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Abstract

In this work, we present Alfnoor, a dedicated tool optimized for population studies of exoplanet atmospheres.
Alfnoor combines the latest version of the retrieval algorithm, TauREx 3, with the instrument noise simulator
ArielRad and enables the simultaneous retrieval analysis of a large sample of exo-atmospheres. We applied this
tool to the Ariel list of planetary candidates and focus on hydrogen dominated, cloudy atmospheres observed in
transit with the Tier-2 mode (medium Ariel resolution). As a first experiment, we randomized the abundances—
ranging from 10−7 to 10−2

—of the trace gases, which include H2O, CH4, CO, CO2, and NH3. This exercise
allowed us to estimate the detection limits for Ariel Tier-2 and Tier-3 modes when clouds are present. In a second
experiment, we imposed an arbitrary trend between a chemical species and the effective temperature of the planet.
A last experiment was run requiring molecular abundances being dictated by equilibrium chemistry at a certain
temperature. Our results demonstrate the ability of Ariel Tier-2 and Tier-3 surveys to reveal trends between the
chemistry and associated planetary parameters. Future work will focus on eclipse data, on atmospheres heavier
than hydrogen, and will be applied also to other observatories.

Unified Astronomy Thesaurus concepts: Space telescopes (1547); Exoplanet atmospheric composition (2021);
Transmission spectroscopy (2133)

1. Introduction

In the last decade, the field of extra-solar planets has very
rapidly grown and matured. The NASA Kepler mission and
other dedicated surveys from the ground have revolutionized
our understanding of these extraterrestrial worlds. We are now
aware of the ubiquity and vast diversity of planets outside our
solar system, ranging from ultra-hot giant planets (Cameron
et al. 2010; Delrez et al. 2016; Gaudi et al. 2017) to more
temperate Earths and Super-Earths (Gillon et al. 2016; Ment
et al. 2019). With the Transiting Exoplanet Survey Satellite
(TESS; Ricker et al. 2014), Gaia (Gaia Collaboration et al.
2016), CHaracterizing ExoPlanet Satellite (CHEOPS; Broeg
et al. 2013), Spectro-Polarimetic High contrast imager for
Exoplanets REsearch (SPHERE; Beuzit et al. 2019), Gemini
Planet Imager (GPI; Macintosh et al. 2014), and Echelle
SPectrograph for Rocky Exoplanets and Stable Spectroscopic
Observations (ESPRESSO; Pepe et al. 2010) currently
operating and space missions like PLAnetary Transits and
Oscillations of stars (PLATO; Rauer et al. 2016) and Wide
Field Infrared Survey Telescope (WFIRST; Bennett et al. 2018)
soon to come online, the statistics of planets in our galaxy will
evolve even further in the next decade.

Current studies of exoplanetary atmospheres have been
largely conducted using general observatories from space—
Hubble Space Telescope and Spitzer Space Telescope—or
from the ground—e.g., Very Large Telescope (VLT) CRyo-
genic high-resolution InfraRed Echelle Spectrograph (Crires),
NASA Infrared Telescope Facility (NASA IRTF), Telescopio
Nazionale Galileo (TNG), VLT-SPHERE, Gemini-GPI, Subaru
—and thus results are often sparse and only available for a
limited number of the discovered planets. As a result, most
atmospheric retrieval studies have focused so far on the
analysis of individual planets (Kreidberg et al. 2014; Line et al.
2016; Tsiaras et al. 2016, 2019) with only a few papers having
attempted a consistent spectral analysis of multiple targets

(Sing et al. 2015; Barstow et al. 2016; Tsiaras et al. 2018;
Pinhas et al. 2019). In the next decade, a new generation of
observatories from space and the ground and dedicated
missions (Gardner et al. 2006; Gilmozzi & Spyromilio 2007;
Skidmore 2015; Tinetti et al. 2018; Edwards et al. 2019b) will
come online, offering a broader spectral coverage, higher
signal-to-noise ratio (S/N), and the ability to study a
significantly larger number of targets. The ESA-Ariel mission
alone has been designed to deliver transit, eclipse, and phase-
curve spectra for hundreds of planets, providing, for the first
time, the chance to conduct a statistically significant survey of
exoplanet atmospheres (Edwards et al. 2019a).
In most fields of astronomy (supernovae, brown dwarfs,

black holes), revolutions in our understanding of the main
processes often came from the study of the statistical behavior
using large samples as opposed to individual studies. As the
next generation of space telescopes come online, we will reach
this important step for exo-atmospheres and it is therefore
critical to be aware of the challenges associated with large-scale
studies.
In this paper, we describe our integrated algorithm, Alfnoor,

which combines the open source atmospheric retrieval code
TauREx 3 (Al-Refaie et al. 2019) and the Ariel noise simulator
ArielRad (Mugnai et al. 2020) with the aim to facilitate the
spectral analysis and interpretation of populations of exopla-
netary atmospheres (Section 2). Current Ariel’s strategy is to
observe planets in accordance to a four tier structure, where the
aim of the second tier (Tier 2) of observations is to extract the
key atmospheric constituents (Edwards et al. 2019a). In this
paper we simulated Ariel Tier-2 and Tier-3 performances for a
large sample of planets provided in Edwards et al. (2019a). For
the selected targets, different, randomized atmospheric compo-
sitions were assumed and an automated retrieval analysis for
each planet was performed. We then compared and discussed
the results of the posterior distributions, as provided by the
retrievals, to the ground truth to assess Ariel’s ability to recover
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accurately and precisely the abundances of the key trace gases
and identify arbitrary injected chemical trends (Section 3).
Finally we discuss these results in light of new facilities coming
online soon and the next steps needed to progress further in our
understanding of population studies (Section 4).

2. Methodology and Software Description

2.1. Description of the Software

To study large samples of exoplanetary spectra, we built a
new tool: Alfnoor. Alfnoor combines the highly flexible next-
generation retrieval code TauREx 3 with the ArielRad noise
simulator to provide a unique framework dedicated to the study
of exoplanetary populations with Ariel.

TauREx 3 (Al-Refaie et al. 2019) is the new version of
TauREx (Waldmann et al. 2015a, 2015b). This complete
rewrite takes the form of a library and is designed to make
customization and external code integration easy. It uses the
highly accurate line lists from the ExoMol (Tennyson et al.
2016), the high-resolution transmission molecular absorption
database (HITRAN; Rothman & Gordon 2014), and the high-
temperature molecular spectroscopic database (HITEMP;
Gordon et al. 2016) databases to build forward and retrieval
models. A large number of options are available in terms of
forward models (transmission, emission), chemical profiles
(constant as a function of pressure, two-layer, equilibrium
chemistry), temperature profiles (isothermal, NPoints; Guillot
2010), and cloud parameterizations (Gray; Bohren & Huffman
2008; Lee et al. 2013).

ArielRad (Mugnai et al. 2020) estimates Ariel performances
to observe a certain target when stellar, planetary, and orbital
parameters are specified. It also calculates the required number
of observations to match the requirements for each of Ariel’s
tiers (Edwards et al. 2019a). In our study we focused on Tier-2
observations, which are the core of the mission, and aim at
characterizing the key chemical species, thermal structure, and
the cloud properties of the selected atmospheres. Ariel
observations are expected to cover the wavelengths from 0.5
to 7 μm. The telescope has three photometers: a visible
photometer (VISPhot) and two fine guidance sensors (FGS1
and FGS2) that are also used for the observations. The
telescope also has two spectrometers: the Near Infrared
Spectrometer (NIRSpec) and the Ariel Infrared Spectrometer
(AIRS). The resolution of the spectrometers is adapted to the
tier levels. A description of the resolution achieved for each tier
can be found in Tinetti et al. (2018), Edwards et al. (2019a),
and Mugnai et al. (2020). It is summarized in Table 1.

The function Alfnoor-forward simulated high-resolution
transit spectra with TauREx 3 for all of the targets. Next it

called ArielRad to calculate the Ariel error bars, wavelength
bins, and the number of required observations to reach Tier-2
performances for all the targets. The function alfnoor-inverse
took the Tier-2 spectra generated by alfnoor-forward and
performed atmospheric retrievals using TauREx 3 in fit-
ting mode.
Tier-1 observations are studied in detail in L. Mugnai et al.

(2020, in preparation). Our sample of planets consists of the
146 planets observed in transit at Tier 2 from the mission
reference sample presented in Edwards et al. (2019a). Of these
planets, 14 of them qualify for observations in Tier 3. The
simulated planets are built to represent the entire parameter
space. In our sample 20 planets have radius smaller than 2 RE,
29 are between 2 and 5 RE, and 97 have radius > 5 RE. For a
more detailed description of the methodology used to build this
target list, we refer the reader to Edwards et al. (2019a). Future
studies will concentrate on eclipse observations and/or
secondary atmospheres.

2.2. Approach and Initial Setups

In all the models, the atmosphere is composed of H2 and He
with a ratio of He/H2=0.17. For the trace gases, the list and
sources of the opacities used in this paper are presented in
Table 2. Collision-induced absorption for H2–H2 and H2–He
and Rayleigh scattering are included. For the retrievals, unless
specified otherwise, we used the same assumptions: mixing
ratios constant with pressure, temperature constant with
pressure, and gray opaque clouds. While temperature variations
with altitude are crucial for eclipse observations, in the case of
transmission spectra, most studies assume isothermal temper-
ature profiles. This is justified by the narrow wavelength
coverage and S/N in the available observations (with the
Hubble Space Telescope), which does not allow the probing of
large pressure regions in the planet atmosphere. The temper-
ature variations in transmission act as a second-order parameter
and the spectrum is most sensitive to the mean temperature
value, which directly appears in the scale height. However,
Barstow et al. (2012), Rocchetto et al. (2016), and Changeat
et al. (2019a) highlighted the impact of temperature variations
for high S/N and broad wavelength coverage cases, indicating
that the James Webb Space Telescope (JWST) and Ariel would
be able to retrieve more complex temperature structures from
transit spectra. As this study focuses on the capabilities of Ariel
to recover chemical species, we do not investigate further the
impact of non-isothermal temperature structures. We however
note that this assumption could introduce biases to our results.
Parameters that are traditionally determined using external
methods are fixed to the true values, e.g., stellar radius,
planetary mass, and He/H2 ratio. The list of free parameters
along with the priors used are described in Table 3

Table 1
Wavelength Coverage (λ) and Resolutions (R) of Each Spectrometer

(NIRSpec, AIRS-CH0, and AIRS-CH1) for the Ariel Tiers

Instrument λ(μm) R–Tier 1 R–Tier 2 R–Tier 3

VISPhot 0.5–0.6 Ø Ø Ø
FGS1 0.6–0.8 Ø Ø Ø
FGS2 0.8–1.1 Ø Ø Ø
NIRSpec 1.1–1.95 1 10 20
AIRS-CH0 1.95–3.9 3 50 100
AIRS-CH1 3.9–7.8 1 10 20

Note. We also show the photometers (VISPhot, FGS1, and FGS2).

Table 2
List of Opacities Used in This Work

Opacity References

H H2 2– Abel et al. (2011), Fletcher et al. (2018)
H He2– Abel et al. (2012)
H O2 Barton et al. (2017), Polyansky et al. (2018)
CH4 Hill et al. (2013), Yurchenko & Tennyson (2014)
CO Li et al. (2015)
CO2 Rothman et al. (2010)
NH3 Yurchenko et al. (2011), Tennyson & Yurchenko (2012)
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In this study, we aim to explore two particular aspects of the
Ariel mission:

1. the ability of Ariel to detect molecular species and the
detection limits for these molecules in the context of
cloudy primary atmospheres observed in transit. This task
can be easily achieved by performing retrievals on an
unbiased data set of planets where the atmospheric
composition is randomized and by assessing the cases
that have been successfully recovered.

2. the ability of Ariel to reveal chemical trends in exoplanet
populations. To assess this possibility, a biased sample
can be used as an input where an artificial trend is
introduced.

We describe below the actual implementation of this plan.

1. Unbiased sample. We built the forward model using the
stellar and planetary basic parameters from Edwards et al.
(2019a) for the Ariel target list. We randomized the
chemistry, temperature, and cloud parameters so that a
unique set of these parameters is adopted for each planet of
each sample. For the chemistry, we considered constant
profiles with pressure for the mixing ratios of H2O, CH4,
CO, CO2, and NH3 and chose a random abundance in
logarithmic scale from 10−7 to 10−2. For clouds, we
generated gray opaque clouds with random top pressures
varying in log-scale from 10 bar (equivalent to no clouds) to
10−3 bar. Finally, the atmospheric temperatures were also
randomly generated and allowed to assume values between
0.7×Teff and 1.05×Teff, where Teff is the effective
temperature in the Ariel target list of Edwards et al. (2019a).
The temperature was consciously selected biased toward
lower values to account for differences between effective
temperature and the terminator temperature (Caldas et al.
2019). We repeated the generation of the observed spectra
twice to build unscattered and scattered data sets. In the
unscattered set, we conserve the theoretical simulated
spectra as is. As scatter generally arises from the random
realization of observations, we apply a Gaussian scatter to a
second data set using the true value as mean and the
simulated noise as variance. This scattered data set better
describes what would be obtained in an actual observation
by the telescope but cannot be used to characterize retrieval
biases as unfortunate runs could lead to large discrepancies
between true and retrieved values (Feng et al. 2018;
Changeat et al. 2019a). Unscattered spectra are more

suitable for the study of retrieval biases and intrinsic
correlations between the atmospheric parameters (Feng et al.
2018). On the opposite, scattered spectra can inform us on
the stability and the redundancy in the information content
of Ariel spectra. Previous studies have used both types to
simulate observations by future telescopes (Barstow et al.
2012; Tinetti et al. 2015, 2018; Feng et al. 2016, 2018;
Rocchetto et al. 2016; Batalha et al. 2017; Mollière et al.
2017; Blumenthal et al. 2018; Changeat et al. 2019a, 2019b;
Edwards et al. 2019b; Lustig-Yaeger et al. 2019). Feng et al.
(2018) results predicted that the retrieved uncertainties
should be similar in both scattered and unscattered runs but
that the retrieved mean could be different. Here, we use our
two data sets to investigate these predictions keeping in
mind that if Ariel spectra contain enough information
content redundancy, we should not see large differences in
the retrieved mean values.

2. Biased samples. We imposed first a linear relationship
between the logarithmic abundance of water and the
temperature. We enacted this correlation water temper-
ature by requiring a mixing ratio of 10−4 for an effective
temperature of 1000 K and 10−3 for an effective
temperature of 2000 K.

We then tried a more realistic example where the
atmospheres were assumed to be in chemical equilibrium
and simulated accordingly the chemical abundances and
profiles (Agúndez et al. 2012). We used the same solar
C/O ratio and metallicity for all the planets in the sample.
To recover the input profiles, we used in the retrievals
both free, constant with altitude chemical profiles and
profiles that are forced to follow chemical equilibrium
prescriptions. We did not test the entire sample with the
two-layer chemistry retrieval scheme as presented in
Changeat et al. (2019a), but we have run an example to
show the expected improvements of this scheme over the
pressure constant chemical profiles.

3. Results

3.1. Unbiased Sample

We show in Figure 1 both the observed and retrieved spectra
for a subset of the simulated Ariel Tier-2 observations, along with
the correlation map between water abundance and temperature
with their 1σ uncertainties. The distance between the true and the
retrieved value is visualized by the color of the point. The
retrieved parameters are represented by the median chemical or
temperature profiles weighted by the contribution function. The
contribution function is defined as the wavelength averaged
variations of the optical depth with pressure. This choice ensures
that the values reported well reflect the conditions in the
atmospheric regions probed by observations. In order to better
visualize the Ariel detection limits in Tier 2, we also provide
complementary plots of the retrieved abundances versus their true
values for each molecule. The H2O map is presented in Figure 2.
The water–temperature map in Figure 1 clearly shows that

our unbiased population is randomly spread in the parameter
space, as expected. The retrieved temperature is very precise
across the whole parameter space, showcasing the ability of
Ariel Tier 2 to study a wide range of planets. It also illustrates
that the retrieved values are mostly accurate for water
abundances higher than 10−6; with the exception of a few
cases, the retrieved values for water and temperature fall well

Table 3
List of the Fit Parameters and Their Priors for the Retrievals (Alfnoor-inverse)

Parameters Priors Scale

Radius (RJ) ±50% Linear
Cloud pressure (bar) 10–10−7 log
T (K) ±50% Linear
H2O (VMR) 10−12

–10−1 log
CH4 (VMR) 10−12

–10−1 log
CO (VMR) 10−12

–10−1 log
CO2 (VMR) 10−12

–10−1 log
NH3 (VMR) 10−12

–10−1 log

Note. We take a conservative approach and select larger bounds than the ones
used to randomly generate the planets in forward mode. The chemical
abundances are expressed in vertical mixing ratios (VMR).
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within the 1σ error bars (blue to green in the color scale). We
notice for water a rapid change in the posteriors for abundances
smaller than 10−5, marked by large error bars on the left side of
the plot. Indeed, when the abundance is too low, the retrievals
are not able to distinguish well the features and provide only
upper limits. This is an expected behavior and an indication of
the Ariel detection limit for our sample of planets. This exercise
was repeated for other molecules to assess Ariel ability to
detect different sets of molecules in Tier-2 mode. Other
temperature–molecule maps, as well as the radius–cloud map,
are reported in the Appendix (Figures A1–A5).

The detection limits are best visualized in the retrieved
versus true abundances (see Figure 2). In the same figure, we
also show the retrieved uncertainties versus input abundances
as this allows us to distinguish three regimes. The first regime
corresponds to low abundances where molecular detections are
not possible; for example, between 10−7 and 10−6 for water no
detections seem possible with Ariel. Other molecules are
presented in Figure A6: CH4; Figure A7: CO; Figure A8: CO2;
and Figure A9: NH3. It is interesting to note that when the
molecules are not detected, the retrieved errors (σ) are
dominated by the size of the priors and the location of the

Figure 1. Unbiased sample. Top: observations (black) and best-fit spectra (blue) for select planetary atmospheres as observed by Ariel in the Tier-2 mode. Bottom:
correlation map between the temperature and the retrieved abundances of water. We show the retrieved 1σ error bars on the retrieved parameters. The color scale
represents the distance to the true value (indicated with the black dots) in units of 1σ.
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detection limit: for water non-detection errors are between 2
and 4 orders of magnitude. The second regime for intermediate
abundances displays a mix between successful detections and
lack of evidence for the molecules. This corresponds to the
region with large ranges in the retrieved errors (between 10−6

and 10−5 for water). In general, this variability is due to the
other constituents in the planet that are susceptible to mask the
signal of interest (e.g., clouds, other molecules). Finally, for the
highest abundances, the retrieved uncertainties are low (less
than 1 order of magnitude in the mixing ratios), which indicate
that these abundances are always retrieved, regardless of the
other constituents in the atmosphere.

Additionally, the map exploring the correlation between
planetary radius and cloud top pressure shows that Ariel can
separate well these parameters, most likely thanks to the FGS
optical channels.

We repeated the same experiment with the second run
composed of scattered spectra. Each planet is simulated with a

new set of randomized parameters. As previously stated, the
observed values of the transit depth are assumed to follow a
normal distribution (the mean is the simulated transit depth and
the standard deviation is the instrumental noise), which better
reproduces a real observation. Figure 3 shows the water–
temperature map. The other chemical parameters are reported
in the Appendix (Figures A1–A5). From the analysis of the
scattered spectra, we appreciate that the scattering of the data
points around their true value does not necessary introduce
biases in Ariel Tier-2 retrieval studies. Indeed, this result,
which has already been explored in Feng et al. (2018) and
Changeat et al. (2019a), naturally arises from the redundancy of
the information relative to each molecule in the Ariel spectra
and the fact that in most cases N repeated observations are
needed to obtain Tier-2 requirements, therefore reducing by

N1 the scattering amplitude around their true value. Feng
et al. (2018) highlighted that to avoid potential biases arising

Figure 2. Map of the H2O retrieved abundance vs. the true value for the unbiased sample. The color scale of the 1σ retrieved error bars represents the distance to the
true value in units of 1σ.
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from individual noise instances one would essentially have to
produce multiple retrievals with different noise instances and
average the obtained results. As this was not computationally
feasible, they chose not to scatter the spectra and use the
true value as an approximation, stating that the shape of
the posteriors would be accurate but that the position may be
optimistically centered. For Ariel Tier-2 observations, the
information content of the spectra is redundant enough to
ensure that the retrieved values are not affected by this
phenomenon and these are mostly centered around the true
value in both scattered and nonscattered scenarios. For all
molecules, we find that the correlation maps are very similar in

both cases and the detection limits remain unchanged from the
nonscattered runs. For the clouds, however, we note an overall
increase in the distance to the true value (see correlation map in
the Appendix, Figure A5). We note that in the simulations
presented here, we considered fully opaque gray cloud cover,
which is essentially the worst case scenario as no cloud features
are detectable and it is well known to be degenerate with radius
(Changeat et al. 2019b). More realistic cloud simulations will
be considered in a future paper to test more thoroughly
this case.
We summarize in Table 4 the approximate detection limits

for each molecule considered. These represent the regions

Figure 3. Same as Figure 1 but in this new run we scatter the Ariel spectra around their true values.
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where our retrieval analysis have been able to extract
constraints on the given atmospheric constituents. The stated
detection limit corresponds to the lowest value that was
successfully recovered with less than 1 order of magnitude
uncertainties. As seen before, three regions of the parameter
space can be identified: region 1 with no possible detections of
the molecule, region 2 with detections depending on the other
atmospheric properties, and region 3 where the molecule is
always detected. This means the stated values do not represent
a guaranty of detection, but rather the lowest limit we can hope
to detect the molecule. In addition, we plot the contribution of
each molecule individually in Figure A10 (each spectrum only
contains 10−5 of the considered molecule) to show that the
features span by each molecule. In general, Ariel Tier-2 spectra
should enable molecular detections down to mixing ratios of
10−6. In our simulations, only CO appears to be difficult to
detect at abundances smaller than 10−4. CO presents two
features that are overlapping with CO2 at 4.5 μm and with CH4

at 2.5 μm and are relatively weak. In a real scenario
(equilibrium chemistry), we believe CO could be more easily
distinguishable as our unbiased assumption underestimates
the CO abundance and overestimates the CO2 abundance by
design (Agúndez et al. 2012; Venot et al. 2012; Venot &
Agúndez 2015). We also note that H2O and CH4 have a large
number of anticorrelated features, which may give rise to more

featureless spectra when the two molecules are present. For all
parameters, Ariel Tier-2 spectra provide accurate and precise
estimates, as most of the retrieved error bars are less than 1σ
away from the true value. This statement applies to both
nonscattered and scattered spectra.
For completeness, we performed additional retrievals for 14

benchmark planets in Tier-3 mode (Edwards et al. 2019a). The
benchmark planets achieve a high S/N in a very limited
number of transits and are re-observed at different times to
allow for temporal and spatial variability studies. In the
examples presented here, we combined five transit observations
to reach the required S/N for Tier 3 (Tinetti et al. 2018;
Edwards et al. 2019a). The retrievals were performed on the
scattered spectra and are illustrated in Figure 4. The retrieval
maps for the 14 Ariel Tier-3 cases are reported in the Appendix
(Figures C1–C3) and the molecular detection limits are
reported in Table 4. The detection limit for Ariel Tier-3 spectra
is very low, and typically mixing ratios equal or smaller than
10−7 can be retrieved. Even CO at mixing ratios of ∼10−6

appears to be detectable. Due to the limited number of studied
cases, the Tier-3 detection limits reported here should be taken
with caution and will be refined in a separate paper dedicated to
the study of Tier-3 planets.

3.2. Biased Sample: Linear Water–temperature Trend

When we imposed an arbitrary linear trend between the water
abundance and the effective temperature, we obtained the water–
temperature map shown in Figure 5. Here the imposed trend is
easily recovered by our retrieval analysis. Both scattered and
unscattered spectra allow one to recover the imposed trend down
to water abundances of ∼10−6. In the scattered example, a few
cases have larger departures from the true value compared to the
nonscattered one but this does not affect the conclusions on the
entire population. Additionally, we note that this analysis has been
done without retrieval fine tuning.

3.3. Biased Sample: Equilibrium Chemistry Atmospheres

When an equilibrium chemistry model was used for
both the forward model and the retrievals, we obtained the

Table 4
Detection Limits for Each Molecule in Ariel Tier-2 and Tier-3 Samples

Considered Here

Molecule Tier 2 Tier 3

log(H2O) −6.5 <−7
log(CH4) −7 <−7
log(CO) −5.5 −6
log(CO2) −7 <−7
log(NH3) −6.5 <−7

Note. The detection limits correspond to the lowest value we were able to
extract abundance with less than 1 order of magnitude errors. The Tier-3
sample includes only 14 planets.

Figure 4. Examples of Ariel Tier-3 spectra and fits for benchmark planets. The simulated observed spectra are scattered around their true value.
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water–temperature map shown in Figure 6, top, where the trend
is very accurately and precisely recovered. Since the molecular
abundances are varying with altitude, the values stated
correspond to the average weighted by the atmospheric
contribution function (the optical depth variations collapsed
over wavelengths). As the models generating and retrieving the
data are the same, this is an optimistic result, as we should not
expect all atmospheres to satisfy the equilibrium chemistry
assumption.

Also the free, constant with pressure chemistry retrievals
(Figure 6, bottom) allow one to recover the equilibrium
chemistry trend. The retrieved parameters, however, have large
distances from the true value, and in some cases the offsets are
greater than 2σ, meaning that the model confidently recovers a
biased value. This behavior, also present in other chemical
species (see the Appendix, Figures D1–D4), is particularly

noticeable for temperatures between 600 and 1100 K: this
region is known to exhibit large chemical gradients with
altitude as the balance in the CH4/CO reaction changes. These
variations in the chemical profiles cannot be captured by our
simplistic constant chemistry retrieval model.
It has been shown in Changeat et al. (2019a) that Ariel and

JWST will be sensitive to chemical vertical gradients and that
retrieval techniques such as the two-layer parameterization
would be essential for the analysis of these next-generation
spectra.
We show in Figure 7 a comparison between the various

retrieval techniques: the two-layer parameterization (Changeat
et al. 2019a) well captures the departure of the methane profile
from the constant with altitude case without strong prior
assumptions, as opposed to the case of the equilibrium
chemistry retrieval.

Figure 5. Biased sample: linear water–temperature trend. Top: retrieved water–temperature map from the nonscattered spectra. Bottom: retrieved water–temperature
map from the scattered spectra. We show the retrieved 1σ error bars on the retrieved parameters. The color scale represents the distance to the true value in units of 1σ.
The dashed gray line indicates the input trend.
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4. Discussion

In all simulated cases, retrieval analyses were performed
without any fine tuning. Also our simulations are simplified
compared to real atmospheres, which are expected to have
disequilibrium effects, 3D effects, and other complexities.

Recently, self-consistent methods, such as the equilibrium
chemistry retrieval adopted in a few examples here, have been
implemented in retrieval tools. Embedding these chemical
schemes in atmospheric retrievals is very tempting as they
allow one to describe complex chemistry while maintaining a
low dimensionality. However, we should be careful in using
these techniques to interpret unknown atmospheres, as they do
not reflect the information content of the observed spectra. In
other terms, if the assumptions made by the retrieval model are
not correct, the results will likely be biased (Agúndez et al.
2012; Miller-Ricci Kempton et al. 2012; Rocchetto et al. 2016;

Changeat et al. 2019a). This issue has been discussed in the
literature and should always be remembered when using such
techniques.
Other approaches which let the chemical species assume

arbitrary values, may allow for the discovery of unexpected
trends in the data. However, the model complexity should be
adapted to the data, which is not known a priori. A too
simplistic model will tend to be biased, while a too complex
model will tend to overfit. In this paper, Section 3.3 highlighted
a case where the free constant with pressure chemistry retrieval
did not adequately describe the input chemical profiles (which
were using equilibrium chemistry), thus biasing our results. A
more sophisticated description of the chemical profiles in
retrievals is presented in Changeat et al. (2019a).
We illustrate this point by comparing different chemical

schemes on an observed spectrum taken from our previously
made equilibrium chemistry data set. Figure 7 demonstrates

Figure 6. Biased sample: equilibrium chemistry atmospheres. Correlation map of the retrieved abundance of water and the temperature. Results obtained with
equilibrium chemistry retrievals (top) and with free, constant with altitude chemistry retrievals (bottom). We show the retrieved 1σ error bars on the retrieved
parameters. The color scale represents the distance to the true value in units of 1σ.
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that all three chemical schemes (equilibrium, constant, two-
layer) are able to match the observed spectrum. The
contribution function (solid blue line on the right figure) shows
how the models try to reproduce the input abundances for CH4

in the region where the contribution function is maximum.
The equilibrium and two-layer scenarios are better describing
the input profiles in general, while the retrieved uncertainties
are more representative. The retrieved constant chemical profile
with altitude only averages the input CH4 abundance, providing
limited details on the atmospheric chemical processes. As
expected, we find that the input retrieved weighted abundance
is best approximated by the equilibrium model, since this is the
same model used to generate the observation (values are stated
in Figure 7). The constant with pressure chemistry model is
overconfident and is more than 3σ offset to the true value. For
the two-layer, the true abundance is within the error bars
of the retrieved value. The behavior seen in this example
explains the large distances to the true value and the general
overconfidence in the retrieved chemistry of our free constant
with altitude scenario in Figure 6.

5. Conclusion

This work assessed the capabilities of Ariel to identify
chemical trends—if present—in exoplanet populations through
the study of their atmospheres. We developed a dedicated
software, Alfnoor, to perform atmospheric retrievals on the
entire Ariel list of planetary candidates. Among the key results
obtained, we found the detection limits for H2O, CH4, CO2,
and NH3 to be ∼10−6 in the case of Tier 2 and <10−7 in the
case of Tier-3 transit observations. CO, though, has higher
detection thresholds, i.e., ∼10−4 for Tier-2 observations and
∼10−6 for Tier 3.

We also confirmed the potential of Ariel to recover chemical
trends in exoplanetary atmospheres. We tested correlations
between chemical species and temperature and a planet

population whose chemical composition is entirely determined
by equilibrium chemistry.
Limitations in our assumptions for the chemistry, temper-

ature, and cloud models imply that additional work still needs
to be done to fully understand the degeneracies associated with
these techniques and how to fully automate retrieval strategies.
In the future, we aim to simulate more realistic scenarios using
self-consistent forward models (e.g., including disequilibrium
chemistry) and more complex thermal and cloud assumptions.
While this work was inspired by the Ariel mission, similar
large-scale simulations could also help prioritizing the use of
other observatories from space and the ground and provide a
great tool for the preparation of observational campaigns.

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement No. 758892,
ExoAI) and under the European Union’s Seventh Framework
Programme (FP7/2007-2013)/ERC grant agreement numbers
617119 (ExoLights). Furthermore, we acknowledge funding
by the Science and Technology Funding Council (STFC)
grants: ST/K502406/1, ST/P000282/1, ST/P002153/1, and
ST/S002634/1 ASI grant no. 2018.22.HH.O. UCL London-
Rome Cities Partnerships Program.

Appendix A
Complementary Figures to the Unbiased Sample

The complementary chemistry–temperature maps (CH4, CO,
CO2, and NH3) to the Alfnoor unbiased sample are shown in
Figures A1–A4. Figure A5 presents the retrieved radius versus
cloud pressure map. We also provide the complementary true
versus retrieved plots and error retrieved for each molecule in
Figures A6–A9.

Figure 7. Results for our retrievals with three different chemical profiles (equilibrium, constant with altitude, and two-layer). The input forward model is taken from
the Alfnoor run with equilibrium chemistry. Left: simulated observations and retrieval best-fit models; right: comparison of the retrieved CH4 profiles. The
contribution function in the atmosphere, corresponding to d /dP, is also provided. The global log evidence, which qualifies the preference shown by the data for a
given model, is 400 for the equilibrium model, 397.5 for the two-layer retrieval, and only 395 for the constant chemistry retrieval. In comparing models, a difference of
two indicates a strong preference toward the model of higher value (Kass & Raftery 1995). We calculate the abundances weighted by the contribution function (log) to
be −5.29 for the forward model, −5.27±0.21 for the equilibrium model, −4.64±0.15 for the constant chemistry model, and −4.96±0.39 for the two-layer
model.
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Figure A1. Unbiased sample: correlation map between the temperature and the retrieved abundances of CH4, with the 1σ retrieved error bars. The color scale
represents the distance to the true value in units of 1σ. Top: nonscattered spectra. Bottom: scattered spectra.
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Figure A2. Unbiased sample: correlation map between the temperature and the retrieved abundances of CO, with the 1σ retrieved error bars. The color scale
represents the distance to the true value in units of 1σ. Top: nonscattered spectra. Bottom: scattered spectra.
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Figure A3. Unbiased sample: correlation map between the temperature and the retrieved abundances of CO2, with the 1σ retrieved error bars. The color scale
represents the distance to the true value in units of 1σ. Top: nonscattered spectra. Bottom: scattered spectra.
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Figure A4. Unbiased sample: correlation map between the temperature and the retrieved abundances of NH3, with the 1σ retrieved error bars. The color scale
represents the distance to the true value in units of 1σ. Top: nonscattered spectra. Bottom: scattered spectra.
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Figure A5. Unbiased sample: correlation map between the clouds and the radius, with the 1σ retrieved error bars. The color scale represents the distance to the true
value in units of 1σ. Top: nonscattered spectra. Bottom: scattered spectra.
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Figure A6. Top: map of the CH4 retrieved abundances vs. their values for the unbiased sample. Bottom: error retrieved as a function of the input abundances. The
color scale of the 1σ retrieved error bars represents the distance to the true value in units of 1σ.
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Figure A7. Top: map of the CO retrieved abundances vs. their values for the unbiased sample. Bottom: Error retrieved as a function of the input abundances. The
color scale of the 1σ retrieved error bars represents the distance to the true value in units of 1σ.
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Figure A8. Top: map of the CO2 retrieved abundances vs. their values for the unbiased sample. Bottom: error retrieved as a function of the input abundances. The
color scale of the 1σ retrieved error bars represents the distance to the true value in units of 1σ.
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Figure A9. Top: map of the NH3 retrieved abundances vs. their values for the unbiased sample. Bottom: error retrieved as a function of the input abundances. The
color scale of the 1σ retrieved error bars represents the distance to the true value in units of 1σ.
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Appendix B
Absorption Contributions in Ariel Spectra of the Molecules

Considered in This Work

Figure B1 presents the absorption of different species (H2O,
CO, CO2, and NH3) in Ariel observations.

Figure B1. Absorption in Ariel of the molecular species considered in this paper. Each simulation is for a 1 RJ, 1 MJ planet and 1 RS star with 10−5 of the considered
molecule as only absorber. The models are offset for better visibility. The shaded region is the full resolution contribution, while the solid lines and black points
correspond to Ariel resolutions.
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Appendix C
Complementary Figures to the Unbiased Run Using Ariel

Tier 3 Noise

The complementary temperature–chemistry maps to our Ariel
Tier 3 unbiased run are shown in Figures C1–C3.

Figure C1. Correlations maps obtained for Ariel Tier-3 scattered spectra: H2O–T (top) and CH4–T (bottom).
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Figure C2. Correlations maps obtained for Ariel Tier-3 scattered spectra: CO–T (top) and CO2–T (bottom).

Figure C3. Correlations maps obtained for Ariel Tier-3 scattered spectra: NH3–T.
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Appendix D
Complementary Figures to Our Equilibrium

Chemistry Runs

Figures D1–D4 show the complementary temperature–
chemistry maps for the Alfnoor runs simulating planets in
equilibrium chemistry. Each figure show both equilibrium
chemistry retrievals and free chemistry retrievals.

Figure D1. Biased sample: equilibrium chemistry atmospheres. Correlation map of the retrieved abundance of CH4 and the temperature, with the 1σ retrieved error
bars. Results obtained with equilibrium chemistry retrievals (top) and with free, constant chemistry with pressure retrievals (bottom). The color scale represents the
distance to the true value in units of 1σ.
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Figure D2. Biased sample: equilibrium chemistry atmospheres. Correlation map of the retrieved abundance of CO and the temperature, with the 1σ retrieved error
bars. Results obtained with equilibrium chemistry retrievals (top) and with free, constant with pressure chemistry retrievals (bottom). The color scale represents the
distance to the true value in units of 1σ.
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Figure D3. Biased sample: equilibrium chemistry atmospheres. Correlation map of the retrieved abundance of CO2 and the temperature, with the 1σ retrieved error
bars. Results obtained with equilibrium chemistry retrievals (top) and with free, constant with pressure chemistry retrievals (bottom). The color scale represents the
distance to the true value in units of 1σ.
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