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Summary
Background Juvenile-onset systemic lupus erythematosus (SLE) is a rare autoimmune rheumatic disease characterised 
by more severe disease manifestations, earlier damage accrual, and higher mortality than in adult-onset SLE. We 
aimed to use machine-learning approaches to characterise the immune cell profile of patients with juvenile-onset SLE 
and investigate links with the disease trajectory over time.

Methods This study included patients who attended the University College London Hospital (London, UK) adolescent 
rheumatology service, had juvenile-onset SLE according to the 1997 American College of Rheumatology revised 
classification criteria for lupus or the 2012 Systemic Lupus International Collaborating Clinics criteria, and were 
diagnosed before 18 years of age. Blood donated by healthy age-matched and sex-matched volunteers who were taking 
part in educational events in the Centre for Adolescent Rheumatology Versus Arthritis at University College London 
(London, UK) was used as a control. Immunophenotyping profiles (28 immune cell subsets) of peripheral blood 
mononuclear cells from patients with juvenile-onset SLE and healthy controls were determined by flow cytometry. We 
used balanced random forest (BRF) and sparse partial least squares-discriminant analysis (sPLS-DA) to assess 
classification and parameter selection, and validation was by ten-fold cross-validation. We used logistic regression to 
test the association between immune phenotypes and k-means clustering to determine patient stratification. 
Retrospective longitudinal clinical data, including disease activity and medication, were related to the immunological 
features identified.

Findings Between Sept 5, 2012, and March 7, 2018, peripheral blood was collected from 67 patients with juvenile-onset 
SLE and 39 healthy controls. The median age was 19 years (IQR 13–25) for patients with juvenile-onset SLE and 
18 years (16–25) for healthy controls. The BRF model discriminated patients with juvenile-onset SLE from healthy 
controls with 90·9% prediction accuracy. The top-ranked immunological features from the BRF model were confirmed 
using sPLS-DA and logistic regression, and included total CD4, total CD8, CD8 effector memory, and CD8 naive 
T cells, Bm1, and unswitched memory B cells, total CD14 monocytes, and invariant natural killer T cells. Using these 
markers patients were clustered into four distinct groups. Notably, CD8 T-cell subsets were important in driving patient 
stratification, whereas B-cell markers were similarly expressed across the cohort of patients with juvenile-onset SLE. 
Patients with juvenile-onset SLE and elevated CD8 effector memory T-cell frequencies had more persistently active 
disease over time, as assessed by the SLE disease activity index 2000, and this was associated with increased treatment 
with mycophenolate mofetil and an increased prevalence of lupus nephritis. Finally, network analysis confirmed the 
strong association between immune phenotype and differential clinical features.

Interpretation Machine-learning models can define potential disease-associated and patient-specific immune 
characteristics in rare disease patient populations. Immunological association studies are warranted to develop data-
driven personalised medicine approaches for treatment of patients with juvenile-onset SLE.

Funding Lupus UK, The Rosetrees Trust, Versus Arthritis, and UK National Institute for Health Research University 
College London Hospital Biomedical Research Centre. 

Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction
Systemic lupus erythematosus (SLE) is a chronic, multi­
system autoimmune rheumatic disease with a complex 
aetiology.1 Juvenile-onset SLE accounts for approximately 
15–20% of all cases and is defined by disease onset in 
childhood or adolescence (diagnosis before the age of 
18 years).2 Juvenile-onset SLE has a more aggressive disease 

presentation than does adult-onset SLE. The juvenile-
onset form is characterised by increased renal and CNS 
involvement and more severe haematological manifesta­
tions as well as a notable increase in cardiovascular disease 
risk compared with the adult-onset form.3–5 The hetero­
geneity of juvenile-onset SLE clinical manifestations is 
matched by a broad range of genetic and immunological 
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abnormalities.2 No juvenile-onset SLE-specific medications 
are available, due mainly to the paucity of clinical trial data 
in children and adolescents, meaning that patients with 
juvenile-onset SLE are treated similarly to patients with 
adult-onset SLE.2,4,6,7 However, despite treatment, severe 
juvenile-onset SLE leads to early organ damage and 
unsatisfactory outcomes (eg, renal and CNS manifestations) 
for many patients, emphasising the need for improved 
understanding of the immunological defects driving dis­
ease pathogenesis and clinically relevant patient stratifica­
tion strategies for personalised treatment.

Machine learning is a subdivision of artificial intel­
ligence that builds analytical models through learning by 
example and has been used in a wide range of clinical 
areas, including pharmaceutical target prediction for 
drug discovery8 and disease diagnosis and prognosis.9 It 
relies on data collection and preparation, model training 
and evaluation, and multiple performance cycles for self-
improvement, resulting in increased predictive power.

In the past 4 years, in-depth computational analysis of 
multi-omic datasets has accelerated the understanding 
of complex heterogeneous diseases such as SLE and 
juvenile-onset SLE.10–13 A retrospective study of previous 
longitudinal gene expression data from paediatric and 
adult SLE populations identified three stratified groups 
within each cohort with unique disease activity and 
trajectories, supporting strategies to identify clinically 
informative groups using immune profiling.13

Another study applied three different machine-learning 
approaches, including k-nearest neighbours, generalised 
logistic models, and random forest models to predict 
disease activity in patients with SLE using whole-genome 

gene expression profiles.14 The random forest classifier 
outmatched other approaches by achieving 83% accuracy 
under ten-fold cross-validation.14 Another study used 
random forest models to predict lupus nephritis out­
comes.15 We aimed to apply machine-learning approaches 
to immune cell frequency profiles, and clinical and sero­
logical data from patients with juvenile-onset SLE, to 
identify predictive disease outcome signatures.

Methods
Study design and participants
In this study, peripheral blood was collected from patients 
who attended the University College London Hospital 
(London, UK) adolescent rheumatology service. Patients 
were eligible to be included in the study if they had 
juvenile-onset SLE according to the American College 
of Rheumatology revised classification criteria for lupus 
(1997) or the Systemic Lupus International Collaborating 
Clinics (SLICC) criteria (2012), and were diagnosed before 
the age of 18 years. Full details of inclusion and exclu­
sion criteria and relevant protocol details are in the 
appendix (p 1). Patient and disease characteristics (includ­
ing demographics, age at onset, disease duration, clinical 
and serological parameters, and medication) were collec­
ted retrospectively from medical records and through 
questionnaires at the time of blood sampling. Disease 
activity was calculated using the SLE disease activity index 
2000 (SLEDAI-2K). A score of 4 or more was used to 
indicate active disease. Lupus low disease activity state 
values were recorded for all patients.16 Disease para­
meters and treatment at subsequent clinical appointments 
were also collected longitudinally from baseline (time of 

Research in context

Evidence before this study
Juvenile-onset systemic lupus erythematosus (SLE) is a rare 
autoimmune rheumatic disease characterised by a broad array 
of clinical manifestations associated with multiple genetic and 
immunological abnormalities; the condition has a more 
aggressive disease presentation than adult-onset SLE, 
emphasising the need for improved understanding of the 
immunological defects driving disease pathogenesis. 
We searched PubMed, Web of Science, and Google Scholar for 
research articles published between Jan 1, 1990, and 
March 1, 2020, using search terms including “(juvenile-onset) 
systemic lupus erythematosus”, “machine learning”, “immune 
signatures”, and “stratification”. We also searched for 
research articles published in the same time window in 
rheumatology-specific journals. Published abstracts were 
excluded from the searches. The earliest referenced article was 
published in 1993; however, due to the modern computational 
analytical techniques used in this paper, the majority of articles 
referenced were more recent (since 2016). We found that 
in-depth computational analysis of multi-omic datasets has 
accelerated the understanding of complex heterogeneous 

diseases such as SLE and juvenile-onset SLE. We also found 
some studies using machine-learning strategies to explore 
longitudinal gene expression signatures in peripheral blood 
from patients with juvenile-onset SLE that have identified 
unique patient groups. 

Added value of this study
This study is the first to report an in-depth analysis of 
immune cell phenotype in patients with juvenile-onset SLE. 
Machine-learning methods identified a juvenile-onset 
SLE immune cell signature that stratified patients according to 
their disease trajectory.

Implications of all the available evidence
The application of machine-learning approaches to immune 
cell phenotyping data has identified immunological biomarkers 
that could help to unravel underlying disease mechanisms in 
juvenile-onset SLE and explain the differences in long-term 
outcomes of patients with juvenile-onset SLE. Such 
immunological signatures could facilitate better stratification 
of patients for optimal treatment choices and provide 
information to improve interventional clinical trial design.

See Online for appendix
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immune phenotype analysis) to the most recent clinical 
appointment. Blood samples donated by healthy age-
matched volunteers taking part in educational events in 
the Centre for Adolescent Rheumatology Versus Arthritis 
at University College London (London, UK) were used as 
controls. All participants had established puberty (Tanner 
stage 4–5). All information was stored as pseudo-
anonymised data.

This study was approved by the London-Harrow 
Research Ethics Committee, reference 11/LO/0330. 
Written informed consent was acquired from patients and 
healthy controls.

Multiparameter flow cytometry
Peripheral blood mononuclear cells (PBMCs; 1 × 10⁶) were 
stained with fixable blue dead cell stain (ThermoFisher, 
Carlsbad, CA, USA) and a T-cell or antigen presenting cell 
antibody panel followed by subsequent washes and fixa­
tion in 2% paraformaldehyde. Data acquisition was on a 
BD LSRFORTESSA X-20 flow cytometer (BD Biosciences, 
San Jose, CA, USA; 1 × 10⁶–2 × 10⁶ cells per sample), and 
FlowJo Analysis Software (TreeStar, San Jose, CA, USA) 
was used to assess frequencies of 28 immune cell subsets. 
Cytometer Setup and Tracking (BD Biosciences) beads 
were run to assess cytometer performance. Application 
settings were created and applied to panel templates before 
fluorochrome compensation to ensure that all immuno­
phenotyping data were comparable over time. The list 
of antibodies used, markers used to identify cell types by 
flow cytometry, and gating strategy are included in the 
appendix (pp 2–4).

Statistical analysis
Group averages over time or spaghetti plots for individual 
patient trajectories were analysed. We compared immuno­
phenotype data between healthy controls and patients with 
juvenile-onset SLE using an unpaired t test or across 
stratified groups of patients with juvenile-onset SLE using 
one-way ANOVA. Data were corrected for multiple testing 
using a false discovery rate of 5%. We used supervised 
machine-learning approaches—balanced random forest 
(BRF) and sparse partial least squares-discriminant 
analysis (sPLS-DA)—for classification and parameter 
selection. Because juvenile-onset SLE is a rare disease, we 
used a BRF machine-learning approach14,15 to further 
define and validate the juvenile-onset SLE immune cell 
profile (see the appendix pp 5–8 for the description 
of machine-learning approach). This approach can over­
come difficulties in obtaining validation datasets because 
the model does not overfit to training data. Validation was 
by ten-fold cross-validation. We used logistic regression 
to assess the association between immunophenotypes 
(28 parameters) and juvenile-onset SLE. Important para­
meters identified by all analysis approaches were selected 
and used for patient stratification by k-means clustering; 
for this analysis, immunological parameters fulfilling the 
following criteria were selected: top ten important variables 

in BRF model; top ten weighting variables in sPLS-DA 
analysis; and parameters significantly associated with 
juvenile-onset SLE in logistic regression analysis. Clinical 
trajectory analysis was used to identify the clinical differ­
ence between patient groups. Demographic variables, 
including sex, age, and ethnicity, were adjusted for as 
appropriate. ANOVA was done in GraphPad Prism 8 
software, and other statistical analyses was done in R 
(version 3.5.2). For detailed description of the analysis and 
software packages used see the appendix (p 8).

Role of the funding source
The funders of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to all 
the data in the study and had final responsibility for the 
decision to submit for publication.

Figure 1: Study design and analysis plan flow diagram
BRF=balanced random forest. PBMCs=peripheral blood mononuclear cells. SLE=systemic lupus erythematosus. 
sPLS-DA=sparse partial least squares-discriminant analysis.
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Results
Between Sept 5, 2012, and March 7, 2018, peripheral 
blood from 67 patients with juvenile-onset SLE and 
39 healthy controls was collected (figure 1). The median 
age for both populations was similar (19 years [IQR 13–25] 
vs 18 years [16–25]; table). Fewer males were recruited in 
the juvenile-onset SLE group, reflecting female bias of 
the disease. The healthy control group had fewer Asian 
and black participants; these demographic differences 
were adjusted for in subsequent analyses. Patient follow-
up was between Sept 5, 2012, and Dec 23, 2019 (mean 
duration 4·9 years [SD 1·4], mean number of visits per 
patient 17·1 [7·8]). 

In-depth immune cell phenotyping of PBMCs showed 
that patients with juvenile-onset SLE had a disrupted 
immune cell profile compared with healthy controls 
(figure 2A–C; see appendix p 4 for gating strategies), 
including defects in T-cell, B-cell, and monocyte popula­
tions. Specifically, these differences included an increase 
in total and naive CD8 T cells, total monocytes, and 
plasmablasts, as well a decrease in total CD4 T cells 
and memory T-cell and B-cell populations in patients with 
juvenile-onset SLE compared with healthy controls.

Correlation comparison analysis for immune cell pro­
files was conducted within healthy controls and within 
patients with juvenile-onset SLE to assess the relationships 
between immune cell subsets; significant negative correla­
tions between naive and memory B-cell subpopulations 
and separately between naive and memory T-cell popu­
lations were identified in healthy controls (figure 2D, 
upper triangle; appendix p 9). However, in patients with 
juvenile-onset SLE, a clear global change in immunological 
architecture was evident compared with healthy controls. 
Many of the immune cell associations identified in healthy 
controls were inverted or exacerbated in patients with 
juvenile-onset SLE, and a significant disruption in the 
relationship between memory T-cell and B-cell subsets 
with each other, monocyte subsets, and plasmacytoid 
dendritic cells (PDCs) was evident (figure 2D, lower 
triangle; appendix p 9). These results show a compre­
hensive alteration of immune cell subsets with substantial 
memory lymphocyte involvement, indicating dysregula­
tion of the adaptive immune system in juvenile-onset SLE.

We used a BRF machine-learning approach to further 
define and validate the juvenile-onset SLE immune cell 
profile. After optimisation, the BRF model (figure 3A) 
distinguished patients with juvenile-onset SLE from 
healthy controls with a classification accuracy of 86·8% 
(figure 3B). The classification error rate in the out-of-bag 
validation set was 10·4% for predicting individuals with 
juvenile-onset SLE and 17·9% for predicting healthy 
controls. Receiver operating characteristic curve (ROC) 
analysis of the BRF model showed an area under the curve 
(AUC) of 0·909 (accuracy 90·9%; figure 3C), indicating 
outstanding model efficiency in discriminating patients 
with juvenile-onset SLE from healthy controls. From 
this analysis, the diagnostic sensitivity was 89·6% and 

Healthy controls (n=39) Patients with juvenile-
onset SLE (n=67)

Sex

Female 22 (56%) 54 (81%)

Male 17 (44%) 13 (19%)

Age, years 18 (16–25) 19 (13–25)

Body-mass index, kg/m² 23·1 (19·9–24·5) 22·41 (20·3–26·6)

Ethnicity

White 20 (51%) 20 (30%)

Asian 10 (26%) 24 (36%)

Black 2 (5%) 17 (25%)

Other or unknown 7 (18%) 6 (9%)

Disease characteristics

Age at diagnosis ·· 12·2 (6·4)

Disease duration, years ·· 7·1 (4·9)

SLEDAI-2K ·· 2·4 (0·0–4·0)

SLEDAI-2K ≥4 ·· 10 (15%)

SLEDAI-2K <4 ·· 57 (85%)

Systemic Lupus International Collaborating Clinics ·· 0·1 (0·4)

Lupus low disease activity state ·· 49 (73%)

Current organ involvement

Neurological ·· 12 (18%)

Serositis ·· 9 (13%)

Cutaneous ·· 57 (85%)

Haematological ·· 28 (42%)

Musculoskeletal ·· 55 (82%)

Renal ·· 21 (31%)

Serology

Anti-dsDNA antibodies, IU/mL (normal range ≤50) ·· 14 (2–154)

Anti-dsDNA antibodies outside normal range ·· 24 (36%)

CRP, mg/L (normal range <5) ·· 1·00 (0·60–2·55)

CRP, outside normal range ·· 8 (12%)

Complement component C3, g/L (normal range 
0·9–1·8)

·· 1·02 (0·76–1·21)

Complement component C3 outside normal range ·· 24 (36%)

Lymphocyte count, ×10⁹ cells per L (normal range 
1·3–3·5)

·· 1·50 (1·28–2·06)

Lymphocyte count outside normal range ·· 34 (51%)

Neutrophil count, ×10⁹ cells per L (normal range 
2·0–7·5)

·· 3·01 (2·22–7·68)

Neutrophil count outside normal range ·· 19 (28%)

Urine protein:creatinine ratio, mg/mmol (normal 
range 0–13)

·· 8 (6–13)

Urine protein:creatinine ratio outside normal 
range

·· 16 (24%)

Haemoglobin, g/L (normal range 115–155) ·· 122 (112–134)

Haemoglobin outside normal range ·· 25 (37%)

Platelet count, ×10⁹ cells per L (normal range 
150–400)

·· 276 (211–337)

Platelet count outside normal range ·· 7 (10%)

Antinuclear antibody positive ·· 55 (82%)

Extractable nuclear antigen-positive ·· 42 (63%)

(Table continues on next page)
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specificity was 82·1%. In addition, the classification accu­
racy held a steady measure of 87·8% (sensitivity 89·6% 
and specificity 84·7%) in the ten-fold cross-validation 
analysis. Demographic variables (age, sex, and ethnicity) 
were also included in the model for adjustment purposes 
but did not appear in the top ten weighted variables. Thus, 
patients with juvenile-onset SLE were discriminated from 
healthy controls with high confidence using this BRF 
model generated with these immunological parameters.

The top contributing features segregating patients 
with juvenile-onset SLE from healthy controls were 
CD19 unswitched memory B cells, Bm1 (naive) B cells, 
and CD14 monocytes (figure 3D). However, individual 
random forest models using each of the top ten most 
important variables confirmed that each cell type played 
an important part in the original BRF model. The AUC of 
the univariate random forest models ranged from 0·722 
to 0·841, with the best performance given by the Bm1-only 
model (AUC=0·841), followed by the CD19 unswitched 
memory B-cell-only model (AUC=0·830; figure 3E), 
showing that the multivariate BRF approach outperforms 
univariate models.

Furthermore, removing CD19 unswitched memory 
B cells (the top variable from the multivariate BRF model) 
did not substantially alter the predictive capacity of the 
model (AUC=0·899; figure 3F–G), suggesting that dys­
regulation of multiple immune cell subsets might better 
explain the complexity and heterogeneity of the disease 
phenotype.

To validate the relationship between the individual 
immunological parameters and juvenile-onset SLE further, 
logistic regression analysis (adjusted for sex, ethnicity, and 
age) was applied by modelling the probability of juvenile-
onset SLE using the immune profiles of the healthy control 
and juvenile-onset SLE cohorts (figure 4A; appendix p 10). 
12 of 28 immune cell types were significantly associ­
ated with juvenile-onset SLE, substantiating the global 
immunological difference between juvenile-onset SLE and 
healthy controls. The correlation between having juvenile-
onset SLE and the reduced frequency of CD19 unswitched 
memory B cells was relatively high (odds ratio 0·71 [95% CI 
0·60–0·82]), in accordance with the BRF classification 
analysis (figure 2D). Indeed, all variables selected by the 
optimal BRF model were confirmed as significantly altered 
in patients with juvenile-onset SLE compared with healthy 
controls by logistic regression.

As a secondary validation, sPLS-DA was done to rank 
and validate the immunological variables by their distri­
bution in patients with juvenile-onset SLE and healthy 
controls. sPLS-DA is a supervised clustering machine-
learning approach that combines parameter selection and 
classification into one operation. By assessing the overall 
estimation error rate and balanced error rate in ten-fold 
cross-validation, models with four components were 
chosen for optimal model performance; these models 
gave the lowest overall estimation error rate (0·167) and 
balanced error rate (0·175; figure 4B). This analysis 

identified a significant separation between patients with 
juvenile-onset SLE and healthy controls by plotting 
principal component 2 against principal component 1 
(figure 4C), indicating that principal component 1 pre­
dominantly separated the two groups and provided good 
prediction ability for the model. Similar to the BRF 
analysis, a subset of discriminating immune cell types 
were selected and ranked by discriminating capability 
(figure 4D–E). The highest weighted immunological 
parameter was CD19 unswitched memory B cells (–0·69), 
followed by Bm1 B cells (–0·34). The top ten discriminat­
ing parameters selected from sPLS-DA were all reported 
as significantly associated with juvenile-onset SLE and 
matched the most important parameters from the 
BRF model, with the exception of CD8 central memory 
T cells and PDCs. Thus, a distinct juvenile-onset SLE 
immune signature was identified and validated by differ­
ent machine-learning methods that could discriminate 
patients with juvenile-onset SLE from healthy controls 
(appendix p 11).

To assess whether the juvenile-onset SLE signature 
could be used to stratify patients with juvenile-onset SLE 
further, k-means clustering, an unsupervised machine-
learning algorithm was used. After screening, eight of 
28 immune cell subsets were selected: total CD4, total 
CD8, CD8 effector memory (EM), CD8 naive, and 
invariant natural killer T cells; Bm1 and unswitched 
memory B cells; and total CD14 monocytes (figure 2B, C; 
appendix pp 11–12). Based on these variables, k-means 
clustering was done to stratify patients with juvenile-
onset SLE into four groups (group 1, n=10; group 2, n=21; 
group 3, n=21; group 4, n=15; figure 5A).

Clear patterns among T-cell subsets were observed from 
the patient grouping, with significant differences in total 
CD4 and CD8, CD8 naive, and CD8 EM T-cell frequencies 

Healthy controls (n=39) Patients with juvenile-
onset SLE (n=67)

(Continued from previous page)

Clinical lipids

Cholesterol, mmol/L (normal range <5) ·· 4·0 (3·4–4·3)

Triglycerides, mmol/L (normal range <3) ·· 0·8 (0·6–1·15)

HDL cholesterol, mmol/L (normal range >1) ·· 1·5 (1·2–1·7)

LDL cholesterol, mmol/L (normal range <3) ·· 2·1 (1·6–2·4)

Cholesterol:HDL cholesterol ratio (normal range <4) ·· 2·75 (2·30–3·28)

Current treatment

Hydroxychloroquine ·· 62 (93%)

Mycophenolate mofetil ·· 27 (40%)

Prednisolone ·· 32 (48%)

Vitamin D ·· 13 (19%)

Methotrexate ·· 6 (9%)

Azathioprine ·· 15 (22%)

Data are n (%), median (IQR), or mean (SD). CRP=C-reactive protein. SLE=systemic lupus erythematosus. SLEDAI-2K=SLE 
disease activity index 2000. 

Table: Demographic and clinical table of all patients and healthy controls
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Figure 2: The immunological 
architecture is altered in 

juvenile-onset SLE
(A) Volcano plot displaying 

comparison between patients 
with juvenile-onset SLE and 
heath controls. Fold change 

versus log10 p values are 
displayed from unpaired 

t tests. The red line indicates 
adjusted p value following 

5% false discovery rate 
adjustment for multiple 

comparisons. (B, C) Violin 
plots displaying antigen 

presenting cells (panel B) and 
T-cell subsets (panel C) that 
were significantly different 

between healthy controls and 
patients with juvenile-onset 

SLE by unpaired t test. 
The solid line indicates the 
mean and the dashed line 
indicates the SE. Adjusted 

p values are shown. 
(D) Correlation comparison 

analysis performed on 
immune phenotyping data 

described in panel A. 
The upper left of the heat map 
shows the correlation between 

immune cell types 
(28 immunological variables) 

in healthy controls. Spearman 
correlation coefficients for 

each pair of cell types are 
represented by colour. 

Asterisks indicate significant 
correlations, p<0·05. 

The bottom right of the heat 
map shows the correlation 

between immune cell types in 
patients with juvenile-onset 

SLE. Grey indicates that the 
Spearman correlation 

coefficient is not signficantly 
different from that of healthy 

controls. Significantly different 
correlations in patients with 

juvenile-onset SLE compared 
with healthy controls are 

coloured (p<0·05) and 
outlined in black (p<0·01). 

CM=central memory. 
EM=effector memory. 

EMRA=effector memory cells 
re-expressing CD45RA. 

HC=healthy controls. 
iNKT=invariant natural killer 

T cells. JSLE=juvenile-onset 
SLE. PDCs=plasmacytoid 

dendritic cells. SLE=systemic 
lupus erythematosus. 

Treg=regulatory T cells. 
Tresp=responder T cells. 
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Figure 3: BRF analysis of 
immunophenotype data
(A) Building a predictive 
model using a BRF approach 
(appendix pp 5–6). 
(B) Comparison of 28 different 
immune cell subsets in healthy 
controls (n=39) versus 
patients with juvenile-onset 
SLE (n=67) using the BRF 
model. (C) ROC analysis for the 
BRF model. (D) The top ten 
variables contributing to 
the BRF model are shown. 
The mean decrease in Gini 
measures the importance of 
each variable to the model: 
a higher score indicates a 
higher importance of the 
variable. (E) ROC with AUC 
from univariate models 
showing the sensitivity and 
specificty of the top ten 
markers identified by the 
model. (F) ROC analysis 
without CD19 unswitched 
memory B cells (the most 
predictive parameter). 
(G) The top ten contributing 
variables in the BRF model 
trained on 27 immunological 
parameters (excluding 
CD19+ unswitched memory 
cells). AUC=area under the 
curve. BRF=balanced random 
forest. EM=effector memory. 
iNKT=invariant natural killer 
T cells. ROC=receiver operating 
characteristic. SLE=systemic 
lupus erythematosus. 
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(figure 5B). Patients with juvenile-onset SLE in groups 1 
and 3 shared elevated CD8 T-cell and reduced CD4 T-cell 
frequencies, compared with groups 2 and 4. Group 1 also 
had relatively high CD8 EM but low CD8 naive T cells. 
Notably, no significant differences were identified between 
the groups for unswitched memory and Bm1 B cells, 
CD14 monocytes, or invariant natural killer T cells. As a 
validation of the k-means clustered groups, sPLS-DA 
analysis revealed an excellent separation between the four 
groups; whereas principal component 1 provided some 

separation between the four groups, principal compo­
nent 2 further discriminated between groups 3 and 4 and 
between groups 1 and 2 (figure 5C), which was driven by 
total, naive, and EM CD8 and total CD4 T cells (figure 5D). 
Of note, the activation status of T cells was not altered 
between the groups, whereas activation of B cells and 
monocytes, measured by HLA-DR expression, was signi­
ficantly elevated in patients in group 1 (appendix p 13).

Comparison of patient demographic, clinical character­
istics, treatment, and comorbidities between the groups 

Figure 4: Top hits from BRF model validated with logistic regression analysis and sPLS-DA
(A) Odds ratios (error bars indicate 95% CIs) of 28 immunological parameters were computed with univaraite logistic regression analysis. iNKT and PDC data is shown 
seperately inset because of very different CI values. (B) sPLS-DA model optimisation using ten-fold cross-validation. (C) sPLS-DA plot to validate the top hits from the 
predictive model. Individual distribution points and confidence ellipses (ovals) are plotted for the healthy control and juvenile-onset SLE groups. (D) Using this analysis, 
the weighting of each cell type in component 1 and 2 is displayed (inner circle is the 0·5 cutoff). (E) Factor loading weights in component 1 for the top ten ranked 
immunological parameters. The bars indicate the class with maximal mean value. Variables excluded from the plot have no weight in component 1. BRF=balanced 
random forest. CM=central memory. EM=effector memory. EMRA=effector memory cells re-expressing CD45RA. iNKT=invariant natural killer T cells. PDCs=plasmacytoid 
dendritic cells. SLE=systemic lupus erythematosus. sPLS-DA=sparse partial least squares-discriminant analysis. Treg=regulatory T cells. Tresp=responder T cells.
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did not reveal major significant differences except for com­
plement component C3, which was significantly reduced 
in patients in groups 1 and 3 (figure 5E; appendix p 14). 
Longitudinal analysis of patient clinical data revealed that 
patients in group 1 maintained a significantly lower mean 
concentration of C3, increased mean SLEDAI-2K, and 
reduced proportion of visits in lupus low disease activity 
state relative to patients in groups 2–4 (figure 5F–G). This 
finding was supported by analysis of patient trajectories for 
SLEDAI-2K and C3, suggesting that patients in group 1 
had more active disease over time (figure 5H). Finally, 
patients in group 1 had a higher mean dose and number of 
times treated with mycophenolate mofetil relative to 
patients in groups 2–4 (appendix p 15), as well as increased 
prevalence (50%) of lupus nephritis. Thus, the juvenile-
onset SLE signature distinguished between patients with 
juvenile-onset SLE and healthy controls, and between 
patients with longitudinally active and inactive disease.

Finally, the systemic relationships between immuno­
logical parameters and serological or clinical biomarkers 
associated with juvenile-onset SLE were explored using a 
correlation network analysis. Extensive immune correla­
tions were identified across clinical features (appendix 
pp 16–17). C3 had a significant negative correlation with 
total and CD8 EM T cells, supporting the patterns defined 
with the k-means clustered groups (figure 5; appendix 
p 14). Disease activity (SLEDAI-2K) correlated negatively 
with CD4 T cells, naive B cells, and intermediate and non-
classical monocytes, and positively with CD8 T cells, and 
transitional (Bm2’) and mature (Bm2) B-cell subsets. 
Anti-dsDNA antibody measures correlated with early 
Bm5 and switched memory B cells but not with T-cell 
subsets. Another notable association was that PDCs 
negatively correlated with erythrocyte sedimentation rate 
and C-reactive protein concentrations and positively with 
haemoglobin concentration.

These results suggest potential interactions between 
clinical features and disease-related immune dysregulation, 
which could help to explain the multifactorial, hetero­
geneous, and systemic nature of the disease.

Discussion
In this study, machine-learning approaches were applied 
to analyse immune profiles of patients with juvenile-onset 
SLE and healthy controls in order to overcome difficulties 
in obtaining large datasets from cohorts of patients with 
rare diseases. For the first time, these methodologies have 
identified and validated an immunological signature 
associated with juvenile-onset SLE and also distinguished 
a subgroup of patients with juvenile-onset SLE with more 
persistently moderate disease activity. Furthermore, net­
work analysis suggested differential relationships between 
clinical features and specific immune cell subsets in 
juvenile-onset SLE. Together, these findings improve our 
understanding of juvenile-onset SLE immunopathology 
and suggest that immune cell profiles can potentially 
predict future disease activity.

Although the immunological differences between 
healthy controls and patients with adult-onset SLE have 
been established in many previous studies,17,18 the immuno­
phenotype of patients with juvenile-onset SLE is less well 
described. Thus, better understanding of juvenile-onset 
SLE immune cell defects is imperative considering the 
increased disease severity seen in patients with juvenile-
onset SLE compared with adult-onset SLE overall.

Despite the progress in treatment of juvenile-onset 
SLE, the long-term outcomes of patients are far from 
satisfactory. Severity and heterogeneity in presentation, the 
scarcity of predictive biomarkers for disease activity over 
time to guide therapeutic decisions, and suboptimal 
treatment response in selected cases are major obstacles 
affecting clinical outcomes in patients with juvenile-
onset SLE.2,19 However, it is increasingly recognised that 
machine-learning models with substantial predictive 
accuracy can assist clinicians with complicated therapeutic 
decision making.8,9 Indeed, several studies have used 
machine-learning methods to analyse complex datasets 
such as electronic health records,20 genetic association and 
gene expression data,14,21,22 and urine biomarkers15 to stratify 
patients with SLE or predict SLE disease activity. Machine-
learning applied to immunophenotyping alone has been 
used to provide insight into disease pathogenesis and to 
stratify patients with juvenile idiopathic arthritis,11 who 

Figure 5: Patient clustering by top-weighted immunological parameters in 
patients with juvenile-onset SLE compared with healthy controls

(A) Top-weighted immunological parameters of patients with juvenile-onset SLE 
(appendix pp 11–12) were stratified using k-means clustering. Immunophenotype is 
standardised within each column by Z score and plotted as a heat map, representing 

the relationship to the mean of the group (red represents relatively high frequency 
and blue represents relatively low frequency). Each row represents a patient with 

juvenile-onset SLE. Four groups of patients were recognised with distinct immune 
cell profiles. (B) Scatter dot plots displaying top-weighted immunological 

parameters between the k-means clustered groups. Mean (error bars indicate SE) 
was calculated with one-way ANOVA, and p values were calculated with Tukey’s 
multiple comparisons test. The dashed lines represent the mean for the healthy 

control population for each cell type. (C) sPLS-DA plot showing the clustering of the 
validated top-weighted immunological parameters in patients with juvenile-onset 

SLE between k-means clustered juvenile-onset SLE groups. Individual distribution 
points and confidence ellipses (ovals) are plotted for each group. (D) Using this 

analysis, the weighting of each cell type in component 1 and 2 is displayed, where 
the inner circle is the 0·5 cutoff. (E) Box and whisker plots displaying baseline 

measures over 3–7 years of follow-up of clinical measures of disease activity 
between the k-means clustered groups of patients with juvenile-onset SLE. 

(F) Average measure over 3–7 years of follow-up of clinical measures of disease 
activity between the k-means clustered groups of patients with juvenile-onset SLE. 

Mean (error bars indicate SE) was calculated with one-way ANOVA, and p values 
were calculated with Tukey’s multiple comparisons test. Dashed lines represent the 

clinical cutoff for active disease in the C3 plot and the assigned cutoff associated 
with active lupus in the SLEDAI-2K plot. (G) Box and whisker plot displaying 

longitudinal disease activity, using the same dataset from panel F, assessed as 
LLDAS. Mean (error bars indicate SE) was calculated with one-way ANOVA, and 
p values were calculated with Tukey’s multiple comparisons test. (H) Individual 
patient trajectory of SLEDAI-2K and C3 over 15 clinical encounters displayed as 

spaghetti plots. Each line represents one patient with juvenile-onset SLE. 
Smoothing lines were added to indicate the trend of juvenile-onset SLE groups 

from previous k-means clustering. C3=complement component C3. iNKT=invariant 
natural killer T cells. LLDAS=lupus low disease activity state. SLE=systemic lupus 

erythematosus. SLEDAI-2K=systemic lupus erythematosus disease activity index 
2000. sPLS-DA=sparse partial least squares-discriminant analysis.
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have also been shown to be distinct from a small number 
of patients with juvenile-onset SLE used as a comparator. 
The machine-learning BRF approach used in this study 
has been used previously to overcome difficulties in 
obtaining validation datasets in rare cohorts.23 This model 
tends not to suffer from overfitting to training data and by 
including ten-fold cross-validation, the model performance 
can be more stringent and less biased compared with 
models using a simple split of training and test data. Thus, 
in the absence of separate validation cohorts, using 
machine learning and cross-validation can help to generate 
reliable models. This was the case in this study, shown 
by the high performance of ten-fold cross-validation 
at 87·8%, suggesting that the identified markers were 
robust and could enhance current disease classification 
strategies by providing a more in-depth view of the 
patient’s immunological state. We propose that such an 
analysis pipeline could be applied to other independent 
cohorts to help define unique, cohort-specific patient sub­
groups associated with differential clinical outcomes.

The machine-learning analysis pinpointed eight of the 
28 immune cell subtypes examined to be consistently 
associated with patients with juvenile-onset SLE compared 
with healthy controls. Furthermore, the B-cell phenotype 
was stable across all patients with juvenile-onset SLE, 
which might explain the increased predictive power of 
these subsets in the BRF model, whereas the CD8 T-cell 
phenotype was important in stratifying patients with 
juvenile-onset SLE. The B-cell signature included reduced 
frequencies of naive (Bm1) and unswitched memory 
B cells, suggesting that patients with juvenile-onset SLE 
had a more mature memory B-cell phenotype. Few studies 
have specifically examined the B-cell phenotype in patients 
with juvenile-onset SLE, and although B cells in general 
are dysregulated in patients with SLE,24 these defects are 
more pronounced in patients with adult-onset SLE.25 
Notably, CD27++ plasmablast frequencies are elevated in 
patients with juvenile-onset SLE,25 and patients have 
distinct plasmablast transcriptomic profiles,10 supporting 
increased B-cell activation in juvenile-onset SLE. T-cell 
abnormalities were also dominant in our identified 
juvenile-onset SLE signature, in particular increased total 
and naive CD8 T cells and reduced total CD4 and CD8 EM 
frequencies, as well as reduced invariant natural killer 
T-cell frequencies, as previously reported in adult-onset 
SLE and juvenile-onset SLE.11 Pro-inflammatory T-cell 
profiles have been described in patients with juvenile-
onset SLE and active lupus nephritis.26,27 However, no 
changes in regulatory T cells were identified in this study 
in contrast to the reported increased CD4 effector and 
decreased regulatory T-cell frequencies in patients with 
juvenile-onset SLE and lupus nephritis.26

A striking feature of this study was the differential CD8 
T-cell profile, which contributed to both the juvenile-onset 
SLE signature and stratification of juvenile-onset SLE 
patient subgroups. In particular, patients with juvenile-
onset SLE who had elevated CD8 EM T-cell frequencies 

were associated with increased disease activity at baseline 
and tended towards a more active disease trajectory (and in 
particular, a higher proportion of lupus nephritis), support­
ing a role for CD8 T cells in the pathogenesis of juvenile-
onset SLE. Expanded CD8 memory T cells have been 
associated with poor disease outcome measures when 
combined with transcriptional profiling in adults with 
SLE.28,29 Previous research suggested that CD8 EM T cells 
have decreased proliferative capacity and a strong inclina­
tion towards apoptosis in SLE, while expressing high levels 
of interferon-γ, granzyme B, and perforin, thus potentially 
contributing to chronic inflammation and organ damage.30 
However, the mechanisms driving increased memory 
CD8 T cells in juvenile-onset SLE remain uncertain and 
require further investigation.

This study has some limitations. As disease in the 
majority of our patients with juvenile-onset SLE was  
reasonably well controlled by medication, investigation of 
severely active juvenile-onset SLE phenotype was not 
possible. Furthermore, SLEDAI-2K, as all disease activity 
scores, is an imperfect measure of changes in disease 
severity; however, despite its limitations, the SLEDAI-2K 
score is widely used in clinical practice to guide therapeutic 
decisions and define SLE activity categories and was 
applied consistently when assessing the patients longi­
tudinally. Notably, mycophenolate mofetil doses were 
significantly elevated in group 1, and this elevation was 
probably a reflection of the higher disease activity in group 
1 patients than in patients in groups 2–4. Furthermore, 
although longitudinal clinical data were collected, we 
cannot account for patient non-compliance to prescribed 
therapy (eg, mycophenolate mofetil levels were not tested), 
which could affect the analysis comparing phenotype with 
disease outcomes and treatment. In addition, no organ-
specific immune analysis was done because of practical 
reasons. Children and adolescents with juvenile-onset SLE 
are diagnosed on the basis of expert opinion and classified 
using adult-tailored classification criteria (the American 
College of Radiology and SLICC classification criteria). 
This approach can pose considerable challenges in 
diagnosing patients with atypical presentations. As a con­
sequence, many patients with juvenile-onset SLE are 
initially labelled as having arthritis or myositis, which have 
been identified as manifestations of juvenile-onset SLE. 
For this reason, we have not excluded patients with a 
concomitant diagnosis of arthritis or myositis from this 
study. Another characteristic of this juvenile-onset SLE 
cohort was the small number of patients with black 
ethnicity within this cohort and specifically within group 1; 
ethnicity could play a part in altered immune cell phenotype 
between the groups, as has been shown previously.31 The 
imbalance in the sex and ethnicity between healthy controls 
and patients with juvenile-onset SLE is a practical problem 
limited by the willingness of adolescent healthy donors to 
participate in research. Furthermore, machine-learning 
algorithms function like a black box that produces reason­
able prediction results without giving complementary 
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justification. Thus, it would be important for this analysis 
to be validated in external cohorts and done on a cohort by 
cohort basis to account for ethnicity changes between 
regions or countries and to prospectively validate the 
association between immune cell subsets and disease 
progression.

In conclusion, the application of machine-learning 
approaches to immune phenotyping data has identified 
immunological biomarkers that could potentially help to 
unravel underlying disease mechanisms in juvenile-onset 
SLE and explain the differences in long-term outcomes of 
patients with this disease. Such immunological signatures 
could facilitate better stratification of patients for optimal 
treatment choices and provide information to improve 
interventional clinical trial design.
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