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ABSTRACT
Street frontage quality is an important element in urban design as
it contributes to the interest, social life and success of public spaces.
To collect the data needed to evaluate street frontage quality at the
city or regional level using traditional survey method is both costly
and time consuming. As a result, this research proposes a pipeline
that uses convolutional neural network to classify the frontage of a
street image through the case study of Greater London. A novelty of
the research is it uses both Google streetview images and 3D-model
generated streetview images for the classification. The benefit of
this approach is that it can provide a framework to test different
urban parameters to help evaluate future urban design projects. The
research finds encouraging results in classifying urban frontage
quality using deep learning models. This research also finds that
augmenting the baseline model with images produced from a 3D-
model can improve slightly the accuracy of the results. However
these results should be taken as preliminary, where we acknowledge
several limitations such as the lack of adversarial analysis, labeled
data, or parameter tuning. Despite these limitations, the results of
the proof-of-concept study is positive and carries great potential in
the application of urban data analytics.
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1 INTRODUCTION
The field of urban design primarily concerns the space between
buildings and how this can influence the way that pedestrians move,
navigate, interact, live and work in cities. In this study, we focus on
the design of streets, and in particular, active urban street frontage
[18]. In the urban design literature, active frontage is defined as
ground floor building frontage having windows and doors as op-
posed to blank walls, fences and garages [15]. The quality of street
frontages is an important element in urban design, as it contributes
to the wider interest, social life and success of public space [4][5].
There are multiple benefits in creating successful public spaces
through active street frontage. These include social benefits such as

safety factors, economic benefits such as the increase in property
value, and health benefits such as improved pedestrian access [8].
A particularly important notion in the quality of street frontage
is that it can provide natural surveillance at street-level. To put
it more simply, the greater the number of doors, staircases and
windows fronting a street, the safer and the more inclusive does
the street seem. As Jacobs [9] famously said, there are potentially
more "eyes-on-the-streets", which brings greater sense of security
at the street level. Quantitatively, the concept of active frontage
has been expressed through indicators such as the facade evalua-
tion scale, in which a higher grade (A) has a greater frequency of
fenestrations and doors than a lower grade (E), which has lower
frequency [8][18]. To measure these metric requires many struc-
tured interviews with professionals. Therefore, to collect the data
required to evaluate street frontage quality at the city scale is both
costly and time-consuming. One approach is to cast this problem
as a classification problem in machine vision. This research applies
deep learning methods to the classification of urban street images.
These machine learning techniques have made great advances in
image classification [11], object detection [6], image segmentation
[1] and edge detection [12]. This research proposes a pipeline and
a proof-of-concept that uses a convolutional neural network in
classifying the street frontages of a front-facing street image. This
research differs from previous research in that it focuses on first
of all classifying a street image into four classes of ground-floor
street frontages, and secondly in augmenting the training dataset
with 3D-modelled street image data. The benefit OF using a mixed-
reality approach is that it could provide a framework that can be
used to test different urban design parameters.

2 PREVIOUS WORKS
Despite the many benefits of active street frontages [8], there has
been limited computational research in the classification of street
frontages using street image data [13]. Four studies are here referred
by way of illustrating the current status of computation techniques
in urban street image analysis.

The first is from Doersch et al. [2], who uses object detection to
identify distinctive local architectural features in a case study of
Paris. In this study, architectural elements such as cast iron railings,
fenestrations and doors have been identified as distinctive features
in the Parisian streetscape. The research uses traditional machine
vision features such as histograms of oriented gradients in architec-
tural object detection. This research was successful in identifying
distinctive architectural features and was one of the earlier studies
to use classical machine vision techniques in architecture.



The second is the study by Naik et al. [14], who use streetview
images to estimate the perceived quality of streets. A large-scale
crowdsource game known as ’Place Pulse’ was developed in order to
assess the perception quality through a pairwise image comparison.
The author called this perception indicator Streetscore[17] and it
has been used to identify historic districts in cities, to quantify
urban changes and to determine urban perception on a global scale.

The third study is by Seresinhe et al [16], who used an image-
database from an online game called ’Scenic-or-not’ in which vis-
itors would rate a random outdoor image in the UK on a scale
from 1-10. The novelty of the study is that it uses deep learning
techniques to estimate the perceived scenicness of outdoor images
in the UK. The study also found that places with flat topography
such as large areas of flat grass are associated with lower scenicness
while places with varying topography such as valleys are associated
with greater scenicness.

The final study is by Liu et al [13]. This study uses streetview
images to estimate the visual quality of a street facade. It compares
ratings collected from the survey to train an image classifier in pre-
dicting a facade quality evaluation scale. The results show that the
ratings predicted by the machine learning algorithm is comparable
to those defined by domain-experts.

The current study extends from these previous works in examin-
ing the quality of street facades, and it also differs from the earlier
studies in two ways. First of all, this study collects front-viewing
street image data from the median of a street rather than image
data perpendicular to the street. This allows the streetview image
to be classified into four groups; 1. active on both sides of a street,
2. blank frontage on one side of a street, 3. blank frontage on both
sides of the street, and 4. non-urban frontage on both side of a street.
Secondly, it also compares the baseline model that uses only street
images collected from the Google Streetview API [7] to a model
that augments that baseline model with street images produced
from a 3D model of the city. finally, the model is used to predict
both ground truth labels on images from Google streetview as well
as the 3D-model streetview separately.

3 METHOD AND MATERIALS
This study proposes the StreetFrontageNet (SFN) model, which clas-
sifies the ground floor of a front-facing streetview image into four
categories. In order to train the classifier, this study uses Greater
London, fig1, as the case study, and collects two ground truth
streetview image datasets. The ground truth images are subse-
quently trained and tested using a CNN image classifier. Figure
2 shows the proposed pipeline, which consists of data collection,
ground truth labelling and CNN image classification.

3.1 Data collection
We first describe the data collection of the two image sets. The
first set is comprised of street images from Google Streetview API
[7](©2017 Google Inc. Google and the Google logo are registered
trademarks of Google Inc.). Using the API, one front-facing image
has been collected for each streets in the Greater London Area.
To collect the dataset, we first constructed a graph from the street
network of London (OSMeridian line2 dataset), in which every node
is a junction and every edge is a street. We then took the geographic

Figure 1: Greater London study area. ContainsOrdnance Sur-
vey data ©Crown copyright and database right ©2017.

Figure 2: StreetFrontageNet modelling pipeline

median and the azimuth of the street edge between two junctions
to give both the location and the bearing of each streetview image.
This is to ensure the streetview images are constantly front-facing
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and are taken from the centre of the road rather than from near the
junction. This reduces the problem of images being too close to the
junction. The field of view has been set to 120 degree in order to
ensure that both sides of the facades are captured. 110,000 images
have been collected from this process.

The second set comprises street images generated from a 3D
model of an abstract city produced in ESRI City Engine [3](©1995-
2017 ESRI. All rights reserved.). To re-create the effect of a blank
surface at ground level, a four metre high blank wall was modeled
at the edge of the pavement, representing a blank surface. Two
types of surfaces were chosen for the blank wall, namely a brown
coloured one representing wood and another the colour of concrete.
A simulation of an agent walking along a random path in this ab-
stract city was then recorded at 10 frames per second. The objective
was to replicate a similar sequence of images to that of the Google
streetviews. A total of 4800 images were collected by this process.

3.2 Ground truth labelling
The research then progressed and the two image datasets men-
tioned in the previous section were labelled. First, we processed
and labelled the Google streetview images, which involved remov-
ing invalid images such as the interior of buildings and those in
which, facades had been obscured by large vehicles such as buses.
We also removed images that were too dark or those not available
on Google Streetview. A series of automatic functions and manual
processes were also used to identify and remove invalid images.
Figure 3 shows examples of the invalid images.

Figure 3: Invalid images. From left to right, not available
image, dark image, interior image, interior image. ©2017
Google Inc. Google and the Google logo are registered trade-
marks of Google Inc.

Following the cleaning process, 10,000 images were randomly
selected. This dataset was then resized into a set dimension (256
pixels x 256 pixels) and the ground truth labelling was then manu-
ally performed by the author. This study defines active frontages
[15] as those in which the ground floor building frontage has win-
dows and doors as opposed to blank walls, fences or garages. For
the Google streetview images, four street frontage classes were
adopted namely; 0 - active frontage on both sides of the street; 1
- active frontages on one side of the street; 2 - blank frontage on
both sides of the street; 3 - rural/non-urban/unclassified images.
The four classes of urban street frontages can be seen in figure 4.

Second, we then processed and labelled the 3D-model streetview
images. This process included removing invalid images close to
intersection, images taken at the end of a road, those that are not
facing the street and duplicate images. There were many duplicate
images due to the high number of frames per second. Following

Figure 4: Google Streetview urban frontage images. From
left to right, active frontage, single-sided active frontage,
blank frontage, non-urban/unclassified frontage. ©2017
Google Inc. Google and the Google logo are registered trade-
marks of Google Inc.

the cleaning process, 1029 images were randomly selected. This
dataset was then similarly resized into a set dimension (256 pixels x
256 pixels). The ground truth labeling was performed automatically
as we produced two sets of images from the 3D model; one with
blank walls representing blank frontages and one without blank
walls representing active frontages. For the 3D-model of streetview
images, two classes of frontages were adopted, namely; 0 - active
frontages on both sides of the street and; 2 - blank frontages on both
sides of the street. The two classes of street frontage facade can be
seen in figure 5. One limitation is that this study did not produce
any 3D-model single-sided active frontage images or any 3D-model
non-urban images. Future research will consider augmenting the
SFNmodel through simulated street frontage images of both classes.

Figure 5: 3D model urban frontage images. Left: Active
frontages, Right: blank frontages. ©1995-2017 ESRI. All
rights reserved.

3.3 CNN image classifier
These two datasets were then fed into three separate Convolutional
Neural Network (CNN) models. The first CNN model used the
Google streetview image data, the second model used both the
Google streetview image data and the blank frontage images from
the 3D streetview model. The third CNN model used the Google
streetview image data as well as both the active and blank frontage
images produced from the 3D streetview model. This study selected
the widely used Alexnet CNN architecture [11] due to its wide use,
efficiency and performance. For robustness, future research should
consider more advanced image classification architectures such as
VGG and Googlenet.

This study uses the Alexnet architecture [11]. The model has
five convolution layers and three fully connected layers that detect
basic edges in the earlier layers up to more complex shapes in the
latter layers. Similar to [16], we also used transfer learning from
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Figure 6: Loss graph comparing a fine-tunemodel vs amodel
from scratch after 5000 iterations

the Places Database [19] to leverage knowledge from the weights
of the pre-trained model. Figure 6 compares the results of a fine-
tuned model (transfer learning model) in blue with a model built
from scratch in orange. The result shows that the fine-tuned model
produces lower losses and converges more quickly than the same
CNN model from scratch. This conforms to the current practice for
image classification. To train, we modified the last fully connected
layer (fc8 in Caffe) of the eight-layer Alexnet to classify four output
units. Softmax function 1 is then used to estimate the probability
distribution of an image class.

p̂nk =
exp(xnk )∑K
k=1 exp(xnk )

(1)

We have split the dataset where 80% is used for training and 20%
is used for validation. We train the CNN using stochastic gradient
descent (SGD) in the Caffe Library [10]. The learning rate starts
at 10−4 and it drops to 10−5 after the 2500 iterations. The weight
decay parameter is set to 5−4 with a SGD momentum of 0.9. These
parameters achieved a high accuracy for the study. Fine-tuning of
the model parameters will be tested in future studies.

4 RESULTS
To test the accuracy of the three models, we first compared the
Google streetviews ground truth label with the most likely frontage
class predicted in model 1 that uses only Google streetview images,
model 2where the baselinemodel is augmentedwith blank-frontage
images generated from the 3D streetview model, and also with
model 3, in which the baseline model is augmented with both
active as well as blank frontage images generated from the 3D
streetview model. The result in table 1 shows, first, that all three
models achieve a high accuracy when predicting the ground-truth
label. Model 1 achieves 75% accuracy, while model 2 achieves 79%
accuracy and model 3 achieves 77% accuracy. The results show that
the model with the 3D augmented data achieves similar or slightly
better results than the model without the 3D augmented data 1.

We then compared the 3D model streetview ground truth label
with the most likely frontage class predicted from the three models.
The results in table 2 show that model 1 achieves a 43% accuracy

while model 2 and model 3 achieves over 95% accuracy. This is to
be expected as the training set for both models 2 and 3 contains
images from the 3D-model, while model 1 does not. This suggests
that real streetview images cannot be used in this case to predict
the 3D-model ground truth data. This is somewhat contradictory
to the previous results. Further research is needed to validate this
outcome.

Table 1: Google Streetviews prediction accuracy

Model description accuracy

model 1 base model 75.27
model 2 base + 3D(blank) 79.06
model 3 base + 3D(blank + active) 77.79

Table 2: 3D-model Streetviews prediction accuracy

Model description accuracy

model 1 base model 42.66
model 2 base + 3D(blank) 94.46
model 3 base + 3D(blank + active) 98.05

Finally, we used the best performing model to predict the proba-
bility of an active frontage on every single street segment in London.
The results can be seen in figure 7, in which red represents a greater
probability of active frontages and blue represents a lower probabil-
ity of active frontages. The results show that central London has, as
expected, a higher probability of active frontages. This is probable
as Central London has a higher urban density. The results also
show that areas such as the Isle of Dogs have a higher probability
of having blank frontages. This is consistent with the consensus,
in which the urban nature of newer areas are generally less active
and less pedestrian friendly.

5 DISCUSSION
To end, this study finds encouraging results in classifying urban
street frontage quality using deep learning CNN models [16] [13].
This research also finds that augmenting the baseline model with
images produced from the 3D-model can improve the overall ac-
curacy of the model. However these results should be taken as
preliminary, where we acknowledge several limitations such as the
use of a simple CNN architecture, the lack of adversarial analysis,
labeled data, or parameter tuning. Secondly, the focus on classifying
a simple urban design parameter for a single case study reduces
the extent the research results can be generalised. The study, for
example, does not differentiate between a wall with a small window
or a large one. Thirdly, the images from Google streetviews are
not entirely reliable. Concerns can range from visual obstruction
to poor lighting condition. A semi-automatic process of image re-
moval was implemented. However, reliability checks and further
improvements in the pipeline are necessary to improve the image
processing efficiency. Future research is needed to improve the over-
all accuracy of the results, to better understand what the computer
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Figure 7: Prediction outcome for the SFN classifier for ev-
ery single street in London. Contains Ordnance Survey data
©Crown copyright and database right ©2017.

actually sees within the CNN model and the extent augmented
3D-images can be used to replace real ones and vice versa. Despite
these limitations, the results are encouraging as a proof-of-concept
study. Knowing the geographical distribution of active and blank
frontages is an important topic for urban planning. The implication
is that these models can be used to reduce the time needed for data
collection. These research can help better understand the extent
an urban design quality can influence human behaviour, social
and economic outcome at the city-wide scale using computational
techniques.
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