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ABSTRACT

This four-part enquiry treats selected theoretical and empiri-
cal developments in the Prisoner’'s Dilemma. The enquiry is oriented
within the sphere of game—theoretic conflict research, and addresses
methodological and philosophical problems embedded in the model urder
consideration.

In Part One, relevant taxonomic criteria of the von Neumann—
Morgenstern theory of games are reviewed, and controversies associ-—
ated with both the ‘utility function and game-theoretic rationality
are introduced. In Part Two, salient contributions by Rapoport and
others to the Prisoner's Dilemma are enlisted to illustrate the
model's conceptual richness and problematic wealth. Conflicting
principles of choice, divergent concepts of rational choice, and
attempted resolutions of the dilemma are evaluated in the static
mode. In Part Three, empirical interaction among strategies is
examined in the iterated mode. A computer-simulated tournament of
competing families of strategies is comducted, as both a complement
to and continuation of Axelrod's previous tournaments. Combinatoric
sub—-tournaments are exhaustively analyzed, and an eliminatory ecolog—
ical scenario is generated. In Part Four, the performance of the
maximization family of strategies is subjected to deeper analysis,
which reveals critical strengths and weaknesses latent in its dec—
ision—making process.

On the whole, an inter-modal continuity obtains, which suggests
that the maximization of expected utility, weighted toward probabil-
istic co—operation, is a relatively effective strategic embodiment of
Rapoport's ethic of collective rationality.
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INTRODUCTION

John von Neumann, who made several outstanding contributions to
scientific endeavour, founded—together with Oskar Morgenstern—an
entirely new branch of maLtl'xematim.1 Their formal Theory of Games was
developed between 1928-1943 and, in the five decades since its first
appearance, it has been adapted, applied and extended to a broad
range of philosophical, mathematical, and social scientific inter-
ests. This enquiry addresses itself to one of the formative problems
that emerged from the theory of games; namely, the Prisoner's Dilem—
ma.

This problem itself has developed into a panoply of multi-
disciplinary concerns, to the extent that it would require no mean
feat of research even to classify the existing body of literature on
the subject. Anatol Rapoport presented a graph of the number of
scholarly papers on the Prisoner's Dilemma for each year of the
decade 1960-69. He found 28 papers in 1960, and a peak of 100 papers
in 1967.2 In the mid-seventies, Shubik listed an eclectic bibliog-
raphy containing hundreds of scholarly articles on the Prisoner's
Dilelmna.3 For that whole decade (1970-79), Axelrod counted more than
350 citations on the Prisoner's Dilemma in Psychological Abstracts
alone, which prompted his remark “The iterated Prisoner's Dilemma has
become the E. coli of social psychology".4

The substantial and growing body of literature on the subject
extant serves notice that the Prisoner's Dilemma is a model rich in
implications and ramifications, both theoretical and empirical, to

and for researchers in many disciplines. This enquiry examines the

1 J. von Neumann & O. Morgenstern (1944), Theory of Games and

Economic Behaviour, John Wiley & Sons Inc., N.Y., sixth edition,
1955.

! A. Rapoport (ed.), Game Theory as a Theory of Conflict Resolu-
tion, D. Reidel Publishing Co., Dordrecht, 1974, p.20.

3 M. Shubik, The Uses and Methods of Gaming, Elsevier Scientific
Publishing Company, N.Y., 1975.

s R. Axelrod, “Effective Choice in the Prisoner's Dilemma’,
Journal of Conflict Resolution, 24, 1980a, pp.3-25.
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two—person Prisoner's Dilemma within the sphere of game-theoretic
conflict research. Through a consideraton of methodological and
philosophical problems embedded in the model, the enquiry studies
conditional resolutions in the static mode, arnd develops a parametric
approach to strategic robustness in the iterated mode.

The enquiry consists of four principal parts. Parts One and Two
are theoretical in nature; Parts Three and Four, empirical.

Part One recapitulates certain fundamental precepts of and
difficulties latent 1in the theory of games, in so far as these
pertain to the “classical" formulation of the Prisoner's Dilemma. A
suitable frame of reference and appropriate terminology are thereby
introduced, which in turn allow the problem itself to be set out both
succinctly and unambiguously.

Part Two examines the static case of the Prisoner's Dilemma,
and elucidates the fundamental conflict between two principles of
choice (dominance versus maximization of expected utility). Two
proposed ''resolutions” of this conflict are considered: a decision—
theoretic reformulation of Newcomb's paradox, and a stable meta—game—
theoretic matrix, both of which favour mutual co—operation as a
result of ‘the maximization of expected utility. However, an argument
is rehearsed which asserts that, notwithstanding the validity of
these resolutions, the dilemma pérsists nonetheless.

Part Three examines the iterated case of the Prisoner's Dilem—
ma, in which static principles of choice are replaced by dynamic
strategies. The cogent outcomes of Axelrod's two computer—conducted
tournaments are summarized,5 and the results of a third tournament
are analyzed and discussed in some depth. This third tournament
(inspired by MAxelrod's former two) features competition not only
among individual strategies, but also among '"families" of related
strategies. In the computer-simulated environment of the third
tournament, the family of strategies which maximizes expected utility
proves relatively effective. But (in similarity to the static case)

3 Axelrod, 1980a, & idem., “More Effective Choice in the Prison—
er's Dilemma', Journal of Conflict Kesolution, 24, 1980b, pp.379-403.
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it 1is argued that no single strategy (or family of strategies) can
claim absolute superiority in the iterated Prisoner's Dilemma.

Part Four examines the performance characteristics of the
maximization family under a higher power of analytical resolution.
The examination reveals some interesting and unexpected properties of
this strategic family, and subsequent analysis is devoted to an
account of how and why these properties emerge. The enquiry's pers—
pective and main findings are then summarized, and some pertinent
conclusions are drawn.

The Appendices offer the following supplementary information
and/or data.

Appendix One provides a glossary of strategic families, acro-
nyms and summarized decision rules, intended for rapid reference.

Apperdix Two gives the complete table of raw scores for the
main tournament involving twenty strategies. Each strategy competes
against the others, and against its twin. A 20 x 20 matrix of raw
scores results.

Appendix Three contains efficiency tables for the combinatoric
sub~tournaments, which are employed in the evaluation of strategic
robustness. (The generation and usage of this data are explained in
Chapter Eight.)

Apperdix Four affords documented samples of the computer
programs used in the experiment and in subsequent data analysis. Ten
tournament programs are listed, each of which simulates a competition
between two different strategies. Thus each of the twenty strategic
algorithms appears once in sample form. The main analytical programs,
and some relevant supplementary routines, are also listed.

To a large extent, this study 1is inspired and motivated by
invaluable works of Professors Anatol Rapoport and Robert Axelrod
(among other game—theorists). Its intent is both to develop a context
which permits juxtaposition of their significant contributions, and
also to contribute a modest sum of findings to the great wealth of
their tradition.



PART ONE:
GAME-THHEORETIC BACKGROUND

12
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Chapter One

While the. theory of games embraces concepts subject to diver—
gent interpretation (such as rationality and utility), there is
little dispute over the theory's ability to classify games effective—
ly. The useful taxonomic criteria set out by von Neumann and Morgen—
stern have been adopted, virtually without dissent, as the definien—
tia to date.

In game—-theoretic terms, then, the basic Prisoner's Dilemma is
classified as a two—person, non—zero—sum, non—co—operative game. A
brief clarification of this terminology may serve to explain not only
what kind of game the Prisoner's Dilemma is (and is not), but also
why it holds such fascination for game theorists of many stripes.

Most generally, a degree of knowledge about any game is con—
ferred by the very act of classifying it (or examining its prior
classification, as the case may be). Just as fundamental properties
of an element are revealed by its position in the periodic table, and
similarly as common properties of flora and fauna are attributed by
Linnaean nomenclature, so are the important properties of games
spelled out by the respective method at hand. But a deeper purpose
resides in the classification of games, in addition to their logical
ordering as conceptual objects: once a game is correctly classified,
one knows whether the theory is prescriptive, or merely descriptive,
of its play. Thus the taxonomic structure of game theory allows the
identification of those constituents over which the theory has
normative power, and therein lies its usefulness. Examples will be
cited to illustrate this point.

To begin with, however, one may justly ask: what is meant by a
game? In reply, it seems reasonable to quote the authors of the
theory:

"The game 1is simply the totality of the rules which
describe it. Every particular instance at which the game
is played—in a particular way—from beginning to end, is
a play. The game consists of a series of moves, and the
play of a sequence of choices."

I Neumann & Morgenstern, 1955, p.49.
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Viewed in this way, virtually any activity or pursuit can be treated
as a game, so long as it can be defined or otherwise described by
some set of rules,

Thus the theory of games is not restricted to pastimes of the
"parlour game" variety. It can be applied to a range of competitions,
conflicts of interest, and situations of decision-making under risk.
Most generally, then, from a game-theoretic perspective, bridge can
be viewed as a game of cards defined by the rules of Hoyle; roulette,
a game of chance governed by the rules of probability; mathematics, a
game of symbolic association developed according to the rules of
consistency; boxing,agame of pugilism ritualized by the rules of
Queensberry; driving a motor vehicle, a game of transportation
described by the rules of the road; banking, a game of monetary
transaction affected by the rules of economy; running for public
office, a game of politics influenced by the rules of expediency;
diplomacy, a game of international relations mediated by the rules of
policy.

The theory of games can scarcely be termed modest, at least in
taxonomic scope. It can classify a staggering range of activities
according to an elegant but limited set of criteria which are quan-
titative and/or Boolean in character, and which do not take into
account the correspordingly broad set of qualitative purposes that
may underlie such activities, from diversion to stimulation, from
profit to ambition, from savagery to statesmanship. The theory,
however, pays a fair price for -its universality: although it can
classify a great number of activities, its normative power turns out
to be quite constrained. The theory thus describes the play of many
games, but prescribes the play for relatively few.

Specifically, the principal taxonomic criteria that pertain to
the Priscner's Dilemma can be described as follows:

(i) Number of Players

In general, a game can be played by M persons, where M2 1 (is
greater than or equal to unity).

Single-person games, with one player, take place against some
state of nature, be it organic or synthetic. A solitary card game,
for example, is played against a given state of the deck.
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Two—person games form the core of game theory, whose axioms,
postulates and theorems are extended, where possible, from the two—
player case to cases involving more than two players.

By convention, "M-person" games refers to games involving three
or more players. Not swrprisingly, the complexity of game—theoretic
analysis tends to increase as a function of the number of players.
(The situation is loosely analogous to dynamical problems in physics
involving two bodies, three bodies, and many bodies.) MN-person
Prisoner's Dilemmas lie beyond the scope of this study, which con—
fines itself to the two-person game. However, multiple pairs are
involved in the iterated mode, where the situation is analogous to a
chess tournament. (Chess remains a two-person game, although multiple
pairs of players can .compete in iterated competitions.)

(ii) Constancy or Non—Constancy of Sum

With each game is associated a set of payoffs. These are the
gains or forfeitures of each player, which result from the play. A
constant-sum game is a game in which the algebraic sum of payoffs is
constant. The constant itself may be less than zero, zero, or greater
than zero. In tournament chess, for example, the winning player
receives one point; the losing player, zero points; and in the event
of a stalemate or draw, each player receives a half-point. Tournament
chess is thus a constant-sum game whose sum equals unity.

A zero—sum game forms a special class of constant-sum games, in
which the algebraic sum of payoffs equals =zero. In poker, for in—
stance, the total sum of monies (or matchsticks) won by the winning
players equals the total sum of monies (or matchsticks) lost by the
losing players. This remains vacuously true if all players "hreak
even'"; i.e. if no-one wins or loses. Poker is thus a zero—-sum game.

A non-constant-sum game is a game whose sum of payoffs is not
constant. In cribbage, for instance, each player accumulates points
until one and only one player wins by surpassing one hundred and
twenty points. The algebraic sum of all players' points is non—zero,
and can assume a range of values up to and including 121 + 120(M1),
for an Mplayer game. Cribbage is thus a non—constant-sum game, with
respect to points scored.
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Every game is either constant—-sum and non-zero—sum, zero—sum,
or non—constant-sum, with respect to a particular set of payoffs. A
game may have more than one set of payoffs. War, for instance, is a
negative non—constant-sum game with respect to lives lost in battle;
it is also a zero—sum game with respect to territory that changes
hands as a result of battle.

It should be noted that any constant—sum game can be repre—
sented as a zero-sum game (by means of adjusting the payoffs in its
matrix) .2 Consequently, "Every constant-sum. game is strategically
equivalent to a zero—sum game."3 In the broadest sense, then, it is
most convenient to refer to a game as either zero—sum or non—zero—
sum.

(iii) Co—operation

A game is said to be co-operative (or negotiable) if the
players can communicate their respective intentions prior to a move,
or agree upon co-ordinated strategies, and thereby influence the
play. Arbitration, negotiation, collusion, and conciliation, among
other processes, reflect possible aspects of co—operation. The sphere
of economics, for instance, admits of a host of co—operative «_t;a\mes,4
as do numerous social interactions in daily life.

A game is said to be non—co—operative (or non—negotiable) if
"absolutely no preplay communication is permitted between the play-
ers".5 Conceivably, the rapidity or automation of play itself can
weigh heavily against co-operation, if such play outpaces the speed

2 a proof can be found in R. Jeffrey, The Logic of Decision,
McGraw-Hill Book Company, New York, 1965, pp.14-30.

3 Neumann & Morgenstern, 1955, p.348.

! A pioneer of negotiable games is Nash. E.g. see J. Nash, “The
Bargaining Problem', Econometrica, 18, 1950, pp.155-162. For a
perspective on negotiated games, see e.g. A. Rapoport, Iwo—Person
Game Theory, The University of Michigan Press, Ann Arbor, 1966,
pp.94-122. For a study of co-operative games in terms of economic
cybernetics, see e.g. Vorob'ev, N., Game Theory, Lectures for Econom—
ists and Systems Scientists, s.v. S. Kotz, Springer-Verlag, N.Y.,
1977.

% D. Luce & H. Raiffa, Games and Decisions, John Wiley & Sons
Inc., N.Y., 1957, p.89.
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of communication. To cite a most drastic example, the Cold War has
been non—co—operative in the sense that a nuclear war could be trig-
gered accidentally, without adequate time for human inter'vention.6
The installation of the so—called "Hot Line" between Washington and
Moscow represented an early attempt, in game-theoretic terms, to
offset cybernetic non—co—-operativeness by introducing an element of
human communication at the highest echelon of decision-making.

In general, a game may be co—operative, non—co-operative, or
partly co-operative, with respect to the players' choices and their
respective payoffs.

(iv) Strictness of Determination

A zero—sum game is said to be strictly determined if and only
if a saddle point exists in its normal matrix representation. This
property proceeds from the fundamental theorem of the functional
calculus of two—person zero—sum games, which states the necessary and
sufficient condition for the existence of a saddle point. From
subsequent commentary in game—theoretic literature, it is evident
that two foci of contention (utility and rationality) originate from
the postulates leading to the statement of this theorem. An outline
of the theorem follows.

A game matrix is constructed according to the following conven—
tion: suppose two players, A and B, have respective choices

{g).4...,a) and {1’191’:}

for a given move in a zero—sum game. Then an n-by-m matrix of mutual
choices obtains:

6 E.g. see A. Grinyer & P. Smoker, ~It Couldn't Happen - Could
It? An Assessment of the Probability of Accidental MNuclear War',
Richardson Institute far Conflict and Peace Research, University of
Lancaster, 1986; and D. Frei, Risks of Unintentional Nuclear War,
Published in Cooperation with the United Nations Institute for
Disarmament Research, Allanheld, Osmun & Co. Inc., Totowa, N.J.,
1983.
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Game 1.1 - Generalized Matrix of Choices

- - B
(a.b) (4. ... (a.%)
2 (.5 (.5 ... (a.8)
(@0 (a.» ... (3.%)

Every possible joint choice of the two players—and thus every
hypothetical game—state for that move—is uniquely represented by
some entry in the matriX. But Game 1.1 is unplayable, since the
players can neither express preference among possible choices, nor
implement principles of choice, without first knowing the payoffs for
each possible ocutcome of their joint choosing. Once the payoffs are
stipulated, they must be value-ordered according to the preferences
of the players. And so arises the necessity of transforming each
outcome (or payoff) into its respective value to each player.

For the time being, let the existence of such a transformation
be assumed. Von Neumann and Morgenstern call it ¢, the "utility
function".7 The function is mathematically acceptable, but game—
theoretically controversial. It maps the preference for each game—
state into the utility of that game—-state, U, to each player. The
utility itself is a real number. So, for the xth choice of player A,

and the yth choice of player B,
ny = @(q[,by)

For convenience, let (8 l? be written as simply as (x,y). Then
ny = ¢(x, 1

vwhere, by convention, ny is the utility of the joint play (x,y) to

7 Neumann & Morgenstern, 1955, pp.88-123.
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Player A. Since the game in question is zero—sum, the utility of the

joint play (x,)) to player B is simply -—({q. Applying ¢ to all (x.,y)
in Game 1.1 results in a playable game:

Game 1.2 — Generalized Matrix of Utilities

B
$(1,1) ®(1,2) . . . &(1,m)
8(2,1) #(2,2) ... &@2.m
2 . . .
&(n1) &m2) ... &nm

By virtue of tl:xe utility function, the players can assess the
values of all possible outcomes for that move, and each player can
then exercise his individual preference accordlrgly

At this Juncture von Neumann and Morgenstem mtroduce the Max
and Min operators. Ma@(x,y) 1is the maximum value of &(x,y) in
column y, and Miny‘b(x,y) is the minimum value of &(x,y) in row x.
Then Ma:&M:vfb(x.y) is the maximum of column maxima; Mianz'rib(x,}’),
the minimum of row minima.

It can be shown that the operators [Ma)Q,Maygl and [Minx,ﬂl'l}]
commute. In other words, the maximum of column maxima is congruent
with the maximum of row maxima, and the minimum of row minima is
congruent with the minimum of column minima. But there is no general-
ization as to the commutativity or non-commutativity of [Max ,Mil}] .
Two examples illustrate the point:

Game 1.3 — A Case in Which All Operators Commute
B
i,-1 2,-2 3,3
A 4,4 5,5 6,6
7,-7 8,8 9,-9

In Game 1.3, with respect to player A, the column maxima are
seven, eight and nine respectively; the maximum of column maxima is

Ibid.
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therefore nine. The row maxima are three, six and nine respectively;
the maximum of row maxima is therefore nine. Similarly, the minimum
of row minima is congruent with the minimum of column minima (at
one).

And in this case, the minimum of column maxima happens to be
congruent with the maximum of row minima (at seven). But consider
another case:

Game 1.4 — A Case in Which Not All Operators Commute
B
9,9 2,-2 3,3
A 4,4 5,5 6,6
7,-7 8,8 1,-1

In Game 1.4, again with respect to player A, the maximum of
column maxima is congruent with the maximum of row maxima (at nine);
and the minimum of row minima is congruent with the minimum of column
minima (at one).

But in this case, the minimum of column maxima is six, whereas
the maximum of row minima is four. The two are not congruent.

Although Games 1.3 and 1.4 have been viewed from the perspec-
tive of player A, the assertions concerning column and row operators
are symmetrically consistent for player B. If viewed from player B's
perspective, what was a column (to player A) 1is now a row, and vice-
versa.

Mutatis mutandis, for player B in Game 1.3, the minimum of
column minima is congruent with the minimum of row minima (at minus
nine); the maximum of column maxima is congruent with the maximum of
row maxima (at minus one); and the minimum of column maxima happens
to be congruent with the maximum of row minima (at minus seven).

Similarly, for player B in Game 1.4, congruency obtains for the
minima of column and row minima (at minus nine), and for the maxima
of row and column maxima (at minus one). However, the minimum of
column maxima (at minus four) is not congruent with the maximum of
row minima (at minus six).
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Thus the operators are symmetrically consistent for both
players.

Once it has been established that like operators always com—
mute, while unlike operators do not always commute, then a saddle
point can be defined:

"Let &(x,y) be any two—variable function. Then (x,)) is

a saddle point of & if at the same time #(x,;) assumes

its maximum at x=x and $(y,») assumes its minimum at

"

Now, the fundamental theorem under consideration states that
Ma)&Mir}tb(x,y) = Min,Ma:@(x,y) if, amd only if, there exists a saddle
point (X .})). For a given game, there is no a priori guarantee of
the existence of such a point. But if a saddle point exists, then
that game is said to be strictly determined.

The property of strict determination is crucial both to the
rationalization of a game, and to its play. Games which have this
property are rationalized, amd played, in a critically different way
from those which lack it. To appreciate the difference in play, let
games 1.3 ard 1.4 be set out side-by-side, and re—interpreted (as
games 1.5 and 1.6 respectively) in terms of this property.

In Game 1.5, Player A stands to gain no matter which outcome
obtains. If A chooses the first row, he can gain no less than one; if
the second row, no less than four; if the third row, no less than
seven. A payoff of seven is the best of the worst possible outcomes
for player A. Thus A should choose the row containing this payoff,
since such a choice would maximize his minimum gain (hence the term
"maximin").

' Ibid., p.9s.
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Game 1.5 — A Saddle Point Game 1.6 — No Saddle Point
.- - B B
1,-1 2,-2 3,-3 9,-9 2,2 3,-3
) 4,-4 5,-5 6,6 A 4,-4 5,-5 6,6
7,-7 8,8 9,9 7,7 8,-8 1.,-1

Similarly, in Game 1.5, player B stands to forfeit no matter
which outcome obtains. If B chooses the first column, he can forfeit
no more than seven; if the second column, no more than eight; if the
third column, no more than nine. A payoff of minus seven is the best
of the worst possible outcomes for player B. Thus B should choose the
column containing this payoff, since such a choice would minimize his
maximum forfeiture (hence the term "minimax").

Clearly, the existence of a saddle point at (7,-7) is prescrip-
tive to both players. Each player fares best in choosing his maximin
(or minimax, respectively), regardless of the other player's choice.

In Game 1.6, however, no saddle point exists. Player A's
maximin is four; player B's minimax is minus six.

Knowing this, Player A might reason "B should choose the third
column, since it contains his minimax. Therefore I should choose the
second row, in order to gain six."”

Knowing that, player B might reason "If A chooses the secord
row, then I should choose the first column, in order to forfeit only
four." .

Knowing this, player A might reason "If B chooses the first
column, then I should choose the first row, in order to gain nine."

Knowing that, player B might reason "If A chooses the first
row, then I should choose the second column, in order to forfeit only
two."

Knowing this, player A might reason "If B chooses the second
column, then I should choose the third row, in order to gain eight.”

Knowing that, player B might reason "If A chooses the third
row, then I should choose the third column, in order to forfeit only
one."
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Knowing this, player A might reason "If B chooses the third
column, then I should choose the second row, in order to gain six."

Thus the players find themselves in a strategic infinite
regress.w Clearly, in games without a saddle point, each player does
not have a choice that is unconditionally "best", independent of what
the other player chooses.

The difference between the play of zero-sum games with and
without saddle points is readily appreciable. Even so, a questionable
assumption was unavoidably smuggled into the argument; namely, that
both players wish to maximize their gains and minimize their losses,
respectively. If one assumes, for the time being, that to be '"ratio—
nal" is to play maximin or minimax (if the game has a saddle point),
then an important feature of strictly determined games comes to
light.

In Game 1.5, suppose that player A is rational, and player B is
irrational. Then, according to the assumption about rationality, A
would choose the third row, which contains his maximin. But player B,
being irrational, would not choose the first column, which contains
his minimax. In that case, A would gain eight or nine (as opposed to
seven), and B would forfeit eight or nine (as opposed to seven).
Generally stated, it amounts to this: in a strictly determined game,
a rational player can fare no better than by playing maximin (or
minimax) if his opponent is rational; and can fare no worse than by
playing maximin (or minimax) if his opponent is irrational.

Von Neumann and Morgenstern bring the point home: for a ration—
al player in a strictly determined game, it makes no difference
vwhether his opponent is rational or irrational, and thus "the ration—
ality of the oppohent can be assumed, because the irrationality of
his opponent can never harm a [rationall player."11

Once again, this conclusion is based upon a prior—and not
necessarily justifiable—assumption about the meaning of rationality.
So, one can assume the rationality of an opponent only in strictly

v The same point was made, using a different example, in A.
Rapoport & A. Chammah, Prisoner's Dilemma, University of Michigan
Press, Ann Arbor, 1965, p.23.

i Neumann & Morgenstern, 1955, p.128.
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determined zero—sum games, and only if one has previously assumed a
possible meaning of rationality itself. But in the universe of games,
relatively few are strictly determined; so the prescriptive aspect of
the theory  wields absolute power over a fairly thinly-populated
realm.

It would seem that the two—person, zero—sum game with a saddle
point constitutes "the limit of applicability of game theory as a
normative (or prescriptive) theory. nl2 Nevertheless, as a descriptive
theory, its power of classification appears virtually limitless.
Although the theory is not prescriptive for the majority of games,
it remains a triumph in taxonomy, and conduces to a better under—
standing of those games which it can only describe.

Despite the non—zero-sum status of the Prisoner's Dilemma, the
saddle-point criterion can exert an inimical influence upon its play.
Since the Prisoner's Dilemma is a two—person, non—zero—sum game, the
theory cannot prescribe an unconditional r‘esolut:ion.13 However, it
does describe a multitude of conditional resolutions. And therein
lies the dilemma's appeal, which devolves about elucidating varie—
gated corditions under which resolutions can be achieved. Before
examining the Prisoner's Dilemma, one must complete the game-theor—
etic background sketch, by addressing two questionable assumptions
made in the development of the taxonomy; namely, the existence of the
utility function, and the meaning of rationality.

12 papoport & Chammah, 1965, p.23.

I Von Neumann and Morgenstern showed that any Mperson, non—
Zero-sum game can be re-interpreted as an (Ml)-person, zero—sum
game. However, if the two—person Prisoner's Dilemma were re—inter—
preted as a three—person, zero—sum game, novel problems of coalition
formation would arise. E.g see A. Rapoport, Fights, Games, ard
Debates, The University of Michigan Press, Ann Arbor, 1960, pp.195-
196.
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Chapter Two
The Utility Function

The utility function can be regarded as both necessary to yet
insufficient for the theory of games. In the absence of a utility
measure, the players cannot value-order payoffs of different game—
states (or outcomes) contingent upon their (the players') possible
choices; in the absence of value—ordering, the players cannot express
their preferences; and in the absence of expression of preference, no
moves are made, and the game cannot be played. In the presence of a
utility measure, however, game theory inherits problems already
embedded, at the axiomatic level, in utility theory itself. As Luce
and Raiffa point out:

. utility theory is not a part of game theory. It is
true that it was created as a pillar for game theory, but
it can , stand apart and has applicability in other con—
texts."

And while the edifice of game theory does not lack support from said
pillar, its architecture is definitely constrained by weaknesses in
the nature of the support.

The two chief assumptions in von Neumann's and Morgenstern's
utility theory are well-summarized, by Luce and Raiffa, as follows:

(1) "That, given two alternatives, a person either
prefers one to the other or is indifferent between them."
(2) "That there are certain well-defined chance events
having probabilities attached to them which are manipu-
lated according to the rules of probability calculus.”
But, as Luce and Raiffa indicate, both assumptions are subject to
criticism.} Critical examples follow.
For the first assumption, it is understood that the utility
function, U, quantifies the preferences of the players. To accomplish
this, the utility function must have two minimally necessary proper—

ties: transitivity, and linear transformability.

! Luce & Raiffa, 1957, p.12.

’ Ibid, pp.371-373.

 Ibid.
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(i) Transitivity: .given any outcomes v and w, if player P
prefers v to w, then (v) > Uw). In other words, if P prefers an
apple to an orange, then the utility of an apple must be greater than
the utility.of an orange, with respect to player P.

(ii) Linear transformability: if the probabilities that vand w
obtain are p and (1-p) respectively, then Ulp(v) + (1-p)(w)] = pU(v)
+ (1-p)U(w) . In other words, the utility of the sum of the respective
probabilities that P obtains an apple, ard an orange, is equal to the
sum of the products of the probability that each fruit obtains and
the utility of that fruit, with respect to player P.

But the utility-theoretic assumption (1), concerning prefer—
ence, hreaks down in the following example: suppose P prefers an
apple to an orange, .an orange to a pear, a pear to a banana, and a
banana to an apple. Let these preferences be represented by v, w, x
and y respectively. By the property of transitivity, U(v) > Uw),
Uw > Ulx, Ux) > U(y), and U(y) > U(v). Now suppose P is offered a
choice between either an apple and an orange, or a pear and a banana.
In this case the utility function cannot value—order P's preferences,
since it cannot determine whether [U(v) + U(w)] is greater than, less
than, or equal to [U(x) + UN1.!

This breakdown stems from the circularity of P's preferences
which, though conceivable, is not orderable by the relation of
transitivity. The problem belongs to the same class as Arrow's
"voter's pm‘adox".5

Another hreakdown of the assumption of preference occurs in the
next example. Empirically,

". . .it was found that certain people preferred any bet
in which they obtained one of two amounts of money with
probability 1/2, to a bet in which the probabilities are

4 Neumann & Morgenstern were well aware of this shortcoming.
They termed it 'the relationship of incomparability'; 1955, p.630.

* If Bprefers candidate X > ¥ > Z, P, prefers Z> X > ¥, and P
prefers Y > Z > X, then two of three people prefer X > Y, two of
three prefer ¥ > Z, and two of three prefer £ > X. see K. Arrow,
Social Choice and Individual Values, Yale University Press, New
Haven, 1970, p.33.



1/4 angi 3/4, providing the average value obtained was the
same. "

But modelling this result with the utility function leads swiftly to
a contradiction.

Let the utility of £x = U(x). Now consider these initial
wagers:

Bet #1: p(£150) = p(£100) = 1/2; average gain of £125

Bet #2: p(£200) = 1/4, p(£100) = 3/4; average gain of £125
Since the first wager was found to be empirically preferable,

(1/2)U(100) + (1/2)U(150) > (1/4)U(200) + (3/4)U(100)
or 20(150) > U(100) + U(200) (1)
If the amounts in Bet #1 are changed to £50 and £200, while those in
Bet #2 are changed to £50 and £150, then

(1/72) U(50) + (1/2)U(200) > (1/4)U(50) + (3/4)U(150) (2)
If the amounts in Bet #1 are changed to £50 and £100, while those in
Bet #2 remain at £50 and £150, then

(1/2) U(50) + (1/2)U(100) > (3/4)U(50) + (1/4)U(150) (3)
Adding inequalities (2) and (3), then multiplying by two gives

U(100) + U(200) > 2U(150), which contradicts inequality (1).
Thus Morton concludes, "No utility function of the type we have been
considering can possibly describe such preferences."7

Mathematically speaking, relation (1) should be an equation,
not an inequality. It should be an equation because the probabilis-
tically-averaged gains are equal for both initial wagers. The ine-
quality relation was employed to express a psychological preference,
but was then manipulated as though it were purely mathematical. The
contradiction does not arise from a reductio ad absurdum; rather, it
inheres in the initial employment of the utility function in mutually
inconsistent senses: the logical and the psychological. The argument
was constructed from a faulty implicit premise; namely, that x can be
simultaneously equal to y, and greater than y. Nonetheless, the
psychological preference is empirical and permissible, and one cannot

6M. Davis, Game Theory, Basic Books Inc., New York, 1970,
pp.63-64.

T Ibid.
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discount it in order salvage consistency. So the utility function, as
constituted, remains inadequate for its purpose.

In order to generalize certain problems, one may appeal to
Rapoport's exposition on the scaling of utilities.! There are three
different scales on which utilities can be measured: the ordinal, the
interval, and the ratio.

The ordinal scale is the weakest of the three. It employs the
relation of transitivity, but does not assign differences of mag—
nitude. The ordinal scale can specify only that 4 > B> ¢. It is
invariant with respect to positive monotone transformations; i.e. if
U(a) > U(B), then U(Ax + y) > U(Bx + y) (where x > 0).

The interval scale is stronger than the ordinal, but weaker
than the ratio. It can specify both transitivity and difference of
magnitude; i.e. 4> B> C and (AB) ><, or = (B-0). The interval
scale is invariant with respect to linear transformations; i.e. if
UA-B) > UB-O, then UL(AZBx+ y] > I(B-Ox + y] (where x > 0).

The ratio scale is the strongest of the three. It can specify
transitivity and the actual ratios of magnitude; i.e. 4 > B> C, and
A/B= y, B/IC= =z, (/A = 1/yz. The ratio scale is invariant with
respect to similarity transformations; i.e. if U(A/B) > U(B/C), then
Ul(a/B)x] > Ul(B/O)x] (where x > 0).

By means of these scales, one may appreciate why any constant-
sum game can be represented as a zero—sum game. Consider the follow—
ing example:

Game 2.1 — A Constant—Sum Game Game 2.2 — A Zero—Sum Game
B B
5,5 8,2 0.0 3,3
A A
7.3 4,14 2,-2 -9,9

The payoffs in Game 2.2 were obtained by subtracting five from
each payoff in Game 2.1. Similarly, for any constant—sum game, some
linear transformation exists which maps it to a zero—sum game. (And

¥ Rapoport, 1966, pp.24-28.
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if either player has a winning strategy in the constant-sum game,
then the same player has an identical winning strategy in its zero—
sum representation.g) Note that any such linear transformation satis—
fies the requirements of the interval scale, but not those of the
ratio scale. With respect to either player, the ratio of differences
of payoffs remains constant for both games, while the ratio of
magnitudes does not.

Returning to the problem of the fruit, one can see that if the
preferences are defined on the interval scale instead of the ordinal
scale, then the circularity in preference does not proscribe a
solution. For instance, suppose that, in addition to P's transitive
preferences (apple > orange > pear > banana > apple), P's interval
preference for an apple over a banana is greater than his interval
preference for an orange over a pear. In the notation of that prob-
lem, U )-Uv) > W(w)-U(x). Then, if offered a choice between an
apple and an orange or a pear and a banana, it follows immediately
that U(x) + U(y) > U(v) + U(w); so P prefers a pear and a banana to
an apple amd an orange.

Note that recourse to the ratio scale 1is not necessary for the
solution of the above problem. Indeed, according to Rapopor’t,m the
measure of utilities on the interval scale is sufficient for solving
game—theoretic problems (where solutions exist). In practice, how—
ever, it might be difficult to establish such a measure. While most
people can articulate preferences on the ordinal scale, it is not an
accustomed practice to do so on the interval scale.

Note also that the second problem, which conflates logical with
psychological properties, is insensible to a change of scale. Even if
the ratio of the initial preferences were specifiable, the inbuilt
inconsistency in relation (1) would remain. The probabilistically-
averaged ratio of 20(150) : U(100) + U(200) is 1:1, while the psycho—
logically—preferred ratio is x:1, where x > 1. The subsequent mathe—
matical manipulations would yield the reciprocal ratio, 1:x, and the

’ Neumann & Morgenstern call this relation "the isomorphism of
strategic equivalence'; 1955, p.504.

0 Rapoport, 1966, p.28.
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contradiction would remain.

Thus far, one has vindicated Luce and Raiffa's criticism of the
first of two assumptions leading to Neumann and Morgenstern's utility
theory, by having illustrated shortcomings of the theory with respect
to its two necessary properties (transitivity amd linear transfor-
mability). These illustrations have taken place in the mode of intra-
personal comparison of utilities. One must also consider the mode of
inter-personal comparison of utilities, which is not less beset by
difficulties.

The question of the utility of money is classic problem, which
manifests itself in both modes. Intra—personally, it has been gener—
ally assumed that the utility of money is a decreasing, non-linear
function of the amount. When Daniel Bernoulli pondered the question
in 1738, he concluded that

"utility resulting from any small increase in wealth will
be inversely proportﬁonal to the quantity of goods
previously possessed."

Empirical justifications for this assumption abound. For example:

"H. Markowitz asked a group of middle—class people
whether they would prefer to have a smaller amount of
money with certainty or an even chance of getting ten
times that much. The answers he received deperded on the
amount of money involved. When only a dollar was offered,
all of them gambled for ten, but most settled for a
thousand dollars rather than try foruten thousand, and
all opted for a sure million dollars."”

While the assumption has been generalized in economics as "the
law of diminishing marginal utility",13 the actual function to be
employed remains quite arbitrary. Bernoulli supposed that the value
of money is proportional to its natural logarithm, and von Neumann
and Morgenstern partially endorsed his supposit:i.on.l‘I

il D. Bernoulli, “Exposition of a New Theory on the Measurement
of Risk', s.v. L. Sommer, Econometrica, 22, 1954, pp.23-37.

2 cited by Davis, 1970, p.51.

i I.e. see L. Savage, The Foundation of Statistics, John Wiley
& Sons Inc., New York, 1954, p.9%4.

1 Neumann & Morgenstern, 1955, p.629.
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An example by Rapoport (which he left unsolved) can be used to
illustrate the practical difference between treating the utility of
money as a linear versus a non—-linear function.15 A man with £1000 to
gamble is offered odds of 100 to 1 on roulette. What amount should he
wager in order to maximize the utility of the gamble?

Answers to this question hinge on the utility of money. If the
man wishes to maximize his utility, then he could adopt the classical
but questionable ‘"principle of mathematical expectation” (that the
gamble with the highest expected winnings is best),16 and wager the
entire £1000. Then he would have a 36/37 chance of losing £1000, and
a 1/37 chance of winning £100,000.

To maximize his utility in this linear case, he must solve the
equation

(36/37) (1000-x) + (1/37) (1000 + 100x) = 1000

where x is the amount to be wagered. The solution is x = 0. So if the
utility of money is linear, the man's optimal wager is no wager at
all. He stands to gain nothing, and to forfeit nothing.

In the non-linear case, if the man adopts Bernoulli's sugges—
tion, then his optimal wager is found by solving the equation

(36/37) 1n(1000-x) + (1/37) In(1000 + 100x) = In(1000)

where x is the amount to be wagered and In is the naturai logarithm.
The approximate solution is x = 47.37. The man then stands to gain
£4,737, and to lose £47.37.

Thus, depending upon which utility rule he follows, the gambler
may wager all, none, or part of his money. Rules can be devised that
prescribe the wager of any fraction thereof. And, given that the
gambler exercises some degree of freedom of choice, he may adopt any
of the above rules, or invent his own. One cannot presume to say
which monetary utility function seems to be the "best".

1 Rapoport, 1960, pp.119-120.

16 E.g. see Savage, 1954, p.91.
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The problem becomes even more open—ended in the mode of inter—
personal comparison of utilities. In this mode, one seeks a function
that stipulates the different values, to different players, of a
given payoff.

For example, suppose that two players, A and B, are competing
for an apple. For the inter—personal comparison of utilities, the
weakest possible scale (the ordinal) demands that the utility func—
tion stipulate whether the apple's value to A is greater than, less
than, or the same as its value to B. One might assess the case in
point, and attempt to make an evaluation. If A owns an apple orchard
while B does not, one might argue that a single apple holds greater
value for B. Then again, B may have recently consumed several apples,
while 2 may be extremely hungry, in which case the apple holds
greater value for A, his orchard notwithstanding. Or, if both A and B
are severely allergic to apples, then the apple holds equally nega-
tive value to both, unless one of them keeps a horse. Any number of
heuristic arguments, and counter-arguments, can be made; but such
argumentation is a far cry from the articulation of a well-defined
mathematical function.

Now, to complicate matters: suppose that both A and B prefer
apples to oranges. The game—theoretic interval scale demands that the
utility function stipulate whether A's preference is greater than,
less than, or the same as B's preference. As Rapoport points out,

. .the interval scale does not permit interpersonal
comparison of utilities, because both thﬁ Zero point and
the unit of this scale remain arbitrary."

Again, in the case of money, one may attempt to fix this scale
acccording to some rule. Suppose that players A and B are competing
for £100. Explicitly, if one asks whether this prize has greater
value for A than for B, then the respective utilities of £100 seem to
require measurement on the ordinal scale. But if one is implicitly
asking whether this prize respresents a greater increase in wealth
for A than for B, the respective utilities require measurement on the
stronger interval scale. Now suppose that A is wealthy, while B is

N A. Rapoport, “Interpersonal Comparison of Utilities', Lecture
Notes in Economics and Mathematical Systems, 123, 1975a, pp.17-43.
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impecunious. Then, arguably, £100 has greater value for B. In gener-
al, a fixed sum of money may have different utilities for different

players. 18

Then one is confronted by a previous, unresolved problem;
namely, the . necessity of first fixing the intra—personal interval
scale, in order to permit inter—personal comparisons.

Owing to this kind of insuperable difficulty, inter—personal
utility theory draws moderate to severe criticism: '

"The problem of trying to conceptualize and apply iignter—
personal comparisons of utility is still unsolved."

" :.zo.interpersonal comparison of utility has no mean—
ing.

There is a way in which these problematic issues can be side-
stepped, and the preferential aspect of utility theory salvaged, at
least for game—theoretic purposes. It consists in measuring payoffs
in units of pure utility, or utiles. Unlike the utility, the utile is
assumed to conserve the player's preferences. Unlike utilities,
utiles can be compared, both intra-personally and inter—personally.
The game—~theoretic distinction between utility and utile is somewhat
analogous to the physical distinction between weight and mass. The
first is a relative measure; the second, absolute (in a Newtonian
sense, at non—relativistic velocities). For the theory of games, the
adoption of a pure utile measure restricts the range of empirical
application, but greatly enhances the domain of theoretical develop—
ment. And the theory, if sufficiently developed in terms of players'
preferences, may yet discover ways of applying itself anew. _

Now recall the second assumption of Neumann's and Morgenstern's
utility theory, as summarized by Luce and Raiffa:

(2) "That there are certain well-defined chance events
having probabilities attached to them which are maniﬁu-—
lated according to the rules of probability calculus."

18 This is also the view of Luce & Raiffa, 1957, p.43.

Bg. Singleton & W. Tyndall, Games and Programs, W.H. Freeman &
Co., San Francisco, 1974, p.39.

2oi‘.r*r‘ow, 1970, p.S.

A 1ice & Raiffa, 1957, pp.371-3.
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This assumption is not less subject to criticism than the first. One
centre of contention 1lies in the plausibly-worded phrase "according
to the rules of probability calculus", in which the definite article
("the") implies-the existence of a singular or universally-accepted
set of rules for the calculation of probabilities. This implication
fails to acknowledge—or Iridge—the enormous rift between two most
general schools of probabilistic thought: the a priari (which in-
cludes classical and Bayesian systems), and the a posteriori (or
frequentist interpretation) ;22 each of which assesses probabilities
according to a different set of rules.

While it 1lies beyond the scope of this enquiry to embody a
disquisition on the philosophy of probability theory, it is minimally
necessary to differentiate, in passing, between the two general
schools. In so far as this enquiry has recourse to both probability
paradigms, as occasion warrants, it seems prudent to draw a fundamen-—
tal—if limited—distinction between them.

First, it must be said that the distinction itself is one of
recognition rather than definition. One can equally well recognize
four schools of probabilistic thought, or more.” And one can draw
ever-finer distinctions between proponents of similar schools. But
the two suffice for this purpose.

The distinction can be drawn quite readily. Suppose two players
wish to shoot craps in a casino. The rules are as follows: the
shooter wagers an amount of money, then rolls a pair of dice. If he
obtains seven or eleven on that roll, he wins; if two, three or
twelve, he loses. If he obtains any other number, then he must roll
the dice repeatedly until: either that number appears again, in which
case he wins, or seven appears, in which case he loses. Suppose that

2 This distinction is drawn e.g. by T. Seidenfeld, Philasophi-
cal Problems of Statistical Inference, D. Reidel Publishing Company,
Dordrecht, 1979. He classifies Laplace, De Morgan, Pearson, Keynes,
Jeffreys, Carnap, Finetti, and Savage as Bayseians; Boole, Venn,
Fisher, Neyman, von Mises, Reichenbach, Wald, Hacking, and Kyburg as
frequentists: pl.

8 E.g. see R. Weatherford, Philosophical Fourdations of Probab-
ility Theory, Routledge & Kegan Paul, London, 1982, pp.6ff. Weather-
ford recognizes four types of theory: classical, a priori, relative
frequency, and subjectivist.
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one of the players is an a priori probabilist; the other, an a
posteriori probabilist.

The a priori probabilist assumes that the dice are fair, and
calculates the-likelihood of different game—states occurring accord—-
ing to the rules of classical probability theory (by finding the
ratio of equipossible cases to all possible cases, for each state) .24
He finds that a pair of dice rolled simultanecusly can produce
thirty—six possible game—states: rolls of two or twelve can occur in
only one way each; three or eleven, in two ways each; four or ten, in
three ways each; five or nine, in four ways each; six or eight, in
five ways each; while seven can occur in six different ways. He then
finds the associated probabilities of obtaining each number on a
given roll: two or twelve, 1/36; three or eleven, 2/36; four or ten,
3/36; five or nine, 4/36; six or eight, 5/36; seven, 6/36. He then
finds that his chances of winning on the first roll are 8/36; of
losing, 4/36; of having to roll again, 24/36. But if he has to roll
again, his chances of winning will vary from 2/36 to 5/36, while his
chances of losing will remain constant at 6/36.

The a posteriori probabilist, however, makes no assumption
vwhatsoever about the "fairness" of the dice. For him, the concept of
equipossibility has no meaming.25 The a posteriari probabilist makes
a long series of observations of the game, recording the outcome of
each roll of the dice. After a sufficiently large number of rolls
have been observed, he calculates the relative frequency with which
each outcome has occurred. If the dice are "fair", then as the number
of observations increases, the frequency distribution will tend

A A rigorous justification for this method was developed by
James Bernoulli in his Ars Conjectandi; see e.g. I. Todhunter, A
Histary of the Mathematical Theary of Probability, Macmillan & Co.,
London, 1865, pp.70-73.

5 The frequentist position was developed in order to avoid
circular definitions and other inherent problems of classical theory.
See R. von Mises, Probability, Statistics and Truth, Dover Publica-
tions Inc., New York, 1981 (translation of revised edition of 1951).
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toward the classical probability values.26 If the dice are not fair

(i.e. are "loaded"), then the weight of the loading will be reflected
in the given frequency distribution.

Thus, .in an honestly-run game, both probabilists will agree on
their chances of winning and losing. But in a dishonestly-run game,
the a priori probabilist stands to be cheated, while the a posteriori
probabilist will have fuller knowledge of the true odds. It is of
interest that the a posteriori probabilist need know nothing of
classical probability theory to make his assessment. The dice yield
an empirical result; if loaded, they will not be presumed to have
deviated from an a priori expectation. Thus the a posteriori probabi-
list not only cannot be cheated; he also avoids making moral presump—
tions upon the honesty, or dishonesty, of this type of game.

One more example is instructive. Suppose the probabilists are
about to play the children's game of Rock, Scissors, Paper. In this
game, two players each place one hand behind their backs, then
simultaneously present their hands in one of three configurations: a
fist (signifying rock), a Churchillian "V" (signifying scissors), or
a palm (signifying paper). Rock defeats scissors (by virtue of
smashing); scissors defeat paper (by virtue of cutting); paper
defeats rock (by virtue of enveloping). The matrix is as follows:

Game 2.3 — Rock, Scissors, Paper

B
R ) P
R 0,0 1,-1 -1.1 R means Rock
A S -1.1 0,0 1,-1 S means Scissors
P 1,-1 -1.,1 0.0 P means Paper

This is a two-person, zero-sum, non—co-operative game that is
not strictly determined. The matrix of Game 2.3 not only has no
saddle point: it is completely symmetric with respect to payoffs.

% This consequence is explicit in James Bernoulli's Law of
Large Numbers. Laplace also developed a method for acertaining how
many trials are necessary to obtain a given result that lies within
pre—assigned limits. See Todhunter, 1865, pp.3548-54.
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From either player's point of view, each row (and column) contains
exactly one winning outcome, one losing outcome, and one drawn
outcome. Furthermore, all non—zero payoffs are identical in absolute
magnitude. Thus neither player can express a logical preference for
any row or column.

Suppose that player A is an a priori probabilist, and that
nothing whatever is known about player B. Player A must resort to the
"principle of insufficient reason"; namely, that

"alternatives are always to be judged equiprobable i2F7 we
have no reason to expect or prefer one over another."

So A assumes that player B will choose R, S, or P with probabilities
of 1/3 each. A's expected utility of choosing R is then

EUR) = (1/3)U(R,R) + (1/3)U(R,S) + (1/3)U(R,P)
= (1/3)(0) + (1/3)(1) + (1/3)(-1)
=0

Similarly, A's expected utilities of choosing S, and P, are identi-
cally zero.

In such a case, Von Neumann and Morgenstern also recommend that
A play equiprobably:

“Thus one important consideration for a player in such a
game is to protect himself against having his intentions
found out by his opponent. Playing several different
stratgies at random, so that only their probabilities are
determined, is a very effective way to achieve a degree
of such protection: by this device the opponent cannot
possibly find out what the player's strategy ii going to
be, since the player does not know it himself."

This is a compelling argument, which holds as long as the opponent is
also playing with uniform randomness. Indeed, if both A and B proceed
to play as such, then over the course of many plays, they will each
tend to win one third of the games, lose one third of the games, and
draw one third of the games.

Ard in this case, the a posteriori probabilist, observing that
the relative frequencies with which B chooses R, S, and P are ap—

q Weatherford, 1982, p.29; see also Luce & Raiffa, 1957, p.284.

% Neumann & Morgenstern, 1955, p.l146.
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proximately 1/3 each, adopts the same strategy of random play, and
fares the same as the a priori probabilist. As long as B plays with
uniform randomness, both probabilists achieve the same result.

But suppose that B plays with nonuniform randomness; i.e. that
the a priori probabilities of his choices are weighted. Let the
weights be such that B choses R with probability 1/2, and S and P
with probabilities 1/4 each.

(One can posit any number of plausible reasons for the uneven
weightings. For example, suppose that B intends to play with uniform
randomness by rolling a die, and that he will choose R if he rolls
one or two; S if he rolls three or four; and P if he rolls five or
six. But unknown to B, he uses a die that is "loaded" to yield one
and two with probabilities 1/4 each; and to yield three, four, five
and six with probabilities 1/8 each. Then the above distribution
would obtain.)

If B plays according to these weights, and A plays with a
priari, uniform randomness, then the matrix of probabilities for each
outcome is as follows:

Game 2.4 — Weighted Probability Matrix for Rock, Scissors, Paper
Player A: p(R) = p(5) = p(P) = 1/3
Player B: p(R) = 1/2; p(S) = p(P) = 1/4
B
p(R) p(S) pp
P(R) 1/6 1712 1/12
A p(9) 1/6 1712 1712
p(P) 1/6 1712 1/12

Unknown to player A—who is not recording the relative frequen—
cies of B's choices—his expected utilities for Game 2.4 are now
EU(R) = p(R,RAU(R,R) + p(R,SYU(R,S) + p(R,P)U(R,P)

(1/6) (0) + (1/12)(1) + (1/12)(-1)

=0

P(S.RUS.R) + p(S,5U(5,5 + p(S,P)U(S,P)
(1/6) (-1) + (1/12)(0) + (1/12)(1)

= -1/12

EU(S)



39

EU(P) = p(P,RYU(P,R) + p(P,5)U(P,S5) + p(P,P)U(P,F)
(1/6) (1) + (1/12)(-1) + (1/12)(0)
1712

Although A's set of expected utilities in Game 2.4 differs from
that of Game 2.3, A's average result 1is identical in both cases.
After a large number of plays of Game 2.4, he will have won one third
of the games, lost one third of the games, ard drawn one third of the

games, for a net average gain of zero utiles.

Now suppose that the a posteriori probabilist takes his turn as
player A. He has been observing player B, amd has recorded the
relative frequencies of B's choices. The a posteriori probabilist
counters B's weighted play with a weighting of his own. As player A,
he makes random choices with weighted probabilities one—quarter for
Rock and Scissors, and one-half for Paper. The new probability matrix
is as follows:

Game 2.5 — Re—Weighted Probability Matrix for Rock, Scissors, Paper
Player A: p(R) = p(5) =1/4; p(P) = 1/2
Player B: p(R) = 1/2; p(S) = p(P) = 1/4
B
P(R) p(S) p(P)
DR 1/8 1716 1/16
A plS) 1/8 1716 1/16
p(P) 1/4 1/8 1/8

For Game 2.5, player A's expected utilities are
EU(R) = p(RLAYU(R,R) + p(RSU(R, S + p(R,PUR,P)

= (1/8)(0) + (1/16) (1) + (1/16)(-1)

=0
DS, RU(S,R) + p(S,9U(S5,5 + p(S,PYU(S,P)
(1/8) (1) + (1/16)(0) + (1/16)(1)
= -1/16
p(P,R)U(P,R) + p(P,S)U(P,5) + p(P,P)U(P,P)
(1749 (1) + (1/8)(-1) + (1/8)(0)
= 1/8

EU(S)

EU(P)
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This result certainly favours player A. On average, A wins
three—eighths of the games, loses five—sixteenths of the games, and
draws five—gixteenths of the games. The average quantity won exceeds
the average quantity lost by one—sixteenth of a utile. After a large
number of plays of Game 2.5, A's net average gain will be one utile
for every sixteen plays.

Again, the a posteriori probabilist need not impute any mo-
tives, whether logical or psychological, to account for and to
counter player B's weighted choices. Just as in the example of the
dishonestly-run casino, A's observation of the relative frequency of
events is a value—-neutral process.

The purpose of these two examples is most assuredly not to make
a case for the relative superiority of one school of probabilistic
thought over another; rather, it is to argue that the outcomes of
certain games can be affected by a particular choice of probabilistic
paradigm on the part of the player.

For games involving random (or pseudo-random) moves, a player
must assign some probabilistic distribution to outcomes in order to
calculate the expected utilities of different choices. It has been
illustrated that, in some cases, the results of a priori and a
posteriori probability assigmments are convergent. When the two
methods do not converge, it has been shown that the player who
employs an a posteriori calculus may forfeit less, or gain more, than
one who employs an a priori calculus.

The objection can be made that no example was given which
explicitly favours the a priori over the a posteriori method. The
latter method is not without potential shortcomings, one of which can
be illustrated in the following way.

Suppose two players are 'matching pennies'. Player 4 first
predicts either ‘'even parity" (two heads or two tails) or "odd
parity" (one head and one tail). Next, they each flip a penny and
allow the coins to fall. If player A predicted the outcome correctly,
he wins; if not, he loses. The matrix is as follows:
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Game 2.6 — Matching Pennies

B
E 0, E meanseven parity"
Ef) 1,-1 -1,1 O means"odd parity"
A psubscript means'predicted'
C}, -1,1 1,-1 o-subscript means“occurred"

Suppose that player A is an a priori probabilist, and suppose
also that both coins are fair. Then the probability of each outcome
is 1/4. Player A constructs a probability matrix:

Game 2.7 — Probability Matrix for Matching Pennies
Player A: p(H) = 1/2, p(T) = 1/2
Player B: p(H) = 1/2, p(I) = 1/2

B
D(H) p(n
p(H) 174 1/4
A P(H) means"probability of heads’
p(Nn 1/4 1/4 p(D means ‘probability of tails"

Since A predicts even and odd parity with random probabilities
of one—half each, his prediction percentage is approximately fifty
percent correct over a large number of | games. On net average, he
neither wins nor loses.

Now suppose that player A is an a posteriori probabilist.
Suppose also that both coins are fair, but that A does not make a
sufficiently large number of observations. Let him make ten observa-
tions, in which he finds his coin to have landed "heads" four times,
and "tails" six times; and in which he finds B's coin to have landed
"heads" seven times and "tails'" three times. Now let A conclude from
these observations that his coin is weighted 6:4 in favour of tails,
vwhile B's coin is weighted 7:3 in favour of heads. A then constructs

a (fallacious) relative frequency matrix, based upon his limited
observations:
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Game 2.8 — Fallacious Relative Frequency Matrix
Player A: f(H) = 4/10, £f(T) = 6/10
Player B: f(H) = 7/10, £(I) = 3/10

B
£(H) (D
f(H) 28/100 12/100
A f(H) means“ frequency of heads“
() 42/100 18/100 f(T) means ‘frequency of tails'

From this matrix, A finds that the combined relative frequency
of even parity is (28+18)/100 = 46/100, while that of odd parity is
(42+12) /100 = 54/100. Thus A concludes that he should play randomly
but not uniformly, weighting his predictions to favour even parity in
forty—six of each one hundred subsequent games, and odd parity in
fifty—-four.

Consequently, after a large number of subsequent games, A's
prediction percentage is only about forty—two percent correct. On net
average, he loses eight utiles per hundred games.

When interpreting a posteriori probabilities, then, it is of
paramount importance to ensure that an observed relative frequency
attains a limiting value.” This A failed to do, by observing an
insufficient number of events.

Furthermore, it is not always feasible to employ the a posteri-
ari method. In countless situations where one must take a decision
under risk or conflict of interest, without the benefit of a suffi-
ciently lengthy series of observations of outcomes in similar situa—

B If it is to meet the von Mises criterion of randomness, this
value must be independent of any 'selection rule" for the observed
events. For instance, a "fair" coin will land "heads" in about fifty
percent of trials—given a large enough number of trials—and this
limiting wvalue should be obtainable from any large sub-sequence of
the observed trials, according to any rule of place—selection. For
instance, the relative frequency of "heads" i% even—rnumbered trials,
odd numbered-trials, prime—numbered trials, 1" trials, etc., should
have a limiting value of fifty percent, within confidence limits
defined by appropriate statistical tests. See Mises, 1981, pp.87-9.
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tions, the a posteriari- calculus is inapplicable. Then 6ne has
recourse to classical, or to Bayesian, or to subjective interpreta—
tions. Not every calculus is available in every game—theoretic
situation.

While the introduction of a pure utility measure allows one to
evade unsolved problems of comparing utilities (at the cost of
restricting the applicability of the theory), classes of games exist
in which one cannot avoid the employment of a probability calculus.
The difficulty then lies in selecting an appropriate calculus for the
given situation, and is compounded by the fact that each school of
probabilistic thought admits of particular strengths and weaknesses.

It can be seen that the von NeumannMorgenstern utility func-
tion is formed by the concatenation of two problematic calculi: one
of preferences, the other of probabilities. That both are subject to
criticisms seems clear enough. The severest criticism, though, is not
necessarily the most instructive. One has it from Savage that

"The postulates leading to the von Neumann—Mor%enstem
concept of utility are arbitrary and gratuitous."

That they are rich in controversy is apparently beyond dispute.
Utility theory, however incompletely formulated, remains indispen—
sable to game theory.

Ard one further concept, not less dispensable but perhaps more
controversial, requires elaboration in this game-theoretic back-
grourd; namely, the concept of rationality.

¥ Savage, 1954, p.99.



Chapter Three
Game-Theoretic Rationality

Before delving into the intricacies of the Prisoner's Dilemma,
it 1is necessary to review the concept of rationality in a game—
theoretic context. The concept is laden with difficulties, but must
be addressed; for it is of central importance to both game theory in
general and the Prisoner's Dilemma in particular.

An assumption about rational choice was ineluctably smuggled
into the synopsis, in Chapter One, of the property of strict deter—
minateness. It was implicitly assumed that a so—called ‘'rational”
player would select that row (or column) of a game matrix which
contains a saddle point, if indeed such a point exists in the given
game. Recall that the grounds for this assumption were that if the
so—~called '"rational" player chooses the minimax (or maximin, as the
case may be), then he can fare no worse in that game, regardless of
wvhether his opponent plays ‘'rationally"” or ‘"irrationally". The
example was given in order to illustrate the importance of the saddle
point; its corollary implication, however, was that a '"rational"
player always plays minimax (or maximin, as the case may be), while
an "irrational" player may not always do so. The soundness of this
implication must now be called into question.

Let one commence with the Von Neumann-Morgenstern caveat to
their qualification of rationality:

"The individual who attempis to obtain these respective
maxima [maximin and minimax] is also said to act “ratio—-
nally'. But it may be safely stated that there exists, at
present, no satisfai:tory treatment of the question of
rational behaviour."

Rapoport expresses the wish to modify the caveat itself, by denuding
game theory of ‘'psychological" over't:ones.2 The term '"behaviour" is
connotative of psychology, and Rapoport argues that psychological

1 Neumann & Morgenstern, 19535, p.9. See also Iuce & Raiffa,
1957, p.5.

2 Rapoport, 1966, p.103.
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orientations of "rational players" should be irrelevant in a formal
game—-theoretic context.3

One reason for this viewpoint is as follows: in an idealized
situation, just-as one can compare utilities in units of pure utiles,
so it would be convenient to define a "rational- player" in a way that
depends purely on his play. As the ideal unit of utility, the utile
orders the values of preferences by mapping them to the real numbers.
It transcends the intransitivity of circular preferences, and permits
the interpersonal comparison of utilities. Similarly, the ideal
definition of rationality would map each play to a Boolean statement,
either "rational" or ‘"irrational”, in a way that transcerds the
psychological motives of the players. Can such a definition be
articulated, even in the ideal case?

In the game of poker, it is often useful to employ the tactics
of "bluffing" and ‘"sandbagging”, which entail, respectively, the
occasional over-playing of weak hands, and urder-playing of strong
hands, in order to mislead one's opponents. These tactics are work-
able because poker is a game of imperfect infox“xnm:ion.q As such, the
outcome of a given hand does not necessarily depend on the cards that
the players are actually holding, and frequently depends rather upon
the fictitious cards that they believe one another to be holding.

Suppose a player decides to Dbluff on a weak hand. He wagers
increasingly large amounts of money on his cards, as though he held a
strong hand. If his bluff is not "called", then the bluffer wins with
a hand that would normally have lost; and the losing players, who did
not pay to view his cards, might assume that he did indeed hold a
winning hand.

But if his bluff is "called", the bluffer must reveal his weak
hand to the players who have matched his wager. They immediately
realize that he was attempting to bluff. The bluffer thus loses the
hand in question, but sets a potentially lucrative precedent in the
process. For when he next holds a very strong hand, he may again

3 Ibiq.

4 Simply stated, a game of imperfect information is a game in
which some moves are concealed. E.g. see Neumann & Morgenstern, 1953,
pp.51-52 ff.
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wager large amounts of money (perhaps feigning nervousness as he does
so0), in order to induce the other players into believing that he is
once again attempting to bluff. They may match his wager and call
vwhat they suppose to be his '"bluff", only to find that he has not
been bluffing on this occasion.

Thus the astute poker player is willing to lose one or more
hands quite deliberately, in order to potentiate a future situation
in which he expects not only to recoup his previous losses, but also
to realize a net gain.

If one defines poker—theoretic rationality as the wish to
maximize one's overall winnings (or minimize one's overall losses),
then it is also poker—theoretically rational to employ the tactic of
bluffing from time to time (although game theory can prescribe
neither the frequency nor the cest of the tactic). Then, if a player
loses a given hand because his bluff has been called, he is not
irrational, but perhaps ambitious. Suppose another player loses
several harnds in this fashion, but the game ends before he can recoup
his losses. That player is not irrational, but perhaps unfortunate.
Suppose another player wins the game without ever having bluffed.
That player is not irrational, but perhaps fortunate. And suppose
another player loses all his money, without ever having bluffed. That
player is not irrational, but perhaps unskilled. Suppose a player is
winning by a substantial amount, but wagers this entire amount on the
final hand, and 1loses. That player is not irrational, but perhaps
avaricious. Thus no poker player is irrational, if he wishes to win
in the long run.

However, this definition of rationality is the antithesis of
the sought—-after "ideal" definition, because it depends not at all on
the play and hinges solely upon the motives of the players.

Yet it does not seem at all sensible to alter the working
definition of rationality with respect to poker, by claiming that it
is rational to seek to win as much as possible, or to lose as little
as possible, on each individual hand. While this new working defini-
tion would conform to the ideal, by assessing the play and discount-—
ing the motives of the players, it could prove paradoxical. Suppose
the overall winner of a poker game turns out to be a player who



47

bluffs quite frequently. The working definition labels him as "ir-
rational", yet he fares better than the '"rational"” player. A defini-
tion of rational play that both urges a player to win by rational
means and acknowledges the potential superiority of irrational means,
is self—contradictory and therefore unsatisfactory.

At first blush, this state of affairs may seem to arise because
poker is a game of imperfect information which is not strictly
determined. (Recall that in a strictly determined game, a player who
chooses the minimax fares even better if his opponent does not choose
the maximin; and a player who chooses the maximin fares even better
if his opponent does not choose the minimax.) In a game without a
saddle point, the ‘'rational" player has no inherent defense against
an ‘'"irrational" player, if rationality means maximizing gains or
minimizing losses on every play.

However, it can be demonstrated that the paradox is a conse—
quence, not of imperfect information and the absence of strict
determination, but of the attempt to articulate an ideal definition
of rationality. Consider chess, which is a strictly determined game
of perfect information.5 A chess game is either won, lost, or drawn,
according to the disposition of the pieces, which are always in plain
view of the players. The tactic of bluffing would seem to have no
relevance in this game.

In wvorld championship chess, a match is the best of twenty-four
games (in each of which a player receives one point for a win, no
points for a loss, and one-half point for a draw). Thus, the first
player to attain twelve—and-one—half points is the victor.6 The
working definition of rationality, which proved paradoxical in poker,
prescribes that the rational player attempt to win as many chess
games as possible, and lose as few as possible, in order to win the
match.

If that seems reasonable, then consider what actually took
place in the 1972 world championship match in Reykjavik, between

) Simply stated, a game of perfect information is a game 1in
which no moves are concealed from any player.

b If the score is tied at twelve points each, then the incumbent
champion retains the title.
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Bobby Fischer and Boris Spassky.7 Fischer, who had given his pricr

written assent to the presence of television cameras, found that
their proximity interfered with his concentration. He therefore
refused to play until the cameras were removed, and remained in his
hotel room when the match officially commenced. Fischer's apparent
"bluff"” was called, and he proceeded to forfeit the first two games
of the match. An accommodation was then reached, and Fischer played
in subsequent games. Spassky held the initial lead of two games to
none (a considerable advantage at this level of competition), but was
unnerved by Fischer's cold-blooded forfeitures. Fischer eventually
won the match with brilliant play, while Spassky made several blun—
ders unworthy of a player of his stature.

According to the working definition of rationality, Fischer
played irrationally in the first two games, by losing them delibe-
rately. A "rational' player would have elected to play under condi-
tions of slightly impaired concentration, because he could not have
fared worse by playing, and might indeed have fared better. But in
retrospect, Fischer's "“irrational play" in the first two games was an
ingredient of his eventual victory in the match.

One seems obliged to concede that, whether the game is one of
perfect or imperfect information, and whether strictly determined or
not, a certain number of losses may conduce to an overall win in the
long run. In that case, one cannot demand, by definition, that a
"rational" player seek to maximize his wins, and minimize his losses,
at every opportunity. But then one cannot define rationality. in terms
of the play itself, and one is thrown back upon the undesirable
necessity of gauging rational, or irrational play, in terms of the
motives of the player.

At this juncture, one might argue that the problem stems not
from the working definition of rationality as such, but from the

7 E.g. see C. O'D. Alexander, Fischer v. Spassky: Reykjavik
1972, Penguin Books Ltd., Harmondsworth, 1972.
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failure to draw a categorical distinction between games and meta-—
gaunes.a

Poker is a meta—game, 1in that a ‘''game" of poker consists of
many hands. Each hand may be evaluated as a separate game, and the
meta-game outcome is the algebraic sum of the outcomes of the hands.
Similarly, a chess match is a meta—game consisting of many games of
chess. The outcome of the match is the algebraic sum of the outcomes
of the games. Given this distinction, is it possible to formulate an
ideal definition of rationality which takes into account that delibe—
rate losses of a game (or games) may still conduce to victory in the
associated meta—game?

The distinction between games and meta—games necessitates a
similar distinction between move and strategy, 1in the sense that a
losing move in a given game may form part of a winning strategy in
the associated meta—game. In that case, rationality is embodied not
in the move itself, but rather in the strategy that gives rise to the
move. Thus, one can attempt the following reformulation: the ideal
definition of rationality would map each strategy (instead of move)
to a Boolean statement, either "rational" or "irrational'", in a way
that transcerds the psychological motives of the players. The ques-
tion is, can one infer the rationality (or irrationality) of a player
merely by observing his strategy? If so, then 'rationality" is
ideally defined.

Unfortunately, the answer to the question seems to be: not
-necessarily. Consider this example. Suppose a wealthy but eccentric
sportsman sponsors a poker game according to the following rules:
each player begins the game with £1000. There is a maximum bet of £5
and one raise per hand. The first player to Iaose £1000 wins a prize
of £10,000. Now suppose a game—-theorist, who is unaware of the meta-
game situation, observes the play of several hands. Based on the
strategies he observes, he may speedily conclude that the players are
irrational (if not utterly mad). But if the game-theorist were
informed that the first player to lose £1000 in the poker game wins

g Formal Meta—game theory was developed by N. Howard, Paradoxes
of Rationality: Theary of Metagames and Political Behaviour, The
M.I.T. Press, Cambridge, Massachusetts, 1971.
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£10,000 in the meta—game, he could conclude from the same observa—
tions that the players are quite rational. Thus one cannot always
infer a player's rationality (or irrationality) from his game stra-
tegy alone; one may also require knowledge of the rules of an as-
sociated meta—game, in order to draw such an inference.

It seems that an ideal definition of rationality cannot always
be based solely upon the game strategy of a player; it must also take
into account the rules of the associated meta—game. And, to further
complicate matters, while many players may be involved in the same
game, with each player may be associated a different meta-game. The
game—theorist cannot infer a player's rationality unless he knows the
rules of the particular meta—game associated with that player.

Consider, for instance, the hypothetical case of a wealthy
poker player who loses money deliberately to his fellow poker-play—
ers, as an act of charity. He may, inadvertently, win a few hands in
the process; but his meta—game rule is to maximize his long—term
losses. Suppose the other players are playing '"normally"; that is,
they share the meta—game rule of attempting to maximize their long-
term winnings. If the game-theorist observer is unaware of the
charitable player's meta—game rule, he might infer, based on his
observations of strategy, that the player is irrational. But if made
aware of the charitable player's rule, he would infer from his
observations that the charitable player is indeed rational.

Note that one does not need to know the actual motives of the
player in order to draw such an inference. It is not necessary that
the game—-theorist be told that the player in question is motivated by
charitability: he need only know whether the player;s meta—game rule
is the long—term maximization of winnings, or of losses. If that
player's game—strategy is consistent with his meta—game rule, then
that player may be called "rational"; if not, then "irrational."

Note also that the other players in this hypothetical game,
though they share an identical meta—game rule (the maximization of
long—term winnings), may do so for completely different reasons. One
player may wish to purchase a gift for his wife; another may wish to
make a donation to medical research; a fourth may wish to pay for
music lessons for his child. Again, the game—theorist does not need
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to be told what motivates these players; he need only know that their

meta—game rule is the maximization of

long-term winnings. If a
player's game strategy is consistent with his rule, then that player
may be called "rational"; if not, then "irrational".

This dyadic definition of rationality, which assesses consis-—
tency between a game strategy and its associated meta-game rule,
entails no moral judgement concerning intra-personal motives, nor
does it attempt an inter—personal comparison of motives. It satisfies
Rapoport's demand that the psychology of a player be excluded from
consideration of his rationality.

From the foregoing example, it is clear that one cannot infer a
player's meta—game rule simply by observing his game-strategy. While
the losing strategy of the charitable poker—player is consistent with
his meta—game rule of maximizing long—-term losses,
losing strategy could also be adopted by an irrational player whose
meta—game rule is to maximize his long—term winnings. The observer of
these players would err by inferring the identity of their meta-game
rules from the identity of their game strategies. Of course, if the
observer were told that one of the players is rational, and the other
irrational,

an identical

he could then infer that their meta—game rules are
different. But he could not identify the rational (or the irrational)
player without Kknowing which meta—game rule a particular player
obeys.

In order to ascertain whether a given player is rational or
not, the observer can construct a meta-matrix for that player, as
follows:

Game 3.1 - Observer's Meta—Matrix for Player A
A's Meta—-Game Rule

Maximize Maximize
Winnings Losses
Winning player A player A is
Strategy is rational irrational
A's Game Strategy
Losing player A is player A
Strategy irrational is rational
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Thus far, it has been possible for the observer to discern
between winning and losing game strategies, independently of his
knowledge (or lack thereof) about a player's meta—game rule. It is
possible to .conceive of a worse case, however, in which the observer
cannot discern between winning and losing strategies purely from the
context of the game. Would such a case preclude the construction of a
meta-matrix, and thus prevent him from assessing a player's rationa—
lity?

Reconsider, for example, the game of Rock, Scissors, Paper. It
has been established that, if both players are a priori probabilists,
they should both adopt a mixed strategy of uniform random play. Then,
over the course of a large number of games, both players' net scores
will tend toward zero. In the prior consideration of this game, it
was tacitly assumed that both players obeyed a meta—game rule of
maximizing their long-term winnings (or, equivalently in this class
of game, of minimizing their long-term losses).

But suppose both players now obey a meta—game rule of minimiz—
ing their long-term winnings (or, equivalently, of maximizing their
long-term losses). Instead of attempting to win as often as possible,
both players are now (for some plausible reason) attempting to lose
as often as possible. What strategies should they adopt?

If player A wishes to lose and player B wishes to win, player A
would choose a pure strategy of either Rock, Scissors, or Paper.
Suppose he chooses Rock. Player B would soon respond with a pure
strategy of Paper. Player A would lose, and player B would win, every
game thereafter. Thus each would satisfy his respective meta—game
rule (and both would be rational to the game—theoretic observer).

However, if both players wish to lose, then A cannot adopt a
pure strategy. (If he did so, again choosing Rock, then B would soon
respord with a pure strategy of Scissors, and A would win every game
thereafter.) If both players wish to lose, then they must each adopt
a mixed strategy of uniform random play. This strategy is therefore
degenerate: it is best both for mutually-desired long-term wins and
for mutually-desired long-term losses. Thus the game—theoretic
observer cannot ascertain, purely from the context of the play,
whether both players obey a meta—game rule that maximizes wins, or
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losses. Nevertheless, the observer can readily construct a meta-
matrix for either player, as follows:

Game 3.2 - Observer's Meta-Matrix for Player A

(with degenerate winning/losing stragegy)
A's Meta—game Rule

Maximize Maximize
Winnings Losses
Mixed, Uniform player A player A
Random Strategy is rational is rational
A's Game Strategy
Pure or Non— player A is player A is

Uniform Strategy irrational irrational

Strategic degeneracy does not affect the observer's ability to
assess the rationality of either player, according to the working
definition of rationality under consideration.

Do situations arise which demard more of this concept of
rationality than it can afford? Apparently, they do. The working
definition becomes less workable in the following examples.

Suppose player A is both very fond of strawberries and mildly
allergic to them. He derives considerable pleasure from eating
strawberries, but suffers a temporarily uncomfortable though other—
wise harmless allergic reaction after eating them. If A is offered
strawberries and declines them, is he rational? Certainly, if his
meta—game rule prescribes the avoidance of discomfort whenever
possible. But if A is offered strawberries and accepts them, is A
irrational? Certainli' not, if his meta—game rule permits the indul-
gence of a gustatory pleasure with the consequence of a mild discom—
fort.

Now suppose that A is offered strawberries at consecutive
meals; he declines them at breakfast, but accepts them at lunch. What
can a game-theoretic observer infer about A's raticnality? He can
infer that, if A's meta—game rule was the same for both meals, then A
was rational at one meal and irrational at the other. He can also
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infer that, if A's meta—game rule was not the same for both meals,
then A was either rational at ’both meals, or was irrational at both.
This example is one in which the meta-game rule does not
necessarily remain fixed or constant throughout the duration of the
meta—game itself, but is subject to change according to the shifting
preferences of the player. Meta—game theorist Howard puts forward a
definition of rationality based squarely upon this premise:

"We say that rational beh?viour consists in choosing the
alternative one prefers."

The working definition under consideration here is consistent with
Howard's. A meta—game rule orders a player's preferences, while a
game strategy chooses that alternative which reflects the ordering
(if the player 1is rational), or which does not reflect it (if the
player is irrational)’.

The problem is that the player's rationality can be assessed
only if the observer is informed of every shift in the player's
preference.

Now suppose the observer is player B in a game of imperfect
information without a saddle peint, in which changes in the players'
preferences are mutually concealed. In that case, the ratiocnality or
irrationality of each player is indeterminate with respect to the
other. This situation is worse than that of a game of perfect infor-
mation without a saddle point, in which player B can be harmed by
player A's irrationality (and vice-versa). In a game of imperfect
information without a saddle point, player B can be harmed not only
by A's irrationality, but also by B's possible mistaking of A's
actual rationality for apparent irrationality (and vice—versa).

The first example of the indeterminacy of rationality takes
place in an inter—personal context; that is, each player behaves
either rationally or irrationally ('"behaves" in Howard's sense, by
choosing the alternative he prefers), but neither player can infer
the rationality or irrationality of the other.

A secord example, the indeterminacy of whose expectations is
well-known to game theorists, takes place intra—personally. It

’ Howard, 1971, p.xx.
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involves Pascal's question of whether to subscribe, or not to sub—

scribe, to Roman Catholic theology. Pascal's matrix is as follows:10

Game 3.3 — Pascal's Question

State of Nature

God exists God does not exist
Practice eternal reward pious life only
Catholicism
Pascal's
Decision
Not Practice eternal punishment impiocus life only
Catholicism

In games against a state of nature, the player does not know
which state actually obtains, but assumes the actual state to be
causally independent of his beliefs. In order to calculate his
expected utilities, the player normally assigns a probability dis-
tribution to the states of nature.ll
determinate in terms of expected utilities, owing to the infinite

The result of Game 3.3 1is in-

positive and negative payoffs associated with eternal reward and
punishment, respectively, and the ensuing transfinite arithmetic.

But the concern here is not with the utility of Pascal's
decision; rather, with its rationality. If Pascal decides to believe
in the Catholic deity's existence (as a meta—game rule), then he
would be rational to practice Catholicism (as a game strategy).

But would Pascal be irrational to believe in such a deity's
existence and not practice Catholicism? Not necessarily. If Pascal is
a fatalistic theist, he might believe that his decision is pre-
ordained. But if Pascal's decision is causally pre—determined by a
deity, then it is not solely Pascal's decision. And if Pascal cannot
make a free choice, then the meaning of the rationality or irrationa—

¥ Variants of the matrix can be found e.g. in Jeffrey, 1965,
p-12; and Howard, 1971, p.7.

n Pascal, for instance, assigned a subjective probability of
.00001 to the state in which God exists; see Jeffrey, 1965, p.12.
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lity of his choice alters drastically. And if the deity in which
Pascal believes allows him a choice, then Pascal is still not neces—
sarily irrational not to practice Catholicism. For Pascal may prefer
to sin now, and.to seek absolution or redemption later.

On the other hand, if Pascal decides not to believe in the
Catholic deity's existence (as a meta—game rule), then he would be
rational not to practice Catholicism (as a game strategy).

But would Pascal be irrational not to believe in the deity's
existence and to practice Catholicism anyway? Again, not necessarily.
Given that his belief need not be absolute, Pascal may simply doubt
the existence of such a deity, while practicing Catholicism in order
to ‘"hedge his bet'". Or, Pascal's disbelief may be absolute, and he
remains in a state of atheism, but practices Catholicism publicly to
protect himself in the event of an Inquisition.

The example of Pascal is meant to illustrate that, no matter
what the player's beliefs in a game against nature, arguments can be
found which support the ‘'rationality" of any personal decision he
takes. But if a distinction cannot be drawn between rationality and
irrationality, then the game-theoretic concepts are indeterminate in
this context.

Thus the working definition of rationality (consistency between
a player's meta—game rule and his game strategy), which satisfies
Rapoport's game—theoretic criterion of independence from psychology
and Howard's meta-game-theoretic criterion of choosing the alterna-
tive that one prefers, is nct universally applicable. Classes of
inter—personal games exist in which neither player can ascertain the
other's rationality, or irrationality; and classes of intra—-personal
games exist in which the player cannot discern between rational and
irrational choice.

But the problems of game—theoretic rationality hardly end
there. As will be seen next, one dimension of the Prisoner's Dilemma
—and arguably the most significant dimension with respect to con—
flict resolution—entails divergent meanings of rational choice. In
games considered thus far, rationality amd irrationality have been
associated with (and, where definable, defined in terms of) the in-
dividual player. But with reference to the Prisoner's Dilemma,
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Rapoport suggests

"that the concept of rationality should be re—examined,
perhaps split into two conCﬁpts, individual rationality
and collective rationality."”

A re—examination of the Prisoner's Dilemma will certainly bear out
the cogency of Rapoport's suggestion.

Sufficient essentials of game theory have been reviewed to
enable such a re-examination. With these basic necessities in hand
(an urderstanding of principal taxonomic criteria, and an apprecia—
tion of the range of difficulties latent in utility theory and game—
theoretic rationality), one is minimally equipped to consider some of
the complexities in the Prisoner's Dilemma.

12 Rapoport (ed.), 1974, p.4.
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Chapter Four
Conflicting Choices and Rationalities

Game—theoretic literature attributes the original Prisoner's
Dilemma to A.W. Tucker.! As to its early development, Rapoport
narrates:

"To my knowledge, the earliest experiments with Priso—
ner's Dilemma were performed by Flood in 1952. . .and do
not seem to have attracted much attention at the time. .
. The “paradox' was discussed by several of the Fellows
at the Centre for Advanced Study in the Behavioural
Sciences in Palo Alto during the first year of its
operation (1954-55). . .Possibly a decisive impetus to
experimental work was given by a paper by Schelling,
published in 1958. At any rate, it seems that the first
experiment since Flood's was performed by Deutch in 1958.
Thereafter the mumber of experimentazl papers on Priso—-
ner's Dilemma increased very rapidly."

Both theoretical and experimental interest in the Prisoner's
Dilemma are stimulated by the model's structural properties. As a
non-zero—-sum, non—co-operative game, the Prisoner's Dilemma resists
absolute theoretical prescriptions as to the "best" line of play. In
consequence, a limitless range of experiments can be conducted, whose
results may correlate with a wide variety of factors, from differing
characteristics of the players to variants of the game itself.

The Prisoner's Dilemma can be played in both the static and the
iterated modes. Logically and chronologically, the former gives rise
to the latter, so it is mete to commence with the former. As von
Neumann and Morgenstern declared in their general theory of two—
person, zero—sum games:

| E.g. Luce & Raiffa, 1957, p.94; Rapoport & Chammah, 1965,
p.24; Singleton & Tyndall, 1974, p.101.

? Rapoport (ed.), 1974, pp.19-20. The papers to which Rapoport
refers are: M. Flood, “Some Experimental Games', Research Memorandum
RM-789, The Rand Corporation, Santa Monica, 1952; T. Schelling, “The
Strategy of Conflict: Prospectus for the Reorientation of Game
Theory', Jowmnal of Conflict Resolution, 2, 1958, pp.203-64; M.
Deutch, “Trust and Suspicion', Jowrnal of Conflict Resolution, 2,
1958, pp.267-79.
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"We make no concessior)s. Our view?oint is static and we

are analyzing only a single play.”

Indeed, numerous aspects of game—-theory were subsequently developed,
maintaining theoretical pace with the empirical transition from
static to iterated nomzero—sum games. An understanding of the static
Prisoner's Dilemma is a prerequisite for an appreciation of the
increased complexities of iterated Prisoner’'s Dilemmas.

The static Prisoner's Dilemma arises from a particular type of
scenario, many versions of which are rehearsed in the literature.
Though the model has been embellished in a variety of ways, varia—
tions in the narrative details do not alter the problem itself, which
inheres in specific properties of the game-matrix.

One version, then, is as follows: suppose two suspects are
arrested, held incommunicado, and interrogated. Call them prisoner A
and prisoner B. Each prisoner faces an identical choice: he can
either divulge evidence against his fellow-prisoner, or refuse to do
so. Since each prisoner must make a choice, the prisoners will thus
generate a joint outcome, but without collusion. Both prisoners are
made aware of the payoffs of each possible outcome, which are:

(1) If both A and Brefuse to divulge evidence against one
another, they will both be set free.

(2) If A divulges evidence against Band B does not divulge
evidence against A, then A will be given a hribe and set free, while
B will serve a heavy sentence.

(3) If B divulges evidence against A and A does not divulge
evidence against B, then B will be given a hribe and set free, while
A will serve a heavy sentence.

(4) If both A and B divulge evidence against one another, they
will both serve light sentences.

In the conventional terminology of the Dilemma, each prisoner
must choose between co—operating and defecting, with respect to his
fellow prisoner. To defect means to divulge evidence; to co-operate
means to refuse to divulge evidence. The game matrix can be con—
structed as follows:

3 Neumann & Morgenstern, 1955, p.147.
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Game 4.1 — The Prisoner's Dilemma

B

C RR S5, T
D .S B, P

vhere T>R>P > S
for prisoner A: C means co-operate, D means defect
for prisoner B: ¢ means co-operate, d means defect

The numerical values of the payoffs may fluctuate in a given
Prisoner's Dilemma, but their transitive ordering does not change. T
stands for the temptation to defect; R, for the reward of mutual co-
operation; P, for the punishment of mutual defection; S, for the so—
called "sucker's payoff".4

As will be seen throughout Part Two, the dilemma admits of
several facets of interpretation.

The initial dilemma can be viewed as arising from the breakdown
of the fundamental property of strictly-determined zero—sum games,
when applied to certain non—zero—sum games; namely, the minimax
criterion.) In game 4.1, a generalized Prisoner's Dilemma, the (P,P)
cutcome resulting from mutual defection is, in effect, a saddle point

of the matrix.

Recall that, in a two-person zero—sum game with a saddle point,
a player who seeks to maximize his payoff fares best by choosing that
roWw (or column) which contains the saddle point, regardless of the
other player's choice. In the Prisoner's Dilemma, however, this

4 This conventional notation is used e.g. by Rapoport & Chammah,
1965, pp.334 et passim; by R. Axelrod, “The Emergence of Cooperation
Among Egoists', The American Political Science Review, 75, 1981,
pp.306-18; by R. Axelrod & W. Hamilton, “The Evolution of Coopera—
tion', Science, 211, 1981, pp.1390—-6; among others.

) A number of zero—sum game properties are violated in non—zero—
sum games; e.g. see Luce & Raiffa, 1957, pp.90-94.
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property no longer holds. For, in game 4.1, if both players choose
that row (arxd column) containing the saddle point, they attain the
outcome (P,P), and thereby fail to realize the more mutually favour-
able outcome (K.R). This situation cannot obtain in a zero—sum game
with a saddle point. The non—zero-sum game differs critically, in
that a player who seeks to maximize his own payoff is obliged to take
the other player's possible choice into account (saddle points
notwithstanding) .

In game 4.1, it can still be argued that player A fares better
by defecting, in terms of possible payoffs to himself alone, regard-
less of player B's choice. But if player B reasons similarly, then
the resultant outcome is not the most mutually favourable outcome.
Then again, if player A risks co-operation, then he stands either to
gain relatively less, or else to lose relatively more, than through
defection, depending upon player B's choice. Thus each player must
run the risk of incurring the most detrimental individual payoff if
he wishes to achieve the most beneficial collective payoff.

It is desirable to describe this situation in more formal
terms. A useful way in which to do so is to represent the initial
dilemma as a conflict between two principles of choice: dominance
versus maximization of expected util.ity.6

The dominance principle operates as follows: choice X strongly
dominates choice Y if and only if, for each game-state (joint out-
come), A prefers the consequences of X to those of Y. Choice X weakly
dominates choice Y if: for each game—state, A either prefers the
consequences of X to those of Y or is indifferent between them; and
for some game—state or states, X prefers the consequence(s) of X to
that (those) of Y. Two simple examples illustrate this principle.

6 These principles are common to game theory amd decision
theory; e.g. see R. Nozick, “Newcomb's Paradox and Two Principles of
Choice', in N. Rescher (ed.), Essays in Honour of Carl G. Hempel, D.
Reidel, Dordrecht, 1969, pp.114-146.
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Game 4.2 — Strong Dominance Game 4.3 — Weak Dominance
"B B
X Y _ X Y
X 4,1 9,5 X 4,1 9,5
A A
Y 3.2 8.6 Y 4,2 8,2

In game 4.2, choice X strongly dominates choice Y for A (since
4 >3 and 9 > 8), while choice y strongly dominates choice x for B
(since 5 >1 and 6 > 2). In Game 4.3, choice X weakly dominates
choice Y for A (since 4 = 4 and 9 > 8), while choice y weakly domi-
nates choice x for B (since 5 > 1 and 2 = 2).

In Game 4.1, the Prisoner's Dilemma, defection is strongly
dominant for both A and B (since, for both prisoners, T > Rand P >
S). Hence the dominance principle dictates that each prisoner should
defect. But if both prisoners defect, the outcome (P,P) is mutually
detrimental.

The principle of maximization of expected utility was encoun-
tered in Chapter Two. To re—iterate: the expected utility of a given
row (or column) is the sum of the products of the utility of each
game—state in that row (or column) and the respective probability
with which that game-state obtains. Most generally, if a given row
(or column) contains n states, and the utility of the it state is U;,
and the istate obtains with probability p then the expected
utility of that row (or column) is

a
= 2 (U)(p)
=1
To maximize expected utility, then, one chooses that row (or column)
for which the EU is greatest.

In Game 4.1, the respective utilities of each game—state are
ordered (on the ordinal scale), but the probability that each game-
state obtains has yet to be assigned. How are probabilities to be
distributed among the game-states of the static Prisoner's Dilemma?
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In the iterated case, it .will be seen that probabilistic and causal
dependencies arise which favour the frequency and 1likelihood of
symmetric game states, either (R,®) or (P,P). But since the static
case is being treated as logically prior to the iterated case, it
seems inappropriate to admit iterated criteria at this juncture.
Since the static case is an isolated case, a posteriori probabilities
(frequency distributions) are presumably unavailable to the priso—
ners. Thus the prisoners would be obliged to assign probabilities on
some a priari basis.

For example, were player A to apply the principle of insuf-
ficient reason. then he would assume that player B will co—operate or
defect with equal probability (1/2). In that case, his expected
utility of co—operation would be

EU(CO) = (1/2)R + (1/2)5
while his expected utility of defection would be
EUD) = (1/2)T + (1/2)P

Since T >R and P > S, maximization of expected utility via the
principle of insufficient reason suggests mutual defection.

However, an argument can be made that a player should not apply
said principle. By definition, the principle of insufficient reason
states that

"alternatives are always to be judged equiprobsble if we
have no reason to expect or prefer one over another."

While a prisoner may have no reason to expect one joint outcome over
another, he certainly has valid reason to prefer one joint outcome to
another. Each prisoner will order the joint outcomes according to the
payoffs they contain for him; e.g., for prisoner A: (7,5 > (RR) >
(P,P) > (5,7). Given the expressibility of preferences, the principle
of insufficient reason seems to rule itself out.

The prisoners have recourse to a more interesting—and arguably
more appropriate—a priari probability distribution, which follows

7 Weatherford, 1982, p.29.
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from particular properties of the game matrix. The matrix of game 4.1
has an equilibrium outcome at (P,P). An equilibrium outcome is one

. .from which neither player can shift without impair-
ing hif payoff, assuming that the other player does not
shift.'"” =~

Tha matrix also has a Pareto-optimal outcome at (R,R):

"An outcome of a game is called Pareto—optimal if there
is no otsler outcome in which both players get a larger
payoff."

The existence of equililrium and Pareto—optimal outcomes may justify
an a priori assumption of their probabilistic dependence. In other
words, each prisoner may deem it likely that their joint decision
will result in either an equilibrium or a Pareto-optimal outcome.

In that case, each prisoner would weight the probabilities such
that p(R,.R) > p(S,T)‘ and p(P,P) > p(T,5 . In terms of individual
choice, prisoner A would weight p(c/0) > p(d/0) amd p(d/D) > p(c¢/D),
where p(c/C) means “the probability that prisoner B co—operates (¢),
conditional on the assumption that prisoner A co-operates (O)", and
so fortl’x.10 Similarly, prisoner B would weight p(C/c) > p(D/c) amd
p(o/d) > p(&/d).

Now prisoner A finds his expected utilities to be

EU(O) = p(c/O(R) + (1-p)(d/C) (9)
EUD) = (1-p)(c/D)(T) + p(d/D)(P)

where p > 1/2

If prisoner A assumés complete probabilistic dependence, then

8 A. Rapoport, M. Guyer, D. Gordon, The 2x2 Game, The University
of Michigan Press, Ann Arbor, 1976, p.18. See also R. Weber, ~“No—
ncooperative Games', Proceedings of Symposia in Applied Mathematics,
24, 1981, pp.83-125.

9 Rapoport et al, 1976, pp.18-19.

 mis notation is from R. Campbell, “Background for the Unini-
tiated', in R. Campbell & L. Sowden (eds.), Paradoxes of Rationality
and Cooperation, The University of British Columbia Press, Vancouver,
1985, p.18ff.
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P(c/C) = p(d/D) = 1 and (1-p)(d/C) = (1-p)(c/D) = 0. Explicitly,
then, A's expected utilities are

- EUV(C) = R
EU(D) = P

Since R > P, maximization of expected utility prescribes co—opera—
tion. The argument is symmetric for prisoner B. Thus both prisoners
co—operate, to their mutual benefit.

Of course, if a prisoner assumes partial probabilistic depen—
dence, then the general result is indeterminate. For instance, if for
some reason prisoner A assumes p(c/C) = p(d/D) = x and p(d/C) =
pP(c/Dy = (1-x), then his expected utilities are

EJ(C) = xR+ (1-x)S
EU(D) = (1-x)T + xP

Prisoner A co—operates if EU(C) > EU(D). For this to be the case,

xR+ (1-x)5 > xP + (1-x)T
or

(R-P)/(T-9) > (1/x)-1 4.1)

Consider the left hand side of inequality (4.1). Since T > R
and S< P, the denominator is always larger than the numerator. Thus
the left hand side of this inequality must always be smaller than
unity. It approaches (but never reaches) the value of unity as an
upper limit, in cases where R is almost as large as T ard S is almost
as large as P.

Now consider the right hand side of inequality (4.1). It can
take on a range of values for the permitted domain of x (0 < x < 1).
As x approaches zero, the right hand side blows up; as x approaches
unity, it tends toward zero. At x = 1/2, the right hand side equals
unity, which is the upper limit of the left hand side.

So, for inequality (4.1) to be satisfiable, the value of x must
exceed one-half. When it does so, the right hand side is 1less than
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unity, and the inequality can be satisfied by appropriate values of
T, R, P, and S. Thus, if the maximization of expected utilities is to
prescribe co-operation via the rule of partial probabilistic depen-
dence, the conditional probabilities of mutual co—operation, p(c¢/0),
and of mutual defection, p(d/D), must exceed the critical value of
1/2. When they do so, the principle of maximizing expected utilities
may prescribe co—operation, depending on the particular payoffs. But
when the conditional probabilities do not exceed the critical value
of one-half, the principle always prescribes defection, regardless of
the payoffs.

These considerations can be illustrated graphically, where the
natural logarithms of both sides of inequality (4.1) are plotted
against the permitted domain of x.

Graph 4.1 REGIONS OF CO~-OPERATION AND DEFECTION
Maximization of Expected Utility with
Partial Probabilistic Dependence

£(x) = In[(1/x)-1]

0 p— - y
- region of conditional
-1 co-operation
region of region of \P
-2 unconditional defection conditional defection \
-3 \
-4 \.
_5 ——d 1 1 L 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x = p{c/C) = p(d/D) == In[(R-P)/(T-8S)]

Graph 4.1 delineates regions of co—operation, and of defection.
The region of unconditional defection is bounded above by the
xaxis for 0 < x < 1/2. The graph depicts a previous algebraic
result, that inequality (4.1) cannot be satisfied in this domain. In
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other words, maximizing expected utility with partial probabilistic
dependence of less than one-half prescribes defection for all values
of T, R, Pard S (such that T> R > P > 9).

The region of conditional defection is bourded above by the
curve f(x) = In((1/x)-1], for 1/2 < x< 1. In this domain, maximizing
expected utility prescribes defection if inequality (4.1) is not
satisfied, i.e. if (R-P)/(T-5) < (1/x)-1. For any partial probabli-
lity x, in this domain, the result depends upon the particular
payoffs of the given game.

The region of conditional co-operation is bounded above by the
x-axis, and below by the curve f(x) = In[(1/x)-1], for 1/2< x< 1.
Maximization of expected wutility prescribes co-operation if ine—
quality (4.1) is satisfied, i.e. if (R-P)/(T=S) > (1/X)-1. Note that
the area of the region of conditional co—operation increases as x
approaches unity. This area is proportional to the number of possible
values of T, R, Pand S for which inequality (4.1) is satisfied.

At x=1, f(x) is undefined, since unity is that value of x for
which partial probabilistic dependence becomes complete probabilistic
dependence. The area in this region increases without bound as x gets
very close to unity, and the graph depicts a previous algebraic
result: that in the case of complete probabilistic dependence,
maximization of expected utility prescribes unconditional co-opera-—
tion, for all values of T, R, Pand S (such that T> R > P > 5).

In so far as the dilemma confronting the prisoners arises from
divergihg dictates of two decision—theoretic principles of choice,
the situation can be summarized as follows.

For each prisoner, defection strongly dominates co—operation.
The dominance principle dictates that each prisoner fares better by
defecting than by co-operating, no matter what the other prisoner
does. But if both prisoners defect, they achieve an equilibrium
outcome, which is mutually detrimental.

On the other harxd, the existence of equilibrium and Pareto—
optimal outcomes in the matrix may incline each prisoner to maximize
his expected utility. If both adopt the rule of complete probabilis—
tic dependence, then both co-operate, and they achieve a Pareto—
optimal outcome, which is mutually beneficial. If both adopt the rule
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of partial probabilistic dependence, then the joint outcome depends
upon their respective probability weights and the given payoffs of
the game.

The inner .workings of this dilemma are not trivial, even in the
static case under consideration. Although the two decision-theoretic
principles may prescribe conflicting choices, they do not do so
unequivocally. An inner problem is embedded in the calculus of each
principle, which prevents a rational player from adopting either
unreservedly. Briefly stated, these problems are:

(1) If the dominance principle is rational for each prisoner,
why does its mutual adoption result in a detrimental joint outcome?

(2) If the principle of maximizing expected utility is rational
for each prisoner, is the associated rule of probabilistic dependence
to be complete, or partial? And, if the principle is adopted with
partial probabilistic dependence, how does a rational prisoner assign
the corresponding probability weights?

But in asking these two questions, one begs a third:

(3) What, if anything, constitutes "rational" choice in the
Prisoner's Dilemma? The cwrent working definition, that it is
rational to choose the alternative one prefers, can lead to any of
the four joint outcomes. In that case, the prisoners may as well flip
coins as apply decision theory. Since the working definition of game-
theoretic rationality cannot distinguish between individually and
mutually beneficial, or detrimental, outcomes, one might posit a
criterion of game—theoretic meta-rationality: to be "meta-rational"
is to be aware of the deficiency of the game-theoretic concept of
rationality as it stands.

According to this hypothetical criterion, Rapoport is highly
meta-rational. In his view:

"Either the concept of rationality is not well-defined in
the context of the nomnegotiable non—=zero—sum game; or
if the definition of rationality in the context of the
Zero—sum game is applied to the "solution" of some non-—
Zero—sum games, the results are paradoxical."

In the case of the Prisoner's Dilemma, it seems that Rapoport's
disjunction is actually a conjunction. The "paradox", in this case,

I papoport, 1966, p.142.
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arises because each prisoner has a strongly dominant choice (defe—
ction) that leads to a mutually-detrimental result. Is the soundness
of the dominance principle suspect? Not necessarily. The core prob—
lem, which Rapoport identifies, lies in the application of zero-sum
rationality to a non—zero—sum game.

Rapoport's insight provides answers to the first two questions
by addressing itself to the third.

In applying the dominance principle, prisoner A chooses the set
of outcomes that is best for him. In a two—person zero—sum game, the
best set of outcomes for A is also the worst set of outcomes for B,
since B must always forfeit exactly what A what gains (and vice—
versa). If A prefers to maximize his payoff, and if one choice
dominates another, then A is rational to make the dominant choice.

Game 4.4 — The Prisoner's Non—Dilemma

B
c d
C R-R T, T
A
D T-T P,—-P

where T> R > P

Game 4.4 represents an attempt to impose a zero—sum condition
upon the Prisoner's Dilemma. For prisoner A, defection is strongly
dominant, since T > Rand P > -T. For prisoner B, defection is also
strongly dominant, since T > -Rand —-P > -T. Thus both prisoners
defect. But in this case, the ocutcome (P,—-P) is not mutually detri-
mental; rather, mutually optimal. Why? Because (P,—P) is a saddle
point of the matrix. If A defects, he gains at least P utiles; if B
defects, he loses at most P utiles. Since mutual defection leads to
minimax, a zero-sum Prisoner's Dilemma presents no dilemma to the
prisoners.

In the non—zero—sum Prisoner's Dilemma, however, mutual defec—
tion leads to an outcome that is not mutually optimal. Why? Because
the zero—-sum criterion of rationality prescribes defection to each
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prisoner. According to this criterion, if prisoner A prefers to
maximize his gains and minimize his losses, and if a dominant choice
exists, then he should make that choice. Hence he is rational to
defect. And so _with B. But this criterion originates in the context
of a zero—sum game, in which, by definition, the algebraic sum of the
Joint payoffs of any outcome is always zero. In a non—zero—sum game,
however, this constraint vanishes; differences between algebraic sums
of joint payoffs now exist. These differences ' must be taken into ac—
count, since they can generate a Pareto—optimal outcome.

Game 4.4 (the Prisoner's non-Dilemma) has an equilibrium
outcome at (P,—P). Neither prisoner can shift from it without impair-
ing his payoff, assuming that the other player does not shift. If
either prisoner prefers the equilibrium outcome, he applies the
dominance principle, and obtains, at worst, his preference. Dominance
is effective in zero—sum games because the criterion of rationality
is workable in zero—sum games. The criterion in turn is workable
because, in zero—sum games, every outcome is Pareto-optimal .12

Game 4.1 (the Prisoner's Dilemma) also has an equilibrium
outcome at (P,P). But the criterion of zero—sum rationality, which
demands only that a player choose the alternative he prefers, fails
to guarantee Pareto-optimality in this non—zero—sum case, because the
equilibrium outcome (p,P) is no longer Pareto—optimal.

One can now appreciate the cogency of Rapoport's differentia—
tion between individual and collective rationality.13 Individual
rationality is applicable in zero—sum games. But in non—zero—sum
games, collective rationality must be applied, in order that the
players do not pre-empt a Pareto-optimal outcome by exercising
individually rational choices. A working definition of collective
rationality demands that a player attempt to achieve a Pareto-optimal
outcome, if one exists. At the same time, a player who is collective—
ly rational must be able to protect himself—in so far as a given

L In any zero—sum game, every outcome satisfies the condition
of Pareto—optimality; namely, that no other outcome contains larger
payoffs for both players. This condition, being universally true 1in
Zero—sum games, retains little significance in them.

13 Rapoport (ed.), 1974, p.4.



72

game allows—from a player who is individually rational, or otherwise
irrational.

This enquiry does not attempt to formulate a definition of
collective raticnality that is workable across the broad spectrum of
non—-zZero—sum games. It does, however, attempt to realize a more
limited objective; namely, an implementation of Rapoport's concept of
collective rationality in the context of the Prisoner's Dilemma. Thus
far, the attempt provides an answer to question (1) above: the
dominance principle leads to a mutually-detrimental outcome because,
although individually rational, it is not collectively rational.

Next, one seeks answers to questions (2) and (3). It is pos—
sible to formulate a working definition of collective rationality
that answers these questions simultaneously. Suppose that prisoner A
is collectively rational if

(i) he elects to maximize his expected utility, and

(ii) he adopts the rule of either complete or partial probabi-
listic deperdence, assigning to p(c/C) and p(d/D) the probability
that prisoner B is collectively rational.

It can be immediately contested that condition (ii) of this
proposed definition is impredicative; nonetheless, given that the
type of rationality under consideration is not of the individual
kind, it may be permissible in these unusual circumstances to define
the collective aspect in terms of the collective itself. One may put
this objection on one side, and see whether the definition can
counter it in operation.

Let prisoner A be collectively rational, according to condi-
tions (i) and (ii). Now suppose the probability of B's collective
rationality is unity. In that event, A maximizes his expected utility
with p(¢/O = p(d/D) = 1, which is the case of complete probabilistic
dependence. Consequently, A co—operates. But B is also collectively
rational, and the probability of A's collective rationality is also
unity. So, according to conditions (i) and (ii), B maximizes his
expected utility with p(¢/¢) = p(I/d) = 1, and consequently B too co—
operates. So mutual collective rationality, on these terms, leads to
the desired outcome of Pareto-optimality.
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Now let prisoner A be collectively rational, again according to
conditions (i) and (ii), and suppose the probability of B's collec—
tive rationality is =zero. A maximizes his expected utility with
p(c/C) = p(d/D). = 0, which lies in the region of unconditional
defection. So A defects. But B is not collectively rational, and may
defect upon a whim. In that case, A protects himself against B's
individual rationality, and against any other form of irrationality
that leads B to defect. If B's irrationality leads him to co-operate,
for a bizarre or capricious reason, then A fares even better by
defecting.

Now let prisoner A be collectively rational, again according to
conditions (i) and (ii), and suppose the probability of B's collec—
tive rationality lies between zero and unity. If said probability is
less than or equal to one-half, then A defects unconditionally. If it
is greater than one-half, then A's maximization of expected utility
lies in the region of conditional co—operation or defection. A either
co—operates or defects, depending on the actual payoffs involved. In
general, the greater the probability that prisoner B is collectively
rational, the greater the number of cases in which collectively
rational prisoner A will choose co—operation.

This working definition of collective rationality answers
questions (2) and (3), and seems to overrule the objection of im—
predicativity. It allows two collectively rational prisoners to
achieve a Pareto-optimal outcome, and also affords a measure of
protection to a collectively rational prisoner whose fellow-prisoner
is not collectively rational.

Unfortunately, the static Prisoner's Dilemma is not so handily
resolved. The proposed definition of collective rationality, while
quite workable in theory, encounters a formidable barrier in prac—
tice. There is simply no analytic method, in the static mode, by
which one prisoner can ascertain the probability of the . other's
collective rationality. A prisoner who wishes to do so falls into one
of two broad streams of probabilistic thought: the a priori, and the
a posteriari. The a posteriori probabilistic prisoner cannot be in
possession of a frequency distribution of the other prisoner's
previous choices (made in other dilemmas), since the static model
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represents a single, isolated case. Nor can the a priori probabilis-
tic prisoner be made aware of the other prisoner’'s current delibera-
tions or intentions since, according to the ground rules of the
model, the prisoners are held incommunicado.

It would seem that one prisoner's evaluation of the probability
of the other prisoner's collective rationality is a matter of guess-—
work. As such, a prisoner may make a grossly inaccurate assessment,
with disastrous results for either himself or his fellow-prisoner.
Ard if both prisoners are collectively rational, but both incorrectly
assess the other's probability of being such as less than one-half,
then both prisoners defect. to their mutual detriment. Unless the
collectively rational prisoner is able to find a reliable way to
ascertain the probability of the other's collective rationality, then
his own collective rationality amounts to no more than a beneficial
intention. While a beneficial intention may be an estimable factor in
the resolution of conflict generally, it is plainly susceptible to
misdirection in the static Prisoner's Dilemma, where it can prove as
inimical, to either prisoner, as a hostile predisposition. Again, the
Prisoner's Dilemma resists an infallible resolution.

Game—theorists who are unwilling to be confounded by the
dilemma have brought no small ingenuity to bear upon the problem. Two
significant proposed resolutions are examined in the next two chap—
ters. The model, however, exhibits a disquieting, Hydra—like proper-
ty: the resolution of one dilemma seems to engender the appearance of
another.

For example, Rapoport's notion of collective rationality has
drawn the following criticism: Davis argues that if each prisoner is
concerned with the joint outcome, then the Prisoner's Dilemma ceases
to be a dilemma.M Suppose one alters the ground rules, and permits
the prisoners to signal or even to discuss their intentions. In other
words, one changes the model from a non—co—operative to a co—opera-
tive game. If the prisoners collude, and make a pact not to defect,
then the dilemma appears to vanish.

¥ pavis, 1970, pp.101-102.
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Not so, according to Rapoport and Chammah, who anticipated and
countered the criticism:

"It is clear, however, that if the pact is not enforce—
able, a new dilemma arises. For now each of the prisoners
faces a decision of keeping the pact or breaking it. This
choice induces another game exactly like the Prisoner's
Dilemma, because it is in the interest of each tolsbrveak
the pact regardless of whether the other keeps it."

It is clear that the conflict within the Prisoner's Dilemma may
be transposed from one set of issues to another. In this chapter, a
transposition was effected from conflicting principles of choice to
conflicting concepts of rationality. Similarly, Davis's criticism and
Rapoport's reply effect a transposition from a conflict between
dominance and utility to a conflict between temptation and integrity.

It is also cle\ar. however, that the conflict is not resolved
merely by virtue of being transposed. |

15 Rapoport & Chammah, 1965, p.25.
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Chapter Five

A Resolution Via Newcomb's Paradox

Nozick's publication of Newcomb's Paradox, ard his treatment of
it, engenders ongoing debate in game—theoretic, decision-theoretic,
and philosophical liter‘ature.l In some respects, Newcomb's Paradox
and Prisoner's Dilemma pose similar problems; in other respects,
quite different ones. Consideration of the similarities 1led both
Brams and Lewis to revelations of relevance to this enquiry; namely,
that the static Prisoner's Dilemma can be viewed as constituting a
particular case of Newcomb's Par‘adox.2 This view is relevant because
Brams also gives an attempted resolution of the paradox. One can
enquire whether the resolution seems sound and, mutatis nutandis,
whether it perforce applies to the particular case of the dilemma as
well.

To begin with, then, let Newcomb's demon be introduced:

"Suppose a being in whose power to predict your choices
you have enormous confidence. . .You know that this being
has often correctly predicted your choices in the past
(ard has never, so far as you know, made an incorrect
prediction about your choices), and furthermore you know
that this being has often correctly predicted the choices
of other people, many of whom are similar to you, in the
particular situation to be described below. One might
tell a longer story, but all this leads you to believe
that almost certainly this being's prediction about your
choice3 in the situation to be discussed will be cor-
rect."

The player then finds himself in this situation. Two boxes, Bl
and B2, are placed in front of him. Bl is trarsparent; B2, opaque. 5l
contains £1,000. B2 contains either &£1,000,000 or nothing, depending
upon what Newcomb's demon predicts about the player's upcoming
choice. The player must choose between taking either the contents of

! Nozick, 1969, pp.114-46.

2 S. Brams, “Newcomb's Problem and Prisoner's Dilemma', Journal
of Conflict Resolution, 19, 1975, pp.596-612; and D. Lewis, “Priso—
ner's Dilemma is a Newcomb Paradox', FPhilosophy and Public Affairs,
8, 1979, pp.235-240.

¥ Nozick, 1969, p.114.



77

both boxes, or the contents of B2 only. If the being predicts that
the player will choose the contents of both boxes, it does not place
£1,000,000 in B2. If the being predicts that the player will choose
the contents of .&2 only, it places £1,000,000 in BE2.

The play unfolds in a strict sequence. First, the being makes
its prediction. Second, according to its prediction, it places either
nothing or £1,000,000 in A. Third, the player makes his choice. The
game matrix is as follows.

Game 5.1 — Newcomb's Paradox

being

predicts predicts

, B2 only B & R
chooses &M £0
B2 only

player

chooses EM + £T £T
Bl & R

where £M = £1,000,000 and £T = £1,000

As in the Prisoner's Dilemma, one encounters a conflict between
two principles of choice: dominance, and maximization of expected
utility.

Choosing both boxes strongly dominates choosing B2 only, since
EM+ £T > £Mand £T > £0. [This remains true despite the arbitrari-
ness of the utility of money, as long as said utility is taken to be
any transitive function of the amount; i.e. if X > ¥, then U(EX) >
U(£Y).] The dominance principle dictates that, no matter what the
being predicts, the player fares better by choosing both boxes.

Then again, the player's expected utilities of choosing B2
only, and of choosing both Al and B2 are, respectively,

EU(B2) = p(RR)U(EM) + (1-p) (Bl & B2)U(£0)
EU(BL & B2) = (1-p)(B2YU(EM + £1) + p(Bl & B)U(LT)
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where p(®) is the probability that, if the player chooses B2, the
being has correctly predicted this choice; and so forth.

If one takes the utility of money to be proportional to the
base ten logarithm of the amount, and if one assumes the utility of
£0 to be nothing, then one has

EU(B2) = 6z
EUBl & B2) = 6(1-2) + 3z

where z is the probability that the being has correctly predicted the
player's choice. According to this utility assignment, EU(R2) >
EU(Rl & R2), if z > 2/3. Thus, the player should choose only box two
if the being's predictive success rate exceeds two-thirds.

It should be noted that the selection of a monetary utility
function has a pronounced effect upon the overall expected utilities.
If, for example, one now takes the utility of money to be proportion—
al to its actual amount, then one has

EUV(R2) = 10°z
A & 2 = 100 + 103 (1-2) + 103z

where z 1is once again the probability that the being has correctly
predicted the player's choice. In this case, EV(R) > EU(BL & R) if
Z > 1001/2000. Thus, the player should choose only box two if the
being's predictive success rate exceeds one-half (by more than one
two-thousandth). This substantial relaxation of the probabilistic
demand results from the selection of a linear utility function.

Notwithstanding the range of probabilistic demands made pos-
sible by the arbitrariness of the utility of money, one can safely
infer from Nozick's description that the being's predictive success
rate is such that the expected utility of choosing only box two is
much greater than that of choosing both boxes. Hence the principle of
maximizing expected utility suggests that the player choose the
contents of box two only.

It is also clear from Nozick's description that a player is
able to make use of an a posteriori probability calculus, if he so
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wishes. Newcomb's demon apparently has unlimited funds to disburse if
need be, and a player may avail himself of a long series of observa—
tions in order to ascertain the limiting frequency with which the
being makes ~correct predictions. The player who elects to maximize
his expected utility in this model has therefore a more objectively
reliable method of assigning probabilities than in the static Priso-
ner's Dilemma.

But this advantage is negatively—compensated—if not reduced to
irrelevancy—by another circumstance, peculiar to Newcomb's paradox.
If one re—considers the strict temporal order of the moves (first,
the being's prediction; second, the being's consequent placement or
non—placement of &£M in box two; third, the player's subsequent
choice), one detects an implicit flaw in the argument for maximizing
expected utility.

Suppose that the first two moves have been made; i.e. that the
being has made its prediction, and has acted upon it. Now the player
must choose either the contents of box two alone, or the contents of
both boxes. It is most certainly the case that box two presently
contains either £M, or nothing. The contents of box two cannot now be
affected by the player's choice, and the player obtains the contents
of box two regardless of his choice. If the player chooses both
boxes, he is then guaranteed of obtaining no less than £T; whereas if
he chooses box two only, and if the being has predicted incorrectly,
then the player obtains nothing.

This is not simply a restatement of the dcminance principle,
for the following reason. An a posteriori probabilist may well object
to the foregoing argument, on the ground that the being's observed
frequency of predictions is, let one suppose, 99.9999% correct. If
the player now chooses both boxes, the being will almost certainly
have predicted his choice, and will have placed nothing in box two.
But if the player now chooses box two only, the being, by the same
token, will have predicted this choice with the same high degree of
accuracy, and will have placed £M in box two. The player should
therefore choose box two only.

The a posteriori probabilist's objection is countered by the
assertion that, while the being's prediction and the player's choice
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are evidently probabilistically dependent (even to the extent that
the partial dependence approaches complete dependence), there is
absolutely no causal dependence between the two. The being's predic—
tion has no causal influence over the player's choice; in conse—
quence, the being's prediction can be incorrect. And neither can the
player's choice have any causal influence over the being's predic—
tion; for that would entail a violation of the temporal succession of
events. In other words, if the being has predicted incorrectly, then

(i) if box two now contains nothing, then the player's choice
of box two only cannot cause the being to place £M therein:; and

(ii) if box two now contains £M, then the player's choice of
both boxes cannot cause the being to remove the £M therefrom.
Bolstered by the assertion of causal independence, a player may be
tempted to choose the contents of both boxes.

So Newcomb's paradox embodies a conflict not only between the
principles of dominance and maximization of expected utility, but
also between corollary arguments of complete causal independence and
near—complete probabilistic dependence, respectively.

Nozick put Newcomb's problem to a great many people, ard
elicited their choices as hypothetical players. He found:

"To almost everyone it is perfectly clear and obvious
what should be done. The difficulty is that these people
seem to divide almost evenly on the problem, with large
numbers, thinking that the opposing half is just being
silly."”

Given such a response, Newcomb's problem may justly bear the mantle
of a paradox. While opinion may divide as evenly in the Prisoner's
Dilemma, either half can appreciate why the other chooses as it does,
without necessarily accusing it of irrationality (or silliness).
Conflict of choice in the Prisoner's Dilemma can be urderstood as a
conflict between individual and collective rationality, and alterna—
tively as uncertainty in a collectively rational prisoner's assess—
ment of the other prisoner's rationality. Perhaps Newcomb's problem
is paradoxical because, among other reasons, it brings the zero—sum
concept of rationality into a non—zero-sum game (in which the being,

Y Nezick, 1969, p.117.
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having an infinite supply. of funds, gains or loses  nothing) without
having to re—define rational play.

In consequence, every player can exercise individual rationa—
lity with impunity, and seek the maximum possible gain. There are no
collective outcomes to be weighed; a player can neither exploit the
being, nor be exploited by it. A player has nothing to lose, and
stands to gain substantially. In these respects, Newcomb's problem
differs patently from the Prisoner's Dilemma. If a multitude of
players can be thus described, it seems paradoxical indeed that their
choices should manifest the same divergence, according to the same
principles, as in the Prisoner's Dilemma.

' Given these critical differences between the two models, one
seeks an explanation . for the similarities between the dilemmas that
the players face. As intimated earlier, the Prisoner's Dilemma can be
regarded as a particular case of Newcomb's paradox. Explicitly, both
Brams and Lewis have argued that the Prisoner's Dilemma can be viewed
as two interacting Newcomb's paradoxeh@ii.5

To appreciate this perspective, one must first grant that the
player in Newcomb's paradox is playing a game, in effect, against a
state of 1'x«=.1t'.ur‘e.6 This follows from the strict sequence of moves,
which begins with the being's prediction, and continues with its
placement, or nom—placement, of £4 in box two. When the player makes
his choice, the possible outcomes are already halved, from four to
two, by the being's previous moves. From the being's point of view,
the player is facing a state of nature which has only one possible
pair of ocutcomes, because the being has already predicted one of the
player's two possible choices. Before the player actually makes his
choice, the being then p