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Abstract

Kinetic Monte Carlo (KMC) simulations have been instrumental in advancing our

fundamental understanding of heterogeneously catalyzed reactions, with particular em-

phasis on structure sensitivity, ensemble effects, and the interplay between adlayer

structure and adsorbate-adsorbate lateral interactions in shaping the observed kinetics.

Yet, the computational cost of KMC remains high, thereby motivating the development

of acceleration schemes that would improve the simulation efficiency. We present an

exact such scheme, which implements a caching algorithm along with shared-memory

parallelization to improve the computational performance of simulations incorporating

long-range adsorbate-adsorbate lateral interactions. This scheme is based on caching

information about the energetic interaction patterns associated with the products of

each possible lattice process (adsorption, desorption, reaction etc). Thus, every time

a reaction occurs (“ongoing reaction”) it enables fast updates of the rate constants of
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“affected reactions”, i.e. possible reactions in the region of influence of the “ongoing

reaction”. Benchmarks on KMC simulations of NOx oxidation/reduction, yield accel-

eration factors of up to 20× when comparing single-thread runs without caching to

runs on 16 threads with caching, for simulations with a cluster expansion Hamiltonian

that incorporates up to 8th nearest-neighbor interactions.

1 Introduction

Over the last two decades, first-principles based kinetic Monte Carlo (KMC) simulations

have gained significant popularity in the computational catalysis field, as means to un-

ravel the striking complexity of heterogeneously catalyzed reactions.1–5 KMC has thus been

instrumental in elucidating various factors that shape the observed kinetics, in particular

structure sensitivity,6–8 ensemble effects,9 and the interplay between ad-layer structure and

adsorbate-adsorbate lateral interactions,10 in a variety of chemical systems. In KMC sim-

ulations essentially one executes a series of reaction events, using information about the

statistics of transitions from initial (reactant) states to final (product) states, and obtains

a trajectory of configurations. Any observable of interest (e.g. activity, selectivity etc.) is

calculated as an average from the resultant trajectory. Hence, KMC focuses on the timescale

of reaction events, making use of coarse-grained information about the statistics of reactive

paths; this information is captured by a kinetic rate constant that can be computed from

first-principles. This coarse-graining makes it possible to sample over billions of reaction

events while respecting the physical mechanisms of such transitions (assuming of course that

the system simulated is amenable to a KMC representation).11

Yet, the computational cost of KMC simulations remains high, in any case much higher

than deterministic mean-field equations. However, since the latter employ simplistic approx-

imations, they are unsuitable for modelling systems with strong spatial correlations,12 for

which the KMC framework can be successfully used. In this regard, it is highly desirable

to develop acceleration schemes that would improve the computational efficiency of KMC
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simulations.

To this end, a number of approximate algorithms have been developed, which work by

scaling down the rate constants of fast and quasi-equilibrated events under the assumption

that this would incur only small errors in the observables.13–16 These aim at essentially re-

ducing the stiffness of the mathematical problem; however, Andersen et al. 17 showed that

such accelerated schemes may lead to large errors when simulating systems whereby inde-

pendent quasi-equilibrated reactions produce low-coverage species which together participate

in subsequent reactions.17 A different (still approximate) approach based on the theory of

absorbing Markov chains, that does not require quasi-equilibration of the events, has also

been developed by Pedersen et al. 18 , Chill et al. 19 , Andersen et al. 20 .

On the other hand, exact schemes that reduce the computational burden or distribute

it to multiple threads have also been developed and implemented. For instance, the use of

inverted lists for fast detection of reaction patterns,11,21,22 or binary trees for efficient search

of the most imminent reaction event,23 have been shown to significantly accelerate KMC

simulations. When modelling systems with long-range adsorbate-adsorbate lateral interac-

tions, shared-memory parallelization can significantly speed up the updates of environment-

dependent rate constants after a reaction event.24 Recently, Hess 25 proposed the use of

supercluster, subtraction and supersite algorithms to efficiently account for the changes in

lateral interactions during KMC simulations. Such schemes introduce no error in the sim-

ulation results, but may incur memory overheads due to the extra amount of information

that needs to be stored.

Motivated by the need to further improve simulation efficiency, we have developed a novel

scheme that implements caching to accelerate the Graph-Theoretical KMC (GT-KMC) ap-

proach.24 This scheme is intended to accelerate KMC simulations of catalytic systems with

complex models of adsorbate lateral interactions, potentially involving long-range terms. In

the latter case, each executed reaction modifies the energetics within an extended neighbor-

hood of the lattice, requiring appropriate updates of the rate constants of possible reactions
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that are in the range of influence of just happened reaction. Such update operations have

been found to be the bottleneck of GT-KMC, and shared-memory parallelization was previ-

ously implemented, resulting in speed-up factors up to 10× for a benchmark system involving

NOx oxidation/reduction chemistries. The caching scheme we present in this work reduces

the number of repetitive detections of energetic interaction pattern instances during such

update operations, thereby further improving the efficiency. For the most challenging clus-

ter expansions of the aforementioned benchmark system, we obtain a speedup of 20× when

the KMC simulation is run with shared-memory parallelization and caching scheme enabled,

compared to the runs using single thread and without caching.

The rest of the paper is organized as follows: in Section 2: Methodology, we explain the

technical details behind the caching scheme; in Section 3: Results and Discussion, we present

and discuss our benchmark calculations; finally, in Section 4: Summary and Conclusion, we

close with a brief overview of the scope and the contribution of our work.

2 Methodology

2.1 Overview of graph-theoretical KMC algorithm

The aim of the KMC algorithm is to estimate catalytic properties of a material (e.g. activ-

ity or selectivity), by generating a temporal sequence of snapshots of the catalytic surface

through the execution of user-defined events, such as adsorption, desorption, reaction and

diffusion. The frequencies of these events are prescribed by appropriately computed kinetic

rate constants (e.g. from ab initio methods). The observed quantities of interest are calcu-

lated as statistical averages, e.g. the turnover frequency is obtained by counting the number

of reactant molecules converted per site per time. Key elements of a KMC simulation are

presented below, and will feed into our detailed explanations of the novel caching scheme.
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2.1.1 Initialization

The KMC algorithm is initialized with:

• the simulation conditions: temperature, T ; pressure, P ; and gas phase composition,

given as the molar fractions of gas species, Y ;

• a lattice, representing the catalytic surface: the GT-KMC uses a graph structure to

capture the lattice, with its vertices corresponding to sites and its edges defining the

neighboring relations among sites;

• the energetics model: a cluster expansion containing a set of coverage patterns, also

known as figures, and the energetic contributions thereof, also known as the effective

cluster interactions;

• the reaction mechanism: a set of coverage patterns for initial and final states (reac-

tants/products) of an elementary event, e.g. adsorption, desorption, surface reaction,

or diffusional hop.

2.1.2 Calculation of coverage-dependent rates

The reaction rate constant of an event in the reaction mechanism is obtained using the

Eyring equation:26

kTST =
kBT

h

Q‡

Qreactants

exp

[
−E

‡(σ)

kBT

]
(1)

kTST is the rate from transition state theory, kB is Boltzmann’s constant, T is the tem-

perature, h is Planck’s constant, Q‡ and Qreactants are the quasi-partition functions for the

transition state and the reactants, and E‡(σ) is the activation energy of the event and is

computed via a BEP equation in a consistent way for reversible events.27,28

Thus, for a reversible reaction k, the activation energy of the forward event is modeled

as:

Ek,‡
fwd = max

(
0,∆Ek

rxn(σ), Ek‡
fwd,0 + ω

(
∆Ek

rxn(σ)−∆Ek
rxn,0

))
(2)
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where Ek,‡
fwd,0 and ∆Ek

rxn,0(σ) are the activation barrier for the forward event and the en-

ergy of the reaction k at the zero-coverage limit, and ω is the proximity factor.29 For the

corresponding reverse event, the activation energy is modeled as:

Ek,‡
rev = max

(
−∆Ek

rxn(σ), 0, Ek‡
rev,0 − (1− ω)

(
∆Ek

rxn(σ)−∆Ek
rxn,0

))
(3)

where Ek,‡
rev,0 is the activation barrier for the reverse event at the zero coverage limit and also

Ek,‡
rev,0 = Ek,‡

fwd,0 −∆Ek
rxn,0 (4)

such that the energy of reaction satisfies:

∆Ek
rxn(σ) = Ek,‡

fwd − E
k,‡
rev (5)

Thus, the calculation of activation energies requires a model for the reaction energy; the

latter is obtained from the cluster expansion Hamiltonian, H, as follows:

∆Ek
rxn(σ) = H

(
σ

′
(σ, k)

)
−H (σ) + ∆Ek

gas (6)

where σ and σ
′

refer to the coverage patterns corresponding to initial and final states of

the lattice, and ∆Egas is the change in the energy of gas species participating in an event of

reaction k. The total energy of the system is obtained via the cluster expansion Hamiltonian

as a sum of contributions from coverage patterns that can be detected on the lattice. These

can be single body terms, pair interactions or patterns involving three or more bodies.

Formally:

H (σ) =
Nc∑
p=1

(
NCEp (σ)

GMp

)
× ECIp (7)

where, ECIp, GMp and NCEp are the effective cluster interaction, graph-multiplicity (>

1 for symmetric patterns) and number of instances (in a given lattice configuration) of
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pattern p, respectively.

2.1.3 Graph representations and handling of energetic interactions

The main constituents of the KMC simulation, lattice structure, energetic and reaction

patterns, are represented as graphs.24 This representation provides versatility in describing

complex reaction events that may involve multiple catalytic sites or adsorbates that bind to

more than one site (multi-dentate adsorbates). An example of three energetic interaction

patterns and a lattice is shown in fig. 1. For simplicity’s sake we consider only a monodentate

adsorbate on a lattice that has only one type of site; however, our algorithms are applicable in

the general case. Open circles denote empty sites, whereas filled circles denote sites occupied

by an adsorbate. The numbers inside the circles are the indices of sites in the lattice or in the

energetic pattern, and the labels e1, e2 etc. below the pattern sites (of energetic interactions

or elementary events) are indexing the entities (adsorbates or empty sites) participating in

the pattern. For instance, in the initial state of the forward diffusion event, entity 1 is a

“blue” adsorbate, whereas entity 2 is an empty site.

At all times, the GT-KMC algorithm keeps a complete list of energetic interaction pat-

terns, whose contributions make up the total energy of the current lattice configuration.

Considering the energetic patterns in our example (fig. 1), there are five instances of the SB

energetic pattern in the depicted lattice configuration; 9 , 15 , 21 , 26 and 29 . Regard-

ing 1NN energetic pattern, a pattern detection algorithm (solving the subgraph isomorphism

problem)22,24 identifies the following six instances of the pattern from the given lattice con-

figuration; 9 - 15 , 15 - 21 , 21 - 26 , 15 - 9 , 21 - 15 and 26 - 21 . However, because

of the symmetric nature of this pattern, a distinct pair-wise interaction is double-counted,

for example 9 - 15 and 15 - 9 are obtained by first mapping either lattice site 9 or 15

to pattern site 1 and then mapping the other lattice site to pattern site 2 . To correct for

this over-counting, the graph-multiplicity of the pattern is defined as two, and the ECI of

the pattern is the energy contribution of a symmetrically distinct 1NN pair of adsorbates.
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Finally, the 2NN pattern involves an unspecified site, which can be mapped to a lattice

site irrespective of whether the later is occupied or empty. A subtlety of the pattern-matching

algorithm of the GT-KMC is that, while it tries to find all the possible lattice sites that can

be mapped to a specified pattern site, its behavior for unspecified sites is different. Matching

of such sites commences only after all the specified sites have been mapped and it stops when

the first successful mapping (of the unspecified site) has been found. This is done to avoid

unnecessary computational burden and excessive “proliferation” of pattern instances. Thus,

the GT-KMC pattern detection algorithm would identify only one of following two instances

for the 2NN pattern: either 15 - 20 - 26 or 15 - 21 - 26 , for which the specified sites are

identical. Similarly, only one of the following will be detected: 26 - 20 - 15 or 26 - 21 -

15 . Thus, we have two instances of the 2NN pattern which has a graph-multiplicity of

two. Summing all these energetic-interaction contributions, the total energy of the lattice

configuration under discussion (fig. 1) is

H (σ) = 5× ECISB +

(
6

2

)
× ECI1NN +

(
2

2

)
× ECI2NN (8)

2.1.4 Handling of elementary events

As mentioned earlier, reaction patterns (in general: elementary events) are also represented

as graphs, and detecting any event requires mapping the sites of a reaction pattern to lattice

sites, so that the occupancies and connectivity of the lattice sites match those of the initial

state of the event. For example, in fig. 1 adsorption requires finding empty lattice sites

(sites 1 , 2 , 7 etc.), desorption requires finding lattice sites that are occupied by the

molecule desorbing (sites 9 , 15 , 21 etc.) and diffusion requires an occupied site that

has an empty neighboring site (e.g. 9 - 3 , 9 - 4 , 9 - 8 , ..., 15 - 10 , etc.).

For each newly detected reaction, a rate constant has to be computed which in general

depends on the location of spectator species in the neighborhood of the reaction (coverage

effects). To this end, the GT-KMC algorithm first computes the energy of the initial state of
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the reaction by finding all instances of energetic interaction patterns in which the reactants

participate, and summing their energy contributions according to eq. (7). This is a fast

operation, because the GT-KMC framework keeps a complete and up-to-date list of all

energetic interaction terms that make up the total energy of a lattice configuration; thus, the

operation just noted, amounts to simply searching through a lookup table. Subsequently, the

algorithm makes a temporary change in the lattice state, removing the reactants and adding

the products of the reaction. It then computes the final state energy of the reaction, which

requires detecting new instances of energetic interaction patterns (in which products and

spectators, if any, participate) and summing the contributions of these patterns (eq. (7)).

Next, the activation energy is calculated from the BEP eq. (2) or eq. (3), for a forward or

a reverse event, respectively, and the rate constant follows from eq. (1). Finally, the lattice

state is reverted back to that just after the last event took place.

We will now elaborate on the detection of the new energetic patterns (between products

and spectators), and will discuss some important algorithmic nuances pertaining to the

correctness of pattern counting operations. Since we keep track of the entities that are added

to the lattice at all times (adsorbate species or empty sites pseudospecies), the energetic

pattern detection algorithm always starts from a molecule known to be located at a certain

site of the lattice, and finds all energetic pattern instances in which this molecule participates.

We will thus use the expression “an adsorbate is fixed on the pattern” to indicate that a

pattern site is already mapped to a lattice site when the pattern detection starts (note that

more than one site will be mapped for a multidentate adsorbate). Consequently, calculating

the final energy of a reaction could be achieved by the following approach: for each product

molecule, loop over the possible energetic interaction patterns that it can participate in (e.g.

in fig. 1 a “blue adsorbate” participates to pattern SB as entity e1, but also to 1NN or 2NN

as entity e1 or e2). Then, for each such pattern, follow Algorithm 1 which detects the lattice

instances of this pattern into which the reaction products participate. The final state energy

is a sum of the energetic contributions of these instances for all such patterns and for all
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the product entities. Extra care has to be taken to avoid double counting if two or more

products exist for the given reaction; this is already addressed by Algorithm 1.

To see how this algorithm works, let us consider the lattice shown in fig. 2. Initially, the

lattice state contains adsorbates on sites 14 , 16 , and 21 (highlighted by cyan colour),

but then a dissociative adsorption event happens, as part of the KMC simulation. This event

results in adding two more adsorbates on the lattice, on sites 9 and 15 (highlighted by

deep blue). Following the algorithm, our ExcludedAdsorbatesList contains the adsorbates of

sites 9 and 15 .

First let us focus on the 1NN pattern; this defines input variable Π (the pattern whose in-

stances are sought), for which the maximum number of participating entities is two (max mmolec=2).

In the first iteration of the loop, line 3 in Algorithm 1, the algorithm fixes the adsorbate of

site 9 , and identifies the pattern instances 9 - 14 and 9 - 15 in which the fixed adsorbate

participates as entity e1. These pattern instances are added to ValidPatternInstancesList.

Continuing, the algorithm enters the loop of line 7 and identifies pattern instances 14 -

9 and 15 - 9 in which fixed adsorbate, adsorbate on site 9 , participates as entity e2

(mmolec = 2). Yet, it adds only the former to ValidPatternInstancesList and rejects the

instance 15 - 9 , because in the latter the adsorbate of site 15 which is in ExcludedAd-

sorbatesList appears as entity e1, i.e. with a smaller entity index than that of the fixed

adsorbate (operations in lines 10-15 of the algorithm). As we will see shortly, pattern in-

stance 15 - 9 will be counted when the adsorbate of site 15 is fixed; thus, the criterion

successfully prevents double-counting instances of this pattern.

Now let us consider the second iteration of the loop of line 3. The algorithm fixes

the adsorbate of site 15 and finds the valid pattern instances corresponding to the 1NN

pattern. In this case, the algorithm first identifies pattern instances 15 - 14 , 15 - 9 ,

15 - 16 , and 15 - 21 , in which the fixed adsorbate participates as entity e1, and adds

them to ValidPatternInstancesList. Recall that previously, when we had fixed the adsorbate

of site 9 , we rejected the pattern instance 15 - 9 ; this is now detected and added to
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ValidPatternInstancesList as needed. Subsequently, the algorithm identifies the pattern

instances 14 - 15 , 9 - 15 , 16 - 15 , and 21 - 15 , and adds to ValidPatternInstancesList

all of them except 9 - 15 , the rejection of which follows the same logic as before. In

particular, the adsorbate of site 9 participates in the pattern with an entity index smaller

than that of the fixed adsorbate, and thus it has already been counted when fixing adsorbate

9 .

Similarly, let us briefly note which pattern instances are detected for the linear triplet

pattern (Π ≡ TRlinear) when we fix the two newly added adsorbates. By fixing the adsorbate

of site 9 , the algorithm identifies only 9 - 15 - 21 as a valid pattern instance in which

the fixed adsorbate participates as entity e1. While looping over entity indices (line 7), it

finds the pattern instance 21 - 15 - 9 as well but rejects it, because the adsorbate of site

15 participates as entity e2, i.e. with a lower index than that of the fixed adsorbate (e3).

This pattern instance is detected later, in the first iteration of the loop of line 3 when the

adsorbate of site 15 is fixed.

The procedures we discussed (carried out for every newly detected reaction, as already

noted), take place at every KMC step and result in a complete list of new reactions with

rate constants that take into account coverage effects. However, these rate constants are

computed in the first instance for the lattice configuration for which the new reaction was

detected. If some other event happens in the neighborhood of this reaction, it is likely that

the rate of the latter will be affected. Thus, update operations need to be carried out, which

we discuss in the following section.

2.2 Updates of rate constants after reaction occurrence

During the KMC simulation, whenever an event occurs (referred to as “ongoing reaction”)

reactant entities are removed from the lattice, and product entities are added onto the

lattice (recall that an entity may be a molecular species or an empty site pseudospecies).

In turn, the energetic interaction terms in which reactants participate need to be removed,
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and new interaction terms, involving the products and possibly spectator molecules, need

to be added (see fig. 3). As a result, the change in the lattice configuration due to the

“ongoing reaction”, may alter the energetics of other adsorbates (spectators) within a local

neighborhood, the size of which depends on the interaction range. Since these adsorbates

may themselves participate in other reactions (not yet realized), it follows that the activation

energies, reaction energies, and rates of these reactions are also altered. We thus refer to

these as “affected reactions”. It is important to highlight that the latter have not occurred

yet, they appear in the list of possible events that can happen in the “future” of the KMC

run.

In this section we will discuss two computational schemes that can be used to calculate the

updated rate constants of “affected reactions” in the neighborhood of the “ongoing reaction”.

The first scheme is the one originally implemented in the GT-KMC framework,24 and relies

on the concepts we discussed in section 2.1.4; thus, it will be briefly reviewed, highlighting the

need for improving its efficiency. The second scheme is the main methodological contribution

of this work. While it is more memory-intensive and entails quite complicated book-keeping,

it is significantly more efficient for systems with long-range adsorbate lateral interactions, as

we will show later in our benchmarks. Note that in our discussion we use the term “reaction”

in a loose way; of course, all the procedures described can be (and are) applied to other types

of events as well, e.g. adsorption, desorption or diffusion.

2.2.1 Updates with a single adsorbate fixed when detecting interaction patterns

In the original implementation of the GT-KMC framework, updating the activation energies

of “affected reactions” after an “ongoing reaction” happens is done in a brute-force way, using

the procedures we already discussed. Algorithm 3 (which uses Algorithm 2 for initialization)

shows the pertinent steps: for every “affected reaction”, it computes the initial state energy,

then temporarily removes the corresponding reactants, adds the products, and computes the

final state energy, making use of Algorithm 1, which fixes a single adsorbate in the pattern
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being detected. Then, the activation energy and the rate constant are computed, and the

lattice state is reverted back to that just after the “ongoing reaction” took place.

However, this is computationally wasteful, since, to a large extent it repeats the detection

of patterns that have already been detected. Consider for instance the example of fig.

2, with the dissociative adsorption on sites 9 - 15 being a possible reaction which has

not occurred yet. Let us assume that a diffusion from site 16 to 10 occurs; this will

result in the dissociative adsorption becoming an “affected reaction” whose rate constant

has to be updated. While performing the update, one will have to detect patterns between

the products and the spectators on sites 14 and 21 . However, these pattern instances

were already detected when the dissociative adsorption event was listed as possible reaction(
given a lattice state with occupied sites 14 , 16 and 21

)
and are unaltered.

Thus, a potentially more efficient computational scheme could cache the relevant energetic

interaction patterns and consider only the necessary changes during rate constant updates.

Such a scheme would have to detect patterns in which two entities are fixed, i.e. pairs

between the products of the “affected reactions” and the reactants/products of the “ongoing

reaction”. The details of this computational scheme are presented in the following section.

2.2.2 Updates using caching and with pairs of adsorbates fixed when detecting

interaction patterns

In this scheme, we always store in a cache the counts of energetic interaction patterns, which

“make up” the final state energy of a possible reaction. We only count patterns which

involve at least one newly added entity (among the product molecules of the reaction) and

zero or more spectators. For instance, the final state of the dissociative adsorption event

considered in fig. 2 entails two SB patterns
(

9 , 15
)

, ten 1NN patterns of which only five

are symmetrically distinct
(

i.e. 9 - 14 , 9 - 15 , 14 - 15 , 15 - 16 , 15 - 21
)

, four 2NN

patterns of which two are symmetrically distinct
(

9 - 15 - 16 , 14 - 15 - 21
)

, four 3NN

patterns of which two are symmetrically distinct
(

9 - 15 - 21 , 14 - 15 - 16
)

, and finally
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four TR patterns of which two are symmetrically distinct (same mappings as for the 3NN

patterns). Once these counts of interaction patterns are known, computing the reaction

energy, activation energy and rate constant of a reaction is trivial (see section 2.1).

Upon occurrence of an “ongoing reaction”, reactants thereof are removed from the lattice

and corresponding products are added onto the lattice. Since these reactants and products of

the “ongoing reaction” are spectators for the “affected reactions”, the aforementioned counts

of interaction patterns have to be updated. To this end, for each “affected reaction”, energy

contributions from all the energetic pattern instances involving the products of the “affected

reaction” and the reactants of the “ongoing reaction” need to be subtracted, because these

reactants are no longer on the lattice (see fig. 3). In a similar way, energy contributions

from the energetic pattern instances involving the products of the “affected reaction” and

the products of the “ongoing reaction” need to be added (see fig. 3). Note that in both the

above cases, we care about products of the “affected reaction”, since we want to evaluate the

final state energy thereof. Thus, it is sufficient to find only the energetic pattern instances in

which a product of the “affected reaction” and a reactant/product of the “ongoing reaction”

participate together.

In turn, this necessitates the development of a pattern search algorithm that can accom-

modate fixing two adsorbates in the pattern, and can correctly “filter out” duplicate detec-

tions of the same pattern. Algorithm 4 addresses precisely these needs: given an “affected

reaction” and an energetic pattern, Algorithm 4 loops over all pairs of adsorbates (A,B),

in which the first adsorbate, A, is a product of the “affected reaction” (A ∈ AffectedEx-

cludedAdsorbatesList in Algorithm 4) and the second adsorbate, B, is a reactant/product of

the “ongoing reaction” (B ∈ OngoingExcludedAdsorbatesList in Algorithm 4). If, at some

iteration, the current pair of adsorbates do not participate together in the given pattern, the

iterator effectively moves on to the next pair of adsorbates. If the two adsorbates partici-

pate together in the pattern, the algorithm initiates a search for all the lattice instances of

that pattern, also considering all the possible combinations of entity numbers for the fixed
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adsorbates, and adds the instances found to the TempPatternInstancesList. An instance

in TempPatternInstancesList becomes an element of ValidPatternInstancesList, only if it

satisfies both conditions A and B (lines 9 and 10 in Algorithm 4). These conditions work

in a similar way as the condition in line 10 of Algorithm 1, but in this case for a pair of

adsorbates, thereby guaranteeing that Algorithm 4 will never return a pattern instance more

than once in ValidPatternInstancesList. To be clear, note that all the symmetric equivalents

of a pattern are still returned correctly, as these are indeed different instances of a pattern,

and their over-counting is corrected by the graph-multiplicity.

To better understand the algorithm, let us consider an example lattice configuration as

shown in fig. 4. Initially (i.e. before the “ongoing reaction” and the “affected reaction”), the

lattice contains only one adsorbate of site 22 . We will consider the dissociative adsorption

on lattice sites 14 and 20 as the “ongoing reaction”, executed at some point in the KMC

simulation. Further dissociative adsorption events are possible on many pairs of neighboring

lattice sites in the vicinity of 14 and 20 , and all of them will be “affected reactions”, since

their final state energies are affected by the newly added adsorbates. For our discussion, we

consider only one “affected reaction”: dissociative adsorption on sites 9 and 15 . Following

Algorithm 4 for this example, AffectedExcludedAdsorbatesList contains adsorbates on lattice

sites 9 and 15 , and OngoingExcludedAdsorbatesList contains adsorbates on lattice sites

14 and 20 , and the outermost loops are over pairs, (A,B) of fixed adsorbates, in which A is

a product of the “affected reaction” and B is a reactant/product of the “ongoing reaction”.

In this case, the reactants of the latter are “empty-site” pseudo-adsorbates which clearly

have no influence in the energetics. We will thus focus our discussion on patterns involving

the products of the “ongoing reaction” and products of the “affected reaction”.

Let us discuss which instances of 1NN pattern make it to ValidPatternInstancesList,

according to Algorithm 4. In the first iteration, A is the adsorbate of site 9 and B is the

adsorbate of site 14 . A and B can participate as entity 1 (e1) and entity 2 (e2), respectively

in the pattern, and also as e2 and e1. The pattern detection algorithm has no “preconception”
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about what the entity number of a molecule in the pattern should be; it tries to find all

possible patterns. Thus, 9 - 14 and 14 - 9 get appended to TempPatternInstancesList,

respectively for the two different entity mappings just noted. By iterating over all elements in

AffectedExcludedAdsorbatesList and OngoingExcludedAdsorbatesList, the algorithm returns

TempPatternInstancesList as: 9 - 14 , 14 - 9 , 15 - 14 , 14 - 15 , 15 - 20 , 20 - 15 . All

of these instances satisfy both conditions A and B (lines 9, 10 in Algorithm 4), and become

elements of ValidPatternInstancesList.

Continuing, let us now focus on the 2NN pattern instances that become elements of

ValidPatternInstanceslist as per Algorithm 4. Again, A and B can participate as e1 and e2,

respectively, as well as e2 and e1. When A and B are the adsorbates on sites 9 and 14 ,

respectively, no 2NN pattern instances are detected because of the geometric requirement of

this pattern (angle of 120◦ between the two edges of the pattern). For the next iteration,

A and B are the adsorbates on sites 9 and 20 , respectively. The algorithm detects and

adds to TempPatternInstancesList either 9 - 14 - 20 or 9 - 15 - 20 , in which A and B

participate as e1 and e2, respectively (only one of the two patterns is detected because sites

with unspecified states are not iterated, as discussed earlier). It is interesting to note that

in e.g. the first of these two patterns, lattice site 14 , which is occupied by an adsorbate in

the OngoingExcludedAdsorbatesList, is mapped to pattern site 2 . However, since the latter

has an unspecified state, the adsorbate of site 14 is not assigned an entity number in the

pattern, and thus, the algorithm does not need to check condition B. In fact, for two body

patterns, neither condition A nor B needs to checked; as long as the connectivity, geometry

(angles), site types and occupancy of lattice sites24 agree with those of the pattern for the

instance being checked, the latter is accepted as a valid pattern instance. Furthermore,

when A participates as e2, and B participates as e1, either 20 - 14 - 9 or 20 - 15 - 9 get

detected and added to TempPatternInstancesList.

To explain how conditions A and B work, let us focus on the TRbend pattern, which is a

triplet with an angle of 120◦ between the two edges of the graph, as depicted in Figure 4.
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Table 1: List of all the pattern instances of TR energetic pattern that are part of Temp-
PatternInstancesList for the example considered in fig. 4 (please see text for more details).
Pattern instances represented in gray are only part of TempPatternInstancesList and not
part of ValidPatternInstancesList, while other pattern instances are part of both.(

9 , 14
) (

9 , 20
) (

15 , 14
) (

15 , 20
)

(e1, e2) 9 - 14 - 20

(e2, e1) 20 - 15 - 9

(e2, e3) 9 - 15 - 20

(e3, e2) 20 - 14 - 9

(e1, e3) 9 - 14 - 20

9 - 15 - 20

(e3, e1) 20 - 14 - 9

20 - 15 - 9

The lattice instances of this energetic pattern are listed in Table 1. Each column corresponds

to one iteration of the double loop (over A and B) of Algorithm 4. Each row corresponds

to the different combinations of entity numbers that can appear upon pattern detection; for

example, when the adsorbates of sites 9 and 14 are fixed in the pattern (first column

of Table 1), instance 20 - 14 - 9 can be detected, in which the two adsorbates participate

as entities e3 and e2, respectively (fourth row of Table 1). Instances shown in gray font

are only temporarily added to TempPatternInstancesList but are never included in Valid-

PatternInstancesList, due to violation of condition A or B (lines 9 and 10) in Algorithm 4.

On the other hand, pattern instances shown in black font, are part of both TempPatternIn-

stancesList and ValidPatternInstancesList. For example, consider the second column and

sixth row of Table 1, which lists the instances of TRbend whereby the adsorbates of sites

9 and 20 participate as e3 and e1, respectively. Instances 20 - 14 - 9 and 20 - 15 - 9

become elements of TempPatternInstancesList, as per line 6 of Algorithm 4. The former

pattern instance becomes an element of ValidPatternInstancesList as well. However, the

latter pattern instance violates condition A (line 9 of Algorithm 4) because the adsorbates
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on sites 9 and 15 are part of AffectedExcludedAdsorbatesList, and the adsorbate of site

15 has lower entity number (e2) than the fixed adsorbate of site 9 (entity number e3).

Thus, the pattern in discussion is discarded in this iteration, in order to avoid duplicate de-

tections (note that this pattern is properly accounted for at a subsequent iteration, as shown

in column 4, row 2 of Table 1). Finally, note that at the end of the execution of Algorithm

4, the symmetric pattern instances are correctly accounted for; ValidPatternInstancesList

contains the instances 9 - 14 - 20 , 20 - 14 - 9 , 9 - 15 - 20 and 20 - 15 - 9 , and the

graph-multiplicity factor makes the necessary corrections to the energy contribution of these

patterns, since only two our of these four instances are symmetrically distinct.

To highlight the difference in the efficiency between the two update strategies, using Al-

gorithm 1 versus Algorithm 4, let us go back to fig. 4 and consider the pattern detections

necessary to update the rate constant of the “affected reaction”. In the “brute force” update

strategy, one would temporarily execute the “affected reaction” and use Algorithm 1 to de-

tect interaction patterns that contribute to the final state energy. Then, one would calculate

the final state energy, activation energy and finally the rate constant of the reaction. Before

the occurrence of the “ongoing reaction” this procedure would detect the 2NN pattern in-

stance 15 - 16 - 22
(

or 15 - 21 - 22
)

, which contributes to the final state energy. After

the occurrence of the “ongoing reaction”, Algorithm 1 would detect again the same pattern,

in addition to other patterns involving the newly added molecules, i.e. the products of the

“ongoing reaction” on sites 14 and 20 . Clearly, this “re-detection” wastes computational

resources. Since the adsorbate of site 22 was there before and after the “ongoing reaction”,

it does not contribute to any changes to the activation energy of the “affected reaction”. A

more efficient strategy, utilising Algorithm 4 would only detect the necessary patterns, i.e.

the ones that involve at least one adsorbate among the reactants/products of the “ongoing

reaction”, and at least one additional adsorbate among the products of the “affected reac-

tion”. In our example, the aforementioned 2NN pattern
(

15 - 16 - 22 or 15 - 21 - 22
)

would not be detected at all by Algorithm 4 since it involves no reactants/products of the
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“ongoing reaction”. This strategy therefore avoids repetitive detections of patterns that

involve already existing (and accounted for) spectators.

Of course, such a strategy requires that we cache information about the previously de-

tected patterns, so as to be able to update this information with minimum computational

effort. Thus, in the next section we will describe the cache date-structure along with the

procedures it implements.

2.2.3 Cache data-structure

The purpose of the cache data-structure (schematically shown in fig. 5) is to store an up-

to-date count of the lattice instances of each energetic pattern that contributes to the final

state of a reaction. Such counts have to be cached for each and every possible reaction event

that may happen on the lattice. Thus, each of the “leaves” of the structure shown in fig. 5

pertains to one reaction event, and, at a given point in the KMC simulation, there are as

many such leaves as the number of possible reactions in the current lattice configuration.

For each possible reaction, the data-structure contains two vectors (1-D arrays), χ0 and χ

with size n equal to the number of interaction patterns. The former vector, χ0, stores the

counts of interaction patterns involving only the products of the corresponding reaction; this

enables the fast calculation of term ∆Ek
rxn,0 in eq. 2-4. On the other hand, vector χ stores

the counts of interaction patterns involving products of the reaction and spectator species

(if the latter exist), making it possible to quickly calculate term ∆Ek
rxn(σ) in eq. 2, 3 and 5.

The cache data-structure implements an addition operation which adds a new “leaf”

whenever a new reaction is detected. Invoking Algorithm 1 returns the lattice instances

of each energetic interaction pattern involving reaction products; thus, the counts of these

instances can be easily added to the data-structure (for χ0, we require that the instances in-

volve only entities in the ExcludedAdsorbatesList in order to be counted). The data-structure

also implements a deletion operation which removes an existing “leaf” if the corresponding

reaction becomes obsolete due to another event (e.g. adsorption on a previously vacant site
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that becomes occupied due to a diffusion event).

To keep the cache up-to-date at every step of the KMC simulation, certain update op-

erations have to be performed every time a reaction occurs (“ongoing reaction”). Here, we

will discuss the update operation for a single “affected reaction”(steps 4-15 in Algorithm

5); this procedure is repeated for all the “affected reactions” within the neighborhood of

the “ongoing reaction”. For brevity, we will refer to the reactants of the “ongoing reac-

tion” as “reactants-ongoing”, the products of the “affected reaction” as “products-affected”,

and so on.

At every KMC step, the “reactants-ongoing” are removed from the lattice and the

“products-ongoing” are added thereon; thus, when the update operations are performed, the

lattice state reflects the initial state of the “affected reaction” and the final state of the “on-

going reaction”. Referring back to fig. 3, in order to update the counts of pattern instances

in the cache, we need to subtract the counts of interactions between “reactants-ongoing”

and “products-affected”, and add the counts of interactions between “products-ongoing”

and “products-affected”. Thus, temporary changes of the lattice state need to be performed.

It is important to note that both of these changes happen “behind the scenes” and are not

part of the “natural” KMC evolution.

At first, two temporary changes of the lattice state are performed; first one is to execute

the “affected reaction” (by removing the “reactants-affected” and adding the “products-

affected”; step 4 in Algorithm 5) and the second one is to revert the “ongoing reaction” (by

removing the “products-ongoing” and adding the “reactants-ongoing”; step 5 in Algorithm

5). At this point, the lattice state is as if only the affected reaction took place. Now, using

Algorithm 4 for each energetic interaction pattern, one can calculate the counts of instances

thereof, in which the “products-affected” participate along with the “reactants-ongoing”.

The counts are subtracted from the appropriate fields of the cache.

Now, the second temporary change previously done on the lattice state is reverted, by

removing the reactants and adding the products of the “ongoing reaction” (step 10 in Al-
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gorithm 5). At this point, the lattice state is as if both the ongoing and affected reactions

took place. Again, using Algorithm 4 one can obtain the counts of lattice instances of an

energetic pattern in which the “products-affected” participate along with the “products-

ongoing”. The counts for each energetic interaction pattern are added to the appropriate

fields of the cache data-structure.

Hence, at this point, the cache data-structure contains appropriately updated counts of

the pattern instances that are needed to calculate the final state energy of the “affected

reaction”. At the end of the update procedure, the lattice state is reverted back to the state

right after the KMC event was executed, i.e. containing the “products-ongoing” and the

“reactants-affected”. This is done by also reverting the first temporary change discussed pre-

viously (removing the “products-affected” and adding back the “reactants-affected” again).

From that point, the “natural” KMC evolution continues.

As an example, Table 2 shows the leaf of the cache data-structure corresponding to the

“affected reaction” of fig. 4, before and after the occurrence of the “ongoing reaction”.

Note that the counts of pattern instances before and after the occurrence of the “ongoing

reaction” are the same for the zero-coverage case. Using the cached information, it is easy

to compute the energy of the final state of “affected reaction”, as a weighted sum of the

energies of each of the interaction patterns (the counts times the graph-multiplicity constants

are the weighting factors). Moreover, calculating the energy of the initial state of any

reaction is always fast, since an up-to-date record of all energetic patterns is maintained

throughout the KMC simulation. Thus, appropriate table look-up operations enable the

identification of interactions between “reactants-affected” and “products-ongoing”, followed

by the summation of the corresponding energy contributions to obtain the initial state energy

sought.

As a final note in this subsection, we would like to mention that our caching scheme could

be made more efficient by caching only the final state energy at the finite coverage and the

zero-coverage limit (two real values) for every reaction, and invoking Algorithm 4 for up-
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dates. This way, the “makeup” of the final state energy would not be cached, and Algorithm

4 would calculate the counts of instances of two-adsorbate patterns for an “on-the-fly” cal-

culation of the necessary energy updates. Compared to such a scheme, our implementation

incurs a memory overhead and a small computational overhead (the latter is small because,

in practice, pattern detection via solving subgraph-isomorphism problems24 is much more

computationally intensive than updating the values stored in the cache via integer addi-

tion/subtraction). Despite these overheads, our implementation has certain advantages in

terms of calculation precision and software sustainability. More specifically, update opera-

tions on integer variables (counts of patterns) are not subject to the precision errors expected

when updating the reaction energies, which are real variables. Additionally, the counts of

the energetic pattern instances at the final state are unique, and this has the advantage that

they can be used for thorough debugging, e.g. by comparing the cached values against values

computed by Algorithm 1 for a given lattice state during the KMC simulation. On the other

hand, calculating the correct difference in the value of the final state energy does not offer

a guarantee that the update algorithm is correctly coded, since different combinations of

counts may give the same final state energy. For these reasons, we opted for an implementa-

tion that is robust and sustainable from a software engineering standpoint, though perhaps

suboptimal, mainly in terms of memory footprint.

Table 2: The cache data-structure for the “affected reaction” for the example considered
in our discussion, before (left panel) and after (right panel) the occurrence of the “ongoing
reaction” (see fig. 4 and text for more details).

SB 1NN 2NN TRbend

χ0 2 2 0 0
χ 2 2 2 0

SB 1NN 2NN TRbend

χ0 2 2 0 0
χ 2 8 4 4
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2.3 Shared-memory parallelization

For catalytic systems that exhibit long range interactions, the neighborhood containing “af-

fected reactions” can be quite large, necessitating the update of a large number of leaves of

the cache data-structure. These updates can, however, be executed in parallel, by partition-

ing the set of “affected reactions” to subsets, each of which is assigned to a thread. As long

as the temporary lattice changes discussed in the previous section, happen in thread-private

mode, any update operations in the cache are safe to execute in parallel, since different reac-

tions correspond to different “leaves” in the cache (which reside in different locations in the

memory). Thus, the shared-memory parallelization scheme previously developed, in which

the computations on each of the “affected reactions” are distributed across the available

threads,24 can be easily adapted to make use of the caching scheme developed here. This

leads to a significant gain in computational efficiency, as discussed in the next section.

3 Results and Discussion

The above procedures and data-structures have been implemented in our KMC software

application Zacros .30 The OpenMP31 framework was adopted for shared-memory paral-

lelization. As a benchmark, we have chosen the NOx oxidation/reduction on Pt,24,28 and

we assess the performance of the KMC algorithm with caching (making use of the cache

data-structure and Algorithm 4 for updates), versus without caching (using Algorithm 1).

The following reversible elementary events are modelled (the rate constant for each reaction

is shown above or below the corresponding arrow):

Oxidation of NO and reduction of NO2:

NO(g) + O∗
koxi−−⇀↽−−
kred

NO2(g) + ∗ ,

Dissociative adsorption and associative desorption of oxygen:

O2(g) + 2 ∗
kads−−⇀↽−−
kdes

O∗ + O∗,
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Diffusion of oxygen adatoms:

O∗ + ∗
kdiff−−⇀↽−−
kdiff

∗+ O∗

To assess the efficiency of the caching algorithm for cluster expansion Hamiltonians of

different complexity, we carried out benchmarks with 3, 5, 8, and 12 figures (terms) in

the expansion.24,28,32 The reader is referred to Figure 2 and Table 1 of Nielsen et al. 24

for more details on the energetics model; here, we briefly note that the 12-figure cluster

expansion incorporates up to 8th nearest-neighbor (8NN) interactions. In all simulations the

temperature was fixed to 480 K, the partial pressure of O2 was 0.1 bar, the ratio between the

partial pressure of NO2 versus NO satisfied log(PNO2)/PNO) = −1, and the lattice size was

kept to 18×18 (total of 324 sites). Runs with different numbers of threads were performed to

assess the acceleration (speedup) factor with respect to thread count. We have thus defined

acceleration factors as ratios between the number of KMC events executed per unit of clock

time with/without caching on N threads versus the number of KMC events per unit of clock

time without caching on a single thread.

The results of our benchmarks are presented in fig. 6. For simulations considering 3 and

5 figures in the cluster expansion Hamiltonian (5NN and 8NN maximum interaction length,

respectively), runs with caching showed only a marginal improvement over runs without.

However, for simulations with 8 and 12 figures in the cluster expansion, the performance

gains from the caching were found to be significant. In quantitative terms, for simulations

that incorporate 12 figures in the cluster expansion Hamiltonian, runs with caching on 16

threads resulted in an acceleration factor of ≈ 20× compared to a single-thread run without

caching, and a factor of ≈ 2.5× compared to a run on 16 threads without caching. It is also

noteworthy that, for simulations considering 12 figures in the cluster expansion Hamiltonian

and run on 8 threads, enabling caching resulted in an acceleration factor of ≈ 3.5−4×.
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4 Summary and Conclusions

Lattice based kinetic Monte-Carlo simulations are widely used in elucidating molecular level

mechanisms in heterogeneous catalysis, and predicting catalytic performance metrics, such

as activity and selectivity. An increasing body of literature shows the importance of lat-

eral interactions on the kinetics of catalytic reactions; however, accounting for such effects

comes at a significant computational burden. Thus, in practice lateral interactions are of-

ten neglected or truncated to short range interactions (typically up to 1st nearest-neighbor.

However, such approximations could result in large errors when predicting the behavior of

certain systems. In light of this, algorithms and implementations that efficiently account for

the effect of lateral interactions in KMC simulations are of utmost importance.

We have developed a parallel caching scheme that addresses this challenge, and reduces

the computational burden in the presence of long-range interactions by more than an order

of magnitude. The scheme minimizes the computational effort of updating rate constants of

reactions when other events happen in the vicinity. In particular, whenever an event (referred

to as the “ongoing reaction”) happens as part of the KMC propagation, other possible

reactions (yet to be realized) in the neighborhood of the “ongoing reaction” are influenced

(these are referred to as the “affected reactions”). In the “brute force” implementation of

the update procedure, one loops over all “affected reactions”, temporarily executes each

reaction, detects the interaction patterns between the products and all spectators, computes

the difference between initial and final state energies, and invokes a BEP relation to get

the new activation energy. However, this is computationally inefficient, since it entails the

repetitive detection of interaction patterns with pre-existing spectators (i.e. molecules that

did not participate to the “ongoing reaction”). The newly developed scheme, caches the

interaction patterns that contribute to the final state energy of each reaction, and uses an

algorithm that detects patterns whereby the reactants or products of the “ongoing reaction”

participate in tandem with products of the “affected reaction”. By this approach, the pattern

detection operations are kept to a minimum, and the overall simulation efficiency is improved
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significantly. As an “added-bonus”, the update operations can be easily parallelized within

a shared-memory framework, similar to that previously developed by Stamatakis and co-

workers.24

This caching approach was benchmarked for a NOx oxidation/reduction simulation with

cluster expansion Hamiltonians containing 3, 5, 8 or 12 terms/figures.28 The benchmarks

for the latter case (the cluster expansion with the longest-range terms, up to 8th nearest-

neighbor), yielded acceleration factors of approximately 20× when comparing runs on 16

threads with caching to single-thread runs without caching. The efficacy of the proposed

algorithm and its implementation in our software application Zacros, is expected to facilitate

the wider adoption of high-fidelity models of lateral interactions, towards detailed KMC

simulations of complex catalytic systems.
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Figure 1: An example showcasing principal constituents of kinetic Monte Carlo simulation;
a lattice, energetic patterns and elementary events. Open circles represent empty sites and
filled circles represent sites occupied by the “blue adsorbates”. Numbers in circles represent
site numbers in the lattice, energetic patterns or elementary events. The entities participating
in an energetic pattern or an elementary event are labeled as e1, e2 etc. In the energetic
interactions presented, SB, 1NN, and 2NN refer to single body, first and second nearest-
neighbor interactions respectively.
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Figure 2: Example of a lattice configuration to aid the discussion of Algorithm 1, which
computes the list of energetic patterns contributing to the final state energy by fixing an
adsorbate in the interaction pattern. The adsorbates on sites 14, 16, and 21 pre-exist while
dissociative adsorption (“ongoing reaction”) adds products on sites 9 and 15. The energetic
interaction patterns in which these adsorbates participate are shown on the left. TRlinear

refers to the linear triplet pattern.
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Figure 3: A schematic highlighting the energetics that need to be subtracted/added as a
result of an “ongoing reaction”, between the products of an “affected reaction” and reac-
tants/products of the “ongoing reaction”.
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Figure 4: An example lattice configuration to aid in discussing Algorithm 4 that detects
pattern instances by fixing a pair of adsorbates in the interaction pattern. Dissociative
adsorption on sites 14 and 20 is the “ongoing reaction” and dissociative adsorption on sites
9 and 15 is chosen as the “affected reaction”. TRbend refers to triplet energetic pattern with
an angle constraint of 120◦ between the two edges of the pattern.
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Figure 5: Data-structure used to cache energetics of different patterns in which the products
of all possible reactions participate. Encircled 1, 2, . . . , x, are the all possible reactions.
1, 2, 3, . . . n are different energetic patterns in which products of an affected reaction may
participate. χ0 and χ refer to counts of instances of an energetic pattern corresponding to
zero-coverage and coverage-dependent cases, respectively.

35



0 2 4 6 8 10 12 14 16

0

4

8

12

16

20

�✁✂✄☎✆ ✝✞ ✟✠✆☎✡☛☞

✌
✍
✍
✎
✏✎
✑
✒
✓
✔✕
✖

✗✒
✍
✓
✕
✑

(a) 3-Figure Cluster Expansion
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(b) 5-Figure Cluster Expansion
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(c) 8-Figure Cluster Expansion
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(d) 12-Figure Cluster Expansion

Figure 6: Comparison of performance without and with caching enabled for simulations
considering different cluster expansion Hamiltonians of different complexity (with different
numbers of figures/terms). Circles and squares correspond to runs without versus with
caching, respectively. The dashed line represents the ideal linear scaling with the number of
threads used in the absence of caching.
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Algorithm 1: Detection of energetic pattern instances involving reaction products
Data: Π: Energetic interaction pattern whose instances on the lattice are sought.

ExcludedAdsorbatesList : List of all newly added entities (reaction products).

Result: ValidPatternInstancesList : List of all lattice instances of energetic interaction

pattern Π, which contribute to the final state energy of a reaction.

1 begin

2 Initialize ValidPatternInstancesList as an empty list;

3 for A in ExcludedAdsorbatesList do

4 Find all the lattice instances of pattern Π, in which adsorbate A participates as

entity e1 and add them to ValidPatternInstancesList ;

5 Set max mmolec as the maximum number of entities participating in Π;

6 Initialize TempPatternInstancesList to an empty list;

7 for mmolec = 2,...,max mmolec do

8 Find all the lattice instances of pattern Π in which A participates as entity

emmolec and add them to TempPatternInstancesList ;

9 for P in TempPatternInstancesList do

10 condition = no other adsorbate in ExcludedAdsorbatesList participates in P

with entity number < mmolec;

11 if condition then

12 Accept P and add it to ValidPatternInstancesList ;

13 else

14 Reject P and continue with the next pattern instance in the loop;

15 end

16 end

17 end

18 end

19 end
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Algorithm 2: Initializer and populator for Algorithms 3 and 5

1 begin

2 Initialize AffectedSites, the sites in the neighborhood of OngoingRxn, as an empty list;

3 Initialize AffectedAdsorbates, the spectators in the neighborhood of OngoingRxn, as an

empty list;

4 Initialize AffectedRxn as an empty list;

5 Populate AffectedSites: starting from the sites of OngoingRxn, list all neighboring sites

up to depth equal to that of the maximum interaction length;

6 Populate AffectedAdsorbates by listing all adsorbates bound (with at least one

dentate) to any of the sites in AffectedSites list;

7 Populate AffectedRxn by listing all the reactions in which any of the adsorbates in

AffectedAdsorbates participate;

8 end
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Algorithm 3: Update of reaction rates in the neighborhood of an ongoing reaction
Data: OngoingRxn: Ongoing reaction.

EnergPatternList : List of all energetic interaction patterns in cluster expansion.

GlobClusterList : Indexed list of all the energetic pattern instances in which every

adsorbate participates (the list is indexed by adsorbate), for the current KMC

state.

Result: AffectedRxn: Vector of affected reactions.

kTST: Vector of updated rate constants of all affected reactions.

1 begin

2 Invoke Algorithm 2 to initialize and populate necessary lists;

3 for R in AffectedRxn do

4 Initialize InitialStateValidPatternInstancesList as an empty list;

5 Perform a table lookup in GlobClusterList and collect the pattern instances that

contribute to the initial state of this reaction;

6 Append the instances just found to InitialStateValidPatternInstancesList ;

7 Perform a temporary change to execute the reaction on the lattice;

8 Initialise FinalStateValidPatternInstancesList as an empty list;

9 Populate ExcludedAdsorbatesList with the newly added entities (reaction

products);

10 for Π in EnergPatternList do

11 Execute Algorithm 1 to find pattern instances of Π that contribute to the final

state of this reaction and add them to FinalStateValidPatternInstancesList ;

12 end

13 Now that InitialStateValidPatternInstancesList and

FinalStateValidPatternInstancesList are known, compute the initial and final

lattice energy of reaction R from eq. (7);

14 Calculate the activation energy of reaction R from eq. (2) or eq. (3) (depending on

whether reaction R is a forward or a reverse event, respectively);

15 Calculate the rate constant of reaction R, kRTST, from eq. (1);

16 end

17 end 39



Algorithm 4: Detection of energetic pattern instances by fixing a pair of adsorbates

in the pattern
Data: Π: Energetic interaction pattern whose instances on the lattice are sought.

AffectedExcludedAdsorbatesList : List of all products of an affected reaction.

OngoingExcludedAdsorbatesList : List of all reactants/products of the ongoing

reaction.

Result: ValidPatternInstancesList : List of all lattice instances of energetic interaction

pattern Π, which contribute to the final state energy of a reaction.

1 begin

2 Initialize TempPatternInstancesList and ValidPatternInstancesList as empty;

3 for A in AffectedExcludedAdsorbatesList do

4 for B in OngoingExcludedAdsorbatesList do

5 if both A and B participate in Π then

6 Find all lattice instances of the pattern and add them to

TempPatternInstancesList ;

7 end

8 for P in TempPatternInstancesList do

9 Condition A = no other adsorbate in AffectedExcludedAdsorbatesList

participates in pattern instance P with entity number less than that of A;

10 Condition B = no other adsorbate in OngoingExcludedAdsorbatesList

participates in pattern instance P with entity number less than that of B;

11 if condition A and condition B are both true then

12 Accept P and add it to the ValidPatternInstancesList ;

13 else

14 Reject P and continue with the next pattern instance;

15 end

16 end

17 Reset TempPatternInstancesList as empty list;

18 end

19 end

20 end
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Algorithm 5: Update of caching structure after an “ongoing reaction”
Data: OngoingRxn: Ongoing reaction.

EnergPatternList : List of all energetic interaction patterns in cluster expansion.

Result: Cache: Data-structure that stores the counts of instances of each energetic pattern that

contributes to the final state of every reaction possible for the current lattice state.

1 begin

2 Invoke Algorithm 2 to initialize and populate necessary lists;

3 for R in AffectedRxn do

4 Perform a temporary change to execute the affected reaction on the lattice (i.e. remove the

reactants of AffectedRxn and add its products to the lattice);

5 Perform a temporary change to revert the ongoing reaction on the lattice (i.e. remove the

products of OngoingRxn add its reactants to the lattice) // Now the lattice state

is as if only AffectedRxn occurred

6 for Π in EnergPatternList do

7 Use Algorithm 4 to detect the energetic pattern instances containing reactants of

OngoingRxn and products of AffectedRxn;

8 Decrement the numbers of pattern instances of Π in Cache (for OngoingRxn) by the

count of instances obtained in the previous step;

9 end

10 Revert the temporary change of step 5, thereby removing the reactants of OngoingRxn and

add its products again // Now the lattice state is as if both AffectedRxn

and OngoingRxn occurred

11 for Π in EnergPatternList do

12 Use Algorithm 4 to detect the energetic pattern instances containing products of

OngoingRxn and products of AffectedRxn;

13 Increment the numbers of pattern instances of Π in Cache (for OngoingRxn) by the

count of instances obtained in the previous step;

14 end

15 Revert the temporary change of step 4, thereby removing the products of AffectedRxn and

add its reactants again;

16 end

17 end
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