
Vol.:(0123456789)

Machine Learning (2020) 109:1925–1943
https://doi.org/10.1007/s10994-020-05899-z

1 3

High‑dimensional Bayesian optimization using
low‑dimensional feature spaces

Riccardo Moriconi1  · Marc Peter Deisenroth2 · K. S. Sesh Kumar3

Received: 3 November 2019 / Revised: 29 July 2020 / Accepted: 11 August 2020 /
Published online: 21 September 2020
© The Author(s) 2020

Abstract
Bayesian optimization (BO) is a powerful approach for seeking the global optimum of
expensive black-box functions and has proven successful for fine tuning hyper-parame-
ters of machine learning models. However, BO is practically limited to optimizing 10–20
parameters. To scale BO to high dimensions, we usually make structural assumptions on
the decomposition of the objective and/or exploit the intrinsic lower dimensionality of the
problem, e.g. by using linear projections. We could achieve a higher compression rate with
nonlinear projections, but learning these nonlinear embeddings typically requires much
data. This contradicts the BO objective of a relatively small evaluation budget. To address
this challenge, we propose to learn a low-dimensional feature space jointly with (a) the
response surface and (b) a reconstruction mapping. Our approach allows for optimization
of BO’s acquisition function in the lower-dimensional subspace, which significantly sim-
plifies the optimization problem. We reconstruct the original parameter space from the
lower-dimensional subspace for evaluating the black-box function. For meaningful explo-
ration, we solve a constrained optimization problem.

1  Introduction

Bayesian optimization (BO) is a useful model-based approach to global optimization of
black-box functions, which are expensive to evaluate (Kushner 1964; Jones et al. 1998).
This sample-efficient technique for optimization has been effective in experimental

Editors: Ira Assent, Carlotta Domeniconi, Aristides Gionis, Eyke Hüllermeier.

 *	 Riccardo Moriconi
	 r.moriconi16@imperial.ac.uk

	 Marc Peter Deisenroth
	 m.deisenroth@ucl.ac.uk

	 K. S. Sesh Kumar
	 s.karri@imperial.ac.uk

1	 Department of Computing, Imperial College London, London, UK
2	 Department of Computer Science, University College London, London, UK
3	 Data Science Institute, Imperial College London, London, UK

http://orcid.org/0000-0003-1327-1304
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05899-z&domain=pdf

1926	 Machine Learning (2020) 109:1925–1943

1 3

design of machine learning algorithms (Bergstra et al. 2011), robotics applications
(Cully et al. 2015; Calandra et al. 2016b) and medical therapies (Sui et al. 2015) for
optimization of spinal-cord electro-stimulation. Despite its great success, BO is prac-
tically limited to optimizing 10–20 parameters. A large body of literature has been
devoted to address scalability issues to elevate BO to high-dimensional optimization
problems, such as discovery of chemical compounds (Gomez-Bombarelli et al. 2018) or
automatic software configuration (Hutter et al. 2011).

The standard BO routine consists of two key steps: (1) estimating the black-box func-
tion from data through a probabilistic surrogate model, usually a Gaussian process (GP),
referred to as the response surface; (2) maximizing an acquisition function that trades
off exploration and exploitation according to uncertainty and optimality of the response
surface. As the dimensionality of the input space increases, these two steps become
challenging. The sample complexity to ensure good coverage of inputs for learning the
response surface is exponential in the number of dimensions (Shahriari et al. 2016).
With only a small evaluation budget, the learned response surface and the resulting
acquisition function are characterized by vast flat regions interspersed with highly non-
convex landscapes (Rana et al. 2017). This renders the maximization of the acquisition
in high dimensions inherently hard (Garnett et al. 2014).

High-dimensional optimization is often translated into low-dimensional problems,
which are defined on subsets of variables (Moriconi et al. 2020; Kandasamy et al. 2015;
Rolland et al. 2018). These approaches apply a divide and conquer approach to decom-
pose the problem into independent (Moriconi et al. 2020; Kandasamy et al. 2015) and
potentially dependent components (Rolland et al. 2018). However, high-dimensional
data often possesses a lower intrinsic dimensionality, which can be exploited for optimi-
zation. A feature mapping can then be used to map the original D-dimensional data onto
a d ≪ D-dimensional manifold. For example, in Wang et al. (2013), the authors used
random linear mappings to reduce dimensionality of the optimization problem. Simi-
lar approaches, which use linear dimensionality reduction, drive exploration in BO to
actively learn this linear embedding (Garnett et al. 2014). While these methods perform
well in practice, they are restricted to linear subspaces of the original domain. With
nonlinear embeddings, higher compression rates are possible. In our work, we focus on
this nonlinear setting.

Using BO with nonlinear feature spaces was proposed in Gomez-Bombarelli et al.
(2018), Gonzalez et al. (2015), Kusner et al. (2017) and Griffiths and Hernández-Lobato
(2017). In Gomez-Bombarelli et al. (2018), a low-dimensional data representation is
learned with variational autoencoders (VAEs) (Rezende et al. 2014; Kingma and Welling
2014). However, this approach requires both large amounts of data and learning the model
offline without the possibility to update the learnt feature space during optimization. Nev-
ertheless, in the specific application of automatic discovery of molecules, where librar-
ies of existing compounds are readily available prior to optimization, this approach makes
much sense. To accommodate fairly small evaluation budgets, in our work, we exploit a
probabilistic model based on GPs, which features superior data efficiency with respect to
VAE-based approaches (Gomez-Bombarelli et al. 2018; Gonzalez et al. 2015; Kusner et al.
2017; Griffiths and Hernández-Lobato 2017). VAE models (Lu et al. 2018) were used to
propagate uncertainty of latent space representations through the response surface model
with Gaussian process latent variable models (Lawrence 2005; Titsias and Lawrence 2010;
Lawrence and Quiñonero-Candela 2006). However, in Lu et al. (2018), the latent space

1927Machine Learning (2020) 109:1925–1943	

1 3

representation is not learned specifically for the regression task (learning the response sur-
face). Gradient-based methods (Abbati et al. 2018) have been used to learn a lower-dimen-
sional Riemannian manifold for optimization and sampling.

Nonlinear embeddings also allow for modeling non-stationary objective functions.
In this context, a hierarchical composition of GPs, referred to as deep GPs (Damianou
and Lawrence 2013; Salimbeni and Deisenroth 2017; Dai et al. 2016; Damianou 2015;
Hensman and Lawrence 2014), is especially useful when the response surface is charac-
terized by abrupt changes or has constraints. An extensive investigation on the employ-
ment of deep GP models in BO is presented in Dai et al. (2016) and Hebbal et al. (2019).
In our work, we also exploit the idea of learning highly nonlinear functions through the
composition of simpler functions (LeCun et al. 2015), but we focus on deterministic
dimensionality reduction and optimization in feature space.

In this paper, we propose a BO algorithm for high-dimensional optimization, which
learns a nonlinear feature mapping � ∶ ℝ

D
→ ℝ

d to reduce the dimensionality of the
inputs, and a reconstruction mapping � ∶ ℝ

d
→ ℝ

D based on GPs to evaluate the true
objective function, jointly, see Fig. 1. This allows us to optimize the acquisition func-
tion in a lower-dimensional feature space, so that the overall BO routine scales to high-
dimensional problems that possess an intrinsic lower dimensionality. Finally, we use
constrained maximization of the acquisition function in feature space to prevent mean-
ingless reconstructions.

2 � Bayesian optimization

Bayesian optimization is a powerful tool for globally optimizing black-box functions
that are expensive to evaluate (Jones et al. 1998; Kushner 1964; Močkus 1975). In our
setting, we consider the global minimization problem

with input space X = [0, 1]D and objective function fX ∶ X → ℝ . We consider functions
fX that are costly to evaluate and for which we are allowed a small budget of evaluation
queries to express our best guess of the optimum’s location �∗ in at most Tend iterations. We
further assume we have access only to noisy evaluations of the objective y = fX + � , where
� ∼ N(0, �2

n
) is i.i.d. Gaussian measurement noise with variance �2

n
 . We restrict ourselves

to the typical setting, where neither gradients nor convexity properties of fX are available.

(1)�∗ = argmin
�∈X

fX(�)

Fig. 1   Model for Bayesian optimization on data manifolds, jointly solving two distinct tasks: (1) a regres-
sion from feature space to observations (in blue) and (2) a reconstruction mapping from feature space to
high-dimensional space (in red) (Color figure online)

1928	 Machine Learning (2020) 109:1925–1943

1 3

The main steps of a BO routine at iteration t involve (1) response surface learning,
(2) optimal input selection �t+1 and (3) evaluation of the objective function fX at �t+1 .
The first step trains a probabilistic surrogate model p(fX) , the response surface, which
describes the black-box relationship between inputs � and observations y. In the
(t + 1) st iteration of BO, the optimal input selection step finds an input �t+1 that maxi-
mizes an acquisition function �(⋅) , which describes the added value of input �t+1 . The
evaluation step returns a noisy observation of the true objective function fX(�t+1) + � at
the selected location. These steps are summarized in lines 4, 7 and 10 of Algorithm 1,
respectively. Having defined a probabilistic surrogate model for our objective function,
which is usually modeled by a GP (Rasmussen and Williams 2006), we can compute
posterior predictions of objective function values at test locations. These posterior pre-
dictions are then fed to the acquisition function, which drives exploration during opti-
mization. Posterior predictions of the GP are Gaussian distributed with mean � and
variance �2 . Defining Z(�) ∶= (fmin − �(�))∕�(�) and fmin ∶= min

�∈�t

f (�) , this allows us to
define three different acquisition functions to maximize:

Here, � and � denote the probability density function and the cumulative density func-
tion of the standard normal N(0, 1) , respectively. The parameter �t controls the exploration
exploitation trade-off. For a complete review on acquisition function the reader is referred
to Shahriari et al. (2016). In high-dimensional settings ( D > 20 ), both the response surface
learning and optimal input selection via optimization of the acquisition function are com-
putationally challenging.

(2)�(�) = �(Z(�)) Probability of improvement (PI) (Kushner 1964)

(3)
�(�) = �(�)Z(�)�(Z(�))+�(�)�(Z(�)) Expected improvement (EI) (Mockus 1975)

(4)�(�) = −�(�)+�t�(�) Upper confidence bound (UCB) (Srinivas et al. 2010).

1929Machine Learning (2020) 109:1925–1943	

1 3

3 � Bayesian optimization in low‑dimensional feature spaces

In this section, we consider a setting, where the input space X is high-dimensional and
the objective function possesses an intrinsic lower dimensionality. In our work, we
exploit the effective low dimensionality of the objective function for BO in a lower-
dimensional feature space Z ⊂ ℝ

d , where d ≪ D . In particular, we express the true
objective fX ∶ ℝ

D
→ ℝ as a composition of a feature mapping � ∶ ℝ

D
→ ℝ

d and a func-
tion fZ ∶ Z → ℝ so that fX = fZ◦� . The lower-dimensional feature space allows for both
learning the response surface fX and maximizing an acquisition function � with domain
Z , which yields optimizer �∗ . Since we cannot evaluate the true objective fX directly at
the low-dimensional features �∗ , we project �∗ back into the D-dimensional data space
X by means of a reconstruction mapping � ∶ Z → X  . We can think of this mapping as a
decoder within an auto-encoder framework. We model both the composition fX ∶= fZ◦�
and the reconstruction with GPs (Rasmussen and Williams 2006). Algorithm 1 summa-
rizes the main steps of this feature-space BO.

In the following, we detail the model (see Fig. 1) for jointly learning the feature map
�(⋅) , the low-dimensional response surface in feature space fZ , and the reconstruction
mapping �(⋅).

3.1 � Manifold Gaussian processes for response surface learning in feature space

We expect the response surface to predict the value of the black-box objective func-
tion fX with calibrated uncertainty associated with each prediction. GPs are probabilis-
tic models that allow for an analytic computation of posterior predictive function values
within a Bayesian framework, and they are the standard model in BO for modeling the
response surface.

A GP is a distribution over functions fZ ∼ GP(m(⋅), k(⋅, ⋅)) and is fully specified by
a mean function m ∶ Z → ℝ , and a covariance function/kernel k ∶ Z × Z → ℝ . The
kernel computes the covariance between pairs of function values as a function of the
corresponding inputs, i.e. Cov(fZ(�), fZ(��)) = k(�, ��) , and thereby encodes regularity
assumptions about fZ , such as smoothness or periodicity. Common kernel choices in the
BO literature include the squared exponential and Matérn kernels (Frazier 2018).

In our feature space optimization, we phrase lines 5–6 of Algorithm 1 as a single
learning problem. Therefore, we need a GP that learns useful representations � of inputs
� for the regression task together with fZ . A manifold GP (MGP) (Calandra et al. 2016a;
Wilson et al. 2016) addresses this issue by composing two mappings: The deterministic
feature map � with parameters �h and a GP fZ ∼ GP(m, k) with kernel hyper-parameters
�k . The GP models the relationship between features � and function values y ∈ ℝ in
observation space. The resulting composite model fX ∶= fZ◦� is a GP so that
fX ∼ GP(mM , kM) with mean function given by mM(�) = m(�(�)) and the covariance
function given by kM(�, ��) = k(�(�),�(��)) respectively. Given high-dimensional train-
ing inputs � and corresponding observations � of the objective function, we find model
parameters {�h,�k} that maximize the marginal likelihood (evidence)
{�∗

h
, �∗

k
} ∈ argmax

�h ,�k

p(�|�,�h,�k) . This objective allows us to learn a low-dimensional

embedding as a by-product of the supervised GP regression.

1930	 Machine Learning (2020) 109:1925–1943

1 3

Unsupervised dimensionality reduction usually solves an orthogonal task to that
of learning a response surface. Algorithms, such as PCA or variational auto-encoders
(Rezende et al. 2014), achieve compact data representations by optimizing objectives
that are not necessarily useful in a supervised setting (Wahlström et al. 2015). The
MGP, instead, leads to low-dimensional representations that are optimal (locally) for the
regression task at hand.

We use a multi-layer feed-forward neural network with sigmoid activation functions as
a feature map (encoder) � , resulting in a feature space Z = [0, 1]d . Neural networks as an
explicit feature map within an MGP have already been applied successfully for modeling
non-smooth responses in robot locomotion (Calandra et al. 2016a; Cully et al. 2015). Deep
networks have also proven useful for learning the orientation of images from high-dimen-
sional images (Wilson et al. 2016). With a Gaussian likelihood, the MGP posterior pre-
dictive distribution at a test point �⋆ ∈ X is Gaussian distributed with mean and variance
given by

respectively, with �⋆ ∶= �(�⋆) and � ∶= �(�) . Moreover,
kM(�⋆,�) = k(�⋆,�) = [k(�⋆, �i)]

N
i=1

 , where N is the size of the training data-
set, �My ∶= kM(�,�) + �2

n
� , �y ∶= k(�,�) + �2

n
� , kM(�,�) ∶= k(�,�) , and

mM(�) ∶= m(�) = [m(�i)]
N
i=1

 computes the prior mean function evaluated at the embedded
training inputs � . Posterior predictions can be computed using both the feature and data
space. Equations (5)–(6) appear in the definition of the acquisition functions in (2)–(4) as
mean �(�) ∶= �[fX(�)] and standard deviation �(�) ∶=

√
� [fX(�)] of the posterior predic-

tions of the surrogate model.
The MGP defines a GP on X  , but allows us to learn a response surface in the lower-

dimensional feature space Z . This is key for optimizing the acquisition function in a low-
dimensional space Z instead of the original data/parameter space X  . Thus far, we have
detailed the feature-space BO procedure up to line 8 in Algorithm 1. Once we found an
optimizer �∗ of the acquisition function, we need to project it back into the original data
space X in order to evaluate the true objective fX , whose domain is X  . This can be done by
means of a reconstruction mapping (decoder), which we detail in the following.

3.2 � Input reconstruction with manifold multi‑output Gaussian processes

In the following, we present the reconstruction part (decoder) of our feature space opti-
mization model described in Fig. 1. We are interested in modeling the functional relation-
ship between the feature space Z and the data space X for step 9 in Algorithm 1, which
requires us to evaluate fX . We therefore consider a vector-valued function � = {gi}

D
i=1

 ,
where each component gi ∶ Z → Xi maps vectors in feature space to the i-th coordinate
of high-dimensional data, i.e. gi(�) = x̃(i) ∈ Xi . Multi-output GPs (MOGPs) (Alvarez et al.
2011; Alvarez and Lawrence 2011; Byron et al. 2009; Wilson et al. 2012; Alvarez and
Lawrence 2009; Osborne et al. 2008; Seeger et al. 2005; Boyle and Frean 2005) define a

(5)
�[fX(�⋆)] = mM(�⋆) + kM(�⋆,�)�

−1
My
(� − mM(�))

= m(�⋆) + k(�⋆,�)�
−1
y
(� − m(�))

(6)
� [fX(�⋆)] = kM(�⋆, �⋆) − kM(�⋆,�)�

−1
My
kM(�, �⋆)

= k(�⋆, �⋆) − k(�⋆,�)�
−1
y
k(�, �⋆),

1931Machine Learning (2020) 109:1925–1943	

1 3

prior over vector-valued functions and explicitly allow for output correlations. An MOGP
GP(�,�) is fully specified by a mean vector function � ∶ Z → ℝ

D and a positive, semi-
definite matrix-valued covariance function � ∶ Z → ℝ

D×D , which computes the correla-
tion between observations in the same output coordinate and cross-correlations between
the D different outputs.

Here we consider the intrinsic coregionalization model (ICM) (Goovaerts 1997;
Wackernagel 2013), which structures the covariance matrix as a Kronecker product. This
model is particularly suitable for trading off number of model parameters and expressive-
ness of the vector valued function. In particular, the ICM facilitates information sharing
across different tasks by adopting the same covariance function. It has been successfully
adopted in robotics for learning inverse dynamics (Williams et al. 2009). Hence, this model
requires fewer parameters than the linear model of coregionalization (Alvarez et al. 2011)
and allows for exploiting properties of the Kronecker product for efficient training and
prediction.

In our reconstruction model, we need to ensure that the output space is exactly X  . If
we start from a data space X = [0, 1]D the reconstructions need to belong to this hyper-
cube. This property is not guaranteed by the MOGP. In order to satisfy this constraint, we
consider a strictly monotonic output squashing function � , as introduced in the context of
warped GPs (Snelson et al. 2004). This allows us to define a corresponding inverse trans-
formation �−1 that is applied to the data in input to the model. The resulting output of the
MOGP at test time is then squashed through the transformation � . Since the reconstruction
of the MOGP is a distribution p(�̃⋆|�, �̃, �⋆) , we evaluate the expectation with respect to
this distribution of the transformed outputs, i.e. �t+1 = �p[𝛹 (�̃⋆)|�, �̃, �⋆] . In this paper,
we choose the Gaussian cumulative density function as a monotonic squashing function
� ∶= � for warping the outputs of our reconstruction model (Snelson et al. 2004). The
motivation for this choice is twofold: the inverse mapping �−1 is defined as the Probit
function, which is a well known function, and the expectation �p[𝛹 (�̃⋆)|�, �̃, �⋆] with
respect to the distribution p(�̃⋆|�, �̃, �⋆) at test reconstructions can be derived analytically
(Rasmussen and Williams 2006).

Intrinsic coregionalization model. The ICM (Goovaerts 1997; Wackernagel 2013)
applies a linear mapping to a set of latent functions. In particular, we consider a set of P
latent functions ui ∶ Z → ℝ , that are assumed to be sample paths, i.e. sample functions
independently drawn from the same GP prior GP(mc, kc) . The ICM model expresses the
vector-valued function as a linear combination of these sample functions �(�) = ��(�) ,
where �(�) ∈ ℝ

P is the collection of the P sample paths’ evaluations at � , and � ∈ ℝ
D×P is

the linear mapping that couples the independent vector and parameterizes the ICM model.
As a result, � is an MOGP GP(�,�) with mean function � = ��c , where �c = [mc]

P
i=1

is obtained by repeating the single-valued mean function mc in a P-vector. The covariance
function is �(�, ��) = ��T ⊗ kc(�, �

�) , where kc is the covariance function for the GP prior,
⊗ is the Kronecker product and the matrix ��T is denoted as the coregionalization matrix.
Note that kc may differ from the covariance function k used for the response surface fZ.

Reconstruction model. For the reconstruction task in line 9 of Algorithm 1, we intro-
duce the manifold MOGP with intrinsic coregionalization model (mMOGP), which shares
the feature map � with the MGP used for learning the response surface; see Sect. 3.1.
Without loss of generality, we assume a prior zero-mean vector function for the mMOGP
GP(�,�⊗ kMO) , where kMO(�, �

�) = kc(�(�),�(�
�)) and the matrix � = ��T . We can inter-

pret this model as an auto-encoder, where the MGP �◦� ∶ X → Z plays the role of the
encoder, and the MOGP the role of the decoder, mapping low-dimensional features back
into data space.

1932	 Machine Learning (2020) 109:1925–1943

1 3

3.3 � Joint training

The joint training of the MGP, which models the response surface, and the mMOGP, which
is used for the reconstruction (see also Fig. 1), is performed by maximizing a rescaled ver-
sion of the log-marginal likelihood

Here, L comprises terms from both the MGP and mMOGP models, where �y is defined in
(5), and the covariance matrix of the mMOGP �V = �̄ + 𝜎2

n
� is obtained by evaluating the

Kronecker product �̄ = �⊗ kc(�,�) with the mMOGP kernel kc . The vector �V is a con-
catenation of the columns of the data � . The maximizers [�∗

h
,�∗

k
,�∗

c
] of the log-marginal

likelihood are the parameters �∗
h
 of the feature map � (which is shared between the MGP

and the mMOGP), the hyper-parameters �∗
k
 of the kernel k and the hyper-parameters �∗

c
 of

kc including the coregionalization matrix � for the mMOGP, respectively. The rescaling
factor 1/D balances the contributions of the two log-marginal likelihood terms involved in
training. The dimensions of the matrix �V are ND × ND which correspond to repeating the
�y matrix D times in a block-diagonal fashion. This block diagonal would then have quad-
ratic form equal to D�T�−1

y
� and log determinant equal to D log |�y| . Thus, an equivalent

rescaling is to divide the reconstruction terms �T
V
�−1

V
�V and log |�V | by D. Optimization

of (7) is performed via gradient-based methods (Byrd et al. 1995; Zhu et al. 1997).
Modeling the black-box objective function fX is orthogonal to the reconstruction prob-

lem. However, when training these tasks jointly, they have a regularization effect on the
optimization of the parameters �h of the feature embedding in the sense that the mapping
� will not overfit to a single regression task: the parameters �h will give rise to a feature
space embedding that is useful for both the modeling of the objective and the reconstruc-
tion of the original inputs.

The major computational bottleneck for evaluating the marginal likelihood comes from
the term �T

V
�−1

V
�V , which requires inverting an ND × ND covariance. We reduce the com-

putational complexity of this operation to O(N3) +O(D3) by exploiting the properties of
the Kronecker product, tensor algebra (Riley et al. 1999) and structured GPs (Gilboa et al.
2015; Saatçi 2012) as shown in the following section.

3.4 � Computationally efficient mMOGP

For the reconstruction mapping � , we use the posterior mean of the mMOGP with intrinsic
coregionalization model and apply exact inference and training via rescaled marginal like-
lihood maximization. While the ICM enables modeling correlation between arbitrary pairs
of dimensions, it also requires computing a Kronecker product to evaluate the full covari-
ance matrix of all outputs

where kc(�,�) is the covariance matrix obtained from the training inputs � in feature space
and the � matrix is the coregionalization matrix of the ICM. Inverting the full covariance
matrix �̄ requires O(N3D3) and easily becomes intractable in high-dimensional spaces
even for small N. Storing this full covariance matrix required O(N2D2) space and also
becomes challenging in high dimensions. For an efficient implementation of the ICM, we
exploit properties of the Kronecker product and apply results from structured GPs (Gilboa

(7)L ∝ − �T�−1
y
� − log |�y| −

1

D

(
�T
V
�−1

V
�V + log |�V |

)
+ const.

(8)�̄ = �⊗ kc(�,�),

1933Machine Learning (2020) 109:1925–1943	

1 3

et al. 2015; Saatçi 2012) that allow for efficient training and predictions in O(N3) +O(D3)
time and O(ND) space. In particular, we are interested in the full covariance matrix under
the assumption of a Gaussian likelihood for the multi-output observations, i.e. �̄ + 𝜎2

n
� . We

first express the full covariance matrix in terms of its eigendecomposition, i.e. �̄ = ���T .
This allows expressing the inverse of the covariance from noisy targets as

where both � and �2
n
� are diagonal and can be trivially inverted. However, the eigendecom-

position of an ND × ND matrix would still be cubic in the product between the number of
dimensions and the number of data. By the properties of the Kronecker product, we can
express the eigendecomposition itself with a Kronecker structure, i.e.

where each term of the Kronecker product on the left-hand side �l ∈ ℝ
Gl×Gl has eigende-

composition �l = �l�l�
T
l
 for l = 1,… ,W , where W is number of factors in the Kronecker

product. In our ICM model W = 2 , because the coregionalization matrix � Kronecker mul-
tiplies kc(�,�) , the covariance matrix of the observations; see (8). Thus, from (9)–(10),
we are allowed to invert the covariance from noisy targets by separately decomposing the
covariance matrix kc(�,�) = �k�k�

T
k
 and the coregionalization matrix � = �b�b�

T
b
 ,

which require O(N3) and O(D3) time, respectively; see line 5 of Algorithm 2.

(9)
(
�̄ + 𝜎2

n
�
)−1

= �
(
� + 𝜎2

n
�
)−1

�T ,

(10)
⨂W

l=1
�l =

⨂W

l=1
�l

⨂W

l=1
�l

(⨂W

l=1
�l

)T

,

1934	 Machine Learning (2020) 109:1925–1943

1 3

Storing this inverse matrix and multiplying it by a vector still requires O(N2D2) space
and run time, respectively, so that this step becomes the main bottleneck for efficient
mMOGP training and predictions computation. To address this issue we represent the
expensive matrix-vector multiplication as a sequence of small matrix-tensor multiplica-
tions without computing the full Kronecker product (Riley et al. 1999). In particular, we
are interested in efficiently evaluating

We first represent the multiplication of a matrix with Kronecker structure by a vector as a
tensor product. A tensor �i1,…,iV

 can be interpreted as an extension of matrices to objects
where elements are indexed using a set of V indices: i1,… , iV , where the number V is
referred to as the order of the tensor. With the definition of the Kronecker product we
express the left-hand side of (10) as a tensor

The right-hand side of (12) coincides with a tensor �K
i1,j1,…,iW ,jW

 , and a similar tensor-repre-
sentation can be obtained for the

∏W

l=1
Gl-long vector � , i.e. �X

jW ,…,j1
 . A tensor product

between the tensors �K
i1,j1,…,iW ,jW

 and �X
jW ,…,j1

 applies a contraction along the indices of the
second tensor, i.e.

This tensor contraction can be expressed in terms of a sequence of tensor-transposed
matrix-tensor products

with �l�
X =

∑Gl

k=1

�
�l

�
i1,k

�X
k,j2,…,jW

 . The function vec(⋅) returns the vectorized form of a
matrix by stacking its columns vertically. The tensor transposition ⊤ applies a cyclic per-
mutation to the order of the indices in a tensor. As a result, the right-hand side in (14)
allows us to evaluate the expensive matrix-vector product without computing and storing
the Kronecker product. Algorithm 2 shows the main steps of the efficient matrix inversion
and matrix-vector multiplication for matrices that feature a Kronecker structure. The matrix
vector multiplication subroutine is expressed as a sequence of tensor-transpose matrix-ten-
sor products.

4 � Constrained acquisition

We defined a joint probabilistic model for the response surface learning and the input
reconstruction tasks; see lines 4–6 and 9 of Algorithm 1, respectively. We are now con-
cerned with the maximization of the acquisition function in feature space; see line 8 of
Algorithm 1. We aim at maximizing the acquisition function in a low-dimensional feature
space of the original data/parameter space X  . However, one problem that arises with the
mMOGP decoding is that locations in feature space, which are too far away from data,

(11)� =
(⨂W

i=1
�i

)
�.

(12)

[⨂W

l=1
�l

]

i,j
=
[
�1

]
i1,j1

⋅ … ⋅

[
�W

]
iW ,jW

, 1 ≤ il , jl ≤ Gl, 1 ≤ i, j ≤
∏W

l=1
Gl.

(13)
∑

j1
…

∑
jW

�K
i1,j1,…,iW ,jW

�X
jW ,…,j1

.

(14)
(⨂W

l=1
�l

)
� = vec

((
�1 ⋯

(
�W�

X
)⊤)⊤)

1935Machine Learning (2020) 109:1925–1943	

1 3

will be mapped back to the mMOGP prior. Since the acquisition function is a key driver of
exploration in BO, this is a problem. We address this limitation by introducing a constraint
based on the Lipschitz continuity of the mMOGP posterior. This will ensure that candi-
dates �∗ ∈ Z selected in feature space will not collapse to the origin � ∈ ℝ

D if the recon-
struction is defined as �̃∗ = �(�∗) , where � is the posterior mean of the mMOGP.

We want to leverage information from observed data for the multi-output mapping and
exploit it when optimizing the acquisition function in feature space. This can be achieved
by upper-bounding the Euclidean distance

in feature space between the optimization variable � and the embedded training data
�t = [�1,… , �Nt

] . Here, Nt is the number of data points available at BO iteration t. The
desired upper bound is obtained by exploiting the Lipschitz continuity property of the
multi-output posterior mean for which

Here, L denotes the Lipschitz constant of the posterior mean � of the mMOGP. For com-
mon kernels, such as Matérn52 and squared exponential, the posterior mean is Lipschitz
continuous. The upper bound

allows us to specify how far from the data we can move in feature space without falling
back to the prior on all coordinates of the reconstruction. Here �∗ minimizes the distance
in (15), while the numerator on the right-hand side is the component-wise maximum of
�(�∗) . We estimate the Lipschitz constant as the maximum norm of the Jacobian of the
posterior mean of the mMOGP (González et al. 2016)

This maximization returns a valid Lipschitz constant (González et al. 2016) for the multi-
output mapping for any choice of norm in (18). The Jacobian of the posterior mean is
represented by a D × d matrix and we adopt the max norm ‖∇��(�)‖∞ = max ���

i,j
� for

i = 1,… ,D and j = 1,… , d . Lower values of valid Lipschitz constants L allow for explo-
ration in larger regions of the feature space that still satisfy the nonlinear constraint in (17).

5 � Experiments

We report results on a set of high-dimensional benchmark functions that possess an intrin-
sic low dimensionality. In particular, we (1) assess the benefits of adopting a model struc-
ture as presented in Fig. 1; (2) analyze the benefits of the constrained optimization of the
acquisition function. Our purpose is to compare empirical performances across (a) differ-
ent characterizations of the feature spaces, e.g. linear/nonlinear subspaces; (b) different
properties of the objective function, e.g. additivity/non additivity; (c) a real problem set.

Approaches We compare our approach (MGPC-BO) with the random embeddings opti-
mization (REMBO) (Wang et al. 2013), which performs BO on a random linear subspace
of the inputs. Additional baselines include additive models (ADD-BO) (Kandasamy et al.

(15)dist(�,�t) = min
1≤i≤Nt

‖�i − �‖2

(16)�[�(�)]i − [�(��)]i� ≤ L‖� − ��‖.

(17)dist(�,�t) ≤ �max(�
∗)∕L

(18)L = max
�∈Z

‖∇��(�)‖.

1936	 Machine Learning (2020) 109:1925–1943

1 3

2015), which assumes an additive structure (across dimensions) of the objective fX , and
one recently proposed VAE-based model (VAE-BO) (Gomez-Bombarelli et al. 2018) that
learns a feature space with deep networks offline. We also include a version of our model
presented in Fig. 1 (HMGPC-BO) that uses a hierarchical ICM for the input reconstruction
mapping � . The hierarchical ICM partitions the data space into low-dimensional disjoint
subsets, i.e. {Xi}

Q

i=1
 , Xi ⊂ ℝ

3 , and assumes independence between reconstructions of dif-
ferent subsets, i.e. �̃(i) ⟂ �̃(j) , where �̃(i) ∈ Xi , �̃(j) ∈ Xj for i ≠ j . Moreover, the baselines
MGP-BO and HMGP-BO correspond to same modeling as in MGPC-BO and HMGPC-
BO, respectively, but without applying the nonlinear constraint in (17). We also compare
with a different parametrization of the covariance function of the decoder � . The baseline
DMGP-BO and DMGPC-BO define a single kernel kc for the reconstruction task while
HMGP-BO and HMGPC-BO define different kernels {ki

c
}
Q

i=1
 , one for each subset of the

partitioning. Here, DMGPC-BO and DMGP-BO denote the baseline with and without Lip-
schitz regularization, respectively. For all the approaches we specify the dimensionality dfs
of a feature space where the optimization is performed. Note that this value may differ
from the intrinsic dimensionality d of the objective functions i.e. dfs ≠ d.

Acquisition functions We evaluate the performances of all baselines across common
acquisition functions: EI (Močkus 1975), UCB (Srinivas et al. 2010) and PI (Kushner
1964), which are also given in (2)–(4). The motivation in selecting the above acquisition
functions is that we wish to explore performances of our BO approach on a range of dif-
ferent decision strategies: aggressive exploitation (PI), aggressive exploration (UCB) and
one-time-step optimal selection (EI). In our experiments we set the �t parameter of UCB in
(4) to

√
3 . Moreover, we do not have access to the true fmin required in (2) and (3). There-

fore, we compute the improvement based acquisitions (EI and PI) using ymin ∶= min �t ,
which is the best noisy observation obtained up to iteration t. The maximization of the
acquisition function is identical for all baselines: we first perform a random search step
with 5000 samples drawn uniformly at random and select the best 100 locations to apply
gradient-based optimization from these starting locations. For box-constrained acquisition
optimization we use L-BFGS-B (Byrd et al. 1995; Zhu et al. 1997). For constrained acqui-
sition optimization with nonlinear constraints we use a trust-region interior point method
(Byrd et al. 1999).

Model parameters In our experiments, we select the Matérn5∕2 kernel as the covariance
function for the GPs in each baseline. For the neural network employed in the encoder, the
architecture was a single hidden layer with 20 units, and as the activation function we use
the sigmoid activation 1∕(1 + exp(−x)).

Experiment setup Each BO progression curve shows the mean and standard error of
the immediate logarithmic regret log10 |f (�best(t)) − fmin| , where fmin is the true minimum
of fX and �best(t) ∈ argmini=1∶t fX(�i) . Mean and standard error are computed over 20
experiments with different random initializations. All optimization experiments start with
a budget of 10 data points and perform a total of 300 iterations. The noise variance is
�2
n
= 10−4.

5.1 � Linear feature space

We consider benchmark functions that are defined in a d = 10-dimensional space. We map
their input space to a D = 60-dimensional space using an orthogonal matrix �d×D so that
the overall objective is fX(�) = f (�) = f (��).

1937Machine Learning (2020) 109:1925–1943	

1 3

5.1.1 � Additive objective

We minimize the Rosenbrock benchmark function

in a dfs = 10-dimensional feature space. Figure 2 shows that HMGPC-BO baseline
descends quickly to relatively low regret in the early stages of optimization and recovers
better regret at termination than the unconstrained baseline HMGP-BO. The VAE-BO
baseline improves quickly but lacks exploration due to an insufficiently expressive recon-
struction mapping from feature space to data space. We highlight that the VAE-BO model
was trained on a budget of 500 inputs-observations pairs prior to starting the BO experi-
ments. This additional budget, however, still does not allow the VAE-BO to compare well
with baselines that learn a feature mapping during optimization. REMBO shows a com-
petitive descent for two main reasons: the fact that the baseline conforms with the linear
embedding assumption that characterizes the objective function and the employment of an
orthonormal linear mapping which is supposed to improve performances and conforms to
structural assumption about the linear embedding � . The ADD-BO baseline suffers from
the coupling effects of the linear dimensionality reduction � . Overall, Fig. 2 highlights
the fast learning of feature space representations that are effective for optimization with
MGPC-BO, HMGPC-BO and DMGPC-BO baselines.

5.1.2 � Non‑additive objective

Here, we optimize the product of sines with intrinsic dimensionality d = 10

and compare results when the additivity assumption is not satisfied. Figure 3 shows the
regret curves obtained optimizing the objective on a dfs = 10-dimensional feature space.
Solid lines describe the Lipschitz-regularized baselines MGPC-BO, HMGPC-BO and

(19)f (�) =
∑d−1

i=1
[100(zi+1 − z2

i
)2 + (zi − 1)2]

(20)f (�) = 10 sin(z1)
∏d

i=1
sin(zi)

(a) (b) (c)

Fig. 2   Results with Rosenbrock objective function of BO in feature space. The objective function is char-
acterized by a linear embedding to reach D = 60 dimensions. Baselines MGPC-BO, HMGPC-BO and
DMGPC-BO (solid) apply nonlinearly constrained acquisition maximization and recover no worse regret at
termination than the unconstrained versions MGP-BO, HMGP-BO and DMGP-BO

1938	 Machine Learning (2020) 109:1925–1943

1 3

DMGPC-BO (with nonlinear constraint), while dashed lines are baselines that apply box-
constrained maximization of the acquisition in feature space. The HMGP-BO, MGP-BO
and DMGP-BO regrets flatten early in both improvement-based acquisition functions (EI
and PI) since these acquisition functions highlight locations in feature space that are too
far away from the training data. In this setting, the decoder � returns the same high-dimen-
sional reconstruction, which prevents BO from exploring. The constrained maximization
of the acquisition is beneficial for all our models. We also note that the REMBO baseline
conforms to the intrinsic linear low-dimensionality assumption described in Sect. 5.1 and
is the most competitive baseline especially for UCB acquisition. However, the linear recon-
struction mapping applied by REMBO also suffers from non-injectivity, and this slows
down exploration in the high-dimensional space. The linear projection deteriorates perfor-
mances of the additive model. ADD-BO assumes independence between axis-aligned pro-
jections of the high-dimensional space, while the linear mapping � couples all subsets of
dimensions. This linear mapping, therefore, penalizes optimization with independent addi-
tive components. The VAE-BO approach requires much larger amounts of data to learn
a meaningful reconstruction mapping than available in our experiment. Thus, most loca-
tions in feature space are mapped to similar reconstructions. This explains the flat curve
observed on all VAE-BO progressions with different acquisitions.

5.2 � Nonlinear feature space with non‑additive objective

We consider the product of sines functions and apply a nonlinear dimensionality reduc-
tion. We define a single-layer neural network mapping to elevate the dimensionality of the
objective to D = 60 , i.e. fX(�) = f (�(��)) . Here � is the sigmoid activation function. We
select a dimensionality of the feature space as in previous sections dfs = 10 which is equal
to the intrinsic dimensionality of the objective function d = 10 . Figure 4 shows the pro-
gression of the regret over 300 BO iterations. We can observe consistent improvements of
MGPC-BO, HMGPC-BO and DMGPC-BO with respect to VAE-BO which also assumes a
nonlinear embedding for the objective. The performance of MGPC-BO, HMGPC-BO and
DMGPC-BO also retain better regret at termination than with box-constrained acquisition
maximization (MGP-BO, HMGP-BO, DMGP-BO). Here we apply a significance testing
with the Wilcoxon signed-rank test (Wilcoxon 1992) at termination of the optimization

(a) (b) (c)

Fig. 3   Optimization progression on product of sines characterized by linear embedding with EI (a), UCB
(b) and PI (c). Baselines MGPC-BO, HMGPC-BO and DMGPC-BO learn low-dimensional representations
of the objective that are useful for optimization

1939Machine Learning (2020) 109:1925–1943	

1 3

between the best performing of our baselines, namely DMGPC-BO and the best competi-
tive baseline that is ADD-BO. We observe a significance of at least 0.014% for all acquisi-
tion functions (largest p-value p = 0.00014 for UCB acquisition) meaning that our best
baseline DMGPC-BO is highly significantly different than the ADD-BO baseline and
attains better regret than ADD-BO at termination of the optimization.

Overall, we observe that the constrained maximization of the acquisition function is
beneficial for the proposed model. The advantages with respect to ADD-BO, REMBO and
VAE-BO baselines are more evident with the product of sines objective with nonlinear
embedding while with the Rosenbrock we retain no worse regret.

5.3 � Sensitivity analysis on real data

Here we apply a sensitivity analysis with respect to the dimensionality of the feature space
dfs on a D = 12-dimensional real problem. We consider the Thomson problem of finding
the lowest potential configuration of a set of electrons on a sphere (Dolan et al. 2004). This
is a central problem in physics and chemistry for identifying a structure with respect to
atomic locations (Dolan et al. 2004). The potential of a set of np electrons on a unit sphere
is given by the objective

This is a constrained minimization problem with constraints x2
i
+ y2

i
+ z2

i
= 1 for

i = 1,… , np , which means that all electrons must lie on a unit sphere. We represent the
variables of the problem as spherical coordinates with unit radius. This allows us defining
two variables per point with a total number of 2np (azimuthal and polar angles) parameters
to optimize within box constraints. For optimization, we select np = 6 , which results in
a D = 12-dimensional problem and we optimize it on low-dimensional feature spaces of
dimensionalities dfs = 6, 4, 3, 2 to observe the effect of this hyper-parameter in the opti-
mization. Figure 5 shows a comparison of our approaches with ADD-BO, REMBO and
VAE-BO baselines on a single acquisition function PI. Overall, we observe a deterioration
of performances with diminishing dimensionality of the feature space. The regret clearly

(21)
∑np−1

i=1

∑np

j=i+1
((xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2)−1∕2.

(a) (b) (c)

Fig. 4   BO performances expressed as log regret of the product of sines function in a nonlinear embed-
ding. Results are shown for EI (a), UCB (b) and PI (c). All our baselines with nonlinear constraint, namely
MGPC-BO, DMGPC-BO and HMGPC-BO learn useful representations in feature space for optimization.
There is highly significant difference of 0.014% between DMGPC-BO and ADD-BO

1940	 Machine Learning (2020) 109:1925–1943

1 3

increases for our baselines when we select dfs = 2 meaning that, with a high compression
rate, the probabilistic model for MGPC-BO, DGPC-BO and HMGPC-BO learns less use-
ful features for optimization. We observe the most competitive baseline to be ADD-BO,
which decomposes the 12-dimensional problems into D∕dfs sub-problems with dimension-
ality dfs . Another competitive baseline is REMBO. We apply a significance test and com-
pare our nonlinearly constrained baseline MGPC-BO with the most competitive baseline
(ADD-BO or REMBO) for each plot of Fig. 5 at termination of the optimization. We select
the Wilcoxon signed-rank test (Wilcoxon 1992), which does not assume that the difference
between the sample populations is Gaussian. For feature space dimensionality dfs = 2 we
do not observe values significantly different since the p-value is p = 0.135 . This is due to
the deterioration of performances at dfs = 2 . For dfs = 3 we observe a more significant dif-
ference between MGPC-BO and ADD-BO with p-value p ≤ 0.002 . With hyper-parameter
values dfs ≥ 4 we observe significantly different baselines with significance at 0.6% (differ-
ence between MGPC-BO and ADD-BO for dfs = 4 with p-value p ≤ 0.003 and between
MGPC-BO and REMBO for dfs = 6 with p-value p ≤ 0.006 ). Overall, we observe our con-
strained baselines to perform better than ADD-BO and REMBO and to reach the lowest
value in notably less BO iterations.

5.4 � Run‑time complexity

The computational complexity of MGPC-BO is O(D3 + N3) due to the eigen-decomposi-
tion of both the coregionalization ( D3 ) and kernel matrix ( N3 ). The baseline HMGPC-BO
scales with O(d3

out
Q + N3Q) with Q being the number of independent subsets of dimen-

sions, i.e. Q = D∕dout , with dout being a small constant value ( dout = 3 ). This baseline
achieves faster computations when having small number of data points N, for large number
of data points and large number of dimensions (both tending to infinity) the MGPC-BO
results more efficient. The baseline DMGPC-BO instead has complexity O(d3

out
Q + N3) ,

which is faster than the MGPC-BO. MGP-BO, DMGP-BO and HMGP-BO have the same
complexity of MGPC-BO, DMGPC-BO and HMGPC-BO, respectively. The remain-
ing baselines have all computational complexity O(N3) due to the matrix inversion of the
covariance matrix for GP training which is used in ADD-BO, REMBO and VAE-BO. Our
baseline has an additional overhead of at least a linear term d3

out
Q , which implies slower

(a) (b) (c) (d)

Fig. 5   Sensitivity analysis with respect to the dimensionality of the feature space dfs on a real problem set.
We test all approaches on a set of feature space dimensionalities dfs = 2, 3, 4, 6 . The performances of our
baselines clearly deteriorate for dfs = 2 . Our baseline MGPC-BO show better performances than the best
competing baseline ADD-BO and REMBO and reach the minimum in notably less iterations

1941Machine Learning (2020) 109:1925–1943	

1 3

training times for our probabilistic model. This is a reasonable trade off for improved opti-
mization performances and better data efficiency in our reconstruction model.

6 � Conclusion

We proposed a framework for efficient Bayesian optimization of intrinsically low-dimen-
sional black-box functions based on nonlinear embeddings. In our model, a manifold GP
learns useful low-dimensional feature representations of high-dimensional data by jointly
learning the response surface and a reconstruction mapping. Our approach allows for opti-
mizing acquisition functions in a low-dimensional feature space. Since exploration in fea-
ture space (driven by the acquisition function) does not necessarily mean exploration in the
high-dimensional parameter space, we introduce a nonlinear constraint based on Lipschitz
continuity of predictions of the reconstruction mapping, which encourages exploration in
the vicinity of the training data and mitigates un-identifiability issues in data space, which
hinder optimization.

Acknowledgements  We thank James T. Wilson for valuable feedback on early drafts of the manuscript.
This work has been supported by the EPSRC Centre for Doctoral Training in High Performance Embedded
and Distributed Systems (HiPEDS, Grant EP/L016796/1) and the Data Science Institute, Imperial College
London.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

Abbati, G., Tosi, A., Osborne, M. A., & Flaxman, S. (2018). Adageo: Adaptive geometric learning for
optimization and sampling. In International conference on artificial intelligence and statistics (pp.
226–234).

Alvarez, M., & Lawrence, N. D. (2009). Sparse convolved Gaussian processes for multi-output regression.
In Advances in neural information processing systems (pp. 57–64).

Alvarez, M. A., & Lawrence, N. D. (2011). Computationally efficient convolved multiple output Gaussian
processes. Journal of Machine Learning Research, 12, 1459–1500.

Alvarez, M. A., Rosasco, L., & Lawrence, N. D. (2011). Kernels for vector-valued functions: A review.
Foundations and Trends in Machine Learning, 4(3), 195–266.

Bergstra, J. S., Bardenet, R., Bengio, Y., & Kegl, B. (2011). Algorithms for hyper-parameter optimization.
In Advances in neural information processing systems (pp. 2546–2554).

Boyle, P., & Frean, M. (2005). Dependent Gaussian processes. In Advances in neural information process-
ing systems (pp. 217–224).

Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited-memory algorithm for bound constrained
optimization. SIAM Journal on Scientific Computing, 16(5), 1190–1208.

Byrd, R. H., Hribar, M. E., & Nocedal, J. (1999). An interior point algorithm for large-scale nonlinear pro-
gramming. SIAM Journal on Optimization, 9(4), 877–900.

Byron, M. Y., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., & Sahani, M. (2009). Gauss-
ian process factor analysis for low-dimensional single-trial analysis of neural population activity. In
Advances in neural information processing systems (pp. 1881–1888).

http://creativecommons.org/licenses/by/4.0/

1942	 Machine Learning (2020) 109:1925–1943

1 3

Calandra, R., Peters, J., Rasmussen, C. E., & Deisenroth, M. P. (2016a). Manifold Gaussian processes for
regression. In International joint conference on neural networks (pp. 3338–3345).

Calandra, R., Seyfarth, A., Peters, J., & Deisenroth, M. P. (2016b). Bayesian optimization for learning gaits
under uncertainty. Annals of Mathematics and Artificial Intelligence, 76, 5–23.

Cully, A., Clune, J., Tarapore, D., & Mouret, J. B. (2015). Robots that can adapt like animals. Nature, 521,
503–507.

Dai, Z., Damianou, A., González, J., & Lawrence, N. D. (2016). Variational auto-encoded deep Gaussian
processes. In International conference on learning representations.

Damianou, A. (2015). Deep Gaussian processes and variational propagation of uncertainty. PhD
dissertation.

Damianou, A., & Lawrence, N. D. (2013). Deep Gaussian processes. In International conference on artifi-
cial intelligence and statistics (pp. 207–215).

Dolan, E. D., Moré, J. J., & Munson, T. S. (2004). Benchmarking optimization software with COPS 3.0.
Technical Report.

Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv preprint arXiv​:1807.02811​.
Garnett, R., Osborne, M. A., Hennig, P. (2014). Active learning of linear embeddings for Gaussian pro-

cesses. In Conference on uncertainty in artificial intelligence (pp. 230–239).
Gilboa, E., Saatçi, Y., & Cunningham, J. P. (2015). Scaling multidimensional inference for structured

Gaussian processes. Institute of Electrical and Electronics Engineers, 37(2), 424–436.
Gomez-Bombarelli, R., Jennifer, N. W., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling,

B., Sheberla, D., et al. (2018). Automatic chemical design using a data-driven continuous represen-
tation of molecules. ACS Central Science, 4, 268–276.

González, J., Dai, Z., Hennig, P., & Lawrence, N. (2016). Batch Bayesian optimization via local penali-
zation. In International conference on artificial intelligence and statistics (pp. 648–657).

Gonzalez, J., Longworth, J., James, D. C., & Lawrence, N. D. (2014). Bayesian optimization for syn-
thetic gene design. In Neural information processing systems workshop in bayesian optimization.

Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford: Oxford University Press.
Griffiths, R. R., & Hernández-Lobato, J. M. (2017). Constrained Bayesian optimization for automatic

chemical design. arXiv preprint arXiv​:1709.05501​.
Hebbal, A., Brevault, L., Balesdent, M., Talbi, E. G., & Melab, N. (2019). Bayesian optimization using

deep Gaussian processes. arXiv preprint arXiv​:1905.03350​.
Hensman, J., & Lawrence, N. D. (2014). Nested variational compression in deep Gaussian processes.

arXiv preprint arXiv​:1412.1370.
Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization for general

algorithm configuration. In International conference on learning and intelligent optimization (pp.
507–523).

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13(4), 455–492.

Kandasamy, K., Schneider, J., & Poczos, B. (2015). High dimensional Bayesian optimisation and bandits
via additive models. In International conference on machine learning (pp. 295–304).

Kingma, D. P., & Welling, M. (2014). Auto-encoding variational Bayes. In International conference on
learning representations.

Kushner, H. J. (1964). A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. Journal of Basic Engineering, 86(1), 97–106.

Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017). Grammar variational autoencoder. Interna-
tional Conference on Machine Learning, 70, 1945–1954.

Lawrence, N. D. (2005). Probabilistic non-linear principal component analysis with Gaussian process
latent variable models. Journal of Machine Learning Research, 6, 1783–1816.

Lawrence, N. D., & Quiñonero-Candela, J. (2006). Local distance preservation in the gp-lvm through
back constraints. In International conference on machine learning (pp. 513–520).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.
Lu, X., Gonzalez, J., Dai, Z., & Lawrence, N. (2018). Structured variationally auto-encoded optimiza-

tion. In International conference on machine learning (pp. 3267–3275).
Močkus, J. (1975). On Bayesian methods for seeking the extremum. In Optimization techniques IFIP

technical conference (pp. 400–404).
Moriconi, R., Kumar, K. S. S., & Deisenroth, M. P. (2020). High-dimensional Bayesian optimization

with projections using quantile Gaussian processes. Optimization Letters, 14, 1–14.
Osborne, M. A., Roberts, S. J., Rogers, A., Ramchurn, S. D., & Jennings, N. R. (2008). Towards real-

time information processing of sensor network data using computationally efficient multi-output

http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1709.05501
http://arxiv.org/abs/1905.03350
http://arxiv.org/abs/1412.1370

1943Machine Learning (2020) 109:1925–1943	

1 3

Gaussian processes. In International conference on information processing in sensor networks (pp.
109–120). Institute of Electrical and Electronics Engineers.

Rana, S., Li, C., Gupta, S., Nguyen, V., & Venkatesh, S. (2017). High dimensional Bayesian optimization
with elastic Gaussian Process. In International conference on machine learning (pp. 2883–2891).

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge:
The MIT Press.

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and variational infer-
ence in deep latent Gaussian models. In International conference on machine learning (Vol. 2).

Riley, K. F., Hobson, M. P., & Bence, S. J. (1999). Mathematical methods for physics and engineering.
Cambridge: Cambridge University Press.

Rolland, P., Scarlett, J., Bogunovic, I., & Cevher, V. (2018). High-dimensional Bayesian optimization
via additive models with overlapping groups. In International conference on artificial intelligence
and statistics (pp. 298–307).

Saatçi, Y. (2012). Scalable inference for structured Gaussian process models. PhD dissertation.
Salimbeni, H., & Deisenroth, M. P. (2017). Doubly stochastic variational inference for deep Gaussian

processes. In Advances in neural information processing systems (pp. 4588–4599).
Seeger, M., Teh, Y. W., & Jordan, M. (2005). Semiparametric latent factor models. Technical Report.
Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & De Freitas, N. (2016). Taking the human out

of the loop: A review of Bayesian optimization. Institute of Electrical and Electronics Engineers,
104(1), 148–175.

Snelson, E., Ghahramani, Z., & Rasmussen, C. E. (2004). Warped Gaussian processes. In Advances in neu-
ral information processing systems (pp. 337–344).

Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. W. (2010). Gaussian process optimization in the ban-
dit setting: No regret and experimental design. In International conference on machine learning (pp.
1015–1022).

Sui, Y., Gotovos, A., Burdick, J., & Krause, A. (2015). Safe exploration for optimization with Gaussian pro-
cesses. In International conference on machine learning (pp. 997–1005).

Titsias, M., & Lawrence, N. D. (2010). Bayesian Gaussian process latent variable model. In International
conference on artificial intelligence and statistics (pp. 844–851).

Wackernagel, H. (2013). Multivariate geostatistics: An introduction with applications. Berlin: Springer.
Wahlström, N., Schön, T. B., & Deisenroth, M. P. (2015). From pixels to torques: policy learning with deep

dynamical models. In International conference of machine learning workshop on deep learning.
Wang, Z., Zoghi, M., Hutter, F., Matheson, D., & De Freitas, N. (2013). Bayesian optimization in high

dimensions via random embeddings. In International joint conference on artificial intelligence (pp.
1778–1784).

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In S. Kotz & N. L. Johnson (Eds.), Break-
throughs in statistics (pp. 196–202). New York: Springer.

Williams, C., Klanke, S., Vijayakumar, S., & Chai, K. M. (2009). Multi-task Gaussian process learning of
robot inverse dynamics. In Advances in neural information processing systems (pp. 265–272).

Wilson, A. G., Hu, Z., Salakhutdinov, R., & Xing, E. P. (2016). Deep kernel learning. In International con-
ference on artificial intelligence and statistics (pp. 370–378).

Wilson, A. G., Knowles, D. A., & Ghahramani, Z. (2012). Gaussian process regression networks. In Inter-
national conference on machine learning (pp. 1139–1146).

Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algorithm 778: L-BFGS-B: Fortran subroutines for
large-scale bound-constrained optimization. ACM Transactions on Mathematical Software, 23(4),
550–560.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	High-dimensional Bayesian optimization using low-dimensional feature spaces
	Abstract
	1 Introduction
	2 Bayesian optimization
	3 Bayesian optimization in low-dimensional feature spaces
	3.1 Manifold Gaussian processes for response surface learning in feature space
	3.2 Input reconstruction with manifold multi-output Gaussian processes
	3.3 Joint training
	3.4 Computationally efficient mMOGP

	4 Constrained acquisition
	5 Experiments
	5.1 Linear feature space
	5.1.1 Additive objective
	5.1.2 Non-additive objective

	5.2 Nonlinear feature space with non-additive objective
	5.3 Sensitivity analysis on real data
	5.4 Run-time complexity

	6 Conclusion
	Acknowledgements
	References

