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Abstract: Cities are facing many sustainability issues in the context of the current global
interdependency characterized by an economic uncertainty coupled to climate changes,
which challenge their local policies aiming to better conciliate reasonable growth with livable
urban environment. The urban dynamic models developed by the so-called “urban science” can
provide a useful foundation for more sustainable urban policies. It implies that their proposals
have been validated by correct observations of the diversity of situations in the world. However,
international comparisons of the evolution of cities often produce unclear results because national
territorial frameworks are not always in strict correspondence with the dynamics of urban systems.
We propose to provide various compositions of systems of cities in order to better take into account
the dynamic networking of cities that go beyond regional and national territorial boundaries.
Different models conceived for explaining city size and urban growth distributions enable the
establishing of a correspondence between urban trajectories when observed at the level of cities
and systems of cities. We test the validity and representativeness of several dynamic models of
complex urban systems and their variations across regions of the world, at the macroscopic scale of
systems of cities. The originality of the approach resides in the way it considers spatial interaction
and evolutionary path dependence as major features in the general behavior of urban entities.
The models studied include diverse and complementary processes, such as economic exchanges,
diffusion of innovations, and physical network flows. Complex systems dynamics is in principle
unpredictable, but contextualizing it regarding demographic, income, and resource components may
help in minimizing the forecasting errors. We use, among others, a new unique source correlating
population and built-up footprint at world scale: the Global Human Settlement built-up areas
(GHS-BU). Following the methodology and results already obtained in the European GeoDiverCity
project, including USA, Europe, and BRICS countries, we complete them with this new dataset at
world scale and different models. This research helps in further empirical testing of the hypotheses
of the evolutionary theory of urban systems and partially revising them. We also suggest research
directions towards the coupling of these models into a multi-scale model of urban growth.
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1. Introduction

The urbanization process has profoundly transformed the distribution and organization of
human societies on the surface of the earth since the emergence of the first cities some 10,000 years
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ago. Physically, it corresponds to a concentration of populations in densely populated built-up
agglomerations, whose dimension, being very unequal, expands over no less than four orders of
magnitude (from 103 to 107 in number of inhabitants). Economically, urbanization translates into
accumulations of capital, knowledge, and wealth and the multiplication of networks that accompany
creation and technological innovation. Socially, urbanization promotes the diversification and
increasing sophistication of forms of institutional and political organization, including an intensification
and refinement of the social division of labor. Culturally, urbanization, often held to be synonymous
with “civilization”, catalyzes the evolution of urban practices and collective representations through
social mixing, hybridization, and education, opening perspectives towards the possibility of a better
knowledge, diversity, and greater acceptance of any various kinds of societal minorities. All these
trends seem to represent progress for the future of humanity, which is already reflected in synthetic
indicators such as average income, the index of human development, or life expectancy in good
health, despite a sharp increase in social inequalities since the 1980s and the neoliberal shift in
urban governance that accompanied the debt write-offs of cities and states. However, we know
today that this evolution also marks the irruption of human activity in energy balances and the
functioning of the terrestrial ecological system, which leads to propose a new stratum, called the
Anthropocene, in geological time scales. The cities, which have accompanied and maintained the
current overconsumption of the planet’s resources, are part of a modification of human relationships
with the Earth during this evolution. They may seem threatened, not only in their future development,
but sometimes even for their survival, by the scarcity of available materials and energy sources and
the disasters that could be caused by major climate change initiated since at least two centuries. Is the
success of urbanization responsible for that evolution and should the Anthropocene rather be called
an Urbanocene?

Actually, these cities, which have often shown great resilience in past centuries, may be a
solution to the problem they could be a symptom of. Their organization, partially directed and
partially spontaneous, in spatially distributed, hierarchical, and complementary systems of cities
for the exploitation, the control, but also the service, the maintenance, and the adaptation of the
territories, is undoubtedly a very important asset for a proper execution of the “ecological transition”
being implemented in all parts of the world. This transition can succeed if it intelligently uses the
evolutionary properties of city systems, ensuring both the “top-down” dissemination of international
regulations and the “bottom-up” circulation of the many local transitional initiatives. These local
endeavors are in favor of technical and technological processes as well as organizations that will ensure
respect for biological, cultural, and geographical diversity, but also a more equitable distribution of
resources and wealth to reduce predatory relations to nature. Diversity in all these forms seems indeed
essential to the continuation of the human and urban adventure. However, it is still necessary to
develop a better understanding of this multi-scale urban dynamics before providing recommendations
to planners and practitioners.

Current urban governance is very fragmented because it remains essentially local and poorly
coordinated. It is politically defined within a restricted administrative territory, whose spatial extension
has often not kept pace with that of the buildings, businesses, and jobs associated with the development
of agglomerated activities in the periphery stimulated by the attractiveness of the core city. In recent
decades, many authors have deplored the lack of coherence between urban planning decisions
taken in small neighboring units and the slow emergence of metropolitan governments capable
of better harmonizing the management and planning of transport, housing, and the environment [1,2].
Moreover, we think that urban planning would also benefit from a better knowledge of possible room
for maneuver that is fueled by comparative research on urban dynamics. This knowledge includes
elements about general dynamics, which can be summarized in models, and information on the
differences according to the size of cities, their economic specializations, and their belonging to different
regions of the world. In other words, above the scale of metropolitan region, urban governance would
gain by also taking into account the evolution of flows between cities. Geographers have collaborated
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with other specialists to build relevant knowledge of systems of cities, anchored in the knowledge and
comparison of diverse world region’s contexts observed over many historical periods.

An important contribution of this knowledge is related to urban analytics and urban dynamics
models, as part of a broader “Urban Science”, which has been coined in [3]. These approaches are
useful to understand the sustainability of urban systems [4]. For example, a global high-resolution
mapping of land use change provides indicators to control urban sprawl [5], and similar modeling
can be coupled with socio-economic pathways for sustainability [6]. Urban sustainability can be
understood according to the authors of [7] as a process linking multidimensional goals (at a general
level the social, the economic, and the environmental) together in a democratic and inclusive way.
Sustainable transitions must be grasped with their multiplicity [8], and thus a broad knowledge of the
diversity of urban systems dynamics is crucial. While numerous studies focus on directly measuring
indicators of urban sustainability [9], more theoretical investigations of how it relates to resilience, such
as in [10], are also important contributions. This paper, understanding systems of cities as complex
adaptive systems [11] which exhibit intrinsic resilience properties, contributes to this latter question.
A precise and quantitative knowledge of urban systems properties and dynamical processes at large
scales can become, as explained above, a powerful tool for more integrated governance and planning
practices. Implicitly, this knowledge implies the possible simulation of future population trajectories,
but also which processes are the main drivers of urban dynamics, in relation with sustainability
indicators. Although a direct link with measures of sustainability is not done in this paper, the models
and empirical analyses presented can be used as building bricks for further targeted studies.

We illustrate in this paper how large sources of urban data and dynamic models when powerfully
and safely handled with intense computing can help to identify the diversity of co-evolution regimes
that have to be disentangled for being able to propose efficient solutions to the urban problems.
More precisely, we tackle the question of how to understand the properties and dynamics of large
systems of cities, including complementary processes driving urban growth, using new sources of
comprehensive urban data which are the Global Human Settlement Layer database [12] and the
Geodivercity database [13]. Our contribution relies on the following points; (i) we provide a theoretical
framework to interpret evolutionary urban dynamics at the scale of systems of cities, building on the
evolutionary urban theory proposed in [11] and on the concept of co-evolution within urban systems
defined in [14]; (ii) we study the empirical properties of large urban systems including patterns of
urban growth and scaling properties, including different definitions of urban systems; and (iii) we
apply and calibrate simulation models for urban dynamics on six of these large systems worldwide,
comparing very different processes including spatial interactions, transportation infrastructures,
economic exchanges, and innovation diffusion, yielding for each urban system plausible underlying
mechanisms driving their dynamic and providing potential policy insights.

The rest of this paper is organized as follows. In the next section, we develop the theoretical
framework of the evolutionary urban theory and the underlying urban growth models based on spatial
interactions; a third section complements this theoretical background by developing the concept of
co-evolution within systems of cities. We then study empirical properties of large urban systems
worldwide, and calibrate dynamical models of urban growth on these systems. We finally discuss
future developments and possible implications for the sustainability of urban systems planning
and management.

2. Geographical Models of Urban Growth within Systems of Cities

The growth of cities is often interpreted according to the decisions taken locally by a multitude of
very diverse stakeholders, for instance, decisions about urban policies, locational strategies from firms,
or motivations for residential migrations. These actions from urban stakeholders appear at a first sight
as the direct causes of urban growth, at this micro-level of individual decisions. Obviously the growth
or decline of a city results from aggregating all these processes, and also from possible radical changes
in environmental conditions. However, because of a lack of data at this level of observation until
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recently, most models of urban growth were developed at the meso-geographical level for subsets
of urban units. As cities mostly grow demographically and expand spatially by aggregating new
populations and activities from their center toward peripheries according to monocentric or polycentric
patterns, the growth should be computed for evolving urban agglomerations or functional urban areas
that are properly delineated at each date of the period under observation. The comparability of many
results about urban growth and distribution of city sizes is too often hampered because authors did
not apply this geographical principle when defining and delineating properly the urban units they
consider (see, for instance, in [15,16], or see in [17] for a full review). Systematic investigations were
made recently after developing original harmonized databases on thousands of urban agglomerations
over decades and even centuries in the GeoDiverCity project [13,18,19], including USA, Europe,
and BRICS countries.

Such consistent statistical observations on thousands of cities and over centuries, enabled at first
to confirm the conclusion that emerged in pioneer works on the growth process within integrated
systems of cities (i.e., well-connected cities obeying a unified system of political, cultural, and economic
rules that currently define a “territory”): each city has a probability of growing similar to other cities
belonging to the same territorial system. This was characterized as a “ distributed growth” process
that can be observed on the long run with many local and temporal fluctuations in any system of cities
all over the world [20–22]: Gibrat’s model of urban growth constitutes a first good approximation
of the distribution of urban growth within a system of cities. Gibrat’s “law of proportional effect”
means that growth rates are equiprobable whatever the city size and are not correlated with previous
growth rates.

This rather good fit already provides a double explanatory gain: it explains the remarkable
persistence of urban spatial patterns and hierarchies over very long periods of time that may exhibit
such meta-stability with very little changes over centuries. Moreover, it provides an “explanation”
for the statistical shape of urban sizes distribution (that is, lognormal, close to Zipf’s law or other
types of skewed distributions), according to a stochastic process that was also anticipated by Herbert
Simon in 1955. Conversely, despite attempts at developing an economic interpretation of the genesis of
urban hierarchies through firm choices or preferential attachment [23], P. Krugman still considers it as
“a mystery” regarding its explanation within economic theory [24].

Many observed distributions of city sizes (actually, settlement sizes including hamlets, villages,
towns, and metropolitan areas) are close to lognormal distributions (evidence from the works
in [15,21,22,25] and Gibrat’s growth model mathematically leads on the very long run to a lognormal
distribution of city sizes, but some of the hypothesis of Gibrat’s growth model are sometimes partially
rejected through statistical testing: more or less high correlations may be found between growth rates
and city size (most of the time positive correlation), and positive correlation between successive growth
rates also may be observed for some time periods.

That is why complementary models have been proposed that offer better fits when adding
the possible effects of spatial interactions to Gibrat’s model (which is a stochastic model where
urban agglomerations are represented as independent units, which of course cannot be a relevant
geographical model for epistemological reasons). The authors of [26,27] developed a geographical
model of urban growth including a recurring emergence of clustered new innovations that create
growth cycles (following a Schumpeterian process), a spatial diffusion of innovations occurring
through a dynamic spatial interaction model [28], and a spatial diffusion of innovation according to a
hierarchical process [29]. The growth of a city depends on its share of labor force in each innovation
cycle that induces a scaling parameter larger than one for the urban activities that participate in the
innovation wave of the moment.

Analytically, the model can be expressed in a form that is very close to Gibrat’s model:

log Pi,t = α + log Pi,t−1 + Gi + ui,t (1)
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where Gi holds for the “bias” noticed in estimating Gibrat’s model by Ordinary Least Squares (linked
with spatial interaction processes, see in [27]). The noises ui,t are stochastic variables in time and space
with zero averages, which allow capturing random fluctuations. They correspond to the random
distribution of growth rate in the initial Gibrat’s model. The endogenous growth rate α and the growth
induced by interactions are deterministic given a realization of populations at the previous step.

This model has the advantage of replacing a generic statistical model of growing independent
entities (Gibrat’s urban growth model) by a model of spatially and temporally interdependent entities
(i.e., the geographical concept of “system of cities” or “settlement system”). It reproduces the
observations on differential scaling parameters for urban activities according to their age in innovation
cycles [30]. It also makes explicit the multilevel dynamics of interurban competition for capturing
innovation, which may itself generate new innovation through interurban emulation, within an
evolutionary perspective.

Moreover, this model enables us to interpret variants that represent the path dependence effects
occurring through territorial differentiation. For instance, in new urban systems, as in USA, there is a
spatial filling process that occurs through spatial waves of urban growth (urban frontier) corresponding
to the diffusion of economic cycles [31], whereas in mature urban systems, as in France, the innovations
diffusion reaches cities that are not spatially regularly arranged but already experienced other growth
periods according to distinct cycles of urban specialization [32,33].

Other types of models based on interactions have been introduced within the framework of
the evolutionary urban theory [30]. A deterministic version of the previous Favaro–Pumain model,
based on economic exchanges between cities, was introduced in [34]. This model, called Marius,
was originally designed for the former Soviet Union but applies to any system of cities, as only
population trajectories are required to be parametrized to estimate and evaluate the model. Scaling
laws are used to extrapolate economic activities of cities based on population, and economic exchanges
are then simulated. The model is more precisely a family of models, as different processes can be
taken into account in a multi-modeling way (for example, local impact of energy resources, switch
between top-down planned economic structure and bottom-up interactions only). The authors of [35]
formulated this methodological framework as an “evaluation-based incremental modeling method”,
which allows testing of concurrent hypotheses to explain trajectories of systems of cities.

This type of model was also applied to the subject of transportation networks within urban
systems. The SimpopNet model introduced in [36] captures entangled trajectories of city populations
and network links between these cities in a stylized setting. It was shown in [37] that it effectively
reproduces co-evolutionary dynamics (in a precise sense we develop below), which is a central
theoretical feature in evolutionary urban theory. More recently, the author of [38] proposed a simplified
version of the Favaro–Pumain model, in which the deviation due to interactions includes physical
network effects, through direct spatial interaction models, but also indirect feedback of network flows
on city growth. The model was calibrated on real data for France over a long time span (1830–2000).
It was extended to a co-evolutionary model in [39], which is also calibrated on French data with railway
network accessibility, for which the capacity to capture a broad range of co-evolutionary regimes
was demonstrated.

These different models have the particularity to enter in the same theoretical frame of the
evolutionary urban theory, of being backed-up by empirical studies and datasets constructed during
the GeoDiverCity ERC project [13], and to simulate urban systems population trajectories on long
time scales and large spatial scales (macroscopic scale of a region, country or continent). They are a
fundamental component of our evidence-based approach to urban systems, and will be applied and
compared in a benchmark below.

3. Systems of Cities and Co-Evolution Regimes

We first need to introduce another theoretical component justifying the use and comparison
of these different models within the evolutionary urban theory. Evolutionary economics [40] has
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a wide experience in transferring the concept of evolution from its initial context in biology [41].
This requires identifying within the studied systems several components, which are transmission
processes, transformation processes, and differentiation between populations of agents emerging from
these processes. Artificial life literally studies such artificial systems, extending biological systems to
“life as it could be” [42,43]. Although the core components are not always explicit, and these concepts
are sometimes relaxed to long-time structural dynamics of systems components, evolutionary concepts
have been successfully applied in economics as mentioned above, but also in social sciences with the
study of cultural evolution [44] or the evolution of social organizations [45]. The interplay between
social components and biological components can even be considered [46].

In that context, co-evolution originally corresponds to evolutionary changes in two species in
strong mutual influence [47]. The idea of diffuse co-evolution, taking into account the environment
in which co-evolution takes place, including a broad network of other species, was proposed as
a refinement of this concept [48]. To effectively designate co-evolutionary processes, or more
generally strongly entangled dynamics, it was also developed in economic geography [49]. Thematic
applications include the study of economic clusters [50], of technological change [51], or environmental
economics [52].

In geography, it was particularly developed by the evolutionary urban theory [53], which in
practice consists of a dynamical non-equilibrium approach to urban systems as complex adaptive
systems, in which interactions between components are central [32,36]. In that context, building on the
definition introduced in [14,54], we propose a multi-level definition of co-evolution which is consistent
with the evolutionary urban theory [11]. First of all, transformation processes of territorial components
should induce evolutionary dynamics at different scales. It is not clear what would be “an urban
genome”, but empirical evidence of innovation diffusion and cultural evolution (including social
progress and changes in governance), but also physical transformations or physical flows between cities,
suggest that these dynamics can be interpreted as evolutionary in a loose sense. Then, co-evolution can
occur at a microscopic level between particular artifacts or agents (coupled dynamics); at a mesoscopic
scale of a population of entities (in the initial biological and statistical sense, i.e., that characteristics of
two populations of entities mutually influence themselves in their evolutionary trajectories); and finally
at a macroscopic scale in the usual sense used in geography as strongly entangled dynamics at the
system level.

This definition implies the existence of co-evolution niches in the sense of the work in [55],
which can be understood as a system of boundaries and corresponding subsystems in which
co-evolution takes place. This pertains particularly well for territorial systems, for which the niches
will be consistent territorial ensembles, imbricated at different scales. The cities at a regional level
are, for example, a first level of niche, embedded into the urban system at a larger territorial scale
as the national, continental, and even global one. Within a given niche, the co-evolving populations
of entities will be in a specific co-evolution regime, a concept introduced in [56] in the case of
transportation networks and territories, to describe a given causal network between the variables
considered. For example, the population of cities and their centrality in the transportation network
may be in a circular causal relationship (taken as a weak Granger causality), or in a unidirectional
relation, or even in a triangle relationship with a third variable such as accessibility. Each case is a
particular co-evolutionary structure—even if strictly speaking there is no co-evolution when there
is no circularity, the term of co-evolution regime can be used in a broad way to describe this state of
dynamical relationships.

This directly implies that (i) urban systems worldwide have each their own co-evolutionary
trajectory, and thus their own driving processes; (ii) the way they could merge into a global urban
system possibly implies other types of processes (e.g., the emergence of mega-city regions) and is not
incompatible with the persistence of local regional urban systems. A quantitative investigation of the
second point is still out of the scope of this preliminary work, as it would imply more complicated
and possibly multi-scale models, but also more accurate global data on a longer time span. We will,
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however, provide a first experiment below by testing models on a new global database. The first point
is consistent with the idea of comparing different models with underlying processes of a different
nature to try to reproduce the trajectories of urban systems, and this is for different systems across the
world. We will also provide results for such experiments below. The test of such dynamical models
is an indirect way to dig into the diversity of co-evolution regimes, as data is generally missing for
a direct investigation. The model best fitting a given urban system and corresponding extrapolated
parameters (for example interaction distance and hierarchy for a spatial interaction model) provides
information on the underlying co-evolution dynamics, and can even in some case be associated with
regimes directly identified in synthetic settings (such as the ones found in [39], but this elaborated
investigation also remains out of the scope of this paper).

Building on this theoretical background, we will now investigate a new global database of urban
areas and some stylized facts that can be extracted from it, and then test and compare dynamical
models for urban systems.

4. A New Source of Data for Comparing Urban Trajectories Worldwide

We test here the generality and robustness of stylized facts on systems of cities when using a new
source of comparable urban data provided by the Global Human Settlement Layer dataset (produced
by the European Commission in link with the GEO Human Planet Initiative). The dataset was already
explored statistically for comparing the trends of urban sprawl in the countries of the world in [57],
while the authors of [58], computing a land use efficiency index, measured a global trend towards
densification with a diversity of urban trajectories according to regions of the world. The data delineate
comparable morphological urban agglomerations by detecting built up area from satellite images at
40 m resolution, and combining it with a population layer generated at 250 m resolution using local
data at municipal and district levels provided by censuses on a regular 1 km2 grid [59].

The dataset is available at different dates between 1975 and 2015. In 2015, the source delineated
precisely some 13,000 urban agglomerations larger than 50,000 inhabitants in the world. For each
urban agglomeration figures on built-up surface and population are provided in 1975, 1990, 2000,
and 2015. It also includes measurements of GDP, green areas, and pollution levels from 1990 to 2015.

The short period considered is the major limitation of the source. It can be mitigated by taking
into account the multiple case studies currently available and comparing urban trajectories over much
longer time spans, such as in [60] for England and Wales 1801–1968, in [22] for France 1831–1975,
in [61] for France 1831–1990, in [31] for several regions in the world, in [62] for India 1901–2011 and
China 1982–2010, and in [63] on many large regions in the world and various time spans.

The authors of [64] have compared the GHSL data with the statistics provided by the World
Urbanization Prospects [65] and found a rather good fit with the data on individual cities larger than
300,000 inhabitants. We confirm that the GHSL source provides statistics that are roughly compatible
with the results that were obtained in different countries of the world using our dedicated harmonized
data bases (Table 1). The total urban populations of each country or region should be smaller in
GHSL because in GeoDiverCity we considered urban agglomerations larger than 10,000 inhabitants,
but this is not always the case, especially for India and China whose urban populations could be
overrepresented in GHSL. However, computing the slope of rank size distribution brings comparable
results about the different structures of urban hierarchies, with less unequal distributions of city sizes
in countries that developed earlier their systems of cities [13].
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Table 1. Representativeness of Global Human Settlement Layer (GHSL) source compared to
harmonized data bases from GeoDiverCity. FL population is given in millions. All indicators are
given for the GHSL database, except for the population from the Geodivercity database for comparison
(third column). The rank-size exponent is estimated with a standard Ordinary Least Squares on
logarithms. Standard deviations of the rank-size exponent are all smaller than 0.02, and the adjusted
R-squared larger than 0.97. FSU = Former Soviet Union.

System Pop (M) Pop Geodiv. Cities Rank-Size

Europe 188 291 693 0.94
China 567 481 1850 0.91
Brazil 112 161 349 0.99
India 703 427 3248 0.78

South Africa 25 25 77 1.05
US 153 324 287 1.16

FSU 120 174 450 0.92

In order to roughly check the global reliability of the data set we computed the now classical
indices describing urban hierarchies with the slope of Zipf’s rank-size rule. This can be done in a
diversity of ways of grouping cities, i.e., dividing the world in consistent systems of cities. Delineating
proper systems of cities at the macro-level of inquiry is an even more delicate exercise than delineating
urban entities at meso-geographical level. Theoretically, one should consider subsystems that have
more internal than external interactions with other cities, which raises difficult issues of determining
which interactions to consider and over which period. Even if it was possible to identify and measure
well-adapted data, in most cases we would find that the largest cities of any system of cities have a
much larger scope of interactions than the smaller towns [66]. We shall try to elaborate more on this
particular problem in a next paper. In this first attempt, here we choose to experiment on different
types of groupings, using the seven national or regional urban systems for which we had developed
databases in the GeoDiverCity programme [13]. Then, we compare with two other ways of grouping
countries: a first one, according to the main five continents of the world as many studies on flows of
air flight passengers or even networks of branches owned by multinational firms demonstrated that
they often encompass clusters of stronger internal interactions and have discontinuities between them;
a second one is made according to major economic trade zones that are also supposed to be subsets of
denser inter-urban exchanges.

A first simple statistical analysis confirms results on stylized facts that were already observed
on many systems of cities. We show in Figure 1 the rank-size plot for all five continents, at three
different dates. We find, as is already known, that the urban hierarchy roughly remains constant in
time. Numerical values for exponents in this estimation are provided in Table 2 for the year 2015.
We also retrieve the fact that more mature urban systems (Europe) have a exponent closer to one, while
recently booming urban systems such as Africa have an exponent far from one (0.78 in 2015)—such a
result may also be linked with the absence of smaller towns in GHSL. Asia has an intermediate value
of 0.87, which would be consistent with the fact of mixing subsystems which have a very long history
(e.g., Japan and China), but also recently underwent drastic demographic transitions, with other
subsystems whose development is more rapid and recent (Southeast Asia). The primacy indices are
also consistent with what could be expected: note that it is larger for Europe when Moscow is included
(it would be close to one if taking the EU only, for example, Paris and London being approximately the
same size).
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Figure 1. Evolution of rank-size distributions by continents from 1990 to 2000 to 2015.

Table 2. Rank-size by continents in 2015. Source: GHSL, European Commission.

System Population (M) NB of Cities P1/P2 (Primacy) Slope of Rank-Size R2

Europa 288 1067 1.45 0.93± 0.003 0.991
America 547 1521 1.02 1.02± 0.002 0.996

Asia 2143 7737 1.12 0.87± 0.0004 0.998
Africa 585 2876 1.7 0.78± 0.0008 0.997

Oceania 19 86 1.08 0.91± 0.027 0.926

We also study the rank-size properties by grouping the countries into trade areas, which are
supposed to capture subsystems with a higher level of interurban interactions. We show the temporal
evolution of rank-size plot in Figure 2, and corresponding statistics in 2015 in Table 3. Although the
trade areas considered highly overlap with continents (in particular, for EEA with Europe and ASEAN
with Asia), the exponents obtained are different from the previous ones, and closer to one. According
to the authors of [67], varying the definition of cities yield varying Zipf exponents, with no endogenous
privileged definition. We can indeed expect the same when varying the system of cities considered,
as [68] show that power-law are not valid anymore when considering the tail of the distribution, i.e.,
changing the number of cities included in the estimation. If Zipf’s law was a pure product of ergodic
stochastic processes without any interactions between cities, randomly sampling a subset of a given
system should yield roughly the same exponent (at least with large sample size and with an OLS
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Table 2. Rank-size by continents in 2015. Source: GHSL, European Commission.

System Population (M) NB of Cities P1/P2 (Primacy) Slope of Rank-Size R2

Europa 288 1067 1.45 0.93± 0.003 0.991
America 547 1521 1.02 1.02± 0.002 0.996

Asia 2143 7737 1.12 0.87± 0.0004 0.998
Africa 585 2876 1.7 0.78± 0.0008 0.997

Oceania 19 86 1.08 0.91± 0.027 0.926

We also study the rank-size properties by grouping the countries into trade areas, which are
supposed to capture subsystems with a higher level of interurban interactions. We show the temporal
evolution of rank-size plot in Figure 2, and corresponding statistics in 2015 in Table 3. Although the
trade areas considered highly overlap with continents (in particular, for EEA with Europe and ASEAN
with Asia), the exponents obtained are different from the previous ones, and closer to one. According
to the authors of [67], varying the definition of cities yield varying Zipf exponents, with no endogenous
privileged definition. We can indeed expect the same when varying the system of cities considered,
as [68] show that power-law are not valid anymore when considering the tail of the distribution, i.e.,
changing the number of cities included in the estimation. If Zipf’s law was a pure product of ergodic
stochastic processes without any interactions between cities, randomly sampling a subset of a given
system should yield roughly the same exponent (at least with large sample size and with an OLS
estimator). Although the sampling is not random here (a more elaborated statistical analysis remains
for future work), the discrepancy suggests the opposite of the previous case. Therefore, it means that
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urban systems are highly non-ergodic and that interactions between cities are crucial. We suggest that
the exact same phenomenon occurs for urban scaling laws, as they are, in the same way, strongly
dependent to system definition [69,70], and that the claims of universality by the mainstream scaling
literature are at least not compatible with this empirical evidence, at worse inaccurate in terms of
underlying dynamical processes.
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Table 3. Rank size for trade zones in 2015. Source: GHSL, European Commission.
[ASEAN = Association of Southeast Asian Nations, 10 countries; MERCOSUR = Southern Common
Market, 4 countries; COMESA = Common Market for Eastern and Southern Africa, 21 countries;
EEA = European Economic Area, 31 countries].

System Population (M) NB of Cities P1/P2 (Primacy) Slope of Rank-Size R2

ASEAN 293 874 1.67 0.92± 0.003 0.993
MERCOSUR 220 657 1.37 1.00± 0.0016 0.998

COMESA 252 1367 3.39 0.72± 0.0014 0.995
EEA 194 720 1.01 0.94± 0.0026 0.994

We also proceed to a simple statistical analysis of other variables in the database. We confirm
the basic assumption of the Gibrat’s model that population and population growth are uncorrelated.
The correlation coefficients on Figure 3 are above 0.7 between built-up area and population, as well
as GDP and pollutant emissions. Cities are places of concentration of human activities with their
desirable and less desirable outputs. However, there are wide inequalities in urban densities according
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to the continents (Asian cities are more than twice as dense as European cities that are ten times denser
than North American and Australian ones, cf. [71]). Even if the progression of built-up areas between
2000 and 2015 is positively correlated with the one of population, with a 0.63 coefficient, there are
discrepancies between regions of the world in the evolution towards rather compact or more spread
urbanization (Figure 4). The map shows clearly that sub-Saharan regions in Africa and South and
Southeastern Asia are more rapidly expanding the urbanized surfaces than their urban population,
although also being regions of rapid demographic urban growth. The variations of other variables, i.e.,
CO2 emissions and GDP, are totally uncorrelated with the variations of population, meaning that their
recent dynamics are independent.

Figure 3. Correlations between GHSL indicators (GDP, Emissions, Built-up surfaces, Population and
their evolution 2000–2015 (Delta)).
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Figure 4. Comparing spatial and demographic urban expansion 2000–2015. Source: GHSL,
European Commission.

We also compute the exponents of the data on GDP and emissions as power functions of urban
sizes, under the hypothesis that they would exhibit scaling laws. Actually, the relationship between
urban indicators in GHSL is not linear but follows scaling laws with exponents above 1, indicating a
larger production and pollution potential when considering cities of larger size. This can be observed
for subsets of cities we had previously observed in the GeoDiverCity programme in Table 4. In several
cases the adjustments are of a low quality (India, for example), suggesting the relative validity of
scaling laws. We did not proceed to additional tests to verify if these relations are effectively power
laws (see [72] for the case of scale-free networks), but the chances are high for not having power-laws
in a strict statistical sense. The distributions are still loosely fat-tailed and the exponents provide useful
information. They lie close to one in the case of built-up area as expected, supra-linear but close to one
for GDP also as expected, and supra-linear with a high exponent for emissions. The last relation on
emissions was less expected, as, according to the work in [73], the literature has very heterogeneous
conclusions on emissions scaling, and the results vary highly depending on city definitions. There is,
however, a high supra-linear scaling when considering urban areas, which is consistent with our
findings. We obtain similar order of magnitudes (maximal variations of 0.2) when considering other
geographical areas as above (continents and trade areas), confirming a certain robustness in the
qualitative interpretations that can be done from these estimations. Note that this database holds
promises for future more robust and useful scaling studies, as it has a worldwide coverage and the
systems considered can be varied at ease, and includes fundamental variables related to urban issues
(many scaling studies focusing on anecdotal variables such as the number of cinemas).
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Table 4. Scaling exponents for large urban systems in 2015. We provide for each system the OLS
estimates on logarithms of each variable as a function of population, with standard errors and adjusted
R squared. FSU = Former Soviet Union. Source: GHSL, European Commission.

System Built-Up Area GDP Emissions

Europe 0.93± 0.016 (0.83) 1.15± 0.019 (0.83) 1.50± 0.038 (0.69)
China 1.06± 0.019 (0.62) 1.14± 0.011 (0.85) 1.84± 0.037 (0.57)
Brazil 0.98± 0.025 (0.81) 1.10± 0.055 (0.54) 1.71± 0.053 (0.75)
India 1.34± 0.031 (0.36) 1.25± 0.022 (0.50) 1.54± 0.031 (0.42)

S. Africa 1.18± 0.090 (0.69) 1.08± 0.028 (0.95) 1.56± 0.087 (0.81)
US 0.97± 0.015 (0.92) 1.04± 0.069 (0.99) 1.34± 0.03 (0.84)

FSU 0.97± 0.035 (0.63) 1.17± 0.041 (0.65) 1.95± 0.088 (0.52)

5. Comparing Dynamic Models of Urban Growth

We now turn to the test of different dynamical models to simulate the observed population
trajectories of cities. As detailed above, this should allow us to compare the influence of different
possible drivers of urban growth, and possibly investigate the diversity of co-evolution regimes.
We apply four different families of models, on the GHSL database between 1990 and 2015 and on the
GeoDiverCity database. The first one is the stochastic model of Gibrat that can be used as a benchmark
because it has the smallest number of hypotheses, without any interactions between cities. The second
model inspired from the work in [26] introduces innovation waves as impulses of urban growth with
hierarchical diffusion, as detailed in Section 2. A third model family is the Marius model, introduced
in [34], which focuses on economic interactions between cities. The last model family is a spatial
interaction model taking into account physical networks, studied in [38]. The underlying processes
within each of these model families are potential partial explanations for urban growth, and each
belong to very different classes of processes.

All these models can be formulated within a common framework which has been described
by [38]. First of all, we consider a deterministic version of the Gibrat’s model, for which the extensions
with interactions will capture the covariance structure between population trajectories. In Gibrat’s
model, formulated as P(t + 1) = R(t) · P(t), where P and R are independent random variables, we
have E [P] (t + 1) = E [R] (t) ·E [P] (t). Furthermore, city trajectories are assumed independent, i.e.,
Cov

[
Pi, Pj

]
= 0 for any cities i 6= j. Writing E [Pi] (t) = µi(t), we generalize the deterministic

formulation above to a nonlinear one by taking µi(t + 1) = f (µi(t)). The specification of the
transition function or algorithm between these average populations will fully determine the model.
The corresponding Gibrat’s model (named “gibrat” on Figures 5–9) has one single parameter which is
the average endogenous growth rate. Note that in this deterministic version, there is no additional
parameter for the variance (or other moments depending on the distribution chosen) of growth rates.

The network interaction model proposed in [38] includes linearly a Gibrat’s component of fixed
endogenous growth rates, a spatial interaction component given by the average interaction potential
with all other cities for each city (with Euclidian or network distance, see in [38] for details) and a
second-order term of network flow feedback that we do not include here for simplicity. We consider
two versions of the model, one (named “intgib” for “Interaction Gibrat” on Figures 5–9) with Euclidian
distance between cities to determine interaction potential, the other (named “intgibphysical” for
“Interaction Gibrat Physical” on Figures 5–9) with a physical network distance computed as shortest
paths with a terrain slope impedance derived from a global Digital Elevation Model. Both models have
the same four parameters: endogenous growth rate, weight of interactions, hierarchy of interactions,
and geographical range of interactions.

The Favaro–Pumain model for the diffusion of innovation [27] considers population of cities
and additional variables representing an adoption rate of a given innovation. To evolve populations,
(i) innovations are diffused in the network of cities following a spatial interaction model and with
an intensity depending on the utility of the innovation; (ii) population is updated following another
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spatial interaction model, interaction potential being driven by the innovative characters of cities;
and (iii) we introduce exogenously a new innovation with an increased utility if a certain global
adoption threshold is reached for the previous innovation, at a fixed initial penetration rate and in a
city chosen with a probability calculated according to a scaling law of population. A first simplified
version of this model (named “innovation” on Figures 5–9) has default parameter values from the work
in [27] and four free parameters, which are the endogenous growth rate, the weight of interactions,
interaction range for innovation diffusion, and interaction range for population growth. The full
version (named “innovationext” for “Innovation extended” on Figures 5–9) has nine parameters,
with additional parameters being the initial utility of the first innovation, the fixed growth rate of
innovation utilities, the initial penetration rate, the adoption threshold for a new innovation, and the
hierarchy exponent to determine innovative cities.

Finally, the Marius model family, based on economic exchanges [34], implements the following
processes. Cities are attributed an initial wealth following a scaling law of populations. At each time
step, (i) supply and demand are updated for each city as superlinear functions of populations; (ii) cities
exchange goods according to a spatial interaction potential, and their supply and demand, and wealth
are updated accordingly; and (iii) population is updated such that population difference follows a
scaling law of wealth difference with a given economic multiplier and exponent. A restricted Marius
model (named “mariusrestr” for “Marius restricted” on Figures 5–9) has four parameters, namely,
economic multiplier, supply and demand exponents, and the interaction distance. The full model
(named “marius”) has six parameters, adding the exponent for the initial wealth and the exponent for
the population update.

Note that besides the benchmark Gibrat’s model, we have a version of each model with four
parameters, which makes them directly comparable in terms of adjustment performance. Indeed,
taking into account over fitting in such simulation models remains an open question as the author
of [38] puts it, and a fair model comparison is ensured with the same number of parameters.
We will, however, consider all model versions in the comparison and study absolute performance of
models whatever their number of degrees of freedom. The models are implemented in Scala within
a single library, and integrated into the OpenMOLE model exploration platform for exploration
and calibration [74]. Source code and results are available on the repository of the project at
https://github.com/JusteRaimbault/UrbanGrowth.

We show in Figure 5 how different dynamic models succeed in simulating the population
trajectories of all cities for BRICS countries, Europe, and the United States. Here, each model is adjusted
on the GeoDiverCity dataset for each system of cities, for time spans covering 1960 to 2010 (precise
dates depend on each system). Evaluating models on this dataset rather than on the GHSL database
seems more relevant for these systems of cities, as data was specifically tailored for comparability
and following a consistent geographical definition of urban areas with more refined estimation of
their populations [13]. The model calibration procedure is the following. Cities are initialized with
observed population at the first date in the dataset. Given a model and associated parameter values,
populations are then simulated for each date in the dataset according to the model. The fitness is
evaluated with two complementary indicators: (i) the logarithm of the total mean square error between
observed and simulated populations, taken in time and for all cities, and (ii) the mean square error
on logarithms of observed and simulated populations taken in time and for all cities. These two
indicators are complementary, because of the hierarchical nature of urban systems: considering only
the mean square error will favor the adjustment on very large cities only, while considering logarithms
of population will put a higher emphasis on the role of medium-sized and small cities, which must not
be neglected when considering an urban system [75,76]. A multi-objective calibration algorithm (more
precisely, the NSGA2 algorithm), implemented in the OpenMOLE platform with a specific design to
be distributed on a computation grid [77], was run with these two objectives for each city system and
each model. The algorithm is stopped after a fixed number of steps, for which convergence was always
obtained (in the sense of negligible variation in the final populations obtained).

https://github.com/JusteRaimbault/UrbanGrowth


Sustainability 2020, 12, 5954 15 of 25

The curves of different color in Figure 5 represent the Pareto fronts, i.e., the points forming
an optimization compromise between the two objectives, for each system of cities (subpanels) and
each model (colors). The curves represent Pareto fronts obtained with the final generation of the
genetic algorithm, corresponding to 200 simulations of each model (one point corresponds to one
simulation). Overall, models with innovation and interaction are performing better for reconstructing
the trajectories than the simplest stochastic model, but the patterns of fitness are very diverse. In some
cases, such as South Africa, Russia, and Europe, the full Marius model clearly dominates all other
models, as its Pareto front performs better than the Pareto fronts of other models regarding the two
objectives. In these cases, economic exchanges are thus better candidates than the other processes
considered to explain urban growth. These are the most mature systems among the ones under study,
what would suggest a correspondence between the age of the system and the fact that its dynamics are
driven by economic exchanges (furthermore, whatever the political and economic system in place, since
Europe and Russia before and after the fall of USSR are covered). In some cases, such as China, several
models are in close competition, while in the remaining cases, different models are complementary to
obtain the effective Pareto front.

Figure 5. Test of six dynamic models simulating urban trajectories on systems of cities at national
scale. (Legend common to Figures 5–9): two measurements of the fitness of each dynamic model (log
of sum of deviations between observed and simulated populations on y axis (ensuring a better fit
of the top of urban hierarchies) and sum of deviations between the logarithms of observed and
simulated population of each city (ensuring a better fit for medium and smaller towns)) are related
on the Cartesian graph exhibiting Pareto fronts that can be compared for the seven dynamic models.
The calibration of exploration models were done using genetic algorithms and computation grid with
the OpenMOLE platform.

We give more details on these cases where different models appear to be complementary.
Figures 6 and 7 represent contrasted patterns of the Pareto fronts in the case of India and Brazil.
In the case of India, for the models shown here, Gibrat’s model provides the worse predictions of urban
trajectories, whatever their position in the urban hierarchy. Obviously introducing interactions,
and especially physical interactions, is a necessary and major improvement for simulating the
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development of Indian cities of all sizes. The interaction model and its physical version (blue and light
green) are the best but very close to the full innovation diffusion Favaro–Pumain model (dark green).
In that case, the two processes are equivalent candidates to explain urban growth. Note that we show
here a zoomed region of the previous plots in Figure 5, and that in that case the Marius economic model
is outside the plot range, even dominated by the one-parameter Gibrat’s model. Several explanatory
factors for this dominating role of spatial interactions in the Indian system of cities could be proposed,
such as a history of a stratified urbanization due to successive colonial extraction periods, but also the
capture of a long-distance trade, which spans beyond the boundaries of India or its current insertion
within globalized value chains.

Figure 6. Testing urban dynamic models on the Indian case.

For Brazil (Figure 7), the pattern is more complicated because multiple factors differentiate urban
trajectories. The Pareto front is formed by the full Favaro–Pumain model (innovationext, dark green).
The innovation model is always the best whatever the city size considered, which could be consistent
with the historical and geographical context of Brazil: innovations spilling out of the newly founded
Brazilia should necessarily have impacted surroundings medium-sized towns. However, we also
obtain the physical interaction model (intgibphysical, light blue) within the zoomed windows as a
second Pareto front. This can be interpreted as also a good explanatory power for spatial interactions
taking into account the physical terrain. In that sense, the uneven topography of Brazil must play a
role in shaping transportation networks and urban interactions, which is consistent with inequalities
in extraction potential, in particular for agriculture.
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Figure 7. Testing urban dynamic models on the Brazilian case.

The case of Chinese cities is interesting, not only because of the peculiarities of the urbanization
process in this rapidly urbanizing country still with a very old system of cities for half a
century [78], but also because the complication of local sources of territorial information about urban
populations [62,79]. What emerges from Figure 8 that represents the fitness of dynamic models is
a striking quasi-equivalence between all models considered, except for the Marius model (purple)
which slightly dominates the other Pareto fronts when medium-sized cities are privileged. Otherwise,
all models are very close to the Gibrat’s model (red). Such an “anomaly” when compared to the
simulations made on all other regions of the world can be interpreted to be produced by the systematic
character of the Chinese urban planning aiming at developing urban areas in a parallel way all over
the Chinese urban regions. Models introducing spatial interaction produce patterns expected when
geographical bottom-up processes of interaction are considered only, but they cannot anticipate highly
top-down planned urban development actions.
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Figure 8. Testing urban dynamic models on China.

We have also applied these models to the full set of cities in the world as documented from
the GHSL database (Figure 9). Only such a broad coverage database, despite its potential bias,
can allow applying such interaction models at this global scale, and this application thus illustrates the
complementarity of data sources and the potentialities of GHSL. Indeed, regional databases with a high
consistency provide robust case studies, while the global coverage of GHSL allows studying various
definitions for systems of cities and to study regions for which less data is available. Although we can
expect a larger diversity of urban trajectories at that scale because of the much contrasted demographic
behavior in regions where the urban transition is achieved and those where it is still going on, this does
not seem to hamper the performance of the models. Gibrat’s model remains the most approximate
way of predicting urban trajectories, but what emerges at that world scale is a stronger differentiation
between the ability to simulate the top or the bottom of urban hierarchies. Largest cities are rather well
approximated with the innovation diffusion model (green), while smaller cities are better adjusted
with the Marius economic model. This would be consistent with metropolization processes implying
that large global cities interact more between themselves than with their hinterland, at least for highly
innovative and value-added activities. Meanwhile, on a regional scale for medium-sized cities (these
interacting in smaller ranges than large cities because of the size term in the spatial interaction model),
economic exchanges are driving urban growth.
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Figure 9. Test of six dynamic models simulating urban trajectories on the world system of cities (GHSL
data source).

To what extent such a worldwide estimation is relevant, compared to spatial locally stationary
estimations on fixed (as done before) or on variable spatial extents, remains to be investigated.
We however show how such models can be applied and compared worldwide, opening research
avenues towards systematic benchmarks of dynamical models for systems of cities all over the world.
Furthermore, we showed some complementarity of the different models, as none was dominating
the others in all cases, confirming the diversity of co-evolution niches suggested before. Within a
given system of cities, different model selection criteria can yield different models to be selected,
as we showed that, in some cases, Pareto front was constituted by several models. Across systems
of cities, the optimal model is different. They are thus complementary in a multi-modeling sense.
More investigations would be needed to integrate them into a larger meta-model which should be
calibrated with specific methods as proposed by [80], to provide more quantitative insights into this
complementarity.

Regarding the performance of our simulation models, an open issue is how to benchmark them
with more classical statistical models or spatial interaction models [28]. Assuming, for example,
a population growth rate linked to spatial interaction flows φij, one would write µi(t + 1) = ∏j φij ·
µi(t) to obtain a spatial interaction model that can be directly fitted as log µi(t + 1) ∼ log µi(t) +
∑j dij, assuming an exponential decay function and noting that the sum of other log-populations
are integrated into the regression constant and the first term. Such a model can then be fitted either
year-by-year or on the whole data. It has, however, a much higher number of degrees of freedom
and integrated more information from data than the simulation models, as these only include initial
population µi(0) at the beginning of the period. Some ways to fit spatial interaction models in
a comparable way to simulation models remains thus an open problem, out of the scope of this
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paper. A related issue, raised in [38], concerns the construction of information criteria for simulation
models to compare them in a fair way, taking into account overfitting and the number of parameters.
Other types of models which could be investigated but for which a comparison is not possible are
spatial autoregressive models [81] and geographically weighted regression models [82].

6. Towards Multi-Scale Models

While several applications and developments of the studies described previously will be necessary
to strengthen our knowledge of evolutive urban systems, the development of new kinds of models will
also be a crucial step towards sustainable territorial governance. Following the authors of [83], urban
systems imply diverse processes at different scales, with upward and downward feedback between
these. The typical scales are first the intra-urban scale (microscopic scale), implying urban stakeholders,
built environment, physical artifacts; second, the metropolitan scale, or mesoscopic scale, for which the
important processes are the location of population, economic activities, and amenities, and for which
abstractions done for example in Land use Transport (LUTI) models are good approximations to grasp
urban dynamics [84]; and third, the scale of the system of cities, or the macroscopic scale, for which
spatial interactions and the processes described in the model we used are appropriate abstractions.
This view considerably extends and details the formulation of [85] of cities as systems of systems.
In that context, the authors of [86] point out that a multiscalar methodology is necessary for territorial
policies, for example, to be able to articulate global issues with local issues in the least contradictory
way possible, with multiple and generally conflicting objectives. The work in [87] illustrates this
by empirically studying the economic and ecological performance of European mega-urban regions
with a multi-level perspective through endogenous definitions of these. Furthermore, the recent
transition from relatively modular regional urban systems to a globally interconnected urban system,
and possibly associated new settlement patterns such as polycentric mega-urban regions [88], implies
a need for new models to possibly understand how this transition occurs, or simulate urban dynamics
after the coalescence of regional urban systems.

An example of such multi-scalar models can be given between the mesoscopic and macroscopic
scale. The macroscopic dynamics of a metropolitan area will strongly drive its internal development,
for example, because of population and economic flows coming from outside. This implies a downward
feedback from the macroscopic urban dynamics to the mesoscopic dynamics. Reciprocally, the internal
organization of a metropolitan area will influence its dynamics and insertion in the system at the
macroscopic scale (whatever the dimension, for example economic performance), through positive and
negative externalities such as congestion. This consists of upward feedback. A model strongly coupling
these two scales and including explicitly these two feedbacks, coupling a reaction–diffusion model of
urban growth at the mesoscopic scale [89] with the interaction model in [38] at the macroscopic scale,
has been proposed in [90]. Model exploration on synthetic systems unveils non-trivial nonlinear effects
from including the feedbacks, and for example intermediate optimal ranges for policy parameters
influencing the level of sprawl (transit-oriented development) or the level of local aggregation
(metropolization). The development of such models and their calibration on real dataset such as
the GHSL dataset we used here, can become precious tools for evidence-based urban policies.

7. Conclusions

The essential point of evolutionary theory is to take into consideration the spatio-temporal
dimension of the urban realm. The aim is to link the development of cities to the many and diverse
interrelations that make cities, as their emergence, entities that are not isolated, but on the contrary
interdependent in their evolution, to the point of constituting “systems of cities”. These systems are
social adapters (in the sense that they carry and induce social change), complex, multi-scalar, and open.
The dynamics of these systems of cities, although they must always be placed in a context of time and
space, include regularities that make it partly comparable and predictable, from one system to another
and for certain scales of time. It is the micro-geographical level interactions, formed by the multiple
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interventions of a large number of stakeholders that produce the “behaviors” of cities and city systems
at meso- and macro-geographical scales, because of the complex reflexive feedbacks introduced by
the practices of diverse stakeholders. It is important for these people and institutions to be informed
of such knowledge about urban dynamics, to take advantage of this collective territorial intelligence,
and to make the most of the important adaptations required by the ecological and social tensions of
our time. For complex dynamics, such as the one observed in urban systems, policy interventions are
always difficult as they can yield unexpected and even contrary effects. The compromise between an
external top-down shock and endogenous bottom-up measures is also a subtle aspect to be determined.
Understanding urban dynamics and co-evolution regimes in their diversity brings indirect elements of
answer to these policy issues.

What modeling of urban dynamics brings to the discussion is at first a solid confirmation about
the robustness of stylized facts that are integrated within the evolutionary theory of urban systems.
While also confirming the complementarity of processes and models, it underlines the importance of
the historical/political/geographical context, which produces numerous effects of path dependency.

Of course our modeling exercise has limitations, at first because the data at world scale in the
GHS source are provided for 1990–2015, a rather short period for the temporal scale of cities dynamics.
Second, there are wide uncertainties attached to the quality and full comparability of these data that
have not yet been tested in a large number of studies. Third, and this is not the least critical point,
the modeling approach at the scale of large regions can only provide insights about the most probable
trends. This may improve the capability of urban planners to decide about their latitude of maneuver
such as compared with previous periods and other cities. However, it is only a small part of the
knowledge that is necessary for finalizing their decision.

Several questions remain open, as how to link urban scaling and dynamic models, how to define
endogenously consistent urban systems, and how to develop data-driven multiscale models. However,
a few messages can be conveyed towards citizens and practitioners: (i) there is a statistical predictability
of city growth and size on short time periods; (ii) largest metropolises are not “monstruopolises” but
“normal” products of the urbanization process in their particular territorial conditions; (iii) proactive
adaptive strategies are necessary (through imitation, or anticipation and risk) for maintaining every
city updating within a context that remain too often conceived as a rivalry or competition but that
should more and more evolve towards emulation, according to a concept of co-opetition. We can
have confidence in the future of cities because of the well observed robustness and stability of
systems of cities, and the wide variations in their organization and evolution remind us of the fact
that there are no norms nor any optimum in the territorial, social, and cultural design of cities.
Their diversity demonstrates the viability of different ways of being urban, and perhaps is a guarantee
of the sustainability of the systems that they construct at the world scale. A quantitative knowledge on
diverse processes driving urban dynamics at large scales should be essential for future planning of
sustainable urban policies.
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