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Introduction
CT scans are ubiquitous in the management of patients 
with lung cancer. This imaging presents a pool of poten-
tial additional information that could be extracted and 
interpreted. Extracting quantitative features from images 
and analysing them is termed radiomics.1 Textural analysis 
(TA) is a subtype of radiomics, based on mathematical deri-
vations rather than prior clinical concepts.2 The aim of the 
TEAL (Texture Analysis and Lung function) study is to see 
whether extra clinical data can be extracted from standard 
clinical imaging from patients with lung cancer.

TA uses a range of mathematically calculated features 
to describe an image or region of interest (ROI) within 
an image. Although different textural features have been 
generated from a wide range of sources, they can be broadly 
divided into three categories: first-order (least complex), 
second-order and higher-order (most complex). First-order 
features are often calculated as a single value describing the 
distribution of pixel values. Second-order features describe 

the relationship between two points, such as two adjacent 
pixels or voxels within the same image and as such describe 
more complex relationships. This study uses first-order 
(density) and second-order (entropy) TA methods.

The vast majority of TA used to assess images from 
patients with lung cancer has been used to assess malig-
nant tissue,3,4 however, CT data can be used to assess 
normal tissue. For example, cardiac CT may be able to 
detect global left ventricular function and was able to 
assess cardiac wall motion abnormalities with a sensitivity 
of 90% and specificity of 97%.5 Previous studies in this 
area have predicted that forced expiratory volume in 1 s 
(FEV1) correlated with mean lung density, although this 
was limited by the need to analyse the whole lung.6 Other 
studies have been able to show that the transfer factor 
for the lung for carbon monoxide (TLCO) and FEV1 
were able to correlate with volume of emphysema.7–11 
However, no CT studies have been used to assess fitness 
for radiotherapy.

https://​doi.​org/​10.​1259/​bjro.​20180001

Objective: This study tested the hypothesis that shows 
advanced image analysis can differentiate fit and 
unfit patients for radical radiotherapy from standard 
radiotherapy planning imaging, when compared to 
formal lung function tests, FEV1 (forced expiratory 
volume in 1 s) and TLCO (transfer factor of carbon  
monoxide).
Methods: An apical region of interest (ROI) of lung paren-
chyma was extracted from a standard radiotherapy plan-
ning CT scan. Software using a grey level co-occurrence 
matrix (GLCM) assigned an entropy score to each voxel, 
based on its similarity to the voxels around it.
Results: Density and entropy scores were compared 
between a cohort of 29 fit patients (defined as FEV1 and 

TLCO above 50 % predicted value) and 32 unfit patients 
(FEV1 or TLCO below 50% predicted). Mean and median 
density and median entropy were significantly different 
between fit and unfit patients (p = 0.005, 0.0008 and 
0.0418 respectively; two-sided Mann–Whitney test).
Conclusion: Density and entropy assessment can differen-
tiate between fit and unfit patients for radical radiotherapy, 
using standard CT imaging.
Advances in knowledge: This study shows that a novel 
assessment can generate further data from standard CT 
imaging. These data could be combined with existing 
studies to form a multiorgan patient fitness assessment 
from a single CT scan.
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The aim of this study was to determine whether more advanced 
analysis of a radiotherapy planning CT could establish lung func-
tion and subsequently fitness for radical radiotherapy. By gaining 
greater information more from existing investigations, it would 
allow quicker clinical decision making.

Assessing lung function
Lung function tests can be used to diagnose underlying lung 
conditions, such as chronic obstructive pulmonary disease 
(COPD). Both lung cancer and COPD are commonly associated 
with smoking exposure.

Lung function tests measure many different parameters. FEV1 
can be used in combination with clinical history to diag-
nose COPD and used alone to grade COPD severity using 
the GOLD criteria.12 A predicted value is generated, which is 
standardised by the patient’s height, age and gender. The value 
obtained by an individual is expressed as a percentage of the 
predicted value, the lower the value the more severe the COPD. 
Although FEV1 is a useful marker of lung function, it should 
be combined with clinical judgement and other markers of 
lung function.13

TLCO measures the ability of the lung to perform efficient gas 
exchange between the alveoli and red blood cells. In a stable 
patient without an acute medical condition, measured TLCO can 
be used as a marker of lung fitness/function, when expressed as a 
percentage of the predicted value.

In clinical assessment of lung function, the value generated by 
the patient is compared to an ideal/“normal value for a patient 
of that age, height and gender. For example, an FEV1 of 50% 
of the predicted value means the patient is able to expel only 
half of the volume of air in 1 s, when compared to the expected 
value.

All patients having radical radiotherapy have their respira-
tory function assessed by full lung function tests before treat-
ment. However, the majority of data available correlating lung 
function with radical treatment outcome have been identified 
in surgical patients rather than radical radiotherapy patients. 
Guidelines suggest that lower TLCO and FEV1 correlate with 
higher post-operative mortality.14 However, the guidelines by 
Brunelli et al state that there is little evidence at what level to 
set a threshold using lung function tests, to decide who is fit for 
radical radiotherapy. It is likely that radiation oncologists would 
have a minimum threshold for lung function for fractionated 
radical radiotherapy, whereas there is no minimum threshold for 
stereotactic ablative body radiotherapy (SABR).

The fitness assessment for radical radiotherapy depends on 
a range of factors. These include: pre-treatment lung func-
tion, size of the irradiated volume, radiotherapy technique, 
prescribed dose to the tumour, whether concurrent chemo-
therapy is given and markers of likely lung toxicity such as 
V20 (volume of normal lung receiving 20 Grey or more).15 
However, baseline lung function is important in deciding 
whether a lung tumour can be included within a radical 

radiotherapy treatment volume, without significant long-term 
side effects for the patient.

In this study, we test the hypothesis that the use of a novel 
assessment of the appearance of an apical segment of lung, from 
a standard radiotherapy planning CT, it is possible to differ-
entiate between patients who would be fit or unfit for radical 
radiotherapy.

methods and Materials
Patient selection
Local ethical approval was gained for this retrospective study. 
Sequential patients who had a four-dimensional CT radiotherapy 
planning scan with i.v. contrast and available lung function tests 
at a single institution were screened for the study. 29 fit and 32 
unfit patients were included. Patients were pseudoanonymised 
so that their identities were not known by the research team. All 
patients had the CT scan with the aim of having radical radio-
therapy to a tumour in the lung, including both fractionated 
radical radiotherapy and SABR. By including SABR patients, 
this ensured patients with poor lung function were included in 
the study. A fit patient was defined as TLCO and FEV1 of 50% 
predicted value or greater. Unfit patients had either TLCO or 
FEV1 below 50% predicted value. These definitions were prag-
matically decided upon as definitive thresholds are not available, 
however, were felt to be clinically relevant as patients with a 
TLCO and FEV1 >50% would be likely to receive radical radio-
therapy, assuming an appropriate level of patient fitness and that 
the treatment volume was encompassable in a radical radio-
therapy volume. As the percentage predicted TLCO and FEV1 
were standardised individually for gender, height and age, it was 
felt it was not necessary to collect these data separately. The data 
analysis in this study was divided into two stages, first the cohort 
was divided using clinical criteria into fit and unfit patients, then 
image analysis was performed on the two groups.

Patients were excluded if they had previous lung surgery or 
previous radiotherapy, or did not have both TLCO and FEV1 
percentage predicted values available.

Data extraction
All patients had undergone a four-dimensional axial CT scan 
using a breathing monitoring system (RPM) with 2.5 mm slice 
thickness on a General Electric Lightspeed Ultra CT scanner 
(GE, Boston, MA). The entire thorax was imaged and the scan 
was divided into 10 breathing phases. From this scan an average 
intensity projection (AVIP) scan was generated. The AVIP image 
contained all of the planning data and radiotherapy structures 
and minimal movement would be expected in the apex, so the 
AVIP was chosen pragmatically for these reasons. Identical ROIs 
were generated on each CT scan using the Eclipse treatment 
planning system (Varian Medical Systems, Palo Alto, CA). A 
volume of interest (VOI) measuring 4 cm radially by 2.5 cm was 
generated in the apex of the lung contralateral to the tumour. The 
VOI did not overlap with the treated planning target volume in 
any patient, so lung parenchyma in this study was felt to be unaf-
fected by tumour. A 4 cm circle was used to draw the structure 
on 10 consecutive 2.5 mm slices, ensuring that chest wall and 
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rib was excluded superiorly and circumferentially, as well as the 
aortic arch being excluded inferiorly (see Supplementary Mate-
rial 1). An apical segment of lung was chosen because centrolo-
bular emphysema is more common in the lung apex. Therefore, 
differences between those with a greater degree of emphysema 
were more likely to be seen in the upper lobe.

The CT scan was then exported and anonymised within compu-
tational environment for radiotherapy research.16 The cylindrical 
ROI was then extracted and analysed using software developed 
in house.

The data were quantised using the range of grey levels only. 
The grey levels represented density. The grey levels were quan-
tised into 16 levels, with each 5 × 5 mm voxel being compared 
in turn to surrounding voxels using a grey level co-occurrence 
matrix,17 using software developed in Matlab 2015.18 Previous 
studies have used multiple slices of a CT scan as a technique of 
data extraction.19,20 A grey level co-occurrence matrix identi-
fies similarities or differences in the grey levels in the 13 direc-
tions containing the 26 voxels that surround each voxel being 
analysed. This built up a voxel by voxel entropy map for each 
ROI and the entropy score for each voxel was then averaged 
across the ROI for the final analysis. Averaging the value has 
been used in a study investigating effects of radiotherapy of 
lung and tumour tissue.21 This study used uniform quantisa-
tion.22 All of the analyses were standardised to pre-defined 
quantisation levels from VOI analysis of a fit patient, who was 
a non-smoker. This meant the electron density values of the 
quantisation levels for all analyses were fixed and identical for 
the analysis of all ROIs.

This methodology meant each voxel had a density score and an 
entropy score. By choosing a single textural feature, we reduced 
the risk of extracting multiple features and potentially overfitting 
multiple extracted features to our model4 This method also gave 
a visual entropy map, a numerical analysis and the ability to plot 
histograms as described below.

Data analysis
A density score based on the original CT scan was generated and 
plotted on the X axis, entropy score was plotted on the Y axis, 
the two-dimensional histogram gave a first visual assessment of 
differences between fit and unfit patients.

The patients were divided into fit and unfit and results were 
compared for mean, median and mode density and entropy. 

Correlation co-efficients would be generated for TLCO and 
FEV1 against mean, median and modal density and entropy. 
As the distribution of the data was skewed a Mann–Whitney 
test was used to compare the two cohorts. Examples of this can 
be seen in Supplementary Material 1. A moment analysis was 
then completed on the whole cylinder of lung tissue, enabling 
a comparison of skewness and kurtosis of fit and unfit patients, 
the results of this are seen in Table 2 in Supplementary Material 
1. (Table 1). Mean, median and mode density and entropy scores 
were generated for the whole volume.

Results
Mean FEV1 in the fit group was 85% predicted (range 50–113%) 
and 53% predicted (range 27–110%) in the unfit group. Mean 
TLCO in the fit group was 74% predicted (range 52–99%) and 
43% predicted (range 29–71%) in the unfit group. Correlations 
between a single marker of lung function (either TLCO or 
FEV1) and a single result from image analysis were low. They 
have been included in Supplementary Material 1. Table 1 illus-
trates the analysis for the comparison of a threshold of FEV1 
50% and TLCO 50% (fit patients) against cohort where either 
value is below 50% (unfit patients). Alternative thresholds were 
tested and can be found in Supplementary Material 1. A subre-
gion analysis was decided upon as there appeared to be a differ-
ence between the number of data points in the low density low 
entropy subregion, when fit and unfit patients were compared. 
The analysis also included some preliminary first order features, 
including skewness and kurtosis. Using a Mann–Whitney test 
these were not statistically significant (p-value 0.05). The results 
are in Supplementary Material 1.

Discussion
This study suggests there are density and entropy differences are 
detectable when comparing patients who are fit for radical radio-
therapy with adequate lung function from patients with poorer 
lung function who would not be fit for fractionated radical radio-
therapy, as SABR has no minimum threshold. Statistically signif-
icant differences were established between mean and median CT 
density and mean, median and skewness entropy scores between 
fit and unfit patients when using uniform quantisation. CT 
density is a good discriminator between fit and unfit patients; 
however, the addition of entropy assessments such as mean, 
median and skewness of entropy gives additional information. 
Providing an entropy score for each voxel means that the data 
plots and the texture maps can be generated (Supplementary 
Material 1).

Table 1.p-Values of Mann–Whitney test when comparing fit vs unfit patients

Density Entropy 

Mean Median Mean Median

Whole volume 

Fit 252.05 224.69 2.51 2.43

Unfit 193.53 166.28 1.97 1.78

p-value 0.004488 0.000792 0.0736 0.0418

Comparison of mean and median density, as well as median entropy between fit and unfit patients are statistically significant.

www.birpublications.org/doi/suppl/10.1259/bjro.20180001/suppl_file/Supplemental_material_1.docx
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The difference in data distribution between fit and unfit patients 
can be seen in Figure 1 provided in Supplementary Material 1. 
Figure 1(a) shows a fit patient, Figure 1(b) shows a plot repre-
senting an unfit patient.

This study differs from most texture analysis biomarkers studies 
as it uses entropy as the single texture measurement, which 
was combined with density. Rather than pursuing a range of 
measurements, as seen in other studies, the TEAL study aimed 
to use texture analysis to quantify differences between images 
of fit and unfit patients, then identify a biological reason for 
the differences in the images between the two cohorts. This 
study also aims to avoid the risk of overfitting of multiple 
assessments of the same image, which could lead to less accu-
rate conclusions.4 Entropy has been previously shown to be a 
measurement that has helped differentiate between good and 
poor overall survival in non-small cell lung cancer.23,24 As a 
result we wanted to test this on non-malignant tissue. It aims 
to quantify differences in lung parenchyma structure, which 
are sometimes visible, but only a qualitative assessment can be 
made by eye. The fact that unfit patients had lower density and 
lower entropy values suggests there is more air and less tissue 
in the ROI. What is not clear is whether TA of lung paren-
chyma is picking up early microscopic changes of COPD such 
as bronchiole tissue destruction and alveolar wall destruction 
or later macroscopic changes such as bullae formation.25 For 
patients with worse COPD, they will likely have poorer lung 
function (and a lower FEV1) and be more likely to be catego-
rised into the unfit group. More severe COPD would manifest 
itself as greater destruction of the elastic lung tissue, which 
leads to the formation of macroscopic holes in the lung known 
as bullae. Tissue destruction would lead to lower density lung 
tissue, potentially explaining why unfit patients have a lower 
density score. The ROI was positioned in the apex as centrol-
obular emphysematous changes are more likely to be seen in 
the lung apex. Centrolobular emphysema is the commonest 
pattern of emphysema seen in smokers.

In relation to entropy, it is not surprising that a higher 
entropy score is found in the fit patients compared to the 
unfit patients. Entropy is a measure of disorder. The higher 
the entropy, the greater the disorder and the lower the 
uniformity. A section of healthy peripheral lung tissue would 
contain a variety of tissues, including small airways, blood 
vessels and alveoli. As a result, it would be expected that a 
range of different densities would be seen in the section of 
analysed lung parenchyma. The interaction of these different 
tissues means it is likely that a voxel would be different to 
other voxels around it as it contains different tissue to those 
around it. Patients with a greater degree of COPD would be 
more likely to have more lung damage exhibiting itself as 
worse lung function, which in the CT scan could appear as 
low density homogeneous areas in the texture map (Supple-
mentary Material 1), meaning the voxels have closer values, 
i.e. would have lower entropy. It may be that future work 
requires multiple ROIs as emphysema can be localised within 
certain sections of the lung.

By determining that it is possible to differentiate between fit 
and unfit patients for radical radiotherapy from an existing 
CT scan, this has the potential to allow quicker clinical deci-
sion making with fewer investigations. . These data need to be 
reproduced on a diagnostic CT and in a larger data set, but a 
screening test and apical lung texture could be included as stan-
dard as part of formal CT reports. This work also suggests a 
new paradigm in terms of generating new information from 
CT data. This could take a number of forms in patients with 
lung cancer. Recent data have shown muscle attenuation on CT 
imaging affects outcome, this could be extracted from standard 
CT data.26 Although coronary artery calcium scores and a qual-
itative assessment of the presence of bullae may be reported, 
however, there is not a formal structure for this and is not 
routinely done.

Previous studies have suggested that patients undergoing investi-
gations for potential radical treatment take longer than those for 
palliative treatment for non-small cell lung cancer as they need 
additional investigations such as formal lung function or positron 
emission tomography-CT imaging.27 This suggests that patients 
would benefit from quicker treatment if they can undergo fewer 
tests or more information can be generated from existing tests. 
To aid this, it may be helpful for CT imaging to have a minimum 
data set, as seen in many histopathology reports. A standard 
proforma for histology of localised breast tumours significantly 
improved the completeness of histopathological reports.28,29 This 
meant that the data needed to make clinical decisions was more 
complete and potentially clinicians can make appropriate treat-
ment decisions more quickly.

This study shows that it is possible to differentiate between fit and 
unfit patients in terms of lung function from a single planning 
CT scan. If objective markers of cardiac function, muscle assess-
ment and respiratory function could be extracted from standard 
CT data, then potentially this could be reported as standard, 
adding to patient data and the ease of availability of this data 
could lead to quicker clinical decisions, particularly in tumour 
boards or multidisciplinary team meetings.

The correlation coefficients between a single measurement of 
lung function (either FEV1 or TLCO) and density or entropy 
were low suggesting that the relationship between lung function, 
density and entropy was more complex than a correlation with 
one marker of lung function.

In this study choosing standardised levels was limited by the 
availability of CT data (in this case radiotherapy planning CT 
scans). For this comparison, the levels were standardised to the 
lungs of a patient who was a non-smoker and "fit", providing 
levels from lung tissue that was least likely to be abnormal. As 
long as the quantisation levels were fixed for the analysis of all 
patients, quantising data by standards from a cohort of patients, 
may not alter the outcome of the analysis. Defining who is has 
“normal” lungs is more complicated in this study as all patients 
were due to receive radical radiotherapy for a tumour in the 
thorax.

www.birpublications.org/doi/suppl/10.1259/bjro.20180001/suppl_file/Supplemental_material_1.docx
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The methodology used in this study aimed to keep the analysis 
process quick and simple. Integrating advanced analysis of CT 
images using textural analysis or other radiomic approaches must 
take account of a radiology department’s work flow.3 This limits a 
lot of analyses. A technique to analyse part of the lung rather than 
the whole lung is attractive in the interests of processing time, 
analysis of the whole lung would take several hours compared 
to less than 10 min for the analysis of the cylinder of lung used 
in this study. Although less detailed than formal pulmonary 
function tests, this CT analysis is quick and does not require 
any expertise to identify the ROI. In this study, the ROIs were 
drawn by hand, but future work will aim to automate it. The ROI 
could be identified at the time of scan acquisition, meaning it is 
ready for interpretation by the reporting clinician the first time 
they view the scan. It could be simply incorporated into stan-
dard radiology work flow. The ROI was positioned in the apex of 
the lung as this meant creating the ROI was as straightforward 

as possible. By keeping it as apical as possible it meant it was as 
reproducible as possible.

This technique was used to differentiate fit and unfit patients for 
radical radiotherapy, but it could potentially be used to screen 
patients for lung function assessment. As previously discussed, 
CT markers of cardiac risk and function have been described and 
it may be possible to derive function from CT imaging.

The volume of imaging used in planning and treating patients 
with external beam radiotherapy is increasing. Advanced image 
analysis could have a range of uses in these patients. The TEAL 
study has shown that when using the correct quantisation 
method, functional lung data can potentially be derived from a 
CT scan. It also generates the hypothesis that more data can be 
easily and quickly extracted from a standard CT scan, leading to 
quicker clinical decision-making.
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