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Abstract

Whiskers are present in many species of mammals. They are specialised vibrotactile

sensors that sit within strongly innervated follicles. Whisker size and shape will affect

the mechanical signals that reach the follicle, and hence the information that reaches

the brain. However, whisker size and shape have not been quantified across

mammals before. Using a novel method for describing whisker curvature, this study

quantifies whisker size and shape across 19 mammalian species. We find that gross

two-dimensional whisker shape is relatively conserved across mammals. Indeed,

whiskers are all curved, tapered rods that can be summarised by Euler spiral models

of curvature and linear models of taper, which has implications for whisker growth

and function. We also observe that aquatic and semi-aquatic mammals have rela-

tively thicker, stiffer, and more highly tapered whiskers than arboreal and terrestrial

species. In addition, smaller mammals tend to have relatively long, slender, flexible

whiskers compared to larger species. Therefore, we propose that whisker morphol-

ogy varies between larger aquatic species, and smaller scansorial species. These two

whisker morphotypes are likely to induce quite different mechanical signals in the

follicle, which has implications for follicle anatomy as well as whisker function.
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1 | INTRODUCTION

Whiskers are present on the faces of almost all mammals (Ahl, 1986,

1987; Bauer, Reep, & Marshall, 2018; Ginter, DeWitt, Fish, &

Marshall, 2012). They are specialised vibrotactile sensors that can

guide behaviours such as navigation, locomotion, foraging, and social

interactions (Grant & Arkley, 2015). Whiskers are grossly similar

across mammals—being long, slender (Neimark, Andermann,

Hopfield, & Moore, 2003), tapered (Ginter et al., 2012; Hires, Pammer,

Svoboda, & Golomb, 2013; Williams & Kramer, 2010; Yanli, Wei,

Yanchun, Jun, & Xiaoming, 1998) rods with an inherent curvature in

one plane (Knutsen, Biess, & Ahissar, 2008; Towal, Quist, Gopal, Solo-

mon, & Hartmann, 2011), suggesting a common (vibrotactile) function.

Whisker specialists are species that can actively move their whiskers

to sense, and include rodents, insectivores, and pinnipeds (Grant &

Arkley, 2015; Muchlinski, Wible, Corfe, Sullivan, & Grant, 2020),

suggesting that whiskers are especially useful for animals that live in

dark, complex environments. Species that have the longest and most

numerous whiskers also move their whiskers the most, and tend to be

small, nocturnal, and arboreal (Grant, Breakell, & Prescott, 2018;

Muchlinski, 2010; Muchlinski et al., 2020).

Whisker morphology can vary between species, for example,

many phocids have undulating, beaded whiskers (Ginter et al., 2012;

Ginter, Fish, & Marshall, 2010; Hanke et al., 2010; Rinehart, Shyam, &

Zhang, 2017), and aquatic mammals are thought to have more inner-

vated whiskers than terrestrial species (Dehnhardt & Mauck, 2008;
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Mattson & Marshall, 2016; Mcgovern, Marshall, & Davis, 2015;

Miersch et al., 2011; Rice, Mance, & Munger, 1986). Some aquatic

species use their whiskers for both, touch and hydrodynamic sensing,

such as California sea lions (Zalophus californianus; Gläser, Wieskotten,

Otter, Dehnhardt, & Hanke, 2011; Milne & Grant, 2014) and Harbour

seals (Phoca vitulina; Dehnhardt, Mauck, & Bleckmann, 1998; Grant,

Wieskotten, Wengst, Prescott, & Dehnhardt, 2013), which may indi-

cate functional differences between aquatic and terrestrial whiskers

(Jones & Marshall, 2019; Sprowls & Marshall, 2019). Yet, while whis-

ker shape and function are likely to differ between species, especially

between aquatic and terrestrial species, the difficulty in comparing

whisker shape quantitatively means that whisker morphology has not

been explored across a wide range of mammalian species before. A

recent study has found that whisker intrinsic curvature in rats (Rattus

norvegicus) may be accurately described by linear functions so that the

whiskers are well represented by intervals of the Euler spiral

(Starostin, Grant, Dougill, van der Heijden, & Goss, 2020), which now

offers a means for between-species comparisons.

Whiskers are differentiated from hair by their highly innervated,

vascularised follicle (Ebara, Kumamoto, Matsuura, Mazurkiewicz, &

Rice, 2002; Williams & Kramer, 2010). Mechanoreceptors within the

follicle convert whisker force and moment information from the whis-

ker into signals that the brain can encode (Ahissar & Knutsen, 2008;

Diamond, Von Heimendahl, Knutsen, Kleinfeld, & Ahissar, 2008).

Whisker size, including width and length, and the natural shape of

each whisker, including taper and curvature, will affect the way in

which the whisker deforms and vibrates, and hence, the signals within

the follicle. This study quantifies the length, taper, and curvature of

whiskers from 19 different mammalian species using the Euler spiral

description of whisker curvature (Starostin et al., 2020) we go on to

discuss how whisker morphology varies with animal size and substrate

preference.

2 | MATERIAL AND METHODS

2.1 | Sample preparation

Thirty-four specimens of 19 species (Table 1, Supporting Information)

were donated from collections at National Museums Scotland, or

obtained from licensed suppliers. All work in this study was approved

by the local ethics committee at Manchester Metropolitan University

(Ethos ID: 364, 04/12/2008). Each species was coded for their gen-

eral substrate preferences (Table 1), these groupings can often be dif-

ficult to define, as many of the species in our study are relatively

flexible; these groupings were used for statistical analyses and then

considered in more detail in the discussion.

Mystacial pads were dissected from specimens and fixed in 4%

paraformaldehyde for a minimum of 24 hr for transport and storage.

To improve image contrast during scanning, fixed pads were stained

in a 1% Lugol's solution for 48 hr before individual whiskers were

plucked from the pad. Whole, intact whiskers (including the papilla)

were plucked from the mystacial pad. These were all macrovibrissae

from the main rows and columns of the pads. Whisker layouts and

numbers varied between species, but we attempted to pluck and col-

lect all the mystacial macrovibrissae present in each individual speci-

men; this did not include the small rostral whiskers that were not in

the grid-pattern, which were likely microvibrissae. Whiskers <5 mm

long could not be consistently seen, removed, and imaged. Any whis-

kers with signs of damage were also rejected from the study. Where

two whiskers emerged from the same follicle, the largest whisker

was used.

2.2 | Individual whisker shapes

Six hundred and eighty-seven individual whiskers were scanned in

two dimensions using an Epson V600 photo-scanner (Epson, Tokyo,

Japan; resolution: 2–8 μm) to gather individual whisker shape parame-

ters of curvature, length, and taper. Two-dimensional scanning

methods were considered sufficient since whisker curvature has pre-

viously been observed to occur mostly in one plane (Knutsen

et al., 2008; Towal et al., 2011) and all whiskers were able to lie flat

on the scanning bed without deformation from the surface. Whisker

outlines were extracted from images and processed by mapping to an

Euler spiral. This was achieved by fitting the outline coordinates to

edge model curves computed from an Euler spiral interval for each

whisker centreline, a generalised procedure based on that described

in Starostin et al. (2020). The papilla section was not included in the

length or shape of the whisker. Curvature, κ, of whiskers was mod-

elled as a linear function of their arclength, s, where A and B are con-

stant coefficients, which differ for each whisker, so that the latter is

approximated by an interval of an Euler spiral curve:

κ sð Þ=As +B ð1Þ

When dilated, all these intervals can be mapped onto the stan-

dard Euler spiral (Figure 1b), where the represented interval on the

spiral, which is the arc length and position along the spiral, depends

only on the whisker's shape. Using this method, whiskers from any

species can be compared regardless of absolute size. Absolute whisker

length (Table 1) was extracted during the curve fitting procedure and

normalised against species body lengths taken from the literature to

allow interspecies comparison.

Whisker taper was modelled as a linear function of whisker arc

length and calculated by measuring the distance between the whisker

centreline and the whisker edge (Supporting Information):

half−width sð Þ=ω0 +ω1s ð2Þ

Coefficient ω1 represents the taper gradient of the whisker; a

negative value indicates a whisker that is thinner at the tip than the

base. Coefficient ω0 is the normalised whisker half-thickness at

the base.
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2.3 | Statistics

Multivariate analysis of variances (ANOVAs) were conducted on the

full 687-whisker data set; environmental substrate was used as the

between-factor with morphological parameters A, B, Normalised

Length, ω0, and ω1 as dependent variables. A Bonferroni corrected p

value (p < .01) was used to indicate significance and Bonferroni post-

hoc test used for between-substrate effects. Partial eta squared was

used as a measure of effect size with 0.06 suggesting a medium effect

and 0.14 a large effect (Cohen, 2013). Pairwise Spearman's rank corre-

lations were also conducted on mean average species values (whisker

A, B, Normalised Length, ω0, ω1, body length, Table 1).

To reduce dimensionality of data, principal component analysis

(PCA) was conducted on the entire data set of 687 whiskers using the

five measures: A, B, Normalised Length, ω0, and ω1. The two principal

components, accounting for the majority of variation were then fur-

ther analysed. Multivariate ANOVA was performed on principal com-

ponent scores using environmental substrate as the between-factor

with PC1 and PC2 as dependent variables (p < .05 significance level),

partial eta squared was used for effect size.

3 | RESULTS

Whisker centreline curvature was approximated by an Euler spiral in

all species (fitting residual SD [RSD] < 1% of whisker length in 98% of

whiskers; Figure 1b). Coefficient of curvature B did not vary signifi-

cantly between species' substrate preferences, although Coefficient

TABLE 1 Mean average values for all morphological parameters

Curvature Length Taper
Body length

Species Common name Family Substrate A B (mm) (%) ω0 ω1 (mm)

Vulpes vulpes Red fox Canidae Terrestrial 0.659 0.394 27.0 4.2 0.007 −0.005 644 (Rosenzweig, 1968)

Phodopus campbellia Campbell's dwarf

hamster

Cricetidae Terrestrial 0.686 0.414 17.4 18.3 0.004 −0.002 95 (Ross &

Cameron, 1989)

Erethizon dorsatum Common porcupine Erethizontidae Arboreal 0.058 0.886 28.7 4.9 0.004 −0.003 586 (Mclean, Carey, Kirk,

& Bruce, 1993)

Suricata suricatta Meerkat Herpestidae Terrestrial 0.037 0.546 19.3 7.2 0.005 −0.004 268 (van Staaden, 1994)

Hystrix africaeaustralis Cape porcupine Hystricidae Terrestrial 1.241 0.433 81.0 10.8 0.005 −0.003 750 (Aarde, 1987)

Lepus timidusa Mountain hare Leporidae Terrestrial 0.342 0.289 36.7 5.7 0.003 −0.002 644 (Schmidt &

Jensen, 2003)

Micromys minutus Harvest mouse Muridae Arboreal −0.215 0.802 6.6 11.0 0.006 −0.005 60 (Koskela &

Viro, 1976)

Mus musculus House mouse Muridae Arboreal 0.397 0.131 11.4 13.3 0.005 −0.003 86 (Chakraborty, Park, &

Tan, 2017)

Rattus norvegicusa Brown rat Muridae Arboreal 0.349 0.348 26.0 10.2 0.004 −0.003 255 (Novelli et al., 2007)

Lutra lutraa Eurasian otter Mustelidae Semi-aquatic 0.388 0.191 15.8 2.1 0.011 −0.008 750 (Garcia de Leaniz,

Forman, Davies, &

Thomson, 2006)

Mustela lutreola European mink Mustelidae Semi-aquatic 0.866 0.227 19.9 4.9 0.007 −0.006 407 (Kiik, Maran,

Nemvalts, &

Sandre, 2017)

Mustela erminea Stoat Mustelidae Terrestrial 0.470 0.459 20.1 9.2 0.004 −0.002 218 (Rosenzweig, 1968)

Mustela nivalis Least weasel Mustelidae Terrestrial 1.478 −0.020 12.6 7.8 0.005 −0.004 161 (Rosenzweig, 1968)

Mustella putorius furoa Ferret Mustelidae Terrestrial 1.526 −0.019 27.0 7.0 0.004 −0.002 386 (Blandford, 1987)

Halichoerus grypus Grey seal Phocidae Aquatic 2.168 −0.363 48.4 2.0 0.013 −0.007 2,420 (Murie &

Lavigne, 1992)

Phoca vitulina Harbour seal Phocidae Aquatic 0.791 0.831 22.9 1.3 0.009 −0.008 1760 (Nørgaard &

Larsen, 1991)

Crocidura russula Greater white

toothed shrew

Soricidae Terrestrial 0.317 0.300 8.7 12.3 0.005 −0.003 71 (Sánchez-Chardi &

Nadal, 2007)

Sorex araneus Common shrew Soricidae Terrestrial 1.275 0.130 10.6 17.6 0.006 −0.004 60 (Frafjord, 2008)

Sorex minutus Pygmy shrew Soricidae Terrestrial −0.048 0.723 10.0 19.7 0.003 −0.002 51 (Grainger &

Fairley, 2009)

Note: Overall, whisker measures included normalised whisker length, two curvature coefficients (A and B), and two taper coefficients (ω0 and ω1). Species

body lengths are taken from the literature.
aObtained from licensed suppliers and all others donated from the collections at National Museums Scotland.
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of curvature A did (Table 2), specifically it was observed that semi-

aquatic mammals had lower values than aquatic mammals (Figure 1c)

and arboreal mammals had higher values than terrestrial species, and

lower values than aquatic species.

A linear taper function was a good fit to whisker outlines in all

species (RSD < 2% of whisker length) and varied significantly with

species' substrate preferences (Table 2, Figure 1e). Overall, aquatic

and semi-aquatic species had significantly larger taper coefficients

than terrestrial and arboreal mammals (Figure 1e). Normalised whisker

lengths also varied significantly between species, with aquatic and

semi-aquatic animals having smaller normalised whisker lengths than

terrestrial and arboreal mammals. Species body length was also

correlated with normalised whisker length, where smaller species had

longer normalised whisker lengths (Spearman's rank [SR]: r2 = −.76,

p < .001). Patterns in substrate preferences were confirmed in must-

elid species to test whether patterns across mammal species were

consistent within a single family. Results confirmed that aquatic and

semi-aquatic species had significantly different normalised whisker

lengths and taper to arboreal and terrestrial species; with smaller but

still significant variation in curvature coefficient A observed between

semi-aquatic and terrestrial mustelids. (Table 2).

Principal component (PC) 1 and 2 represented 47.9 and 35.6% of

variation in whisker parameters for the full data set. PC1 was most

correlated with normalised length (r2 = .57) and taper (ω0: r
2 = .87; ω1:

F IGURE 1 Comparative whisker shapes in mammals (a) Example scanned whiskers; Ferret (Length [L] = 34.5 mm, Base Width [BW] = 0.23 mm),
Rat (L = 19.6 mm, BW = 0.18 mm), Otter (L = 25.2 mm, BW = 0.3 mm) and Grey Seal (L = 68.9 mm, BW = 1.41 mm). (b) An Euler plot of all 687
whiskers normalised for length. Individual whiskers are stacked on one another (in the y-axis) and their position on the spiral indicates their shape.
Whisker curvature (c), normalised whisker length (d) and whisker taper (e) of each species. Boxes are coloured according to typical substrate:
terrestrial (red), arboreal (green), aquatic (blue), and semi-aquatic (black). Box-plot whiskers extend to the most extreme data points that are not
outliers, with outliers defined as values greater than three SDs from the mean
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r2 = .86), whereas PC2 was most correlated with curvature (A:

r2 = .85; B: r2 = .85), suggesting that whisker length and taper captures

the most variation in our data. When plotted against one another they

formed an amorphous cluster centred at the origin of the

morphospace, with most species and families spread throughout.

However, semi-aquatic and aquatic species tended to be on the right-

hand side of the plot with larger values of PC1 (Figure 2a; Table 2).

Indeed, species' substrate preferences had large, significant effects on

PC1 (Figure 2b) and small, significant effects on PC2 (Figure 2c). Post-

hoc tests confirmed that PC1 was larger in aquatic and semi-aquatic

species, than in terrestrial and arboreal species (Figure 2b). These find-

ings were also confirmed in mustelid species, the only family of those

investigated where different substrates (terrestrial and semiaquatic)

are observed. When principal component analysis was conducted on

mustelid species alone, PC1 and 2 explained 52.7 and 34.4% of varia-

tion in whisker parameters, and substrate preference had large, signifi-

cant effects on PC1 (Table 2) and medium, significant effects on PC2.

4 | DISCUSSION

Using an Euler spiral, we are now able to quantify and compare the

curvature of whiskers from a wide range of mammalian species,

regardless of their absolute size. That whisker curvature obeys a

simple linear relationship with length has previously been observed

only in rats (Starostin et al., 2020). We observe it here in many differ-

ent species. Therefore, the Euler spiral could be found across mamma-

lian whiskers and may indicate that a common ancestor would have

similarly curved whiskers.

TABLE 2 Results of multivariate ANOVA

MANOVA

All species F p ηp
2

Original data A 10.610 <.001 0.047

B 2.656 .048 0.012

Length 99.967 <.001 0.318

ω0 142.575 <.001 0.399

ω1 147.224 <.001 0.407

F p ηp
2

PCA PC1 (47.9%) 185.848 <.001 0.464

PC2 (35.6%) 3.434 .017 0.016

Mustelidae F p ηp
2

Original data A 8.568 .004 0.051

B 0.483 .488 0.003

Length 70.841 <.001 0.371

ω0 77.595 <.001 0.393

ω1 79.659 <.001 0.399

F p ηp
2

PCA PC1 (52.7%) 91.902 <.001 0.434

PC2 (34.4%) 9.289 .003 0.072

Note: Statistical effects of environmental substrate on whisker morpholog-

ical parameters and principal component scores. A Bonferroni corrected

significance value of .01 is used. Medium and large effects are defined as

partial eta squared values of over 0.06 and 0.14, respectively.

Abbreviations: MANOVA, multivariate analysis of variance; PCA, principal

component analysis.

F IGURE 2 Principal component analysis (PCA) of whisker shape.
(a) PC1 plotted against PC2 for all species. (b) PC1 values according to
typical substrate. (c) PC2 values according to typical substrate. Black
asterisks indicate significant differences. Value colours indicate typical
substrate: terrestrial (red), arboreal (green), aquatic (blue) and semi-
aquatic (black)
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4.1 | Whisker shape approximations

Accurately measuring and modelling whisker curvature is of significant

importance in whisker mechanics. The intrinsic curvature of whiskers

likely improves object localisation (Huet, Rudnicki, & Hartmann, 2017)

and forms part of the kinematic basis for texture discrimination

(Zuo & Diamond, 2019). Many vibrissae have curvature that is notice-

able to the eye, either straightening or curling along their length.

Whiskers can also include an inflection point, where they curve first

one way and then the other. The Euler spiral model can approximate

all of these observed shapes. None of the whiskers that we measured

included a curvature with more than one inflection (e.g., a sine wave).

These aforementioned observations suggest that a constant, or circu-

lar, curvature model is not able to capture all aspects of observed

whisker shape, whereas a model with a high-degree polynomial curva-

ture is unnecessarily complicated (Summarell, Ingole, Fish, &

Marshall, 2015). Other studies have approximated whiskers as qua-

dratic curves (Quist & Hartmann, 2012; Towal et al., 2011), which

cannot replicate inflections in curvature, or otherwise used cubic

splines to capture whisker shape (Bagdasarian et al., 2013; Belli,

Bresee, Graff, & Hartmann, 2018), but these are challenging to com-

pare with one another. It is also possible to compare whisker outlines

fitted with Elliptic Fourier harmonic coefficients (Ginter et al., 2012)

or Bezier curves (Campagner, Evans, Loft, & Petersen, 2018; Hewitt

et al., 2018; Petersen, Colins, Evans, Campagner, & Loft, 2020);

although these are good visual representations of whisker shape, they

do not provide a clear and succinct equation, which is useful for

developing mechanical models. Therefore, as previously observed in

rats (Starostin et al., 2020), we propose that a two parameter, linear

curvature function (Equation 1) provides a good approximation for

whisker curvature. Moreover, it fits measured whisker shapes with a

high degree of accuracy in all species tested (fitted curves have

RSD < 0.8% of whisker length in 98% of all whiskers). This simple rela-

tionship between curvature and length may be explained by common

growth mechanisms underlying mammalian whisker development,

akin to the simple growth rules of spiral sea shells (Thompson, 1942).

There have only been a few studies on whisker growth. For some spe-

cies of phocids it has been described as irregular, with periods of

pause (Greaves, Hammill, Eddington, Pettipas, & Schreer, 2004;

Hirons, Schell, & St. Aubin, 2001). However, a linear fit has been

reported for mice and some species of Pinnniped (Greaves

et al., 2004; Hirons et al., 2001; Ibrahim & Wright, 1975). While

species-specific variation may occur in whisker growth, a largely linear

relationship may explain why little variation is seen in the intrinsic cur-

vature of whiskers across species.

A linear function is also able to capture the overall trend of whis-

ker taper from thick base to thinner tip. However, it is worth bearing

in mind that whilst a linear function of taper is able to fit whisker out-

lines with low residuals (RSD < 2% of whisker length), many whiskers,

such as those of harbour seals, are observed to have undulating sur-

faces, the details of which are not captured by linear functions. In

spite of this, those whiskers that have undulating surfaces still pro-

gressively reduce in thickness from base to tip, with “beads” or

undulations close to the tip being smaller in diameter than those at

the base (Ginter et al., 2010, 2012; Hanke et al., 2010; Summarell

et al., 2015). Whisker taper has been identified as a key morphological

property of whiskers that improves both tactile and distance discrimi-

nation (Hires et al., 2013, 2016; Williams & Kramer, 2010) as well as

3D-object localisation (Huet et al., 2017). However, while taper and

curvature are suggested to improve aspects of tactile sensing, it is

unclear how these two parameters might impact other aspects of

whisker sensing, such as hydrodynamic signal detection.

4.2 | Aquatic and terrestrial whiskers

Whisker taper and normalised length, approximated by PC1, described

the most variation in whisker shape in our data. In particular, taper

and length significantly differed between our species, such that

aquatic and semi-aquatic whiskers have shorter (normalised length)

whiskers that are thicker at the base (larger taper coefficient ω0) and

more extremely tapered (larger taper coefficient ω1). Previously, it has

been suggested that whisker specialists with many, long whiskers are

found on small, nocturnal, climbing animals (Ahl, 1987;

Muchlinski, 2010; Muchlinski et al., 2020; Pocock, 1914). We confirm

this with the correlations found in our data, that smaller mammals

have relatively longer and more slender whiskers than larger mam-

mals. This can be observed in Sorex araneus, Sorex minutus, Crocidura

russula, Micromys minutus, and Mus musculus (Table 1), all of which are

small rodents or insectivores, with the capability of climbing, although

not strictly identified as arboreal in our data.

Many aquatic mammals are also considered whisker specialists

(Bauer et al., 2018; Grant & Arkley, 2015), and we suggest that they

have a different whisker morphology, better able to cope with sensing

in an aquatic environment. Specifically, that they have stiffer whiskers

that are shorter and wider at the base with high taper gradients. It has

previously been suggested that whisker taper allows for a fine, sensi-

tive tip whilst the increased basal diameter maintains the overall rigid-

ity of the whisker, allowing the follicle musculature to position the tip

accurately (Summarell et al., 2015; Williams & Kramer, 2010). In

aquatic environments, where fluid flow is liable to subject whiskers to

larger forces, increased basal diameters may help to maintain intrinsic

whisker shape and control of tip position, whilst the relatively shorter

length of aquatic whiskers reduces drag (Hanke, Wieskotten, Mar-

shall, & Dehnhardt, 2013). Conversely, slender and more flexible whis-

kers found on terrestrial mammals will bend and deflect more easily

around environmental objects when exploring in tight, enclosed

spaces.

Adaptation to the aquatic environment is likely to be a key driver

in whisker morphology, especially in pinnipeds. Pinniped whiskers are

morphologically diverse compared to other species. Whereas most

mammalian whiskers have circular cross sections, those of phocids

and otariids are better described by an ellipse (Ginter et al., 2010,

2012). This means that pinniped whiskers are stiffer in the direction

where the whiskers are thicker (along the major axis) (Summarell

et al., 2015). However, the difference in diameter between the major
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and minor axes can be quite variable; Grey seals (Halichoerus grypus)

have more elliptical whiskers in cross-section, and Weddell seals

(Leptonychotes weddellii) have more circular whiskers (Summarell

et al., 2015). The most studied whisker adaptation in pinnipeds is the

presence of undulations along the shaft, which are observable in most

phocids (Ginter et al., 2010, 2012; Gläser et al., 2011; Hanke

et al., 2010; Krüger, Hanke, Miersch, & Dehnhardt, 2018; Niesterok,

Dehnhardt, & Hanke, 2017; Summarell et al., 2015) (Figure 1a). These

undulations are believed to reduce signal to noise ratios in flowing

water (Hanke et al., 2010; Kottapalli, Asadnia, Miao, &

Triantafyllou, 2015). Summarell et al. (2015) found that smooth whis-

kers were stiffer than undulating whiskers. Since phocids, with undu-

lating whiskers, tend to be better at hydrodynamic tasks (Gläser

et al., 2011; Hanke et al., 2013; Krüger et al., 2018; Niesterok

et al., 2017), the authors suggest that having some flexibility of the

whiskers might be useful for hydrodynamic sensing in phocids, while

stiffer whiskers might be better for touch sensing in otariids. While

we suggest here that aquatic mammal whiskers are stiffer than those

of terrestrial mammals, for otariids and phocids, a more complex

three-dimensional approach may be needed in order to fully compare

whisker stiffness between these species, especially to better under-

stand the functional significance of whisker stiffness.

The quick and easy scanning and analysis methods that we pro-

pose here are able to accurately capture gross measures of whisker

curvature and taper, enabling lots of data to be collected for compara-

tive analyses. The linear taper and curvature models described here

provide a basis for comparison that can serve as benchmarks. These

methods are especially suitable for species that are likely to have cir-

cular whisker cross-sectional shapes, such as in terrestrial mammals;

however, they cannot capture all the observed variation in morphol-

ogy that occurs in otariids and phocids. Incorporating two-dimensional

measures of taper and curvature into bio-mechanical models is also a

challenge. The interplay between morphology, mechanics, and

vibrotactile sensing is complex and not well-understood. Damping will

occur within the follicle and will depend on the follicle anatomy, blood

supply, and surrounding muscles, which all might be under active, or

passive, control (Hartmann, Johnson, Towal, & Assad, 2003;

Hyvärinen, 1989; Mitchinson et al., 2004). The arrangement of mech-

anoreceptors within follicles will also vary from species to species

(Ebara et al., 2002; Hyvärinen, 1989; Jones & Marshall, 2019; Mar-

shall, Amin, Kovacs, & Lydersen, 2006; Sprowls & Marshall, 2019), so

exactly how and where whisker deflections and vibrations are

detected will vary between species. It is evident that there is much to

learn about whiskers; further studies could usefully explore relation-

ships between morphological variation and evolutionary adaptations,

in particular with respect to the “whisker specialists,” including aquatic

and scansorial mammals.

5 | CONCLUSIONS

Gross two-dimensional whisker shape is relatively conserved across

mammals and can be summarised by Euler spiral models of curvature

and linear models of taper. We find that small mammals tend to have

relatively long, slender, and flexible whiskers, while aquatic mammals

have relatively thicker, stiffer, and shorter whiskers. Both of these

groups are often considered whisker specialists. While whisker spe-

cialists may commonly use their whiskers for navigation and foraging

in their dark, complex environments, the mechanical implications of

these two whisker morphotypes are likely to affect mechanical signals

in the follicle, as well as whisker function.
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