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Abstract 

Objective: BOLD-based fMRI is a widely used non-invasive tool for mapping brain function 
and connectivity. However, the BOLD signal is highly affected by non-neuronal contributions 
arising from head motion, physiological noise and scanner artefacts. Therefore, it is necessary 
to recover the signal of interest from the other noise-related fluctuations to obtain reliable 
functional connectivity results. Several pre-processing pipelines have been developed, mainly 
based on nuisance regression and ICA. The aim of this work was to investigate the impact of 
seven widely used denoising methods on both resting-state and task fMRI.  
Approach: Task-fMRI can provide some ground truth given that the task administered has 
well established brain activations. The resulting cleaned data were compared using a wide 
range of measures: motion evaluation and data quality, resting-state networks and task 
activations, functional connectivity.  
Results: Improved signal quality and reduced motion artefacts were obtained with all 
advanced pipelines, compared to the minimally pre-processed data. Larger variability was 
observed in the case of brain activation and functional connectivity estimates, with ICA-based 
pipelines generally achieving more reliable and accurate results.  
Significance: This work provides an evidence-based reference for investigators to choose the 
most appropriate method for their study and data. 

Keywords: pre-processing pipelines, denoising, fMRI, functional connectivity, noise 

 

1. Introduction 

Functional magnetic resonance imaging (fMRI), based on 
the blood-oxygenated-level dependent (BOLD) signal, is a 
widely used non-invasive tool for mapping brain function and 
functional connectivity (FC). The latter is defined as the 

functional coupling of different brain areas usually expressed 
as correlation between time series (Cole, Smith and 
Beckmann, 2010; Dipasquale et al., 2017). Common 
methodologies to assess FC include seed-based analysis and 
independent component analysis (ICA). The first consists in 
creating connectivity maps by computing the correlation 
between the fMRI signal from pairs of regions of interest 
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(ROIs). The second is a data-driven technique that considers 
all the voxels at the same time, and uses multivariate statistical 
analysis to separate the data in distinct networks which are 
maximally independent and correlated in terms of their 
fluctuations over time (Fox and Greicius, 2010; Engel et al., 
2013). 

However, the BOLD signal is generally noisy. Non-
neuronal contributions to the BOLD time series arise from 
several factors including head motion, physiological noise 
(e.g. cardiac and respiratory) and scanner artefacts (e.g. 
thermal noise and hardware instability) (Bright, Tench and 
Murphy, 2017; Caballero-Gaudes and Reynolds, 2017). All 
these artefacts influence the fMRI signal and can lead to 
spurious results. Therefore, it is necessary to recover and 
separate the signal of interest, related to brain function, from 
the other noise-related fluctuations, so as to obtain reliable 
estimates, in terms for example of activation/deactivation and 
connectivity (Caballero-Gaudes and Reynolds, 2017; 
Dipasquale et al., 2017). To achieve artefact removal, several 
pre-processing pipelines have been developed which are 
generally based on nuisance regression or ICA (Pruim, 
Mennes, Buitelaar, et al., 2015). These pipelines result in 
cleaned up fMRI time series that more accurately reflect the 
underlying brain fluctuations of interest and reduce possible 
bias in post-processing analyses due to noise confounds. In 
nuisance regression-based pipelines, motion parameters 
estimated during the realignment procedure are used as 
regressors of no interest (Caballero-Gaudes and Reynolds, 
2017), together with the average time series of white matter 
(WM) and cerebral spinal fluid (CSF). Often, the expansion of 
motion terms (e.g. derivatives, squares of derivatives) are 
included as additional regressors. The second group of 
pipelines employ ICA, a data-driven method to decompose the 
fMRI data into signal of interest and structured noise. The 
classification of these independent components (ICs) into 
physiological signal or noise is usually carried out manually, 
resulting in a time consuming and user-dependent procedure. 
To overcome these limitations, different authors have recently 
started to propose specific toolboxes for automatically 
identifying and classifying the ICs, such as AROMA (Pruim, 
Mennes, van Rooij, et al., 2015) or FIX (Salimi-Khorshidi et 
al., 2014). Regardless of the basis of the denoising pipelines 
adopted, their impact on BOLD-fMRI data needs to be 
assessed in the context of which they are being implemented. 

BOLD-fMRI can indeed be acquired during the 
administration of a task (task-fMRI) or while the subject is 
resting in the scanner (resting-state fMRI [rs-fMRI]). The 
latter relies on the BOLD signal to probe neural activity at rest, 
and it has been shown as stable and reproducible across 
subjects (Smith et al., 2009; Griffanti et al., 2016). However, 
by acquiring the data in the absence of any task, a-priori 
information of underlying brain activation is missing 
(Dipasquale et al., 2017). Therefore, these data are not used to 

localise brain areas which are activated or deactivated during 
a specific task, but rather to investigate brain connectivity and 
network organisation via FC analyses. The effect of different 
pre-processing methods has been widely investigated in 
resting-state data. Most of the previous works mainly focused 
on the ability of different methods to mitigate motion artefacts 
(Power, Schlaggar and Petersen, 2015), given their significant 
impact on fMRI time series and hence FC estimates (Parkes et 
al., 2018). Several benchmarks have been selected to address 
the impact of motion on the fMRI signal. These include 
Derivative of root mean square VARiance over voxelS 
(DVARS), framewise displacement (FD)-DVARS 
correlations (Muschelli et al., 2014) and QC-FC (quality 
control/FC) correlations (Power, Schlaggar and Petersen, 
2015; Ciric et al., 2017). In general, regression methods 
including the expansion of motion terms substantially mitigate 
motion artefacts (Caballero-Gaudes and Reynolds, 2017). 
Global signal regression (GSR) has been shown to potentially 
improve motion correction (Satterthwaite et al., 2013; Lydon-
Staley et al., 2019). However, GSR itself is still a controversial 
pre-processing step as it involves regressing an average signal 
computed across the entire brain (including grey matter [GM], 
WM and CSF) (Parkes et al., 2018) which might include 
widespread strong neural fluctuations, removed by the 
regression. Moreover, GSR tends to introduce negative 
correlations (anti-correlations) between brain regions which 
are difficult to interpret and distant-dependence artefacts 
(Griffanti et al., 2015; Caballero-Gaudes and Reynolds, 2017; 
Ciric et al., 2017). Therefore, many argue that this removal 
should be avoided in classical connectivity studies (Cole, 
Smith and Beckmann, 2010; Griffanti et al., 2015).  

In addition to addressing the impact of pre-processing 
strategies on motion correction, it is also important to assess 
how different cleaning methods affect the BOLD signal (i.e. 
using measures like temporal signal to noise ratio [tSNR] or 
standard deviation [SD]) and derived FC estimates. Pruim et 
al. (Pruim, Mennes, Buitelaar, et al., 2015) evaluated several 
regression and ICA-based pipelines by considering their 
impact on BOLD signal and related FC measures. The authors 
reported the inability of nuisance regression strategies to fully 
mitigate the impact of motion on connectivity. On the other 
hand, ICA-based strategies successfully reduced the effect of 
head motion and led to higher resting-state networks (RSNs) 
reproducibility. Similarly, Ciric et al. (Ciric et al., 2017) 
investigated fourteen pipelines using four benchmark 
measures including motion related measures and network 
modularity. The authors emphasised the heterogeneity in 
terms of pipeline performance across benchmarks, and the 
importance of identifying the optimal pipeline for a given 
study. 

In the case of rs-fMRI data, there is a lack of ground truth 
for the BOLD fMRI signal of interest and noise due to 
multiple sources contributing to the overall signal and to the 
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unconstrained nature of the paradigm (i.e. the subject is resting 
in the scanner) (Griffanti et al., 2015). This bottleneck can be 
naturally overcome by using task-fMRI. Being based on a 
hypothesis of brain activation/deactivation related to external 
stimuli over time, a reference is available to distinguish the 
signal of interest (evoked by the task) from noise, therefore 
informing the assessment of pipeline performance (Power, 
Schlaggar and Petersen, 2015). Task-fMRI is affected by 
similar noise confounds as rs-fMRI. The main advantage of 
bringing task-fMRI into the loop is that knowing a-priori 
which areas of the brain are active during a give task, provides 
a convenient reference to identify which pre-processing 
pipeline may be best suited to reproduce the related activation 
patterns (Glasser et al., 2018). This can in turn help 
investigating denoising methods in the context of rs-fMRI, 
which lacks a-priori information about activation or 
deactivation, but presents a similar underlying signal as task-
fMRI. 

Unlike rs-fMRI, this topic has been scarcely investigated in 
the context of task-fMRI. Tierney et al. (Tierney et al., 2016) 
validated a new pre-processing method (FIACH) via 
comparison with five other pipelines mainly based on 
nuisance regression methods, using a language fMRI 
paradigm in controls. Their pipeline led to more reliable 
activations in areas expected to be active during the 
administered language task. Glasser et al. (Glasser et al., 
2018) applied temporal ICA to both task and resting-state 
fMRI datasets, and compared that to GSR, showing usefulness 
of their method in (a) separating global noise from the global 
neural signal and (b) selectively removing noise, in both 
conditions. However, their method would only be suitable for 
neuroimaging acquisitions similar to those used in the Human 
Connectome Project, which entail a large number of time 
points, and high temporal sampling (Glasser et al., 2018). 
These type of data may not be available in the majority of 
clinical centres. Finally, Mayer et al. (Mayer et al., 2019) 
examined the effect of denoising methods (nuisance 
regression and ICA-based pipelines) on event-related and 
block-design task-fMRI data. Specifically, they assessed the 
percentage signal changes in active brain areas versus noisy 
areas after different denoising strategies and did not focus on 
connectivity aspects. They showed that FIX and AROMA 
tend to remove task-related activity, as well as noise when 
compared to regression of 24 motion parameters. The authors 
also emphasised the lack of a single appropriate denoising 
method for all fMRI designs. 

In this work, we aimed to investigate the impact of different 
pre-processing pipelines on both resting-state and task fMRI 
data. We analysed data from two different groups of healthy 
controls. The resulting processed data were compared using a 
wide range of benchmark measures. In particular, we assessed 
(1) changes in the BOLD signal as expressed by measures of 
motion evaluation (DVARS) and data quality (tSNR, lost 

temporal degrees of freedom [tDoF]), (2) modulations of 
RSNs and task activations, and (3) modulations of FC 
estimates. These measures have been commonly used in the 
context of rs-fMRI but are still largely unexplored in task-
fMRI. 

2. Methods 

2.1 Population 

Rs-fMRI data were collected for twenty healthy controls 
(11 males, 38.5 ± 10 y) as part of a larger neuroimaging study 
approved by the London - Stanmore Research Ethics 
Committee. Previously collected task-fMRI data were 
selected from a different group of twenty controls, age- and 
gender-matched to the rs-fMRI group (11 males, 38 ± 9 y). In 
this task study, all participants were fluent English speakers 
and able to understand the instructions for performing a verbal 
fluency (VF) fMRI task. Recruitment for this study received 
approval by the London South-East Research Ethics 
Committee and by the UCL/UCLH Joint Research Office. 
Written informed consent was obtained for all participants. 

2.2 Image Acquisition 

The rs-fMRI acquisition was carried out on a 3T Siemens 
mMR Biograph (Siemens, Erlangen, Germany) PET/MRI 
scanner equipped with a 16-channel head and neck coil. The 
subjects were instructed to stay still and relaxed, and to close 
their eyes without falling asleep.	Acquiring rs-fMRI with eyes 
close was conducted to match the clinical protocols for 
patients generally scanned in our MRI Unit (mainly epilepsy). 
Rs-fMRI data were acquired using a 2D echo-planar imaging 
(EPI) sequence with the following parameters: TR/TE = 
2020/30 ms, flip angle = 70°, voxel size = 3 x 3 x 4 mm3, 36 
slices, 260 volumes. High resolution 3D T1-weighted (T1w) 
anatomical images were also acquired, using an MPRAGE 
sequence: TR/TE = 2000/2.92 ms, voxel size = 1.1 x 1.1 x 1.1 
mm3, 208 sagittal slices. 

The task-fMRI acquisition was carried out on a 3-T Excite 
HDx scanner (General Electric, Milwaukee, WI, USA), using 
a standard 8-channel receive head coil and a 2D EPI sequence 
with the following parameters: TR/TE = 2500/25 ms, flip 
angle = 70°, voxel size = 3.75 x 3.75 x 2.5 mm3, 50 slices, 120 
volumes. During the acquisition, the participants performed a 
covert VF task (Wandschneider et al., 2017). The paradigm, 
lasting 5 min in total, consisted of five 30 s blocks of task 
alternated with five 30 s resting blocks (crosshair fixation). 
Participants were instructed to covertly generate words 
starting with a visually presented letter (A, D, E, S, W). 3D 
T1w anatomical images were also acquired using a FSPGR 
sequence: TR/TE = 7.2/2.8 ms, voxel size = 1.1 x 1.1 x 1.1 
mm3, 196 sagittal slices. 
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2.3 Pre-processing Pipelines 

All the pre-processing methods considered in this study 
were run on both resting-state and task data, using the FSL 
5.0.9 software (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and are 
illustrated hereafter. Fig.1 summarises the seven pre-
processing pipelines and the corresponding analyses used to 
evaluate these denoising methods. Min was considered as the 
baseline model (Mayer et al., 2019). Res6 and Res24 were 
chosen to represent different levels of head motion regression. 
The former is commonly employed in task-fMRI analyses, but 
never formally compared with other denoising methods. 
FIACH was included, as it has been developed specifically for 
denoising of task-fMRI data. Finally, AROMA, FIX and 
FIXMC were considered as commonly implemented ICA 
methods. In the remaining of the manuscript, we will refer to 
nuisance regression pipelines (Res6, Res24 and FIACH) as 
regression-based pipelines, while AROMA, FIX and FIXMC 
will be part of the ICA-based methods. We are aware that 
ICA-based methods also include regression of the identified 
noise components, but we considered this distinction, which 
is also commonly used in literature, given the different 
modelling of the unwanted signal.  

 

 
Fig.1: Summary of the denoising methods and the benchmarks 
adopted in this study. Seven pipelines were considered which were 
evaluated in terms of BOLD quality measures, connectivity and brain 
activations. The latter were derived and evaluated in a different way 
for the resting-state and task fMRI, as reported in the literature. WM: 
white matter, CSF: cerebral spinal fluid, BOLD: blood-oxygen-level-
dependent, DVARS: derivative of root mean square variance over 
voxels, tSNR: temporal signal-to-noise ratio, tDoF: temporal degrees 
of freedom, DSC: dice similarity coefficient, CNR: contrast-to-noise 
ratio. 

2.3.1 Minimal Pre-processing - Min.  

Both fMRI datasets were minimally pre-processed (Min) 
using FSL FEAT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT) 
with the following steps: realignment (MCFLIRT), slice 
timing correction, high-pass filtering (0.01 Hz cut-off), brain 
extraction (BET), spatial smoothing with a 6-mm FWHM 

kernel, co-registration to structural MRI data (FLIRT, 6 
degrees of freedom with BBR cost function) and spatial 
normalisation to 2-mm MNI standard space (FNIRT, non-
linear registration). 

2.3.2 Regression WM, CSF and 6 Motion Parameters – 
Res6. 

This pre-processing pipeline (Res6) involved regressing 
out WM, CSF and 6 motion parameters from the minimally 
pre-processed data. For each subject, the normalized T1w 
scans were segmented, leading to WM and CSF probability 
maps that were thresholded at 0.9, to strictly retain only WM 
and CSF voxels, and binarised. These masks were then used 
to extract the WM and CSF average time series. WM and CSF 
signals, together with the 6 motion parameters (estimated in 
the realignment step and high-pass filtered with cut-off 0.01 
Hz, to match the data), were regressed out from the minimally 
pre-processed data (fsl_glm). The resulting residuals were 
used for further analyses and pipeline comparison. 

2.3.3 Regression WM, CSF and 24 Motion Parameters – 
Res24. 

This pre-processing method (Res24) was based on 
regression of the average WM and CSF time series but 
entailed removal of 24 motion parameters instead of the 
previously used 6. The 24 regressors included the original 6 
motion parameters, their square, their derivatives and their 
derivatives squared. High-pass filtering with cut-off 0.01 Hz 
was applied to the regressors to match the data. These 
regressors were removed from the minimally pre-processed 
data and the residuals retained for the subsequent analyses. 

2.3.4 FIACH. 

This approach was implemented as in Tierney et al. 
(Tierney et al., 2016). All the raw data were motion corrected 
(MCFLIRT) and the pipeline FIACH with all the default 
parameters was subsequently applied 
(http://www.homepages.ucl.ac.uk/~ucjttie/FIACH.html). The 
output data (filtered data) were then processed using FEAT, 
including: slice timing correction, BET, high-pass filtering, 
spatial smoothing, co-registration to structural data and spatial 
normalisation to 2-mm MNI standard space (using the same 
parameters for Min). Finally, the 6 noise regressors estimated 
by FIACH were regressed out from the data (fsl_glm) and the 
residuals were kept for further analyses. 

2.3.5 AROMA. 

AROMA is an ICA-based pre-processing pipeline 
implemented using the corresponding FSL toolbox 
(https://github.com/maartenmennes/ICA-AROMA), 
specifically devised to clean each participant’s scans from 

Pipelines
1. Min: minimal pre-processing
2. Res6: 6 motion + WM and CSF
3. Res24:6 motion + expansion + WM and CSF
4. FIACH: regress non-physiological signal
5. AROMA: ICA-based
6. FIX: ICA-based
7. FIXMC: ICA-based

BOLD quality measures Connectivity and brain activation

DVARS tSNR & lost tDoF

Rs-fMRI Task fMRI

Functional 
Connectivity

Group ICA Brain activations

DSC Cross-
correlation

DSC Cross-
correlation

CNR Sensitivity 
& 

Specificity

% overlap 
GM & WM
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motion confounds. FSL FEAT minimal pre-processing was 
initially applied to the data without temporal filtering as 
explecitely suggested by the developers. The resulting data 
were then input in the ICA-AROMA toolbox to carry out 
MELODIC (automatic dimensionality estimation for the 
optimal number of components) and to automatically identify 
and remove motion artefacts (non-aggressive option) (Mayer 
et al., 2019). The cleaned data were then filtered (high-pass, 
0.01 Hz), co-registered to structural data (FLIRT, 6 degrees of 
freedom with BBR cost function) and spatially normalised to 
2-mm MNI standard space (FNIRT, non-linear registration). 

2.3.6 FIX and FIXMC. 

Two additional ICA-based approaches were implemented 
in FSL using the FIX toolbox 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX) to clean each 
participant’s scans from various and heterogeneous types of 
structured noise. The minimal pre-processing was initially 
applied to the data, and each pre-processed dataset was then 
decomposed using MELODIC (automatic dimensionality 
estimation). FIX is based on a hierarchical classifier and it 
therefore requires a ‘training dataset’ which closely matches 
the data under investigation. In this work, we did not use the 
training input data provided by the FIX package, as these did 
not match our datasets in terms of TR and resolution. Two 
specific classifiers were trained, one for resting-state and the 
other for task fMRI, by classifying ICs from 10 subjects (for 
each dataset). Each IC was manually classified and labeled by 
an expert rater as ‘noise’ or ‘signal’, according to its spatial 
distribution (i.e. network of interest or task activation), the 
temporal power spectrum (i.e. covering frequencies of 
interest, 0.01-0.1 Hz) and the time series. Using these labels, 
the classifier was trained, and a summary training file was 
created. In addition, a leave-one-out test was run to choose the 
threshold which balances true positive rate (TPR) and true 
negative rate (TNR). A threshold of 20 was chosen, 
guaranteeing a mean TPR of 95.7 (rs-fMRI), 88.1 (task-fMRI) 
and a mean TNR of 91.6 (rs-fMRI), 82.2 (task-fMRI) (Mayer 
et al., 2019). The trained classifiers were applied to all 
subjects’ data (resting-state and task, separately). Components 
automatically classified as artefacts were removed from the 
data using the non-aggressive option (Griffanti et al., 2014; 
Mayer et al., 2019). FIX was applied without (FIX) and with 
motion regression (FIXMC). In the latter case, the full 
variance of 24 motion parameters was regressed out. All 
cleaned data were finally spatially normalised to 2-mm MNI 
standard space. 

2.4 Pipeline Performance Metrics 

2.4.1 Motion Evaluation – DVARS. 

To quantify the ability of each pipeline to remove motion 
artefacts from the data (Fig.1), DVARS (root mean square 

intensity difference of volumes N and N+1) was calculated for 
every subject. The mean DVARS values were then computed 
for each participant and pipeline. 

2.4.2 Temporal Signal-to-Noise Ratio and Loss of 
Temporal Degrees of Freedom. 

TSNR can be used to determine the SNR of fMRI time 
series by considering the mean signal over time. This measure 
can be considered an indication of pipeline performance, as 
data pre-processing should decrease signal fluctuations 
around the mean (Fig.1) (Griffanti et al., 2014). For each 
pipeline and corresponding cleaned data, tSNR was voxel-
wise computed for each subject by dividing the mean signal 
over time by the SD over time (leading to a tSNR map). For 
the resting-state dataset, the mean tSNR value in the GM was 
computed, using the tissue segmentations previously 
estimated at the individual level in MNI space (probability 
values >= 0.9). For the task dataset, the mean tSNR was 
computed in eight task-related ROIs. Six activations ROIs 
were derived from the Neurosynth VF template 
(http://neurosynth.org/analyses/terms/verbal%20fluency/, 
FDR-corrected p-value < 0.01), obtained from a meta-analysis 
of studies which employed VF paradigms. In addition, 
deactivations were also considered (two ROIs), including the 
deactivated areas over the DMN derived from a well-known 
RSNs template (Smith et al., 2009). Overall, the task-related 
activation ROIs were: left inferior frontal gyrus (L_IFG), right 
inferior frontal gyrus (R_IFG), supplementary motor area 
(SMA), left parietal (L_Par), left temporal lobe (L_TL), and 
subcortical ROIs (thalamus plus putamen). In terms of 
deactivations, the medial frontal (paracingulate gyrus) and 
posterior (precuneous cortex) areas of the default mode 
network were chosen (DMN_Front and DMN_Post, 
respectively). The mean tSNR value in these ROIs was finally 
computed for each subject and pipeline. 

The loss of tDoF was used as an additional measure in 
conjunction with the tSNR to better assess the impact of the 
pre-processing methods on the statistical power and reliability 
of the different imaging estimates (Fig.1) (Pruim, Mennes, 
Buitelaar, et al., 2015; Pruim, Mennes, van Rooij, et al., 
2015). The total number of fMRI volumes was considered as 
the total number of available tDoF (i.e. 260 for the resting-
state, and 120 for the task data). Each regressor or IC removed 
from the data was considered as a lost tDoF. The total loss of 
tDoF was expressed, for each pre-processing method, as a 
percentage of the initial number of available tDoF. Of note, in 
the regression-based methods, where the number of regressors 
was fixed in the model (Res6: 8 regressors; Res24: 26 
regressors and FIACH: 6 regressors), a constant value of lost 
tDoF was expected across subjects. 
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2.4.3 Statistical Analysis 

A one-way repeated-measure analysis of variance 
(ANOVA) was performed on the DVARS values, along with 
tSNR for rs-fMRI only (GM values) to test for significant 
differences across the different pipelines. A post-hoc paired 
sample two-tailed t-test was then applied (p-value < 0.05), 
which was corrected for multiple comparison using 
Bonferroni correction. In the case of tSNR in task-fMRI, a 
two-way repeated measures ANOVA was carried out (factor1 
= pipelines, factor2 = ROIs). This was followed by post-hoc 
pairwise comparisons using multcompare in MATLAB (p-
values < 0.05), which was Bonferroni-corrected for multiple 
comparison. 

2.5 Connectivity Analyses and Brain Activations 

2.5.1 Rs-fMRI: Group ICA. 

For the resting-state dataset, we tested the ability of the 
different pre-processing methods to recover RSNs using ICA 
(Fig.1). A group-based ICA (MELODIC) was run for every 
pipeline, setting the number of ICs to 30 (Griffanti et al., 
2014). The most common networks were retained for further 
analyses. For each pipeline and each RSN of interest, the 
spatial cross-correlation (CC) and overlap between the group 
IC map and the corresponding BOLD template (both 
thresholded at z > 3) were evaluated (Smith et al., 2009). CC 
was computed using FSL function (fslcc), while the spatial 
overlap was assessed using the Dice Similarity Coefficient 
(DSC). This index quantifies the cardinality of the intersection 
of the thresholded maps divided by the average of the 
cardinality of each thresholded map (Bowring, Maumet and 
Nichols, 2019). Our assumption was that a higher similarity 
and overlap between the group ICA maps and the 
corresponding template would point to higher accuracy of the 
denoising pipeline in identifying the true signal (Smith et al., 
2009; Griffanti et al., 2014). 

2.5.2 Task-fMRI: Group Activations.  

For the task-fMRI data, brain activations (Fig.1) were 
computed using a general linear model (GLM). This was 
carried out at the single subject level (first-level analysis) and 
then at the group level (second-level analysis), independently 
for each pipeline. At the subject level, the task was modelled 
by convolving the vector of block onset with a canonical 
hemodynamic response function (double gamma HRF) to 
create the regressor of interest, which was temporal filtered to 
match the data under investigation. Contrast images were 
created for every subject and pipeline for task related 
activations. At the second level, we explored activations maps 
during the VF task for each pipeline using a one-sample t-test. 
Statistic images were thresholded using clusters determined 

by z > 2.3 and a corrected cluster significant threshold of p-
value = 0.05.  

Group-level activation maps were initially compared across 
pipelines in terms of i) number of voxels, ii) statistical 
significance and iii) location of the clusters. In order to 
quantify how much of the activations overlapped with the GM, 
we computed the percentage of voxels which fell into the 
different tissue types (GM and WM) for each group activation 
pipeline. From this analysis, we expected (1) to have most of 
the activations localised to GM, for all the pipelines and that 
(2) more effective pipelines would lead to higher overlap 
between activations and GM, with lower involvement of WM 
voxels. For this purpose, we used the FSL tissue prior maps, 
thresholded at 100 and binarised, together with the 
thresholded and binarised group activation maps. We then 
computed the percentage of each group map included in either 
GM and WM tissue maps. 

In addition, we computed several measures to quantify the 
ability of each pipeline to recover the true signal (related to 
task activation), as well as their accuracy in identifying the 
brain areas expected to be active in a VF paradigm. 

Contrast-to-noise ratio (CNR) was defined at the single-
subject level using the time course of the voxel with highest z-
score as representative activation signal (Shen and Q. Duong, 
2011). This was shifted by two time points to account for the 
HRF (Liang et al., 2013), and the following equation was 
used: 

𝐶𝑁𝑅 =
𝑚𝑒𝑎𝑛(𝑇𝑎𝑠𝑘) −𝑚𝑒𝑎𝑛(𝑅𝑒𝑠𝑡)

𝑠𝑡𝑑(𝑅𝑒𝑠𝑡)  

 
where the numerator represents the difference between the 
mean value of the signal across all activation and baseline 
conditions, respectively, while the denominator is the standard 
deviation across the baseline periods. A one-way ANOVA for 
repeated measures was performed on CNR values to test for 
significant differences across the seven pipelines. Post-hoc 
paired sample two-tailed t-tests were applied (p-value < 0.05, 
Bonferroni-corrected). 

In terms of brain localisation, we computed the spatial 
correlation (fslcc) and overlap (DSC) of each group-level 
activation map with respect to the Neurosynth VF template. 
Since the Neurosynth VF template was only available with 
FDR correction (p-value < 0.01) we thresholded the 
corresponding group activations maps with the same threshold 
to allow appropriate comparison. This threshold was therefore 
kept for all the comparative analyses involving the use of the 
Neurosynth VF template. 

Sensitivity and specificity were also computed, using the 
VF template as reference. In particular, sensitivity was defined 
as the ratio of the number of overlapping voxels between one 
pipeline and the reference (𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝) over the number of 
voxels in the reference map (𝑉𝑟𝑒𝑓). Specificity was defined 
as the ratio of the number of overlapping voxels between one 
pipeline and the reference (𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝) over the number of 
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voxels in the pipeline activation map (𝑉𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒) (Storti et 
al., 2018): 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =	
𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑉𝑟𝑒𝑓 	; 	𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =	

𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑉𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 

 

2.5.3 Resting-state and Task fMRI: Functional 
Connectivity Metrics. 

In order to assess the impact of the different cleaning 
methods on ROI-to-ROI FC, we used the Schaefer functional 
atlas, comprising 100 parcels derived from 17 RSNs (Schaefer 
et al., 2018), and extracted the average time series in each ROI 
for each subject and pipeline (in both datasets, Fig.1). For each 
pipeline, a symmetric connectivity matrix was derived by 
computing the Pearson correlation coefficient for each pair of 
nodes, at the single-subject level. These connectivity matrices 
were visually compared, and the mean and SD matrices were 
computed across subjects. The 2D spatial correlation between 
each pair of mean matrices was calculated to assess the extent 
of similarity of connectivity patterns across pipelines. 
Additionally, we computed for each pipeline the coefficient of 
variation (CV), defined as the percentage ratio of the group 
SD and the mean. We expected the CV to be decreased for the 
more effective pipelines owing to them removing spurious 
differences in the control population under investigation. 
Indeed, effective cleaning methods should increase network 
similarity between subjects in a homogenous group of healthy 
controls (Griffanti et al., 2014). We finally assessed the 
number of negative correlations found in each matrix at the 
single-subject level. 

3. Results 

3.1 Motion Evaluation – DVARS. 

Fig.2 reports the distribution of mean DVARS values 
across subjects together with the results of the statistical 
comparison, for each pipeline and dataset. 
 

 
 
 
 

 
Fig.2: Mean DVARS values across subjects and p-values resulting 
from the statistical comparisons for the seven pre-processing 
pipelines. Top: Distribution of mean DVARS values across subjects 
for every pipeline in the resting-state (left) and task (right) datasets. 
Bottom: Graphical representation of the p-values resulting from the 
statistical comparison of mean DVARS values for every pipeline in 
both datasets. The comparisons which were not statistically 
significant are reported in white. Each pipeline in the row is 
compared to each coloumn (i.e. reading row first and then column). 
The two colour bars report p-values corresponding to positive (hot 
colour scale) and negative (cold colour scale) t-values. 
 

A similar trend was observed in resting-state and task 
datasets. One subject appeared as an outlier with regards to 
DVARS metric in rs-fMRI and was thus discarded from the 
all the corresponding statistical analyses. Of note, a point was 
considered outlier if greater than  q3 + w × (q3 – q1) or less 
than q1 – w × (q3 – q1), where q1 and q3 are the 25th and 75th 
percentiles of the sample data and w × (q3 – q1) refers to 
1.5xIQR (inter quartile range) corresponding to approximately 
+/–2.7σ. Statistical comparisons revealed significant 
differences for DVARS values across the seven pipelines, in 
both resting-state and task fMRI (DVARS: F(6,132) = 18.05, p-
value < 0.01 in resting-state; F(6,126) = 12.74, p-value < 0.01 in 
task). Post-hoc t-tests between pairs of pipelines revealed 
significantly lower DVARS values (p-value < 0.05, 
Bonferroni-corrected) for all the advanced pipelines compared 
to Min, except the case of Min vs Res24 for DVARS in task 
which did not achieve the statistical significance. This result 
points towards a more pronounced removal of motion artefacts 
in the advanced denoising methods, when compared to Min. 
All the other pairwise comparisons across advanced pipelines 
were significant (p-value < 0.05, Bonferroni-corrected) for 
both datasets, except for few cases reported in white in Fig.2. 
Among the advanced pre-processing methods, FIACH and 
FIXMC achieved the lowest DVARS values in both resting-
state and task fMRI. Overall, regression-based and ICA-based 
pipelines showed a similar trend for both datasets. 
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3.2 tSNR and Loss of tDoF. 

The tSNR was computed for each subject and pipeline as a 
measure of signal variation. Fig.3 reports the distribution 
across subjects of the mean tSNR values in GM (rs-fMRI) and 
in a representative active area for task-fMRI (L_IFG) for the 
seven pipelines. Of note, similar patterns were observed for all 
the other ROIs for task data, Fig.S1. 

Increased tSNR was observed for all advanced pipelines 
when compared to Min, for both resting-state and task data. 
Similar patterns were observed in both datasets, with 
increased tSNR values and variability in the task dataset. Of 
note, the same subject who was an outlier for DVARS also 
appeared as an outlier for the tSNR metric in rs-fMRI GM and 
was thus eliminated from all the corresponding statistical 
analyses. The tSNR values were significantly different across 
the seven pipelines in both resting-state and task fMRI (F(6,126) 
= 11.7, p-value < 0.01 for GM in resting-state; F(42,1064) = 3.84, 
p-value < 0.01 for L_IFG in task). Post-hoc t-tests between 
pairs of pipelines revealed significantly increased tSNR values 
(p-value < 0.05, Bonferroni-corrected) for all advanced 
pipelines when compared to Min (Fig.3). Other pairwise t-
tests resulted as significant (p-value < 0.05, Bonferroni-
corrected) for both datasets, as shown in Fig.3. The post-hoc 
t-tests for all the remainder ROIs in the task-fMRI analysis are 
reported in Fig.S2. 

 

 
Fig.3: Mean tSNR values across subjects and p-values resulting from 
the statistical comparisons for the seven pre-processing pipelines. 
Top: In the case of rs-fMRI, the distribution of the mean tSNR values 
in GM is reported while, for task-fMRI, we report mean values across 
a representative area known to be active during a VF paradigm 
(L_IFG). Bottom: Graphical representation of the p-values resulting 
from the statistical comparison of mean tSNR values, for every 
pipeline in resting-state and task fMRI. The comparisons which were 
not statistically significant are reported in white. Each pipeline in the 
row is compared to the each coloumn (ref to Fig.2 for colour bars 
details). 
 

Being aware of the limitations of tSNR as a quality check 
metric, we also computed the loss of tDoF to more thoroughly 
assess the impact of the pre-processing methods on the 

statistical power and reliability of the different imaging 
estimates (Pruim, Mennes, Buitelaar, et al., 2015; Pruim, 
Mennes, van Rooij, et al., 2015). Fig.4 reports the distribution 
of lost tDoF for each pipeline in the two datasets, expressed as 
a percentage of the total tDoF available. As expected, the ICA-
based pipelines tended to have a higher loss of tDoF when 
compared to regression-based methods, with FIXMC having 
the highest number, as it includes regression of ICs together 
with the 24 motion parameters. 
 

 
Fig.4: Distribution of lost tDoF as a percentage of the initial number 
of tDoF. A constant value of lost tDoF was observed for the 
regression-based methods (fixed number of regressors). For the ICA-
based pipelines, the number of lost tDoF was variable and depended 
on the number of noisy ICs removed from the individual data. 

3.3 Rs-fMRI: Group ICA.  

A group ICA was carried out to assess how the different 
pre-processing methods would recover the RSNs. The main 
RSNs extracted included: visual medial (VISmed), visual 
occipital (VISocc), visual lateral (VISlat), default mode 
network (DMN), cerebellum (CER), motor (SMN), auditory 
(AUD), executive (EXE), fronto-parietal right (FPr) and left 
(FPl), dorsal attention (DA) and temporal (TEMP), in 
agreement with previous literature templates (Smith et al., 
2009). Fig.5 reports the resulting maps for DMN, AUD, 
VISmed and SMN networks, as indicative examples. 

When the different RSNs were visually compared, we 
found that, in the case of the DMN, the ICA-based and FIACH 
pipelines more accurately recovered the extension of posterior 
cingulate cortex as compared to Min. All the pipelines 
accurately recovered the AUD and VISmed networks, 
however Min, FIX and FIXMC showed noisier maps. The 
SMN network was recovered in a different pattern by 
regression-based vs ICA-based pipelines. Indeed, the latter 
tended to recover the motor network as three separate 
components (cingulate gyrus and left and right postcentral 
gyri) while the regression-based methods showed a unique 
cluster over the cortical motor areas.  

Regarding the other networks, the VISocc network was 
better recovered by the more advanced pipelines, while Min 
detected less extensive and significant clusters. Regression-
based pipelines better recovered the VISlat network, while 
ICA-based methods did a better job for the CER network. The 
EXE network was clearly highlighted by all the pipelines with 
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the exception of Min, which showed noisy maps. Of note, 
FIXMC recovered three more distinct clusters (paracingulate 
and left and right frontal poles/superior frontal gyri) for this 
network. FPr and FPl networks were reliably recovered by all 
the pipelines, with the advanced methods generally showing 
more extensive clusters than Min. In the case of the DA 
network, Res6 and Res24 more accurately recovered the 
clusters in the left and right superior frontal gyri. Finally, the 
TEMP network was recovered by Min and the other advanced 
methods, with the only exceptions of Res24 which reported a 
cluster in the cerebellum, likely to be unrelated signal, and 
FIX/FIXMC which poorly recovered this network.  

When considering quantitative measures in terms of spatial 
similarity and overlap (CC and DSC), these indices confirmed 
the preliminary qualitative evaluation, as reported in Table 1.  

 
Table 1: Cross-correlation (CC) and Dice Similarity Coefficient 
(DSC) values calculated between each group ICA RSN and the 
corresponding RSN from Smith et al. template. For a given network 
and pipeline, the top row reports the CC value and the bottom row 
the DSC value. Generally high correlation values and high degree of 
overlap were found for all pipelines. The highest value for each 
measure and network is reported in bold. Visual medial (VISmed), 
visual occipital (VISocc), visual lateral (VISlat), default mode 

network (DMN), cerebellum (CER), motor (SMN), auditory (AUD), 
executive (EXE), frontoparietal right (FPr) and left (FPl), dorsal 
attention (DA) and temporal (TEMP). 
 

Cross-correlation and Dice Similarity Coefficient 
 M

in 

R
es6 

R
es24 

FIA
C

H
 

A
R

O
M

A
 

FIX
 

FIX
M

C
 

VISMed 0.78 
0.61 

0.84 
0.71 

0.88 
0.76 

0.78 
0.66 

0.84 
0.69 

0.76 
0.60 

0.74 
0.56 

VISocc 0.60 
0.48 

0.87 
0.75 

0.88 
0.78 

0.85 
0.72 

0.75 
0.68 

0.84 
0.72 

0.81 
0.59 

VISlat 0.60 
0.54 

0.58 
0.58 

0.67 
0.62 

0.52 
0.54 

0.66 
0.60 

0.58 
0.57 

0.58 
0.53 

DMN 0.81 
0.69 

0.86 
0.63 

0.81 
0.62 

0.77 
0.55 

0.83 
0.63 

0.76 
0.58 

0.78 
0.57 

CER 0.60 
0.49 

0.63 
0.55 

0.59 
0.51 

0.66 
0.57 

0.54 
0.50 

0.54 
0.52 

0.45 
0.45 

SMN 0.76 
0.71 

0.52
0.52 

0.65 
0.60 

0.64 
0.59 

0.66 
0.54 

0.67 
0.62 

0.60 
0.51 

AUD 0.61 
0.55 

0.67 
0.60 

0.65 
0.58 

0.71 
0.65 

0.67 
0.60 

0.67 
0.56 

0.72 
0.56 

EXE 0.61 
0.52 

0.61 
0.52 

0.67 
0.56 

0.55 
0.41 

0.63 
0.5 

0.57 
0.46 

0.59 
0.46 

FPr 0.66 
0.57 

0.69 
0.59 

0.68 
0.59 

0.70 
0.60 

0.65 
0.55 

0.65 
0.57 

0.66 
0.58 

Fig.5: Group ICA maps for four representative networks. In particular, DMN (A), AUD (B), VISmed (C) and SMN (D) networks are 
reported, after having pre-processed rs-fMRI data with the seven pipelines. The same slices in MNI 2-mm standard space are reported. 
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FPl 0.80 
0.70 

0.73 
0.61 

0.79 
0.62 

0.63 
0.53 

0.76 
0.60 

0.77 
0.60 

0.77
0.59 

DA 0.60 
0.51 

0.41 
0.37 

0.55 
0.49 

0.55 
0.49 

0.69 
0.51 

0.60 
0.49 

0.61 
0.49 

TEMP 0.60 
0.44 

0.65 
0.51 

0.47 
0.40 

0.74
0.62 

0.71 
0.52 

0.28 
0.20 

0.36 
0.20 

 
Our results point to a general high correlation for all RSNs and 
pipelines with CC values >=0.25, generally considered as a 
good cut-off value for classifying an IC from BOLD fMRI 
(Bright and Murphy, 2015). All correlation values were well 
above the suggested threshold for all networks and pipelines, 
except for one case in FIX, which recovered the TEMP with a 
lower CC value (0.28) though still above the reference cut-off 
value. In the case of DSC, a value above 0.3 is generally 
considered as representative of good overlap (Zhu et al., 
2013). We found DSC > 0.3 for the large majority of the cases. 
Lower DSC values, below the suggested optimal threshold, 
were only found for the TEMP network recovered after using 
FIX and FIXMC (DSC = 0.2). 

Taking the DMN as an example, the highest correlation and 
spatial overlap were achieved by the Res6 (CC: 0.86) and Min 
(DSC: 0.69), while the lowest values were achieved via FIX 
(CC: 0.76) and FIACH (DSC: 0.55), albeit being well above 
the recommended thresholds. More complex RSNs, e.g. 
TEMP and DA, were recovered by all the pipelines with 
higher template correlation/overlap in the case of AROMA 
(TEMP: 0.71/0.52; DA: 0.69/0.51) and FIACH (TEMP: 
0.74/0.62; DA: 0.55/0.49). CC and DSC values generally 
showed the same trend, with higher correlation values 
corresponding to higher DSC values. 

3.4 Task fMRI: GLM Activation. 

The group GLM maps are reported in Fig.6, while Table 2 
summarises the main cluster information (location, extension 
and statistics) of each group-level activation map. The more 
advanced strategies resulted in more localised activations 
when compared to Min, which showed more extensive and 
noisy activations. Similar activation extent and z-score values 
were found for the ICA-based pipeline. In the case of the 
regression-based pipelines, FIACH and Res24 reported lower 
z-score values, despite showing clusters localised in the 
expected areas of activations. 

Table 3 reports the percentage of overlap between each 
group activation map and the GM and WM tissue priors. As 
expected, a high percentage of overlap was reported for GM 
in all the pipelines, with highest overlap in the case of FIACH 
(84.28%) and lowest in the case of Min (68.40%) due to the 
widespread activations. The overlap with WM was far lower 
than GM with values ranging between 21.07% (Res24) and 
35.90 % (AROMA). 

 
Fig.6: Group GLM activations for task-fMRI with a VF paradigm. 
Results are displayed in MNI 2-mm standard space with corrected z 
> 2.3. 
 
Table 2: Summary of the GLM group activations. For each pipeline, 
the cluster location, cluster extent (number of voxels), cluster 
significance (p-value), maximum z-value and location (mm) in MNI 
2-mm space are reported. Of note, the clusters of activations were 
corrected using cluster determined by z > 2.3 and a (corrected) cluster 
significant threshold of p-value = 0.05. Left (L), right (R), lateral 
(lat), superior (sup), inferior frontal gyrus (IFG), precentral gyrus 
(PreCG), occipital cortex (occ cortex), superior frontal (SF), 
paracingulate (PAC), middle frontal (MF), supplementary motor 
cortex (SMA), fusiform gyrus (FFG), insular (INS), supra-marginal 
gyrus (SMG), temporal (Temp). 
 

 Location in 
MNI 

Voxels P Zmax Zmax 
[x,y,z] 

Min L IFG/Precentral 
L lat occ cortex 
R PreCG 

33533 
3668 
1421 

9E-40 
2E-8 

0.0006 

6.8 
4.98 
4.78 

-46,8,28 
-32,-60,42 

62,6,38 
Res6 L SF/PAC gyrus 

L lat occ cortex 
R PreCG 

31296 
2417 
709 

0 
2E-7 

0.0106 

6.54 
4.41 
4.45 

-4,12,54 
-26,-60,46 

58,2,44 
Res24 L SF/PAC gyrus 

L occ cortex 
9581 
1225 

6E-14 
0.0067 

5.65 
4.38 

-4,12,54 
-44,-66,-20 

FIACH L MF/IFG 
L SMA 
L Occ FFG 
R INS cortex 
L lat occ cortex 

8934 
1926 
960 
729 
659 

5E-17 
1.7E-5 
0.0043
0.0133 
0.034 

4.64 
4.44 
3.23 
3.24 
3.13 

-54,30,26 
-4,4,54 

-38,-68,-8 
32,22,-2 

-40,-60,68 
AROMA L precentral/IFG 

L postcentral 
/SMG 
R precentral 
/MFG 

32386 
2770 

 
598 

9E-44 
1.2E-7 

 
0.0431 

6.6 
4.73 

 
4.92 

-46,6,24 
-38,-38,42 

 
60,0,44 

FIX L precentral/IFG 
L lat occ cortex 
R caudate 
R precentral 
gyrus 
L SMG 

25158 
3281 
1405 
902 

 
628 

8E-37 
1E-8 

0.0002 
0.0045 

 
0.0339 

6.56 
5.29 
5.22 
4.92 

 
3.85 

-46,4,24 
-26,-70,42 
20,12,12 
62,6,40 

 
-62,-42,22 

FIXMC L IFG 
L occ FFG 
L lat occ cortex 
R frontal 
operculum 
R occ FFG 
L sup temp gyrus 

16985 
3108 
2848 
2398 

 
1336 
598 

2E-30 
4.7E-9 
1.1E-8 
1.8E-7 

 
0.0001 
0.0272 

6.11 
5.49 
4.84 
5.2 

 
5.9 
3.92 

-48,30,16 
-46,-64,-22 
-32,-60,44 

40,22,0 
 

36,-66,-20 
-60,-30,4 
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Table 3: Percentage of overlap between group activation of each 
pipeline and tissue types (gray [GM] and white [WM] matter). The 
highest values are reported in bold. 

 GM (%) WM (%) 
Min 68.4 34.18 
Res6 69.98 29.98 
Res24 76.56 21.07 
FIACH 84.28 27.19 
AROMA 71.68 35.9 
FIX 73.18 30.5 
FIXMC 75.45 26.43 

 
These results were further confirmed by extracting 

additional information from the activations clusters. In terms 
of CNR, higher values were observed when Min, AROMA 
and FIX pipelines were used, while regression-based pipelines 
and FIXMC showed a similar pattern with relatively lower 
values (Fig.7). When statistically compared, the CNR values 
were significantly different across the seven pipelines (F(6,133) 
= 33.41, p-value < 0.01). Post-hoc t-tests revealed significant 
differences (p-value < 0.05, Bonferroni-corrected) for all pairs 
of pipelines, except for the cases reported in white in Fig.7. 
 

 
Fig.7: Distribution of CNR values across subject and corresponding 
p-values from the statistical comparison of every pre-processing 
method. Left panel: higher CNR values were found in the case of 
Min, AROMA and FIX. Right panel: graphical representation of the 
p-values resulting from the statistical comparison of mean CNR 
values, for every pipeline in task-fMRI . The comparisons which 
were not statistically significant are reported in white. Each pipeline 
in the row is compared to the each coloumn (ref to Fig.2 for colour 
bar details). 
 

Regarding the spatial comparisons, in order to match the 
Neurosynth VF reference template, we adopted the same 
threshold for the group activation maps (p-value < 0.01, FDR-
corrected) for these subsequent analyses. In the case of 
FIACH, this threshold left no significant clusters, therefore 
measures from this pipeline could not be assessed further. CC, 
DSC, sensitivity and specificity values are reported for the 
other six pre-processing strategies in Table 4. The highest CC 
and DSC were found for FIXMC, with values of 0.52 and 
0.44, respectively, while the lowest values were found in the 
case of Res24 (CC: 0.38, DSC: 0.24). Overall, ICA-based 
pipelines showed a good balance between these two measures, 
together with Min. On the other hand, Res24 was highly 
specific (0.63), but showed low sensitivity (0.15). 

Table 4: Cross-correlation (CC), Dice Similarity Coefficient (DSC), 
sensitivity (Sens) and specificity (Spec) values between each group 
GLM map and the reference VF template. The highest values for each 
measure are reported in bold. NA: not available. 

 CC DSC Sens Spec 
Min 0.45 0.35 0.63 0.25 
Res6 0.48 0.39 0.61 0.29 
Res24 0.38 0.24 0.15 0.63 

FIACH NA NA NA NA 
AROMA 0.45 0.36 0.57 0.26 

FIX 0.5 0.42 0.58 0.33 
FIXMC 0.52 0.44 0.57 0.35 

 

3.5 Resting-state and Task fMRI: Functional 
Connectivity Metrics. 

The mean connectivity matrices across subjects and CV for 
every pipeline are reported in Fig.8. In the resting-state 
dataset, higher mean connectivity was found for Min and the 
ICA-based pipelines. The highest mean correlation value 
(across ROIs) was obtained by AROMA (0.48), while the 
lowest mean SD was achieved by Res6 (0.16). Task-fMRI 
connectivity matrices showed generally higher values 
compared to resting-state. This was particularly evident in the 
case of Res24. Min showed the highest mean (0.56) and lowest 
mean SD (0.19). Lower CV values were observed for Min and 
AROMA in both resting-state and task fMRI. Overall, 
matrices were highly correlated with each other, with values 
ranging between 0.83-0.99 in resting-state and 0.82-0.98 in 
task. The information provided by these mean matrices was 
further summarised in Figs.S3-S4, where each matrix from a 
specific pipeline was expressed in terms of mean values for 
within/between-network connectivity. This would allow to 
immediately compare the connectivity patterns across 
pipelines. For example, the mean connectivity inside VIS 
reached high values in all cases, while its connections with the 
other networks revealed widely variable patterns with 
different trends for ICA-based and nuisance-based methods. 
Moreover, it can be appreciated that all the between-network 
connections of the limbic systems appeared to be among the 
lowest ones for all pipelines, in both rs-fMRI and task-fMRI.   

With regards to the number of negative correlations, Min 
showed the lowest number of negative values (2.3 ± 2.4 % 
resting-state; 2.0 ± 3.9 % task), while the highest number was 
found in the case of Res6 (37.1 ± 6.2 % resting-state; 42 ± 4.7 
% task). The ICA-based pipelines overall showed fewer 
negative correlations than the regression-based ones. 
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Fig.8: Mean connectivity matrices and CV for each pipeline. The 
mean matrices across subjects and CV are reported for each pipeline 
from rs-fMRI (left) and task-fMRI (right) data. 

4. Discussion 

The issue of data pre-processing for fMRI analysis has been 
widely investigated, owing to its relevance for any subsequent 
data processing, and in light of the myriad of different noise 

removal methods developed across centres 
(Griffanti et al., 2015; Ciric et al., 2017; 
Parkes et al., 2018). Non-neuronal 
contributions to the BOLD signal are many 
and variable, and often correlated or co-
linear to the signal of interest (Caballero-
Gaudes and Reynolds, 2017). With this 
work, we aimed to substantially expand the 
current literature of fMRI denoising, by 
assessing the impact of different pre-
processing methods on both resting-state and 
task fMRI datasets. Taking into account the 
lack of a widely accept “gold standard” or 
“ground truth” in this context, we decided to 
benchmark performance by assessing the 
influence exerted on several fMRI metrics 
used to investigate brain function: spatially 
and temporally covarying networks 
(Griffanti et al., 2014; Pruim, Mennes, 
Buitelaar, et al., 2015; Pruim, Mennes, van 
Rooij, et al., 2015), connectivity (Griffanti et 
al., 2016; Dipasquale et al., 2017; Glasser et 
al., 2018) and statistical parametric maps 
(Tierney et al., 2016). Moreover, as 
previously highlighted (Power, Schlaggar 
and Petersen, 2015; Glasser et al., 2018), the 
use of the widely clinically adopted VF task-
fMRI brings about some a priori 
expectations, given the associated well 
characterised patterns of brain activation. 
Therefore, this work provides extensive 
guidelines on the impact of each denoising 
method on the signal of interest and 
associated connectivity measures for both 
resting-state and task fMRI, something that 
to our knowledge has never been previously 
investigated with such an extensive set of 
metrics.  

The pre-processing pipelines investigated 
in this work fall into two broad categories: 
(A) statistical modelling and (B) data-driven 
methods. The former usually takes the form 
of a regression analysis explicitly removing 
nuisance variables from the signal of 
interest, whilst the latter is based on the 
theory of ICA. This investigation did not 

attempt to find the best performing pipeline to pre-process 
functional imaging data, but rather to provide guidelines on 
the impact and consequences of using the most common ones. 
In fact, our results show that there is no clear “winner”, as 
measured by the metrics we implemented. Regression 
methods are excellent at detecting the artefactual signals 
associated with motion, but at the same time will necessarily 

Resting-state fMRI
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lead to a reduction of overall connectivity values compared to 
ICA methods (Pruim, Mennes, Buitelaar, et al., 2015; Parkes 
et al., 2018). Our results represent a substantial expansion of 
the state of the art, whilst agreeing with it in several key 
aspects. The performance of each pre-processing pipeline 
across benchmarks is summarised in Table 5. We are aware 
that more pipelines have been developed and reported in the 
literature, and that some of these pipelines we utilised might 
be considered as relatively “simple” in the context of rs-fMRI. 
However, assessing the impact of denoising methods in task-
fMRI data has scarcely been investigated. Thus, we decided to 
include a reference baseline (e.g. Min) and relatively simple 
pipelines (e.g. Res6), to provide an initial investigation into 
this complex topic, similarly to what other authors proposed 
(Mayer et al., 2019). In addition, we decided to exclude GSR-
based pipelines from the scope of this investigation. GSR 
remains a controversial step in the pre-processing of fMRI, 
despite having shown effective results in resting-state data 
(Ciric et al., 2017; Parkes et al., 2018). In task-fMRI, the 
global brain signal might be correlated to the administered 
paradigm (Mayer et al., 2019). We therefore believe that it is 
important to assess the impact of simplier denoising methods 
on task data, before benchmarking more complex pipelines 
which are still controversial in the context of the widely 
investigated rs-fMRI. A recent publication (Mayer et al., 
2019) assessed the impact of similar pipelines on task-fMRI 
designs (blocked and event-related). Our work provides 
additional information in this context, by comparing resting-
state and task fMRI, with respect to BOLD measures and brain 
connectivity. 

In this work, we chose the following metrics: DVARS, 
tSNR, tDoF, RSNs/activation maps, CNR and connectivity 
matrices, to understand the consequences of using one method 
over another, relative to a minimal amount of processing. 

DVARS is used to measure the degree to which each 
pipeline can remove motion within the time series, which is 
considered as a major contributor of spurious signal in BOLD-
fMRI. All pipelines achieved a decrease in DVARS compared 
to Min, highlighting more pronounced removal of motion 
artefacts. FIACH was able to accurately estimate motion time 
series and achieved the lowest DVARS values across all 
pipelines. Naturally, a potential risk of using a pipeline that is 
really good at removing any signal change associated with 
motion, is that it may also remove relevant signal that happens 
to be co-linear with the signal of interest. A common problem, 
particularly in the case of task-fMRI data, is that a stimulus of 
interest itself may trigger physical movement in human 
subjects, like nodding or a swallowing (Mayer et al., 2019). 
For rs-fMRI, the consequences are more complicated, as much 
of the signal related to pulsatile motion arising from breathing 
or heartbeat is intrinsic to the spatiotemporal relationship of 
groups of voxels highlighted by ICA methods. In the case of 
regression, the use of nonlinear expansion of the motion terms 

has been proposed to account for spin related contributions of 
motion related artefacts (Friston et al., 1996; Caballero-
Gaudes and Reynolds, 2017). Indeed, we reported a 
significantly decreased DVARS when Res24 was used as 
compared to Res6. However, the use of additional motion-
related regression, whilst accounting for additional variance, 
might also lead to increased loss of tDoF and therefore less 
reliable results in post-processing connectivity analyses 
(Caballero-Gaudes and Reynolds, 2017). 

TSNR can be conceptualised as a measure of variability in 
the signal of interest, and a reduction of this can be interpreted 
as a proxy of how well a pre-processing pipeline removes 
unwanted noise. However, the tSNR taken alone might not be 
indicative of the goodness of a pipeline and it needs to be 
accompanied by other measures, such as the loss of tDoF 
(Boscolo Galazzo et al., 2019). For instance, in task-fMRI, a 
decreased tSNR might be due to increased mean signal by a 
small amount (~1%) and increased SD by a higher amount, 
which is not related to how well a denoising method is actually 
performing. In ICA-based pipelines, increased tSNR can be 
found even when a significant number of meaningful 
components are removed from the data (leading to decreased 
SD) (Boscolo Galazzo et al., 2019). For both resting state and 
task fMRI data, we showed an expected decrease in signal 
variability across time, with an increase in signal mean for all 
processing pipelines; with both regression and data-driven 
methods performing well for the rs-fMRI data. Evidence in 
relation to task-fMRI data, however, is more complex. While 
investigating the overall mean tSNR of the GM was 
acceptable for rs-fMRI, the same could not be attained for 
task-fMRI, because of the specific influence of task-
associated stimulation on signal changes in very specific 
areas. We instead report tSNR values only for ROIs known to 
be reliably activated during this task, namely the L_IFG 
(Fig.3) and other key fronto-temporo-parietal language-
relevant areas, Fig.S1. In each region, we found an overall 
increase in the mean signal for both regression and data-driven 
methods, though regression methods did recover a higher 
mean signal. Signal variability, when compared to the 
minimally processed data, was generally increased both for 
regression and the data-driven methods. This is in accordance 
with previous publications on the topic (Griffanti et al., 2016; 
Dipasquale et al., 2017; De Blasi et al., 2018). For task-based 
fMRI, a reader might find the effect that the pre-processing 
methods have on the activated regions more intuitive to 
understand, which is conveyed via analysis of the CNR, 
discussed below.  

To compensate for the limitations of the tSNR highlighted 
above, we also considered the loss in tDoF as an additional 
quality measure. tDoF can be lost as a result of the noise 
removal strategy employed, and can substantially affect the 
power of the statistical tests implemented to uncover 
neurobiological effects of interest. Confound regressors and 
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censoring both reduce the tDoF in data (Ciric et al., 2017), and 
tDoF loss may introduce a bias if it varies across subjects. It is 
assumed that each time series regressed out constitutes a 
single tDoF. ICA-based methods showed higher loss of tDoF, 
as expected and already reported in the literature (Dipasquale 
et al., 2017). Indeed, Min, FIACH and Res6 were associated 
with a lower loss of tDoF which was constant across 
participants, being pre-specified in the model (Parkes et al., 
2018). AROMA showed a moderate loss of tDoF, which 
varied among subjects but was generally similar to Res24 
(Pruim, Mennes, Buitelaar, et al., 2015; Pruim, Mennes, van 
Rooij, et al., 2015; Ciric et al., 2017). The highest loss of tDoF 
occurred with FIXMC in both datasets, which may in turn 
relate to a higher risk of reduced sensitivity to the underlying 
signal of interest (Pruim, Mennes, van Rooij, et al., 2015). 
However, as pointed out by Ciric et al. 2017 (Ciric et al., 
2017), the loss of tDoF should be interpreted with caution and 
in conjunction with other measures, such as accuracy of 
network recovery and connectivity analyses, as the removed 
tDoF might correspond to artefacts rather than signal of 
interest (Ciric et al., 2017). 

Consequently, RSNs and Task Activation can be used to 
assess accuracy and reproducibility of the expected results in 
each pre-processing pipeline. In both resting-state and task 
fMRI, we computed the CC and DSC to assess how well the 
recovered areas of activation overlap with the expected 
activation maps. The latter were defined as (a) the RSN 
templates according to Smith et al. 2009 (Smith et al., 2009) 
for resting-state data, and (b) the VF activation template for 
task-fMRI data. For the former (a), the Smith et al. template, 
considered as gold standard, allowed us to enrich our 
comprehensive overview, by providing quantitative 
information on all the considered approaches and allow 
comparison between them, representing a fixed point to 
measure the distance from for all the seven pipelines. 
However, we have to keep in mind that the different approach 
employed to derive the template could lower down the 
similarity values when a different processing pipeline is 
employed to recover the RSNs. We also acknowledge that our 
eyes-closed acquisition differs from how the subjects were 
scanned to derive the Smith et al. template (eyes-open). 
However, we believe that the influence of the acquisition 
mode may be minor and unlikely to systematically bias our 
comparison of denoising strategies (Patriat et al., 2013). For 
the latter (b), we additionally computed sensitivity and 
specificity values in relation to the Neurosynth VF template. 
Percentage overlap of the activated areas in relation to GM 
and WM voxels was also computed, to assess the biological 
relevance of the activations, and specifically whether they 
would mostly be localised in GM areas. For the resting-state 
dataset, all advanced pipelines were able to accurately recover 
the main RSNs and showed similar CC and DSC values. As 
for task-fMRI, all pipelines related to an improvement of CC 

and DSC with the Neurosynth VF template when compared to 
Min, with the only exclusion of Res24. Regression-based 
pipelines performed poorly when compared to ICA-based 
ones for group GLM activation, which may appear surprising, 
as the former represent the most used pipelines in the context 
of task-fMRI literature. Res24 showed suboptimal recovering 
of RSNs and reduced activations in task-fMRI, which may 
relate to the decrease in tDoF resulting in a smaller number of 
voxels to be activated, despite preservation of the central 
location of the main activation clusters. FIACH accurately 
recovered all RSNs, with CC values above 0.5 and DSC 
greater than 0.4. In the case of group-level task activation 
maps, FIACH resulted in the activation of expected task-
related areas, and clusters exhibited the highest overlap with 
GM voxels (84%) among all pipelines; their extension and z-
scores, however, were lower. It is important to note that, as 
different from previous literature, the FIACH pipeline output 
was implemented in our analysis via regression of the FIACH 
regressors from the time series and saving of the residuals as 
denoised signal, rather than via inclusion of those regressors 
in a GLM (Tierney et al., 2016; Caballero-Gaudes and 
Reynolds, 2017; Kronbichler et al., 2018). In our work, this 
choice was motivated by the need of (a) obtaining a processed 
time series to be used for further connectivity analyses and (b) 
keeping the same analytical implementation for all the 
regression-based pipelines. We acknowledge, however, that 
this step might have had a differential impact on the FIACH-
processed data, leading to a reduced CNR and number of 
activated voxels. In terms of sensitivity and specificity, Min 
and ICA-based pipelines showed a good balance, Res6/Res24 
were associated with high sensitivity/specificity and relatively 
low specificity/sensitivity, respectively, which needs to be 
considered for appropriate assessment of activation maps after 
either of these pipelines is used. Finally, all advanced 
pipelines improved the overlap of group activation maps with 
GM locations when compared to Min, which can be 
interpreted as an indicator of recovered signal within 
biologically plausible locations. 

In task-based fMRI, CNR describes the difference in the 
means between the task-on condition and the task-off 
condition (being represented here by VF and baseline, 
respectively) normalised by the standard deviation in the 
baseline condition. The CNR is more commonly represented 
as a statistical parametric map of voxel-wise z-scores (Fig.6). 
Results in the literature are commonly displayed with a 
reported set threshold of peak significance of a particular 
number of voxels above this threshold (Shen and Q. Duong, 
2011; Molloy, Meyerand and Birn, 2014). For the purposes of 
this investigation, we use the time series with the maximum z-
score (Storti et al., 2018) even if this might lead to different 
brain areas in different subjects or pipelines. This approach 
has been previously used in the literature (Storti et al., 2018) 
and it was chosen to provide a general metric to assess pipeline 
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performance. With reference to minimal processing, the 
pipelines recovering the highest signal of interest were both 
data-driven methods, FIX and AROMA, with the lowest yield 
attained by FIACH. 

Similarity of mean connectivity matrices measured via 
pairwise correlations, and the CV of the correlation between 
regions, assessed the impact of denoising methods on the 
subsequently obtained FC matrices. We generally found 
higher correlations for the task-based datasets, which may be 
ascribed to the effect of task-related activity, leading to more 
homogeneous and generally higher brain connectivity 
estimates. The specific effects of task-based activity on FC 
values are not yet fully elucidated, and may be highly 
dependent on the task performed. For example, in Cole et al. 
2014, connectivity matrices obtained from different tasks 
showed different structure, thought being highly correlated 
with one another and with the matrices obtained from resting-
state data (Cole et al., 2014). ICA-based pipelines led to 
similar mean correlation values and comparable CV matrices 
across pipelines and datasets. Reduced correlations and higher 

number of negative correlations were found in the case of 
Res6 and FIACH for both datasets. The results obtained for 
Res24 were somehow unexpected in the case of task. Indeed, 
we expected to find a reduced connectivity as in the case of 
resting-state data and in line with the other regression-based 
pipelines. However, we reported correlation values and 
variability in range with Min and ICA-based pipelines, as 
opposed to the resting-state dataset where Res24 performance 
was in line with the other regression-based pipelines.  

This study has limitations. As a general caveat of all 
investigations in this field, we ought to emphasise the lack of 
an absolute noise-free gold standard, which arguably 
complicates comparisons among different denoising strategies 
(Ciric et al., 2017; Dipasquale et al., 2017; Parkes et al., 
2018). To overcome this limitation, we implemented task-
fMRI dataset relating to an extensively used paradigm, which 
may provide higher level of generalisability and ‘ground truth’ 
as the expected areas of activations are known a priori. A 
further limitation is that the subjects were not the same for 
resting-state and task fMRI, owing to the unavailability of 

 DVARS tSNR Lost DoF R DSC Sens/ 
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CNR Overlap  
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Spec 

NA 
 
- 

NA 
 

+ 

NA 
 

+ 

Low/negative 
values 
 
~ICA-based 

FIACH + 
 

+ 

+ 
 

+ 

~Res6 
 

~Res6 

>0.25 all 
 

NA 

>0.3 all 
 

NA 

NA 
 

NA 

NA 
 
- 

NA 
 

+ 

NA 
 

+ 

Low/negative 
values 
Low/negative 
values 

AROMA + 
 

+ 

+ 
 

+ 

~Res24/ 
FIX 

~Res24/ 
FIX 

>0.25 all 
 

~Min/Res6 

>0.3 all 
 

~Min/Res6 

NA 
 

High, 
High 

NA 
 

~Min 

NA 
 

+ 

NA 
 
- 

Highest mean, low 
SD 
 
~FIX 

FIX + 
 

+ 

+ 
 

+ 

~Res24/ 
AROMA 
~Res24/ 
AROMA 

>0.25 all 
 
 
~FIXMC 

>0.3 all, 
but TEMP 

 
~FIXMC 

NA 
 

High, 
High 

NA 
 

~Min 

NA 
 

+ 

NA 
 

+ 

~other ICA-based 
 

~AROMA 

FIXMC + 
 

+ 

+ 
 

+ 

- 
 
- 

>0.25 all 
 

+ 

>0.3 all, 
but TEMP 

+ 

NA 
 

High, 
High 

NA 
 
- 

NA 
 

+ 

NA 
 

+ 

~other ICA-based 
(more modules) 

~other ICA-based 
(slightly noisier) 

Table 5: Summary of the performance of each pre-processing method with respect to benchmarks, considered in this study. For a given 
method and benchmark, the top/bottom row reports the performance in the resting-state/task fMRI dataset. The +/- symbol indicates 
good/bad performance for a given metric and pipeline. In the case of DVARS, tSNR, lost DoF, CNR and overlap GM/WM, the results are 
reported with respect to Min, so that +/- refers to improvement/worsening when compared to minimum pre-processing (Min). For the other 
benchmarks a general summary is reported. The best/worst performance is indicated in green/red. Overall, we found heterogeneous 
performance of each method, across benchmarks. This summary is intended for the reader to identify which pipeline works best for a given 
study. NA: not available. 
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subjects with both acquisitions. Whilst the use of two separate 
datasets may add variability to the analysis, we found that the 
effects of noise removal via different pipelines were generally 
consistent between resting-state and task fMRI data. This 
finding points to a higher level of generalisability of our 
results across fMRI acquisitions. These findings are also in 
line with results by Pruim et al., 2015 (Pruim, Mennes, van 
Rooij, et al., 2015), who found comparable results between 
resting-state and task fMRI when assessing those to validate 
the AROMA pipeline. We acknowledge that our sample size 
was generally lower than previous studies assessing the 
impact of denoising methods on rs-fMRI data (Pruim, 
Mennes, Buitelaar, et al., 2015; Ciric et al., 2017; Parkes et 
al., 2018). However, our study is the first to convey an 
extensive comparison of pre-processing methods in both 
resting-state and task fMRI data, acquired using widely 
clinically employed acquisitions. Investigating how the fMRI 
signal and derived FC measures may change as a result of 
different denoising strategies is timely and important to 
inform experimental design and post-processing analyses. 
Therefore, this work provides relevant novel evidence and 
extensive guidelines on how to pick the best pre-processing 
depending on the objective of the study. 

5. Conclusions 

We described a range of commonly used noise removal 
pipelines for BOLD-fMRI time series and illustrated their 
application to both resting-state and task fMRI dataset 
experiments. We also highlighted the heterogeneity in 
performance of pipelines across benchmarks, especially with 
respect to FC results. We envision this work as a “brochure” 
for the users to choose the most appropriate method for their 
data (Table 5), rather than as a performance indicator of any 
one pipeline in particular. 
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