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Abstract
Bayesian optimization (BO) is a powerful approach for seeking the global optimum of 
expensive black-box functions and has proven successful for fine tuning hyper-parame-
ters of machine learning models. However, BO is practically limited to optimizing 10–20 
parameters. To scale BO to high dimensions, we usually make structural assumptions on 
the decomposition of the objective and/or exploit the intrinsic lower dimensionality of the 
problem, e.g. by using linear projections. We could achieve a higher compression rate with 
nonlinear projections, but learning these nonlinear embeddings typically requires much 
data. This contradicts the BO objective of a relatively small evaluation budget. To address 
this challenge, we propose to learn a low-dimensional feature space jointly with (a) the 
response surface and (b) a reconstruction mapping. Our approach allows for optimization 
of BO’s acquisition function in the lower-dimensional subspace, which significantly sim-
plifies the optimization problem. We reconstruct the original parameter space from the 
lower-dimensional subspace for evaluating the black-box function. For meaningful explo-
ration, we solve a constrained optimization problem.

1  Introduction

Bayesian optimization (BO) is a useful model-based approach to global optimization of 
black-box functions, which are expensive to evaluate (Kushner 1964; Jones et al. 1998). 
This sample-efficient technique for optimization has been effective in experimental 

Editors: Ira Assent, Carlotta Domeniconi, Aristides Gionis, Eyke Hüllermeier.

 *	 Riccardo Moriconi 
	 r.moriconi16@imperial.ac.uk

	 Marc Peter Deisenroth 
	 m.deisenroth@ucl.ac.uk

	 K. S. Sesh Kumar 
	 s.karri@imperial.ac.uk

1	 Department of Computing, Imperial College London, London, UK
2	 Department of Computer Science, University College London, London, UK
3	 Data Science Institute, Imperial College London, London, UK

http://orcid.org/0000-0003-1327-1304
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05899-z&domain=pdf


1926	 Machine Learning (2020) 109:1925–1943

1 3

design of machine learning algorithms (Bergstra et  al. 2011), robotics applications 
(Cully et  al. 2015; Calandra et  al. 2016b) and medical therapies (Sui et  al. 2015) for 
optimization of spinal-cord electro-stimulation. Despite its great success, BO is prac-
tically limited to optimizing 10–20 parameters. A large body of literature has been 
devoted to address scalability issues to elevate BO to high-dimensional optimization 
problems, such as discovery of chemical compounds (Gomez-Bombarelli et al. 2018) or 
automatic software configuration (Hutter et al. 2011).

The standard BO routine consists of two key steps: (1) estimating the black-box func-
tion from data through a probabilistic surrogate model, usually a Gaussian process (GP), 
referred to as the response surface; (2) maximizing an acquisition function that trades 
off exploration and exploitation according to uncertainty and optimality of the response 
surface. As the dimensionality of the input space increases, these two steps become 
challenging. The sample complexity to ensure good coverage of inputs for learning the 
response surface is exponential in the number of dimensions (Shahriari et  al. 2016). 
With only a small evaluation budget, the learned response surface and the resulting 
acquisition function are characterized by vast flat regions interspersed with highly non-
convex landscapes (Rana et al. 2017). This renders the maximization of the acquisition 
in high dimensions inherently hard (Garnett et al. 2014).

High-dimensional optimization is often translated into low-dimensional problems, 
which are defined on subsets of variables (Moriconi et al. 2020; Kandasamy et al. 2015; 
Rolland et al. 2018). These approaches apply a divide and conquer approach to decom-
pose the problem into independent (Moriconi et al. 2020; Kandasamy et al. 2015) and 
potentially dependent components (Rolland et  al. 2018). However, high-dimensional 
data often possesses a lower intrinsic dimensionality, which can be exploited for optimi-
zation. A feature mapping can then be used to map the original D-dimensional data onto 
a d ≪ D-dimensional manifold. For example, in Wang et  al. (2013), the authors used 
random linear mappings to reduce dimensionality of the optimization problem. Simi-
lar approaches, which use linear dimensionality reduction, drive exploration in BO to 
actively learn this linear embedding (Garnett et al. 2014). While these methods perform 
well in practice, they are restricted to linear subspaces of the original domain. With 
nonlinear embeddings, higher compression rates are possible. In our work, we focus on 
this nonlinear setting.

Using BO with nonlinear feature spaces was proposed in Gomez-Bombarelli et  al. 
(2018), Gonzalez et al. (2015), Kusner et al. (2017) and Griffiths and Hernández-Lobato 
(2017). In Gomez-Bombarelli et  al. (2018), a low-dimensional data representation is 
learned with variational autoencoders (VAEs) (Rezende et al. 2014; Kingma and Welling 
2014). However, this approach requires both large amounts of data and learning the model 
offline without the possibility to update the learnt feature space during optimization. Nev-
ertheless, in the specific application of automatic discovery of molecules, where librar-
ies of existing compounds are readily available prior to optimization, this approach makes 
much sense. To accommodate fairly small evaluation budgets, in our work, we exploit a 
probabilistic model based on GPs, which features superior data efficiency with respect to 
VAE-based approaches (Gomez-Bombarelli et al. 2018; Gonzalez et al. 2015; Kusner et al. 
2017; Griffiths and Hernández-Lobato 2017). VAE models (Lu et al. 2018) were used to 
propagate uncertainty of latent space representations through the response surface model 
with Gaussian process latent variable models (Lawrence 2005; Titsias and Lawrence 2010; 
Lawrence and Quiñonero-Candela 2006). However, in Lu et  al. (2018), the latent space 
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representation is not learned specifically for the regression task (learning the response sur-
face). Gradient-based methods (Abbati et al. 2018) have been used to learn a lower-dimen-
sional Riemannian manifold for optimization and sampling.

Nonlinear embeddings also allow for modeling non-stationary objective functions. 
In this context, a hierarchical composition of GPs, referred to as deep GPs (Damianou 
and Lawrence 2013; Salimbeni and Deisenroth 2017; Dai et al. 2016; Damianou 2015; 
Hensman and Lawrence 2014), is especially useful when the response surface is charac-
terized by abrupt changes or has constraints. An extensive investigation on the employ-
ment of deep GP models in BO is presented in Dai et al. (2016) and Hebbal et al. (2019). 
In our work, we also exploit the idea of learning highly nonlinear functions through the 
composition of simpler functions (LeCun et  al. 2015), but we focus on deterministic 
dimensionality reduction and optimization in feature space.

In this paper, we propose a BO algorithm for high-dimensional optimization, which 
learns a nonlinear feature mapping � ∶ ℝ

D
→ ℝ

d to reduce the dimensionality of the 
inputs, and a reconstruction mapping � ∶ ℝ

d
→ ℝ

D based on GPs to evaluate the true 
objective function, jointly, see Fig. 1. This allows us to optimize the acquisition func-
tion in a lower-dimensional feature space, so that the overall BO routine scales to high-
dimensional problems that possess an intrinsic lower dimensionality. Finally, we use 
constrained maximization of the acquisition function in feature space to prevent mean-
ingless reconstructions.

2 � Bayesian optimization

Bayesian optimization is a powerful tool for globally optimizing black-box functions 
that are expensive to evaluate (Jones et al. 1998; Kushner 1964; Močkus 1975). In our 
setting, we consider the global minimization problem

with input space X = [0, 1]D and objective function fX ∶ X → ℝ . We consider functions 
fX that are costly to evaluate and for which we are allowed a small budget of evaluation 
queries to express our best guess of the optimum’s location �∗ in at most Tend iterations. We 
further assume we have access only to noisy evaluations of the objective y = fX + � , where 
� ∼ N(0, �2

n
) is i.i.d. Gaussian measurement noise with variance �2

n
 . We restrict ourselves 

to the typical setting, where neither gradients nor convexity properties of fX are available.

(1)�∗ = argmin
�∈X

fX(�)

Fig. 1   Model for Bayesian optimization on data manifolds, jointly solving two distinct tasks: (1) a regres-
sion from feature space to observations (in blue) and (2) a reconstruction mapping from feature space to 
high-dimensional space (in red) (Color figure online)
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The main steps of a BO routine at iteration t involve (1) response surface learning, 
(2) optimal input selection �t+1 and (3) evaluation of the objective function fX at �t+1 . 
The first step trains a probabilistic surrogate model p(fX) , the response surface, which 
describes the black-box relationship between inputs � and observations y. In the 
(t + 1) st iteration of BO, the optimal input selection step finds an input �t+1 that maxi-
mizes an acquisition function �(⋅) , which describes the added value of input �t+1 . The 
evaluation step returns a noisy observation of the true objective function fX(�t+1) + � at 
the selected location. These steps are summarized in lines 4, 7 and 10 of Algorithm 1, 
respectively. Having defined a probabilistic surrogate model for our objective function, 
which is usually modeled by a GP (Rasmussen and Williams 2006), we can compute 
posterior predictions of objective function values at test locations. These posterior pre-
dictions are then fed to the acquisition function, which drives exploration during opti-
mization. Posterior predictions of the GP are Gaussian distributed with mean � and 
variance �2 . Defining Z(�) ∶= (fmin − �(�))∕�(�) and fmin ∶= min

�∈�t

f (�) , this allows us to 
define three different acquisition functions to maximize:

Here, � and � denote the probability density function and the cumulative density func-
tion of the standard normal N(0, 1) , respectively. The parameter �t controls the exploration 
exploitation trade-off. For a complete review on acquisition function the reader is referred 
to Shahriari et al. (2016). In high-dimensional settings ( D > 20 ), both the response surface 
learning and optimal input selection via optimization of the acquisition function are com-
putationally challenging.

(2)�(�) = �(Z(�)) Probability of improvement (PI) (Kushner 1964)

(3)
�(�) = �(�)Z(�)�(Z(�))+�(�)�(Z(�)) Expected improvement (EI) (Mockus 1975)

(4)�(�) = −�(�)+�t�(�) Upper confidence bound (UCB) (Srinivas et al. 2010).



1929Machine Learning (2020) 109:1925–1943	

1 3

3 � Bayesian optimization in low‑dimensional feature spaces

In this section, we consider a setting, where the input space X  is high-dimensional and 
the objective function possesses an intrinsic lower dimensionality. In our work, we 
exploit the effective low dimensionality of the objective function for BO in a lower-
dimensional feature space Z ⊂ ℝ

d , where d ≪ D . In particular, we express the true 
objective fX ∶ ℝ

D
→ ℝ as a composition of a feature mapping � ∶ ℝ

D
→ ℝ

d and a func-
tion fZ ∶ Z → ℝ so that fX = fZ◦� . The lower-dimensional feature space allows for both 
learning the response surface fX and maximizing an acquisition function � with domain 
Z , which yields optimizer �∗ . Since we cannot evaluate the true objective fX directly at 
the low-dimensional features �∗ , we project �∗ back into the D-dimensional data space 
X  by means of a reconstruction mapping � ∶ Z → X  . We can think of this mapping as a 
decoder within an auto-encoder framework. We model both the composition fX ∶= fZ◦� 
and the reconstruction with GPs (Rasmussen and Williams 2006). Algorithm 1 summa-
rizes the main steps of this feature-space BO.

In the following, we detail the model (see Fig. 1) for jointly learning the feature map 
�(⋅) , the low-dimensional response surface in feature space fZ , and the reconstruction 
mapping �(⋅).

3.1 � Manifold Gaussian processes for response surface learning in feature space

We expect the response surface to predict the value of the black-box objective func-
tion fX with calibrated uncertainty associated with each prediction. GPs are probabilis-
tic models that allow for an analytic computation of posterior predictive function values 
within a Bayesian framework, and they are the standard model in BO for modeling the 
response surface.

A GP is a distribution over functions fZ ∼ GP(m(⋅), k(⋅, ⋅)) and is fully specified by 
a mean function m ∶ Z → ℝ , and a covariance function/kernel k ∶ Z × Z → ℝ . The 
kernel computes the covariance between pairs of function values as a function of the 
corresponding inputs, i.e. Cov(fZ(�), fZ(��)) = k(�, ��) , and thereby encodes regularity 
assumptions about fZ , such as smoothness or periodicity. Common kernel choices in the 
BO literature include the squared exponential and Matérn kernels (Frazier 2018).

In our feature space optimization, we phrase lines 5–6 of Algorithm  1 as a single 
learning problem. Therefore, we need a GP that learns useful representations � of inputs 
� for the regression task together with fZ . A manifold GP (MGP) (Calandra et al. 2016a; 
Wilson et al. 2016) addresses this issue by composing two mappings: The deterministic 
feature map � with parameters �h and a GP fZ ∼ GP(m, k) with kernel hyper-parameters 
�k . The GP models the relationship between features � and function values y ∈ ℝ in 
observation space. The resulting composite model fX ∶= fZ◦� is a GP so that 
fX ∼ GP(mM , kM) with mean function given by mM(�) = m(�(�)) and the covariance 
function given by kM(�, ��) = k(�(�),�(��)) respectively. Given high-dimensional train-
ing inputs � and corresponding observations � of the objective function, we find model 
parameters {�h,�k} that maximize the marginal likelihood (evidence) 
{�∗

h
, �∗

k
} ∈ argmax

�h ,�k

p(�|�,�h,�k) . This objective allows us to learn a low-dimensional 

embedding as a by-product of the supervised GP regression.
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Unsupervised dimensionality reduction usually solves an orthogonal task to that 
of learning a response surface. Algorithms, such as PCA or variational auto-encoders 
(Rezende et  al. 2014), achieve compact data representations by optimizing objectives 
that are not necessarily useful in a supervised setting (Wahlström et  al. 2015). The 
MGP, instead, leads to low-dimensional representations that are optimal (locally) for the 
regression task at hand.

We use a multi-layer feed-forward neural network with sigmoid activation functions as 
a feature map (encoder) � , resulting in a feature space Z = [0, 1]d . Neural networks as an 
explicit feature map within an MGP have already been applied successfully for modeling 
non-smooth responses in robot locomotion (Calandra et al. 2016a; Cully et al. 2015). Deep 
networks have also proven useful for learning the orientation of images from high-dimen-
sional images (Wilson et  al. 2016). With a Gaussian likelihood, the MGP posterior pre-
dictive distribution at a test point �⋆ ∈ X  is Gaussian distributed with mean and variance 
given by

respectively, with �⋆ ∶= �(�⋆) and � ∶= �(�) . Moreover, 
kM(�⋆,�) = k(�⋆,�) = [k(�⋆, �i)]

N
i=1

 , where N is the size of the training data-
set, �My ∶= kM(�,�) + �2

n
� , �y ∶= k(�,�) + �2

n
� , kM(�,�) ∶= k(�,�) , and 

mM(�) ∶= m(�) = [m(�i)]
N
i=1

 computes the prior mean function evaluated at the embedded 
training inputs � . Posterior predictions can be computed using both the feature and data 
space. Equations (5)–(6) appear in the definition of the acquisition functions in (2)–(4) as 
mean �(�) ∶= �[fX(�)] and standard deviation �(�) ∶=

√
� [fX(�)] of the posterior predic-

tions of the surrogate model.
The MGP defines a GP on X  , but allows us to learn a response surface in the lower-

dimensional feature space Z . This is key for optimizing the acquisition function in a low-
dimensional space Z instead of the original data/parameter space X  . Thus far, we have 
detailed the feature-space BO procedure up to line 8 in Algorithm 1. Once we found an 
optimizer �∗ of the acquisition function, we need to project it back into the original data 
space X  in order to evaluate the true objective fX , whose domain is X  . This can be done by 
means of a reconstruction mapping (decoder), which we detail in the following.

3.2 � Input reconstruction with manifold multi‑output Gaussian processes

In the following, we present the reconstruction part (decoder) of our feature space opti-
mization model described in Fig. 1. We are interested in modeling the functional relation-
ship between the feature space Z and the data space X  for step 9 in Algorithm 1, which 
requires us to evaluate fX . We therefore consider a vector-valued function � = {gi}

D
i=1

 , 
where each component gi ∶ Z → Xi maps vectors in feature space to the i-th coordinate 
of high-dimensional data, i.e. gi(�) = x̃(i) ∈ Xi . Multi-output GPs (MOGPs) (Alvarez et al. 
2011; Alvarez and Lawrence 2011; Byron et  al. 2009; Wilson et  al. 2012; Alvarez and 
Lawrence 2009; Osborne et al. 2008; Seeger et al. 2005; Boyle and Frean 2005) define a 

(5)
�[fX(�⋆)] = mM(�⋆) + kM(�⋆,�)�

−1
My
(� − mM(�))

= m(�⋆) + k(�⋆,�)�
−1
y
(� − m(�))

(6)
� [fX(�⋆)] = kM(�⋆, �⋆) − kM(�⋆,�)�

−1
My
kM(�, �⋆)

= k(�⋆, �⋆) − k(�⋆,�)�
−1
y
k(�, �⋆),
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prior over vector-valued functions and explicitly allow for output correlations. An MOGP 
GP(�,�) is fully specified by a mean vector function � ∶ Z → ℝ

D and a positive, semi-
definite matrix-valued covariance function � ∶ Z → ℝ

D×D , which computes the correla-
tion between observations in the same output coordinate and cross-correlations between 
the D different outputs.

Here we consider the intrinsic coregionalization model (ICM) (Goovaerts 1997; 
Wackernagel 2013), which structures the covariance matrix as a Kronecker product. This 
model is particularly suitable for trading off number of model parameters and expressive-
ness of the vector valued function. In particular, the ICM facilitates information sharing 
across different tasks by adopting the same covariance function. It has been successfully 
adopted in robotics for learning inverse dynamics (Williams et al. 2009). Hence, this model 
requires fewer parameters than the linear model of coregionalization (Alvarez et al. 2011) 
and allows for exploiting properties of the Kronecker product for efficient training and 
prediction.

In our reconstruction model, we need to ensure that the output space is exactly X  . If 
we start from a data space X = [0, 1]D the reconstructions need to belong to this hyper-
cube. This property is not guaranteed by the MOGP. In order to satisfy this constraint, we 
consider a strictly monotonic output squashing function � , as introduced in the context of 
warped GPs (Snelson et al. 2004). This allows us to define a corresponding inverse trans-
formation �−1 that is applied to the data in input to the model. The resulting output of the 
MOGP at test time is then squashed through the transformation � . Since the reconstruction 
of the MOGP is a distribution p(�̃⋆|�, �̃, �⋆) , we evaluate the expectation with respect to 
this distribution of the transformed outputs, i.e. �t+1 = �p[𝛹 (�̃⋆)|�, �̃, �⋆] . In this paper, 
we choose the Gaussian cumulative density function as a monotonic squashing function 
� ∶= � for warping the outputs of our reconstruction model (Snelson et  al. 2004). The 
motivation for this choice is twofold: the inverse mapping �−1 is defined as the Probit 
function, which is a well known function, and the expectation �p[𝛹 (�̃⋆)|�, �̃, �⋆] with 
respect to the distribution p(�̃⋆|�, �̃, �⋆) at test reconstructions can be derived analytically 
(Rasmussen and Williams 2006).

Intrinsic coregionalization model. The ICM (Goovaerts 1997; Wackernagel 2013) 
applies a linear mapping to a set of latent functions. In particular, we consider a set of P 
latent functions ui ∶ Z → ℝ , that are assumed to be sample paths, i.e. sample functions 
independently drawn from the same GP prior GP(mc, kc) . The ICM model expresses the 
vector-valued function as a linear combination of these sample functions �(�) = ��(�) , 
where �(�) ∈ ℝ

P is the collection of the P sample paths’ evaluations at � , and � ∈ ℝ
D×P is 

the linear mapping that couples the independent vector and parameterizes the ICM model. 
As a result, � is an MOGP GP(�,�) with mean function � = ��c , where �c = [mc]

P
i=1

 
is obtained by repeating the single-valued mean function mc in a P-vector. The covariance 
function is �(�, ��) = ��T ⊗ kc(�, �

�) , where kc is the covariance function for the GP prior, 
⊗ is the Kronecker product and the matrix ��T is denoted as the coregionalization matrix. 
Note that kc may differ from the covariance function k used for the response surface fZ.

Reconstruction model. For the reconstruction task in line 9 of Algorithm 1, we intro-
duce the manifold MOGP with intrinsic coregionalization model (mMOGP), which shares 
the feature map � with the MGP used for learning the response surface; see Sect.  3.1. 
Without loss of generality, we assume a prior zero-mean vector function for the mMOGP 
GP(�,�⊗ kMO) , where kMO(�, �

�) = kc(�(�),�(�
�)) and the matrix � = ��T . We can inter-

pret this model as an auto-encoder, where the MGP �◦� ∶ X → Z plays the role of the 
encoder, and the MOGP the role of the decoder, mapping low-dimensional features back 
into data space.
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3.3 � Joint training

The joint training of the MGP, which models the response surface, and the mMOGP, which 
is used for the reconstruction (see also Fig. 1), is performed by maximizing a rescaled ver-
sion of the log-marginal likelihood

Here, L comprises terms from both the MGP and mMOGP models, where �y is defined in 
(5), and the covariance matrix of the mMOGP �V = �̄ + 𝜎2

n
� is obtained by evaluating the 

Kronecker product �̄ = �⊗ kc(�,�) with the mMOGP kernel kc . The vector �V is a con-
catenation of the columns of the data � . The maximizers [�∗

h
,�∗

k
,�∗

c
] of the log-marginal 

likelihood are the parameters �∗
h
 of the feature map � (which is shared between the MGP 

and the mMOGP), the hyper-parameters �∗
k
 of the kernel k and the hyper-parameters �∗

c
 of 

kc including the coregionalization matrix � for the mMOGP, respectively. The rescaling 
factor 1/D balances the contributions of the two log-marginal likelihood terms involved in 
training. The dimensions of the matrix �V are ND × ND which correspond to repeating the 
�y matrix D times in a block-diagonal fashion. This block diagonal would then have quad-
ratic form equal to D�T�−1

y
� and log determinant equal to D log |�y| . Thus, an equivalent 

rescaling is to divide the reconstruction terms �T
V
�−1

V
�V and log |�V | by D. Optimization 

of (7) is performed via gradient-based methods (Byrd et al. 1995; Zhu et al. 1997).
Modeling the black-box objective function fX is orthogonal to the reconstruction prob-

lem. However, when training these tasks jointly, they have a regularization effect on the 
optimization of the parameters �h of the feature embedding in the sense that the mapping 
� will not overfit to a single regression task: the parameters �h will give rise to a feature 
space embedding that is useful for both the modeling of the objective and the reconstruc-
tion of the original inputs.

The major computational bottleneck for evaluating the marginal likelihood comes from 
the term �T

V
�−1

V
�V , which requires inverting an ND × ND covariance. We reduce the com-

putational complexity of this operation to O(N3) +O(D3) by exploiting the properties of 
the Kronecker product, tensor algebra (Riley et al. 1999) and structured GPs (Gilboa et al. 
2015; Saatçi 2012) as shown in the following section.

3.4 � Computationally efficient mMOGP

For the reconstruction mapping � , we use the posterior mean of the mMOGP with intrinsic 
coregionalization model and apply exact inference and training via rescaled marginal like-
lihood maximization. While the ICM enables modeling correlation between arbitrary pairs 
of dimensions, it also requires computing a Kronecker product to evaluate the full covari-
ance matrix of all outputs

where kc(�,�) is the covariance matrix obtained from the training inputs � in feature space 
and the � matrix is the coregionalization matrix of the ICM. Inverting the full covariance 
matrix �̄ requires O(N3D3) and easily becomes intractable in high-dimensional spaces 
even for small N. Storing this full covariance matrix required O(N2D2) space and also 
becomes challenging in high dimensions. For an efficient implementation of the ICM, we 
exploit properties of the Kronecker product and apply results from structured GPs (Gilboa 

(7)L ∝ − �T�−1
y
� − log |�y| −

1

D

(
�T
V
�−1

V
�V + log |�V |

)
+ const.

(8)�̄ = �⊗ kc(�,�),
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et al. 2015; Saatçi 2012) that allow for efficient training and predictions in O(N3) +O(D3) 
time and O(ND) space. In particular, we are interested in the full covariance matrix under 
the assumption of a Gaussian likelihood for the multi-output observations, i.e. �̄ + 𝜎2

n
� . We 

first express the full covariance matrix in terms of its eigendecomposition, i.e. �̄ = ���T . 
This allows expressing the inverse of the covariance from noisy targets as

where both � and �2
n
� are diagonal and can be trivially inverted. However, the eigendecom-

position of an ND × ND matrix would still be cubic in the product between the number of 
dimensions and the number of data. By the properties of the Kronecker product, we can 
express the eigendecomposition itself with a Kronecker structure, i.e.

where each term of the Kronecker product on the left-hand side �l ∈ ℝ
Gl×Gl has eigende-

composition �l = �l�l�
T
l
 for l = 1,… ,W , where W is number of factors in the Kronecker 

product. In our ICM model W = 2 , because the coregionalization matrix � Kronecker mul-
tiplies kc(�,�) , the covariance matrix of the observations; see (8). Thus, from (9)–(10), 
we are allowed to invert the covariance from noisy targets by separately decomposing the 
covariance matrix kc(�,�) = �k�k�

T
k
 and the coregionalization matrix � = �b�b�

T
b
 , 

which require O(N3) and O(D3) time, respectively; see line 5 of Algorithm 2.

(9)
(
�̄ + 𝜎2

n
�
)−1

= �
(
� + 𝜎2

n
�
)−1

�T ,

(10)
⨂W

l=1
�l =

⨂W

l=1
�l

⨂W

l=1
�l

(⨂W

l=1
�l

)T

,
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Storing this inverse matrix and multiplying it by a vector still requires O(N2D2) space 
and run time, respectively, so that this step becomes the main bottleneck for efficient 
mMOGP training and predictions computation. To address this issue we represent the 
expensive matrix-vector multiplication as a sequence of small matrix-tensor multiplica-
tions without computing the full Kronecker product (Riley et al. 1999). In particular, we 
are interested in efficiently evaluating

We first represent the multiplication of a matrix with Kronecker structure by a vector as a 
tensor product. A tensor �i1,…,iV

 can be interpreted as an extension of matrices to objects 
where elements are indexed using a set of V indices: i1,… , iV , where the number V is 
referred to as the order of the tensor. With the definition of the Kronecker product we 
express the left-hand side of (10) as a tensor

The right-hand side of (12) coincides with a tensor �K
i1,j1,…,iW ,jW

 , and a similar tensor-repre-
sentation can be obtained for the 

∏W

l=1
Gl-long vector � , i.e. �X

jW ,…,j1
 . A tensor product 

between the tensors �K
i1,j1,…,iW ,jW

 and �X
jW ,…,j1

 applies a contraction along the indices of the 
second tensor, i.e.

This tensor contraction can be expressed in terms of a sequence of tensor-transposed 
matrix-tensor products

with �l�
X =

∑Gl

k=1

�
�l

�
i1,k

�X
k,j2,…,jW

 . The function vec(⋅) returns the vectorized form of a 
matrix by stacking its columns vertically. The tensor transposition ⊤ applies a cyclic per-
mutation to the order of the indices in a tensor. As a result, the right-hand side in (14) 
allows us to evaluate the expensive matrix-vector product without computing and storing 
the Kronecker product. Algorithm 2 shows the main steps of the efficient matrix inversion 
and matrix-vector multiplication for matrices that feature a Kronecker structure. The matrix 
vector multiplication subroutine is expressed as a sequence of tensor-transpose matrix-ten-
sor products.

4 � Constrained acquisition

We defined a joint probabilistic model for the response surface learning and the input 
reconstruction tasks; see lines 4–6 and 9 of Algorithm 1, respectively. We are now con-
cerned with the maximization of the acquisition function in feature space; see line 8 of 
Algorithm 1. We aim at maximizing the acquisition function in a low-dimensional feature 
space of the original data/parameter space X  . However, one problem that arises with the 
mMOGP decoding is that locations in feature space, which are too far away from data, 

(11)� =
(⨂W

i=1
�i

)
�.

(12)

[⨂W

l=1
�l

]

i,j
=
[
�1

]
i1,j1

⋅ … ⋅

[
�W

]
iW ,jW

, 1 ≤ il , jl ≤ Gl, 1 ≤ i, j ≤
∏W

l=1
Gl.

(13)
∑

j1
…

∑
jW

�K
i1,j1,…,iW ,jW

�X
jW ,…,j1

.
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(⨂W

l=1
�l

)
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(
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will be mapped back to the mMOGP prior. Since the acquisition function is a key driver of 
exploration in BO, this is a problem. We address this limitation by introducing a constraint 
based on the Lipschitz continuity of the mMOGP posterior. This will ensure that candi-
dates �∗ ∈ Z selected in feature space will not collapse to the origin � ∈ ℝ

D if the recon-
struction is defined as �̃∗ = �(�∗) , where � is the posterior mean of the mMOGP.

We want to leverage information from observed data for the multi-output mapping and 
exploit it when optimizing the acquisition function in feature space. This can be achieved 
by upper-bounding the Euclidean distance

in feature space between the optimization variable � and the embedded training data 
�t = [�1,… , �Nt

] . Here, Nt is the number of data points available at BO iteration t. The 
desired upper bound is obtained by exploiting the Lipschitz continuity property of the 
multi-output posterior mean for which

Here, L denotes the Lipschitz constant of the posterior mean � of the mMOGP. For com-
mon kernels, such as Matérn52 and squared exponential, the posterior mean is Lipschitz 
continuous. The upper bound

allows us to specify how far from the data we can move in feature space without falling 
back to the prior on all coordinates of the reconstruction. Here �∗ minimizes the distance 
in  (15), while the numerator on the right-hand side is the component-wise maximum of 
�(�∗) . We estimate the Lipschitz constant as the maximum norm of the Jacobian of the 
posterior mean of the mMOGP (González et al. 2016)

This maximization returns a valid Lipschitz constant (González et al. 2016) for the multi-
output mapping for any choice of norm in (18). The Jacobian of the posterior mean is 
represented by a D × d matrix and we adopt the max norm ‖∇��(�)‖∞ = max ���

i,j
� for 

i = 1,… ,D and j = 1,… , d . Lower values of valid Lipschitz constants L allow for explo-
ration in larger regions of the feature space that still satisfy the nonlinear constraint in (17).

5 � Experiments

We report results on a set of high-dimensional benchmark functions that possess an intrin-
sic low dimensionality. In particular, we (1) assess the benefits of adopting a model struc-
ture as presented in Fig. 1; (2) analyze the benefits of the constrained optimization of the 
acquisition function. Our purpose is to compare empirical performances across (a) differ-
ent characterizations of the feature spaces, e.g. linear/nonlinear subspaces; (b) different 
properties of the objective function, e.g. additivity/non additivity; (c) a real problem set.

Approaches We compare our approach (MGPC-BO) with the random embeddings opti-
mization (REMBO) (Wang et al. 2013), which performs BO on a random linear subspace 
of the inputs. Additional baselines include additive models (ADD-BO) (Kandasamy et al. 

(15)dist(�,�t) = min
1≤i≤Nt

‖�i − �‖2

(16)�[�(�)]i − [�(��)]i� ≤ L‖� − ��‖.

(17)dist(�,�t) ≤ �max(�
∗)∕L

(18)L = max
�∈Z

‖∇��(�)‖.
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2015), which assumes an additive structure (across dimensions) of the objective fX , and 
one recently proposed VAE-based model (VAE-BO) (Gomez-Bombarelli et al. 2018) that 
learns a feature space with deep networks offline. We also include a version of our model 
presented in Fig. 1 (HMGPC-BO) that uses a hierarchical ICM for the input reconstruction 
mapping � . The hierarchical ICM partitions the data space into low-dimensional disjoint 
subsets, i.e. {Xi}

Q

i=1
 , Xi ⊂ ℝ

3 , and assumes independence between reconstructions of dif-
ferent subsets, i.e. �̃(i) ⟂ �̃(j) , where �̃(i) ∈ Xi , �̃(j) ∈ Xj for i ≠ j . Moreover, the baselines 
MGP-BO and HMGP-BO correspond to same modeling as in MGPC-BO and HMGPC-
BO, respectively, but without applying the nonlinear constraint in (17). We also compare 
with a different parametrization of the covariance function of the decoder � . The baseline 
DMGP-BO and DMGPC-BO define a single kernel kc for the reconstruction task while 
HMGP-BO and HMGPC-BO define different kernels {ki

c
}
Q

i=1
 , one for each subset of the 

partitioning. Here, DMGPC-BO and DMGP-BO denote the baseline with and without Lip-
schitz regularization, respectively. For all the approaches we specify the dimensionality dfs 
of a feature space where the optimization is performed. Note that this value may differ 
from the intrinsic dimensionality d of the objective functions i.e. dfs ≠ d.

Acquisition functions We evaluate the performances of all baselines across common 
acquisition functions: EI (Močkus 1975), UCB (Srinivas et  al. 2010) and PI (Kushner 
1964), which are also given in (2)–(4). The motivation in selecting the above acquisition 
functions is that we wish to explore performances of our BO approach on a range of dif-
ferent decision strategies: aggressive exploitation (PI), aggressive exploration (UCB) and 
one-time-step optimal selection (EI). In our experiments we set the �t parameter of UCB in 
(4) to 

√
3 . Moreover, we do not have access to the true fmin required in (2) and (3). There-

fore, we compute the improvement based acquisitions (EI and PI) using ymin ∶= min �t , 
which is the best noisy observation obtained up to iteration t. The maximization of the 
acquisition function is identical for all baselines: we first perform a random search step 
with 5000 samples drawn uniformly at random and select the best 100 locations to apply 
gradient-based optimization from these starting locations. For box-constrained acquisition 
optimization we use L-BFGS-B (Byrd et al. 1995; Zhu et al. 1997). For constrained acqui-
sition optimization with nonlinear constraints we use a trust-region interior point method 
(Byrd et al. 1999).

Model parameters In our experiments, we select the Matérn5∕2 kernel as the covariance 
function for the GPs in each baseline. For the neural network employed in the encoder, the 
architecture was a single hidden layer with 20 units, and as the activation function we use 
the sigmoid activation 1∕(1 + exp(−x)).

Experiment setup Each BO progression curve shows the mean and standard error of 
the immediate logarithmic regret log10 |f (�best(t)) − fmin| , where fmin is the true minimum 
of fX and �best(t) ∈ argmini=1∶t fX(�i) . Mean and standard error are computed over 20 
experiments with different random initializations. All optimization experiments start with 
a budget of 10 data points and perform a total of 300 iterations. The noise variance is 
�2
n
= 10−4.

5.1 � Linear feature space

We consider benchmark functions that are defined in a d = 10-dimensional space. We map 
their input space to a D = 60-dimensional space using an orthogonal matrix �d×D so that 
the overall objective is fX(�) = f (�) = f (��).
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5.1.1 � Additive objective

We minimize the Rosenbrock benchmark function

in a dfs = 10-dimensional feature space. Figure  2 shows that HMGPC-BO baseline 
descends quickly to relatively low regret in the early stages of optimization and recovers 
better regret at termination than the unconstrained baseline HMGP-BO. The VAE-BO 
baseline improves quickly but lacks exploration due to an insufficiently expressive recon-
struction mapping from feature space to data space. We highlight that the VAE-BO model 
was trained on a budget of 500 inputs-observations pairs prior to starting the BO experi-
ments. This additional budget, however, still does not allow the VAE-BO to compare well 
with baselines that learn a feature mapping during optimization. REMBO shows a com-
petitive descent for two main reasons: the fact that the baseline conforms with the linear 
embedding assumption that characterizes the objective function and the employment of an 
orthonormal linear mapping which is supposed to improve performances and conforms to 
structural assumption about the linear embedding � . The ADD-BO baseline suffers from 
the coupling effects of the linear dimensionality reduction � . Overall, Fig.  2 highlights 
the fast learning of feature space representations that are effective for optimization with 
MGPC-BO, HMGPC-BO and DMGPC-BO baselines.

5.1.2 � Non‑additive objective

Here, we optimize the product of sines with intrinsic dimensionality d = 10

and compare results when the additivity assumption is not satisfied. Figure 3 shows the 
regret curves obtained optimizing the objective on a dfs = 10-dimensional feature space. 
Solid lines describe the Lipschitz-regularized baselines MGPC-BO, HMGPC-BO and 

(19)f (�) =
∑d−1

i=1
[100(zi+1 − z2

i
)2 + (zi − 1)2]

(20)f (�) = 10 sin(z1)
∏d

i=1
sin(zi)

(a) (b) (c)

Fig. 2   Results with Rosenbrock objective function of BO in feature space. The objective function is char-
acterized by a linear embedding to reach D = 60 dimensions. Baselines MGPC-BO, HMGPC-BO and 
DMGPC-BO (solid) apply nonlinearly constrained acquisition maximization and recover no worse regret at 
termination than the unconstrained versions MGP-BO, HMGP-BO and DMGP-BO
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DMGPC-BO (with nonlinear constraint), while dashed lines are baselines that apply box-
constrained maximization of the acquisition in feature space. The HMGP-BO, MGP-BO 
and DMGP-BO regrets flatten early in both improvement-based acquisition functions (EI 
and PI) since these acquisition functions highlight locations in feature space that are too 
far away from the training data. In this setting, the decoder � returns the same high-dimen-
sional reconstruction, which prevents BO from exploring. The constrained maximization 
of the acquisition is beneficial for all our models. We also note that the REMBO baseline 
conforms to the intrinsic linear low-dimensionality assumption described in Sect. 5.1 and 
is the most competitive baseline especially for UCB acquisition. However, the linear recon-
struction mapping applied by REMBO also suffers from non-injectivity, and this slows 
down exploration in the high-dimensional space. The linear projection deteriorates perfor-
mances of the additive model. ADD-BO assumes independence between axis-aligned pro-
jections of the high-dimensional space, while the linear mapping � couples all subsets of 
dimensions. This linear mapping, therefore, penalizes optimization with independent addi-
tive components. The VAE-BO approach requires much larger amounts of data to learn 
a meaningful reconstruction mapping than available in our experiment. Thus, most loca-
tions in feature space are mapped to similar reconstructions. This explains the flat curve 
observed on all VAE-BO progressions with different acquisitions.

5.2 � Nonlinear feature space with non‑additive objective

We consider the product of sines functions and apply a nonlinear dimensionality reduc-
tion. We define a single-layer neural network mapping to elevate the dimensionality of the 
objective to D = 60 , i.e. fX(�) = f (�(��)) . Here � is the sigmoid activation function. We 
select a dimensionality of the feature space as in previous sections dfs = 10 which is equal 
to the intrinsic dimensionality of the objective function d = 10 . Figure 4 shows the pro-
gression of the regret over 300 BO iterations. We can observe consistent improvements of 
MGPC-BO, HMGPC-BO and DMGPC-BO with respect to VAE-BO which also assumes a 
nonlinear embedding for the objective. The performance of MGPC-BO, HMGPC-BO and 
DMGPC-BO also retain better regret at termination than with box-constrained acquisition 
maximization (MGP-BO, HMGP-BO, DMGP-BO). Here we apply a significance testing 
with the Wilcoxon signed-rank test (Wilcoxon 1992) at termination of the optimization 

(a) (b) (c)

Fig. 3   Optimization progression on product of sines characterized by linear embedding with EI (a), UCB 
(b) and PI (c). Baselines MGPC-BO, HMGPC-BO and DMGPC-BO learn low-dimensional representations 
of the objective that are useful for optimization
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between the best performing of our baselines, namely DMGPC-BO and the best competi-
tive baseline that is ADD-BO. We observe a significance of at least 0.014% for all acquisi-
tion functions (largest p-value p = 0.00014 for UCB acquisition) meaning that our best 
baseline DMGPC-BO is highly significantly different than the ADD-BO baseline and 
attains better regret than ADD-BO at termination of the optimization.

Overall, we observe that the constrained maximization of the acquisition function is 
beneficial for the proposed model. The advantages with respect to ADD-BO, REMBO and 
VAE-BO baselines are more evident with the product of sines objective with nonlinear 
embedding while with the Rosenbrock we retain no worse regret.

5.3 � Sensitivity analysis on real data

Here we apply a sensitivity analysis with respect to the dimensionality of the feature space 
dfs on a D = 12-dimensional real problem. We consider the Thomson problem of finding 
the lowest potential configuration of a set of electrons on a sphere (Dolan et al. 2004). This 
is a central problem in physics and chemistry for identifying a structure with respect to 
atomic locations (Dolan et al. 2004). The potential of a set of np electrons on a unit sphere 
is given by the objective

This is a constrained minimization problem with constraints x2
i
+ y2

i
+ z2

i
= 1 for 

i = 1,… , np , which means that all electrons must lie on a unit sphere. We represent the 
variables of the problem as spherical coordinates with unit radius. This allows us defining 
two variables per point with a total number of 2np (azimuthal and polar angles) parameters 
to optimize within box constraints. For optimization, we select np = 6 , which results in 
a D = 12-dimensional problem and we optimize it on low-dimensional feature spaces of 
dimensionalities dfs = 6, 4, 3, 2 to observe the effect of this hyper-parameter in the opti-
mization. Figure 5 shows a comparison of our approaches with ADD-BO, REMBO and 
VAE-BO baselines on a single acquisition function PI. Overall, we observe a deterioration 
of performances with diminishing dimensionality of the feature space. The regret clearly 

(21)
∑np−1

i=1

∑np

j=i+1
((xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2)−1∕2.

(a) (b) (c)

Fig. 4   BO performances expressed as log regret of the product of sines function in a nonlinear embed-
ding. Results are shown for EI (a), UCB (b) and PI (c). All our baselines with nonlinear constraint, namely 
MGPC-BO, DMGPC-BO and HMGPC-BO learn useful representations in feature space for optimization. 
There is highly significant difference of 0.014% between DMGPC-BO and ADD-BO
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increases for our baselines when we select dfs = 2 meaning that, with a high compression 
rate, the probabilistic model for MGPC-BO, DGPC-BO and HMGPC-BO learns less use-
ful features for optimization. We observe the most competitive baseline to be ADD-BO, 
which decomposes the 12-dimensional problems into D∕dfs sub-problems with dimension-
ality dfs . Another competitive baseline is REMBO. We apply a significance test and com-
pare our nonlinearly constrained baseline MGPC-BO with the most competitive baseline 
(ADD-BO or REMBO) for each plot of Fig. 5 at termination of the optimization. We select 
the Wilcoxon signed-rank test (Wilcoxon 1992), which does not assume that the difference 
between the sample populations is Gaussian. For feature space dimensionality dfs = 2 we 
do not observe values significantly different since the p-value is p = 0.135 . This is due to 
the deterioration of performances at dfs = 2 . For dfs = 3 we observe a more significant dif-
ference between MGPC-BO and ADD-BO with p-value p ≤ 0.002 . With hyper-parameter 
values dfs ≥ 4 we observe significantly different baselines with significance at 0.6% (differ-
ence between MGPC-BO and ADD-BO for dfs = 4 with p-value p ≤ 0.003 and between 
MGPC-BO and REMBO for dfs = 6 with p-value p ≤ 0.006 ). Overall, we observe our con-
strained baselines to perform better than ADD-BO and REMBO and to reach the lowest 
value in notably less BO iterations.

5.4 � Run‑time complexity

The computational complexity of MGPC-BO is O(D3 + N3) due to the eigen-decomposi-
tion of both the coregionalization ( D3 ) and kernel matrix ( N3 ). The baseline HMGPC-BO 
scales with O(d3

out
Q + N3Q) with Q being the number of independent subsets of dimen-

sions, i.e. Q = D∕dout , with dout being a small constant value ( dout = 3 ). This baseline 
achieves faster computations when having small number of data points N, for large number 
of data points and large number of dimensions (both tending to infinity) the MGPC-BO 
results more efficient. The baseline DMGPC-BO instead has complexity O(d3

out
Q + N3) , 

which is faster than the MGPC-BO. MGP-BO, DMGP-BO and HMGP-BO have the same 
complexity of MGPC-BO, DMGPC-BO and HMGPC-BO, respectively. The remain-
ing baselines have all computational complexity O(N3) due to the matrix inversion of the 
covariance matrix for GP training which is used in ADD-BO, REMBO and VAE-BO. Our 
baseline has an additional overhead of at least a linear term d3

out
Q , which implies slower 

(a) (b) (c) (d)

Fig. 5   Sensitivity analysis with respect to the dimensionality of the feature space dfs on a real problem set. 
We test all approaches on a set of feature space dimensionalities dfs = 2, 3, 4, 6 . The performances of our 
baselines clearly deteriorate for dfs = 2 . Our baseline MGPC-BO show better performances than the best 
competing baseline ADD-BO and REMBO and reach the minimum in notably less iterations
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training times for our probabilistic model. This is a reasonable trade off for improved opti-
mization performances and better data efficiency in our reconstruction model.

6 � Conclusion

We proposed a framework for efficient Bayesian optimization of intrinsically low-dimen-
sional black-box functions based on nonlinear embeddings. In our model, a manifold GP 
learns useful low-dimensional feature representations of high-dimensional data by jointly 
learning the response surface and a reconstruction mapping. Our approach allows for opti-
mizing acquisition functions in a low-dimensional feature space. Since exploration in fea-
ture space (driven by the acquisition function) does not necessarily mean exploration in the 
high-dimensional parameter space, we introduce a nonlinear constraint based on Lipschitz 
continuity of predictions of the reconstruction mapping, which encourages exploration in 
the vicinity of the training data and mitigates un-identifiability issues in data space, which 
hinder optimization.
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