 

Although the idea of object-oriented programming was around then, it did not take off as an 

important paradigm until the late 1970’s when Smalltalk-80 [Gol83a] appeared.

As more and more people recognised the usefulness of object-oriented programming in 

software development, the fundamental concepts and definitions of the term ‘object-oriented’ 

become misused. In order to impress customers, system designers casually attached the label 

‘object-oriented’ to any software they developed and programming languages they used.

In 1988, Peter Wegner published three papers [Weg87, Weg8 8 a, Weg8 8 b] about the defi­

nitions of ‘object-oriented’. In these papers, he successfully differentiated between object- 

oriented programming and conventional programming. Furthermore, he distinguished object- 

oriented programming from object-based and class-based programming. This has helped to 

resolve some controversial issues regarding what object-oriented programming is.

According to Wegner, the term ‘object-oriented’ is defined as:

object-oriented  =  object + class +  class inheritance

This means a programming language is ‘object-oriented’ if and only if it satisfies the 

following three criteria:

i. The language supports ‘object’ as a major language feature.

ii. An object is created as an instance of a class and a class is a template that specifies 

an interface of operations.

iii. Related classes are grouped into a class hierarchy via inheritance.

After Wegner, a number of other people have attempted to give definitions for the term 

‘object-oriented’. For instance, Saunders in his survey paper said that an object-oriented pro­

gramming language should possess: an object creation facility, a message passing capability, 

a class capability and inheritance [Sau89]. Blair et al. generalised the basic requirements 

for an object-oriented programming language to: encapsulation, set-based abstraction and

13
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polymorphism [BGM89]. Since, these alternative definitions are either modified or expanded 

from Wegner’s, it is decided that Wegner’s concise definition should be applied in this 

research. The following sections serve to explain these three criteria in more detail.

2.1.1. Object

In the new Collins dictionary [Han87], an object is defined as:

i. a tangible and visible thing,

ii. a thing seen as a focus for feelings, thought, etc, and

iii. an aim or objective.

In a way, such a definition has already captured the essence of an object in object-oriented 

programming. An object in object-oriented programming is a data entity, a target for 

messages, and each object implements a goal. An object is the basic unit of modularity 

in object-oriented programming. It is an abstraction of state and behaviour that consists of:

i. a set of variables which describe the state of that object and

ii. a set of operations which can act upon the object to change the state.

It is strongly believed that the major merit of object-oriented programming lies in its direct 

correspondence to the real world. The computational model of object-oriented programming 

is constructed around objects and their interactions amongst each other. Such a computational 

model is a natural metaphor of the real world [B0 0 8 6 , Bor85, Gol83b]. This excellence of 

object-oriented programming has, in fact, been recognised in human factors research on 

programming languages. Curtis [Cur82] mentions that in a study, it was found that students 

spent more time with data manipulations and less time with transfer of control. He identifies 

that this as an important point. Conventional programming languages tend to provide massive 

control structures with embedded data manipulations. However, the natural human tendency 

seems to begin with data manipulations and add control structures as a qualification to the 

action. This implies that a programming language which concentrates on data manipulations, 

such as object-oriented programming, provides a better integration of programming process 

with the structure of human cognition. This is almost certainly one of the reasons for the 

success of object-oriented programming in software development.

The definition of an object being an encapsulation of state and behaviour is further extended 

in the concurrent programming domain. With concurrent programming [Kah89, ShT83], an 

object is viewed as a process that contains a mail address and its behaviour. The mail address 

indicates a buffer in which a sequence of messages is stored. The behaviour is denoted by 

its actions in response to a communication. Nevertheless, this research concerns the basic

14
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definition of an object instead of its various extensions in different problem domains, hence 

the definition of an object as an abstraction of state and behaviour is sufficient.

2.1.2. Class

In object-oriented programming, an object is created as an instance of a class. A class is a 

template that specifies the state and behaviour of the object belonging to that class. Hence, 

a class consists of:

i. a set of variables, and

ii. a set of operations.

At a first glance, the definition of an object is very similar to that of a class. The main 

difference between the two actually lies in the fact that a class is a static template which 

defines the structure of a group of similar objects, a class exists in program text. Whereas 

an object is an active entity and its states are updated at run-time [Mey8 8 ].

O f course, this is not the only possible approach to look at classes and objects. In Smalltalk

[Gol83a], classes are viewed as objects themselves. The main advantage of treating classes 

as objects is that it makes it possible to define class routines which can be applied to all 

classes, rather than to all the instances of a given class as standard features do. Further, 

there are discussions about ‘classless’ object-oriented programming languages such as Self 

[Hew77, UnS87] and Actor [Agh83]. In a ‘classless’ language, an object is created by 

copying an existing object, i.e., prototyping. The argument for a ‘classless’ object-oriented 

programming language is that it is simpler. It does not require object-oriented programmers 

to grasp two concepts namely the ‘is an instance o f’ relationship and the ‘is a kind o f’ 

relationship which are typical for a ‘class-based’ object-oriented language, in constructing 

software.

However, the view taken in this research is that the concept of ‘class’ is a nice structuring 

technique which helps system designers to understand the system better. It also reduces the 

search space when system designers try to locate a particular object in the system. Besides, 

if every object belongs to a class, it guarantees that all objects can be treated as first class 

items. With this, objects are allowed to be passed as parameters, a useful programming 

feature [Weg8 8 b]. Moreover, it is important to distinguish the description of an object, i.e., 

the class, and the object itself. This is especially true when inheritance is concerned because 

with class inheritance, one inherits the structure or the description of an object rather than 

its value.
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2.1.3. Class Inheritance
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Inheritance is an important programming issue introduced by object-oriented programming. 

Inheritance is always associated with the specialisation/generalisation relationship between 

two classes. Its basic definition in object-oriented programming is analogous to the usual 

meaning which is familiar to everybody. For example, if classA and classB share an ‘IS-A’ 

relationship and classA is more general than classB, i.e. classB needs a larger set of attributes 

to describe its behaviour, then classA is defined as the superclass of classB and attributes 

defined in classA can be used by classB through inheritance.

Inheritance can be single or multiple. In the case of single inheritance, a subclass has only 

one superclass, hence the class hierarchy is a tree form. In the case of multiple inheritance, 

a subclass is allowed to have several superclasses which leads to a directed graph hierarchy 

structure. Although, it is said that multiple inheritance is extremely useful and provides 

more flexibility to object-oriented programmers [Car84, Mey8 8 , Str8 8 ], it is also believed 

by some people that multiple inheritance can lead to very complicated systems which are 

difficult to comprehend [BoI82],

Danforth and Tomlinson say [DaT8 8 ], “a primary motivation for the use of inheritance in 

programming is that it provides both a specification structuring mechanism and a means of 

reusing specification that is based on common sense notions that are natural to our way of 

thinking”. Indeed, the advantages of having inheritance are basically two-fold:

i. Reusability of Software

Inheritance enhances the reusability of software which is an important aspect of 

software engineering. Inheritance in object-oriented programming brings along two 

kinds of reusability, ‘reusing code’ and ‘reusing specification’ [Joh8 8 ].

ii. Classification Technique

Inheritance acts as a classification technique which groups related classes together 

in a hierarchical structure. This enhances the readability and understandability of 

a system.

Although inheritance is such a useful feature, it is also a problematic issue. System engineers 

have encountered extensive difficulties in constructing class hierarchies [Joh8 8 ]. However, 

most of the difficulties evolved around the basic questions of how to use inheritance and 

what exactly should be inherited. The following discussion gives two different usages of 

inheritance. It also highlights two different school of thoughts concerning inheritance.

i. Non-Strict Inheritance

Non-strict inheritance is also known as implementation inheritance or incidental 

inheritance [Sak89]. Generally speaking, non-strict inheritance implies code shar-
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ing. Its essence is to reuse as much of the existing implementation as possible. 

Non-strict inheritance is usually found in weakly-typed object-oriented languages 

such as Smalltalk. In these languages, the notion of types is implicit and is always 

embeded in the notion of class. The term ‘class’, as mentioned before, denotes 

the template for a group of objects with common properties. These templates 

use symbolic labels to specify the state and the behaviour of a particular class 

of objects. Hence, a label either refers to a storage space or a piece of code. 

In the case of non-strict inheritance, system designers/programmers determine a 

superclass/subclass relationship by:

• applying their intuition to the two classes to decide whether an obvious 

TS-A’ relationship exists. For example, the class ‘car’ is naturally a 

subclass of the class ‘vehicle’.

• checking whether there exist some properties in the potential superclass 

that can be used by^the subclass.

Since there is no type-checking mechanism in a weakly-typed object-oriented 

language to check the formal definition of a label, a more casual attitude to 

class hierarchies construction is allowed. For example, although it is required that 

there must be an ‘IS-A’ relationship between two classes for a superclass/subclass 

relationship to be established, there is no penalty for system designers/programmers 

that violate this rule. Therefore, a reasonable and meaningful class hierarchy 

construction depends very much on the self discipline of the system designers. In 

the extreme, one can put two conceptually unrelated classes in the same hierarchy 

provided they share some common attributes. For example, in the Smalltalk- 

80 system classes, the class ‘semaphor’ is created as a subclass of ‘linked-list’. 

Conceptually, there is no obvious relation between ‘semaphore’ and ‘linked-list’ 

which may lead people to think that they should be put together. One suspects that 

the reason for doing this is because the class ‘semaphore’ can be implemented as a 

linked-list. This certainly breaks down the possibility of using inheritance as a clas­

sification technique. At the same time, it leads to the formation of a class hierarchy 

which is conceptually confusing. Furthermore, if multiple inheritance is applied, 

one can get a very unstructured network which is impossible to comprehend.

ii. Strict Inheritance

Strict inheritance is also known as specification/behaviour inheritance, essential 

inheritance and subtyping [Sak89]. Strict inheritance not only inherits the labels 

and the implementations associated with the labels but also the formal specification 

of these labels. The term ‘formal specification’ refers to the abstract data type

17



A Design Method for Object-Oriented Programming Winnie Pun

specification which involves the signature and the semantic meaning (axioms) of 

the operations in a class. With strict inheritance, a subclass can be derived from a 

superclass if and only if:

• All operations defined in the superclass mean something to the subclass,

i.e. no redundant operations may be inherited.

• Operations which share the same name, types of input and output argu­

ments must do the same thing, i.e. operations which share the same name 

must share the same semantics. For example, a ‘stack’ and a ‘queue’ may 

have the same operations such as ‘add’ to add an element and ‘delete’ to 

remove an element. However, a stack applies a ‘last in first out’ policy 

whereas a queue applies ‘first in first out’ policy. The operation ‘delete’ 

again employs different methods in the implementation. Thus, according 

to the definition of strict inheritance, ‘stack’ and ‘queue’ are not directly 

related.

As one can see, this kind of inheritance imposes a very strict discipline on building 

class hierarchies. A subclass must inherit both the syntactic and the formal semantic 

aspects of its superclass. As Meyer says [Mey8 8 ], this type of complete, non- 

ambiguous, precise manner of using inheritance can only be achieved by specifying 

the interface of a class in formal specification languages [GoM82].

However, strict inheritance can be partially fulfilled in strongly typed object- 

oriented languages such as Eiffel [Mey8 8 ] and Solve [RWW8 8 ]. Here, system 

engineers not only have to deal with a superclass/subclass relationship but also the 

supertype/subtype relationship in constructing class hierarchies. The term ‘type’ 

denotes the signature of an operation. The language provides type-checking facility 

at compile time. Therefore, a strongly-typed object-oriented language prohibits 

system designers/programmers from constructing meaningless class hierarchies, at 

least to a certain extenri.

Another mechanism which serves the same purpose as inheritance is delegation [Lie8 6 , 

Weg87]. Delegation is always found in ‘classless’ languages. It is a mechanism that 

allows objects to delegate properties to one or more ‘successors’. Since in this thesis, 

the term ‘object-oriented’ implies object-based, class-based and class inheritance, the fact 

that delegation is found in ‘classless’ languages makes it inappropriate to be discussed in 

this thesis.

Besides type checking, Eiffel also allows programmers to use assertion statements to guard the semantic compatibility of the 
operations.
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2.1.4. A Language that supports Object-Oriented Programming

The above discussion has stated the definition of the term ‘object-oriented’ as used in 

this research. Of course, object-oriented programming also contains other features such 

as dynamic binding and message passing as mentioned in Chapter 1. However, these two 

features are more to do with implementation and language issues rather than design. Thus, 

this research regards object, class and inheritance are the three basic criteria for object- 

oriented programming.

Though the term ‘object-oriented’ is now defined properly, it is still insufficient to give a 

clear idea as to what an object-oriented programming style is. To most system engineers, 

object-oriented software has to be implemented using one of the orthogonal object-oriented 

languages such as Smalltalk, C++ or Eiffel. On the other hand, there are programmers 

who claim that they can perform object-oriented programming in conventional structured 

programming languages such as C, Ada and Pascal [JaK87]. To these programmers, they 

have to exhibit extra effort or skill to write programs which are object-oriented. They have 

to write extra libraries to attain the object, class concepts and inheritance. The main question 

here is, ‘how does one classify a language that supports object-oriented programming?’. The 

answer to this question is well-stated in Stroustrup’s paper [Str8 8 ], “a language supports a 

programming style if it provides facilities that make it convenient (reasonably easy, safe, and 

efficient) to use that style. A language does not support a technique if it takes exceptional 

effort or skill to write such programs; in that case, the language merely enables programs to 

use the techniques”.

Therefore, in this thesis, the term ‘object-oriented programming’ refers to a technique which 

allows programming in object/class concepts and reuse software via inheritance. Object- 

oriented programming has to be supported by an orthogonal object-oriented languages which 

comprises of facilities and constructs that help programmers to achieve this technique with 

easet.

2.2. Designing Object-Oriented Software

Now that the definition of object-oriented programming is stated, one can investigate how 

software can be constructed in object-oriented programming.

The construction of reliable software depends a lot on using a proper design method. A design 

method gives guidelines for system designers to organise their design activities towards a

There is on-going research concerns the usability of a programming language such as [Gre89].
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particular implementation model. At present, most of the popular design methods are of 

procedural style. They target software developments which use procedural programming 

languages such as Pascal and COBOL. Although some people are currently adopting these 

methods in object-oriented programming, it is not a good practice. In order to justify this 

claim, the first part of this section analyses why conventional structured design methods 

are inadequate for object-oriented programming. As it stands, there are a wide range of 

conventional design methods around and they can be basically divided into two types: the 

data flow and the data structure design methods. Hence, the analysis mainly concerns these 

two types of structured design methods. In additional to this, a few people have suggested that 

entity-relationship modelling is useful in object-oriented programming [Pow87]. Therefore, 

there is a need to look into the possibility of using entity-relationship modelling in object- 

oriented programming.

Apart from conventional design methods, a few so called ‘object-oriented’ design methods 

have emerged recently. The main development includes Booch’s object-oriented development 

[B0 0 8 6 ], Robinson’s Hierarchical Object-Oriented Design (HOOD) [Rob89], Mittermeir’s 

object-oriented software design [Mit8 6 ] and Jacobson’s ObjectOry [Jac87]. These design 

methods are also examined in detail in this section to see whether they support object- 

oriented development to a satisfactory level.

Hence, the rest of this chapter serves as a detailed survey on whether these existing design 

methods are adequate for object-oriented programming.

2.2.1. Data Flow Design Methods

Stevens and Constantine were probably the earliest proposers of using data flow design in 

designing a system [Pre87] but it was Yourdon and Myers who widely propagated the method 

[YoC75]. Data flow design methods use ‘functional decomposition’ as the backbone but also 

focus on the movement of data in a system. It is widely used in data-processing.

Data flow design methods consist of a set of graphical notations which help to develop a 

structured functional specification from an user requirement, for example, data flow diagrams, 

structured English mini specifications and structure charts. The first step of the data flow 

design method is to use data flow diagrams to model the movement of data through a 

particular system. These data flow diagrams are later transformed to corresponding program 

structures in the form of structure charts. There are data dictionaries which work along with 

the data flow diagrams to give precise definitions of the terms used in the data flow diagrams.

The best way to find out whether a particular design method can be used in object-oriented 

programming is to actually design a system in the design method and implement it in
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an object-oriented language. However, to carry out such investigations for each design 

method mentioned in this chapter is time consuming. At the beginning of this research, 

use was made of the fact that 35 second year Computer Science undergraduates at UCL 

have to design a system using Yourdon’s design method and implemented in C++ as their 

Software Engineering coursework. Therefore, their courseworks were conveniendy used in 

this research to analyse whether data flow design methods are adequate for object-oriented 

programming. When examining their courseworks, attention was paid to any significant 

effects cast from the design phase onto the implementation phase.

As a result, two observations were obtained from examining the students’ courseworks:

i. The coding of most students showed that they were actually writing procedural 

programs in an object-oriented language, C++. They had not exploited the use 

of classes as data abstraction technique and inheritance as a means of achieving 

software reuse.

ii. A few students’ implementations bore some kinds of object-orientation. However, 

their design specifications showed no direct correspondence to the decisions they 

made for the implementation phase.

Therefore, it seems that data flow design methods are not suitable for object-oriented 

programming^. The main reasons for this inadequacies are:

i. The basic concept of data flow design methods is to model a system in terms 

of data and transformation processes. It emphasises what input data and output 

data exist in a system and how the input data is transformed into the output data,

i.e., identifying the required transformation processes in the system. This is very 

different from the basic model found in object-oriented programming. In object- 

oriented programming, one is concerned with the set of objects and the interactions 

amongst these objects in a system. Data flow design methods do not support the 

identification of objects and interactions of the system. There is no guidelines about 

how to construct an object, classifying an object and the concept of inheritance does 

not exist.

ii. Furthermore, data flow design methods are targeted at a procedural implementation 

in which modules are generated around operations; data structures are distributed 

between resulting routines. However, in object-oriented programming the reverse 

occurs and the emphasis is on data structures; modularisations and operations are 

generated around data structures.

A discussion of this analysis on whether data flow design is adequate for object-oriented programing can be found in [PuW89a].

21



A Design Method for Object-Oriented Programming Winnie Pun

Such an analysis of the students’ coursework not only has shown that data flow design 

methods are inadequate for object-oriented programming but also has highlighted the issues 

one has to pay attention to when developing a design method for object-oriented program­

ming, for example, the identification and the construction of objects, the identification of the 

interactions between objects. These are very useful in setting up the specification for the 

design method for object-oriented programming.

2.2.2. Data Structure Design Methods

Data structure design methods are said to be useful for systems with well understood 

data structures [RPT84]. They produce a program structure by designing input/output data 

structures. A strong representation of this type of design method is Jackson System Design 

(JSD) [Jac83].

JSD is a design method that covers system development from definition through design 

into the production phase [Bi085]. Unlike data flow design methods, it does not start with 

functional requirements but concentrates on modelling the real world. The development 

steps of JSD can be classified into three stages: the modelling stage, the network stage and 

the implementation stage.

The modelling stage is to specify the model of the real world. It further subdivides into 

two steps, the entity-action and the entity-structure steps. In the entity-action step, all the 

entities and actions involved in a system are identified. In JSD terminology, an entity is 

characterised by the action which it performs or suffers. An action is always performed or 

suffered by one or more entities. An action must take place in the real world at a specific 

instant of time. The action not only occurs in the system itself but also in reality. The 

entity-structure step specifies how the actions are ordered within an entity. It defines the 

ordering of actions that describes the life cycle of the entity. This step also contains a set 

of graphical notations which supports the three classical algorithm/programming constructs: 

iteration, sequence and selection.

In JSD, the entity structures constructed in the first stage are regarded as model processes. 

The network stage concerns how to connect new processes to these model processes to form 

a network. New processes can be added to model processes either by state vector connection 

or data stream connection. This stage is further subdivided into three steps:

i. the initial model step which simulates the real world in terms of communicating 

model processes.

ii. the simulation of the real world resulting from the above steps provides the basis 

on which the system functions are to be specified. In this step, the developer inserts
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the required system functions into the model in the form of function processes.

iii. system timing step which specifies the timing constraints in the system for use in 

the next step.

The implementation stage of JSD emphasises two important issues:

i. how to run the processes that comprise the specification?

ii. how to store the data that they contain?

An important point in the JSD design method is that it conceptually assumes that every 

entity runs on an individual processor. For example, each book in a library is a process

that runs on a processor. Of course, this is not yet feasible. Hence, the main theme of the

implementation stage is to transform such a design into a form that can be realised on the 

target programming language, operating system and computer.

The main reasons why JSD is said to be a potential design method for object-oriented 

programming are:

i. its entity-action step is about identifying entities and actions involved in a system 

and this is analogous to the step concerns identifying objects and interactions as 

found in object-oriented programming,

ii. its network stage concerns how to connect new processes to model processes to 

form a network and this can be viewed as identifying the interactions amongst 

objects in object-oriented programming.

However, when one examines the method more closely, JSD is not a good candidate for 

object-oriented programming as it seems to be. Firstly, although both JSD and object- 

oriented programming emphasises identifying entities/objects and actions within a system, 

there is a difference between the term ‘entities’ used in JSD and the term ‘objects’ used in 

object-oriented programming. According to JSD, an entity has to contain an ordered set of 

actions. In other words, an entity in JSD is just like a process which is defined as a sequence 

of actions. But in object-oriented programming, an object is defined as a set of variables 

which describes its state and a set of operations which describes its behaviour. The order of 

the operations is not required. Although, there are papers which mentioned that the object- 

oriented paradigm is similar to the process-paradigm and that one can be incorporated in 

the other [Str86a], it is strongly felt that to treat an object as a process imposes unnecessary 

constraints on the user. Moreover, object-oriented programming emphasises reuse. One way 

to achieve this is to design the object as general as possible so that its properties can be 

reused through inheritance. If one has to define the order of operations for an object, the 

object becomes specific to a particular application and difficult to reuse. Therefore, it seems
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that JSD is much more of a ‘modelling approach’ than it is an ‘object-oriented approach’. 

It emphasises creating time-based models of real world entities and models of their ‘real 

world’ interactions. Whereas, the objects found in object-oriented programming should not 

be designed based on their life cycles within a particular application.

2.2.3. Transformations of Conventional Design Methods

Since conventional structured design methods cannot be used directly in object-oriented 

programming, a few people have proposed some transformation techniques to convert speci­

fications which are generated from conventional design methods to be used in object-oriented 

programming. For example, Alabiso [Ala88] has presented a transformation for data flow 

analysis models to object-oriented designs. Ward [War89] has introduced a method to 

integrate object-orientation with structured analysis and design. Poo et al. [PLK89] and 

Elizabeth et al. [EHZ89] have investigated how to modify JSD to be used in specifying 

object-oriented systems. The reasons for modifying conventional design methods to be used 

in object-oriented programming are two-fold:

i. Most system designers have been using these conventional design methods for a 

while. They are familiar with these design methods and may be unwilling to adopt 

a new design method.

ii. A popular and adequate design method for object-oriented programming has not 

yet emerged.

These people believe that changing the notations of the specifications in existing conventional 

design methods or re-interpreting a design specification in an object-oriented manner is 

sufficient to obtain an object-oriented design. This belief is analogous to the one which said 

that object-oriented programs can be written in procedural languages such as C and Pascal 

[JaK87]. As mentioned earlier, to write object-oriented programs in procedural languages 

may be possible but the extra efforts and skill required from the programmers are tremendous. 

Likewise, in order to perform a sensible transformation between the two different paradigms, 

the system designer has to be an experienced user of the structured design method, to be 

completely familiar with object-oriented programming, and to fully understand how the 

transformation works. Besides, just carrying out a transformation on a structured design 

specification to an object-oriented design specification is definitely not enough to construct 

object-oriented software successfully. Design has a lot to do with thinking and organising. 

To acquire a precise implementation model, the designer has to be aware of object-orientation 

in the early stages of the software development.
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Entity-relationship modelling [Che76, Eas86] is a data modelling technique. It is used in 

the analysis phase of the software development cycle. It is complementary to methods such 

as Yourdon, JSD or SADT. Methods like data-flow design provide a global analysis for 

the system with emphasis on the data flows in to and out of a process. Entity-relationship 

modelling, however, concentrates on analysing what is in the data store. The technique, in 

principle, models a system using three building blocks: entities, relationships and attributes.

Entity-relationship modelling concentrates on the fundamental data items of a system. It 

analyses how these items are related to each other and examines the properties they possess. 

This corresponds to certain characteristics of object-oriented programming. Both entity- 

relationship modelling and object-oriented programming emphasise the identification and 

interaction of objects within a system. Furthermore, in object-oriented programming, the 

term ‘object’ is defined as a distinct element and resembles the ‘entity’ in entity-relationship 

modelling.

With respect to the relationship issue, there are three different kinds of ‘relationships’ found 

in object-oriented programming:

i. Inheritance

This kind of relationship is found between two distinct classes. For example, if 

‘bus’ is defined to be the subclass of ‘vehicle’ then the object of the class ‘bus’ 

will inherit all the properties of class ‘vehicle’.

ii. Instantiation

This kind of relationship is found between objects and classes. For example, Bus 

No.27 can be defined as an instance of the ‘bus’ class.

iii. Interaction

This kind of relationship is found between objects and objects. It is normally 

denoted when one object sends messages to another object.

In entity-relationship modelling, there is only one kind of relationship and that is the 

association between entities. For example, ‘attend’ might be a relationship set between 

the entity sets ‘Student’ and ‘Course’. This relationship is analogous to the ‘interaction’ 

relationship found between two objects in object-oriented programming. As mentioned 

earlier, the ‘interaction’ relationship found in object-oriented programming concerns message 

passing. Thus, the next step is to see whether the relationship in entity-relationship modelling 

gives an insight to the kind of messages that should be included in a certain object.

Consider an object-oriented programmer using the entity-relationship modelling technique
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to analyse a system that dealt with school records. One may end up with diagrams such 

as that shown in Figure 2.1. To interpret this diagram in an object-oriented way, one may 

feel that the ‘School’ and the ‘Teacher’ are two distinct classes. The relationship ‘employ’ 

tells us that one or more messages^ concerning this relationship should be implemented. For 

example, one could include a message ‘employed_by’ in the ‘Teacher’ class. By sending 

this message to a particular teacher e.g., ‘Teacher_A employed_by:’, one will receive the 

school which Teacher_A teaches at. It is also valid to include a message ‘employed_by’ 

which takes an argument, e.g., ‘Teacher_A employedJby: School_A’. This message returns a 

boolean value which indicates whether Teacher_A is employed by School_A or not. At the 

same time, it appears that it is perfectly correct for a programmer to choose to implement 

the related message in the class ‘School’. For example, one could implement a message 

‘employ’ in the ‘School’ class so that ‘School_A employ:’ returns a list of teachers who are 

employed at that school.

Student

SchoolTeacher

Course

HeadTeacher

attend

Figure 2.1: An Entity-Relationship Diagram

From the above example, it seems that messages have to be implemented whenever a 

relationship is detected. However, there are still problems:

i. A relationship is an association between two entities. If we are going to implement 

messages concerning a relationship, which entity set (class) should these messages 

belonged to?

ii. Is there any difference which class such messages is assigned to?

iii. What about including such messages in both classes?

The term ‘message’ is originated in Smalltalk and it means a request for an object to carry out one of its operation.
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Besides, there are three kinds of relationship found in object-oriented programming. How­

ever, entity-relationship modelling only addresses the ‘interaction’ relationship explicitly. 

Consider the previous example, the experienced object-oriented programmer has probably 

already noticed that the ‘HeadTeacher’ class is a subclass of the ‘Teacher’ class and the 

‘Teacher’ class is a subclass of the ‘Person’ class. This kind of relationship, ‘inheritance’, 

is not included in entity-relationship modelling. The ‘inheritance’ relationship, however, 

is regarded as an important issue in object-oriented programming. It contributes a great 

deal to achieving reusability. Thus, it seems important to provide a notation to express this 

relationship in the analysis/design phase. Indeed, some people are trying to achieve this by 

extending the E-R notation to capture the inheritance relationship as well [War89].

Generally speaking, Entity-Relationship modelling is effectively used to analyse static aspects 

of a system. It concerns the data stores and the relationships between different data stores. 

Whilst it may help to identify some of the objects in an object-oriented system, especially 

the static ones, it does not help to analyse the interaction between objects, the dynamic part 

of a system.

Just as in conventional programming, entity-relationship modelling cannot be used on its 

own in constructing an information system. The modelling technique only models the data 

relations in the system. To be useful, the design method must provide a framework in which 

the architecture of such an information system can be constructed. Hence, entity-relationship 

modelling alone is insufficient to construct an object-oriented system.

2.2.5. Booch and HOOD Design Method

Booch was one of the earliest people to look into the development of an object-oriented 

design method. In 1986, he published a paper [B0 0 8 6 ] which states that an object-oriented 

design method should consist of the following steps:

i. identifying the objects and their actions.

ii. identifying the operations that may be acted upon the objects.

iii. identifying the relationships between objects and operations.

iv. examining the detailed design to give implementation descriptions for objects.

These steps are then reiterated recursively in order to obtain a complete design. In fact, 

this set of steps has summarised the essential procedures for object-oriented design and 

is regarded as the basic framework for most of the other object-oriented design methods 

[Lor8 6 ]. Booch’s method also provides some graphical notations for system designers to 

represent the program components and packages (see Figure 2.2).
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Generic Package Subprogram Generic Subprogram

(\
Subsystem

V J
Figure 2.2: Graphical Notations for the Booch’s Diagram

HOOD was developed by the European Space Agency (ESA) as a design method in the 

ESA Software Engineering Lifecycle. It is very similar to the Booch’s design method, 

in fact, HOOD is usually regarded as an extension of the Booch’s method. The design 

method is interfaced with SADT in the analysis/requirement phase and is targeted at the Ada 

programming language in the implementation phase. It is divided into four stages:

i. Definition and analysis stage.

ii. Revise the definition and analysis stage in natural language.

iii. Identify the nouns and verbs from the natural language specification to be objects 

and actions of the system.

iv. Refine the design and produce a formal object description skeleton to be ready for 

coding. The object description skeleton concerns interfacing in Ada syntax and 

semantics.

HOOD, also incorporates a graphical notation to allow systems <iasigners to express their idea 

in diagrams (see Figure 2.3). There are at least three computer-aided software engineering 

(CASE) toolsets which have been developed to support HOOD [Rob89].
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Figure 2.3: Graphical Notations for the HOOD Diagrams

As it stands, the fundamental problem with these two methods is that they are targeted at 

systems which are to be implemented in the programming language Ada [Bar82]. Now 

whilst whether Ada is an object-oriented programming language is still a debatable issue 

[Tou87, Weg87], it is generally felt that design methods which are geared towards Ada 

implementation do not fully support the features found in object-oriented programming. 

As Pressman [Pre87] mentions in his book, “The object-oriented design method of Booch 

is oriented towards software development in programming languages such as Ada. The 

method does not address a number of important object-oriented concepts (e.g., inheritance, 

messages) that can serve to make object-oriented design even more powerful”. Besides, a 

good design method should not be closely bound to a particular programming language, these 

two methods have already demonstrated inflexibility in this sense. In the case of HOOD 

design method, its inflexibility is even more obvious. Robinson, him self stated in his paper 

[Rob89], “ESA has decided to use SADT for requirements analysis for the Columbus Space 

Station project software, and Ada had been selected as the main programming language 

for onboard and ground software. Some sort of PDL was planned for the detailed Design 

Phase, so HOOD had to fit between SADT and PDL with Ada as the target programming

language ’̂ .

There are also criticisms about the graphical notation employed in the B ooch’s method. 

Some people have expressed concern about the program components and package notations. 

They say that these notations require certain details which are not easy to use with automated 

graphical editing system [Som89].

All these points imply that Booch’s and HOOD design methods are not true object-oriented 

design methods and do not fully support object-oriented system developments.

This au tho r’s italics
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2.2.6. Mittermeir Object Oriented Software Design

Mittermeir described an object-oriented method for large scale software design in 1986 

[Mit86]. His object-oriented design method adopted the conceptual modelling language, 

CML [Mit82] which is based on a semantic data base method to support the requirement 

analysis and conceptual design. The design method is divided into three steps:

i. Object identification step.

ii. Network step.

iii. Disaggregration/specification step.

The object identification step consists of three substeps:

i. reality capture to identify objects of reality which are relevant for the system to be 

developed

ii. attribute capture to identify the properties of each object

iii. normalisation to rule out functional dependencies within an object

The network stage is used to identify the interaction between the objects in the system. It is 

also responsible for setting up the message passing communication amongst objects in the 

system. This step results in specifying objects’ interfaces and guiding designers as to how 

to actually implement the object interactions’ connection structure.

The disaggregation/specialisation step consists of two substeps:

i. the object disaggregation substep is to decompose the objects into subobjects.

ii. the object specialisation substep determines the speciality classes of the generalised 

objects that are defined earlier in the design phase.

As it stands, the object-oriented design method suggested by Mittermeir addresses impor­

tant object-oriented features such as message passing and inheritance. Although the basic 

framework of the Mittermeir design method is similar to that of Booch, Mittermeir has 

refined each step in the framework in more detail. For example, the object identification 

step is further divided into three substeps. It suggests that the identified objects should be 

categorised into input/output, initiating/passive, and referenced/consumed objects. Hence, 

the Mittermeir design method is more an object-oriented design method than Booch’s design 

method.

However, the method suggested by Mittermeir is still inadequate for object-oriented system 

development. As a design method, it defines what should be done in each step but does 

not specify the interface between each step. For example, how to present the information
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obtained in the object identification step to the network step is not specified. Hence, again, 

the design method lacks a means of continuity which allows system designers to go from 

one step to the next comfortably.

Furthermore, although inheritance is regarded as an important issue in object-oriented pro­

gramming, this issue is not emphasised or supported enough in the design method.

2.2.7. ObjectOry

ObjectOry [Jac87] is a development method for large systems. It is divided into two phases:

i. system analysis.

ii. system design.

The system analysis phase is used to set up the conceptual model for the system design

phase. The system analysis phase is divided into three sub-factories:

i. Entity modelling - this is used to model the static aspects of the system. The result 

of the modelling is shown in a conceptual diagram in which nodes correspond to 

entities and arcs correspond to relations.

ii. Use cases modelling - “A use case is a special sequence of transaction, performed 

by the user or the system in a dialogue”. The result of the use cases modelling is 

a kind of conceptual diagram which denotes the relation of use cases and entities. 

There are two kinds of relations:

• the built-on relation which is found between different use cases. It

indicates a use case is a specialisation of a more general use case. The

built-on relation, in fact, highlights the inheritance relation between two 

use cases.

• the access relation which is found between entities and use cases. It 

highlights those entities which can be accessed by a use case.

The conceptual diagrams generated from use cases modelling is mainly used as 

the specification in discussions between developers and clients (see Figure 2.4). 

They are also used internally to check whether the developed system meets the use 

requirements.
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Figure 2.4: A Schematic Conceptual Model of the System’s Use Cases

iii. Service modelling - A service is a cluster of similar parts of use cases. Service 

modelling is important to identify a suitable structure for the system. As a result, 

three types of relation are identified between services:

• the IS-A relation means that a service is a specialisation of another, this 

indicates the inheritance relation between two services.

• the extension relation simply indicates that a service is an extension of 

another.

• the interaction relation denotes the communication between two services.

The result of the system analysis phase yields three kinds of conceptual diagrams, those for 

entities, use cases and services. These diagrams are then used as the input for the system 

design phase. The system design phase is again divided into three sub-factories:

i. system level design

This is used to identify the system structure. It is further sub-divided into four 

sub-factories: system structuring, use case design, use case testing and system 

testing.

ii. block design

A block in the system is constructed as a factory. Note that a block is said to be 

implemented as a class in object-oriented programming.

iii. component level design

This is where system components are built.

As it stands, ObjectOry can be regarded as a promising approach for object-oriented system 

development. The method covers both the analysis and the design phase. Each phase is
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sub-divided into several stages. The details of each stage are clearly defined and the input 

and output of each stage is specified. The design method highlights some object-oriented 

features, for example, the blocks used in the design phase will be implemented as classes 

using object-oriented programming. Also, the method encourages the inheritance relations 

to be expressed in the analysis stage. Further, ObjectOry is a user-oriented design method. 

The use cases concept in the method help to develop a user-driven system.

However, ObjectOry is not a design method which is specially developed for object-oriented 

programming. In fact, the method incorporates three independently developed techniques:

i. block design.

ii. conceptual modelling.

iii. object-oriented programming.

This is probably the reason why ObjectOry looks so complicated. Further, as Jacobson 

mentions in his paper [Jac87], the framework of this design method originates from Ericsson 

Telecom and is widely used in the telecommunication industry. Thus, one can easily find 

some phases and descriptions in the design method that are specially aimed at telecommunica­

tion software. For example, a service is defined as an indivisible ordering packet of functions 

for a specific system. The term ‘packet’ is one oriented to telecommunication. In addition 

to this, there are a large number of terms and concepts used in the design method such 

as use cases, services, factories, etc which are new to system designers. The consequence 

of this is that system designers who are not in the telecommunication industry may find 

the method difficult to understand and follow. This also means that system designers who 

are familiar with current structured design methods such as Yourdon’s and JSD will have a 

difficult transition to object-oriented design.

The method encourages the expression of inheritance relations in the analysis phase but there 

is no general guideline of how it should be handled, especially in the design phase. It is 

strongly felt that some sort of support should be given in the design phase to ease the job 

of designers in handling inheritance and designing class hierarchies.

2.2.8. Summary

In software engineering, design is the process of applying various techniques and principles 

for the purpose of defining a system to solve a given problem. The system should be defined 

in sufficient detail to permit its physical realisation. A design method should help system 

designers to organise the design activities towards such a definition. It should decompose 

the design activities into distinct and ordered tasks, providing tools appropriate to each task 

and criteria for the correct completion of the task. More importantly, it should set up the
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appropriate implementational model for the implementation phase. Hence, the design method 

should embody the same model as the implementation language so that the transition from 

the design phase to implementation phase is straight forward.

With conventional structured design methods, the design method organises the design activity 

towards an implementation in a procedural programming language. It targets an implemen­

tational model in which modularity and abstraction lies within an operation; functional 

abstraction. The decomposition of the system is based on its functionality. The graphical 

constructs and notations provided by these design methods are geared towards procedural 

programming. In object-oriented programming, the modularity and abstraction lies within an 

object. This kind of mismatch, therefore, forms the basis of why these conventional design 

methods are inappropriate to be used in object-oriented programming.

Although transformation techniques have been developed to allow specifications generated 

from conventional design methods to be used in object-oriented design, as the fundamental 

philosophy of these design methods and object-oriented programming are different, they do 

not seem to provide a satisfactory solution.

In the case of the existing ‘object-oriented’ design methods, it was found that these existing 

design methods do facilitate the development of object-oriented software to a certain extent. 

They all agree on a common framework which emphasises the identification of objects and 

their corresponding actions within the system. However, most of the development of these 

design methods are not dedicated to object-oriented programming. Whilst some of them 

are developed as a design method to fit in a pre-defined software environment, others were 

developed for a particular programming language. For example, the development of HOOD 

had to be consistent with a software environment which takes SADT as the requirement 

analysis method and Ada as the programming language. In this case, the development of a 

true object-oriented design method becomes less important than a design method that fits in a 

pre-defined environment. The consequence of this is that not only the resulted design method 

is inflexible to use, but also that it does not fully support the main features of object-oriented 

programming.

One of the important feature in object-oriented programming is inheritance. A design method 

for object-oriented programming should fully support this feature. It should have guidelines 

and even software tools to help system designers to construct the inheritance hierarchies. 

However, as one can see, the four existing object-oriented design methods do not support 

inheritance to an acceptable extent, for example Booch’s design method and HOOD which 

are bound to the programming language Ada. Since Ada itself is not a true object-oriented 

programming language, it does not support inheritance. Hence, the design methods which are
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targeted at Ada as the implementation language do not support inheritance t .  The Mittermeir 

method and ObjectOry have discussed inheritance in their design process but do not provide 

full support or guidelines for system designers to handle inheritance.

2.3. Conclusion

This chapter has defined clearly the term ‘object-oriented’ as used in this research. It has 

analysed why existing design methods are inadequate for object-oriented programming. The 

result of the analysis highlights that an alternative design method for object-oriented pro­

gramming has to be developed. Such a design method should emphasises object-orientation 

awareness in the early stage of the design phase. The method should contain adequate support 

for system designers to handle inheritance. The method would guide system designers to 

organise the design activities towards an object-oriented implementation. Chapter 3 of this 

thesis gives a detailed description of the design method which has been developed according 

to this specification.

The importance of inheritance, in fact, has recognised by some of the authors of the existing object-oriented design methods 
recently. In June, 1989, Booch gave a seminar in London and said that he realised that a shortcoming of his design method was 
having no support for inheritance. Hence, he has extended his method to cover this issue so that it caters for more orthogonal 
object-oriented programming languages such as Smalltalk-80 and C++.



“A systematic approach to design simplifies the process and results in software which 

is understandable, verifiable and reliable without stifling the creativity o f the software 

engineer."

~  Ian Sommerville ~

Chapter 3 

The Design Method

The previous chapter highlighted the deficiencies of existing design methods when applied 

to object-oriented programming. Therefore, the primary goal of this research is to develop a 

design method which is specially targeted towards an implementation in an object-oriented 

language. Such a design method would form the core of an integrated object-oriented 

software development environment.

This chapter serves the purpose of describing the primary framework for the design method 

resulting from this research. It starts off by discussing the goals and defining the scope of 

such a design method. It then gives an overview of the design method prior to a detailed 

discussion. This chapter concludes with a discussion of other issues which are related to 

object-oriented systems design.

3.1. Basic Principles of the Design Method

The design method developed in this research is specifically tailored for object-oriented 

programming. Before describing the design method itself, it is important to first define the 

design principles of this method. This also serves to explain how certain design decisions 

are made with respect to this method.

3.1.1. Attitudes towards Design

Like most design, software design is a creative process. It requires a certain amount of 

experience and intuition from the software engineers. Software engineers seldom find that 

they can attain a good design at the first attempt. A good design is always the result of a
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number of preliminary designs. As Sommerville says [Som89], “Design cannot be learned 

from a book - it must be practised and learned by experience and study of existing systems”. 

A design method cannot be expressed as a formula which when followed it, guarantees a 

successful design. What a design method can do is to provide enough guidelines for system 

designers to organise the design activities towards a particular goal. It guides the designer 

in getting from one point to another in the design phase. It provides clear instructions about 

what to do next whenever there are a large number of choices.

Therefore, the main principle of the design method in this research is to provide a set of 

guidelines to help system designers to organise the design process towards an implementation 

in an object-oriented programming language. The design method does not impose rules to 

hinder the creativeness of the designer.

Most system designers have some knowledge about existing structured design methods. 

Although it has been found that these design methods are inadequate when applied to object- 

oriented programming, it is better to have the design method bear some similarities to existing 

design methods when possible. In this way, system designers are familiar with the design 

method and this will bring down the learning curve. Therefore, the design method from this 

research tries to use constructs which are already be familiar to system designers.

Further, the design method is designed to serve as a teaching aid for the novice in object- 

oriented programmer. It helps them to understand the philosophy and characteristics of the 

object-oriented programming paradigm. For the experts in object-oriented programming, the 

design method also serves as a documentation tool. It aims to assist them to document and 

realise each stage in the design process.

3.1.2. Analysis and Design

Software development always begins with a problem thought to be solvable by a computer 

system. It then goes through a process in which the solution is presented in software. During 

the development process, a sequence of decisions have to be made which leads to a target 

system that can be assembled and used.

The classic life cycle for software development is known as the ‘waterfall model’. This is 

illustrated in Figure 3.1. The ‘waterfall model’ demands a systematic, sequential approach 

to software development which starts off with the requirement analysis phase and progresses 

through design, coding and testing.
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Design

Maintenance

Figure 3.1: The ‘Waterfall Model’ for the Software Development Cycle

de Marco [deMar78] said, “In the specific domain of computer systems development, analysis 

refers to the study of some applications, usually leading to the specification of a new system”. 

System analysts need to understand the problem domain and its development environment. 

Although it is often suggested that the requirement analysis phase is to find out ‘what’ is to 

be implemented and the design phase is to figure out ‘how’ to implement it, it is impossible 

to carry out a detailed analysis and to produce a precise requirement specification without 

some design activities. System analysts not only interact with the clients and the end-users t, 

but also communicate a lot with software engineers. Hence, the requirement analysis phase 

is always found to overlap with the design phase.

In fact, the distinction between the analysis and the design phases is even more blurred 

in object-oriented programming. It is generally agreed that object-oriented programming is 

more suitable for prototyping [DiM87, Mey88, Som89] (see Figure 3.2). Hence, the classic 

‘waterfall model’ is no longer applicable in the development of object-oriented programs. 

The software development cycle for object-oriented programming has been described as a

In this thesis, clients are people who want to construct the computer systems, end-users are people who actually use the 
computer systems when it is constructed.

38



A Design Method for Object-Oriented Programming Winnie Pun

‘recursive/parallel’ cycle in which the various phases in the development cycle overlap each 

other. The requirement analysis phase and the design phase are no longer independent.

Quick Design

Build Prototype

Eviliute and 
Refine Requirements

Engineer Product

Figure 3.2: The ‘Prototype Model’ of the Software Development Cycle

This characteristic has, in fact, been recognised in this research. The design method 

developed encourages interactions between the analysis and the design phases. The design 

method assumes that the requirement analysis and the feasibility study of the system have 

been carried out and a set of requirement specifications is ready prior to using the design 

method. However, the first part of the design method specifies how the conceptual model 

should be set up and used in the rest of the design phase.

3.1.3. Modelling

A model is a representation, usually on a smaller scale, of a device, system, structure etc. 

Modelling is regarded as an effective mechanism for the technical analysis of software 

systems. In fact, the different phases in software development can be viewed as the different 

processes required to construct different models.
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Figure 3.3: Modelling in Software Development Cycle

As shown in Figure 3.3, the software development process begins with the requirement 

analysis phase. The aim of the requirement analysis phase is to find out what exactly the 

client wants. This leads to the construction of a conceptual model of the software system. A 

conceptual model is basically a high level abstract representation of the system. It presents 

a system view which is understood by clients and expected by end-users. In the later 

stage of the software development, such a conceptual model has to be transformed into an 

implementation model. An implementation model is a representation of the system with 

respect to the implementation environment o f the system, e.g., the kind of implementation 

language one is going to use. The implementation model generally acts as a reference model 

for programmers to implement the system.

To transform the conceptual model to the implementation model is, therefore, the objective 

o f the design phase. In a way, the design process can also be viewed as a collection of 

modelling processes. For example, it may involve data modelling, control modelling and 

process modelling of the system.

In view of this, the design method of this research specifies the kind of conceptual model 

required in the first stage of the design phase. The design method then provides guidelines 

for system designers to transform the conceptual model into an implementation model. 

O f course, the implementation model accomplished here is one which is suitable for an 

implementation in an object-oriented programming language.
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3.1.4. Design Description Language
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As mentioned earlier, the software development process involves constructing appropriate 

models at different stages. These models are normally specified using a design description 

language. The design description language can either be textual, graphical or both. As it is 

widely agreed that the human mind acquires information at a significantly higher rate from 

notations in pictures than by reading text [Cha80, Rae85], models are usually specified in a 

graphical form.

Besides graphical and textual description languages, specifications can be specified in a 

very formal, mathematical approach, i.e. formal specification languages, which is very 

popular in the formal methods community. The main advantage of formal specifications 

is that they have a precise meaning [LiG86]t. With a formal system specification and 

a complete formal programming language definition, it may be possible to prove that a 

program conforms to its specification. This can demonstrate that certain classes of errors are 

absent [Som89]. However, formal specifications have not been widely used because they 

require system developers to have a familiarity with discrete maths and logic. Besides, it 

is hard to demonstrate that the development of a formal system specification will reduce 

software development costs.

Nevertheless, it has been decided in this research that to attain visibility in a design is 

more important. Hence the design method developed tends to use graphical constructs in 

specifying the models. These graphical constructs are easy to learn. With the help of 

graphical editors, users should not find that they have to spend too much time on manually 

drawing the graphical constructs and can spend most of their time on the main system design.

3.1.5. User Interface Design

In the early days, the user interface was not regarded as part of the system design. Often, 

system designers either treated the user interface design as a separate issue or left it untill 

the end of the system development. This observation can be further supported by the fact 

that most of the traditional design methods do not include user interface design as part of the 

design method. However, in order to attain a successful and usable system, system designers 

should focus on user interface design at an early stage of the design phase [GoL85, Kli77]. 

Besides, a user-oriented approach to system design helps to reduce conflict and promote 

cooperation between users and designers [Luc71].

1 Formal semantics can sometimes found in graphical notations such as Petri Nets [Pet77].
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Therefore, the design method developed in this research brings in user interface issues at 

an early stage of the system design. It emphasises that user interface design is not only 

important but also has to be looked at at an early stage.

3.1.6. Design in Different Problem Domains

Just like all other design methods, it is unwise to think that the design method developed 

in this research can be applied to all cases of object-oriented systems design. Software 

systems can be grouped into different domains depending on their characteristics. There are 

specific systems such as concurrent systems, distributed systems, real-times systems. Each 

of these specific systems emphasises different aspects in the system development. There is 

no one method which can cater for systems in all problem domains. In fact, when one looks 

into the development history of structured design methods, one finds that a general purpose 

structured design method such as Yourdon’s method was first introduced, then modified and 

further developed to fit different problem domains. For example, Post [Pos86, War89] has 

modified the structured method to apply in the real-time industrial software development. 

Gomaa [Gom84] has extended the Structured Analysis/Structured Design method (SASD) 

for real-time systems.

Therefore, the primary aim of this research is to obtain the general framework of the design 

method for object-oriented programming. It is believed that the design method will have to 

be developed further in order to fit in special domains such as building concurrent systems.

3.2. An Overview of the Design Method

This section gives an overview of the design method before a more detailed discussion is 

givent.

As shown in Figure 3.4, the design method is basically divided into three levels:

i. the conceptual level,

ii. the system level and

iii. the specification level.

A summary of this section can be found in [PuW89b, PuW90a].
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Figure 3.4: The Overview of the Design Method

The design method has been developed to fit into a ‘prototyping’ software development 

environment. Thus different phases in the process overlap with each other. Because of this, 

the design method not only covers the design phase but also part of the analysis phase. 

A set of requirement specifications needs to be ready prior to using the design method. 

With the requirement specifications, system designers go through the stages suggested in the 

method to produce a set of design specifications. This set of design specifications will then 

be taken by the programmers and implemented in an object-oriented language. Due to the 

characteristic of the ‘prototyping’ model, the three levels mentioned in the design method 

are re-iterated throughout the design phase.

The design method starts off with the conceptual level. The main objective of the conceptual 

level is to identify the objects and operations occuring in the application layer of the system. 

The designers obtain information from the clients, analyse it and construct the conceptual 

model for the application. Such a conceptual model is presented by object-interaction 

diagrams.

Once the conceptual model of the application is set up, system designers enter the system 

level. The system level is where the implementation model of the application is assembled. 

There are three issues which are of interest at this level:

i. object inclusion,

ii. object interaction and

iii. class inheritance.

The system level is mainly concerned with how an object is constructed and since an object
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in object-oriented programming is created as an instance of a class, it is also concerned with 

how to construct a class. This leads to the identification of the set of variables and the set of 

operations that belong to a class. As well as this, the interactions between classes, especially 

existing system classes must be taken into account when constructing classes. For example, 

a class can be created as a subclass of an existing system class. In some cases, it may even 

lead to the construction of new class hierarchies. Further, it is also necessary to understand 

the interactions amongst the objects at the system level. All this information can be recorded 

in the object-interaction diagrams.

With the information obtained from the conceptual and the system levels, system designers 

should be able to specify the objects and the interaction between objects. This kind of 

information is presented in the ‘class structure chart’ and the ‘message structure chart’ at 

the specification level. In fact, these charts will be taken as design specifications by the 

programmers to implement the system.

3.3. Detailed Description of the Design Method

This section of the thesis presents the details of the individual stages of the design method. It 

discusses the objective of each stage and the steps required in order to achieve the objective in 

a comprehensive manner. Throughout the discussion, examples drawn from the development 

of a ‘GP Surgery Notes System’ and a ‘Home Heating System’ are used to illustrate the ideas 

central to the design method. Both these systems were developed with this object-oriented 

design method. The usage of the design method in developing these two systems can be 

found in Appendix A and Appendix B.

3.3.1. The Conceptual Level

The conceptual level is regarded as the front end of this design method. Its main objective 

is to set up the conceptual model of the application. The objects and interactions involved in 

the application layer of the system are identified and presented as the conceptual model of 

the system. The conceptual model, as defined earlier, is a representation of the system which 

is mutually agreed between system analysts and clients. It contains very little information 

about the implementation of the system.

The conceptual level can also be viewed as the back-end of the requirement analysis 

phase in the software development process. The requirement analysis phase itself is a 

complicated process. It ranges from interviewing clients and end-users and analysing their 

needs to specifying both the functional behaviour of the proposed system and non-functional 

requirements that must be met [Bor85]. As the requirement analysis phase is a complex
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one, various methods and techniques have been developed to ease the task of analysts. 

Some of the more popular ones are Structured Analysis [Mar78], SADT [RoS76], SREM 

[SSR85] and SSADM [AsG90]. There are also requirement analysis methods which are 

specially for user-interface design such as TAKD [Joh85]. Obviously, to attain a complete 

and consistent software development process, it is better to have the requirement analysis 

method compatible with the design method. Therefore, a better candidate for a requirement 

analysis method to complement this design method would be one which is object-oriented.

One of the earliest attempts to introduce object-orientation into requirement analysis and 

specifications is probably that of Borgida [Bor85]. In his paper, he suggests using an object- 

oriented framework to construct the requirement model. Recently, serious effort has been 

made to try to attain an object-oriented analysis method. For example, Shlaer and Mellor 

[ShM8 8 ], Coad and Yourdon [CoY90] have published work on object-oriented analysis. 

Bailin [Bai89] has proposed a method of analysing requirements for object-oriented software 

which evolved from structured analysis and serves as an alternative to structured analysis 

when the use of object-oriented design is foreseen. Although, these requirement analysis 

methods are not widely used yet, it is generally agreed that an object-oriented requirement 

analysis method is needed to complement the object-oriented design method.

As stated earlier, most of the activities in the requirement analysis will not be considered in 

this design method. Hence, the details about object-oriented analysis will not be discussed 

here. The design method assumes that the functional and the non-functional requirement 

specifications are ready. With the requirement specifications, the design m ethod, startsoff by 

identifying the proper objects and interactions to construct the desired conceptual model. In 

a way, the relationship between the analysis and the design phases suggested by this design 

method is that the design method makes use of the information obtained in the analysis 

phase to construct the conceptual model. The model is specified in the language defined by 

the method.

3.3.1.1. Identification of Objects

Most of the literature about object-oriented programming [B0 0 8 6 , Cox8 6 , Pre87] agrees that 

the initial step in object-oriented programming is to identify the objects involved in the 

system. Although everyone knows that this is the first step to carry out, no one knows 

exacdy how to proceed.

In 1983, Abbot [Abb83] proposed a method to identify objects and actions from informal 

requirement specifications written in English language. He suggested that the norms and 

noun phrases in an informal English description of the system are good indicators of the
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objects and their classifications. Abbott’s method, in fact, has been included in certain object- 

oriented design methods such as Booch’s method and HOOD. However, the general feeling 

about Abbott’s method is that it may be taken as the starting point to identify objects but 

the pinpointing of the relevant objects still relies very much on the intuition and experience 

o f the system designers themselves, i.e., the ‘human magic’ of design.

Hence, it seems that there is no one formula which can be applied to identifying objects in 

a system. It all depends on ones understanding of what an object is. Therefore, the primary 

step taken in this method is to state clearly what an object is at the conceptual level.

In object-oriented programming, an object represents an entity in the user’s mental conception 

of the real world. An object is an encapsulation of:

i. a set of variables which describe its state, and

ii. a set of operations that can act upon the object to alter its state.

An object is a model of an entity in reality, it is not a value, an action or a time. To determine 

whether an entity in the application should be regarded as an object in the system, one has 

to make sure that the entity has a state that undergoes some actions in the application. For 

example, in the GP system of the Appendix A, ‘the Patient Card Database’ is an object. It 

embeds operations such as ‘add’, ‘delete’ etc, which can be invoked by other objects in the 

application. Also, as mentioned in Chapter 2, an object does not hav e a time factor, i.e., the 

order of the actions within an object is irrelevant. This distinguishes the object defined in 

object-oriented programming and an entity defined in the Jackson System Method.

Further, in this design method, objects are classified into two different types: application 

objects and implementation objects. At the conceptual level, system designers are interested 

in identifying the application objects. Here, application objects refer to objects which are 

found in the application layer of the system. These are objects which are understood by the 

clients and end-users in the system. For example, the ‘Patient Card Database’, and the ‘GP 

M enu’ are application objects identified at the conceptual level.

The application objects at the conceptual level are different from the implementation objects 

at the system level. Briefly, implementation objects are identified at the system level and 

are concerned more with the implementation model. This is discussed in more detail in 

Section 3.3.3.1.

3.3.1.2. Identification of Actions

In addition to identifying objects in the system, system designers have to identify the 

appropriate interactions between these objects. Abbott [Abb83] again suggests that the
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verbs in the informal specifications of the system are good indicators of the actions involved 

in the system but like identifying objects, it also depends a lot on the intuition of the system 

designers.

Besides, in order to find out the interactions in the system, the developer may need to consider 

the functionality of the application stated in the requirement specifications. For example in 

the ‘GP Surgery System’ found in Appendix A, the requirement specification mentions that 

the system should allow users to update, and retrieve information about a patient. Hence, 

the object ‘Patient Card Database’ should have operations such as ‘add card’, ‘read card’ to 

act upon it. Although there are suggestions which said that functional decomposition is not 

an appropriate strategy for object-oriented programming [Mey8 8 ], some of the interactions 

can be deduced from the functional approach. For example, by examining the ‘read card’ 

operation and thinking about how the operation ‘read card’ works, the developer will identify 

that ‘search card’ should also be an operation acting upon the ‘Patient Card Database’.

3.3.1.3. The Two Layers of the Conceptual Level

User Interface Layer,

User Transparent Layer,

Figure 3.5: The Two Layers of the Conceptual Level

Almost all systems developed involve interactions with end-users at some stage, thus the 

user-interface design is actually part of the design phase. In order to highlight this issue and 

bring in user-interface design at the early stage of the design phase, the conceptual level is 

deliberately divided into two layers, the user-interface and the user-transparent layers (see 

Figure 3.5).

i. The User Interface Layer

This layer contains application objects which communicate and interact directly 

with end-users. It provides a visual presentation of what the system is to the
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end-users. Objects such as forms and menus are typical interfacing objects.

ii. The User Transparent Layer

This layer contains application objects which are transparent to the end-users. As 

far as the end-users are concerned, they do not directly interact with these objects. 

For example, in the GP system, the ‘Patient Card Database’ is transparent to end- 

users.

Since the conceptual level is divided into two layers, system designers are obliged to arrange 

the identified objects into these two layers. The connection between these two layers is via 

message communication amongst objects in the two layers.

The separation of the conceptual level into two layers not only highlights the importance 

of user-interface design in general system design, but also gives more flexibility to system 

designers. As the importance of user-interface design becomes more and more recognised, 

methods have emerged to assist system designers in the design of better interfaces. The 

object-oriented paradigm has been introduced in this particular area. For example the Model- 

View-Controller (MVC) [Tre84], Presentation, Abstraction and Control (PAC) [Cou87] are 

two different frameworks which apply the object-oriented paradigm to user-interface man­

agement. By separating the conceptual level into two layers, the user-interface layer can 

be extracted and handled by interface experts. As long as the user-interface layer provides 

a proper interface, i.e., the message communication to interact with objects in the user- 

transparent layer, the conceptual model of the application is still correct. This approach 

certainly gives a better result as experts are handling that part of the design at which they 

are good.

3.3.1.4. Object Interaction Diagrams

Once objects and their interactions have been identified and classified, the conceptual model 

of the application can be set up. The design method uses object interaction diagrams to 

specify the conceptual model. The object interaction diagram is a kind of graphical notation 

used at the conceptual level. It allows designers to express the results of systems analysis 

diagrammatically. The graphical notation of the diagram is very simple. There are basically 

two different constructs (see Figure 3.6):

i. ‘circles’ denote objects which are involved in the system,

ii. arcs indicate that there are interactions between the objects. Note that these 

interactions would be further analysed at the system level and the information 

about what interactions, i.e., which message, is then realised. At that point, arrows 

are added to the arcs to show the direction of the flow of messages (see Figure 3.7).
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Figure 3.6: An Object Interaction Diagram of the GP System

3.3.1.5. Levelled Object Interaction Diagrams

Users

Patient Card

>GP System Mem

Authorisation Activity

Search

icnt Card Activity Menu%

Figure 3.7: A Levelled Object Interaction Diagram

Very often, an object is actually an abstraction of several other objects. For example, a ‘GP 

M enu’ may not be a single-level menu but one which contains several sub-menus. It may
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contain a sub-menu called ‘Patient Card Activity Menu’ which allows users to select an 

option to interrogate the patient card database. It may also contain another sub-menu called 

‘Authorisation Activity Menu’ which allows users to select an option to enquire about who 

can do what with the GP system.

To reveal the structure of this abstraction, an object can be expanded into another set of 

object interaction diagrams as shown in Figure 3.7.

This kind of multi-level diagram is particularly useful in specifying large systems. In a 

way, it is similar to that of levelled data flow diagrams [deMar78]. In the structured analysis 

and design method, when a system is too large for its data flow diagrams to be shown on a 

single page, the system is partitioned into sub-systems as shown in Figure 3.8.
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Figure 3.8: A Levelled Data Flow Diagram

A levelled data flow diagram allows the system to be partitioned in a process-oriented fashion 

whereas a levelled object interaction diagram partitions the system in an object-oriented 

fashion. The levelled object interaction diagrams are used more often at the system level 

when more implementation objects are revealed by identifying the ‘contain’ relationship in 

the system (see Section 3.3.2.2).

3.3.2. The System Level

The system level is regarded as the core of this design method. As stated earlier, the 

objective of a design method is to transform the conceptual model of an application to
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its implementation model. The system level in this design method is responsible for 

carrying out the necessary tasks to accomplish this goal. Briefly, it has to identify the 

set of implementation objects and how they interact in the implementation model. In order 

to achieve this, system designers begin by considering the three important relationships 

associated with an object.

i. the ‘contain’ relationship,

ii. the ‘use’ relationship and

iii. the ‘inherit’ relationship.

This section describes what must be done at the system level. It first explains the concept 

of the implementation objects appear at this level. It then talks about the three relationships 

associated with an object and their importance in constructing the implementation model. 

The identification of the implementation objects and the three relationships contribute to the 

construction of the class structure. After presenting what have to be done at this level, it 

then suggests how to proceed with these tasks in an effective way.

3.3.2.1. The Concept of Implementation Objects

In section 3.3.1, it is mentioned that objects are classified into application objects and 

implementation objects in this design method. Application objects are mainly objects found 

in the application layer of the system and are fairly obvious to be identified. Implementation 

objects are objects which are going to appear in the implementation model. They have to 

be constructed as instances of a class in the implementation stage.

Although the objects which are identified at the conceptual level are very likely to be 

implementation objects at the system level, this is not always the case. For example, ‘user’ 

is an object identified in the conceptual model but such an object becomes transparent in 

the implementation model. Besides, additional objects may be needed in order to complete 

the set of implementation objects for the implementation model. For instance, one may 

need an object called ‘error state’ to determine which type of error has occured and its 

corresponding actions. Probably, it is better to view application objects as a small subset of 

the implementation objects. In order to obtain the complete set of implementation objects, 

system designers have to work on identifying relationships such as ‘contain’, ‘use’ and 

‘inherit’ which are discussed in full detail in the following sections.

3.3.2.2. The ‘Contain’ Relationship

The ‘contain’ relationship is a one to many relationship amongst objects. As mentioned 

earlier, an object may be an abstraction of a set of objects, hence an object may contain a
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set o f other objects. For example, in the ‘GP Surgery System ’ o f Appendix A, although the 

‘GP System ’ itself is an object, it contains objects such as ‘GP M enu’ and ‘Patient Card 

D atabase’. Thus, there is a ‘contain’ relationship between the ‘GP System ’ and the ‘GP 

M enu’ as well as the ‘Patient Card D atabase’. Another example is found in the ‘Home 

Heating System ’ of Appendix B, the object ‘Room ’ which contains a few objects such as 

the ‘W aterValve’, the ‘Tem pSensor’, the ‘DesiredTemp’ and the ‘OccupiedSensor’. All these 

objects bear a ‘contain’ relationship with the object ‘R oom ’.

The main objectives of realising the ‘contain’ relationship are:

i. to highlight some more implementation objects that are required for the im plemen­

tation model,

ii. to reveal the underlying structure of an object, hence the structure of its corre­

sponding class.

Des lrecfTe m p j ) ' :

<CT~WaterValvĈ .

Figure 3.9: The ‘Contain’ Relationship of the Object ‘Room’

The ‘contain’ relationship is extremely useful in constructing a class. As stated earlier, a 

class is a template which contains a set of instance variables and a set of operations. The 

objects which are identified in the ‘contain’ relationship are variables in the class structure. 

This piece of information is particularly useful at the specification level when specifying the 

class structure chart.

The identified ‘contain’ relationships have to be expressed explicitly in the object inter­

action diagram. It is expressed in a levelled object interaction diagram as m entioned in 

Section 3.3.1. For example, the ‘contain’ relationships found in the ‘room ’ object mentioned
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above is denoted as Figure 3.9.

3.3.2.3. The ‘Use’ Relationship

The ‘use’ relationship is a one to one relationship between two objects. In fact, the ‘use’ 

relationship is denoted by the message passing between two objects. In object-oriented 

programming, objects communicate by sending messages to each other. When objectA 

sends a message to objectB, one can say that objectA uses objectB to achieve some goal and 

a ‘use’ relationship is then established. The ‘use’ relationship also highlights the direction 

of the message flows, it distinguishes which is the sender and which is the receiver.

Again, the ‘use’ relationship can be used to identify more implementation objects for the 

implementation model. At the same time, it also highlights which operations/messages t are 

required for a particular object. For example, in the ‘GP Surgery System’ of Appendix A, a 

‘use’ relationship is found between the ‘Patient Card Form’ and the ‘Patient Card Database’. 

Once the end-user finishes filling the ‘Patient Card Form’, the ‘Patient Card Form’ then 

sends a message, ‘add patient’, to the ‘Patient Card Database’. Here, it highlights that ‘add 

patient’ has to be defined as an operation which acts upon the object ‘Patient Card Database’. 

In other words, the class ‘Patient Card Database Class’ from which the object ‘Patient Card 

Database’ is instantiated, has to define the operation ‘add patient’.

The ‘use’ relationship is usually found between an object and its contained objects, i.e., 

the sender always contains the receiver. For example, in the ‘Home Heating System’ of 

Appendix B, the ‘Room’ contains a ‘WaterValve’. When the system wants to open the water 

valve, it has to send a message ‘openWaterValve’ to the object ‘Room’. The object ‘Room’ 

then sends a message ‘openValve’ to the ‘WaterValve’ which it contains. Hence, within the 

method of the message ‘openWaterValve’, a ‘use’ relationship is detected between the object 

‘Room’ and the object ‘WaterValve’.

Also, it is possible that an object has a ‘use’ relationship with an object which is not contained 

within that object, i.e., a sender can send messages to a receiver without physically containing 

the receiver. In this case, the sender has to know the reference of the receiver. In the example 

of the ‘GP System’ of Appendix A, the ‘Patient Card Database’ and the ‘Patient Card Form’ 

are two objects that are physically created and reside in the ‘GP System’. In order to allow 

the ‘Patient Card Form’ to send the message ‘add patient’ to the ‘Patient Card Database’,

The terra ‘message’ originates from Smalltalk-80 [Gol83b]. Messages represent the interactions between the components of 
the system.
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the ‘Patient Card Form’ has to know the reference of the ‘Patient Card Database’. In most 

programming languages, this is done by passing the references of the receiver to the sender.

In addition, the ‘use’ relationship can also occur between an object and itself, i.e., an object 

can send a message to itself to perform certain tasks (See Figure 3.10).

ObjectA.

Figure 3.10: An Object which Sends a Message to Itself

This situation usually occurs when the set of operations cannot be accessed by outside 

objects. These operations/messages are introduced to support the implementation of other 

operations/messages. For example, error messages that are used more than once can be 

specified as private messages in order to create the literal message string only once. These 

operations are named differently in different programming languages, e.g. they are called 

private member functions in C++ [Str8 6 b], private message category in Smalltalk [Gol83b] 

and non-export features in Eiffel [Mey8 8 ], As messages can be either private or public, when 

a ‘use’ relationship between an object and itself is identified, one has to decide whether such 

a message should be implemented as a private message or not.

addPatieru

Patient Card 
Database

Figure 3.11: The ‘Use’ Relationship between Objects

Like the ‘contain’ relationship, the ‘use’ relationship has to be expressed in object interaction
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diagrams. It is denoted by an arc and arrow in which the arrow shows the direction of the 

message flow. This is illustrated in Figure 3.11.

3.3.2.4. The ‘Inherit’ Relationship

The realisation of the ‘contain’ and the ‘use’ relationships assists system designers in 

highlighting the objects and interactions found in the implementation model. At the same 

time, it helps to model the structure of the required classes. However, all the information 

obtained from these two relationships is application-oriented. The information is derived 

from the characteristics and functionality of the application. As this information is very 

specific to a particular application, it is unlikely that the classes generated directly from the 

two relationships can be reused in other applications. Hence, this design method brings about 

a third relationship, the ‘inherit’ relationship, which has to be realised by system designers 

to attain reusable classes.

When classA is related to classB and classA is more general than classB, i.e., classB needs 

a larger set of attributes to describe its behaviour, then it is said that classA has an ‘inherit’ 

relationship with classB. Here, classA is the superclass and classB is the subclass in this 

‘inherit’ relationship and classB inherits all the attributes that are defined for classA. The 

‘inherit’ relationship of a particular class can either be a one to one or a many to one 

relationship depending on whether single inheritance or multiple inheritance is considered.

The ‘inherit’ relationship is particularly important in object-oriented programming because it 

distinguishes object-oriented programming from class-based and object-based programming 

[Joh8 8 , Weg8 8 a]. As the ‘inherit’ relationship allows a subclass to reuse the properties 

defined in the superclass, it enhances the reusability of software which is regarded as 

important in software engineering [Fis87, Joh8 8 , Mey87].

In Johnson’s paper [Joh8 8 ], he says, “Software reuse does not happen by accident, even 

with object-oriented languages. System designers must plan to reuse old components and 

must look for new reusable components”. Handling the ‘inherit’ relationship is indeed 

the responsibility of the system designers. In fact, with the ‘inherit’ relationship, system 

designers cannot simply construct a class structure just by realising the ‘contain’ and the 

‘use’ relationship. They have to compare the class structure with those which already exist 

in the development environment and see whether an ‘inherit’ relationship can be established. 

They may even need to design a whole class hierarchy in order to cater for future reuse. To 

carry out these tasks is not easy. Beck et al. [OBH8 6 ] accentuates the difficulty in handling 

the ‘inherit’ relationship by saying, “Even our researchers who use Smalltalk everyday do not 

often come up with generally useful abstractions from the code they use to solve problems. 

Useful abstractions are usually created by programmers with an obsession for simplicity, who
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are willing to rewrite code several times to produce easy-to-understand and easy-to-specialise 

classes”.

As the ‘inherit’ relationship is so crucial and difficult to handle in object-oriented pro­

gramming, a design method specially developed for object-oriented programming has to 

provide some kind of guidelines or procedures to help system designers deal with inheritance. 

One of the deficiencies of existing object-oriented design methods is that they do not have 

enough support for inheritance, thus extra attention is paid to this area in this research. In 

order to help system designers handle inheritance, a manipulation process which is called 

the ‘inheritance factorisation process’ has been developed to assist system designers in 

constructing class hierarchies. The manipulation process is supported by a formal algebraic 

structure to ensure its correctness. Such a process can also be automated and allows system 

designers to specify a set of class specifications for which an optimal class hierarchy will be 

constructed automatically.

The ‘inheritance factorisation process’ is very important in this design method. It highlights 

one of the most important features which makes this design method different from the other 

object-oriented design methods. Therefore, the details about the inheritance factorisation 

process are to be found in Chapter 4.

3.3.2.5. How to Proceed?

Up until now, this section has mainly described what should be done at the system level in 

order to accomplish the implementation model. However, the sequence of how these tasks 

should proceed has not yet been discussed.

Actually, it is difficult to specify the sequence of these tasks particularly in a prototyping 

approach. One cannot really say that system designers should identify all the implementation 

objects before they start with realising the ‘contain’, ‘use’ and ‘inherit’ relationships of the 

system. Somehow, these tasks seem to occur simultaneously. Probably, the best approach 

is to apply the ‘recursive/parallel’ cycle to these tasks. The conceptual model which is 

obtained from the conceptual level provides a good starting point for this cycle. With the 

application objects identified in the conceptual model, system designers can begin to evaluate 

each application object and see whether it is indeed an implementation object. Then, system 

designers can examine each implementation object in turn and try to identify the ‘contain’ 

and the ‘use’ relationships associated with it. On the identification of each relationship, some 

more implementation objects and interactions may be picked out. These objects are then 

joined in the queue of the implementation objects to be examined later. This procedure is 

illustrated in Figure 3.12.
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Object 1.1,
Implementation 
objects that are 
identified from 
the ‘contain' 
and the ‘use’ 
relationship

Object 1

Application objects that 
become implementation 
object

Object 2

Object 3,

Object *4,

Figure 3.12: The Procedure suggested for the System Level

A concrete example of such a procedure can be demonstrated with the ‘Home Heating 

System’ of Appendix B. The conceptual model of the ‘Home Heating System’ contains 

objects such as ‘Furnace’, ‘Timer’, ‘Heat Flow Regulator’ and a number of rooms. These 

objects are also confirmed as implementation objects for the implementation model. First of 

all, the system designer examines the ‘contain’ relationship of the object ‘Room’. It is found 

that the object ‘Room’ contains other objects, ‘WaterValve’, ‘TempSensor’, ‘DesiredTemp’, 

and ‘OccupiedSensor’. These objects once identified are then grouped into the set of 

implementation objects which are going to be inspected later. The next thing to do is to 

pick out the ‘use’ relationship of the ‘Room’ object. From the conceptual model, the system 

designers notice that the ‘Heat Flow Regulator’ sends a message, ‘getCurrentTemp’, to the 

‘Room’ object to obtain its current temperature. Hence, the operation, ‘getCurrentTemp’ 

has to be defined in the object ‘Room’, i.e., the class ‘Room’. The system designer then 

looks into how ‘getCurrentTemp’ is constructed and finds that to accomplish such a task, 

the object ‘Room’ has to send a message ‘getTemp’ to the object ‘TempSensor’. If more 

implementation objects are identified in this step, they are again included into the group of 

implementation objects which have to be examined later. This process is repeatly executed 

until all existing implementation objects are examined. Once this is completed, the system 

designer can look at the ‘inherit’ relationship of individual implementation objects.
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3.3.3. The Specification Level

At the system level, system designers have to identify the set of implementation objects 

and realise the three relationships associated with each object. Although most of this 

information is recorded in the object interaction diagrams, when comes to the specification 

level, it is better to present it in a form in which programmers can easily visualise its 

implementation structures. As in object-oriented programming, there are two types of 

implementation structures, the class structure and the message structure. The class structure 

mainly concerns the set of variables, the set of operations and the class hierarchy associated 

with it. The message structure mainly concerns the method of a particular operation/message 

in a particular class.

In order to specify these two structures for the implementation phase, the design method has 

a specification level in which system designers have to present the implementation model 

in two individual kinds of design specifications, the ‘class structure chart’ and the ‘message 

structure chart’.

3.3.3.I. The Class Structure Chart

Class Name: PadenlCardForm

Description: This is the form which contains the fields specified for a patient card.
End-users have to fill in these fields in order to create a new form. 
Information of this form will be displayed if users want to search a 
particular patient record.

A ttributes: PatientCardDatabase - this variable refers to the particular database of
this GP System.

acceptForm - this operation is carried out when users finish filling in a 
form and press the accept key. The operation includes 
putting the information from the form in to the database. 

clearForm - this operation when called will clear the current form, 

quit Form- this operation when called will end the displaying of the form.

Class H ierarchy:

Form ................  ^  PahtntCardForm

Inherited A ttributes: FormNsme - the name of the form created.
Helds - the fields in that form is arranged as a linked list 
FormMenu - there is a menu attached to the form.
NoOfFields - the number of fields in the form
CurrentField - this variable points to the current field in the form.
ficldContent - this variable stores the coatents of a field.
create Form - this operation create the form.
getFieldContent - obtain die value of a particular field

Figure 3.13: An Example of a Class Structure Chart

The class structure chart is a document which records detailed information about a particular
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class. The information required in the chart includes the class name, the description of the 

class, the set of variables and the set of operations that belong to that class. In addition, the 

class structure chart also contains the corresponding class hierarchy graph. The graph shows 

the superclass and subclass relationships associated with the class described by the chart.

As it stands, the class structure chart is a summary of the information obtained from the 

system level in the design method. At the system level, system designers have to identify the 

set of implementation objects for the implementation model. This set of objects determines 

which class structure charts one has to construct. In addition, the system designer has 

to identify the ‘contain’ relationship which gives information about the set of variables 

belonging to a particular class. By realising the ‘use’ relationship, information about the set 

of operations belonging to that class is found and by working on the ‘inherit’ relationship, 

the corresponding class hierarchy graph for the chart is developed.

3.3.3.2. The Message Structure Chart

The message structure chart is a graphical notation which allows system designers to specify 

the method of a message/operation in a particular class. It is used as a visual program 

description to define the sequence of message passing and the control information within a 

method. The graphical notations of the message structure chart are:

i. Rectangular Boxes

A rectangular box represents an individual object/class. The box which is of 

current interest is divided into two compartments. The first compartment denotes 

the class name, the second contains the current operation/message for which a

method is going to be defined^. Other rectangular boxes in the message structure 

chart denotes the message receivers of some messages and only contain the objects’ 

name.

ii. Dashed Rectangular Boxes

Sometimes, the message receiver belongs to the same class as the message sender. 

In order to denote this, a dashed rectangular box is used for such a message receiver.

iii. Curved Rectangular Boxes

This kind of box denotes the superclass of the class which is of current interest.

iv. Interaction Connections

An interaction connection between boxes is denoted by an arc with an arrow which 

points from a sender to a receiver.

In this thesis, this kind of rectangular boxes is shown in black to distinguish with the rest of the boxes which denote message 
receivers.
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v. A Diamond

A diamond denotes an alternative path. It is a selector construct and used to 

represent an ‘i f ’ statement or a ‘case’ statement.

vi. An Ellipse Loop

An ellipse loop is an iteration construct which denotes a repetition of execution.

GP System

c

t
G P M enu ~|
| User Window*)

| System W indow |
|  Patient C ard  Form"!

| Patient Card Database |

getSelection

Search CardByC OB

<t> o  4> <s> 4>

De eteCar. f

*• G P System £

Se irchCard ryName

1 - i f  Che user's  selection is to add a patient card.
2 - i f  the user's  selection is to delect a  patien t card.

3 • i f  the user's  selection is to search a card by date o f  birth.
4 ■ i f  the user’s  selection is to search a card by name.

5  - i f  the user’s  selection is to quit the system

Figure 3.14: A Message Structure Chart in the GP Surgery System

The information recorded as object interaction diagrams gives knowledge about how the 

m essage structure charts should be constructed. The ‘use’ relationships which are identi­

fied at the system level denote the messages which are sent between the sender and the 

receiver. Very often, the identified ‘use’ relationship is part of the method in a particular 

operation/message of a particular class. Figure 3.14 illustrates the method of the operation, 

‘invoke’ for the ‘GP System ’ class.

As mentioned earlier, an object can send a message to itself. Very often, this situation usually 

occurs when such a message is actually a private message, i.e., it is not an operation/message
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in which other objects can invoke. It is useful to mention that such an operation/message 

is a private one by putting the word ‘private’ after the operation name in the class structure 

chart. Programmers who read this message structure chart will immediately know that such 

operation has to be included in the private message category. This is illustrated in Figure 3.15. 

These message structure charts are the design specifications which programmers use in order 

to implement the system.

edirForm acceptForm

Figure 3.15: An Example of Message Structured Chart with Private Message

3.4. Other Issues

Now that the details of the different levels of the design method developed in this research 

have been discussed, the following sections talk about some of the issues which are also 

important in object-oriented systems design.

3.4.1. Data Modelling in Object Oriented Programming

Data modelling plays an important role in traditional system developments. Many software 

systems require a large and efficient database to store data for the systems. A database 

system is concerned with the manipulation of data in the system. Besides the fundamental 

operations on data, such as insertion and deletion, a database system is also responsible for 

managing the integrity of data, reducing redundancy and avoiding any data inconsistency 

[Dat75]. Because of its nature, the development o f a large database is always treated as 

a separate design issue from the rest o f the system design. The rest o f the system design
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interacts with the database via the data manipulation language provided by the database 

system, e.g., SQL [Dat75]. Furthermore, the different arrangements of data in the database 

always result in different database systems. Generally speaking, they can be categorised into 

three approaches.

i. the relational approach,

ii. the hierarchical approach and

iii. the network approach.

Each of these approaches has its own good points and bad points. The data modelling 

process is, therefore, to model the data in a software system using one of these approaches.

One of the general problems found in traditional software is the mismatch between the 

programming language of the application program and the query language of the database 

system [Ban8 8 , LRV8 8 ]. As Bancilhon says, “Application development requires the commu­

nication between a relational query language and a programming language. These two types 

of languages do not mix well: they have different types, they have different computational 

models, relational systems are set-at-a-time while programming languages are record-at- 

a-time. Solving the mismatch requires integrating database and programming language 

technology” [Ban8 8 ].

It has been suggested that the solution of such a problem can be found in object-oriented 

programming. In fact, intensive research has been carried out in object-oriented databases 

for the past few years [Ala89, BCG87]. The discussion about the development of object- 

oriented databases and its important issues are outside the scope of this thesis. However, the 

important point which is related to this research is that object-oriented programming bridges 

the gap between application programs and database systems which is found in traditional 

software systems. In object-oriented databases, data is treated as an object. What used to 

be the data modelling in the conventional system development process now becomes object 

modelling. Since object modelling is already part of the system development in an object- 

oriented software development, one does not need to specially emphasise data analysis and 

data modelling as found in traditional development methods.

3.4.2. Cohesion and Coupling

In conventional system developments, there are two fundamental elements which contribute 

to ‘good’ software. These are:

i. high degree of cohesion,

ii. low degree of coupling.
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Cohesion is a measure of the strength of association of the elements inside a unit. A high 

degree of cohesion means that the elements in that unit are strongly associated with the 

unit in order to achieve a goal. Coupling is related to cohesion. It is a measure of the 

interdependence of program units. A low degree of coupling indicates that the program 

units are highly independent of each other.

In conventional software development, system designers have to work hard in order to ensure 

their designs exhibit a high degree of cohesion and a low degree of coupling. However, it is 

found that in object-oriented software development, these two features almost come free with 

the paradigm [Som89]. In object-oriented software, the basic unit is an object. An object 

is an entity which contains a set of variables and a set of operations which can act upon it. 

Since the operations defined are going to be embedded in the object, it naturally demonstrates 

a high degree of cohesion. Every object is an abstraction in itself. The representation of 

the object and the implementation of its operations are hidden from external components. 

Therefore, it displays a low degree of coupling.

3.4.3. Factors for a Good Object-Oriented Design

The main theme in object-oriented software revolves around the construction of classes. 

Hence the design of the class interface and the class hierarchies are the main factors that 

contribute to a good object-oriented design.

Concerning the design of the class interface, Lieberherr et al. [LHR88] have defined the 

Law of Demeter which provokes a good style of object-oriented programming. The Law 

states that:

For all classes C, and for all methods M attached to C, all objects to which M sends a 

message must be instances of classes associated with the following classes:

i. the argument classes of M (including C),

ii. the instance variable classes of C.

It is said that by following the Law of Demeter, one can naturally achieve coupling control, 

information hiding, information restricting, localisation of information, narrow interfaces and 

structural induction. In fact, the design method of this thesis has included the basic idea of 

the Law of Demeter in the design phase. The ‘use’ relationship mentioned in this design 

method indirectly achieves what the Law of Demeter has proposed. The ‘use’ relationship 

mentions that a sender can send messages to its receivers if:

i. the sender physically contains the receiver,

ii. the sender knows the reference of the receiver,
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iii. the sender and the receiver are the same object.

Considering the class hierarchy construction, it is believed that a good class hierarchy design 

should be a design which has many reusable classes. Hence a good design is normally one 

which contains a fair number of smaller classes and the class hierarchy is deep and narrow. 

O f course, one should not take it to an extreme. As indicated by Linton et al. [LCV87], a 

large class hierarchy may overwhelm programmers, especially when there are many levels of 

subclasses. Users of this class hierarchy have trouble grasping the many different classes and 

their inherited behaviour. Hence, a deep and narrow class hierarchy may achieve more reuse 

but it is better to keep the depth level to about seven so that users will not find it difficult to 

use [Mil56]. Besides a sensible depth, Johnson [Joh8 8 ] has identified that a well-developed 

class hierarchy should have the following characteristics:

i. the top of the class hierarchy should be abstract and

ii. the subclasses should be specialisations.

These issues have been taken into considerations when developing the inheritance factorisa­

tion process which helps system designers in constructing class hierarchies. This is discussed 

in details in Chapter 4.

3.5. Conclusion

What has been described in this chapter is the preliminary framework of a design method 

which is specially targeted towards object-oriented programming. The design method is 

divided into three levels:

i. The conceptual level assists system designers to analyse and examine the appli­

cation in an object-oriented fashion. It is further divided into two layers, the 

user-interface and the user transparent layers.

ii. The system level concentrates on some of the important issues in the construction 

of an implementation model. For example, the identification of the implementation 

objects, the realisation of the ‘contain’, ‘use’ and ‘inherit’ relationships.

iii. The specification level concerns the production of design specifications of the 

system. These specifications are passed to the programmers to implement the 

system in the implementation phase.

The design method has also specified the design description language which is used by 

system designers for communication during the design phase. At the conceptual and the 

system levels, system designers express their design ideas in object-interaction diagrams. At
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the specification level, system designers are requested to specify their design specifications 

in class structure charts and message structure charts.

Now that the framework of the design method has completed, one can look into the support of 

handling inheritance in this design method. As it stands, an inheritance factorisation process 

has been developed to be incorporated into the design method which assists system designers 

in constructing class hierarchies. The details of this process is discussed in Chapter 4.
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“The major point, which almost doesn’t need stating, is that you must not do anything 

which is outside the rules. We might call this restriction the Requirement of Formality.”

~  Douglas Hofstadter ~

Chapter 4 

The Inheritance Factorisation Process

It has been reiterated several times that inheritance is very important in object-oriented 

programming. Inheritance enhances reusability of software and provides a simple and 

elegant organisational discipline for objects. Although inheritance is a useful feature, it 

is also the subject of a great deal of controversy [MiR87, TGP89]. System designers always 

encounter problems in constructing class hierarchies. In order to provide a more adequate 

design method for object-oriented programming, a formal manipulation process which is 

called the inheritance factorisation process (IFP), has been developed within the design 

method. The IFP is developed to help system designers in constructing class hierarchies. 

This manipulation process can be automated so that system designers need only specify the 

related class specifications and an optimal class hierarchy will be generated.

This chapter is mainly about the inheritance factorisation process. It starts off with a 

description about the background of the inheritance factorisation process. It then describes 

the formal model which lies behind the inheritance factorisation process. Once the basic of 

the formal model is set up, this chapter further explores how such a model can be extended 

to cater for different inheritance models. It also investigates how the inheritance factorisation 

process can be used in the system design phase and how to incorporate the process into the 

design method described in Chapter 3. In addition to this, one of the attractive feature of 

developing the inheritance factorisation process is that it can be automated. This chapter, 

hence, also discusses how the process can be automated. The chapter is concluded with a 

discussion about what exactly IFP is and how the software development in object-oriented 

programming benefits from it.
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4.1. Background
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This section starts off with a discussion about the background behind the factorisation process. 

It discusses some controversial issues concerning inheritance, for example, the difference 

between the term ‘class’ and the term ‘type’; should inheritance be an implementation 

issue or a design issue; the various inheritance models in different domains, etc. After 

that, it describes some of the general problems encountered by system designers in handling 

inheritance. It defines what the problems are and discusses the attitudes taken in this research 

towards these problems.

4.1.1. Classes and Types

The term ‘class’ is introduced in object-oriented programming languages such as Simula 

and Smalltalk. It is used to denote the specification of classes of objects with common 

behaviour. The term ‘type’ has long been known in conventional programming languages 

such as Pascal. It is used to categorise objects according to their usage and behaviour. As the 

term ‘type’ and ‘class’ are similar, it causes confusion when they co-exist in a programming 

language.

In weakly-typed object-oriented programming languages such as Smalltalk, the concept 

of ‘type’ is transparent. An object is an instance of a class and there is only the class 

hierarchy to be considered concerning inheritance. However, in strongly-typed object- 

oriented programming languages such as Eiffel [Mey8 8 ] or Solve [RWW8 8 ], an object is 

not only an instance of a class but also associated with a type. For example, in Eiffel, there 

are two kinds of types in its type system: there are the four simple types, namely integer, 

boolean, character and real; any other type must be defined by a class declaration and will be 

called a class type. In this case, there may be two kinds of hierarchies: the class hierarchy 

and the type hierarchy, i.e., subclassing and subtyping. The difference between these two 

kinds of hierarchies is that the class hierarchy is defined in terms of template modifications 

whereas the type hierarchy is defined in terms of constraints that determine a subset of the 

set defined by the parent predicates [Weg8 8 b]. However, classes can be viewed as a special 

kind of type. Class-based languages automatically have an associated type system and class 

hierarchies of object-oriented languages automatically have associated type hierarchies. The 

concept of ‘type’ is mainly motivated by type checking. Hence, in this thesis, inheritance is 

primarily defined as a mechanism for template modification rather than subtyping.

4.1.2. Inheritance as a Design Issue

There is always some concern about whether inheritance should be regarded as a design issue

67



A Design Method for Object-Oriented Programming Winnie Pun

or an implementation issue, i.e., whether it should be handled in the design phase or the 

implementation phase. Johnson [Joh8 8 ] believes that it is the responsibility of the system 

designers to plan the class hierarchy to achieve maximum reuse. However, not everyone 

agrees with this. Brachman [Bra83] suggests that inheritance is purely an implementation 

issue.

In fact, it is difficult to decide which side gives a correct view. As mentioned earlier, object- 

oriented programming applies a ‘prototyping’ software development cycle. Not only is the 

boundary between the requirement analysis and the design phase not clearly defined but 

the boundary between the design and the implementation phase is also not well separated. 

As LaLonde et al. say, ‘Traditionally, design is segregated as an activity separate from 

implementation. This has served to clarify the two activities and create two classes of 

people: designers and programmers. In object-oriented systems, the two groups must be 

integrated; i.e., a designer-programmer, say to be called design engineers, is needed to effect 

a proper design; lower level programmers can still be used for the simpler parts” [BRL8 8 ]. If 

one applies such a view about design and implementation phase, inheritance should be taken 

care of in the design phase. In addition to this, the design method resulting from this research 

requires that the output of the design phase should be a set of design specifications. These 

design specifications should have all the implementation details so that when programmers 

take away the specifications, they can implement the system with confidence. Therefore, it 

is decided that working on the inheritance hierarchies should be an activity in the design 

phase.

4.1.3. Inheritance in Different Domains of Discourse

It is generally agreed that the fundamental problem of inheritance is: what exactly is inherited 

in an inheritance relation. The answer to this problem is, in fact, found to be different in 

different domains of discourse.

As mentioned in Camese’s thesis [Car84], inheritance systems are used in domains other than 

general programming. One of the domain in which inheritance is widely used is ‘knowledge 

representation’ in artificial intelligence [Hut89, Tou8 8 ].

In general, when people talk about inheritance systems, they seldom distinguish which 

domain they are referring to. However, there are significant differences between inheritance 

systems in different domains which may affect the answer of ‘what exactly is being inherited’. 

For instance, the main difference between inheritance in general programming and inheritance 

in knowledge representation lies in the abstractions which are associated with the objects 

that are defined. In general programming, the abstraction includes two sets: the set of 

variable names which describes the state of the object and the set of operation names which
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describes the operations that can act upon the object. Whereas in knowledge representation, 

the abstraction encodes the normative information about the object [Tou8 8 ], For example 

to illustrate this in general programming, the class of elephants may contain variable names 

such as ‘colour’, ‘weight’ and some operations such as ‘changeColour’ to update the colour 

of an elephant. In knowledge representation, the class of elephants contains some true facts 

about an elephants, e.g., ‘its colour is grey’ and ‘it has four legs’.

In fact, this key difference leads to different areas of interest concerning inheritance systems. 

A classical area of research in inheritance systems in artificial intelligence and database 

systems is ‘how to handle inheritance with exception’. In the above example of the class of 

elephants, ‘its colour is grey’ is a piece of information which is generally true. However, 

there are cases in which the colour of an elephant is white, say if the elephant is a royal 

elephant. In this case, researchers working on such an inheritance system have to develop 

mechanisms to handle exception cases like this [Bor8 8 , Tou8 8 ]. This problem, however, 

does not occur in the general programming domain. For example, ‘grey’ and ‘white’ are 

just values of the variable ‘colour’ and may vary with different elephants.

As one can see, the answer to ‘what should one inherit in an inheritance relationship?’ 

depends on which domain one is referring to. In the general programming domain, one 

inherits the structure of a class and the structure is expressed in a set of variables and a 

set of operations. As far as this research concerns, it is limited to look at the inheritance 

systems in the general programming domain. Hence, one tends to inherit the structure of a 

class.

4.1.4. Inheritance from Different Perspectives

The above section has analysed the different inheritance models in different problem domains. 

In fact, the inheritance model may vary even in the same problem domain.

In the general programming domain, the subclass is said to inherit the structure of the 

superclass. The structure of a class is expressed in either variable names or operation 

names. These names are simply some symbols and the meaning of these symbols depends 

on how one perceives inheritance. As it is mentioned in Chapter 2, there are basically 

two perspectives in viewing inheritance: non-strict inheritance and strict inheritance [Sak89, 

Sny87, Weg8 8 b].

Non-strict inheritance simply implies code-sharing. The main objective of non-strict inheri­

tance is to reuse as much of existing implementation as possible. With such an inheritance 

model, the symbol which describes an operation denotes a particular piece of code, i.e., one 

is inheriting a piece of code. Non-strict inheritance tends to encourage a casual attitude
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towards class hierarchies constructions. As the main purpose of this inheritance model is 

to reuse as much code as possible, it allows two conceptually unrelated classes to be put in 

the same hierarchy. It may even allow an inheritance relationship to be established between 

two classes provided there is one common piece of code that these two classes can share.

Strict inheritance not only concerned with inheriting the code but also the formal meaning 

associated with the class. By formal meaning, one refers to the abstract data type specification 

description which incorporates the sort, the signature and the equation of the class. With such 

an inheritance model, the subclass not only inherits the code but also the formal semantic of 

the structure of its superclass. Further, strict inheritance does not allow a casual inheritance 

relationship to be set up. A subclass has to share all the properties defined in its superclass.

When determining which perspective should be considered in the inheritance factorisation 

model, it is found that whether it is the piece of code and/or the formal semantics that is 

inherited is not that important. By varying the representation of an attribute and a class 

specification, the inheritance factorisation process can support various kinds of inheritance 

models. The details of this is discussed in Section 4.3. What is more important is to 

discourage the casual construction of class hierarchies. Hence, an inheritance relationship 

cannot be established if two classes only share a few properties. A subclass can only be 

created if the set of attributes that describes its structure is a proper superset of attributes of 

its superclass.

4.1.5. The Problem in Constructing Class Hierarchies

In object-oriented programming, software reuse is mainly attained via inheritance. In order to 

achieve maximum reuse, the fundamental step is to construct a well-defined class hierarchy 

that reflects maximum reuse.

The construction of a class hierarchy probably seems trivial on the surface. When system 

designers have to construct a class hierarchy from two related classes, class A and class B, 

what they usually do is to factorise out the common properties between these two classes 

to construct the superclass, class AB [B0 0 8 6 , Bor8 8 , Weg8 8 b]. This ‘ad hoc’ method 

of constructing class hierarchies seems to work fine when there are only a small number 

of classes involved and when the description of the classes are specified in a monotonic 

incremental fashion. For example, suppose one is asked to form a hierarchy between two

classes, ‘Point’ and ‘HistoryPoint’ which are specified as below^:

Details for this example can be found in Camese’s thesis [Car84].
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Point: create, location, move, display;

HistoryPoint: create, location, move, display, history;

In this case, system designers can easily identify that the class ‘Point’ is going to be the 

superclass and the class ‘HistoryPoint’ is its subclass.

However, the problem of constructing class hierarchies becomes non-trivial when it involves 

many classes and even more prominent if the classes are specified in a way which is not 

monotonic incremental. For example, if a class hierarchy has to be constructed not only from 

the class ‘Point’ and the class ‘HistoryPoint’ but also with two other classes, ‘BoundedPoint’ 

and ‘BhPoint’ which are specified as follows:

BoundedPoint: create, move, display, location, max, min;

BhPoint: create, move, display, location, history, max, min, boundHistory;

In this case, the ‘ad hoc’ method alone is beginning to be inadequate to construct the class 

hierarchy successfully. System designers may find that they have to try several times before 

a satisfactory solution is obtained. In order to provide a better way for system designers to 

construct class hierarchies, a more ‘algorithmic’ approach to handle the construction of class 

hierarchies is introduced in this research. A mechanism called the ‘inheritance factorisation 

process’ (IFP) has been developed to assist system designers to construct class hierarchies.

The IFP has been developed to assist system designers in generating an optimal class 

hierarchy in a quicker and more efficient way than using the ‘ad hoc’ method. The class 

hierarchies generated from the IFP accentuates a hierarchical organisation of maximum 

reusability and hence minimum duplication of common properties defined amongst the classes 

in the hierarchy. It is believed that with the IFP, system designers need only specify the 

conceptual class specifications involved in a hierarchy and an optimal class hierarchy graph 

will be generated.

4.2. The Algebraic Model for the Inheritance Factorisation Process

The manipulation process provided in the IFP is based on an algebraic structure which 

is specially defined for constructing class hierarchies. The fundamental principle of the 

IFP is, in fact, inspired by the ‘ad hoc’ method described in the previous section. If one 

examines the ‘ad hoc’ method more closely, it is easy to see that the essence of constructing 

class hierarchies is to identify the appropriate superclasses and the corresponding ‘inherit’ 

relationship. The identification of superclasses involves factoring out common attributes 

amongst the involved classes [B0 0 8 6 , Bor8 8 , Weg8 8 b]. The factorised attributes are then 

grouped together to form the superclass. The IFP uses this idea as the basis and extends
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it further to obtain the basic framework of a systematic manipulation process. This section 

serves to discuss the formal aspects which lie behind the IFPt.

4.2.1. Basic Assumptions

It is assumed that the inheritance model in the inheritance factorisation process has the 

following characteristic:

Assumption 4.1

Inheritance with cancellation is not allowed in the inheritance model of the IFP. Hence a 

subclass has to inherit all the attributes defined in its superclass.

Assumption 4.2

An optimal class hierarchy is one which refers to maximum reusability of properties 

defined in the superclass, i.e., m inim um  replication of properties in class specifications.

Assumption 4.3

The inheritance model applied to the IFP is only suitable for use in the general program­

ming languages domain.

4.2.2. A ttrib u te s  

Definition 4.1

An attribute is a symbol which denotes a feature or a property found in a class specifi­

cation. In general programming languages domain, the label which describes the state of 

an object or the operation which can act upon an object is regarded as an attribute.

It is not enough just to look at the label of an attribute, it is also necessary to examine 

the semantic of the attribute to determine its class hierarchy. However, the semantic of an 

attribute varies with different inheritance models. This is further discussed in Section 4.3.

Assumption 4.4

To simplify the model, it is assumed that there exists a mechanism to check the semantic 

equivalence of two attributes. When system designers use the same label for two 

attributes, these two attributes are said to be semantically equivalent.

1 A summary of this section can be found in [PuW90].
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Assumption 4.5
The ordering of the attributes in a class specification is not significant. For example, the 

class ‘PointA’ is the same as the class ‘PointB’ in the following example.

PointA: create, display, location, move;

PointB: display, location, create, move;

For most programs this assumption is completely valid; the order of members of a data 

structure can be rearranged, the program recompiled and it will work just as before. However, 

there is a class of programs -  low level systems software -  for which this assumption might 

not be valid. An example might be a disc driver. The control/status register structure is 

fixed by the hardware so the order of the members of the data structure describing this is

fixed. However, it is believed that the way in which an object-oriented program would deal

with this would not involve exhibiting this fixed structure at the language level.

Definition 4.2
The universe o f attributes, A , is the set of all attributes.

A  = {a,}

4.2.3. Class Specification 

Definition 43
A class specification is a set of mutually exclusive attributes.

Ci =  & 2 >  ® 3 ) • • • i

where a, G A  and c* e V(A) .

Definition 4.4
The power set of the universe of attributes, V{A),  is the set of all possible subsets of A.  

In the model, V(A)  represents the universe o f  class specifications and is denoted by C. 

<f>c e  C is the empty class specification, i.e., the class specification with no attributes.

Definition 4.5
A conceptual class specification is a class specification which contains all the attributes 

necessary to describe the class. There is no inheritance to be taken into account.
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Definition 4.6
An implementation class specification is a class specification which contains only the 

attributes over and above those that will be drawn from superclasses. It is assumed that 

the inheritance relations are known in order to be able to construct the conceptual class 

specification from the implementation class specification.

Example 4.1

The following example highlights the difference between conceptual and implementation 

class specifications:

The conceptual class ‘vehicle’ contains attributes age and maxspeed. The conceptual 

class ‘car’ contains attributes age, maxspeed and fuel. If the class ‘car’ inherits from 

the class ‘vehicle’ then the implementation class ‘i-vehicle’ is the same as the conceptual 

class ‘vehicle’ and the implementation class ‘i-car’ contains only the attribute fuel.

Definition 4.7
The power set of the universe of class specifications, V(V(A)) ,  is the set of all possible 

subsets of C. V(V(A))  is the universe o f all possible sets o f  class specifications and is 

denoted by S. <f>s € S  is the empty set of class specifications.

4.2.4. The Class Hierarchy Construction Problem 

Definition 4.S
An initial set o f class specifications, Si 6  5 , contains all the conceptual class specifications 

involved in a particular class hierarchy construction problem.

Definition 4.9
A class hierarchy construction problem  for an initial set of class specifications, 5 *, is to 

generate the corresponding optimal class hierarchy which reflects maximum reusability 

of attributes and hence minimum duplication of attributes for the set 5 *. The optimal 

class hierarchy which is generated is an implementation class hierarchy. The inheritance 

relationship identified in this hierarchy are between implementation superclasses and 

subclasses.

4.2.5. Axioms for the Inheritance Factorisation Process

This subsection describes the inheritance factorisation process and presents the essential 

axioms and operators. The characteristic of the operators are discussed here as well.
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Axiom 4.1

Individual sets of class specifications, «i, • • •, sn can be grouped into a particular set, s'.

s' = Si +  1- sn

or in terms of class specifications, it is

{ c i ,  C2, • • •, cn} =  { c i }  +  {02} H b {cn}

The combine operator, + , can be viewed as the set union operator on any set of class 

specifications, «i.

The signature of the combine operator, + , is,

+  : S  x S  —► S

or in terms of A , it is:

+  : V(P(A))  x P(P(A))  P{P{A))

Since the combine operator, + , is in fact the set union operator, it automatically possesses 

the properties of the set union operator. Hence, the combine operator, + , is associative, 

commutative and has an identity, <f>s .

{co} +  { c i}  =  { c i }  +  {co}

and

{ c 0} +  ( { c i}  +  {C2}) =  ({co} +  { c i} )  +  {c 2}

and

” 1“  { c o ,  • • • ,  c n }  =  { c 0 )  * '  ’ j c n }  - f -  <f>s — { c o ,  '  j c n }

Axiom 4.2

Common attributes in a combinator subexpression can be factorised out to the left and 

form the superclass of the original classes. Attributes which are common in the most 

number of classes should be factorised out first.

{ c i }  H b {cn } =  Co' <t ( { c i '}  +  b {c n'})

i f f  Va.i. flj G Co' —► &i G Ci A • • ■ A flj G cn

The semantics of this operation are in terms of set union and set intersection:

{ c i }  +  b {cn }  =  C o ' <g ( { c i ' }  +  b {cn'})

n

i f f  co =  P |  Ci an d  c i =  c0' U c i', • • •, cn =  c0' U c„'
t= i
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This axiom introduces the single inherit operator, « 4. This operator describes the single 

inheritance relationship. Here, the axiom shows that the class specification c\' inherits from 

c0' to give c i , c2' inherits from c0' to give c2, etc. At a first glance, the single inherit 

operator, <4, appears to be simply the set union operator on a set of attributes. However, the 

single inherit operator, <4, is more than this. It identifies which is the superclass and which 

is the subclass via its signature. In the example above, c0' is the superclass specification, 

ci', • • •, cn' are the implementation subclass specifications and ci, • • • ,cn are the conceptual 

subclass specifications.

The signature of the single inherit operator, <4, is:

<4 : C x 5  —> S

or in terms of A ,

<4 : V{A)  x V(V(A))  -> V{V{A))

Proposition 4.1
The single inherit operator, <4, is non-commutative.

Proof:
This follows from the fact that the right and left operands are from different sets, 

hence the single inherit operator, <4, is non-commutative.

QED

It is important that the single inherit operator, <4, is non-commutative since it is this that 

distinguishes a superclass from a subclass in a subexpression.

Proposition 4.2
The single inherit operator, <4, is non-associative.

Proof:
Again, the signature of the single inherit operator, <4, implies the non-associative 

property of this operator.

QED

Proposition 43
The empty class specification, <f>c, is the left identity of the single inherit operator, <4.

4>c ^ 4  { c j, • • •, Cn} =  { c i, • • •, Cn }
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Proof:
If <f>c <i {ci, • • •, cn} = {ci, • • •, cn} is false then <t>c contains at least one attribute. Since 

<f>c is an empty class specification, there is a contradiction.

QED

Proposition 4.4
A set of class specifications which contains only the empty class specification, {4>c}, 

inherits from a class specification, c», always gives a set of class specification that contains 

one element {<:<}.

Ci <, {<t>c} = { c j

Proof:
If Ci <4 {4>c} = {ci} is false, then <f>c must contains at least one attribute. Since (f>c is an 

empty class specification, there is a contradiction.

QED

Proposition 4.5
An empty set of class specification, <£,, inherits from a class Ci giving a set of class 

specifications that contains only one element c*.

Ci <» <i>t =  {c t }

Proof:
If a  <4 (j>s =  {a }  is false, then <j>t contains at least one class specification. Since <t>„ is 

an empty set of class specifications, there is a contradiction.

QED

It should be noted that although such an expression is valid, it is redundant and would 

not normally occur in an inheritance expression.

With these axioms and propositions, one can handle any class hierarchy construction prob­

lems which involves only single inheritance. However, multiple inheritance has become 

more and more popular these days. Multiple inheritance allows a subclass to have more 

than one superclass. To support multiple inheritance in the inheritance factorisation model, 

another axiom is needed.

77



A Design Method for Object-Oriented Programming Winnie Pun

Axiom 4.3

For multiple inheritance, the subclass is inherited from two or more superclasses.

{co} =  ({c^} H 1- { C n '} )  < m  Cq

i f f  n > l  a n d  Oi G c i  A • • • A a™ €  c j  -*  a*,- •• ,0 ,*  €  co

This axiom can also be looked at in terms of set operators.

n

{co} =  ({ci'} +  h {cn' »  <m Co' i f f  Co =  |J  Ci and n >  1
t = 0

By definition, the result obtained from a multiple inheritance subexpression is always a 

singleton set, Si, containing only one class specification.

Axiom 4.3 introduces the multiple inherit operator, <m, which describes the multiple in­

heritance relationship. As with the single inheritance operator, the multiple inherit operator 

distinguishes which are the superclasses and which is the subclass in the inheritance expres­

sion. For example,

{C3} =  {ci/ ,C2/}< m C3'

Here, the class specification c3' multiply inherits from the class specifications c i' and c2' to 

give c3. c i' ,c 2' and c3' are the implementation class specifications. c3 is a conceptual class 

specification.

The signature of the multiple inherit operator, <m, is:

<m : S  x C —► S

or in terms of A ,

<m : V(V{A))  x V{A)  -> V(V(A))

Proposition 4.6 

The multiple inherit operator, <m, is non-commutative.

Proposition 4.7
The multiple inherit operator, <m, is non-associative.

Proof:
Again, the signature of the multiple inherit operator, <m, implies the non-commutative 

and non-associative properties of the operator. QED
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Proposition 4.8

A class specification, c*, multiple inheriting from an empty set of class specifications 

gives a set of class specifications containing only c*.

4*s Cj — {cj}

Proof:

If <m ci =  {cx} is false then (f>t contains at least one class specification. Since <)>, is 

an empty set of class specifications, there is a contradiction.

QED

Such an expression is valid but redundant and would not normally occur in the 

manipulation process.

4.2.6. Class Hierarchy Expression 

Definition 4.10
A class hierarchy expression, ( , is an expression constructed from any sets of class 

specifications, the combine operator, +» the single inherit operator, <4, and the multiple 

inherit operator, <m. Parentheses are used to group into subexpressions. For example,

£  =  Co <S ( { c i }  +  { c 2 } )

Definition 4.11
An initial class hierarchy expression, ( / ,  of a particular class hierarchy construction 

problem, is a class hierarchy expression constructed from the corresponding initial set of 

class specifications, Si, alone.

Definition 4.12
A normalised class hierarchy expression, ( h , is a class hierarchy expression to which 

no further factorisation can be applied (See Definition 4.13). The interpretation of this 

expression is that it provides maximum reusability and minimum duplication of attributes. 

For example,

Cn  = {o i ,  0 2 } <* ({{^3) <1 4} }  +  { { 0 5 }})
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IFP =

Sorts : A
V(A)
V(V(A))

Opns : + : V{V{A))  x  V(V(A)) -> V{V{A))
« , : V{A)  x V{V{A))  —  V(V{A))
<m : n v w )  X V(A) V(V(A))

Egns . Co j C\ , • • • , cn , Co »* ■ *, c n  , (f>c £  P(.A .)
{ c 0} , • • •, { c n } , {co, • • ■ , Cn}, <t>, E V(V(A))

1* {co} +  1" {cn} =  {co, • "  , Cn}
2. { c i}  + -------- h {cn } =  Co' <j ( { c i '}  + ----1- {Cn '} )

iff Va*. o* G Co' —► €  Ci A • • • A a; £  c„
i.e ., c0' =  n r = i c» a n d  c i =  c0 / U c 1 , J- - - , c n =  c0' U c B'

3 . {c 0} =  ( { c i '}  H------ h {c„ '}) <W c0' w h ere  n >  1

iff V(Z, . • • • flpj. G Ci A • • • A Clm €  Cn * O*, * " * , G Co
i.e ., c0  =  U r=pct'

4 . {co} +  { c i }  =  { c i}  +  {co}
5 . {c 0} +  ( { c i}  +  { c 2}) =  ({c0} +  { c i} )  +  { c 2}
6- {co }  +  <l>s = <t>$ + {c o }  =  {co }
7 .  (f>c < j  { C i ,  • ,  C n }  —  { c i ,  • ,  C n }

8 . Ci <f>s =  { c i }
9 . c i { 4>c} =  { c j
1 0 . { c i , • • •, Cn} «m (f>c =  {co} w h ere  c0 =  (J"= l c{

Figure 4.1: The Algebraic Structure of the IFP

Figure 4.1 is a summary of the algebraic structure of the IFP. Although there are other 

interesting mathematical properties concerning the algebraic structure of the IFP, it is outside 

the scope of this thesis to investigate them all. The main objective of developing the algebraic 

structure is to support the development of a tool to assist system designers in constructing 

class hierarchies. The structure as presented above is sufficient for this purpose so further 

investigation will not be carried out here.

Definition 4.13

The inheritance factorisation process is a process which takes an initial class hierarchy 

expression and applies only the definitions, propositions and Axiom 4.1 to Axiom 4.3 

for manipulation. The factorisation process continues until a normalised class hierarchy 

expression is obtained.

4.2.7. Detecting Multiple Inheritance

Handling multiple inheritance in the IFP is not quite as straight forward as handling single
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inheritance. First of all, one needs to know whether multiple inheritance exists in the class 

hierarchy construction problem and then transform the current subexpression into one which 

reflects the multiple inherit relationship. The following is a summary of how multiple 

inheritance is detected in the manipulation process and what should one do when such a 

situation comes up.

During the inheritance factorisation process using only single inheritance, one may encounter 

subexpressions in which common attributes can be factorised in two or more different ways. 

For example,

f  =  { a i} < *  ({ { a 2, a 3, a 5}} +  { {a3, a 6 )a 8} } + { { a 4, a 6, a 8}} +  { { a2, a 7}})
=  { a i}  < t  ({“ 3} <« ({{02, a 5}} +  {{ct6 i ^s}}) +  {{^4) 06, a 8}} +  { { a2, 07}}) [&vi]

o r  =  { a i}  < t  ( { a 2} <, ({{03, a 5}} +  { { a7}}) +  {a6, a 8} <, ({{03}} +  {{04}})) [£/V2]

Here, there are two valid ways to factorise out common attributes. This, in fact, indicates 

that multiple inheritance has been detected.

When multiple inheritance is detected, one can identify the superclasses involved in each 

multiple inheritance relationship. In the above example, from the expressions Cn i and £^2, 

one can deduce that {03}, {a2} will be the superclasses involved in the multiple inheritance 

relationship of the set of class specification {{0 2 , 0 3 , 05}}, and {a3}, {a6, a8} will be the 

superclasses involved in the multiple inheritance relationship of the set of class specification 

{{o3 ,a 6,a 8}}. Now, instead of factorising out the common attributes, one has to expand 

the subexpression to capture the corresponding single inheritance and multiple inheritance 

subexpressions. The steps to follow are:

For each individual class specification involved in the subexpression, do the following:

1. If the class specification can inherit from more than one class specification, trans­

form it to a subexpression which involves the multiple inherit operator.

2. Otherwise, transform it to a subexpression which involves the single inherit oper­

ator.

Hence, the resulted expression from the above example will be:

Cn  = { < * 1 }  <4 ( ( { { f l 2 } }  +  { { 0 3 } } )  <171 { 0 5 }  +  ( { { 0 3 } }  +  { { ® 6 ,  a 8 } } )  < m  <t>c +  { ^ 6 ,  a 8 }  { { a 4 } }

+ {^2} <$ {{0 7}})

4.2.8. Class Hierarchy Graphs

The above discussion provides a manipulation process which allows one to form an initial 

class hierarchy expression from the set of class specifications involved in a particular class

81



A Design Method for Object-Oriented Programming Winnie Pun

hierarchy construction problem and transform it into a normalised class hierarchy expres­

sion. Although this normalised class hierarchy expression reflects the single inheritance and 

multiple inheritance relationships in the optimal class hierarchy, these relations are often best 

expressed in a graphical form [Bol79, BoM76]. This section describes how to transform a 

normalised class hierarchy expression to its normalised class hierarchy graph.

Definition 4.14
A graph, G, is a pair G = {V,E)  where V  is a finite set of vertices and E  is a set of 

unordered pairs of distinct vertices.

Definition 4.15
A directed graph is a pair G =  (V,E),  where V  is a finite set of vertices and E  is a set 

of ordered pairs of vertices.

Definition 4.16
A class hierarchy graph is a directed graph, Gh — {V,E)  where

V -  {l>i, • • "Un} 

f : V  —* C

E = {(vijUj)} where v<,Vj E V

and f{vi) <s Sj and f{vj )  E Sj where Sj E S  

or S{ <m f (vj )  and f(vi)  E where S{ E S

The normalised class hierarchy graph stems from the normalised class hierarchy expres­

sion which is generated from the IFP. Such a class hierarchy graph is for implementation 

and is different from the conceptual class hierarchy graph.

Obtaining the set of vertices is straight forward. One just need to gather the individual class 

specifications found in the normalised class hierarchy expression.

To obtain the set of edges is only straight forward if the normalised class hierarchy expression 

is simple. For example, a trivial normalised class hierarchy expression such as, co'<, ({ci'} + 

{c2'}), can be transformed to c0' <4 {c^, c2'}. Hence from the semantics of the single inherit 

operator and the definition of the class hierarchy graph, one can deduce the set of vertices, 

V, and the set of edges, E , are:

V  =  { c o W .c a ' }

E  =  {(co', Cl'), (co7, c2')}
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Hence, the class hierarchy graph, Gh = (V}E)  is generated.

However, most of the normalised class hierarchy expressions are more complicated. They 

are made up of various kinds of subexpressions. In this case, one needs to have a function, 

V(£n ), which takes in the normalised class hierarchy expression and generates the set of 

vertices and the edges for the graph. The following is an overview of the algorithm applied 

by the function, V ^ n )-

Algorithm 4.1
In order to obtain the set of edges from the class hierarchy expression, one need to define 

a grammar which acts as the basis for a syntax analyser of the expression. The syntax 

analyser recognises the elements of a class hierarchy expression and generates the set of 

edges accordingly. The following shows the grammar of the syntax analyser.

ClassHierExpr ClassSpec ‘<a’ SubExpr *$’ 
SubExpr ‘<m’ ClassSpec ’$ ’

SubExpr T SubExpr y  
SubExpr ‘+ ’ SubExpr 
ClassSpec ‘<*’ SubExpr 
SubExpr ‘cm’ ClassSpec 
*{* ClassSpec *}’

ClassSpec : attributes ‘}’

attributes attributes ATTRIBUTE 
| ATTRIBUTE *}’

Figure 4.2: The Grammar for the Parser

The grammar above shows that the symbol ‘$’ is the termination symbol. A class 

hierarchy expression is made up of subexpressions. A subexpression can be one which 

contains the combine operator and/or the single inherit operator and/or the multiple inherit 

operator. Each of these subexpressions has a list of active class specifications attached to 

it. An active class specification is a class specification which would be involved in the 

generation of edges once a single/multiple subexpression is recognised.

The whole objective of the syntax analyser is to recognise the different types of subex­

pressions and perform the necessary tasks. This is described by the following.

1. ClassSpec *<,’ SubExpr

When a subexpression with a single inherit operator, i.e., the single inherit

83



A Design Method for Object-Oriented Programming Winnie Pun

subexpression is recognised, a set of edges, (vi} VjJ, (vi fvj3), • • •, (u,-, vJn) are 

generated in which is the class specification on the left hand side of the 

single inherit operator and vjx, vj2, • • •, vjn are the active class specifications of 

the SubExpr on the right hand side of the single inherit operator.

ClassSpec ‘<4’ SubExpr

Such a single inherit subexpression is then reduced to another SubExpr itself. 

The list of active class specifications attached to this resulting SubExpr contains 

only Vi because semantically Vi is the superclass of vjx, vj2, • • •, vJn and the 

graph is constructed in a bottom-up fashion, hence what is involved in the next 

construction is the superclass in this single inherit subexpression.

2. SubExpr ‘<m’ ClassSpec

When a subexpression involves a multiple inherit operator, i.e., the multiple 

inherit subexpression is recognised, a set of edges (vi l , Vj), • • •, (vin, v j ) are gen­

erated in which • • • ,Vin are the active class specifications from the SubExpr 

on the left hand side of the multiple inherit operator and vj  is the ClassSpec on 

the right of the operator.

SubExpr ‘<m’ ClassSpec

Such a multiple inherit subexpression is then reduced to another SubExpr itself. 

The list of active class specifications attached to this resulting SubExpr contains 

all the superclasses vt l , • • •, derived from the multiple inherit subexpression.

3. SubExpr *+* SubExpr

When a subexpression involves a combine operator, i.e., the combine subex­

pression is recognised, it is reduced to another SubExpr. The list of active class 

specifications of the new SubExpr is simply a concatenation of the active class 

specifications found in the two SubExprs of the combine subexpression.

4. ClassSpec *}’

‘ClassSpec’ is a class specification. When a ClassSpec is recognised, it is 

reduced to a SubExpr with a list of active specifications containing only that 

class specification.

4.2.9. Examples to use the IFP

Now that the details of the formal manipulation process have been presented, it is time to give 

some examples showing how the manipulation process is used to construct the class hierarchy
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graph. This section presents two examples that show how the IFP is applied to different 

class hierarchy construction problems. The examples also illustrate how the normalised class 

hierarchy expression obtained is transformed to a graph. Example 4.2 shows its action for 

single inheritance and Example 4.3 shows its action for multiple inheritance. More concrete 

examples of the usage of the IFP can be found in Chapter 6 .

Example 4.2

In this example, a class hierarchy is constructed for the class specifications set, s, =  

{ c o , c i , c 2 , c 3 }  where c o  = { 0 1 , 0 2 , 0 3 , 0 4 , 0 5 } ,  c i  = { 0 1 , 0 9 , 0 1 0 } ,  C 2  = { 0 1 , 0 2 , 0 s }  and c 3  =  

{ a x , o 2 , o g ,  a 7 } ,  the inheritance factorisation process will be:

— {co, *-1) -̂2) £3}
— {co} +  {c i}  +  {c2} +  {c3}
=  { { f l i t  0 2 )  a 3 , 0 4 ,  a 5 } }  +  { { f l i ,  O g ,  O i o } }  +  { { o i ,  0 2 ,  O s } }  +  { { 0 1 ,  0 2 ,  a 6 ,  0 7 } }

=  { a i }  < 4  ( { { o 2 >  0 3 ,  0 4 ,  a 5 } }  +  { { o 9 , a i o } }  +  { { a 2 , a 8 } }  +  { { a 2 ,  0 6 , 0 7 } } )

=  { a l }  < 4  ( { { ° 9> O io } }  +  ( { 0 2 }  < 4  ( { { a 3> O 4, 0 5 } }  +  { { a s } }  +  { { 0 6 )  0 7 } } ) ) )  [£n ]

By introducing c4' =  {ai}, ci' = {0 9 , 010}, c5' =  {a2}, c0' =  {0 3 , 0 4 , 05}, c2' = {a8} and 

c3' = {0 6 , 07} as the implementation class specifications of this hierarchy, the normalised 

class hierarchy expression, ( N , can be re-written as:

£n  =  C4' < 4 ( { c i '}  +  {cs <t ({co'} + {C2'} + {<*'})))

The set of vertices for the hierarchy graph is,

V  — {co , Ci , C2 , C3 , C4 , C5 }

and the set of edges, E, is

E  =  { (c 4', c i') , (c4#, c5'), (c5', c0'), (c5', c2'), (c5', c3')}  

The corresponding class hierarchy graph is shown in Figure 4.3.
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Figure 4.3: The Qass Hierarchy Graph of Example 4.2

Example 4.3

In this example, a class hierarchy is constructed for the set o f class specifications, s* =

{co, Cl, C2, C3}. If Co =  {a i, 02, 03, O5}, Cl =  {01,03,06,08}, C2 =  { a i , 04, 06, Os} and C3 =

{ o i ,a 2,a 7} then the factorisation process will be:

=  {co, C l,c2,c 3}
— {co} +  {ci} +  {c2} +  {c3}
=  {{a li a 2, a 3, O5}} +  {{a l, q3, O6, ° 8}} +  {{Qi, a 4, 06, 08}} +  {{°li a 2i a 7}}
=  { a i }  ( { { a 2 , 0 3 ,  0 5 } }  +  { { 0 3 ,  0 6 ,  a 8 } }  +  { { a 4 ,  0 6 ,  a s } }  +  { { a 2 , 0 7 } } )

=  { a i }  < ,  ( { 0 3 }  < 5  ( { { a 2 >  0 5 } }  +  { { a 6 ,  a 8 } } )  +  { { 0 4 ,  0 6 )  0 8 } }  +  { { o 2 , 0 7 } } )  [ £ a t i ]

=  { 0 1 }  ( { o 2 }  ( { { 0 3 , 0 5 } }  +  { { a 7 } } )  +  { a 6 ,  a s }  < 4  ( { { 0 3 } }  +  { { 0 4 } } ) )  [ ^ 2 ]

Now since two valid normalised expessions are obtained, we know that multiple in­

heritance has been detected. In this case, Axiom 4.3 is used to obtain the appropriate 

expression.

£ N  — { 0 1 }  ( ( { { 0 2 } }  +  { { 0 3 } } )  < m  { 0 5 }  +  ( { { 0 3 } }  +  {{oo, 0 8 } } )  < m  <j>c  +  { 0 6 ,  0 8 }  { { 0 4 } }

+  { 0 2 }  <5 { { 0 7 } } )

By introducing c4' =  {o i} , c5' =  {o2}, c6' =  {a3}, c0' =  {a5}, c /  =  {a6,o 8}, c2' =  {a4}, 

c3' =  {a7}, as the implementation class specifications o f this hierarchy, the normalised 

class hierarchy expression, fjv, can be re-written as:

£n  = C4' <t (({05'} + {c8'}) <m C0' + ({C6'} + {c/}) <m <f>c +  C7' <3, {c2'} + C5' <, {C3'})

The following set o f vertices and edges are obtained:

V  — {c 4 , C 5  ,  C 6  ,  Cq , c7 ,  C 2  ,  C 3 ,  0 C}
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E — {(c4 , C5 ), (C4 , Cq ), (C4 >0 7 ), (C5 , Co )j (c6 j Cq ), (C5 , ^c)> (^7 » ^c)j (^5 > C3 )» (^7 1 C2 )}

The corresponding class hierarchy graph is shown in Figure 4.4.

Figure 4.4: The Multiple Inheritance Graph for Example 4.3

4.3. The IFP in Various Inheritance Models

IFP

Name-Compatible
IFP

Signature-Compatible
IFP

Behaviour-Compatible
IFP

Figure 4.5: The IFP in Various Inheritance Models

The previous section has discussed in detail the formal model which lies behind the in­

heritance factorisation process. As it stands, the formal model is deliberately generalised 

to allow further modifications and extensions. This is especially true when comes to the 

definition of an attribute.

Currently, the model of the IFP states that a class specification is specified in terms of a 

collection of attributes. An attribute, in its simplest form, is a name of an operation. Two 

attributes are said to be semantically equivalent and can be factorised out if their names are 

the same. It is assumed that there exists a mechanism to check for the equivalence of the 

attributes. All these, of course, have over-generalised the model and have not taken into

87



A Design Method for Object-Oriented Programming Winnie Pun

considerations of the meaning behind the names. As it stands, besides name-compatibility, 

there are other meanings which can be used to give a more precise definition for the semantic 

equivalence o f two attributes e.g. signature-compatibility and behaviour-compatibility (see 

Figure 4.5).

These various definitions of the equivalence of two attributes are, in fact, related to what 

exactly one inherits in an inheritance model, i.e., the nature of the inheritance model. This 

section gives a full account of the semantic of an attribute with respect to different inheritance 

models. It defines the definition of the semantic equivalence for attributes in different 

inheritance models. It also discusses about how the IFP can accommodate different models.

4.3.1. The IFP with Name-Compatibility

The name-compatible IFP is the simplest kind of model that one can obtain in the IFP 

universe. It requires only the name of two attributes to be the same for a valid factorisation. 

It is assumed that each name has an unique meaning attached to it and the meaning is 

intuitively understood by people. Hence, one can attach the same name to two attributes if 

they refer to the same meaning. Although this kind of IFP is very flexible to use, it induces 

various ambiguities in usage.

The ambiguities arise as a name seldom refers to only one meaning and a connotation can 

always be presented by several names. For example, one may use the word ‘node’ to refer to 

a vertex in a graph. At the same time, one may use the word ‘vertex’ to mean the same thing. 

Although the name ‘vertex’ and ‘node’ are different in syntax, they mean the same thing and 

should be factorised out in the IFP. However, if one only goes for a mechanism which checks 

for the syntax, the names ‘vertex’ and ‘node’ will not be factorised out. Besides, ambiguities 

can arise when people use abbreviations. For example, some people use ‘phone-no’ instead 

of ‘telephone-number’. Again, simply checking the syntax of the names leads to a failure 

in the factorisation process.

There is not yet a perfect solution to solve such an intuitive mismatch. Nevertheless, there 

are a few precautions which system designers can take to reduce the ambiguities involved. 

Firstly, a good choice of names for the attributes contributes significantly to readability 

and understandability of the meaning of an attribute. It is suggested that one should strive 

for names which are clean, direct and avoid using dummy names such as ‘foo’ which 

either means nothing or everything. At the same time, software tools can be developed to 

provide common definitions for attributes. One can develop an attribute dictionary which is 

analogous to the traditional data dictionary. The attribute dictionary stores the definitions of 

the attributes and their aliases. When specifying a new class specification, system designers
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are required to consult the attribute dictionary to avoid any confusions in the meaning of an 

attribute.

The name-compatible IFP is normally found in the non-strict inheritance model which implies 

code-sharing. What is being inherited here is a piece of code or a memory location. Hence, 

an attribute is a name that refers to a piece of code. Two attributes are said to be semantically 

equivalent and hence can be factorised out if their names denote the same piece of code. 

This seems to give more concrete grounds to compare two attributes. Unlike the above 

discussion which states that a name indicates an intuitive meaning and is too abstract to 

compare, a name in the non-strict inheritance model refers to a piece of code. One can only 

use the same name for the attributes if the attributes refer to the same memory location and 

the same piece of code. However, the name-compatible IFP is only straight forward in a 

non-strict inheritance model when code is not allowed to be overwritten. When the model 

allows code to be overwritten to preserve the name being used, a more complicated IFP 

results. The IFP with overwriting implies that the IFP should allow users to specify the 

priority of attributes and this is discussed in more detail in Section 4.3.4.

4.3.2. The IFP with Signature-Compatibility

The name-compatible IFP is more suitable for weakly-typed languages such as Smalltalk 

[Gol83b] and LOOPS [WeQ84]. However, for strongly-typed languages such as Eiffel 

[Mey88], Trellis/Owl [Kil89, OHK87] and SOLVE [RWW88], name-compatibility alone 

becomes inadequate. To rectify this situation, one has to take into consideration of the 

signature corresponding to each name as well, hence the signature-compatible IFP.

An attribute in the signature-compatible IFP not only embodies the intuitive meaning of the 

name and the implementation that is attached to the name but also takes into account the 

signature associated with that attribute. The signature conveys information about the types 

involved in an attribute. For example, the attribute *int fo o ’ means that ‘foo’ has a type 

‘int’. Also, *int add(int a)' indicates that ‘add’ is a function that takes in an object of type 

‘int’ and returns an object with a type ‘int’.

In the signature-compatible IFP, two attributes are said to be semantically equivalent if the 

syntax of the attributes denotes the same intuitive meaning, the same piece of code and their 

corresponding signatures are compatible. Note that when signature is considered, one tends 

to say that two signatures are compatible instead of two signatures are equal. This is because 

two signatures need not be equal to be compatible. There are two situations when signatures 

can be said to be compatible:

i. Subtyping
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The concept of subtyping has been discussed earlier in this chapter. Subtyping 

is similar to that of subclassing; the elements of a subtype also belong to its 

supertype. Therefore, ‘typeA’ is said to be compatible to ‘typeB’ if there is a direct 

inherit relationship between ‘typeA’ and ‘typeB’. For example, if one examines the 

following two operations:

'‘add: int int —*• int’ 

ladd: real real —> real'

The signature of these two operations are not equal because they expect different 

types of input and output arguments. However, the signature of these two operations 

are said to be compatible because the type ‘int’ is a subtype of the type ‘real’. This 

kind of compatibility is also known as inclusion polymorphism [CaW85].

ii. Conformance

The concept of subtyping is often considered restricted in the sense that it requires 

two types to have a direct ‘inherit’ relationship before they are regarded as compati­

ble. For example, Figure 4.6 shows that ‘typeB’ is compatible with ‘typeA’ because 

it is a direct descendent of ‘typeA’. However, ‘typeC’ can never be compatible to 

‘typeA’ because they are in different branches in the hierarchy.

A * '

Figure 4.6: Type Compatibility and Conformance Rules

In order to relax this situation, one can introduce appropriate conformance rules 

to the type system. The conformance rules define when and how a type can be 

conformed to another type. With the correct conformance rules, two types do not 

need to have a direct inherit relationship in order to be compatible. This kind of 

compatibility is also known as coercion polymorphism [CaW85].

With signature-compatible IFP, it seems that in order to decide whether two attributes are 

semantically equivalent and hence can be factorised out, one has to take considerations of 

the conformance rules defined for the type system.

Now that the definition of semantic equivalence of two attributes in the signature-compatible
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IFP is defined, one can examine how to support a mechanism to check for the equivalence

in the IFP. There are basically two ways to handle it. An easy way in which the current 

IFP model still applies is to require system designers to do the checking. Two attributes can 

only be labelled with the same name if:

i. they share the same intuitive meaning,

ii. they refer to the same piece of code and

iii. the corresponding signatures of the attributes are compatible.

In this case, system designers are responsible for attaching the right label to the attributes. 

The checking mechanism in the IFP only needs to check for the syntactic equivalence of the 

two names.

The other more efficient way to handle the signature-compatible IFP is to modify the syntax 

of an attribute to capture the signature of the attribute as well. An attribute is no longer 

represented by a name alone but also the types of its input and output arguments. For 

instance, the previous example about the operation ‘add’ can have the syntax, int add(int). 

In this case, the checking mechanism in the IFP has to be modified so that it does not only 

check for the syntactic equivalence of the names but also look into the types defined for such 

a name. The type-checking mechanism found in compilers would be useful in implementing 

the checking mechanism of the EFP.

As the signature-compatible IFP concerns type hierarchies as well as class hierarchies, the 

signature-compatible IFP is less flexible than the name-compatible IFP since it involves type- 

checking of the attributes. However, type checking is more supportive of the programmer’s 

intentions and yields a more expressive and structured hierarchy.

4.3.3. The IFP with Behaviour-Compatibility

The behaviour-compatible EFP can be considered as the ultimate IFP. It is related to the 

strict inheritance model mentioned earlier in this chapter. Here, a class specification should 

specify the behaviour of a particular class. To define the precise behaviour of a class is 

rather difficult [Weg88b]. One of the mechanisms for specifying behaviour is by algebraic 

specification. In order to achieve strict inheritance in the EFP, a class specification should, 

therefore, be defined in terms of algebraic specifications [EhM85]. An example of such 

algebraic specification is illustrated in Figure 4.7.
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Stack-

Sorts: Stack, Integer

Opns: create : —* Stack
push : Stack Integer —>Stack
top : Stack —»• Integer u Integererror
pop : Stack —► Stack u Stackerror

Axioms: top(push(s,i)) = i 
top(create) = Integererror 
pop(push(s,i)) = s 
pop(create) = Stackerror

Figure 4.7: The Algebraic Specification for the Class ‘Stack’

As one can see, when a class specification is defined algebraically, it involves defining the 

sorts, the operations and the equations of that class specification. Here, sorts simply refer to 

the types involved in the class specification. Operations are the actions which are defined 

for the class specification. Each operation is denoted by an operation name and the signature 

associated with it. Equations define the relationships between the operations within the class 

specification.

Behaviour-compatible IFP is very different from name-compatible and signature-compatible 

IFP. In fact, there are complications in extending the basic IFP model to cover the behaviour- 

compatible IFP model. In the basic IFP model, a class specification is defined as a collection 

of attributes which are of the same kind, i.e., they can all be viewed as operations defined 

for a particular class. This definition applies both to the name-compatible and the signature- 

compatible IFP. Although in the signature-compatible IFP one may need a richer syntax to 

include the signature as well as the name for an attribute, the attributes described in a class 

specification still belong to the same kind. However, in the behaviour-compatible IFP, a 

class specification involves three different kinds of attributes namely, sorts, operations and 

equations.

Class Specification = (Sorts, Operations, Equations)

As one can imagine, some of the definitions in the basic IFP model have to be modified to 

cater for the behaviour-compatible IFP. First of all, the definition of a class specification has 

to be re-defined.
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Definition 4.17

A behaviour-compatible IFP class specification is a collection of three different types of 

attributes,

Ci =  {sti,  • • •, 5 tj}  U { o p i ,  • • • , opm} U { eqx, • • • ,  e g n }

where sti € S T i , opi € OVi and eqi G €Qi

and ST i  C Sorts, OVi C Operations and C Equations.

Further, the axiom which governs the factorisation of common attributes has to be modified.

Axiom 4.4

For behaviour-compatible IFP,

{ci} + ----- (- {cn } =  Co' <1 ({ci'}  -I- h {Cfi/})

n  n  n

i f f  FTo  =  f |  ST i and O V0 =  f |  OVi and SQ0 =  f l £ a
» = i  i = i  i = i

It is generally agreed that writing a formal specification is a difficult task [LiG86]. Hence 

although the behaviour-compatible EFP presents a precise and non-ambiguous inheritance 

model, it is hard to achieve. Concerning the class specifications, there is research going on 

investigating how to use algebraic specifications to specify a class, such as OBJ2 [GoM82, 

Shu89]. Concerning the mechanism to check whether a factorisation can be taken place 

between two class specifications, one basically needs to check the three kinds of attributes 

associated with each class specification instead of one as in the name-compatible and the 

signature compatible IFP. It is outside the scope of this thesis to give the details of how to 

attain the behaviour-compatible IFP. However, this thesis has demonstrated such a model is 

plausible.

4.3.4. The IFP with Priority Attributes

The basic IFP model treats all the attributes as having the same priorities when it comes 

to factorisation. However, it is more practical to grant different priority values to different 

attributes according to the knowledge system designers have about the attribute and the 

nature of the development environment. In this case, system designers can specify that a 

particular attribute must not be factorised under certain circumstances. This serves to give 

more flexibility to the inheritance factorisation model. Such flexibility is found to be very 

useful with inheritance models that allow code to be overwritten.
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Inheritance models which allow code to be overwritten are common in the inheritance world. 

They permit the names to be preserved while the implementation attached to that name is 

altered. For example, with the code overriding, the class ‘circle’ and the class ‘rectangle’ in 

the same class hierarchy can have an operation named ‘draw’ and yet the algorithm to draw 

a circle and a rectangle is different. In the basic IFP model, in order to distinguish that the 

‘draw’ operation in the class ‘circle’ has a different implementation from that of the class 

‘rectangle’, one needs to name the operation with different names such as ‘drawCircle’ and 

‘drawRectangle’ respectively. This, of course, is valid but clumsy. With priority attributes, 

in order to highlight the fact that the operation ‘draw’ in the class ‘circle’ has a different 

implementation from that of the class ‘rectangle’, one can assign a lower priority value to 

the operation ‘draw’ so that when factorisation takes place, it will not be factorised out. 

In this case, the name of the operation is still preserved and yet they can have different 

implementations.

Moreover, if one considers the inheritance model which supports only single inheritance, the 

ability to define the priority of the attributes in factorisation becomes extremely useful. As 

indicated in Section 4.2, it is possible for the inheritance factorisation to yield more than one 

normalised class hierarchy expression. If multiple inheritance is supported then this indicates 

that a multiple inheritance hierarchy exists. However, in some cases, multiple inheritance 

is not accommodated. Here, one has to choose a more suitable class hierarchy expression 

amongst various normalised hierarchy expressions obtained. Again, with priority attributes, 

one can define the priority value of factorisation for each attribute according to the nature of 

the development environment. In this case, system designers can obtain a unique normalised 

class hierarchy expression by taking into the account the priority of the attributes. In order 

to illustrate the usefulness of the priority attributes, Example 4.4 is a revisit of Example 4.3 

but this time it is assumed that the IFP does not support multiple inheritance.

Example 4.4

In this example, a class hierarchy is constructed for the set of class specifications, s* =

{ c o , C i , C 2 , C 3 } .  If C o  —  { o i ,  0 2 , O 3 ,  O 5 } ,  C l  —  > O 3 ,  0 6 , O g } ,  C 2 —  1 O 4 ,  0 6 , O g }  <tnd C 3  —

{ai, a2, <1 7 } then the factorisation process will be:

Ci — {cqjC\, C2 )C3 }
— { co} +  { c i}  +  { c 2} +  {c3}

= {{oi, a2) 0 3 , o5}} +  {{ai, 0 3 J 0 6 . os}} + {{oi, 0 4 . 0 6 , o8}} +  {{ai, a2 , 0 7 }}
= {0 1 } < 4 ({{o2) 0 3 ,  a5}} +  { { 0 3 ,  a6 , og}} + { { < 2 4 , 0 6 , og}} 4- {{o2, 0 7 } } )

— { 0 1 } ({0 3 } ({{ 0 2 , o5}} + {{a6, o8}}) +  {{o 4 , 0 6 , ag}} + {{ 0 2 , 0 7 }}) [£/vi]
or = {0 1 } <f ({a2} < 4  ({{ 0 3 . 0 5 }} +  {{ 0 7 }}) +  {0 6 , ag} < 4  ({{ 0 3 }} + {{a4}})) [£^2 ]

Here, the IFP has generated two valid normalised expressions, £jvi and Cn2 - Suppose the
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attribute a3  denotes an operation in which its corresponding code would be overwritten by 

the inheriting class. If the degree of reusability is measured by how many pieces of code are 

being reused then the class hierarchy generated from fo i  has a lower degree of reusability 

than that of (n 2 because the code of a3 is not going to be reused. As the basic IFP model 

defines that an optimal class hierarchy is one which achieves maximum reusability, a better 

choice of normalised expression for an optimal class hierarchy, in this case, is Cn2 -

To modify the IFP model so that it can recognise Cn2 as a more suitable candidate for a 

normalised class hierarchy expression, one has to install the capability to specify priority 

values in the IFP. If system designers can specify that the attribute o 3  has a lower priority 

value, o3 will not be factorised out when an ambiguity is detected. In this way, ^ 2  is 

automatically selected as the normalised class hierarchy expression. The current IFP, though, 

has not been developed to cater for this. This section has demonstrated such an improvement 

of the IFP is possible and useful.

4.4. Applying the IFP to Systems Design

The main objective of developing the IFP is to help system designers handle inheritance in 

object-oriented programming. With respect to inheritance in object-oriented programming, 

one of the main task one needs to do is to identify the ‘inherit’ relationship of the class one 

wants to construct. This usually involves two kinds of activities.

i. System designers have to check whether there exists a suitable class hierarchy for 

the new class to attach to. If a suitable class hierarchy is not found, a new class 

hierarchy has to be constructed from scratch.

ii. If a suitable class hierarchy for the class one wants to construct is identified, the 

class is then added to such an existing class hierarchy.

This section discusses how the IFP can be applied in these two design activities. After 

that, it discusses how the design behaviour of the system designers may be changed as a 

consequence of using the IFP. It also mentions how the IFP is incorporated into the design 

method proposed in Chapter 3.

4.4.1. In Building a Class Hierarchy from Scratch

In the application system design domain, system designers seldom find that they have to 

construct new class hierarchies from scratch [Joh8 8 ]. Normally, the system development 

environment already has a rich set of class hierarchies in which system designers can find 

a suitable class hierarchy for the new class to attach to. Even if one cannot find a suitable
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class hierarchy, application system designers tend to create the new class as the subclass of 

the universal superclass ‘Object’ instead of working on a new class hierarchy from scratch.

The construction of new class hierarchies from scratch is found to be more common in 

composing the system development environment for applications to build on. Here, system 

designers have to provide a good environment for software development. This involves 

supplying adequate class hierarchies in which classes for the application can be built. As 

it stands, the basic model of the IFP is actually more appropriate for system designers in 

constructing class hierarchies from scratch. With the IFP, system designers do not need 

to work out all the abstract classest involved in the class hierarchy nor do they need to 

compare and contrast the classes to identify the superclasses. They only need to specify the 

conceptual class specifications involved in a class hierarchy construction problem and the 

corresponding optimal class hierarchy is then generated.

4.4.2. In Adding a New Class to an Existing Class Hierarchies

As mentioned above, it is more common for system designers to add a new class to an 

existing class hierarchy. Hence, it is important to examine what the system designers need 

to do with the IFP when adding a new class to an existing class hierarchy.

In the IFP, a class hierarchy is presented as a graph. The addition of a new class means 

that a new node is added to a graph. The new node can be added as an external node or an 

internal node. The structure of the graph may be changed according to whether it is added as 

an internal or an external node. Consequently, system designers have to use IFP differently 

depending on whether the structure of the graph is going to be changed or not.

A good object-oriented software development environment should provide a set of well- 

defined class hierarchies which reflects maximum reuse. These hierarchies should have the 

abstract classes at the top of the class hierarchy and concrete classes at the bottom [Joh88]. 

Thus, when a new concrete class is added to a well-defined class hierarchy, it is always 

added as an external node. This is illustrated as Figure 4.8.

When a class is simply added as an external node, no restructuring of the graph is required. 

The new class specification is usually a simple incremental modification of an existing class 

specification in the hierarchy. All this implies that there is no need to perform a new 

factorisation on the conceptual class specifications in the existed graph and the new class 

specification. A simple graph-walking algorithm, based on comparing the attributes of the

In Johnson’s paper [Joh88], he defines an abstract class as one that seldom has instances, only its subclasses have instances. 
The root of a class hierarchy is usually abstract classes while the leaves are never abstract
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class specifications, can be developed to append the new class to the existing class hierarchy 

graph.

Figure 4.8: Adding a New Class as an External Node

Figure 4.9: A Restructuring of a Class Hierarchy

However, the addition of a new class may sometimes lead to a restructuring of an existing 

class hierarchy. This happens when the class hierarchy itself is not yet well-defined, i.e., the 

addition of the new class simply identifies more abstract classes at the top of the hierarchy 

to give a better hierarchy structure with higher degree of reusability. This is especially true 

if the addition of the new class means that the class hierarchy will transform from a single 

inheritance hierarchy to a multiple inheritance hierarchy as shown in Figure 4.9.

The class hierarchy on the left hand side of Figure 4.9 is constructed from conceptual class
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specifications, cq =  {ao,ai}, ci =  {0 0 , 0 2 , 0 3} and C2 =  {0 0 , 02 , 04}.

£ i  —  { ^ 0 ,  ^ 1 , ^ 2 }

=  { { 0 0 , O i } }  +  { { o 0 , 0 2 , 03}} +  { { o o ,  0 2 , a 4 } }

=  { a o }  < s ( { { o i } }  +  { { 0 2 , 03}} +  { { 0 2 , a 4 } } )

=  W  < ,  ( { { a i } }  +  { 0 2 }  < ,  ( { { 0 3 } }  +  { { o 4 } } ) )

If c0' =  { a i } ,  c i '  =  { o 3 } ,  c 2 ' =  { o 4 } ,  c 3 '  = {a0} and c 4 ' = {a2}, then the corresponding 

hierarchy graph is shown on the left hand side of Figure 4 .9. Now, the new class specification 

c 5 =  { 0 0 , 0 1 , 0 3 , 0 5 }  is added to this class hierarchy. As c 5  is not a simple incremental 

modification of any existing class specifications, the factorisation process has to be repeated 

with c 0 , c i , c 2 , c 5 .

—  { C 0 . C 1 , C 2 , C 5 }

=  { { o o ,  o i } }  +  { { a o ,  02,03}} +  { { 0 0 , 02, a 4 } }  +  { { o q ,  a i ,  03, a 5 } }

=  { a o }  < t  ( { { ® i } }  +  { { a 2 > 0 3 } }  +  { { 0 2 , a 4 } }  +  { { 0 1 , 0 3 , o 5 } } )

= {ao} <t ({ai} <s ({0C} +  {{03, a5}}) + {02} <, ({{03}} + {{o4}}))
or =  {a0} < ,  ({{ai}} +  {03} < t  ( { { 0 2 } }  +  {{01,05}}) +  {{a2,a4}})

The factorisation indicates that multiple inheritance is detected and by Axiom 4 .3, the 

normalised class hierarchy expression is:

{ao} <, ({a i}  <4 {4>c} +  ({{02}} +  {{°3}}) <m 0c +  {02} <« {{a4}} +  ({{ai}} +  {{03}}) <m {a5}) 

By having c5' = {a5}, the new graph is presented on the right hand side of Figure 4 .9.

As it stands, the restructuring of a class hierarchy should not affect the objects which have 

been created based on the old class hierarchy. The structure of the class from which the 

objects have been instantiated should remain the same. The only thing which has altered is 

the inheritance path. The new class hierarchy should provide a more efficient inheritance 

path which gives a higher degree of reusability. Because of this, when there is a restructuring 

of a class hierarchy, all the inheritance paths of the defined classes of the previous hierarchy 

have to be updated.

4.4.3. The Importance of Specifications in the IFP

The development of the inheritance factorisation process has highlighted the point that system 

designers should look at class hierarchy manipulations from a different angle. Up till 

now, system designers have applied ‘ad hoc’ methods and intuition in constructing class 

hierarchies. They spend more time comparing the similarities and differences amongst 

various classes than working on the precise properties and attributes of these classes. This 

has led to the construction of ill-defined class hierarchies with little reuse. Since the class
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hierarchies are not well-defined, it is more likely for these class hierarchies to be reorganised 

whenever a new class is added to them.

Unlike the ‘ad hoc’ method, the IFP emphasises the importance of having correct class 

specifications. As Liskov and Guttag once said [LiG8 6 ], “The art of writing a specification 

sheds light on the abstraction being specified by focusing attention on the properties of 

that abstraction. This use can be enhanced by careful attention to properties that might be 

overlooked”. This is indeed the essence of the IFP. By relieving system designers of any 

mechanical processes in constructing class hierarchies, the IFP encourages system designers 

to pay more time and attention on identifying the correct properties and characteristics of 

individual classes. The generation of a reasonable class hierarchy relies very much on 

specifying the classes correctly in the first place. This point is currently overlooked by most 

system designers.

4.4.4. Incorporating the IFP into the Proposed Design Method

The inheritance factorisation process is developed as part of the design method mentioned in 

Chapter 3. The design method requires system designers to identify the ‘inherit’ relationship 

at the system level. This can be done by using the inheritance factorisation process. When 

the system designers have confirmed the set of implementation objects, they have to decide 

whether these objects can be instantiated using existing classes or not. Very often, new classes 

have to be constructed in which case inheritance factorisation process can be used. The 

inheritance factorisation process would help them to construct the necessary class hierarchies 

and hence to identify the required ‘inherit’ relationships. This information is required to 

construct the class structure chart and the message structure chart at the specification level.

Further, this design method forms the backbone of a CASE environment for object-oriented 

programming. In this case, the inheritance factorisation process lays down the foundation 

of a tool which helps system designers in constructing class hierarchies. The tool which 

is called the factorisation engine can be incorporated into the CASE environment. This is 

discussed briefly in the next section but in more detail in Chapter 5.

4.5. Automating the IFP

Automation in CASE has become more and more important in recent years. It has attained 

dramatic productivity advances in software engineering. Automation not only concerns 

code generation in the implementation phase but also comes as the front-end of the system 

analysis phase [Mar8 8 ]. As it stands, the inheritance factorisation process is only a manual 

manipulation process. System designers will benefit more if such a process can be automated.
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The automation process can eventually be incorporated into the CASE environment for 

object-oriented programming. This section describes the various stages which are required 

to develop such an automation process.

r J  A  i! B c j
L \ / j

Clast Spec £<£rortl

1

d t u  specifications

r
edges,
vertices

1 Class Spec Parser J Factorisation Engine^K I Graph Generator

L......................
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Figure 4.10: The Automation Process of the Inheritance Factorisation Model

The automation of the IFP involves five components:

i. Class Specification Editor

The class specification editor allows system designers to define the set of class 

specifications involved in a particular class hierarchy construction problem. The 

editor consists of a template which prompts users to fill in the required information 

about a class specification. Basically, users have to specify the individual class 

name and the attributes belonging to that particular class. The following is an 

example of a class specification in the name-compatible IFP.

Point: create, display, move, locate;

ii. Class Specification Parser

Once the set of class specifications is defined, it is passed through the class 

specification parser. The responsibility of the parser is three-fold.

• It has to verify the correctness of the defined specifications, e.g., whether 

the attributes found within a class specification are mutually exclusive.

• When the verification process is finished, the parser has to generate a 

symbol table for the corresponding set of class specifications. The symbol 

table contains the name of the classes involved and the description of the 

individual attributes.

• However, the most important task of the parser is, in fact, to generate an 

initial expression from the set of class specifications for the inheritance
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factorisation process.

iii. Inheritance Factorisation Engine

The inheritance factorisation engine is the main component in the whole automation 

process. Its construction is based on the formal model mentioned in Section 4.2. 

The inheritance factorisation engine takes in the initial expression and applies an 

algorithm based on the inheritance factorisation model to factorise out common 

attributes. When a set of common attributes is factorised out, it indicates that 

a new superclass in the class hierarchy has been generated. The factorisation 

process continues until the expression cannot be factorised further. The output of 

the factorisation engine is a normalised class hierarchy expression. The normalised 

class hierarchy expression will then go into the graph generator in which an optimal 

graph is generated.

iv. The Graph Generator

The main function of the graph generator is to take the normalised expression and 

generate the corresponding set of vertices and edges. By having this set of vertices 

and edges, the corresponding class hierarchy graph can be produced.

As one can see, the core component of the automation of the IFP is the development of the 

inheritance factorisation engine. In order to demonstrate such automation and examine the 

performance of the IFP, a prototype of the inheritance factorisation engine was constructed. 

The implementation details of the inheritance factorisation engine is found in Chapter 5.

4.6. The Truth of the IFP

When the idea of the inheritance factorisation process was first introduced, a number of 

people showed enthusiasm for it. Most of them recognised that it could be useful, con­

tributing to the design and being a part of the development environment for object-oriented 

programming. A few of them suggested that the IFP is similar to the techniques of cluster 

analysis. Hence, it is important to have this section to define what exactly the EFP is and is 

not.

4.6.1. The Techniques of Cluster Analysis and the IFP

The technique of cluster analysis [Eve80] is a classification scheme for grouping objects 

into a number o f classes such that objects within classes are similar in some respect and 

unlike those from other classes. The objects or individuals are described by a set of numerical 

measures. There are various methods of cluster analysis, e.g., Q-analysis, typology, grouping, 

classification, numerical taxonomy and unsupervised pattern recognition. Such a variety of
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names is due to the popularity of cluster analysis in various fields such as psychology, 

zoology, biology, artificial intelligence and information retrieval. The technique of cluster 

analysis is regarded as a useful tool to search for natural groupings in the data.

The details about the technique of cluster analysis are outside the scope of this thesis. 

However, the basic idea of cluster analysis is to find the similarity coefficient or distance 

measures of each variable between two entities. The grouping of the entities depends totally 

on these coefficients. For example, the following table shows how the three entities are 

specified by some numerical values in a set of chosen variables.

Item/Variables height weight

1. M. Smith 6 6 1 2 0
2. W. Blogg 76 130
3. M. Storm 70 150

Hence, by obtaining the similarity coefficients t;

S 1 2  =  0 . 334 , S13 =  0 . 466 , S 2 3  =  0 . 2 0 0

one can then group similar items together by comparing the similarity coefficient.

As it stands, the technique of cluster analysis is very different from that of the IFP, as it 

serves as a classification of similar objects into classes. The classification depends on the 

quantitative factors assigned to each variable. Whereas in the IFP the objective is not about 

grouping similar objects into classes but to identify how the classes are related to each other 

in the class hierarchy. Although each class is described in terms of attributes which is similar 

to that in the cluster analysis, the comparison does not rely on any quantitative measure of 

the attributes. There is no similarity coefficient in the IFP. A class either has an attribute or 

does not have it. Besides, the result of the IFP not only highlights the ‘inherit’ relationships 

between different classes in the hierarchy but also identifies all the necessary abstract classes 

which are required to build the hierarchy. Therefore, there is little similarity between the 

technique of cluster analysis and the IFP.

4.6.2. The Benefits brought by the IFP

After declaring what the DFP is not, this section states what the IFP is by discussing the 

objectives of developing the IFP and the benefits which is brought by the EFP to object- 

oriented programming

1 The details of how to obtain the coefficient can be found in [Eve80].
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The IFP allows system designers to specify the related class specifications involved in a class 

construction problem and the corresponding optimal class hierarchy is then generated. The 

generation of the optimal class hierarchy means that the following goals have been achieved:

i. The IFP has identified all the abstract classes required for a class hierarchy.

ii. The description of these abstract classes are obtained as a result of the IFP.

iii. The ‘inherit’ relationships amongst these abstract classes are also identified.

The development of the IFP has been found to be beneficial to the construction of class 

hierarchies in various ways:

i. The IFP has relieved system designers of any mechanical process so that they 

can concentrate more on specifying the correct properties and characteristics of 

individual classes in the course of constructing class hierarchies.

ii. As indicated by Johnson [Joh8 8 ], “Finding new abstraction is difficult. • • • Humans 

think better about the concrete examples then about abstractions”. Hence, the 

identification of the abstract classes is a non-trivial task. However with the EFP, 

system designers do not need to worry about finding the correct abstract classes. 

All the abstract classes required in a particular class hierarchy and their descriptions 

are automatically generated as a result of the IFP.

iii. The EFP has a formal model as its basis. This feature of the EFP is very impor­

tant because it means that provided the class specifications given by the system 

designers are complete and correct, the class hierarchies generated from the EFP 

should be consistent and well-defined. The result can help to resolve some of the 

problems that occur in the construction of class hierarchies, such as minimising the 

restructuring of class hierarchies when a new class is added to an existing class 

hierarchy.

iv. The ‘ad hoc’ method tends to encourage system designers to apply a top-down 

design approach. When system designers have to create new class hierarchies, they 

have to start with the root node, the internal nodes and then the leaf nodes. This 

limitation imposes unnecessary constraints on system designers in designing the 

class hierarchy especially in the case of reuse in which a middle-out or bottom-up 

approach is required. The EFP, however, offers more flexibility to system designers 

in constructing class hierarchies. It allows system designers to apply bottom-up 

and middle-out approach to design class hierarchies. In fact, system designers need 

only to specify the conceptual class specifications and an optimal class hierarchy 

is then generated. The IFP is not aware of whether a top-down, bottom-up or 

middle-out approach is being applied.

103



A Design Method for Object-Oriented Programming

4.7. Conclusion

Winnie Pun

This chapter has discussed the details of the inheritance factorisation process. The inher­

itance factorisation process has been developed to help system designers construct class 

hierarchies in object-oriented programming. It provides a systematic manipulation which 

system designers can apply in constructing class hierarchies, guaranteering the generation of 

an optimal class hierarchy.

Besides giving the details of the formal model which lies behind the manipulation process, 

this chapter has also demonstrated the flexibility of the inheritance factorisation model. It 

shows how the basic model can be extended to cover both the non-strict inheritance and the 

strict inheritance. It has examined how the IFP can be used in constructing class hierarchies 

from scratch and adding new classes to an existing class hierarchies. As these two activities 

are found in the system design process, hence it has established the value o f the IFP in 

system designs. In addition to this, this chapter has also showed that such a process can be 

automated. The implementation of the automation process is found in Chapter 5.
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“On the other hand, we cannot ignore efficiency”

~  Jon Bentley ~

Chapter 5 

A Prototype of The IFE

conceptual class specifications 

1 1 1

I I I
A normalised class hierarchy expression

Figure 5.1: The Input and Output of the IFE

Chapter 4 has described the formal model which lies behind the inheritance factorisation 

process. Such a process is a manual manipulation process which provides a systematic 

approach to constructing class hierarchies. Although this manual process helps system 

designers attain an optimal class hierarchy in an efficient manner, designers will benefit 

more if such a process can be automated. As suggested in Chapter 4, such an automation 

relies heavily on the implementation of a factorisation engine. As part of this research, the 

first prototype inheritance factorisation engine has been assembled in the C++ programming 

language on a SUN 3. It was constructed from the basic model of the inheritance factorisation 

process. Hence, it only supports name-compatible IFP with no priority of factorisation for 

attributes. The prototype engine was designed to take in a collection of conceptual class 

specifications as input, and generate a normalised class hierarchy expression as output (see 

Figure 5.1). This chapter, therefore, discusses various implementations of the factorisation 

engine and compares their efficiency.
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5.1. An Overview of the Inheritance Factorisation Engine

The algorithm which is suggested from the inheritance factorisation process for the factori­

sation engine can be summarised in Figure 5.2.

For i = n; i > 1; i-

True

False

More than one 
way to factons

Factorise out attributes which are 
common to ‘i’ class specifications

Single Inheritance.
1. Update the class hierarchy expression 

for this factorisation..

Multiple Inheritance is detected
1. Obtain all the superclasses for

the rest of die factorisation process.
2. Inspect each class specification and 

identify the corresponding single 
and multiple inherit link with the 
obtained superclasses.

3. Exit the loop.

Figure 5.2: An Overview of the Algorithm for the Factorisation Engine

Here, the factorisation engine has to factorise out common attributes and check for multiple 

inheritance. This procedure is iterated for i  =  n,  • • •, i = 2 , where n  is the number of 

conceptual class specifications involved in the class hierarchy construction problem. This 

ensures that attributes which are common to more class specifications will be factorised 

out first. The procedure halts when no more factorisation can be carried out, i.e., i  — 2 

or multiple inheritance is detected. When multiple inheritance is detected, the factorisation 

process employs another method to identify the rest of the inherit links and superclasses of 

the hierarchy graph (see Axiom 4.3). The details of the implementation of these methods 

can be found later in this chapter.
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From the algorithm, it is apparent that in order to implement the factorisation engine, the 

following issues have to be tackled :

i. Define the data structure of :

• the class specification and

• the class hierarchy expression

ii. Define the method :

• to carry out the factorisation process,

• to detect multiple inheritance,

• to update expressions which involve single inheritance alone and

• to update expressions which involve single and multiple inheritance.

The following sections discuss these issues in details.

5.2. Data Structures

5.2.1. The Class Specification

A class specification is defined as a set of attributes. The desirable data representation 

for a class specification is in terms of boolean values. Each possible attribute of a class 

specification is represented by a boolean value to indicate whether or not the attribute is 

in a particular class specification. For example, in a particular class hierarchy construction 

problem which involves three class specifications, c0 ,c i,c 2, where c0 =  {a0, oi, a2, a3}, cx = 

{ao.a^asjag} and c2 =  {0 0 , 07}. The data representation of these class specifications would 

be:

a  o a  i a 2 0 3 CL4 0 5 0 6 0 7 0 8 CLg

Co =  1 1 1 1 0 0 0 0 0 0

Cl =  1 1 0 0 0 0 0 0 1 1

C2 =  1 0 0 0 0 0 0 1 0 0

As shown later, such a boolean representation actually makes the identification of superclasses 

and the update of the class hierarchy expression very easy.
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5.2.2. T he  C lass H ie ra rch y  E xpression

Winnie Pun

classSpecLink classSpec supe rClassLink subClassLink nextLink

Figure 5.3: A Typical classSpecLink

A class hierarchy expression denotes the ‘inherit’ relationship between superclasses and 

subclasses. There are basically two kinds of data representation one can use. The straight 

forward one is to implement the class hierarchy expression as a linked list. The linked list 

would be made up of links called ‘classSpecLink’. Each classSpecLink is composed of four 

fields: classSpec, superClassLink, subClassLink and nextLink as shown in Figure 5.3.

The field ‘classSpec’ contains the data representation of a particular class specification 

and as discussed above, it is a boolean representation. The fields ‘superClassLink’ and 

‘subClassLink’ are pointers that point to the immediate superclass and the immediate sub­

class links of that class specification respectively. The field ‘nextLink’ points to the next 

classSpecLink of that class specification. Hence, the data representation of a typical class 

hierarchy expression which involves single inheritance only, such as c0' <« ({ci'} + c2' < 4 

({c3'} + {c4'} +  {C5'})) is shown in Figure 5.4.

Figure 5.4: The Data Representation of a Single Inherit Expression

The data representation for a class hierarchy expression which also involves multiple inher­

itance as well as single inheritance, such as c0' < 4 (ci' +  ({c2'} +  {c3'}) <m c4') is shown in 

Figure 5.5.
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Figure 5.5: The Data Representation of a Multiple Inherit Expression

The data representation of a class hierarchy expression in the form of a linked list works 

well. One can generate the set of edges of the corresponding graph by transversing the 

linked list. However, the updating of the linked list can be quite cumbersome. Each time a 

factorisation is carried out, all the links of the linked list have to be updated to reflect the 

result of the factorisation. The following example attempts to show the complexity involved 

in updating the linked list when factorisation takes place.

E xam ple 5.1

This example assumes that a class hierarchy has to be constructed from conceptual class 

specifications c0 ) r 1 ,c 2 ,c 3  where c0  =  {o0, a x, a2, a3}, cx =  {0 0 , 0 4 , 0 5 }, c2 =  {a0 , a 2 ,o 6} 

and c3  =  {0 ,1, 0 7 }. The factorisation process of these class specifications are:

6
— {Co, cx,c 2 ,c3}
= {co} + {cx} +  {c2} +  {c3}
=  {{o o ,  a x, a 2, a 3} }  4- { { o 0 , 04, 0 5 } }  +  { {a o ,  a 2, a o } }  +  { {a o ,  0 7 }}
= {ao} < 5  ({{a i> a 2, a3}} + {{a4, a3}} +  {{a2, ag}} +  {{0 7 }})
= {ao} <j ({a2} ({{ax, a3}} + {{a6}}) + {{a4, a 5}} + {{0 7 }})) [£at]

These various stages of the factorisation process when represented in a linked list are shown 

in Figure 5.6, 5.7 and 5.8 respectively.
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11110000 10001100 10100010 H 10000001 M 0

Figure 5.6: The Data Representation for the Initial Class Hierarchy Expression

t  t  t
10000000

01110000 00001100 -►  00100010 M 00000001 ■

Figure 5.7: The Data Representation after the 1st Factorisation

▼ t t
10000000

00100000 00001100 00000001

01010000 00000010

Figure 5.8: The Data Representation of the Normalised Expression

The data representation for the initial class hierarchy expression as shown in Figure 5.6 

indicates that no inherit relationship is expressed. The first factorisation of these class 

specifications factorises out the superclass for co ,c i,c 2 ,c3. Hence the linked list has to be 

updated to show this superclass/subclass link. Also the contents o f the class specifications 

have to be updated to reflect the corresponding subclasses. This is illustrated in Figure 5.7
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The next factorisation factorises out common attributes of the first and the third link. Hence, 

a superclass is found and the contents of the first and the third link have to be updated as 

well as the link of the linked list. This is shown in Figure 5.8.

As one can see, the update of the linked list representation can be quite complicated especially 

if the factorisation itself is non-trivial. Therefore, it is necessary to look for a simpler 

data representation for the class hierarchy expression. An alternative to represent the data 

structure of the class hierarchy expression is in terms of an adjacency matrix. As mentioned 

in Chapter 4, a class hierarchy expression embeds the structure of the hierarchy graph. 

Hence, it is reasonable to examine the data structure of a graph when looking for the 

data representation of the class hierarchy expression. A graph is expressed in terms of a 

set of vertices and a set of edges. The set o f vertices is always represented as an array, 

e.g., vertices[]. The set of edges can be represented as an adjacency table, e.g., edges[][]. 

Edges[v][w] has a boolean value ‘true’ if and only if an edge is detected from node[v] to 

node[w], i.e., node[v] is the immediate superclass of the node[w].

When the class hierarchy expression is directly expressed in terms of a graph structure, the 

update of the expression or the graph itself becomes trivial. To illustrate this, the previous 

example used to show the complexity involved in updating the linked list representation is 

reused. Before any factorisation takes place, the adjacency table contains the four conceptual 

class specification, c0) c i, c2, c3 and they are stored in v0, ui, v 2 and u3 as shown in Table 5.1.

vertices vo Vl v 2 V3

v0 = 11110000 0 0 0 0
v i  =  10001100 0 0 0 0
v 2 = 10100010 0 0 0 0
v3 = 10000001 0 0 0 0

Table 5.1: The Adjacency Table before Factorisation

The first factorisation factorises out the superclass from these four specifications. This 

superclass is then stored in v4, the contents of v 0 , t>i, v 2 and v3 have to be updated to contain 

the subclasses yielded by the factorisation. The adjacency table also has to be updated to 

show the superclass/subclass link generated from such factorisation (see Table 5.2).

The next factorisation factorise out the superclass from v 0 and v 2. The corresponding 

superclass of this factorisation is stored in u5 and the contents of v 0 and v2 have to be 

updated. Again the adjacency table has to be updated to show the new edges resulted from 

the factorisation. This is shown in Table 5.3.
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vertices v o V i v2 V3 v4

v0 =  01110000 0 0 0 0 0
vi = 00001100 0 0 0 0 0

v2 =  00100010 0 0 0 0 0
v3 =  00000001 0 0 0 0 0
v4 =  10000000 1 1 1 1 0

Table 5.2: The Adjacency Table after the First Factorisation

vertices vo V l v2 V3 v4 V5

v0 =  01010000 0 0 0 0 0 0
vi = 00001100 0 0 0 0 0 0
v2 =  00000010 0 0 0 0 0 0
v3 =  00000001 0 0 0 0 0 0
v4 =  10000000 0 1 0 1 0 1

v5 =  00100000 1 0 1 0 0 0

Table 5.3: The Adjacency Table of a Normalised Class Expression

As it is illustrated above, updating the adjacency table is easier than that of a linked list.

Although adopting the adjacency table representation requires more memory space, the ease

in updating makes it worthwhile.

5.3. The Method of Factorisation

Having decided upon the data structures for class specifications and class hierarchies, one 

can concentrate on the method of factorisation.

5.3.1. Factorisation Process

The obvious way to implement the whole factorisation process is to follow the manual 

manipulation process closely. Hence, factorisation is performed to identify common attributes 

for i =  n class specifications, then » =  n -  l ,»  = n — 2 , •••, * = 2 . Since the algorithm 

does not know which *i* class specifications to factorise, various combinations of V  class 

specifications have to be tried out. For example, if a class hierarchy construction problem 

that involves six class specifications, co,ci,c2,c3 ,c4 ,c5, the algorithm starts off by looking 

for a factorisation that involves all the six class specifications:

1st factorisation, i =  n; i.e., i =  6 ,

^ 0 ) C i ,  ^ 2 ,  C 3 ,  C 4 ,  C 5
V :   /
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Once the factorisation amongst all the class specifications is complete, the algorithm is 

reiterated but this time it looks for factorisation for any five class specifications. Since the 

number of r combinations from n objects is, nCr , i.e., (n_ ^ !r!» numher of factorisations 

one has to carry out here is 6C5 which is 6 .

2nd factorisation, i — n -  1; i.e., i =  5,

Co, Cl, C2, C 3, C4 C5 
s - , , - - ,  —........—

Co, Cl, C2 , C3, C5 C4

Co, Cl, C2 , C4, C5 C3

Co, C l, C3, C 4, C5 C2 
----------- '

Co, C2, C3, C4, C5 Ci 
----------- '

C l, C2, C3, C4, C5 Co 
----------- '

As the factorisation progresses, the number of combinations which have to be checked 

increases sharply. With this algorithm, the worst case indicates that all the possible combi­

nations have to be tried out. Therefore, the order of complexity of this algorithm tends to 

be exponential.

Order of complexity ~  ]C?= 2 nCV
~  2n

For this reason, this algorithm which directly implements the inheritance factorisation process 

is almost certainly too costly to implement. In order to automate the factorisation process, 

one has to look for a more efficient algorithm.

When one examines the problem more closely, it is not difficult to find that the inefficiency 

of the algorithm lies in the fact that it has to try out all possibilities, i.e., the algorithm 

does not know which class specifications to factorise. Therefore, it seems that a promising 

approach to obtain a better algorithm is to work on eliminating the redundant factorisation 

attempts that occur. In order to do this, one needs to find a way to obtain the information 

about the exact class specifications involved in a factorisation. As mentioned earlier, a set 

of conceptual class specifications is presented in terms of boolean values.

Exam ple 5.2

For example, a class hierarchy construction problem which involves class specifications,

C o  =  { 0 0 , 0 1 , 0 2 , 0 3 } ,  c i  =  { 0 0 , 0 1 , 0 4 } ,  C 2  =  { 0 0 , 0 5 , 0 5 , 0 7 } ,  and C 3  =  { u o , ° 5 , ° 8 }  have the
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data structures as follows:

Winnie Pun

a o O i a2 <*3 (Z4 0 5 06 a 7 Os
Co =  1 1 1 1 0 0 0 0 0
Ci =  1 1 0 0 1 0 0 0 0
C2 =  1 0 0 0 0 1 1 1 0
C3 =  1 0 0 0 0 1 0 0 1

By inspecting this data structure horizontally, one can obtain information about which 

attributes are found in a particular class specification. Also, by inspecting the data structure 

vertically, one can obtain information about what class specifications contain a certain 

attribute. If one extends the data structure by adding an extra row which stores the frequency 

of the occurrence of each attribute amongst the class specifications, one can directly obtain 

information about which attributes occur in m  class specifications.

a 0 0 1 02 0 3 C14 o 5 0  6 a 7 08
Co = 1 1 1 1 0 0 0 0 0
Cl = 1 1 0 0 1 0 0 0 0
C2 = 1 0 0 0 0 1 1 1 0
C3 = 1 0 0 0 0 1 0 0 1
freq = 4 2 1 1 1 2 1 1 1

When one examines the factorisation problem again, to factorise out common attributes 

amongst m  class specifications is, in fact, to obtain the attributes that occur in m class 

specifications. With the above extended data structure, by inspecting the frequency row in 

the table, one can find out the attributes which occur in m class specifications and by going 

horizontally, one can identify which class specifications are involved in a factorisation of m 

class specifications. For example, if one wants to factorise out attributes that are common 

to two class specifications, one examines the row that contains the frequency value and pick 

out those which has a value of 2 . As shown in the above extended data structure, attributes 

ai and a 5 have a frequency of 2 . Now, in order to find out which class specifications are 

involved in such a factorisation, one can examine the column in which the attribute a i and 

a 5 reside and identify those class specifications which have a boolean value of ‘true’. In the 

above example, factorisations of two class specifications occur between class specification 

c0, ci and c2, c3. Note that the order of which set of class specifications is being factorised 

first is not important.

Although this way of using the extended class specification does allow the identification of 

the class specifications that are involved in a particular factorisation and hence reduce the 

complexity of the algorithm, such an algorithm can be improved further. The current data 

representation actually contains redundant information which is never used in the factorisation
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process. For example, as the factorisation process is only interested in attributes which occur 

in more than one class specification, all the attributes which have a frequency value of *1* 

are found to be redundant. Besides, the data representation contains indirect information for 

a factorisation. In order to find out which class specifications are involved in a factorisation, 

one has to examine the boolean value of each class specification before knowing which 

class specifications are relevant. In order to improve the efficiency further, one can specially 

generate the relevant information of the factorisation by scanning the data representation of 

the class specifications. The relevant information can be stored as a linked list which is made 

up of links called ‘attlnfoLink’. Each ‘attlnfoLink’ contains four fields: attribute, frequency, 

nextAtt and csLink. This is illustrated in Figure 5.9.

attribute frequency nextAtt csLink

Figure 5.9: The Data Structure of ‘attlnfoLink’

Figure 5.10: The attlnfoLink List of Example 5.2.

The field ‘attribute’ stores the attribute of that attlnfoLink. The frequency field stores 

the number of times such an attribute occurs in the corresponding set of conceptual class 

specifications. The nextAtt is a pointer which points to the next attlnfoLink of the list. 

The csLink is a pointer which points to the corresponding list of class specifications that 

contain such attributes. Note that this csLink list is made up of links called csLink. A 

csLink contains two fields, the first field stores the index of the class specification it refers 

to and the second field is a pointer points to the next csLink. Hence, the attlnfoLink list of 

Example 5.2 has the data structure shown in Figure 5.10.

Furthermore, the links can be arranged in a decreasing order of frequency value. This
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fulfils the requirement that the attributes which are common in most class specifications are 

factorised first.

5.3.2. Detecting Multiple Inheritance

As the IFP supports multiple inheritance as well as single inheritance and the method 

employed to factorise an expression with multiple inheritance is different from that of 

single inheritance, one needs a mechanism to check whether multiple inheritance exists 

in a particular expression before factorisation is carried out. This subsection describes an 

algorithm which is used to detect multiple inheritance.

Multiple inheritance occurs when a class specification has more than one immediate super­

class. In the factorisation process, this is indicated by the fact that a class specification can 

be factorised in two or more different ways simultaneously.

Say if Si =  {c0, ex, • • •, cn} is the set of class specifications involved in a factorisation 

process. If at a particular instant, s, can be factorised in two ways: one way of factorisation 

involved the set of class specifications = {c0, ci, • • •, c^}, and the other way involved 

s*2 =  {co.ci.-'-.Cj} then multiple inheritance has been detected. To describe it more 

formally, multiple inheritance occurs if:

D si2 7  ̂ <f> and and Si2 £

The algorithm for detecting multiple inheritance employed by the IFE is, therefore, based 

on the above description.

Figure 5.11 shows an attrlnfoLink that involved multiple inheritance. Here, the first factori­

sation involved factorising attributes that are common in five class specifications. Before 

one can perform this factorisation, one has to check whether multiple inheritance occurs in 

this factorisation, i.e., examine whether any class specifications involved in this factorisation 

also occur in other factorisations later on. As indicated in Figure 5.11, the set of class 

specifications involved in factoring out a 0 is sao =  {c0, ci, c2, c3, c4}. This set of class 

specifications is then used to check against the other sets of class specifications in the 

attrlnfoLink list, for example, sai = {c0, c\, c3} is the set of class specifications involved in the 

factorisation of the attribute o i, s„ 2 =  {ci, c2, c3} is the set of class specifications involved in 

the factorisation of the attribute a2 and saa =  {ci, c2} is the set of class specifications involved 

in the factorisation of the attribute a 3. Since sai, sa3,s a3 are subsets of sao, then according 

to the previous specified conditions for multiple inheritance, no multiple inheritance occurs 

when factorising out the attribute o0.
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Figure 5.11: An AttrlnfoLink that involved Multiple Inheritance

After factorising the attribute a 0, one goes down the attrlnfoLink list attempting to factorise 

out the attribute ax. Again, before the factorisation, one has to check whether multiple 

inheritance occurs. This time, it is found that s ai n sa7 ^  <j) and sai sfl2 and saj £  sa i, 

therefore multiple inheritance is detected at this point.

5.3.3. Updating Expressions with Single Inheritance Alone

After one has checked whether multiple inheritance occurs in a particular factorisation, the 

next step is to perform the factorisation and update the expression. The method to update 

an expression that involved single inheritance is straight forward. It consists of two steps: 

obtaining the superclass and updating the contents of the subclasses.

i. Obtaining Superclass

In each factorisation, the factorisation engine has to factorise out the common 

attributes for a collection of class specifications as their superclass. Since a class 

specification is a set of attributes, the superclass of a particular factorisation can 

be obtained by finding the intersection set of attributes amongst a collection of 

class specifications. As the class specifications are represented as boolean values, 

in order to find the intersection of a collection of class specifications, one has to 

carry out a boolean ‘A N D ’ operation on these class specifications.

771

Super(c0, • • - ,cm) =  / \  c*
i=0
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where Super(c0, • • -,cm) is the superclass for the class specifications c0> • • •, cm.

ii. Updating the Contents of the Subclasses

Once the superclass is identified, its corresponding subclasses can be obtained by 

carrying out a boolean ‘E X C L U S IV  E  O R ’ operation on the corresponding class 

specification. Hence,

C o ' =  Co xor S u p e r io r  •• ,cm)
ci' =  ci xor Super(c0) • •• ,cm)

Cm' =  cm xor Super(cor  • -,cm)

where c /  is the subclass for c*.

After carrying out these two steps, one has to go back to the attrlnfoLink list and continue 

with the next factorisation.

5.3.4. Updating Expressions with Multiple Inheritance

If multiple inheritance is detected in a particular factorisation, one has to apply a different 

method to update the expression (See Axiom 4.3). Such a method involves identifying all 

the superclasses found in the rest of the factorisation process. These superclasses are then 

checked against every class specification to obtain the proper single inherit and multiple 

inherit links amongst them.

Figure 5.11 is again used to illustrate this. When multiple inheritance is detected, one wants 

to factorise out the attribute ax,  the method to update the expression is as follows. Firstly, 

the superclass of the class specifications, S S i = 5uper(c0,c i ,c 3), involved in factorising the 

attribute ai is obtained and stored in the list of superclasses called Superclasses. Then, 

one goes down to the next link in the attrlnfoLink list and extracts out the superclass of the 

class specifications involved in factorising the next attribute which in this case is a 2. If this 

superclass, SS2 = Super(ci,c2 , c3), has not yet been stored in Superclasses, one then stores 

that in the list. The same procedure is repeated with each link for the rest of the attrlnfoLink 

list. In the end, Superclasses  contains all the superclasses that can possibly be obtained in 

the factorisation process. Now that the list of superclasses is obtained, the next step is to 

find out which class specification has a single inherit and/or multiple inherit relationship with 

which superclass. This can be done by simply checking every class specification in turn with 

the list of superclasses, Superclasses. For example, by checking c0 with Superclasses, one 

finds that c0 has a single inherit link with 5 5 1, but when checking cx with Superclasses, 

ci is found to have superclasses 5 5 i  and 5 5 2, therefore cx has a multiple link with S S 1 and
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S S 2 and the expression is updated accordingly. Since this method of updating an expression 

with multiple inheritance embeds the factorisation for the rest of the process, the expression 

obtained with this update is the normalised expression and the process is terminated at this 

point.

5.4. Complexity of the Algorithm

As the individual methods required to implement the factorisation engine have been dis­

cussed, this section analyses the complexity of the algorithm. The main body of the algorithm 

can be summarised as the following program extract which is written in C++ syntax in 

Figure 5.12:

genAttrlnfoO;

for (i=l; ((i < = noattrlnfoLink) kk (Not Finish)); i++)
{   ........................

if (chkMultiplelnherit(i) != True) 
updateSinglelnherit(i);

else
{

updateWultiplelnheritCi);
Finish = True;

>

>

Figure 5.12: The Main Body of the Algorithm

Let n  be the number of class specifications and m  be the number of attributes involved in a 

particular class hierarchy construction problem. The function ‘genAttrlnfoO’ scans the set of 

class specifications in a class hierarchy construction problem and generates the corresponding 

‘attlnfoLink’ list. Hence, the order of complexity of this function,

Q(genAttrlnfo)  ~  m x n

The function ‘chkMultipleInherit()’ checks whether multiple inheritance exists. It has to 

check before each factorisation actually takes place, hence it is inside the ‘for’ loop. This 

function has to check the current factorisation with the rest of the factorisation recorded in 

the attrlnfoLink list, therefore, depending on i which is the current number of iterations of 

the loop, the order of this function is,

O(chkMultiplelnherit) — m —i
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The ‘updateSinglelnheritO’ involves finding out the superclass of a particular factorisation 

and updating the corresponding subclasses. This procedure has an order of complexity of 

n. The ‘updateMultiplelnheritO’ involves finding out the superclasses for the rest of the 

factorisation process and then identifying the single and multiple inherit links for each class 

specification. This routine has an order of complexity of (m - 1) + (m -  i) x n.

Hence, in the worst case, the order of complexity of this algorithm used to implement the 

IFP is:

Q(IFP)  ~  m x n

and is therefore reasonably efficient.

In order to show the significant improvement of this algorithm, selected class hierarchies 

found in the Interviews library are used to illustrate thist.

Interviews [LCV87, LVC89, V1L88] is a library of C++ classes that defines common 

interactive objects and composite strategies. There are about 150 classes involved in the 

construction of the library. The three main class hierarchies found in the library are:

i. Interactors - this class hierarchy contains interactive classes such as buttons and 

scenes.

ii. Resources - this class hierarchy contains resource classes such as fonts and brush.

iii. Graphics - this class hierarchy contains classes such as circle and polygon.

The value of n, i.e., the number of classes required to construct the class hierarchy can be 

obtained by counting how many external nodes and internal nodes that contain only one 

subclass in the class hierarchy. The reason why one does not need to count all the internal 

and external nodes of the class hierarchy as the value of n is because the IFP is capable of 

identifying the abstract classes which tend to be situated at the top of the hierarchy. These 

abstract classes do not need to be specified for the class hierarchy construction problem. The 

value of m, i.e., the number of attributes involved in a class hierarchy can be obtained by 

examining the definition of the classes. Assuming the external node of the longest branch of 

a class hierarchy contains the largest number attributes, one can have a rough idea of what 

‘m ’ is by summing up all the public and protected member functions of all the superclasses 

of the longest branch and add this value to the number of member functions found in the

The reason why Interviews is chosen in this case is because Interviews presents an average size of a system in which class 
hierarchies are constructed from scratch. Besides, information about the classes and attributes of Interviews can be easily 
accessed.
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external node. Table 5.4 gives a rough idea of the order of complexity obtained for the three 

class hierarchies found in Interviews.

Interactors Resources Graphics

n 37 27 14

m 134 28 177

E ?=2 -  2" ~  1.37 x 1011 ~  1.34 x 107 ~  16000

0(1 FP)  ~  n x m ~  5000 ~  750 ~  2500

Table 5.4: The Complexity of an Average Size Problem

The value obtained above has shown that even for an average size problem, there is a 

significant improvement of this algorithm compared with the exponential complexity of the 

algorithm suggested in section 5.3.1.

5.5. Other Components in the Automation Process

The automation of the inheritance factorisation process is constructed around the inheritance 

factorisation engine. Now that the implementation of the factorisation engine has been dis­

cussed, one can look at the other components and how they are assembled in the automation 

process.

The class specification editor mainly allows system designers to input the conceptual class 

specifications of a particular class hierarchy construction problem. The class specification 

description is then passed through the class specification parser in which the required data 

structures are generated for the inheritance factorisation engine. The factorisation engine 

takes these data structures and performs the necessary tasks to yield a set of vertices and edges 

for the corresponding optimal class hierarchy graph. These sets of vertices and edges are 

then directed to a graph generator in which the corresponding graph is generated. Currently, 

the prototype of the editor, the parser and the factorisation engine are completed. Although 

the graph generator has not been constructed, there is existing software which can be used 

to build the graph generator [Dea89].

5.6. Conclusion

This section has demonstrated that the inheritance factorisation process can be automated. 

The automation relies heavily on assembling the inheritance factorisation engine. The
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implementation details of such an engine have been discussed, and the efficiency of such an 

implementation has been analysed. The evaluation of the inheritance factorisation process 

and the design method as a whole is examined in the next chapter.
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“Does this apply always, sometimes, or never?”

Sidney Harris

Chapter 6 

Evaluation

Now that the design method for object-oriented programming has been developed, it is time 

to assess what has been achieved in this research. As the development of an inheritance 

factorisation process plays a significant role in this design method, the evaluation process is 

actually divided into two parts. First of all, it assesses the performance of the inheritance 

factorisation process. Then it evaluates the design method as a whole. The evaluation 

process emphasises two aspects:

i. It examines whether the IFP and the design method perform as intended.

ii. It investigates the usability of the IFP and the design method.

6.1. The Inheritance Factorisation Process

The original aim of the inheritance factorisation process was to assist system designers to 

construct class hierarchies. Therefore, the evaluation process for the IFP is mainly concerned 

with whether such an objective has been fulfilled or not.

The evaluation process is divided into three parts. The first part is to examine the functionality 

of the factorisation engine. Here, arbitrary examples are randomly chosen to feed into the 

engine. The output of the engine which is a class hierarchy graph is then examined. As 

the examples involved in the first part of the evaluation process are abstract examples, one 

can only examine the syntax or the structure of the generated graph. In order to examine 

the semantics of the generated graphs, concrete examples which are drawn from reality are 

used in the second part of the evaluation process. Here, three concrete examples are used to 

compare the class construction process in using the traditional ‘ad hoc’ method, the manual 

IFP and the automated IFP. The aim of this part o f the evaluation process is to highlight the
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efficiency of using the automated IFP. The third part of the evaluation process is to examine 

the current limitations of the IFP.

6.1.1. Introductory Examples 

Example 6.1

Example 6.1 is a simple example that examines the functionality of the factorisation en­

gine. The conceptual class specifications, c0, c 1, c2 and c3 can be obtained from tracing the 

inheritance path which ends with vertex[0], vertex[l], vertex[2] and vertex[3].

Inputs axe:

cO:a0,al,a2,a3,a4; 
cl:a0,a3,a5; 
c2:aO,al,a4,a6,a7; 
c3:a0,a3.a8;

Outputs are:

Vertices are:

vertex [0] = {a2} 
vertex[l] - {a5} 
vertex [2] = -Ca6,a7}- 
vertex[3] = {a8} 
vertex [4] = {aO} 
vertex [5] = {a3} 
vertex [6] = -Cal,a4}

Edges are:

(vertex[4] 
(vertex[4] 
(vertex[5] 
(vertex[5] 
(vertex[5] 
(vertex[6] 
(vertex[6]

.vertex[5]) 

.vertex[6]) 

.vertex[0]) 

.vertex C l ] )  

.vertexC3]) 

.vertex CO]) 

.vertexC2])

vertex [5] veitex[6]

vertex[3]

<c j)

veitcx[l] vertex [0]

Figure 6.1: Input and Output Of Example 6.1
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Example 6.2

Example 6.2 contains a large number of class specifications and attributes.

Winnie Pun

Inputs are:

cO:aO.al,a2,a3,a4,a5,a7,a9,alO; 
cl:aO,a2,a4,a6,a8, al2; 
c2:a0,al;

Outputs axe:

c3:aO,al,a3,a5,a7,a8,a9; 
c4:a0,al,a2,a4,a5,al0; 
c5:aO,al.a2,a3,a4,a5,a9;

Vertices are:

vertex[0] = O  
vertex[l] = {a6,al2} 
vertex[2] = {} 
vertex[3] = O  
vertex[4] = {} 
vertex[5] = {} 
vertex[6] = {aO} 

Edges are :

(vertex[6] 
(vertex[6] 
(vertex[6] 
(vertex[6] 
(vertex[6] 
(vertex[6] 
(vertex[6] 
(vertex[7] 
(vertex[7] 
(vertex[7]

.v e r te x [7]) 

.v e r te x [8]) 

.vertexC lO ]) 

.v e r te x [11]) 

.v e r te x [12]) 

.v e r te x [13]) 

.v e r te x [14]) 

.v e r te x [0 ]) 

.v e r te x [2 ]) 

.v e r te x [3])

vertex[7] = {al} 
vertex[8] = {a2.a4} 
vertex[10] = {a5} 
vertex[11] = {a3,a9} 
vertex[12] - {a7} 
vertex[l3] = {alO} 
vertex[14] = {a8}

(vertex[7], 
(vertex[l3] 
(vertex[7], 
(vertex[l3] 
(vertex[8], 
(vertex[l4] 
(vertex[8], 
(vertex[l4] 
(vertex[8], 
(vertex[l2]

vertex[4]) 
.vertex[0]) 
vertex[5]) 
.vertex[4]) 
vertex[0]) 
,vertex[l]) 
vertex[l]) 
,vertex[3]) 
vertex[4]) 
.vertex[3])

(vertex[8], 
(vertexClO] 
(vertexClO] 
(vertex[10] 
(vertexClO] 
(vertex[ll] 
(vertex[ll] 
(vertexCll] 
(vertex[l2]

vertex[5])
,vertex[0]) 
,vertex[3]) 
.vertex[4]) 
,vertex[5]) 
,vertex[0]) 
.vertex[3]) 
.vertex[5]) 
,vertex[0])

vertex[7] veitex[8] vertex[10] v e itex [ll] vertex[12] veitex[13]

veitex[3]

(c3>
vertex[4] veitex[5] 

(c4)

Figure 6.2: Input and Output of Example 6.2

In this example, the conceptual class specifications, c0, c i,c2, 03, 04,05 can be obtained by
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tracing the inheritance path that ends with vertex[0], vertex[l], vertex[2], vertex[3], vertex[4], 

vertex[5]. This example, particularly, demonstrates the efficiency of the factorisation engine 

as such a hierarchy is difficult to construct by hand.

Exam ple 6.3

Example 6.3 involves the construction of a class hierarchy which has no common attributes 

to form the root of the graph.

Inputs are:

c0:a0,a2,a4,a6; 
cl:a0,al,a2,a4,a5; 
c2:aO,al,a5,a7,a3; 
c3:al.a2,a3;

Outputs are:

Vertices are: Edges are :

vertex[0] = {a6> (vertex [4],vertex[0]) (vertex [6].vertex[3])
vertex[2] = {a7,a8} (vertex[4],vertex[l]) (vertex[7],vertex[0])
vertex[3] = {a3> (vertex[4],vertex[2]) (vertex[7].vertexCl])
vertex[4] = {a0> (vertex[5],vertex[0]) (vertex[8],vertex[l])
vertex[5] = {a2> (vertex[5].vertex[1]) (vertex [8].vertex[2])
vertex[6] = {al} (vertex [5].vertex[3])
vertex[7] = {a4} (vertex[6].vertex Cl])
vertex[8] = {a5} (vertex[6].vertex[2])

veitex[8]veitex[5] vertex [6]

vertex[2] vertex[l] vertex[0]

( c o)

vertex[3] 

( c 3>

Figure 6.3: Input and Output for Example 6 . 6

Exam ple 6.4

Example 6.4 is the last example in this part of the evaluation process. The example contains
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class specifications that have no common attributes, therefore no inherit relationships, i.e., 

no information about edges is generated because there are none.

Inputs cure:

cO:aO,al,a2,a3,a4; 
cl:a5,a6,a7; 
c2:a8,a9,al0; 
c3:all,al2,al3;

Outputs are:

Vertices are:

vertex[0] = {a0,al,a2,a3,a4} 
vertex [l] = {a5,a6,a7} 
vertex[2] = {a8,a9,al0} 
vertex[3] = {all,al2,al3}

Figure 6.4: Output for Example 6.4

As shown from the above four examples, the factorisation engine works properly. It has 

fulfilled its task of taking in a set of class specifications and generating the corresponding 

hierarchy graph.

6.1.2. Miscellaneous Examples

In this part of the evaluation process, concrete examples are shown so that not only the 

structure but the semantics of the graph can be examined. There are three examples involved. 

The first two are trivial examples involving single inheritance and multiple inheritance 

respectively. The third example is a more complicated one. All three examples are used to 

compare the construction process when using the ‘ad hoc’, the manual IFP and the automated 

IFP.

Example 6.5

Example 6.5 is a simple class hierarchy construction problem with single inheritance alone. 

The problem is to construct an optimal class hierarchy for three classes, the ‘Student’, the 

‘Undergraduate’ and the ‘Graduate’ classes. With traditional ‘ad hoc’ approach, system 

designers already have some conceptual ideas about the three classes when they encountered 

the problem. Intuitively, they know that the ‘Graduate’ class and the ‘Undergraduate’ class 

are more specific than the ‘Student’ class. Hence, even before specifying the properties of
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these classes, system designers could confidently say that the ‘Student’ class is going to be 

the superclass for the ‘Graduate’ and the ‘Undergraduate’ class.

However, with the IFP, one needs proper specifications to start with (see Figure 6.5).

Student:StudentId,Name ,Age ,Address,Phone,Level.EnrollStudent,DropStudent, 
FindStudent,ChangeAddrs,ChangePhone,ChangeLevel;

Graduate:Program,Name,Age,Advisor,Studentld,Address,Department,Phone,
Level,EnrollStudent,DropStudent.FindStudent,ChangeAddrs,
ChangePhone,ChangeLevel.EnrollGraduate,DropGraduate,ChgProgram, 
ChgAdvisor,ChgDept;

UnderGraduate:Status.School.Year.StudentId,Name,Age.Address.Phone,Level,
EnrollStudent,DropStudent,FindStudent.ChangeAddrs,ChangePhone, 
ChangeLevel,EnrollUg,DropUg,ChgStatus,ChgYear,ChgSchool;

Figure 6.5: The Definition of a set of Class Specifications

With the manual IFP, the procedure to obtain the optimal class hierarchy is shown in 

Figure 6 .6 .

{student.Graduate.Undergraduae}
= {student}+{Graduate}+{Undergraduate}
= {{Studentld,Name,Age.Address.Phone,Level.EnrollStudent.DropStudent.FindStudent, 

ChangeAddrs,ChangePhone,ChangeLevel}}+{{Program,Name,Age,Advisor,
Studentld,Address.Department.Phone.Level.EnrollStudent.DropStudent.FindStudent, 
ChangeAddrs,ChangePhone,ChangeLevel,EnrollGraduate,DropGraduate,ChgProgram, 
ChgAdvisor,ChgDept}}+  {{Status,School,Year,Studentld,Name,Age,Address.Phone, 
Level.EnrollStudent.DropStudent.FindStudent.ChangeAddrs,ChangePhone,
ChangeLevel,EnrollUg.DropUg,ChgStatus,ChgYear,ChgSchool}}

= {Studentld,Name,Age,Address,Phone.Level.EnrollStudent.DropStudent.FindStudent, 
ChangeAddrs, ChangePhone, ChangeLevel}<34 ({{Status, School, Year, Enr ollUg .DropUg, 
ChgStatus,ChgYear,ChgSchool}} +  {{Program,Advisor,Department.EnrollGraduate, 
DropGraduate,ChgProgram,ChgAdvisor,ChgDept}}+{<^c})

Figure 6 .6 : The Result obtained with Manual IFP

One can see that using the manual IFP is not very efficient and the manipulation process can 

be fairly tedious when there are a large number of attributes involved. However, with the 

help of the factorisation engine, the result can be obtained in a more efficient manner. System 

designers only need to specify the involved class specifications as input to the factorisation
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V e r tic e s  a re :

vertex[l] = {Program.Advisor.Department,EnrollGraduate,DropGraduate, 
ChgProgram,ChgAdv is or,ChgDept} 

vertex[2] = {Status.School,Year,EnrollUg,DropUg,ChgStatus,ChgYear,
ChgSchool}

vert ex[3] = {StudentId,Name,Age,Addres s,Phone,Level,EnrollStudent,DropStudent, 
FindStudent,ChangeAddrs,ChangePhone,ChangeLevel}

Edges are:

(vertex[3].vertex[l])
(vertex [3].vertex[2])

veitex[3] (Student)

veitex[2]
(Undergraduate)

vertex[l]
(Graduate)

Figure 6.7: Result Obtained from the Automated IFP for Example 6.5

engine and the set of vertices and edges of the corresponding hierarchy graph are then 

generated (see Figure 6.7).

Exam ple 6 .6

In Example 6 .6 , the class hierarchy construction problem involves multiple inheritance. It 

contains four class specifications, BoundedPt, Point, HistoryPt and BhPoint. In this example, 

the names of the classes involved do not convey obvious enough meanings or concepts 

about the definitions of the class specifications. Hence system designers cannot construct 

the hierarchy graph just by looking at the names but have to specify the involved classes.

With the ‘ad hoc’ method, system designers probably start with the class ‘Point’ because it 

seems to be a very general class. The class ‘Point’ should be able to create, locate, move 

and display a point. Hence, these would be the attributes belong to the ‘Point’ class. A 

‘BoundedPt’ is simply a ‘Point’ with two attributes: ‘min’ and ‘max’ to define the boundary 

of a point. A ‘HistoryPt’ is also a ‘Point’ but has an attribute ‘history’ which gives the 

history information. A ‘BhPoint’ is a ‘Point’ with both the capability of the ‘BoundedPt’ 

and the ‘HistoryPt’ (see Figure 6 .8 ). Therefore, it is logical to construct the class ‘Point’
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to be the superclass in which the ‘BoundedPt’ and the ‘HistoryPt’ inherited from. Since 

the ‘BhPoint’ should contain the capabilities of both the ‘BoundedPt’ and the ‘HistoryPt’, 

hence, it should be multiply inherited from the ‘BoundedPt’ and the ‘HistoryPt’ classes.

BoundedPt:min.max,create.locate,move.display;

Point:create,locate,move,display;

HistoryPt:locate.move,create,display.history;

BhPoint:create,locate.move,min,display,max,history.boundHistory; 

Figure 6 .8 : The Definition of the set of Class Specifications of Example 6 . 6

With the manual IFP, the manipulation is shown in Figure 6.9

{BoundedPt.Point.HistoryPt.BhPoint}
= {BoundedPt}+{Point}+{HistoryPt}+{BhPoint}
= {{min,max,create.locate.move,display}}+{{create .locate .move.display}}+

{{locate.move,create,display,history}}+{{create,locate.move,min.display, 
max.history.boundHistory}}

= {locate .create .display ,move}<3, ({{min,max}} +  {<̂ c} +  {{history}} +  {{min,max,history, 
boundHistory}})

= {locate.create.display,move}<, ({0c}+{min,max}<4({<̂ c}+{{history.boundHistory}}) + 
{{history}}) [£N1]

= {locate .create .display, mo ve}<4 ({<̂ c}+{history}<4 ({$c}+{{min,max,boundHistory}}) + 
{{min,max}}) [(N2]

since multiple inheritance is detected, hence the normalised expression is:

= {locate, create, display ,move}<4 ({<̂ c}+{history}<J{$c}+{min,max}<J4{<̂ c}+ 
({{hist ory }}+{{min,max}})<3m  {boundHistory})

Figure 6.9: The Results obtained from the Manual IFP

With the factorisation engine, the class specifications are input into the engine to generate 

the set of vertices and edges for the corresponding graph (see Figure 6.10).

The results from Example 6.5 and Example 6 .6  indicate that the same hierarchy graph is 

obtained with the ‘ad hoc’, the manual IFP and the automated IFP methods. The ‘ad hoc’ 

method is found to be a better choice if the names of the classes actually convey some 

meanings that contributes to the identification of the superclass/subclass link. However,
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Vertices are: vertex[3] = {boundHistory}
vertex[4] = {create,locate,move,display} 
vertex[5] -  {history} 
vertex[6] = {min,max}

Edges are: (vertex[4].vertex[5])
(vertex[4],vertex[6])
(vertex[5],vertex[3])
(vertex[6],vertex[3])

vertex[6] (BoundedPoint)(H istoryPoint) veitex[5]

Figure 6.10: The Results Generated for Example 6 . 6

depending on individual experience, a name may mean different things to different people. 

Hence, with the same collection of classes, different hierarchy graphs may be constructed by 

different people. The IFP provides a more systematic and consistent approach in constructing 

class hierarchies. With the IFP, the same graph is generated everytime with the same set 

of class specifications. When the manual IFP is compared with the automated one, it is 

obvious that if the problem involves a large number of classes and attributes, the manual 

manipulation becomes tedious and mistakes may easily be introduced. The automated IFP is 

an isomorphism of the manual IFP with the manipulation process carried out automatically 

by the factorisation engine. System designers benefit more with the automated IFP.

Example 6.7

The above two examples are carefully chosen such that the conceptual classes specifications 

are all the classes needed for the hierarchy graph. However in reality, system designers may 

find that they have to identify the appropriate abstract classes before they can build the class 

hierarchy. The following example tries to illustrate this point and also demonstrates how the
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procedure to identify the correct abstract classes is actually carried out automatically by the 

IFP.

In te rac to r

A djuster

Figure 6.11: An Extract from the Interviews System Class Hierarchy

This example is based on the library classes found in Interviews Version 2.4 [Lin88, LVC89]. 

Interview's is a library which provides classes that support the design and implementations 

of user interfaces. It is object-oriented and is written in C++ [Str86b]. The library runs 

on top of the X window system [Sch86]. In Interview s, part of the system class hierarchy 

contains the Menu class and the Dialog class as shown in Figure 6.11. This example shows 

that by giving the conceptual class specifications, HBox, VBox, Dialog, HM enu and VMenu 

alone. The IFP generates a class hierarchy structure which matches the one given in the 

Interviews library. The descriptions of these classes and their attributes are summarised in 

Figure 6.12.

Note that the specifications defined for this example are modified from that o f Interviews. 

This is because the class specifications found in Interview s contain implementation details 

which are unknown to the system designers at the stage of using the IFP. For example, the 

attributes o f the specifications found in Interview s are categorised into private, protected and 

public category as required by the C++ programming language. This is unnecessary when 

using the IFP. Therefore, the class specifications defined for this experiment is a simplified 

version of that found in Interviews itself.

The trial starts off by specifying the class specifications for the IFP. This is shown in 

Figure 6.13.
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The class ‘HMenu’ is a menu in which its menu items are arranged horizontally.
It contains the following attributes:

HMenuCreate - creates an instance of the horizontal menu.
Insert - insert a menu item to the menu.
Compose - build the box representation of the menu.
GetSelection - return the current selected item.
Handle - the handle operation reads events in until a button is released, 

passing the events to the appropriate menu item.
Change - notify there is a change of the shape.
Remove - remove the object from the scene.
Draw - draw the object.
Lower - put the object behind any objects that overlapping it.
Raise - raise the object to the front, i.e., makes it visible.
Resize - change the size of the object.

The class 'VMenu* is similar to that of ‘HMenu’ except that it has a different
create operation called ‘VMenuCreate’ and it creates vertical menus.

The class 'Dialog’ is a dialogbox which handles input from the user. Like the 
'HMenu’ and the 'VMenu’ class, the 'Dialog’ class contains attributes Change, 
Remove, Lower, Raise, Draw and Resize. Besides these, it contains two other 
attributes:

CreateDialog - create the dialog box.
buttonState - this is to indicate the state of the button.
Accept - This sets the dialog button state to zero and loop reading events 

until the button state’s value becomes non-zero, i.e. , the user 
presses the button.

Then, there is the 'HBox’ class. The ‘HBox’ class basically groups the interactor 
objects into a horizontal box. It has attributes Change, Remove, Lower, Raise 
as mentioned earlier. Besides, it has the following operations:

CreateHBox - create the horizontal box.
DrawBox - draw all the interactor objects within the box.
Align - aligning all the interactor objects within the box. 
align - an instance variable which specifies how to align 

the interactor objects.
ResizeBox - change the size of the box.
ComputeHBoxShape - obtain the shape of the horizontal box.
PlaceHBox - put the horizontal box on the scene.

The ‘VBox’ class is similar to that of ‘HBox’ except that it has a different 
create operation, compute box shape operation and place box operation which is 
nauned as CreateVBox, ComputeVBox and PlaceVBox.

Figure 6.12: The Description of the Class Specifications for Example 6.7

When these class specifications are fed into the factorisation engine, the set of vertices and 

edges are then produced. This is shown in Figure 6.14. If the class hierarchy graph of 

Figure 6.14 is compared to that of Figure 6.11, it is found that they share the same graph 

structure. Further, when the contents of the vertices in Figure 6.14 are checked against those
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HMenu:HMenuCreate, I n s e r t , Compose, G e tS e le c tio n , Change, H andle, Remove, L o se r , R a ise , 
D raw .R esize;

VMenu:VMenuCreate, I n s e r t , Compose, G etS elec t io n , Change, H andle, Remove,L o se r , R a is e , 
D raw ,R esize;

D ia lo g : C rea teD ia lo g , A c c e p t.b u tto n s ta te .C h a n g e , R em ove .L oser.R aise .D ras.R esize ;

HBox: CreateHBox, A lign ,a lign .D rasB ox .R esizeB ox , ComputeHBoxShape, Change.Remove, 
L oser.R aise,P laceH B ox;

VBox:CreateVBox,Align,align,DrasBox,ResizeBox,Com puteVBoxShape.PlaceVBox,
Change, Remove, L o se r , R a ise ;

Figure 6.13: The Definitions of the Class Specifications for Example 6.7

Vertices are:
vertex[0] = {HMenuCreate} 
vertex[l] = {VMenuCreate}
vertex[2] = {CreateDialog,Accept.buttonstate} 
vertex[3] = {CreateHBox,ComputeHBoxShape.PlaceHBox} 
vertex[4] -  {CreateVBox,ComputeVBoxShape.PlaceVBox} 
vertex[5] = {Change,Remove,Loser,Raise} 
vertex[6] = {Dras.Resize}
vertex[7] -  {Align,align,DrasBox,ResizeBox} 
vertex[8] = {Insert.Compose.GetSelection,Handle}

Edges are:
(vertex[5].vertex[6]) (vertex[7].vertex[3]) (vertex[5].vertex[7])
(vertex[7] ,vertex[4] ) (vertex[6] ,vertex[2] ) (vertex[8] ,vertex[0] )
(vertex[6],vertex[8]) (vertex[8],vertex[l])

veitex[5] (Scene)

(MonoScene) vertex[6]

(M enu)
vertex[2]

(Dialog)
veitex[8] vertex[3]

(HBox)

veitex[l]
(VM enu)

Figure 6.14: The Graph Structure obtained from Example 6.7
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in Figure 6.11, the vertices in Figure 6.14 are found to be matched to that in Figure 6.11. 

For example, vertex[5] is found to be matched to the class Scene and the vertex[6 ] is found 

to be matched to the class MonoScence. This indicates that the same graph that is found in 

Interviews, which is constructed with the ‘ad hoc* method by experienced object-oriented 

programmers, can be generated by the IFP.

More importantly, this example has highlighted an advantage of using the IFP in constructing 

class hierarchies. To construct the same graph with the ‘ad hoc’ method, system designers 

have to apply a top-down design approach. They have to identify the necessary abstract 

classes in constructing class hierarchies. Abstract classes are classes that seldom have 

instances and are always situated higher up in the class hierarchy [Joh8 8 ]. As humans 

think better about the concrete examples than abstractions, the identification of the abstract 

classes is never an easy task [Joh8 8 ].

For instances, ‘Scene’ and ‘MonoScene’ are two abstract classes found in the class hierarchy 

(see Figure 6.11) and they are not as apparent as classes such as ‘Box’ or ‘Menu’. Hence, 

system designers may encounter difficulties in constructing the hierarchy. However, with the 

IFP, system designers do not need to worry about identifying abstract classes. As shown in 

Figure 6.14, the required abstract classes for the class hierarchy such as vertex[5], vertex[6 ] 

and vertex[7] are automatically highlighted in the factorisation process. This also means 

that the IFP allows more flexibility in constructing class hierarchies. Not only the top-down 

design approach can be applied but also the middle-out and bottom-up. In this sense, the 

IFP has demonstrated its contribution in constructing class hierarchies.

6.1.3. Limitations of the IFP

Of course, it is unwise to be dogmatic about the usage of the IFP. As it stands, there are 

some shortcomings found in the IFP which limit its usage. These inadequacies are, in fact, 

more to do with the philosophical issues than the technical issues of the IFP.

6.I.3.I. The Requirement for a Precise Specification

The factorisation engine is simply a tool that takes in a set of class specifications and 

generates the corresponding hierarchy graph as output. The structure of the generated graph 

is governed by the manipulation rules defined for the factorisation engine. As these rules 

are pre-defined, the generated graph solely depends on the input data, i.e., the set of class 

specifications.

If Example 6.7 is carried out with a slightly different set of class specifications, e.g., ‘M enu’,

135



A Design Method for Object-Oriented Programming Winnie Pun

‘Dialog’, ‘HBox’ and ‘VBox’ alone, a different class hierarchy graph is then obtained. This 

is shown in Figure 6.15.

vertex[5] (Scene)

(M onoScene) vertex[6]

veitex[8]
(M enu)

veitex[4]
(VBox)

Figure 6.15: The Class Hierarchy Graph without the ‘HMenu’ and ‘VMenu’

As one can see, the basic structure of the graph is still preserved but the class ‘HMenu’ 

and ‘VMenu’ are not identified. This indicates that the IFP is capable o f identifying classes 

which are higher up in the class hierarchy but not those which are below the given conceptual 

classes. In other words, the IFP can identify the abstract classes in the class hierarchy but 

not the conceptual classes other than those which are given for the IFP in the first place. 

However, with the ‘ad hoc’ method, system designers may know that since a ‘Menu’ class 

is in the hierarchy, intuitively, a ‘HMenu’ and a ‘VMenu’ class will be the subclasses of it.

Not only is the set of the class specifications important to the construction of the hierarchy 

graph but also the individual specifications for each class, i.e., the attributes which belong to 

a particular class. Say in the previous trial, if in Example 6.7, the system designer forgot to 

define the ‘Remove’ and the ‘Draw’ operation for the ‘HMenu’ class (see Figure 6.16), 

a different class hierarchy graph is then generated from the IFP. This is illustrated in 

Figure 6.17.

In order to obtain a reasonable class hierarchy, system designers have to provide a reasonable 

set of class specifications for the factorisation engine in the first place. These class specifi­

cations have to be carefully constructed so that they contain all the properties of a particular 

class. However, to understand a class thoroughly and be able to identify all the properties 

of that class is not an easy task. This is the reason why the concrete examples used in this 

part of the evaluation process are comparatively trivial than those used in the first part of 

the evaluation process. It is always difficult to come up with a set of fully specified class 

specifications.
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HMenu:HMenuCreate,Insert,Compose,GetSelect ion,Change,Handle.Lower,Raise,
Resize;

VMenu:VMenuCreate,Insert,Compose,GetSelect ion,Change,Handle.Remove.Lower,Raise, 
Draw,Resize;

Dialog:CreateDialog,Accept.buttonstate,Change,Remove,Lower,Raise.Draw,Resize;

HBox:CreateHBox.Align,align,DrawBox.ResizeBox,ComputeHBoxShape,Change,Remove, 
Lower,Raise.PlaceHBox;

VBox:CreateVBox,Align,align,DrawBox,ResizeBox,ComputeVBoxShape,PlaceVBox,
Change,Remove,Lower,Raise;

Figure 6.16: The Class Specifications with a Different ‘HMenu’ Class

Vertices are:
vertex[0] = {HMenuCreate} vertex[l] = {VMenuCreate}
vertex[2] = {CreateDialog,Accept,buttonstate} vertex[6] = {Remove}
vertex[3] = {CreateHBox,ComputeHBoxShape.PlaceHBox} vertex[7] = {Resize}
vertex[4] = {CreateVBox,ComputeVBoxShape,PlaceVBox} vertexClO] = {Draw}
vertex[5] = {Change,Lower,Raise}
vertex[8] -  {Insert,Compose,GetSelection,Handle}
vertexCll] = {Align,align,DrawBox,ResizeBox}

Edges a re :
{ v e r te x [ 5 ] .v e r t e x [6]} 
{ v e r te x [ 5 ] , vertexC lO ]} 
{ v ertex C 6 ], vertexC 2]}  
{ v e r te x C 7 ].v e r te x  CO]} 
{ v e r te x C 8 ].v e r te x  CO]} 
{vertexC lO ],vertexC 2]}

{vertex C 5 ],v ertex C 7 ]}  
{ v e rtex C 5 ], v e r te x C ll]}  
{vertexC 6] ,vertexC 3]}  
{ v e r tex C 7 ].v e rte x C l]}  
{vertexC 8] , v e rte x C l]}  
{ v e r te x C ll] .v e rte x C 3 ]}

{v ertex C S ], vertexC 8]} 
{ v e rtex C 6 ].v e rte x C l]}  
{ v ertexC 6],vertexC 4]}  
{ v ertex C 7 ], vertexC 2]} 
{ v e rtex C lO ].v e rte x C l]}  
{ v e r te x C l l ] , vertexC 4]}

ve itex [ll] veitex[7]

vertex[3]
(HBox)

veitex[2]
(Dialog)

vertex[4]
(VBox)

Figure 6.17: Result Generated with Different Class Specifications
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6.I.3.2. The Practicability of the IFP

Winnie Pun

Although the basic model of the inheritance factorisation process is soundly based, whether 

it is generally applicable to systems design in object-oriented programming is still uncertain. 

The uncertainty concerning the practicability of the IFP is three fold:

i. The IFP requires a set of well-defined class specifications in order to obtain a well- 

defined class hierarchy and this is not easy to achieve. This may put off system 

designers from using the IFP.

ii. The conventional behaviour in constructing class hierarchies is based on intuition. 

A top-down approach which identifies the superclass first and then appends sub­

classes later is employed. However, with the IFP, different attitudes in constructing 

class hierarchies are introduced. The IFP encourages system designers to concen­

trate on specifying the characteristics of the classes. It suggests the hierarchy be 

constructed at one time instead of a ‘build a little and append the rest’ approach. 

As it is always difficult for human to abandon their old habits and take up a new 

approach, there may be difficulties in persuading them to use the IFP.

iii. It is discussed in Chapter 4 that most system designers find that they have to append 

a new class to an existing class hierarchy. As the current BFP does not cater for 

the activity of adding a new class to an existing class hierarchy, the current IFP 

may not be as useful as it should be.

Besides, the graph obtained from the IFP is, in fact, governed by the manipulation rules 

defined in the formal model. At the moment, the formal model is fairly rudimentary. It 

defines an optimal graph as a graph that represents minimum duplication of attributes, i.e., 

maximum reusability. It also assumes that multiple inheritance is more desirable than single 

inheritance. Hence, if multiple inheritance is detected in a class hierarchy construction 

problem, the graph that exhibits the multiple inheritance relationship is chosen as the optimal 

graph. All these assumptions have restricted the structure of the graph that is generated 

from the IFP. In reality, there are situations when system designers prefer to have a single 

inheritance graph than a multiple inheritance one. Further, a higher degree of resuability 

does not always give graph that is optimal to everyone.

When comparing the IFP to the ‘ad hoc’ method, the ‘ad hoc’ method tends to give more 

flexibility to system designers constructing class hierarchies in this aspect. The intuitive 

knowledge and the experience of the system designers are employed in constructing class 

hierarchies using the ‘ad hoc’ method so that system designers can tailor the graph to their 

own definitions of ‘optimal’. It is believed that the IFP will be more practical if it is 

modified to allow users to exercise their intuitive knowledge and desire in constructing the
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class hierarchy. Perhaps, an expert-system like front-end is required for the IFP so that 

system designers can specify the rules about how the graph should be generated. This kind 

of extension and modification has to be part of the future work.

6.2. The Design Method

As indicated by Rosson and Gold [RMK8 8 ], too little is known about the complexities of 

design practices, thus it is difficult to set out to test hypothesis about the effects of particular 

design methods, i.e., to evaluate a design method. The evaluation of the design method 

developed in this research, therefore, tends to be informal. First of all, it checks whether this 

design method has satisfied the general goal of a design method. Then, it examines whether 

the objectives of developing this design method have been achieved or not. It also compares 

this design method to existing design methods to highlight the improvement of the design 

method. Of course, an important part of the evaluation of the design method has to be based 

on user performance. Currently, two case studies have been carried out to demonstrate the 

usage of this design method. These two case studies can be found in Appendix A and B. 

Other plans have been set up to involve other system designers besides the developer to 

examine the usability of the design method. These evaluation plans are discussed later in 

this section.

6.2.1. General Assessment

As has been reiterated several times, design is a creative process. The design process involves 

generating ideas and trying them out. A design method can be regarded as a general guideline 

which helps system designers to develop these ideas at different stages in the design process. 

The design method also helps in organising the design activities to capture and express these 

ideas. The design method arising from this research certainly has achieved this basic goal 

of a design method. The design method extends from the last part of the analysis phase 

to the beginning of the implementation phase. This gives a continuity notion in the system 

development. The design method splits the design phase into three stages, the conceptual 

level, the system level and the specification level. Each stage has a specific goal to achieve. 

The tasks which are assigned for individual stages are defined clearly in the design method. 

The accomplishment of each task at individual stages and the proceeding from one stage to 

the next adds more details to the implementation model. The results of individual design 

stages are to be expressed in design documents such as the object interaction diagrams and 

the class structure charts. The graphical notations of these documents are well-defined so 

that system designers can communicate in a semi-formal and unambiguous manner.
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Beside the general objective, this design method has a specific objective to achieve. The 

design method has been specially developed for object-oriented implementations. Therefore, 

the design method has to encompass guidelines that help system designers solve problems 

which are specific to object-oriented programming. For example, the design method should 

discuss how to construct objects and class hierarchies. As it stands, this design method has 

also achieved this specific aim. There are detailed descriptions about how to identify objects 

and the appropriate relationships which lead to the construction of objects. Further, the design 

method has incorporated an algorithm which is called the ‘inheritance factorisation process’ 

that guides system designers to construct well-defined class hierarchies. The development of 

the inheritance factorisation process has made this design method more adequate than other 

existing object-oriented design methods in supporting object-oriented programming.

The success of a good design method needs the complement of appropriate software tools 

for recording and managing the results of analysis, design and implementation. Hence, the 

next step of this research is to develop the necessary tools to support the design method. 

The future work concerning this aspect is discussed in Chapter 7.

6.2.2. Comparison with Other Existing Design Methods

Most of the existing design methods are function-oriented and were developed long before 

the flourishing of object-oriented programming. Therefore, they are inadequate for giving 

guidelines in designing systems which are targeted at object-oriented programming. This 

design method, having achieved the general and specific goals as mentioned in the above 

section, has demonstrated its suitability in serving as a design method for object-oriented 

programming.

When comparing this design method with other object-oriented design methods, it is found 

that this design method has remedied the inadequacies that are identified in other object- 

oriented design methods. These can be classified into the following four areas:

i. Some of the existing object-oriented design methods such as the earlier version of 

the Booch and the HOOD methods have been developed for a specific programming 

language, Ada. This results in design methods which are not general enough to be 

used by other systems that are targeted at other programming languages. Moreover, 

according to this research, Ada is not regarded as an object-oriented programming 

language. Therefore the design methods which are specially developed for it, are 

inadequate for object-oriented programming. The design method which emerges 

from this research, however, is not targeted at any particular programming language 

but a programming paradigm. Therefore, it is comparatively more flexible than the 

Booch and the HOOD design methods.
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ii. One of the criticism of existing object-oriented design methods is that they do 

not have enough details to guide system designers to design their systems in 

an object-oriented fashion. Most of them only contain graphical notations and 

not the procedures which tell system designers when to do what in the design 

phase. This design method gives enough guidelines for system designers to proceed 

through the whole design phase. It begins with emphasising the construction of a 

conceptual model for the application and ends with the design specifications which 

the programmers can take away and implement the system with.

iii. Also, one or two object-oriented design methods introduce unnecessary new terms 

and diagrammatic notation to the system designers. This does not help them to 

grasp the philosophy of the object-oriented design in a reasonable short time. The 

development of this design method recognised that many system designers already 

have a strong background in structured design methods. In order to bring down 

the learning curve and provide a smooth transition for these system designers, this 

design method employs graphical constructs which are similar to those in structured 

design methods. For example, the object interaction diagrams are similar to the 

data flow diagrams and the class structure charts remind system designers of the 

structure charts found in structured design methods.

iv. However, a more important improvement of the design method over other object- 

oriented design methods is that it provides substantial support in handling inheri­

tance. None of the existing object-oriented design methods have enough support 

to handle inheritance in the design phase. This design method provides a formal 

manipulation process to assist system designers to construct class hierarchies. This 

has confirmed the reason why this design method is better in supporting systems 

design in object-oriented programming when compared to other existing design 

methods.

6.2.3. Evaluation by Other Users

The usage of this design method has been demonstrated with the two case studies which can 

be found in Appendix A and Appendix B. However, as these two case studies are carried 

out by the developer of the design method, it may give a biased judgement on the usability 

of the design method. Therefore, it is decided that the design method must be assessed by 

system designers other than the developer. As the evaluation which involved other users 

especially those from industry will be a long process, it was decided that such an evaluation 

process will not be included in this research. Nevertheless, the plan to carry out this kind 

of evaluation is discussed Chapter 7 as part of the future work.
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6.3. Conclusion

Winnie Pun

This chapter discusses the evaluation on the inheritance factorisation engine and the design 

method. The evaluation attempts to examine the functionality and the usability of both the 

factorisation engine and the design method.

Concerning the inheritance factorisation engine, various examples have been used to demon­

strate the functionality of the factorisation engine. The pros and cons in using the engine 

to generate the required class hierarchy have also been discussed. It is believed that the 

factorisation engine forms the basis of a CASE tool which assists system designers to 

construct class hierarchies.

Concerning the design method, the usage of the design method in systems design is demon­

strated with two case studies found in Appendix A and B. The virtues of the design method 

have been highlighted through a comparison with other design methods.

Due to the time constraint and the current status of this research, the evaluation of the 

usability with other users have not been carried out. However, it is realised that such an 

evaluation is important and plans to carry them out in future are discussed in Chapter 7.
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“The same thrill, the same awe and mystery, comes again and again when we look at 
any question deeply enough. With more knowledge comes a deeper, more wonderful 

mystery, luring one on to penetrate deeper still. Never concerned that the answer may 

prove disappointing, with pleasure and confidence we turn over each new stone to 

find unimagined strangeness leading on to more wonderful questions and mysteries - 

certainly a grand adventure/ ”

Now that the work concerning this piece o f research has been presented and discussed, it is 

time to talk about the future work that should follow.

With respect to the immediate future work, there is the extension and modification of the 

inheritance factorisation process and the evaluation of the usability of both the factorisation 

engine and the design method. Such an evaluation will provide valuable feedback which 

can improve the method further. To design the experiments for such an evaluation is a long 

term process as it involves detailed study of design, how to specify usability in measurable 

terms and how to analyse the data obtained. Although giving a detail account of the design 

of these experiments is outside the scope of this research, it is possible to outline these 

experiments and discuss some important issues that these experiments have to take care of.

With respect to future work in the long term, the design method of this research has provided 

part of the backbone for a computer aided software engineering (CASE) for object-oriented 

programming. The design method has specified the tasks which have to be performed in the 

design phase. At the same time, it has highlighted the tools which are required to support 

the design phase in the CASE environment. To develop these tools will be part of the work 

in the future.

This chapter, therefore, explores the future work in these two categories.

Richard P. Feynman

Chapter 7

Future Work
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7.1. Immediate Future Work

Winnie Pun

7.1.1. The Inheritance Factorisation Process

As mentioned both in Chapter 4 and Chapter 6 , the current status of the factorisation process 

only supports the construction of class hierarchies from scratch. However, very often, system 

designers find that they want to add new classes to existing class hierarchies. Therefore, 

the prime interest of the immediate future work is to extend the current model to cover this 

aspect. Further, by introducing priority attributes factorisation gives more flexibility to the 

users. Hence, the prototype of the factorisation engine has to be modified to support these 

two features before any tests concerning the usability of the model could be carried out.

The tests on whether the factorisation process is practical or not can, in fact, be incorporated 

in the evaluation of the usability of the design method which is discussed in section 7.1.2. 

If the result of the evaluation proves to be positive, more work can be carried out with the 

factorisation process. This includes extending the model to support signature-compatible IFP 

and behaviour-compatible IFP as mentioned in Chapter 4. In addition, one can start looking 

into how to modify the IFP so that it can automatically generate the required data structures 

with respect to the implementation language.

7.1.2. Usability of the Design Method

The design method of this research has defined the procedure of the design phase which 

leads to the construction of an object-oriented implementation model. Before this method 

can be refined in more detail and extended further, one needs to set up experiments to test 

the usability of the design method.

It is difficult to define what usability means exactly and hence specify usability in measurable 

terms. However, the criteria for usability can be summarised into two areas [Goo87]:

i. Ease of use,

ii. The functions provided match the task requirements.

Concerning the ease of use, there are a number of issues governing it:

i. Martin [Mar73] has written that a user’s ability to use a system depends on the 

ease with which he/she can communicate with it, i.e., whether the design method 

has provided sufficient means for communication.

ii. Very often, the means of communication of a design method are graphical and 

textual constructs. The design method specifies the rules that govern the usage of
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these constructs. To examine whether these graphical and textual constructs are 

easy to use is another test to check the usability of the design method.

iii. One of the aims of a design method is to divide the design activity into manageable 

sub-tasks. Hence, to see whether a design method is easy to use, one has to check 

whether the users feel comfortable and confident about how to achieve these sub­

tasks.

iv. Besides dividing the sub-tasks, the design method also specifies the procedures to 

achieve these sub-tasks. To check whether these procedures are clearly defined and 

easy to follow also leads to an answer of whether the design method is easy to use.

Considering the functionality of a design method, again there are a few issues governing it:

i. The main objective of a design method is to set up the correct implementation 

model. Therefore, a way to check whether the design method has achieved its 

required functionality is to examine how well the design method helps in setting 

up an implementation model for object-oriented programming. The following are 

a few questions which may lead to answers about whether the design method helps 

to set up the correct implementation model for object-oriented programming.

• Does the design method help to identify the objects and actions of a 

system?

• Has the design method provided enough guidelines in constructing a 

class?

• Does the design method provide enough facilities to help system designers 

in building class hierarchies?

• Do the users feel that they have the confidence to take away the design 

specifications and implement the system directly?

ii. Besides checking whether the design method helps in setting up the required 

implementation model, another area needs to be examined is whether the design 

method helps in modelling the problem.

In order to compare the usability of this design method and other design methods with 

respect to setting up the correct implementation model for object-oriented programming, the 

experiments should be designed to include other design methods, for example, a few popular 

conventional design methods and some object-oriented design methods.

The above description of the experiment is summarised into Table 7.1.
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This Method Yourdon JSD HOOD ObjectOry

Ease of Use
1. ease of communication
2. graphical and textual 

constructs easy to use
3. manageable and easy to follow

sub-tasks
4. clearly defined procedure

Functionality
1. help to identify objects and

actions
2. help to construct classes
3. help to build class hierarchies
4. problem modelling

Table 7.1: The Result of the Experiment in table format

In addition, usability is also affected by the types of tasks to be accomplished. Therefore, 

different types of problems must be set for the experiments, for example, typical object- 

oriented problems, information-oriented problems and real-time systems etc. Further, the 

characteristics that make a design method usable for one set of users may be unusable for 

another. Hence, there will be four groups of subjects for each design method, the novice 

users of both the object-oriented programming and the design method (Group A), the experts 

of both the object-oriented programming and the design method (Group B), the novice users 

of the object-oriented programming but experts in the design method (Group C) and lastly 

the experts of the object-oriented programming and novice of the design method (Group D).

To compare the results obtained, subjects might be requested to give a score for each item. 

The score ranges from 4 which is perfect to 0 which is no evidence of any support (see 

Table 7.2).

4 Perfect
3 Good
2 Average
1 Poor
0 No evidence of any support

Table 7.2: Scoring Table

Obviously, the design method which scores highest in all the problems and for all the four 

different groups of subjects achieves most usability.

As indicated above, the experiments concerning the usability of the design method involve a 

large number of subjects and will require at least a year to carry out. The above discussion 

does not attempt to give a full-blown design of the expetiwents but to outline many of the 

issues that would have to be addressed.
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Once the experiments are performed and the results are analysed, one can modify and improve 

the method accordingly. Currently, one may find that the design method is suitable for small, 

general purpose application domains. The appropriateness of such a design method in large 

applications and specific problem domains needs further investigations. In fact, the history 

of structured design development has reflected this trend of development. When structured 

design methods were first introduced in early 1970’s, they did little in the area of such 

things as interrupts design and scheduling of concurrent processes. An extended, ‘real-time’ 

flavour of structured design methods only emerged in the early 1980’s. Although it is said 

that object-oriented programming is good for implementing concurrent systems, extending 

this design method to cater for concurrent programming would be part of the future work.

7.2. Future Work in Long Term

Computer aided software engineering (CASE) has become increasingly important in recent 

years. It is now recognised that with the large range of automated facilities provided in CASE 

environments, the productivity of software engineers has improved dramatically [Som89]. 

In order to know what automated facilities to be provided in the design phase, one needs 

to know what tasks system designers have to perform during the design phase. As a design 

method defines the procedures one has to carry out in the design phase [McC89], it indirectly 

decides what tools one requires in the design phase of the CASE environment. Thus, the 

design method has a vital role to play in CASE environments. As it stands, the design method 

resulting from this research is tailored for object-oriented programming. It, therefore, forms 

the basis of a CASE environment for object-oriented programming. This section discusses 

possible future work necessary to achieve this objective. It starts off by presenting an 

overview of a CASE environment for object-oriented programming. It then briefly discusses 

the individual components that are found in such an environment. The components which 

are directly related to the design method are then investigated in more detail.

7.2.1. Computer Aided Software Engineering Environment

Software development comprises a number of activities which cover requirement analysis, 

design, implementation and testing [How82, McD85]. In a CASE environment, there are a 

large set of automated facilities which assist software engineers with the task of software 

development. Contemporary software development environments can be classified into four 

categories [DEF87]:

i. Language-centered Environments

These environments are built around one particular language and the tools supported
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are suitable for that particular language only, e.g., Smalltalk-80 [Gol83b], Cedar 

[SZH85].

ii. Structure-oriented Environment

These environments employ techniques that allow users to manipulate structures 

directly, e.g., Cornell Program Synthesizer [Rep84], Pecan [Rei84].

iii. Toolkit Environment

These environments provide a set of tools for the coding phase of the software 

development cycle, e.g., PCTE [GMT87], Unix [DHM84].

iv. Method-based Environments

These environments are built around a particular development method. The tools 

provided support for a broad range of activities which are defined by the design 

method, e.g., SADT [Ros85], PSL/PSA [TeI77].

As each of these kinds of environment actually covers part of the development phase, it seems 

logical to merge these capabilities to achieve a highly interactive, tailorable, multiple-user, 

full life-cycle environment [DEF87]. Such an environment should support all stages of the 

software development process from initial feasibility studies to operations and maintenance.

User Interface

Development Support Tools

Object Management

Database System

Operating
System

Figure 7.1: The Structure of the Traditional CASE Environment

Current CASE environments are generally built around a database management system 

[Som89] as illustrated in Figure 7.1. All the tools supported in such environments output
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information to and collect information from the database. In addition, the database system 

supports information retrieval tools which can collate and present component information 

which is generated at different stages of the life-cycle.

As it stands, the structure o f a CASE environment for object-oriented programming (see 

Figure 7.2) is similar to that of the traditional one. This is not surprising as object-oriented 

programming is a natural evolution of traditional programming. However, it is believed that 

certain components o f this environment will have to be changed and modified to give a more 

consistent and sophisticated CASE environment for software engineers.

User Interface

Implementation T«*ti ng
Methods

Tools . & Tools'Object Management

Object -Oriented > 
n arah ase

Operating
System

Figure 7.2: The Structure of the CASE Environment for Object-Oriented Programming

7.2.2. The Object-Oriented Database

In the traditional software engineering environment as shown in Figure 7.1, the inner layer 

is the database layer. It provides all the data storage facilities for project information 

and allows relationships between project entities to be defined and maintained. Although 

traditional databases such as hierarchical, network and relational have been widely used in 

this layer, they were designed to support alphanumeric data, formated into records. While 

this may be appropriate for typical information management system applications; they are not 

really appropriate for applications such as mechanical, computer-aided design and computer- 

aided software engineering, which relies on complex and non-record oriented data [Atw89].
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Therefore, an object-oriented database is more likely to be used in the next generation of 

environments [AnH87, Som89]. This is especially true if one is aiming towards a CASE 

environment for object-oriented programming.

Object-oriented databases are considered to be more powerful than traditional databases. Tra­

ditional databases such as the relational database are inadequate in representing the complex­

ity of the real world [DKL86], as there are difficulties in matching the real world complexity 

to flat data structures. The object-oriented database, however, emphasises persistent storage 

of objects and provides a higher level of abstraction. This gives the capability to express 

the complexity involved in modelling the real world. Besides, in conventional software 

development, programming languages and databases are not fully integrated. ‘Embedded 

languages’ are always required to allow the application, which is written in general purpose 

programming languages, to access the databases systems. These kinds of bridges are usually 

awkward, and provide limited functionality. The object-oriented database, however provides 

a tighter coupling between data management and programming language facilities which 

results in a safer and higher performance system [AnH87, K1189].

Currently, object-oriented database are not yet commercially used. However, there is a lot 

of research going on in this area [Atw85, Loc87]. Some of these works are concerned with 

how to modify relational databases to support object-oriented features [BPR88, Rum87]. It 

is strongly believed that the object-oriented database is going to be a crucial component of 

CASE environments for object-oriented programming and hence will play an important part 

in future work concerning this research.

7.2.3. The Object Management System

The object management system [Zdo86] is responsible for providing control over name spaces 

and the configuration control of objects within the development environment. With the object 

management system, the user may simply refer to environment objects using local names 

with the system handling the mapping to the database layer. Configuration control or version 

control is very important within the environment. Designers always need to generate and 

experiment with multiple versions of a design, before selecting one that satisfies the design 

requirements [ChK86]. The object management system should also provide concurrency 

control for cooperative work among a team of software engineers.

7.2.4. The Development Toolkit for the Design Phase

The object-oriented database and the management system described above are used to store 

and manage the objects created by the software tools in the development process. As has
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been reiterated several times, the development process generally covers the requirement 

analysis phase, the design phase, the implementation phase and the testing phase. Each of 

these different phases require different methods and tools to support it. For example, the 

implementation phase may need debuggers, compilers, browsers, and syntax-directed editors 

to support the programming task. As it stands, any future work involved in developing 

the complete toolkit is quite substantial. Firstly, it would entail the developm ent o f proper 

methods for object-oriented requirement analysis, design, implementation and testing. These 

methods, as mentioned earlier, will then define the sorts of toolkit needed for the different 

phases o f the development process. Since this research concerns mainly the design phase in 

the development process, there is not sufficient information to start discussing the toolkits for 

other phases and the integration of these toolkits into the CASE environment. Nevertheless, 

this section examines the software tools for the design phase which are derived from the 

design method discussed in this research.

The Design Method for Object-Oriented Programming 

--------------------------System Level -►  Specification LevelConceptual Level

Figure 7.3: The Primary Software Tools which are derived from the Design Method

The result of this research has produced a design method which is specially targeted for 

object-oriented programming. The design method encourages the usage o f graphical nota­

tions to document the design process. It introduces the inheritance factorisation process to

assist the construction of class hierarchies. Hence, the tools which have to be developed to 
/■

support the design process defined by this design method can be divided into two categories:

i. Graphical Tools

The design method suggests that the conceptual model o f the design phase should 

be presented as object-interaction diagrams. Besides, the design specifications have 

to be presented as class structure charts and message structure charts. This suggests 

that an object-interaction diagram editor, a class structure chart editor and a message
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structure chart editor have to be developed. These editors should have some syntax 

checking facilities. The documents and specifications created with these editors can 

be regarded as objects which will be managed by the object management system 

and stored in the object-oriented database in the environment.

Object Management 
System

Object Interaction 
Diagram Editor G ass Structure 

.Chart Editor .
Message Structure 
Chart Editor

Figure 7.4: The Graphical Tools in the Design Phase 

As suggested in Chapter 3, the object-interaction diagrams are not only the doc­

uments found in the design phase but also the analysis phase. Therefore, it is 

believed that the object-interaction diagram editor should be used in the analysis 

phase of the development process.

ii. Tools for the inheritance factorisation process

The inheritance factorisation process plays a vital role in the design method which 

has emerged from this research. The tools required to support this process can be 

grouped into a black box called the IFP box. The box will contain an editor to 

specify the class specifications needed, the factorisation engine that generates the 

normalised hierarchy expression and the graph generator which produces the class 

hierarchy graph. As these tools are used to help system designers design the class 

hierarchies, they would not interact with the object-oriented database nor the object 

management system. However, the IFP box will interact with the class structure 

chart editor to automatically generate the required class structure chart. Besides, 

there might be a possibility that the IFP can be improved to generate the required 

class data structures automatically. In this case, the IFP box may interact with the 

tools found in the implementation phase (see Figure 7.5).
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Implementation
Phase

Design Phase

IFP Box

editor}?
Q u i  Structure 
Chart Editor . \J (engine)/ ^nilyser^)

Figure 7.5: The IFP Box

In addition to these tools that are obviously required for the design method, there may 

be other auxiliary tools that are helpful for the system designers. For example, an object 

dictionary which allows system designers to examine and enter the definition of a particular 

object; filter-browser in the IFP box to give information about available classes in the system; 

design analyser tool which analyses the efficiency of a particular design by examining the 

object-interaction diagrams.

7.2.5. Other Tools

Besides tools that are required to support the different stages of the development phase, 

project management tools are also essential in the CASE environment. The objective of the 

project management is to provide a framework that enables the manager to make reasonable 

estimates of resources, cost and schedule. Most of these tools, such as those that help 

engineers to estimate budgets, to generate status reports and to plan project schedules already 

exist in traditional CASE environments. Part of the future work may involve investigating 

whether these tools can be reused in an environment for object-oriented programming.

7.3. Conclusion

This chapter has outlined the immediate future work with respect to this research. The im­

mediate future work involves the extension and modification of the inheritance factorisation 

process and examining the usability of the design method. An overview of the experiments 

which are required to be carried out to test the usability of the design method has been 

discussed.
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With the current research in object-oriented system analysis, object-oriented implementation 

and the fact that this research has developed a design method for object-oriented program­

ming, the natural direction for any long term future work has to be conducted towards an 

object-oriented CASE environment. This chapter has also discussed some of the future work 

that would be necessary to achieve this goal. Such a discussion is by no means a full account 

of what one can do in the future. As most of the related work concerning this research is 

still in its infancy, it is believed that there is a long way to go before a sophisticated and 

acceptable CASE environment for object-oriented programming will emerge.
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“When a scientist doesn’t know the answer to a problem, he is ignorant. When he has 

a hunch as to what the result is, he is uncertain. And when he is pretty darn sure of 

what the result is going to be, he is still in some doubt. We have found it o f paramount 

importance that in order to progress we must recognise our ignorance and leave room 

for doubt. Scientific knowledge is a body of statements of varying degrees of certainty 

- some most unsure, some nearly sure, but none absolutely certain.”

When examining programming development history, it is found that modular programs were 

first introduced in the early 1970’s via the technique of stepwise refinement. This kind of 

technique was then developed into structured programming which emphasised functional 

decomposition, i.e., the modularity of these programs was function-oriented. In the early 

1980’s, object-oriented programming emerged as the next phase in the evolution of pro­

gramming. If one takes the term ‘structured programming’ in its more general sense, 

one can even view object-oriented programming as a part of the evolution of structured 

programming. Instead of being function-oriented, object-oriented programming provides 

new ways to structure programs, such as classes and class hierarchies. These provide a 

higher level of abstraction which increases the expressive power of software engineers in 

modelling the real world. Besides providing a higher level of abstraction for modularising 

a system, object-oriented programming also has other desirable features such as message 

passing, class inheritance and dynamic binding which secure it an important place in the 

programming evolution.

Just as its ancestor, structured programming with the function-oriented approach, object- 

oriented design methods are in great demand as object-oriented programming becomes more 

and more popular. The need for a design method is even more apparent when developing 

large systems. A design method generally lays down the ground rules for software engineers 

to organise design activities towards a particular implementation. It defines the tasks involved 

in the design phase and specifies the design description language for the engineers to

~  Richard P. Feynman ~

Chapter 8

Conclusion
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communicate with each other. As it stands, the kinds of design methods which are currently 

well-defined, popularly used and widely supported with CASE tools are those which target 

traditional structured programming such as data flow and data structure design methods.

This research has revealed that these design methods are inadequate for supporting program­

ming activities which are targeted towards object-oriented implementation. The main reason 

for this is that they tend to apply ‘functional decomposition’ in modularisation. Modules are 

generated around operations and data structures are distributed between resulting routines. 

However, for object-oriented programming, the reverse occurs and the emphasis is on data 

structures. Modularisation and operations are generated around important data structures. 

Further, these structured design methods do not support the distinguishing features of object- 

oriented programming such as class inheritance.

As traditional design methods are inadequate to support design for object-oriented program­

ming, work has been carried out to develop a design method which is suitable for object- 

oriented programming. Although a few examples of such design methods have emerged, 

they are shown in this research to be unsatisfactory. The main criticism lies in the fact 

that most of them are targeted at the programming language Ada. In addition, all of them 

are found to be inadequate in supporting the class inheritance feature of object-oriented 

programming. Therefore, the primary aim of this research has been to develop a better 

design method for object-oriented programming. Such a design method should have the 

following characteristics:

i. The design method should support designs for object-oriented implementatioa

ii. The design method should have sufficient guidelines to assist system designers to 

handle class inheritance.

iii. The design method should reuse appropriate ideas from traditional design methods, 

if possible, to bring down the learning curve.

As revealed in this thesis, the primary framework of such a design method has been attained 

by this research. The design method which has emerged from this research aims at assisting 

system designers to organise the design activities towards an implementation model for 

object-oriented programming. It is divided into three levels:

i. The conceptual level assists system designers analyse and examine the application 

in an object-oriented fashion,

ii. The system level concerns the construction of the implementation model. The 

confirmation of the implementation objects, the identification of the ‘contain’, ‘use’ 

and the ‘inherit’ relationships contribute in defining the structure of the classes 

involved in the system.

156



A Design Method for Object-Oriented Programming Winnie Pun

iii. The specification level is responsible for the production of design specifications 

which are going to be passed on to the implementation phase.

The design method has also specified the design description languages such as the object- 

interaction diagram, the message structure chart and the class structure chart which system 

designers use for communication.

Beside defining the design process and specifying the design description language for object- 

oriented programming, one of the major achievements of this design method is that it has 

identified a way to guide system designers in constructing class hierarchies. The construction 

of class hierarchies plays a very important role in designing an object-oriented system. In the 

past, system designers have relied very much on their intuition and experience in constructing 

class hierarchies. This design method, however, has introduced a more algorithmic approach 

to tackling the problem. A process called ‘inheritance factorisation process’ has been 

developed to assist system designers in constructing class hierarchies.

The inheritance factorisation process has an algebraic model which lies behind it. Such an 

algebraic model ensures that the output of the inheritance factorisation process is correct, 

consistent and well-defined. With the inheritance factorisation process, system designers are 

only required to provide the related class specifications and the corresponding optimised class 

hierarchy is then generated. Although the current algebraic model may be too general, the 

possibility to extend and improve the basic model has been discussed in this thesis. Further, 

the development of the inheritance factorisation process has suggested the construction of 

class hierarchies can be automated to a certain extent. Such an idea has been demonstrated 

by implementing an inheritance factorisation engine as part of the work of this research. The 

performance of using this inheritance factorisation engine in constructing class hierarchies 

has also been investigated.

The result of a piece of research of this sort is seldom conclusive. Very often, it triggers the 

beginning of another piece of research. Therefore, it comes as no surprise that the design 

method obtained from this research is found only to be the backbone of future research. This 

future research concerns the development of a computer-aided engineering environment for 

object-oriented programming. Some of this future work has been discussed briefly in the 

thesis.

Generally speaking, the contributions of the research reported in this thesis are two-fold:

i. It has introduced and explored a more algorithmic approach to constructing class 

hierarchies in object-oriented programming. This approach forms the basis of a 

CASE tools which assists system designers to handle inheritance in object-oriented 

programming.
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ii. This new approach to constructing class hierarchies is part of the design method 

developed in this research. The design method is specially developed for systems 

design aimed at object-oriented implementation. Although the design method 

emerging from this research may not yet be perfect, it is a more adequate design 

method for object-oriented programming when compared with other existing design 

methods. Further, it provides the primary framework in which extensions and 

modifications can be carried out. It also lays down the ground work for the 

development of the CASE environment for object-oriented programming.

During this period of research, a lot of people have shown great enthusiasm for this work. 

A few of them have enquired about the possibility of using this design method in their 

developments. A student at the Dutch Open University has actually used this design method 

in developing a hypertext system for electronic courseware in Smalltalk-80 and found the 

design method is useful. Therefore, there are reasons to believe that given more time, this 

research could be extended and modified to be beneficial for software developers. After <a)i, 

design methods as popular and well-supported as Yourdon’s and Jackson’s methods have 

taken more than ten years to become established and adopted in the industrial world.
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Appendix A 

The GP Surgery Notes System

This appendix contains one of the two case studies which have been carried out in this 

research. This particular case study is about the development of a GP Surgery Notes System. 

The requirement specification for the system is shown below. Examples of the design 

documents which are generated at different stages of the design phase are shown in the rest 

of this appendix.

The Requirement Specification

The GP Surgery Notes System is a computerised version o f  the current card system. The 

cards have fields for surname, other names, address, date o f birth, house telephone, work 

telephone, allergies, prescriptions, history, illness history and general notes.

As well as searching fo r  a given person, one often needs to search the file by date o f  birth, 

address.

The specification given above though not in detail, provides enough information to actually 

design and implement a system.

159



invoke

User GPSystem
addACard

deleteACard

searchACard

Conceptual Level: The Overview of the GP System
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User Interface 
LevelSystem Window

UserWindow
GPMenu

PatientCardForm

User Transparent 
Level

PatientCardDatabase

Conceptual Level: The Identified Application Objects of the GP System
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, d  GPMenu

Authorisation 
Activity Menu

PatientCand
ActivityMenu

System Level: The ‘Contain’ relationship of the GPMenu
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PatientCard Activity 
Menu

Search Menu

System Level: The ‘Contain’ relationship of the PatientCardActivityMenu
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GPMenu

PatientCard
ActivityMenuSystemWindow

invoke
invoke

displayMsg,

invoke

GPSystem

Authorisation
ActivityMenuinvoke.

^invoke,
\editForm,

quitFaH™ceP,Form’

invoke,

deletePatient
PatientCardForm

findByName,

getMsg
HndByDOB,

aaddPatient

PatientCardDatabase

UserWindow

System Level: The ‘Use’ relationships of the GPSystem
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Class Name: 

Description:

Attributes:

GPSystem

GPSystem is a computerised version of the traditional note card 
system. The card contains details of a patient. The system allows 
users to add a patient card, search a patient card by name and date 
of birth. The system also allows users to delete a card and update 
a card.

System Window - the window space to display any message from 
the system.

UserWindow - the window space to read in any input from users.

PatientCardDatabase - this is the database which stores the patient 
cards.

PatientCardForm - this is the form which users have to fill in when 
they want to add a new card or display the 
information of a patient card.

GPMenu - this is the menu which users select their action options, 
invoke - this is the operation to invoke the GP System. 
addACard • this is the operation to add a new patient card. 
deleteACard - this is the operation to delect an exist card. 
searchCardbyName - search a patient card by the surname, 
searchCardByDOB - search a patient card by date of birth.

Class Hierarchy:

GPSystem

Inherited Attributes: NONE

Specification Level: The Class Structure Chart (CSC) of the GPSystem
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Class Name: GPMenu

Description: GPMenu is the system menu of the GPSystem. It contains two
submenus which allow users to access the PatientCardDatabase 
and to access the Authorisation of the PatientCardDatabase.

Attributes: PatientCardActivityMenu -this is the submenu which contains
menu options that allows end-users 
to consult the PatientCardDatabase.

AuthorisationActivityMenu -this is the submenu which contains
menu options that allows authoris­
ed users to access the authorisation 
of the PatientCardDatabase.

HandleUserChoice - to execute the appropraite commands 
according to the users Selection.

Class Hierarchy:

HMenu ------------- ►  GPMenu

Menu

\
VMenu

Inherited Attributes: invoke - this is the operation to invoke the menu.
display - this is the operation to display the menu. 
getSelecdon - this is the operation to obtain the menu 

option selected by users. 
insertMenuItem - this is the opertaion to add a menu 

item to the menu, 
compose - this is the operation to collect the menu 

items and compose the menu.

Specification Level: The Class Structure Chart of the GPMenu
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Class Name: PatientCardForm

Description: This is the form which contains the fields specified for a patient card.
End-users have to fill in these fields in order to create a new form. 
Information of this form will be displayed if users want to search a 
particular patient record.

Attributes: PatientCardDatabase - this variable refers to the particular database of
this GP System.

acceptForm - this operation is carried out when users finish filling in a 
form and press the accept key. The operation includes 
putting the information from the form into the database. 

clearForm - this operation when called will clear the current form, 
quit Form- this operation when called will end the displaying of the form.

Class Hierarchy:

Form --------------------- PatientCardForm

Inherited Attributes: FormName - the name of the form created.
Fields - the fields in that form is arranged as a linked list. 
FormMenu - there is a menu attached to the form.
NoOfFields - the number of fields in the form
CurrentField - this variable points to the current field in the form.
fieldContent - this variable stores the contents of a field. 
createForm - this operation create the form. 
getFieldContent - obtain the value of a particular field.

Specification Level: The Class Structure Chart of the PatientCardForm
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Class Name: PatientCardDatabase

Description: This is the database which stores the records of the GP system.

Attributes: createPCDatabase - this operation invokes the appropriate database.
findByName - this operation searchs the patiend card record by the 

patient’s surname. 
findByDob - this operation searchs the patient card records by the 

date of birth of
addPatient - this operation adds a patient card record to the database. 
deletePatient - this operation delects a patient card from the database. 
updatePatient - this operation updates a patient card in the database.

Class Hierarchy:

VirtualFile PatientCardDatabase

Inherited Attributes: FileName - the name of the corresponding file.
CurList - the list of records.
RecSize - the size of each record. 
openFile - this operation opens the appropriate file and 

read the records from the file. 
fileRead - this operation reads the next record. 
fileWrite - this operation writes a record. 
fileExist - this operation checks whether a given file 

exists or not.
fileClose - this operation close a file, this includes put 

back the list of records at run time into the 
corresponding files.

Specification Level: The Class Structure Chart of the PatientCardDatabase
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c
invoke

GP Menu
User Window \

System Window
Patient Card Form

Patient Card Database

getSelection

Search C ardB y DOB

<£> <4> <i> <t> 4>
addCc

GP Menu

rd
Delet Card

1 GP System [

Sear

*

exit

hCardi >vName

1 - if the user's selection is to add a patient card.
2 - if the user's selection is to delect a patient card.
3 - if the user’s selection is to search a card by date of birth.
4 - if the user's selection is to search a card by name.
5 - if the user’s selection is to quit the system

Specification Level: The Message Structure Chart (MSC) of the ‘invoke’ operation in the GPSystem
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editForm acceptForm

PatientCardForm

Specification Level: The MSC of the ‘addCard’ operation in the GPSystem
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add Patient

getHead

getNe.xtgetContent

PatientCard 
Database

Fields 

(Fields is an instance of 
the class linked list) CurField Fields 

(Fields is an instance of 
the class linked list)

1 - if it is not the end of the field list

Specification Level: The MSC of the ‘acceptForm’ operation in the PatientCardForm
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^  Virtu a l F i l e ^

fileWrite

PatientCardDatabase

'addPatient

Note that the VirtualFile class is the superclass of the PatientCardDatabase class.

Specification Level: The MSC of the ‘addPatient’ operation in the PatientCardDatabase
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getMsg
ere lteP C F orm

fndByName

displayMsg

SystemWindow PatientCardFormUserWindow PatientCard
Database

Note: displayMsg is to display a message in the SystemWindow to 
request users to enter the patient's name to be searched. 
getMsg is an operation to get the patient’s name which is entered 
by the users in the UserWindow.

Specification Level: The MSC of the ‘searchCardbyName’ operation in the GPSystem
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c

getHead

<£>is Equal

getN ext

CurList
CurList

findByName

NameOfCurPatientRec 
(this is an instanceof the string
class)

1 - if it is not the end of the list.

Specification Level: The MSC of the ‘findByName’ operation in the PatientCardDatabase
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Appendix B 

The Home Heating System

This appendix contains another case study of the design method. This case study concerns 

the development of a Home Heating System. The requirement specification of the system 

is below. The implementation of the system is not completed yet but examples of some of 

the design documents which are produced at different stages of the design phase are shown 

in this appendix.

The Requirement Specification

The Home Heating System described in this appendix was modified from the system proposed 

by S. White for the 1984 Embedded Computer System Requirements Workshop. The system 

has also been used as a case study in Booch’s object oriented design method [B0 0 8 G].

The Home Heating System is responsible for regulating the in-flow of heat to individual 

rooms of the home in an attempt to maintain a working temperature established for each 

room. The working temperature for each room is calculated by the system as a function 

of a single desired temperature, which is set by the user, and whether or not the room is 

occupied. If the room is occupied, the working temperature is set to the desired temperature. 

If the room is vacant, the working temperature is set to 5 degrees F less than the desired 

temperature. Each room of the house is equipped with a sensor that continously measures 

temperature. Each room also has an infra-red heat sensor that continously determines whether 

or not the room is occupied.

The user interface provides input/output devices to permit the user to control and monitor 

the Furnace System. The following input devices are provided:

• heat switch

The heat switch controls the status of the Furnace System. When the heat switch 

is turned to ‘ON’, and the fault reset switch is ‘ON’, and at least one room needs 

heat, the furnace system is activated. When the master switch is turned to ‘OFF’, 

the furnace system is deactivated.
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• desired temperature input device

The desired temperature input device continuously provides the value of the desired 

temperature set by the user.

• fault reset switch

The fault reset switch is automatically turned ‘OFF’ by the heat flow regulator upon 

the detection of either a fuel flow or combustion state fault. The furnace cannot 

be activated when the fault reset switch is ‘OFF’. The user can ‘reset’ a fault by 

setting the fault reset switch to ‘ON’.

The following display devices are provided:

• fault indicator

The fault indicator is turned on upon the detection of either a fuel flow or com­

bustion state abnormality.

• furnace status indicator

The furnace status indicator displays the on/off status of the furnace.

The system has a timer which provides a continuously incrementing count, one increment 

for every second of elapsed time.

Heat is provided to each room of the house by circulating hot water. The water is heated by 

the furnace system. Each room is equipped with a water valve that controls the flow of hot 

water into the room. The valve can be commanded to either full open or full closed.

The furnace system includes an oil combustion chamber, a combustion air blower, a water 

temperature sensor, and a boiler. The furnace heats water in the boiler which can then 

be circulated to one or more rooms of the house. The furnace is alternately activated and 

deactivated by the heat flow regulator as needed to maintain the required temperature for 

each room.

To activate the furnace:

1. The system activates the blower motor.

2. The system monitors the blower motor speed and when it reaches a predetermined 

RPM it opens the oil valve and ignites the oil.

3. When the water temperature reaches a predetermined value, the system opens the 

appropriate room water valves permitting the heated water to circulate through 

those rooms.

4. The furnace status indicator is turned on.

To deactivate the furnace:
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1. The system closes the oil valve and then, after 5 seconds, stops the blower motor.

2. The system turns off the furnace indicator.

3. The sysem closes all the room water valves.

A fuel-flow status sensor and an optical combustion sensor signal the system if abnormalities 

occurs, in which case the system deactivates the furnace, turns the fault reset switch off, 

turns on the fault indicator, and closes all room water valves.

The heat flow regulator is a computer sysem that interacts with the other components of

the home heating sysem to determine heating requirements for each room of the home and

control the in-flow of heat necessary to satisfy those requirements.

The heat flow regulator maintains a working temperature which it establishes for each room. 

The working temperature for each room is calculated by the system as a function of a single 

desired temperature and whether or not the room is occupied. If the room is occupied, 

the working temperature is set equal to the desired temperature. If the room is occupied, 

the working temperature is set equal to the desired temperature. If the room is vacant, the 

working temperature is set equal to 5 degress F less the desired temperature. The heat flow 

regulator shall continue with this activity without regard to the state of the furnace.

The home flow regulator shall determine that a given room needs heat whenever: 

room temperature < working temperature - 2 degress F and

shall determine that a given room does not need heat whenever:

room temperature > working temperature + 2 degrees F

The heat flow regulator will continue with this activity without regard to the state of the 

furnace. If the furnace is not active, the heat flow regulator shall activate the furnace and 

route heat whenever the heat switch and the fault reset switch are both ‘ON’ and at least 

one room needs heat. The activation procedure shall be as specified above in the furnace 

description. If the furnace is active, the heat flow regulator shall deactivate the furnace 

whenever either the heat switch or the fault reset switch is ‘OFF’ or no rooms need heat. 

The deactivation procedure shall be as specified above in the furnace description.

The heat switch can be turned ‘ON’ and ‘OFF’ by the user. The fault reset switch is turned 

‘OFF’ by the heat flow regulator upon the detection of either a fuel flow or combustion state 

abnormality. The user can ‘reset’ a fault by setting the fault reset switch to ‘ON’.
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User Interface Level

DesiredTempInputDevia^ ^ ^aultlndicato ^

Timer

^FaultResetS witch
HeatS witch Fumancelndicator

HeatRowRegulator^
umance

Room

User Transparent level

Conceptual Level: The Overview of the Home Heating System
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/^Rjmance^X

C g ilV a lg )

^^C^busdonChamber^ Boiler

WateiTempSenso^ Cl[]combustionAirBlower^>

t

System Level: The ‘Contain’ relationship of the Furnace
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Room

TempSensor

WaterValveOccupiedSensor

DesiredTemp

System Level: The Contain’ relationship of the Room
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getStatusHeatFlowRegulator
Ieactivate

getStatus
isOccupied

activate

getCurrentTemp
HeatSwitch getDesiredTemp

getStatus

Fum an ce

Room

System Level: The ‘Use’ relationship of the HeatFlowRegulator
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OilCombustionChamber
closeValve

openValve
OilValve checkFuelFlow

flowOil
Fumance

etBlowerSpeed

' openWaterValve 

,icloseWaterValve
>enBlower

closeBlower

showOnRoom

showOff

Fumancelndicator

System Level: The ‘Use’ relationship of the Furnace
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operiValves
closeValves

Room

WaterValves

etCurrenfTempgetStatus

getDesiredTemp

setDesiredTemp
TempSensor

DesiiedTemp

OccupiedSensor

System Level: The ‘Use’ relationship of the Room
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Class Name: HomeHeatSystem

Description: The HomeHeatSystem regulates the in-flow of heat to individual
rooms of the home in an attempt to maintain a working temperature 
established for each room. The working temperature for each room 
is calculated by the system as a function of a single desired temp, 
and whether or not the room is occupied. If the room is occuptied, 
the working temperature is set to the desired temperature. If the 
room is vacant, the room temperature is set to 5 degrees less than 
the working temperature.

Attributes: Rooms - this is the list of rooms within the Home.
Furnace - this is the furnace in the system.
HeatFlowRegulator - the heat flow regulator in the system. 
HomeHeatlnterface - this is the user interface of the system, 
invoke - this opertaion invokes the system. 
powerUp - this operation actually turns on the heat switch, i.e., 

it initialises the heat flow regulator.

Class Hierarchy:
HomeHeatSystem

Inherited Attributes: NONE

Specification Level: The Class Structure Chart of the HomeHeatSystem
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HeatFlowRegulator

The heatflowRegulator is a computer system tht interacts 
with the other components of the home heat system to 
determine heating requirements for each room of the home 
control the in-flow of heat necessary to satisfy those 
requirements.

thisFumace - the references to the furnace in the home heat 
system.

thisListOfRooms - the references to the rooms concerned in the 
home heat system. 

chkHeatRequired - this may be a private operation which take a 
room as a parameter and check whether this 
room requires heating up or not. 

run - the heat flow regulator will start running when this 
operation is invoked.

Class Hierarchy:

HeatFlowRegulator

Inherited Attributes: NONE

Specification Level: The Class Structure Chart of the HeatFlowReguIator

Class Name: 

Description:

Attributes:
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Class Name: Room

Description: A Room is part of a home that can be independently heated.

Attributes: OccupiedSensor - a sensor which tells whether there is someone in
the room.

DesiredTemp - this is a variable that stores the value of the desired 
temp. The temp is set by the users.

WaterValve- this is a valve which allows water to flow in when open.
TempSensor - this is a temperature sensor which gives the temp of 

the room.
isOccupied - this operation returns a boolean value to tell whether the 

room is occupied or not. 
getDesiredTemp - obtain the desired temp that is set by users for this 

room.
setDesiredTemp - allow users to set the desired temp for a room. 
closeWaterValve - close the water valve when the room is warm 

enough.
openWaterValve - open the water valve to allow hot water to flow 

into the room.

Class Hierarchy:

Room

Inherited Attributes: NONE

Specification Level: The Class Structure Chart of the Room
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Class Name: Furnace

Description: A Furnace is part of the Home Heating System. When it is activated,
it turn on the blower motor, monitor the motor speed and whne 
the speed reaches a predetermined speed, it opens the oil valve and 
ignites the oil. When the water tempeature reaches a predetermined 
value, the system opens the water valve of appropriate rooms to 
allow heated water to circulate through those rooms.

Attributes: Boiler - the boiler in the furnace
Blower - the blower in the furnace 
OilValve - the oil valve in the furnace
CurrentStatus - this is the variable which tells the current status of 

the furnace
WaterTempSensor - A temperature sensor which gives the temp 

of the water.
invoke - this is the operation to invoke the furnace, it creates the 

corresponding boiler, blower and oilValve and initialise 
the status to ‘off 

activate - this operation is to activate the furnace, it updates the 
status of the furnace accordingly. It turns on the boiler 
and the oilValve if necessary and keep track of the 
blower speed. It also keeps track of the water temperature 
and circulate heated water to the required rooms accordingly, 

deactivate - this operation is to deactivate the furnace. It closes the oil 
valve, halts the blower and closes the water valves of all 
the rooms.

getStatus - obtain the current status of the furnace.

Class Hierarchy:

Furnace

Inherited Attributes: NONE

Specification Level: The Class Structure Chart of the Furnace
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HeatFlowRegulator

activate
getARoom

addARoomchkHeatRequire

HeatFlowRegulatori thisFumacethisListOfRooms RequiredHeatRooms

1 - if the room required to be heated up.
2 - after checking all the rooms in the system and if there is one

room required to be heated up, the system has to activate the 
furnace.

Specification Level: The MSG of the ‘run’ operation in the HeatFlowRegulator Class

188



A Design Method for Object-Oriented Programming Winnie Pun

invoke 

getSpeed

Blower

Predetermined 
Blower Speed

openValve

turnOn
getTemp

CT

Oil Valve Boiler
Water Temp 

Sensor

getRoom

openWfter 
Valve

Required Heat 
Rooms

Room

> JU
isEqual

r i

getSpeed

r i

isEqual

t ' 
_ _  ,

getTemp

r

Blower Predetermined 
Water Temp

Water Temp 
Sensor

1 - if the speed obtained from the blower is not equal to the predetermined speed.
2 - if the temp from the water sensor is not equal to the predetermined temp.

Specification Level: The MSG of the ‘activate’ operation in the Furnace Class
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. 'deactivate ■* \

c lo se  Valve

getTime C T

r i f

Oil Valve Timer

stops

X
isE qual

getTime

5 sec Timer

getR oom

Blower Rooms

1 - if the time obtained from the timer is not equal to 5 sec.

Specification Level: The MSG of the ‘deactivate’ operation in the Furnace Class

closeW ater

Valve

Room
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