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Abstract

The manipulation of atoms and molecules at solid surfaces by electronic ex­

citations with electrons (or holes) emitted from the tip of a scanning tunneling 

microscope (STM) or with laser radiation is both of applied and fundamental inter­

est, e.g. for micro- and nanostructuring of materials, the clarification of elementary 

(catalytic) reaction mechanisms and for the question of how to treat the quantum 

dynamics of a laser or STM driven “system” (the adsorbate) in contact with a 

dissipative (energy-withdrawing) “bath” (the substrate).

Desorption induced by electronic transitions (DIET) and its variant DIMET (M 

=  multiple) are among the simplest possible “reactions” of adsorbate-surface sys­

tems; usually involving extremely short-lived electronically excited intermediates. In 

this thesis, the ultra-short dynamics of directly (localised to the adsorbate-substrate 

complex) and indirectly (i.e., through the substrate) stimulated DIET and DIMET 

processes was studied for Si(100)-(2xl):H(D) and P t(lll) :N O .

Isotope effects and the influence of substrate temperature and applied electric 

fields on the desorption yields were examined and possibilities to actively control 

the outcome (e.g. yields, isotope ratios), for example by laser shaping techniques, 

were investigated.

For that purpose, time-dependent wave packet methods and open system den­

sity matrix theory were used to account for energy dissipation and thus resulting 

ultrashort lifetime of the electronically excited states involved.
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Chapter 1

Introduction

1.1 General aspects

Surfaces play an important role in catalysis [1, 2], semiconductor technology [3, 

4] and corrosion research [5, 6] and considerable progress in surface science has 

been achieved during recent years. A large variety of experimental techniques has 

been developed giving information about the geometric, electronic and vibrational 

structure of solid surfaces [2].

Lasers [7] and Scanning Tunneling Microscopes (STM) [8] are powerful tools 

for modern physics and physical chemistry in general and for surface science in 

particular. Beside their use for imaging or spectroscopically detecting the surface 

and the ad-species, they can also be used to actively manipulate them [9, 10]. Simple 

vibrational or rotational excitations of the adsorbate can be induced, as can specific 

lateral motion. Additionally, bond breaking can be enforced, leading to adsorbate 

dissociation or desorption of the adsorbed species.

These processes usually involve interactions of the adsorbate with a large number 

of degrees of freedom, e.g. lattice phonons or electron-hole pairs of a substrate, which 

makes a proper theoretical description very challenging. The presence of the surface 

provides new excitation/ relaxation channels in addition to the ones that exist in the



gas phase. Energy dissipation may involve the transfer of energy and/or charged 

particles (e.g. electrons) between substrate and ad-species. A universal possibility 

for surface adsorbed particles is the energy transfer via phonon coupling. More 

efficient electronic couplings may operate on substrates with small or no band gaps; 

the details of the excitation/ relaxation mechanisms usually depend on the substrate 

(see below).

Advances in surface preparation and vacuum techniques, and above all in laser 

technology [2], have led to an enormous increase of activity in the field of surface 

photochemistry [11, 12]. Major fields of interest include photo-excitation and relax­

ation mechanisms, adsorbate-surface interaction and the corresponding dynamics 

[7]. In many modern surface experiments, lasers are indispensable in detecting and 

analysing product quantum state distributions. Furthermore, laser photons have 

been shown to open new reaction channels which are not accessible by thermal 

activation [7]. The resolution of low-energy continuous wave lasers allows one to 

concentrate on specific dynamical processes with minimal interferences from un­

wanted processes. With pulsed femtosecond lasers, the study of the chemistry of 

individual bonds is possible and dynamics and reaction time scales can be probed 

rigorously [13].

The invention of the Scanning Tunneling Microscope (STM) [8] has allowed prob­

ing of material structure and chemical reactions with atomic resolution. Further­

more, the possibility to induce local bond breaking allows surface modification of 

materials at the atomic and nanometer scale [14].

There are four basic mechanisms underlying the spatially resolved manipulation 

and chemistry with STM, which involve atomic forces, tunneling and field-emitted 

electrons and the electric field. While atomic forces are mainly used to slide and 

push atoms and molecules along the surface [15, 16], tunneling electrons can be 

used to enforce desorption of adatoms [17, 18, 19] or to transfer single atoms [20, 21] 

or molecules reversibly [22] between substrate surface and the STM tip (“atomic 

switch” , see also [23]).



1.2 Excitation mechanisms

The manipulation of adsorbates can be initiated by photons, electrons, holes, or 

ions. The possible outcomes are, for example, vibrational or rotational excitations 

of the adsorbate [7, 24, 17], dissociation of the ad-species or the desorption of atoms 

and molecules from the surface [7, 25]. Desorption is not only the best studied 

“reaction” of them all, it is also of practical relevance for the nanostructuring of 

materials and the passivation of microelectronic devices [26].

Laser and STM-induced desorption via short-lived electronic states is the main 

subject of this thesis. One can distinguish between direct and indirect substrate- 

mediated excitation mechanisms [27]. In surface-photochemistry, the direct mecha­

nism prevails typically for insulator and semiconductor surfaces and results from the 

coupling between the radiation field and the transition dipole moment of the adsor­

bate. On metal surfaces, an indirect mechanism predominates. UV/vis lasers create 

’’hot electrons” , i.e. electron/hole pairs, in the solid which can tunnel to empty 

resonant adsorbate levels thus driving the adsorbate-substrate dynamics indirectly

[27].

The initial excitation of an adsorbate on a metal surface is typically short-lived 

(~  femtoseconds) since the resonant electronic level of the adsorbate is broadened 

due to coupling to the continuum states of the metal. In photochemistry, direct 

and indirect excitation mechanisms can be distinguished experimentally by the de­

pendence of the cross section on the angle of incidence and the polarization of the 

laser light. In case of a substrate mediated process, the desorption yield scales 

with substrate absorptivity, whereas for direct excitations it scales only with the 

magnitude of the electric field. In case of indirect electronic excitation involving 

electronically excited states, one can distinguish between the single and the multi­

ple excitation limits on the time scale of the vibrational relaxation of the adsorbate. 

Continuous wave (cw) or nanosecond (ns) lasers with low laser intensities produce 

only a small concentration of hot electrons and thus rare excitation events. Because
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each desorbed particle has been excited initially only once, the desorption process 

is characterized as DIET (Desorption Induced by Electronic Transitions^ single ex­

citation limit). Intense laser pulses in the pico- or femtosecond regime create a 

high density of electron/hole pairs in the metal surface, thus leading to multiple 

excitation/deexcitation of the adsorbate (DIMET, Desorption Induced by Multiple 

Electronic Transitions^ multiple-excitation limit).

DIET and DIMET can cause very different experimental outcomes [28]. In pho­

tochemistry, DIMET can be distinguished from DIET by various characteristics, the 

so-called “DIMET hallmarks” [28]: (1) The desorption yields are usually higher in 

DIMET; (2) the desorbates are translationally and vibrationally “hotter” in DIMET; 

(3) the desorption yield scales linearly with the laser fluence T  in case of DIET and 

according to T'^(n > 1) for DIMET; (4) the translational and vibrational energy of 

the desorbates is independent of T  in the case of DIET, while they increase with 

the laser fluence in the case of DIMET.

Somewhat analogous to DIET and DIMET are desorption mechanisms induced 

by STM electrons at positive sample bias, where it is possible to delineate two dis­

tinct mechanistic routes as well. High energetic, field-emitted electrons from the 

STM tip can cause direct excitation of the adsorbate. When the electron energy 

exceeds a certain threshold to form a resonance, i.e., a short-lived electronically ex­

cited intermediate, eventually the surface-adsorbate bond can break ( “above thresh­

old mechanism”). On the other hand, lower energetic electrons tunneling from the 

STM tip to the adsorbate system can induce multiple vibrational excitation and des­

orption becomes possible by “vibrational ladder climbing” ( “below threshold mech­

anism”) [14, 29]. The “ladder climbing” pathway is often less efficient than the 

“above threshold mechanism” and is relevant only for systems with long vibrational 

lifetimes.

Vibrational heating is also believed to be the underlying microscopic mechanism 

in recent STM desorption experiment by Stokbro et al. at negative sample bias. 

In this case, holes instead of electrons tunnel from the tip towards the sample. A
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desorption mechanism was suggested which involves inelastic scattering of a tun­

neling hole with a hole resonance on the sample, thus causing “vibrational ladder 

climbing” and subsequent desorption [30].

1.3 D issipation

A significant difference between the dynamics on solid surfaces and its correspond­

ing gas-phase counterpart is the influence of surfaces and adsorbate phonons and/or 

electron-hole pairs. The surface provides the adsorbate system with a dissipative 

environment. Due to the environment not only is indirect adsorbate excitation (see 

above) possible, but energy and phase relaxation of an excited adsorbate is possi­

ble by interaction with the environment. Energy can be transferred to substrate 

phonons, for example, or temporary trapped electrons can tunnel back to the sub­

strate conduction band after excitation. Dissipation phenomena on surfaces often 

lead to ultrashort excitation lifetimes in the range of 10“ ^̂  to seconds for

electronic and 10“  ̂ to for vibrational excitations. The dissipation can signif­

icantly influence the primary dynamics, thus a crucial point in theoretical surface 

chemistry is the treatment of the interaction between the adsorbate, the surface and 

the excitation source (e.g. photons, electrons).

In surface-adsorbate systems, dissipation occurs microscopically through non- 

adiabatic coupling of the electronic states. The electronic excitation and quenching 

process has for example been described by multiple state models [31] or by explicit 

inclusion of electronic degrees of freedom [32]. However, in practice mostly a phe­

nomenological relaxation rate is chosen to fit experimental data and dissipation, in 

particular continuous electronic quenching, can be included in the dynamics calcu­

lation via imaginary potentials [31, 29].

A consistent quantum treatment of a so-called open system  is possible within the 

framework of open system density matrix theory [33]. Dissipation is included here as 

an additional term to the Hamiltonian (dissipation-free) formulation of the nuclear
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time evolution. The underlying equation of motion is the Liouville - von Neumann 

equation, for which efficient algorithms for the numerical integration have been 

developed within recent years [34, 35, 36]. There are different alternatives for the 

treatment of the dissipative term, for example the dynamical semigroup ansatz by 

Lindblad [37] or the treatment of the dissipation in a microscopical theory according 

to Redfield [38].

1.4 M odels for the desorption processes

Traditionally, desorption resulting from non-adiabatic electronic transitions has been 

described with the help of simple models. Typically, just two electronic states and 

the desorption coordinate  ̂ as a single mode are included. In the original variants, 

the adsorbate motion was treated classically.

The two most prominent models of this type are the Menzel-Gomer-Redhead 

(MGR) [39, 40] and the Antoniewicz model [41]. In the former, shown in Fig.1.1, an 

initial Franck-Condon transition is assumed from a bound electronic ground state 

\g) to a repulsive excited state |e), where the adsorbate moves outward, i.e., further 

away from the surface. The coupling of the adsorbate to the electronic or phonon 

degrees of freedom of the substrate causes ultrafast energy relaxation (quenching) 

back to the ground state, from where the particle can desorb if it has gained enough 

kinetic energy in the excited state.

In contrast to the MGR model, the electronically excited state in the Antoniewicz 

model is a bound state (see Fig. 1,2). The excited state equilibrium bond length is 

shorter than in the ground state, hence the excited adsorbate moves initially towards 

the surface before relaxation to the ground state and eventually desorption occurs. 

This scenario was suggested by Antoniewicz for the electron- or photon-induced 

desorption of neutral species from a metal surface. A charge transfer from the 

metal to the adsorbate after the initial excitation is assumed. The now negatively 

^usually the distance of the centre-of-mass of the desorbing species from the surface
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Figure 1.1: Menzel-Gomer-Redhead model for the photo-induced desorption from 

solid surfaces. After an initial Franck-Condon transition (1) from the electronic 

ground to the excited state, the system evolves there for a short time and moves 

towards larger adsorbate-surface distance Z  (2) before it relaxes back to the ground 

state (3). Bond breaking (4) can occur i f  the particle has gained enough kinetic 

energy on the excited state surface.
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Figure 1.2; Antoniewicz model for the electron- or photon-stimulated desorption 

from metal surfaces. After the initial Franck-Condon excitation to the excited state 

|e) (1 ), the now negatively or positively charged adsorbate is attracted to the surface 

by an image-potential. The system evolves in the excited state towards the surface 

(2) before it is quenched back to the ground state \g) (3). From there it can desorb 

i f  it has gained enough potential energy in the excited state.

14



or positively charged adsorbate is initially attracted to the surface by an image- 

potential, before the electronic quenching occurs on an ultrashort time scale.

Despite being very simple, both the MGR and the Antoniewicz model were re­

markably successful in explaining a wide range of phenomena, such as subtle isotope 

and temperature effects, non-thermal energy distribution of desorbates, or “thresh­

old” and “resonance” effects for excitation wave length (in photochemistry) or elec­

tron energies (in electron-stimulated desorption). To explain specific observations 

for specific systems, both scenarios were improved in many ways in recent years 

years[12]: (1) Multi-state rather than two state models were developed; (2) quan­

tum effects for the nuclear motion were included, and (3) multi-dimensional models 

including internal adsorbate modes were proposed.

1.5 Outline of the work

The outline of this thesis is as follows: First, in section 2, general aspects of the 

models and the theoretical simulations are outlined. The open system density ma­

trix approach is reviewed and different quantum dynamical methods to solve the 

underlying Liouville - von Neumann equation are introduced.

In section 3, the STM-induced desorption of hydrogen and deuterium from a 

Si(100)-(2xl):H/D surface is investigated, both in the “above” (section 3.2) and 

the “below threshold” regime at positive sample bias (section 3.4), as well as with 

negative sample bias (section 3.2.6). The general influence of the external field 

present in the STM is studied in section 3.3.

For the STM-induced desorption following the “above threshold” mechanism, 

the (hypothetical) case of coordinate-independent decay of the electronically excited 

state is considered in subsection 3.2.3 to address isotope effects and to quantify the 

importance of a quantum treatment. The effects of coordinate-dependent electronic 

relaxation are investigated in subsection 3.2.4, and finite surface temperature is 

included in subsection 3.2.5.
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Different models for the excitation and dissipation rates are discussed in sub­

sections 3.4.4 and 3.4.5 for the STM-induced desorption in the “below threshold” 

limit. Surface temperature effects and the dependence of the desorption yields on 

the tunneling current and the applied voltage are studied in subsection 3.4.6.2.

In section 4, the laser-induced desorption of H and D from Si(100)-(2xl);H/D is 

considered and the use of femtosecond lasers is suggested to influence the desorption 

yields and the corresponding isotope ratios.

In the final part of this work, the photo-induced desorption of NO from P t ( l l l )  

(section 5) is investigated. This system is one of the best studied metal/adsorbate 

systems (see for example [42, 43, 44, 31, 45, 46, 35, 47, 48, 49]). For this system an 

indirect, “hot” substrate electron excitation mechanism is assumed [48, 49]. Two- 

dimensional generalized model potentials, including the NO-Pt distance and the NO 

vibrational coordinate, are adopted from Sathyamurthy and co-workers [47] and the 

nuclear desorption dynamics is studied within the DIET (section 5.4) as well as the 

DIMET limits (section 5.5).

For DIET, the relevance of the negative ion model is systematically addressed and 

the effects of coordinate-dependent electronic quenching are investigated. Finally, 

the sub-ps laser-induced DIMET dynamics is studied and the translational and 

vibrational energies of the desorbates are compared for the DIET and DIMET case. 

A final section 6 concludes this work.
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Chapter 2

Quantum dynam ical m ethods

2.1 Outline of density m atrix theory

2.1.1 The density matrix formalism

The dynamics of simple, isolated systems like the harmonic oscillator or the hydrogen 

atom can be described by the time-dependent Schrodinger equation ^

ih ^^ \^ (t))  = H\<Sf(t)) . (2.1)

An unambiguous solution, |^ (t)), of this first-order differential equation is obtained 

by determining an initial wave function \^{ t = 0)). Provided Eq.(2.1) can be solved, 

the time-dependence of physical observables is given by the expectation values of 

the related Hamiltonian H  with respect to the time-dependent wave function.

However, under most real life conditions systems are hardly isolated and pertur­

bations from the environment have to be taken into account. Often the disturbances 

of the relevant system by the environment are weak and can be neglected at first. If 

the environment is characterised only by a small number of degrees of freedom one 

can attem pt to solve the time-dependent Schrodinger equation again, but now for the 

^The Schrodinger equation is universal, but so far, unfortunately, it can be solved exactly for 

systems with few degrees of freedom only.
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system and the small environment. Unfortunately, such an approach is impossible 

if the environment is large, i.e. forming a macroscopic system. This could be a con­

densed phase (with or without a finite macroscopic temperature) or a large molecule 

as scaffold surrounding a small, active quantum system, e.g. a chromophore. In this 

case one has to resort to statistical methods.

Any coupling of an open system to the external degrees of freedom of a “bath” re­

sults in energy exchange between the system and its environment. If initially energy 

is disposed in the system, this will be transfered to the environment, i.e., degrees of 

freedom of the surrounding bath accept the energy and distribute it among them­

selves. If the reservoir is a macroscopic system, the energy dissipates over the huge 

number of degrees of freedom and the environment does not “feel” this increase of in­

ternal energy. The energy transfer from the system to the bath is termed relaxation. 

If there is no chance for the energy to move back into the system, the unidirectional 

energy exchange with the environment is called dissipation. Obviously, on short 

time scales the distinction between relaxation and dissipation is likely to be blurred 

and hence there is no strict discrimination of both terms in the literature.

A consistent quantum mechanical description of open systems coupled to an 

environment is possible by density matrix theory, where the concept of the density 

matrix represents a combination between a quantum-mechanical and a statistical 

description of the system.

The density operator p for a system represented by a mixture of pure states is 

defined as:

P = J2Pk\'^k)i'^k\ ■ (2.2)
k

Pk can be interpreted as the probability to find the system in a pure state k described 

by the state vector |T;t) with

0 < Pa: < 1 and ^  Pfc =  1
k

By representing p within an orthonormal basis {|0n)}, e.g. eigenfunctions of 

H  with coefficients Onk, one can describe the density operator as matrix p with

18



elements;

Pnm — {(pn\p\(pm) ~  Pk (^nl^A:) (^/c |^m) — Pk^nk^mh • (2.3)
k k

The diagonal elements represent the population of state \4>n), while the off- 

diagonal elements pnm describe the coherences between state |0n) and \(f)m)- For the 

norm of p one obtains:

Tr{p} = Tr{Ps
N

~
n=l

= Yl̂ 'Pk{4>n\̂ k){̂ k\(l>n)
n k 

k n
~  ^2iPk = 1 (2.4)

k

by using the completeness relation J2n \M {^n \ = 1-

The expectation values of operators A  are given from the trace relation:

( i )  =  =
k

~  Pnm-^nm • (2.5)
n,m

In general, the expectation values depend on both the populations and the 

coherences pnm- In particular, if the \(f)n) are eigenfunctions of H, then for all 

operators [H,A\ /  0 the off-diagonal elements pnm of P contribute to (Â).

2.1.2 Time evolution of p: The Liouville - von Neumann 

equation

In a dosed system, the time-evolution of p is given by the non-dissipative Liouville 

- von Neumann equation:

dt dt ^

19



=  [H^P] • (2.6)

This equation is equivalent to the time-dependent Schrodinger equation (2.1) 

and has the formal solution:

p{t) =  e^«‘p(0) =: tp (0 )  , (2.7)

with: Co =  — o]

where o stands for the operator the Liouvillian superoperator will operate on. The 

propagator T maps the density matrix at time to on the density matrix at time to-\-t. 

The practical solution of Eq.(2.7), however, requires the propagation of a density 

matrix rather than state vectors. This disadvantage of density matrix theory is only 

in certain cases outweighed by the advantage that both the time evolution of mixed 

and pure states can be considered with a single propagation. In contrast, to treat 

e.g. a thermal ensemble within the Schrodinger equation, a wave packet propagation 

has to be done separately for each of the pure states contributing to it.

Obvious advantages of density matrix theory whereas arise from its use in open 

system quantum dynamics where the coupling to the environment allows for energy

and phase relaxation of the system. If the system and the bath are initially separable,

it can be shown that the system is described by the “reduced density operator’’ pg, 

which statishes the dissipative (non-Markovian) Liouville - von Neumann equation

[33]

=  i hCps { t )  =  [H„p,{ t ) ]  + dTCD{t ,T) {ps{T) }  (2.8)

in which the bath can be left out of the dynamics, but its effects on the system are 

reproduced indirectly in this equation of motion. The reduced density operator ps 

is the trace of the total density over the bath modes and depends only on a limited
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number of relevant system degrees of freedom:

:= =  ^(o/|;ôM|Q!) , (2.9)
a

where \a) are eigenstates of the bath Hamiltonian È b - The unobserved environment 

now enters solely as a dissipative correction to the Hamiltonian evolution. The 

Hamiltonian is also indicated with Hg to stress that it only refers to the system. 

It is an effective Hamiltonian because even though it depends only on the system 

modes, it includes the static (averaged) distortion of the system dynamics that is 

due to the environmental degrees of freedom.

The dissipative part Jq d rC ^it, T){pg(y)} depends on the fluctuations of the bath 

variables. It accounts for energy and phase relaxation, i.e., the modification of the 

distribution Eq.(2.2). In general, the time evolution of the density operator is “non- 

Markovian” meaning that the density operator at time t depends on all previous 

states at all times r; the system develops a memory because the relative “answer of 

the environment” depends on how the relevant system behaved in the past.

To have the dynamics local in time, the so-called Markov approximation has to 

be made. It is valid when the environment needs much less time to go back to the 

equilibrium than the system to change significantly, i.e. when the correlation time 

of the bath is much smaller than the characteristic time scale of the system. The 

Markov approximation breaks down if the bath correlation times are long, e.g. when 

the environment is represented by slowly moving solvent molecules or low frequency 

phonons. Under the Markov approximation, i.e., when memory effects are neglected, 

Eq.(2.8) turns into [33]:

— p s  =  C p s { t )  =  —-  [ H g ,  p s { t ) ]  +  C D p s { t )  . (2.10)

Here C o p s i t )  is a function of p g  at time t  only and is usually linear.

For the proper choice of this dissipative part one has several possibilities

Within the Markov approximation, the Redfield theory [38] and the dynamical 

^How to choose the actual form form oî Cd  is still a matter of dispute!
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semigroup approach by Lindblad and Kossakowski [50, 51] are the most widely 

used alternatives. In Redfield theory, one starts from the complete system and elim­

inates the environmental degrees of freedom by projector operator techniques. This 

is combined with perturbation theory to treat the system-bath coupling microscopi­

cally. However, Redfield theory is known to violate complete positivity, which makes 

it impossible to generally interpret the diagonal elements of the density matrix as 

probabilities.

The Lindblad formalism is more phenomenological and preserves complete pos- 

itivity by construction. Within this approach, the dissipative part of Eq.(2.10) 

becomes

CdPs = '^{C kPsC l -  -  [ClCkj Ps]+) (2.11)
A;=l ^

with Ck being the so called Lindblad operators. They determine “what” dissi­

pates “how fast” in each of the K  dissipative channels k; [ ]+ denotes the anti­

commutator. The operators Ck are often chosen to fit selected experimental data, 

e.g. vibrational lifetimes.

In this work, the Lindblad form is used in all the dissipation models, because 

the interest in small (desorption) probabilities demands a strict positive density 

matrix. Furthermore, the complexity of the systems studied (with electron-hole 

pairs, phonons and multiple electronic surfaces) makes it almost impossible to derive 

sensible dissipation operators microscopically.

2.2 Numerical realization of the tim e propagation

How to represent the operators necessary to portray the phenomena under study 

and how to approximate the time evolution determined by the dissipative Liouville 

- von Neumann equation are essential points in the treatment of realistic systems.

For the time evolution of a density matrix, there are two main approaches:

(i) a direct strategy, where Fq.(2.8) or Fq.(2.10) is solved by propagating the
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density operator, or

(ii) indirect schemes, where many different wave packets are propagated and the 

observables are computed via incoherent averaging.

The direct approaches are usually general, being equally applicable to Redfield or 

Lindblad types of dissipation, as well as to non-Markovian forms. A disadvantage of 

the direct methods is their unfavourable memory requirement, which scales at least 

as (the size of the density matrix is LxL) where L  is the size of the flilbert space 

of the system. The wave packet based indirect methods usually offer considerable 

savings, because only L component vectors (wave functions) have to be propagated. 

However, this has to be done N  times to compute the observables via incoherent 

summation. In cases where N  < L, not only memory can be saved, but even a 

speed-up in computational time relative to the direct method is possible.

2.2.1 The Newton interpolation — a direct method

In the direct methods, a single density matrix is propagated forward in time; in the 

Markovian case

Ps(t) = e‘-‘Ps{0) . (2.12)

The total Liouvillian C = Co + jCd not Hermitian and the eigenvalues {A/} in the 

eigenvalue equation

CÊi = XiÈi (2.13)

are complex. Eq.(2.12) can be generally defined by spectral decomposition and for 

a restricted, discrete spectrum be formulated as follows [34]:

Ps{t) = J2 e^‘^ Ê iT r { Ê jp M }  ■ (2.14)
i

If the eigenvalues {Â } and the eigenoperators are known, the time evolution 

is given analytically. However, the solution of the eigenvalue problem Eq.(2.13) is
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not only costly (for L basis functions a x L'  ̂ matrix has to be diagonalised), but 

sometimes even impossible.

Alternatively, the function f ( x )  := f{Ct)  = can be exactly represented by a 

Lagrange polynomial Ii{x) = when the  ̂+  1 =  eigenvalues

of C are used

(2.15)
i = 0

_  gAi i  _ ( £  — Af&) • • • (£ — A^+i&)(£ — A%_ià) ••• (£ — Apâ) 
i - Q  —  A j )  • • • ( A i  —  A j + i ) ( A i  —  A i _ i )  • ' • ( A i  —  A o )

with ^  being the identity superoperator. Eq.(2.15) is equivalent to Eq.(2.14), hence

n  • (2.16)

The function f{Ct)  can also be exactly represented by a Newton polynomial

e^‘ =  ^ c , - iV , ( £ i )  (2.17)
3

with

c, = / ( A o , A i , . . . , A , ) . r ^  (2.18)

and

Nj[jCi) = (>C — Aj_i^)(>C — Aj_2^) • • • {jC, — Ao^)t'^ . (2.19)

Unfortunately, Eq.(2.17) still requires knowledge of {Ai}. To avoid the diagonalisa- 

tion of £ , one can approximate the propagator by using

M

. (2.20)
j=o

The coefficients are now functions of the sampling points {zj}

Cj = f{zo, Zi , . . . ,  Zj) • t~^ with j  =  0,1, • • •, M  . (2.21)

The sampling points are still complex, but not identical to {A/} and the number 

m =  M  + 1 of sampling points is smaller than the number of eigenfunctions, I. With
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the approximated polynomial Eq.(2.20) the propagator becomes

+  Ci(/2 — +  C2(E — Zi^)(>C — ZqÔ̂) +  ■ • •

+  ~ ~  Zm-2^) ' ' ' {C — Zq^) (2.22)

where

Cj ;= Cj ’ t  ̂ = f  {zq, z i , . .. ,Zj) . (2.23)

The eigenvalue spectrum of C is located in the left half of the complex plane. 

The complex sampling points are located on a rectangle extending from —ilhcmax 

to +i/hsmax along the imaginary axis, and from 0 to —Wmax on the real axis, 

where Smax is the Hamiltonian energy maximum and Wmax the maximum dissipative 

rate. Because / { zq, Zi , . . . ,  Zj) is an analytical function, it is uniquely defined by its 

function values on the “domain boundary” [52] and it was shown by Berman et al.

[34] that one obtains “nearly” optimal interpolation polynomials, if the sampling 

points {zj} are uniformly distributed on the domain boundary. If the domain is the 

unit circle, this regular distribution is given by

Zk =  e’*’‘ =  with k = Q , l , M  . (2.24)

There are conformai mapping schemes for domains of other shape. If the target 

is a polygon (e.g. a 4-polygon like a rectangular defined around the eigenvalue 

spectrum of £ ), the mapping can be done with the help of Schwarz-Christoffel 

conformable mapping [53]. Alternatively, especially for higher polynomial orders, 

one can determine the sampling points via the so-called Leja algorithm [54].

By using the Newton interpolation scheme, one avoids the prohibitively expensive 

and memory-consuming diagonalisation of a four index Liouvillian matrix. Only 

three L x L matrices have to be kept in central memory and only actions of type 

C p s  are required. The Newton algorithm for density matrix propagation can be 

summarised as follows:

1. Initiation
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• choose basis for operator representation

• calculate matrix elements

• construct initial density matrix pg(0)

2. Propagation

• define domain in complex plane

determine sampling points 3

• calculate Cps in each time step of the propagation cycle

3. Final analysis

Details about the representation and the propagation parameters will be given 

in the application sections.

2.2.2 Stochastic wave packet methods

As an alternative to the direct solution of the Liouville - von Neumann equation 

(2.10) described in the previous chapter 2.2.1, one can use indirect, wave packet 

based methods. These methods are not always general and the methods described 

below were known only for dissipative models of Lindblad form [55] in the first place. 

However, there are recent extensions of stochastic wave packet methods for Redfield 

dissipation [56, 57] and even non-Markovian dissipation [58].

A stochastic method in which the dissipation is taken into account by random 

quantum jumps is the widely used Monte Carlo Wave Packet Method (MCWP), 

developed by Mplmer and co-workers [55, 59]. Here, the density matrix is replaced 

by an ensemble of wave functions whose dynamics follows a non-Hermitian time- 

dependent Schrodinger equation. In each time step, a random number is generated, 

which determines whether a quantum jump occurs or not (see section 2.2.2.1). 

^Within this work, the Schwarz-Christoffel conformable mapping was used.
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An interesting alternative is the “jumping wave packet and weighted averaging 

scheme”, developed by Gadzuk et al. [42]. For simple forms of dissipation, the 

distribution of the MCWP probabilities can be determined analytically [42] or semi- 

analytically [60]. The wave functions are then propagated with the time-dependent 

Schrodinger equation and undergo jumps out of a time distribution. The observables 

are finally computed via incoherent averaging. The method is described in detail in 

section 2.2.2.2 and 2.2.2.3.

2.2.2.1 M onte Carlo wave packet approach

The MCWP algorithm can be summarised as follows:

1. Preparation; Definition of an effective, non-Hermitian Hamiltonian H' with

= ; (2.25)
 ̂ k

where the Ck are the Lindblad operators from Eq.(2.11). Specify the initial 

wave function |T (0)), e.g. as the vibrational ground state wave function |0g) if 

the temperature T  =  0 or \vg) with probability Wy{T)  for finite temperature, 

where Wy{T)  is the Boltzmann weight of state \vg).

2. Propagation: Generation of N  quantum trajectories n. In each time step, the 

wave packet |4^(t)) is propagated according to

|^ '( t  +  At)) = (2.26)

to time t -t- At,  giving a perturbed wave packet |^ '( t  4- At)). Since H' is 

non-Hermitian, there will be a loss of norm ôp:

. (2.27)

In each time step, a random number e e  [0,1] is drawn. If e < ôp, a quantum 

jump occurs, i.e., the wave packet is transfered instantaneously to any of the 

K  modes k defined in Eq. (2.25) with a probability Wk = ôpk/ôp. Thereby,
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5pk is the loss of norm due to dissipative channel /c. If a jump was made, the 

new wave packet |^ ( t  +  At)) is taken to be

!$(( +  At)) =  7-  — -  -  . (2.28)

If e > 5p̂  no quantum jump occurs and the propagated wave packet is simply 

renormalised to give |^ ( t  +  At)), which is then used for the propagation to a 

finite time t/. This procedure is repeated for many different realisations n and 

different operator expectation values À  are obtained from

A»W =  (^ » (t ) | i |^ » W ) . (2.29)

3. Final analysis: Averaging. After performing N  realisations of this type, the 

final expectation value is obtained by arithmetic averaging:

N

N
(Â)(t) — — ^ A n ( t )  . (2.30)

As shown in [55], if A" ^  00 and if the dissipation is of Lindblad form, then (Â) (t) 

obtained via Eq.(2.30) becomes identical to the corresponding quantity obtained 

via the direct solution of a Liouville - von Neumann equation of Lindblad form. 

In practice, N  is finite and stochastic convergence to the exact result is observed. 

However, if the results are dominated by statistically rare events, the convergence 

can be very poor.

2.2.2.2 The Gadzuk “jum ping wave packet” m ethod

Gadzuk’s “jumping wave packet” method [42] for the treatment of DIET processes 

is based on a 4-step algorithm and involves two electronic states:

1. vertical excitation of a ground state wave packet from the electronic ground 

state potential to the excited state at time t =  0;

2. propagation of the wave packet in the excited state for a period 0 < t < tr;
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3. instantaneous relaxation back to the ground state at tr]

4. propagation in the ground state up to a final propagation time tf.

W ith Hg and being the nuclear Hamiltonians of the ground and excited state, 

an initial wave function \vg) evolves in time according to:

|^(^; V g ) )  =  I I  I e) (p I (2.31)

where \vg) is a vibrational wave function of the electronically unexcited adsorbate.

The “upward operator” \e){g\ models the excitation step, which is assumed to be 

incoherent and sudden, leaving the initial wave function undistorted. After time tr , 

a “downward operator” \g){e\ transfers the wave function to \g), where it evolves to 

some final propagation time tf. The expectation value of an operator A  for a single 

quantum trajectory with a residence time tr on the upper surface is obtained as:

A{t]TR]Vg) := {^{t-TR,Vg)\A\^{t]TR]Vg)) . (2.32)

Several “excitation-deexcitation” quantum trajectoriesare run according to Eq.(2.31), 

corresponding to different residence times tr and the final expectation values are 

obtained as a weighted and normalised average over the single realisations:

{A) { t ]Vg)  =

roo
=  w{TR)A{t]TR-Vg)dTR , (2.33)

where

w
, roo

(rR)dTR = e~'^^l^dTRl /  e~^^^'^drR (2.34)

is the probability that the resonance decays between tr and tr +  drR, and w {tr) is 

a probability density.

The lifetime r  of a single state is introduced in the Gadzuk algorithm by the 

weighting factors w {tr) in Eq.(2.33). They represent the survival probability of the 

excited state and averaging with them results in an exponential decay of the norm
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of the nuclear wave packet on the excited state surface. According to Eq.(2.33), the

norm on the upper surface develops in time as

(% )(() =  (2,35)
T

where the integration in the denominator has been performed. Since the square of 

the norm Ti?)|^e(t, r^ )̂) in the excited state is 1 for t < tr and 0 for t > tr ,

Eq.(2.35) becomes;

^ , (2.36)

which yields, after integration, the exponential decay

(iVe)(t) =  e-*/" . (2.37)

In practice, the residence times tr can be chosen on a discrete time grid according

to TRn =  T/to +  tiA tr , rcsulting in a discrete version of Eq.(2.33);
N

(Â){t) = Y .^ n A n ( t)  , (2.38)
n=l

where

An(t) = (^ (t; TRn ) )  , (2.39)

and the weighting factor ic„ is given by

' r̂i — • (2.40)
.-TRnIt

E "  1

One may also use a non-equidistant residence time grid, tru =  trq +  uArRn, in 

which case the weighting coefficients Wn in Eq.(2.40) have to be replaced by

=  z L
As shown in [61, 62], the Gadzuk algorithm is rigorously equivalent to the solution 

of the Liouville -von Neumann equation (2.10), if the dissipation is of Lindblad form 

and a DIET process is described in a single-dissipative channel model (deexcitation- 

only limit) with coordinate-independent quenching. The number N  of quantum 

trajectories one has to compute to obtain converged properties of interest is usually 

small (N  < 100) [61], making the Gadzuk method a very efficient alternative in the 

cases it can be applied.
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2.2.2.3 The “generalised Gadzuk m ethod”

An extension of Gadzuk’s jumping wave packet method to DIET processes with 

coordinate-dependent relaxation was developed by Finger and Saalfrank [60]. It 

presents a simplification of the MCWP method for two possible states and one 

dissipative channel and is equal to a Gadzuk algorithm with numerically determined 

weighting coefficients. The strategy is as follows;

1. First, the probabilities for the quantum jumps are determined. For this, the 

initial wave function is propagated only on the excited state surface to obtain 

the probability p{tm) of a quantum jump to occur at time tm- The wave 

packet is propagated with the non-Hermitian Hamiltonian H' of Eq.(2.25) for 

all time steps and normalised. At each time step U, the loss of norm 5p{ti) is 

calculated. This loss is equal to the probability of a quantum jump Eq.(2.27) in 

the MCWP method. Thus, the survival probability (^m), i.e. the probability 

that no quantum jump occurs until time tm = môt, is given as the product of 

the survival probabilities at each time step:
m

Pa{tm) — YT(I ~ ^P{ii)) • (2.42)

The probability Pb{tm) for a quantum jump to occur at time tm is given as 

the product of the probability that the wave packet has survived in the initial 

state up to time tm-i and the loss of norm at time tm-

Pbitm) — Pa{tm-l)^P{tm) • (2.43)

2 . As in the original Gadzuk method, then N  quantum trajectories with different 

residence times TRn are computed. For t < TRn, the wave packet is propagated 

again with the non-Hermitian Hamiltonian H' of Eq.(2.25) and renormalised 

in every time step. After time t = TRn, a quantum jump to the ground state 

potential occurs. The following evolution of the wave function obtained in 

this way (Eq.(2.28)) up to some final propagation time in the ground state is 

dissipation-free (if vibrational relaxations are neglected).
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3. The final expectation values of operators À  are then computed as the average 

of those of the N  single quantum trajectories n, weighted by the probability 

of their occurrence and normalised:

TV
W W  =  (2.44)

n

where the weighting coefficient Wn is here

Ph{rRn) 
Pb(Tm)

(2.45)

As it is shown elsewhere [62], this algorithm converges for trq = 0 and A tr -4- 8t 

towards the ordinary MCWP result, which itself is equivalent to the direct solution 

of the Liouville -von Neumann equation [55]. It can be shown also that for the 

special case of coordinate-independent excitation quenching the original version of 

the Gadzuk scheme with exponential weights is regained [62].
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Chapter 3 

STM  induced desorption of H /D  

from S i(100)-(2xl)[63, 64]

3.1 General aspects

The scanning tunneling microscope (STM) can not only used for imaging [8, 65] 

and spectroscopy [66] of bare and adsorbate-covered surfaces, but it is also a very 

versatile tool for the active manipulation of substrates and adsorbates on an atomic 

scale.

The STM consists of a sharp metal tip held in close proximity to a conducting 

substrate by feedback electronics [5]. A bias voltage is applied between the sample 

and the tip, inducing a coupling between the electronic states of the STM tip and the 

surface. The exponential dependence of the magnitude of the resulting tunneling 

current on the tip-sample distance for a fixed voltage difference can be used to 

compute spatially resolved images of the surface. The imaging can be combined 

with inducing chemistry, making the STM a very powerful tool for the study of 

(excited state) surface chemistry.

The miscellaneous possibilities for the modification of adsorbate and surface sys­

tems originate in the different mechanistic routes along which the STM can act as
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manipulative tool. Strong electric fields (in the order of 1 V/Â) can be achieved 

with the STM because of the close proximity of the tip to the surface. They are com­

parable in magnitude to the field that electrons experience in atoms or molecules, 

thus perturbing chemical bonds. The coupling of the electric field to molecular, 

permanent or induced (transition) dipoles of the adsorbate can be exploited to en­

force molecular motion [67, 68]. When the bias voltage exceeds the work function of 

the tip (4.5 eV for W), field emission of electrons occurs. Modifications with field- 

emitted electrons are not confined to atomic dimensions, because the comparably 

large tip-sample distance (10 - 20 Â) leads to the irradiation of a significantly larger 

area (^  50 - 100 Â^) and so a less selective modification cross-section. Although 

atomically resolved modifications on the surface are achievable by exploiting atomic 

forces or the electric field, control and induction of bond selective chemistry is best 

achieved with tunneling electrons, where the initial excitation is confined to atomic 

dimensions < 1Â.

The key feature of the STM is the very large current density which can be ob­

tained in the tunneling junction -  up to ~  10^̂  electrons per second through an 

area of atomic dimensions. Depending on the energy of the electrons, two impor­

tant regimes of electron related mechanisms can be distinguished. When the electron 

energies are larger than a threshold to form a short-lived electronically excited in­

termediate (resonance) this can lead, for instance, to the breaking of the adsorbate- 

surface bond. If the electron energy is below the electronic threshold, desorption is 

still possible through “vibrational ladder climbing” in the electronic ground state 

(see sections 1.2 and 3.4). The vibrational excitation of the inelastically tunneling 

electrons can be due to a dipole mechanism, where the field produced by the inci­

dent electrons interacts with the transition dipole moment of the vibrational mode. 

Another excitation channel is via a resonance phenomenon, where incident electrons 

are temporarily trapped in an unoccupied or partially unoccupied adsorbate level 

(resonance) [14, 29].

Hydrogen on silicon has long been used as a model system for the study of
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chemisorption on semiconductor surfaces [69, 70] and is a system of significant sci­

entific and technological importance. Understanding the adsorption and desorption 

of hydrogen from silicon is crucial because hydrogen atoms influence the structure, 

diffusion and chemical reactivity at the surface. Hydrogen is used extensively to 

chemically and electrically passivate surfaces and interface dangling bonds [3, 71].

3.2 Desorption in the ‘‘above threshold” limit

3.2.1 Review of experimental results and previous theoret­

ical treatment

Recent STM desorption experiments on Si(100)-(2xl):H/D by Avouris and co-workers 

[17, 18, 29, 72, 73] showed desorption to occur with high probability if the electron 

energy exceeds a threshold of ~  6 eV. Even if the electron energy is higher, the 

desorption yield remains nearly constant at ~  2.4x10“  ̂ atoms per electron and 

is independent of both voltage and current. While hydrogen and deuterium show 

the same desorption threshold, a strong isotope effect is observed in the desorption 

yield, which is about 50 times lower for deuterium. The experimentally observed 

electronic threshold is consistent with electron energy loss spectra of Si(lOO) mono­

hydride by Maruno et al. [74] in which a transition with maximum at ~  8 eV and 

onset of 6 eV was observed. This was interpreted as the cr(SiH) bonding to cr*(SiH) 

anti-bonding transition. Desorption yield and isotope effect for both isotopes were 

largely unaffected when the surface was cooled from 300K to IIK .

Avouris and co-workers have constructed, based on Multi-Configuration Self- 

Consistent Field (MCSCF) cluster calculations [29], potential energy curves for the 

electronic ground and excited states, corresponding to the a and a* states. The 

excited state has strong repulsive character with a slope in the Franck-Condon re­

gion of ~  6.5 eV/Â. The potentials were used to treat the dynamics of the hydro­

gen/deuterium abstraction from Si(lOO) in the “above threshold” regime theoreti-
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cally by a Menzel-Gomer-Redhead (MGR) type model (see section 1.4, Fig. 1.1) and 

semiclassical Gaussian wave packet propagation for a surface temperature Tg =  0 K 

[29]. A complex excited state potential was included to account for the electronic 

quenching process which is assumed to be ultrafast, due to tunneling of the excited 

electron to empty Si conduction band states.

3.2.2 Open system density matrix approach to the desorp­

tion process

In this work, open system density matrix theory is applied as a more rigorous quan­

tum mechanical approach to describe the STM-induced bond breaking dynamics. In 

addition to the comparison of “exact” quantum dynamical with classical mechanics, 

the importance of coordinate-dependent resonance decay is addressed and effects of 

a finite surface temperature are investigated.

As suggested by Avouris and co-workers, a 2 state - 1 mode MGR type model 

(Fig.1.1) is used to describe the STM induced desorption in the Si(100)-(2xl);H/D 

system. In the single excitation DIET limit, an initial, singular Franck-Condon type 

transition from the electronic ground state \g) to the electronically excited state \e) 

is assumed. The excited adsorbate then evolves on the excited-state potential and 

at the same time relaxes back to the ground state |^) on an ultrashort timescale (fs). 

The strongly repulsive excited state and the ultrashort quenching process imply that 

the desorption will occur via a “hot ground state” mechanism: when enough kinetic 

energy has accumulated in the excited state to overcome the remaining binding 

energy in the ground state, desorption occurs. Indeed, for all cases studied below, 

desorption from the excited state plays no role.

Choosing a dissipative Lindblad ansatz for the treatment of the electron induced 

DIET within open system density matrix theory (see chapter 2), a Liouville-von 

Neumann equation of the type

p s { t )  = H s j P s + CpsC^ — -^ C ^ C , P s ^  , (3.1)
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has to be solved. Just one Lindblad operator C  is considered, counting for electronic 

energy relaxation as the only dissipative channel. Other dissipative channels, such as 

pure electronic dephasing or vibrational energy relaxation are not included. In the 

Lindblad DIET model used here, no direct (Hamiltonian) couplings are assumed, 

i.e., the time evolution of the coherences and are decoupled from the diagonal 

blocks of the density matrix. Thus, pure electronic dephasing cannot play any role 

in this model. Also, vibrational energy relaxation of the SiH bond -which is known 

to proceed on the nanosecond time scale [75]- is neglected here, because it is long 

on the time scale of the bond breaking, which takes place in less than a picosecond 

(see below).

The system Hamiltonian Hs in Eq.(3.1), which accounts for the Hamiltonian 

evolution of the isolated system, is taken to be

Hs = Hg\g){g\-{-He\e){e\ , (3.2)

and the density operator can be written as

Ps= Pl\e){e\+p^,\g){g\ + p ’‘/\e){g\ + ^ ‘ \g){e\ . (3.3)

The Hamiltonians for the two electronic states considered. Hi {I = g,e), are given

in a one-mode model by

where Z  is the displacement of the adsorbed atom from its ground state equilibrium 

position, and m  the mass of the hydrogen isotope under investigation. For the 

ground and excited state potential curves, a Morse function

Vg{Z) =  £) ■ [1 -  -  D  , (3,5)

and a simple exponential are used,

Ve(Z) = A  ■ (3.6)
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respectively (see Fig.3.1). The potential parameters are based on the ab initio cluster 

calculations of Avouris (see above) and are given in Table 3.1.

Eq. (3.1) is solved subject to the initial condition

^ (0 )  =  k)(e| 0^Wy{Ts)\Vg){Vg\ , (3.7)
V

where |up) is the u-th vibrational wave function in the electronic ground state

{ H g \ v g )  =  S y g \ v g ) )  and

y j ^  —  ^ - { ^ v g - £ O g ) l k B T s  j  ^  —  { ^ v g  ~ £ 0 g ) / k b T s  (3-8)
V

is the Boltzmann weight of state \vg) at surface temperature Tg.

By Eq.(3.7), an incoherent, sudden Franck-Condon transition of the ground state 

thermal ensemble to the electronic excited state is enforced, serving as a crude model 

for the STM-induced excitation process. The Lindblad operator C  accounting for 

the electronic energy relaxation is taken to be

C = ^JV,,{Z)\g){e\ , (3.9)

where Tge{Z) is the coordinate-dependent rate for the decay of the excited state 

resonance. To consider the fact that the electronic quenching proceeds faster at 

smaller adsorbate-surface distances and is very unlikely to happen at larger Z, an 

exponential ansatz for Egg is chosen:

Fpg =  Fo . e-y" . (3.10)

Since a dissociative continuum has to be dealt with, Eq.(3.1) was solved by 

representing all operators on a discrete coordinate grid. The Fast Fourier Transform 

(FFT) algorithm was used to evaluate the kinetic energy commutator locally in 

momentum space [34], and the time-evolution superoperator was approximated by 

a Newton polynomial expansion (see section 2.2.1). The propagation parameters for 

this “direct” (i.e., density matrix propagation) approach are also given in Table 3.1.
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Additionally, the more economic “indirect” , wave packet-based method of Gadzuk 

(see section 2.2.2.2) was used for the DIET process with coordinate-independent 

quenching {Vge{Z) := Eq =  const, in Eq.(3.10)). An initial wave function \vg)  ̂ here 

the vibrational SiH eigenstates, was propagated according to Eq.(2.31) and the final 

observables of interest were then obtained using Eq.(2.38).

The generalized Gadzuk method (section 2.2.2.3) was used for the treatment of 

coordinate-dependent quenching. In both the “jumping wave packet” methods, the 

surface temperature effects were introduced through a second, incoherent averaging 

scheme according to

(À)(t-T,) = Y^w „(T ,)-{Â )(f ,v ,)  , (3.11)
V

where the Wy are the Boltzmann weights Eq.(3.8) introduced above.

The solution of Eq.(2.31) was accomplished by representing the wave functions 

on a discrete coordinate grid and by using the Fast Fourier Transform method to 

evaluate the kinetic energy operator [76]. The split-operator propagator of Feit and 

Fleck [77] was used for the wave packet propagation (see also appendix A). All 

computational parameters for the wave packet based treatment are also given in 

Table 3.1.
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Potential parameters

Ground state potential

Morse well depth D = 0.11724 Eh = 3.2 eV
Morse well location at Z  = 0
Morse exponent a = 0.8123 a^^
Excited state potential

Exponential prefactor A  =  0.15326 Eh =  4.2 eV
Exponential range parameter ^  =  0.693 ao ^

Propagation parameters (Gadzuk Method)

Grid parameters

Grid spacings (Gadzuk method) =  0.09 ao (for H)

N z  =  0.065 ao (for D)
Grid spacings (direct method) A% =  0.09 ao (for H and D)
Nb. of grid points (Gadzuk method) N z = 1024
Nb. of grid points (direct method) N z = 512
Grid starts at Zd =  —2.872 ao
Wave packet considered desorbed for ^des ^  8.3 ao
Split operator propagation parameters

Time step A t =  2.42 X 10-^ fs

Total propagation time t f  = 125 fs

Newton interpolation propagation parameters

Time step At =  2.5 fs
Total propagation time t f  = 125 fs
Polynomial order M =  16

Lifetime averaging parameters

“Residence time grid” starts at trq =  0.1 fs
“Residence time grid” spacing H r  =  0.1 fs (for Tr < \  fs)

H r  =  0.5 fs (for t r > I  ÎS

Number of residence times considered N  = 32

Table 3.1: STM-induced D IET on Si(100)-(2x 1):H(D): Numerical parameters for 
the potentials, for wave packet propagation and analysis, using the “jumping wave 
packet" algorithm and for the direct density matrix propagation.
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3.2.3 Desorption with coordinate-independent electronic 

quenching

111 a first approach, it was assumed that the electronic decay rate is coordinate- 

independent (7 =  0 in Eq.(3.10)) and that the substrate temperature T5 =  0 [63].

0

su rface  coordinate Z [ a j
Figure 3.1: STM-induced DIET of H and D from Si(100)-(2xl):H/D. Representation 

of the ground and excited state potentials for H(D)/Si(100) with ‘‘snapshots” of the 

single quantum trajectory wave packets (left for H, right for D) when

the residence time tr is 5.5 fs and Vg = 0. denotes the critical distance, which a 

classical particle must reach to desorb. As explained in the text, the major part of 

the H wave packet will desorb after return from the excited state, while D will be 

dominantly retrapped.

In Fig.3.1, the potential energy curves are shown and the desorption process 

within Gadzuk’s jumping scenario is illustrated via “snapshots” of the wave packets,
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for the cases of Si:H (left panel) and Si:D (right panel) and a residence time tr of 5.5 

fs. The four wave packets in each panel correspond to the initial wave packet before 

(1) and immediately after electronic excitation (2), and to the propagated wave 

packet immediately before (3) and after (4) the sudden quenching process occurring 

at Tr . The baselines of the wavefunctions are chosen to be equal to their total 

energies. It is seen that after electronic relaxation, the hydrogen wave packet moves 

further outward and has finally a positive energy. In contrast, the more inertial 

deuterium wave packet travels less far in the same time and its final average energy 

is negative. As a consequence, most part of the H wave packet will desorb, while 

the D wave packet will be mainly retrapped, which qualitatively explains the strong 

isotope effect observed in the experiments.

The wave packet propagations up to some final time t f  are repeated for different 

residence times tr . It is found that the entire “reaction” proceeds on the sub-ps 

timescale and a choice t f  = 125 fs is sufficient.

The obtained desorption probability Pdesi'^n) is shown for a quantum trajectory 

with residence time = 5.5 fs in Fig.3.2 for hydrogen (full line) and deuterium 

(dashed line). It can be seen that for hydrogen PdesijR) increases continuously from 

0 to 1, with a quantum “critical residence time” (for which Pdesiju) =  0.5) of 

'̂ Rc ~  4.8 fs. Qualitatively, the same is observed for deuterium for which, however, 

'̂ Rc ~  7.0 fs. For the situation studied in Fig.3.1 with tr =  5.5 fs, a high desorption 

probability for hydrogen is found indeed {PdesijR) =  0.79), while D is dominantly 

retrapped {PdesijR) = 0.05). Additionally, (approximate) classical step curves are 

shown in Fig.3.2, with zero desorption probability for tr < trc and unit probability

for Tr > Trc.

P d e s { r R )  = h { T R  -  Trc) (3.12)

with h{x) := 1 for X > 0 and 0 otherwise, trc is the time required for a classical 

atom of mass m  to reach the critical distance Zc on the excited potential, at which 

the kinetic energy gained equals the remaining binding energy in the ground state.
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Figure 3.2: Desorption probability Pdesi'^R) for H and D in STM-induced DIET from 

Si(100)-(2xl):H/D as a function of residence time on the excited state, tr , assum­

ing a coordinate-independent quenching process and Ts = 0 K. The step functions 

are approximate classical results, while the smooth curves are the quantum results 

obtained by the Gadzuk algorithm.

W ith the potentials Eq.(3.5) and Eq.(3.6), the critical distance Zc is given by

A{1 -  = D -  D(1 -  . (3.13)

On the left hand side of the equation is the amount of kinetic energy gained on Ve 

at Z  = Zc and on the right hand side is the corresponding remaining ground state 

binding energy. The solution of Eq.(3.13) gives Zc = 1.045 ao, as it is indicated in 

Fig.3.1 as vertical line. One sees that after relaxation the centre-of-gravity of the 

H wave packet is at a distance larger than the critical distance Z ^  while for the 

deuterium wave packet Z  < Zc is found. This finding implies that the quantum 

wave packet also has to pass Zc to obtain a high desorption yield.
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The critical time trc a classical particle has to remain on the upper surface to 

reach Zc and desorb can be determined by numerical integration of the classical equa­

tions of motion. Alternatively, an approximate classical result (the one used above) 

can be obtained analytically by assuming that the force and hence the acceleration 

of a classical particle in the excited state is constant in time. Assuming that this 

force is given by the gradient of the excited state potential at the “Franck-Condon 

point” (Z =  0), the acceleration is given by

a = - - ^ U  =  —  . (3.14)7Ti dz m

It follows for the particle velocity

V =  f  adt' — , (3.15)
Jo m

and thus for the critical distance

Zc = =  , (3.16)

which implies

With Eq.(3.17), one obtains trc{H) = 4.6 fs and trc{D) = 6.5 fs. The ratio of the 

residence times, trc{H)/ trc{D) correlates to the mass relation of the two isotopes

— \ / 2. This is in reasonable agreement with the quantum “critical resi­

dence times” and also with the exact, classical critical residence times obtained 

by numerical integration of the classical equations of motion, which are trc{H) = 

4.7 fs and trc{D) =  6.8 fs.

As shown in Fig.3.1, the main quantum effect is the broadening of the PdesijR) 

curves which arises from the finite extension of the quantum wave packet both in 

position and momentum space. Further, the assumption of a constant force in 

the excited state is a good one, which allows for insightful, though approximate, 

analytical classical treatment of the desorption process.
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To account for the continuous, exponential resonance decay and to obtain the 

“true” desorption probability {Pdes){'T, ^3) at Tg =  0 K, the average of the desorption 

probabilities Pdesi'^R) obtained for each quantum trajectory has to be evaluated 

according to Eq.(2.33) with the “true” lifetime r  of the excited state. Defining the 

isotope effect in the desorption probability as

Idesi'^g) ~ (3.18)

a lifetime dependence of Ides is finally obtained as shown in Fig.3.3 for Vg = 0, 

corresponding to a surface temperature Tg = 0 K. The isotope effect as a function

100

•  quantum, density matrix
  quantum, Gadzuk
—  classical, appr.
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Figure 3.3: Isotope effect Ides in the desorption probability o f STM-induced DIET  

of H and D from Si(100)-(2xl) as a function of the excited state lifetime r  for Tg 

= 0 K  and a coordinate-independent quenching process. The solid line represents 

the results obtained with Gadzuk’s method, while the dashed line is for the classical 

result. Selected results obtained by direct density matrix propagation are shown as 

bullets.
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of the lifetime r  behaves asymptotically as lim^^o d̂es =  +00  and lim^^oo-^des =  1- 

For only large enough r , both the desorption probabilities of H and D will become 1 

and so I  des also becomes 1. At short lifetimes, the averaged desorption probabilities 

decrease, and the decrease for the heavier isotope is faster for the reasons discussed 

above. The experimentally observed isotope ratio of % 50 is consistent with a 

lifetime of the excited state of r  =  I/Fq % 0.45 fs, which is in good agreement 

with the semiclassical estimate of Avouris et al. [29]. The absolute values of the 

desorption probability are also consistent both with the experimental yield [18] and 

the semiclassical theory [29]: For r  =  0.45 fs, one obtains {Pdes){H\Vg =  0) =  9.90 

X 10“  ̂ and {Pdes){D]Vg = 0) = 1.88 x 10“®, respectively.

The bullets in Fig.3.3 represent the results obtained by direct density matrix 

propagation. The perfect agreement between these results and those obtained by 

the “jumping wave” algorithm not only gives confidence in the numerical procedures, 

but also demonstrates once again the equivalence between the two approaches. Also 

shown in Fig.3.3 is the isotope effect obtained by the approximate classical cal­

culations (dashed line). The classical picture allows for an easy understanding of 

the isotope ratio. W ith the step function Eq.(3.12), the integral Eq.(2.33) is given 

analytically as

( W ( r g  =  0;T) =  e-"«/" . (3.19)

Making the additional approximation of a constant force acting on the particle in 

the exciting state (Eq.(3.17)), the isotope effect now becomes

=  0) =  , (3.20)

implying an exponential decrease of the isotope effect with increasing lifetime r. 

Further, the steeper the excited state potential at the “Franck-Condon point” Z  = 0, 

i.e., the larger /3A, the smaller is the expected isotope effect.

The approximate classical curve (Eq.(3.20)) agrees well with the quantum results 

over the entire interval shown in Fig.3.3. The absolute values for the (averaged) 

desorption probability at a given r  agree up to r  =  3 fs to within 2% for hydrogen and
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within better than 1 % for deuterium with the classical approximations Eq.(3.19) 

and Eq.(3.17). The surprisingly good agreement between quantum and classical 

results can be understood from an observation of Brenig and coworkers [78], who 

showed that the leading corrections to the classical path of a particle moving in a 

complex potential involve the first derivative of its imaginary part. For coordinate- 

independent quenching the first derivative is zero and hence quantum effects are 

expected to be small. However, for the treatment of a coordinate-dependent decay 

process (see section 3.2.4), a quantum treatment is clearly more appropriate.
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•  H, density matrix 
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Figure 3.4: STM-induced DIET of H and D from Si(100)-(2x 1):H/D. Averaged 

kinetic energies (Ekin) of desorbing H and D atoms, as a function o f the excited 

state lifetime r  (left scale). Both the wave packet ( ‘‘Gadzuk”) and direct density 

matrix results (bullets and diamonds) are shown. The thick, solid curve (right scale) 

gives the isotope effect in the kinetic energies, Ikin. Again, coordinate-independent 

electronic quenching and Tg = 0 K  is assumed. The values at t < 0.2 fs are 

numerically unsafe.
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Shown in Fig.3.4 is the (averaged) kinetic energy per desorbed hydrogen (solid 

line) and deuterium (dashed line). For both isotopes, (% » ) increases monotonically 

with the lifetime r. Eventually, for r  —)■ oo, all particles desorb and their kinetic 

energies will approach approximately the limit A = 0.15326 Fff, i.e., the potential 

energy after the initial Franck-Condon excitation. A small isotope effect in the 

kinetic energy per desorbing atom

"  ( 5 ‘j ( 2 ; ’I ;  =  0) ’

is predicted, but was not observed experimentally so far. For smaller r , an isotope 

effect > 1 is expected, while for r  —> oo the isotope ratio (3.21) will be 1 for reasons 

discussed above. Am > 1 corresponds to faster H atoms, in agreement with the 

expectations from the MGR model. However, over the range of Fig.3.4 (up to r  =  3 

fs), the isotope effect is small (% 1.3) and varies only slowly with r. Also shown in 

Fig. 3.4 are a few kinetic energies obtained with the direct density m atrix scheme 

(represented by bullets and diamonds).

3.2.4 The effects of coordinate-dependent electronic relax­

ation

The effects of a coordinate-dependent electronic decay have been examined with the 

generalized Gadzuk method (see section 2.2.2.3) and some selected direct density 

matrix calculations [63]. So far, a strictly exponential resonance decay has been 

considered. Now, a range parameter 7 > 0 is allowed for the rate Fg ,̂ Eq.(3.10).

First, the range 7 is varied, while Fq is fixed at Fq =  1/0.45 fs 'F  Since, in this 

way, the same local quenching rate at % =  0 is chosen, the resonance decay is quasi­

exponential in all cases, with an approximately equal lifetime of % I/Fq =  0.45 

fs. The results for the absolute desorption probability (Pdes)(T,Vg = 0) and the 

corresponding isotope effect Ides a,re given in the upper half of Table 3.2. For 7  =  0, 

the results are discussed in section 3.2.3 above.
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To range parameter 7 isotope (Pde.) f-des

1/0.45 fs--1 0.0 ao ^ H 9.90 • 10-^

D 1.88 • 10-^ 52.2

1/0.45 fs--1 0.5 a^^ H 4.26 • 10-4

D 1.46 • 10-^ 29.3

1/0.45 fs--1 1.0 ao ^ H 1.41 • 10-^

D 9.65 • 10-^ 14.7

1/0.45 fs--1 2.0 ao ^ H 3.06 • 10-^

D 5.86 • 10-4 5.2

1/0.35 fs--1 1.0 a^^ H 3.30 • 10-4

D 1.13 • 10-^ 29.2

1/0.29 fs--1 1.0 a^^ H 9.35 • 10-^

D 1.78 • 10-G 52.5

Table 3.2: Influence of coordinate-depending electronic decay on the desorption 

probability of H and D from Si(100).
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For finite 7 , it is found that the absolute desorption probabilities increase both 

for H and D, by factors of up to 300. This is associated with the fact that in the MGR 

scenario those parts of the excited wave packet have the best chance to desorb which 

are initially at larger Z, while those parts closer to the surface are retrapped more 

easily. Coordinate-dependent relaxation leads to less efficient electronic quenching 

at larger adsorbate-surface distances Z, as sketched in Fig.3.5. So, if 7 > 0, the 

large-Z wing of the wave packet moving outward will desorb with even enhanced 

probability. The effect is the larger the larger 7 is, i.e., the faster F(Z) falls off. In

Figure 3.5: Coordinate-dependent electronic quenching in the MGR model.

Coordinate-dependent relaxation leads to less efficient electronic relaxation at larger 

adsorbate-surface distances Z and thus large Z wing of the wave packet moving out­

ward will desorb with higher probability.

a simple tight-binding model, F should depend approximately quadratically on the 

hopping integral between the adsorbate acceptor orbital and the substrate orbitals
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[78, 79], while Ve(Z) depends approximately linear on this integral [78]. Therefore, 

one can expect roughly y =  2/) % 1.4 ao in the present case, which is well in the 

range considered.

It is seen from Table 3.2 that the isotope effect in the desorption probability 

decreases with increasing 7 . This is because the increase of the deuterium desorption 

probability is faster than the increase of the H probability. Therefore, a slightly 

smaller lifetime r  corresponding to a higher pre-factor Fq was chosen for finite 7  

to reproduce the experimentally observed isotope effect. In the lower half of Table

3.2 the results for the variation of Fq at fixed 7  =  1.0 Uq are shown. With this 

choice for the range parameter the computed isotope effect in the desorption yield 

becomes % 52 for Fo =  1/0.29 fs " \  again in agreement with experiment and previous 

semiclassical work [29].

3.2.5 Surface temperature effects

For the study of finite temperature effects, thermal averaging of individual wave 

packet runs were carried out according to Eq.(3.11). Both coordinate-independent 

electronic quenching ( 7  =  0 a^^, Fq =  1/0.45 fs“ )̂ and coordinate-dependent energy 

relaxation (7 = 1  a ^ \  Fq =  1/0.29 fs“ )̂ were considered, because these parameters 

produce the experimentally observed isotope effect of % 52 at T, =  0 K (see Table 

3.2). The thermal averaging (3.11) was done for up to Tg = 1000 K, for which the 

inclusion of the first seven vibrational levels of the SiH(D)- system proved to be 

sufficient.

Considering the desorption probability Pdesi'^R] Vg) as a function of the residence 

time tr in the electronically excited state and the initial vibrational quantum number 

Vg, it can be seen that for Ug > 0 the curves are broadened with a distinctive step­

like structure. This is demonstrated in the upper panel of Fig.3.6 for deuterium 

and a coordinate-independent quenching rate. The number of steps in each curve is 

equal to Vg. By taking the derivative of Pdes(jR) with respect to tr (lower panel of
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Figure 3.6; The desorption probability Pdesi'^R) for D as a function of residence 

time tr in the excited state, for initial states, |ug) =  |0^), \ lg), |3g) is demonstrated 

in the upper panel. In the lower panel, the derivatives of the Pdes(jR\ ' ĝ) curves with 

respect to tr are shown on an arbitrary scale. They reflect the nodal structure of 

the initial vibrational wave functions (see text). A coordinate-independent lifetime 

of T = 0.45 fs is assumed.

Fig.3.6), a “desorption rate” as a function of tr can be computed. It is found that 

the individual steps correspond to the individual wave packet lobes, which make up 

the vibrational wave functions. With increasing t r ,  successively the first, the second, 

third . . .  lobe of the wave function reaches the critical distance Zc and “desorbs” 

(see also Fig.3.1).

Since for small tr the desorption probability appears to increase with increasing 

Vg, it is expected that vibrational excitation, e.g. by temperature, should lead to 

enhanced desorption probabilities. This is exactly in keeping with observations made 

and explanations given in the early days of DIET [80]. In Fig.3.7 the desorption
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Figure 3.7: Dependence of the desorption probability of H and D from Si(lOO) on 

the surface temperature Tg. In (a) and (b) the (averaged) desorption probabilities 

(Pdes) are shown for H and D as solid curves (left scale) for an assumed coordinate- 

dependent quenching process (To =  1/0.29 fs~^, 7 =  1.0 Uq^). Also given are the 

vibrational partition functions Qyib as dashed curves (right scale). The isotope effect 

in the desorption yield, Ides, is shown in panel (c). The solid curve is for coordinate- 

dependent quenching, the dashed one for coordinate-independent quenching (with 

Fo =  1/0.45 fs~^, 7 =  Oj.
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probabilities {Pdes) for H (Fig.3.7(a), left scale, solid line) and D (Fig.3.7(b), left 

scale, solid line) for coordinate-dependent relaxation are shown as a function of the 

surface temperature Tg. The isotope effect in the desorption probability is presented, 

both for coordinate-independent (dashed line) and for coordinate-dependent decay 

(solid line), in Fig.3.7(c). From Fig.3.7(a),(b) it can be seen that the desorption 

probability of both isotopes is almost independent of the substrate temperature Tg 

up to % 300K. Only beyond this temperature, the expected increase of {Pdes)(Tg) 

sets in. This can be understood by considering the vibrational partition functions

Qvib = (3.22)
V

(dashed lines, right scales in Fig.3.7(a),(b)), which are a measure for the number 

of vibrational states populated at temperature Tg. It is seen that the partition 

functions follow closely the computed desorption probabilities. Because of the large 

vibrational level spacing of the SiH bond {Tiuj % 0.25 eV) and SiD [îiuj % 0.18 eV), 

only the vibrational ground state is significantly populated at low temperatures. 

Thus, the partition functions remain almost constant at Qy^, % 1. As soon as higher 

levels are significantly populated, however, this immediately translates into higher 

desorption yields because the {Pdes){'î g) entering Eq.(3.11) increase rapidly with in­

creasing Vg. For hydrogen and coordinate-depending energy relaxation, for example,

^  (f(ie»)(0) =  9.35-10-^ (f,«J(l) =  4 .64 .10 -\
it IS tound

(T:ie.)(2) =  1.39 .10-3, =  3.20 - lO '^.

Closer inspection shows that the partition functions exceed the value Qyib =

1.001 only above Tg = 405 K (H) and Tg = 285 K (D). These temperatures can 

be taken as a crude measure for the width of the plateau region above which the 

desorption yields increase significantly. The ratio of the “critical temperatures” is 

405/285 ~  \ / 2, sensibly reflecting the ratio of the fundamental frequencies for SiH 

and SiD.

As a consequence of the weak temperature dependence of the desorption proba­

bility, the isotope effect in (Pdes) also appears to be approximately constant up to
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Tg % 300 K (see Fig.3.7c). This statement holds for coordinate-dependent electronic 

quenching as well as for coordinate-independent relaxation. These observations are 

in good agreement with the experimental results of Foley at al. [72], who found no 

temperature dependence of the desorption yield or isotope effect for DIET in the 

temperature interval between 11 K and 300 K.

However, no corresponding experiments at Tg > 300 K have so far been reported. 

The theoretical results suggest that at temperatures above 300 K, the expected 

increase in the desorption yields for both isotopes should become observable (see 

Fig.3.7(a),(b)). Since the vibrational quantum for the SiD vibration is smaller than 

that for SiH, the relative increase of the desorption probability with temperature is 

larger for deuterium than for hydrogen. As a consequence, the isotope effect in the 

yields must eventually decrease with increasing Tg. The theoretical model predicts 

this to be the case slightly above Tg % 300 K (see Fig.3.7(c)). For Tg = 1000 K, for 

example, the isotope effect is expected to decrease by about 30 - 50 %, depending 

on the choice of 7 . It should be possible, to observe this reduction experimentally, 

although thermal desorption also plays a role at higher surface temperatures.

3.2.6 STM-induced desorption at negative sample bias

In the previous discussion, only STM experiments in which the desorption was 

induced at positive sample bias, i.e., where electrons are travelling from the STM tip 

to the sample, were considered. Recently, Stokbro et al. desorbed hydrogen from a 

Si(lOO) surface at negative sample bias [30]. There have been theoretical predictions 

that mechanisms related to the ones at positive sample bias may operate at negative 

bias as well [81], where a tunneling hole travels from tip to sample, rather than an 

electron.

The experiments at negative sample bias show a distinctive suppression of the 

desorption yield after heating the surface from 300 K to 610 K [30, 82]. In contrast 

to the experiments at positive sample bias, a DIMET like scaling of the desorption
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yield with the current (~  with n % 6) was observed for all voltages. Stokbro 

and co-workers modelled the desorption process by assuming the vibrational heating 

of hydrogen caused by inelastic scattering of tunneling holes with the SiH 5a hole 

resonance [30], i.e. the desorption follows the “below threshold” mechanism (see 

section 1.2. To investigate the temperature dependence of the desorption yield, two 

temperature effects were included. Both are based on the dependence of the 

lifetime of electronic and vibrational excitations, respectively. Stokbro at al. found 

that up to a sample bias of - 5 V the temperature dependence of the desorption yield 

is related to the lifetime of the vibrational excitation, which is similar to the results 

reported by Foley et al. [72] for positive sample bias in the “below threshold” regime 

(see also section 3.4). However, at higher negative bias, the Tg dependence of the 

yield is too weak to explain the experimental data and the temperature dependence 

is dominated by the lifetime r  of the 5a hole resonance. According to the model 

of Stokbro et al., the decrease of the electronic lifetime r  with increasing Tg is due 

to the enhanced coupling of the 5a hole resonance to both the electrons and the 

phonons of the silicon substrate.

It was found in the previous section 3.2.5 that the desorption probability in 

the “above threshold” limit at positive sample bias increases with increasing surface 

temperature Tg because of the “Boltzmann effect” . To investigate if the “Boltzmann 

effect” also dominates the temperature dependence of DIET at negative sample bias 

and the influence of a potential temperature dependence of the electronic lifetime 

on the desorption probability, a hypothetical “DIET-hole-experiment” was modelled 

here.

In [82], the temperature dependence of the excited state lifetime is assumed as

= Fge = a + -  1)~^ , (3.23)

with the reciprocal intrinsic lifetime 1/tq =  a = 1/0.67 fs, b = 1/0.91 fs and c =  

402 K. With this parametrisation r(0 K) =  0.67 fs, r(300 K) =  0.53 fs and r(600 

K) =  0.38 fs is obtained. These values of r  are within the same order of magnitude
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as the excited state lifetimes obtained in the previous chapter 3.2.3 about STM- 

induced DIET at positive sample bias, but they are now temperature dependent -  

the higher the substrate temperature, the smaller the lifetime and thus the smaller 

the desorption probability per excitation event.
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Figure 3.8: Potential energy curves for the Si(100)-(2xl):H electronic ground state 

and for an excited state which is assumed to he a “hole resonance”. After excitation, 

the wave packet will move initially away from the surface, as it is the case in the 

MGR model.

To model the temperature dependence of a STM DIET process at negative bias, 

the same open system density matrix approach was adopted as in section 3.2.2 for 

the desorption at positive bias. The difference to the previous model lies in the 

shape of the electronically excited state. As long as the hole resonance state is 

not stabilised by image charges, which is a reasonable assumption for silicon, this 

excited state is expected to remain bound, but with a larger bond length than in 

the electronic ground state. Out of these considerations, an approximate excited
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State potential can be constructed, which is still of the MGR type in the sense 

that the initially excited wave packet will still move outward (see Fig.3.8) With this 

model excited state potential it should be possible to investigate the influence of the 

two temperature effects, namely the “Boltzmann effect” and the “electronic lifetime 

effect” at least qualitatively.

In the hole resonance model, the electronic ground state potential Vg{Z) should 

still be the same as for the a a* model in section 3.2.2. However, the excited 

state potential is now a displaced and shifted Morse oscillator:

V;(Z) =  £ ) + [ l - e - “+(^-^+)]2 +  /i: (3.24)

with D+ = 0.0694 £■/,, a+ = 0.557aô^, =  1.2 ao and K  =  0.207 i?/,. This 

parametrisation is based on an idea by Jennison et al. [83], who constructed a hole 

resonance state for the dissociation of SiH bonds in the bulk, exploiting an analogy 

with the formation of H 2 from H 2 by “hole attachment” . For the H 2 molecule, the 

equilibrium bond length increases by a factor of 1.418, the binding energy decreases 

by a factor of 1.69 as does the vibrational frequency by a factor of 1.895, when going 

from H 2 to H 2 .

Assuming that the same scaling applies to the SiH bond when ionised and using 

the harmonic approximation to relate the Morse exponents to vibrational frequen­

cies, the potential parameters listed above are obtained, as is the excited state poten­

tial shown in Fig.3.8. K  is determined such that the energy difference 4^(0) — F^(0) 

matches the experimental resonance energy of 0.257 [82]. This modified MGR

model with the temperature-dependent, bound excited state is henceforth denoted 

as “MGR-2” , in contrast to the cr —)■ a* situation, denoted “MGR-1” . The numerical 

parameters for the calculation are the same as in Table 3.1.

Within both models, the desorption probability shows a strong increase with 

increasing resonance lifetime r , as shown in Fig.3.9, upper panel. For realistic 

lifetimes (r < 1 fs), the hole model MGR-2 (solid lines), predicts desorption yields 

at a given r  that are slightly larger than for the cr —>■ cr* MGR-1 model (dot-dashed
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Figure 3.9; Desorption prohahility of H (black) and D (grey) for Si(100):H(D) in 

the DIET regime, as obtained with MGR model 2 for desorption at negative sample 

bias (bound excited state, solid lines) and with MGR-1 for positive bias (repulsive 

excited state, dot-dashed lines) .

lines). This is inainly because the slope of the excited state at the Franck-Condon 

point, |Vg(0)| = l^ lo  is larger for the former (Fig.3.8) than for the latter (Fig.3.1).

The desorption yields translate into the isotope effects Ides as given in the lower 

panel of Fig.3.9. Ides decays exponentially with r , as already discussed in section 

3.2.3. For a given lifetime, the isotope ratio is smaller for the MGR-2 hole model than 

for MGR-1 situation. This follows from the simple rule that high yields correspond 

to small isotope effects and vice versa.

In Fig.3.10, finite temperature effects are considered. For the hole resonance 

model MGR-2, Ref.[82] gives information about the dependence of the excited state 

lifetime on the substrate temperature Tg. With the parametrisation Eq.3.23, a
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Figure 3.10: Surface temperature effects in the STM “above threshold’’ desorption 

regime. In the upper panel, the excited state lifetime r is shown for the 3 different 

MGR models (see text). The grey line represents the temperature dependence of the 

excited state lifetime for the MGR-2 hole model, as obtained with the parametrisa- 

tion of Ref.[82]. The solid line is r(Ts) as assumed to be reasonable for the a ^  a* 

resonance (MGR-3, see text), while the Tg independent r  =  0.45 fs of MGR-1 is 

shown as horizontal, dashed line. In the middle panel, the H desorption probabil­

ities obtained with the 3 different models are given, while in the lower panel the 

corresponding isotope ratios Ides are shown.
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lifetime r  is obtained as indicated in the upper panel of Fig.3.10 as grey line. With 

this information, both the “Boltzmann effect” and the “electronic lifetime effect” can 

be included. To obtain the temperature dependence of ( P d e s )  no new propagations 

for different surface temperatures are necessary, but Eq.(3.11) has to be generalised 

to a include the temperature dependence of the lifetime r;

The computed final desorption probability is shown as grey line in the middle panel 

of Fig.3.10 for hydrogen and compared with the MGR-1 model, where just the 

“Boltzman effect” was included (dashed line).

The experimentally observed temperature suppression of the desorption yield in 

case of negative sample bias occurs as a consequence of the decreasing electronic 

lifetime. Quantitatively, the hydrogen desorption probability decreases by a factor 

of % 10 when increasing the substrate temperature from 0 K to Tg =  450 K. In the 

experiments of Stokbro et al. for STM DIMET at negative sample bias [82], the 

desorption rate became % 200 times smaller when the system was heated from 300 

K to 450 K (for a sample bias of -7 eV and a tunneling current 1 = 2 nA). The 

proposed simple MGR-2 open system density matrix model implies qualitatively 

comparable observations for DIET at negative sample bias. The theoretical model 

predicts further that the isotope ratio Ides should increase significantly with substrate 

temperature, simply because the yields become smaller, thus favouring larger isotope 

effects.

In the previous sections, an opposite temperature effect was predicted for the a 

(7* scenario, corresponding to the experiments at positive sample bias by Avouris et 

al. [72]. Here, Ides should decrease for temperature > 300 K, because (Pdes) starts 

to increase. However, the calculations considered so far did not account for a possible 

temperature dependence of the a* resonance lifetime - only the Boltzmann averaging 

(Eq.(3.11)) was done. The reason for the increase of the desorption probability in 

the MGR-1 model is that only at higher Ts are higher vibrational states of H and
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D significantly populated, hence Ides diminishes with increasing Tg. In Fig.3.10, 

this is illustrated as dashed lines in the middle and lower panel for a temperature 

independent lifetime of r  =  0.45 fs respectively.

To examine what might happen when possible additional, but opposite effects 

due to a Tg dependent resonance lifetime are taken into account, test-calculations for 

an assumed temperature dependent a* state were done, henceforth denoted MGR-3. 

Unfortunately, the variation of r  on Tg is not known for the o ^  a* resonance, r  =  

0.45 fs is the lifetimes which reproduces the correct isotope effect in the MGR-1 

model. This was exploited for a new parametrisation of Eq.(3.23), resulting in a =  

0.45 fs'U  A “reasonable” temperature dependence should allow one to reproduce the 

experimentally observed Tg -independent desorption probabilities and isotope effect 

for up to Tg = 300 K. For this, the remaining parameters were chosen to be 6 =  

1/0.07 fs and c =  2500 K and the results are shown in Fig.3.10 as solid lines. A look 

at the desorption probabilities (shown for H in the middle panel) reveals that the 

second, yield-diminishing effect dominates over the “Boltzmann effect” also in this 

case. As a consequence, the isotope effect Ides would increase rather than decrease 

with surface heating.

However, because conclusive evidence on the Tg dependence of r  is lacking for the 

MGR-3 scenario, it can only be predicted here that there should be a measurable 

change in the desorption probabilities and thus in the isotope ratio for substrate 

temperatures Tg > 300 K. If Ides decreased with increasing T ,̂ this would indicate 

that, even at temperatures above 300 K, the lifetime of the cr —> a* resonance is 

fairly independent of the substrate temperature. Conversely, if Ides goes up with 

Tg, a strong decrease of r  with Tg is (tentatively) predicted, comparable to the hole 

resonance situation of Ref. [82].
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3.2.7 Summary and conclusions

The STM induced desorption of hydrogen and deuterium from Si (100) in the “above 

electronic threshold” region was investigated using an open system density matrix 

description and 2 states - 1 mode Menzel-Gomer-Redhead (MGR) type DIET mod­

els. For zero temperature, the experimental desorption probabilities and the isotope 

effect in the desorption at positive sample bias could be reproduced, indicating an 

excited state lifetime r  < 1 fs.

Additionally, the temperature effects during STM DIET were investigated for 

excitation via a repulsive a* a bound a hole resonance respectively, corresponding 

to experiments at positive and negative sample bias. It was found that two major 

sources contribute to the possible strong temperature dependence of the desorption 

dynamics - a “Boltzmann” and an “electronic lifetime effect” . The first one favours, 

the second one suppresses desorption. A priori, it is not clear which of these effects 

dominates for a specific system. For desorption via a hole resonance (corresponding 

to negative sample bias) it was found that the yield diminishing “electronic lifetime 

effect” dominates over the yield enhancing “Boltzmann effect” , resulting in decreas­

ing desorption probabilities and increasing isotope ratios with increasing surface 

temperature, as was already experimentally observed for STM DIMET at negative 

sample bias.

In the case of desorption via the a a* resonance (positive sample bias), the 

experimentally observed insensitivity of the desorption dynamics on the substrate 

temperature for Ts up to room temperature is assumed to be due to the fact the 

vibrational level spacing for SiH(D) is comparatively large, such that vibrational 

levels with Vg > 0 are not significantly populated up to Ts ~  300 K. Above this 

temperature, desorption probabilities and the corresponding isotope ratio will vary 

strongly with the substrate temperature. However, because the temperature depen­

dence of the electronic lifetime on the surface temperature Tg is not known for the 

a a* resonance, detailed predictions about the magnitude of the variation with
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Ts above 300 K are not yet possible. In summary, the temperature dependence of 

the desorption dynamics appears to be a potentially rich source for the microscopic 

clarification of non-adiabatic processes at solid surfaces.

3.3 The effects of the external electric field

An important perturbation that the STM tip can exert on the sample is provided 

by the electric field due to the applied voltage between tip and sample. During 

“normal” STM imaging, this field is in the order of 0.1 V/Â. Higher fields, of the 

order of 1V/Â, can be produced by applying voltage pulses without changing the 

tip-sample distance. Such fields can be used to break strong covalent bonds such 

as SiSi bonds [84], to move atoms laterally on surfaces [21] and to induce field- 

desorption [85]. The electric fields produced by the STM can cause changes in the 

occupation of molecular orbitals, strengthening or weakening the adsorbate-surface 

bond [86]. For atomic-scale modification schemes utilizing the STM current-induced 

excitation of adsorbates, the role of the electric field is primarily through the Stark 

shift of the excitation energy. It has been suggested [67, 86] that this shift can play 

an important role in determining the resolution of the modification process.

The effects of an external electric field of magnitude comparable to the one 

present in the STM on the bond strength and the vibrational frequency of H ad­

sorbed on S i( ll l)  were recently examined by Akpati et al. [67] by local density 

functional theory. They found that the SiH bond is weakened and breaks at high 

fields, but that the effect of the field is much stronger when the field direction is in 

the opposite direction than the bond dipole.

To obtain a conceptual understanding of the influence of the external electric field 

on the Si(100):H system, the effects on the bond strength and vibrational frequencies 

were examined here as well. To simplify the problem, field-inhomogeneities are 

neglected and the field F  is assumed to be parallel to the SiH bond, F \= F .

Under the influence of the external electric field F , the system Hamiltonian Hg
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becomes

Hg =  ^0  +  Hi (3.26)

Hi = -(y^ia{Z) + ^ F \ - F  . (3.27)

The total dipole moment is defined as the sum of the permanent dipole moment 

jjP r̂m giH bond and the induced dipole moment of the system in a uniform 

field F\

=  //o(^) +  A(%) - F  . (3.28)

To examine the modifications of the equilibrium structure and the bond strength, 

the dipole function iio{Z) and a(Z), which represents the a^^-component of the po- 

larizability tensor, were computed by a cluster calculation (the cluster contains one 

H and one Si atom) using a gradient corrected hybrid density functional (B3LYP) 

and a 6-31G** basis set [87, 88]. The result is shown in Fig.3.11.

Using the Morse potential V( Z)  =  Vg{Z)  from Eq.(3.5), the eigenstates and 

eigenenergies of the field influenced system were calculated by direct diagonalisa- 

tion of the Hamiltonian Eq.(3.27) represented by a sine function discrete variable 

representation (DVR) [89] (see appendix A .l). Fig.3.12 shows the potential energy 

curves, V{ Z)  =  Vg{Z)  — - F  — ^ of the SiH system for electric field values

ranging from - I V / Â t o  +  l V / Â U

Apparent from the potential energy curves are the variations in the dissociation 

energy and the bond length of the system as a function of the field strength and 

direction. For positive fields, i.e., fields directed from Si to H, the potential curves 

show a steady broadening of the potential well and a decrease of the potential energy 

barrier for the SiH bond dissociation with increasing field strength up to F  =  1 

V/Â, then a steady increase in the barrier height. In Table 3.3 the equilibrium bond 

^It is convention, that the field is referred to as “positive” if the sample represents the positive 

electrode, i.e., the current is directed from the STM tip to the sample.

65



F  [ V/Â] D[E^\ UJq[^V\ N ,

-2.0 -0.11 0.1049 0.262 31

-1.5 -0.08 0.1252 0.261 29

-1.0 -0.05 0.1218 0.258 26

-0.8 -0.05 0.1207 0.255 26

-0.6 -0.05 0.1197 0.252 25

-0.4 -0.05 0.1187 0.249 25

-0.2 0.00 0.1179 0.245 25

0.0 0.00 0.1172 0.240 25

+ 0.2 0.00 0.1167 0.235 26

+0.4 0.05 0.1163 0.231 27

+ 0.6 0.05 0.1161 0.222 28

+ 0.8 0.05 0.1160 0.214 29

+ 1.0 0.05 0.1164 0.205 30

+1.5 0.19 0.1178 0.176 33

+ 2.0 0.35 0.1216 0.128 38

Table 3.3: Calculated equilibrium bond displacement Z q, dissociation energy D, 

vibrational frequency ojq and the number o f bound states for the SiH cluster for 

held values ranging from -2 V /A  to +2 V/ A.
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Figure 3.11: Computed dependence o f the dipole function po{Z) and the azz~ 

component o f the polarizability tensor on the SiH bond length. The functions were 

calculated using a gradient corrected hybrid density functional (B3LYP) and a 6- 

31G** basis set ^37,

displacement, the dissociation energy, the vibrational frequency ujq = Sig — Sog and 

the number of bound states, Nb, are given as a function of the external held for 

held strengths between - 2 V/Â and +  2 V/Â. It can be seen that the broadening 

of the potential well leads to a signihcant increase of the number of bound states 

with increasing held strength. This is important for the theoretical treatment of the 

STM-induced desorption in the “below threshold” limit, as it is shown in the section 

3.4.

For negative helds (directed from H to Si), the changes in the characteristics 

are generally less pronounced. With increasing negative held strength, the disso­

ciation energy now shows a steady increase up to -2 V/Â. The equilibrium bond
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Figure 3.12; Potential energy curves, V(Z)  =  Vg{Z) -  fiQ ■ F -  ^ ■ F^, of the SiH 

cluster in a homogène electric field for negative (upper panel) and positive electric 

field values (lower panel) ranging from - 1 V/Â to + 1 V/Â.
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Figure 3.13: Vibrational frequencies for SiH as a function of the applied electric 

held, for F  ranging from -3 V /Â  to 2 + V /Â .

displacement Zq decreases with F , reflecting the strengthening of the SiH bond by 

the electric field -in  contrast to positive fields, where Z q increases steadily with the 

field strength- as shown in Fig.3.12.

In Fig.3.13, the variation of the SiH stretch vibrational frequency as a function 

of the electric field strength and direction is shown. The curve indicates a maximum 

around - 2 V/Â, in good agreement with density functional calculations by Akpati 

et al. for the S i(lll):H  system [67]. This extremum (as well the the minimum 

in the bond length distribution. Table 3.3) can be explained with the help of a 

simple tight-binding model, as it was shown by Persson and Avouris [86]. They 

assumed that the adsorbate-surface bond involves the interaction of an orbital |a) 

on the adsorbate with a substrate orbital |6) Persson and Avouris found that for 

a given pair of energy levels, Sa and Sb, the frequency as a function of F  maximises 

when both levels are in resonance, since at resonance the SiH bond is strongest and 

^In the case of H on Si, |a) will be the hydrogen Is orbital and |6) will be a Si sp  ̂ orbital.
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therefore the bond length minimal. Both on the right and the left of the extremum, 

the vibrational frequency decays monotonically, as is also indicated in Fig.3.13. This 

is the same behaviour as also found in first-principles calculations [90].

The calculations for the vibrational frequency indicate that the vibrational Stark 

shift for fields present in the STM experiments are large enough to significantly 

influence the vibrational dynamics. For example, a typical field for STM induced H 

desorption experiments of % 0.5 V/Â leads to a Stark shift of % 11 meV. This shift is 

larger than than the dispersion width of about 1.2 meV [91]. According to the results 

in Ref. [86], this shift can significantly reduce the energy transfer rate to surrounding 

adsorbates and thus allow local activation of surface dynamical processes.

As it was shown by Akpati et al. for the S i(lll):H  system [67], the consideration 

of a larger cluster does not lead to a generally different field dependence of the 

characteristics, but the effects are somehow reduced. The Stark shift, for example, 

is diminished from 12 meV for the SiH cluster to % 4.5 meV for a SiioH cluster (F  = 

0.5 V/Â), but still this shift is sufficient to reduce the energy transfer rate.

3.4 Desorption in the “below threshold” limit

3.4.1 Review of experimental results and previous theoret­

ical treatment

Avouris and co-workers observed in their STM desorption experiments (positive 

sample bias) that excitation of the Si(100)-(2xl):H system by electrons with energies 

below those needed for electronic excitation can still lead to H desorption, albeit 

with a much lower yield [18]. Furthermore, the desorption characteristics are very 

different from those of the desorption process above the electronic threshold. A 

strong dependence of the desorption yield on the tunneling current I  is observed 

(oc P  with rj ~  10-13) and there is a remarkable enhancement of desorption, ~  300 

times, when cooling from 300 K to IIK . Furthermore, deuterium desorption in the
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tunneling regime is only achievable at 11 K  ̂ [17, 18, 29, 72, 73].

The strong current dependence indicates that many electrons might be involved 

in the excitation-desorption process. It was assumed that because of the extremely 

high current densities present in the STM (as high as 1x10^ A cm~^) and the 

long vibrational lifetime (~  ns) of the SiH mode [75], the inelastic tunneling can 

cause multiple vibrational excitation and subsequently desorption [17]. A simple 

model of a truncated harmonic oscillator where the tunneling current and thermal 

phonon processes induce transitions between the quantum levels of the oscillator was 

used for the description of the desorption process (see below) and the temperature 

dependence of the desorption yield was found to origin mainly from a temperature 

dependence of the vibrational lifetime of the SiH bond [72, 26, 19].

3.4.2 General aspects of the STM-induced desorption in the 

multiple excitation limit

The possibility of overcoming a potential barrier via “vibrational heating” , i.e., 

multiple vibrational excitations by laser-excited hot electrons or inelastic scattering 

STM electrons for example, has been investigated by various groups [92, 93, 94, 81, 

95, 96, 97, 30, 19]. A universal feature of the vibrational heating mechanism leading 

to DIMET is the perturbation of the adsorbate-surface bond by successive electron 

scattering at a rate comparable to vibrational relaxation. The resulting increase in 

vibrational temperature leads to an enhanced desorption probability due to elec­

tronic re-excitation from vibrationally excited states (see Fig.3.14). Furthermore, 

this “vibrational ladder climbing” mechanism allows desorption to occur even if the 

electronic excitation energy is below the threshold for the direct excitation discussed 

in the previous section 3.2.

The degree of vibrational heating induced depends on the balance between vi­

brational excitation and relaxation processes (see Fig.3.14). W ith the STM, inelas- 

^So far, to my knowledge, experiments were performed at 11 K and 300 K only.
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Figure 3.14: Sketch o f the “vibrational ladder climbing” mechanism > Ij.

Desorption will occur i f  the “ladder” can be climbed high enough to overcome the 

desorption barrier.

tically scattering tunneling electrons excite transitions from vibrational quantum 

states \vn) to states |u^} (A„^ > l-,m > n) with a rate proportional to the

tunnel current while both the dipole and the resonance mechanism (see section 3.1 

and below) contribute

. (3,29)

At finite temperature the system can also absorb thermal energy from the substrate. 

To account for the vibrational excitation as consequence of this thermal heating,

has to be combined with a rate to obtain a total “upward rate”

n n e l  , T j / t h e r m  g Q j

In order for the excitation to induce bond-breaking, it has to remain localized 

at the particular site for an appropriate time period. However, competing with

p t  _  ^ r ^ n e l  , p p t  
^ m ,n  m ,n  '
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the excitation process are energy transfer processes to the substrate by coupling 

to phonons (excitation quenching) and to surrounding adsorbates (excitation de- 

localisation, Forster type energy transfer [98]). Additionally, interaction with the 

tunneling electrons scattering inelastically can also lead to energy relaxation from 

vibrational states \vm) to |?;„) of the system so that one obtains a total “downward” 

transition rate

ri,™ =  ■ (331)

Here, accounts for the Forster transfer and is the dissipative vibrational

decay (quenching) rate.

If all the excitation and de-excitation rates are known, the microscopic dynam­

ics of DIMET processes can be described with a kinetic model for the vibrational 

heating mechanism. In this model, the vibrational response of a local bond to the 

multiple electronic perturbation is described by the probability distribution among 

the vibrational eigenstates, whose evolution is determined by a Pauli master equa­

tion, or rate equation (see below). How to choose the individual “up” and “down” 

rates is discussed in the next section in detail.

3.4.3 Excitation and relaxation rates

3.4.3.1 C ontributions from inelastically scattering tunnel electrons

STM DIMET at positive sample bias is caused by tunneling electrons from the tip 

which scatter inelastically on the surface-adsorbate system. The fraction fin of STM 

electrons scattering inelastically arises from two different excitation mechanisms, 

namely the dipole and the resonance mechanism, i.e., fin = f i f f  +  fln^-

Inelastic tunneling from a metal tip was investigated theoretically by Persson 

and co-workers within the harmonic limit, assuming that all the tunneling electrons 

derive from one single tip atom [96, 99]. For the contribution of the dipole mecha­

nism, where the electric field of a tunneling electron near an adsorbate is thought of 

as interacting with the transition dipole moment of an excitation from an initial
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adsorbate state |z) to a final state |/ ) ,  the authors estimated the magnitude of 

e.g. for a typical |?;o) —>■ jt'i) vibrational transition, to be approximately [96]

where e is the electron charge and Qq the Bohr radius. Expanding the dipole function 

fi(Z)  up to the linear term around the equilibrium position Zq = 0 of the vibrational 

coordinate

fi{Z) % /i(0) +  ^ | o  • Z  = ii{0) +  • Z  (3.33)

gives for the transition dipole matrix elements

(vn\fi(Z)\vm) ^  +  (^ » |/(0) ' Z\vm) = / ( 0)(n»|%|n^) . (3.34)

If l'Un,) and |"u )̂ are eigenfunctions of the harmonic oscillator, the matrix elements 

{vn\Z\vm) are given analytically

{Vn\Z\Vm) =  0 fo r  A nm  >  1

where M  is the reduced mass and ojq the frequency of the oscillator. Thus Eq.(3.32) 

simplifies to

'  2S Ü  • I’

which gives the share of tunneling electrons scattering inelastically due to dipole

interaction in harmonic-linear approximation. With the derivative of the dipole 

moment calculated for SiH in section 3.3, % 1.5 D it is possible to give

an estimate of % 0.01 for the SiH system {%/2Mlüq̂  % 0.03ao). However, as

discussed in section 3.3, the dipole function calculated in this work for a two-atomic

cluster might be over-estimated. Recently, more accurate calculations on the dipole 

function were done by Stokbro [100]. By using density functional theory within the
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generalized gradient approximation and a slab with 12 Si atoms and 6 H atoms, he 

obtained a much smaller dipole derivative, namely =  0.3 D With this, a 

much smaller fraction % 2 x 10“  ̂ is obtained.

The temporary trapping of the incident tunnel electron causes a change of the 

internuclear potential which induces an excitation (or relaxation) of the adsorbate- 

surface bond. The corresponding contribution of this resonance mechanism to 

the inelastic current was also determined by Persson and co-workers [99]. For a 

ko) —̂ k i)  vibrational excitation, for example, it is

fl
{Vres(0) -  V M  -  e v y  +

7̂(0) 2̂

(T36)
[Kes(O) ~ F̂ (0) ~ -F hLUo]^ + (̂ î̂ 2))2

Here, Wes is the resonance level and Vg the harmonic ground state potential and 

uq is, as above, the vibrational frequency of the harmonic oscillator. ^7 (0)/2  is the 

half width of the resonance Ve{Z) at Z  = Zq = 0. The influence of the applied 

electric field on the energy levels is included by the factor —eV, where V  is the 

(positive) sample bias. If field effects are neglected and the assumption hj(0) << 

excitation/ de-excitation energy is made, Eq.(3.36) simplifies drastically to

f T c s  _  ^  I K 'e s ( 0 ) P  (o
~  2Mwo |y „ ,(0) -  ^

Recent density functional calculations by Stokbro et al. showed that the negative 

ion resonance involved in the SiH DIMET process considered here is centred at % 

4.6 eV while the force acting along the vibrational coordinate, —Wes =  — was 

calculated to % 3.12 eV/A at Zq =  0 [19]. Thus, % 0.02 can be estimated, 

which implies that the resonance contribution is about 10 times higher A general 

dominance of the resonance mechanism over the dipole contribution was also found 

earlier by Persson and Baratoff [99].

'^With regard to the higher accuracy of the slab-calculated dipole moment and the so obtained

f t
(dip  
’ i n
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Finally, the transfer rates arising from the inelastic tunnel fraction are propor­

tional to the total tunnel current I. For transitions between harmonic oscillator 

states |u„) and \vm) with =  ± 1, for example, the total “up” and “downward” 

rates arising from the inelastic scattering of tunneling electrons are thus given by

I
== - % (s.ss)

=  -  • / m  • ( n + 1 ) ( 3 .3 9 )

n n e l    j ^ ^ i n e l , d i p  ^  j ^ ^ i n e l , r e s

I
e

with fin =  4- Note that if and are estimated from a harmonic-

linear model (Eqs.(3.35) and (3.37)), the sample bias is not longer explicitly included, 

which means that the energy of the tunneling electrons, i.e. the excitation energy, 

is neglected.

3.4.3.2 Energy dissipation and vibrational lifetim e

One of the main factors that controls the desorption yield is the vibrational energy 

decay rate, caused by coupling to substrate phonons and neighbouring adsorbates.

is the rate for the relaxation of system from its first vibrational excited state 

to its ground state and equal to the reciprocal (temperature dependent) vibrational 

lifetime

=  - 4 ^  . (3.40)

In a harmonic-linear excitation picture, relaxations of higher neighbouring vibra­

tional states are proportional to e.g.,

K n + iiT .)  = (r.)  • (n +  1) . (3.41)

Efficient bond-breaking via vibrational excitation becomes only possible for the 

SiH system because of the long lifetime of the SiH stretch frequency. The long 

lifetime (~  ns) is a result of a vibrational quantum far above the Si phonon spectrum 

and too low for a coupling with electron-hole excitations. Thus the energy can only 

be transferred via a multi-phonon process [26].
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Thermal heating is also due to a substrate phonon coupling mechanism. Because 

dissipative energy decay and thermal heating are reversible microscopically, 

and are related through the principle of detailed balance

:= . (3.42)

Energy and phase relaxation times for Si(100)-(2xl):H/D were measured by 

Guyot-Sionnest and co-workers, using time-resolved sum frequency generation (SFG) 

[75]. At 300 K, the measured lifetime Tyn, of the symmetric SiH stretching mode is 

around 1.2 ns. At 100 K, Tyn, appears to be longer than 6 ns, but the experiments 

show that surface defects seem to dominate the relaxation dynamics because the 

individual measured values varied with the quality of the sample between 1.3 ns and 

8 ns. This is not the case for Si(100)-(2xl):D where the short vibrational lifetime of 

about 250 ps shows consistency from sample to sample and only weak temperature 

dependence (T̂ ,̂ b(100 K) =  260 ps, T îb(300 K) =  225 ps).

3.4.3.3 Stark shift and Forster type energy dissipation

The probability of multiple vibrational excitation in the silicon-hydrogen system 

might be enhanced by an excitation localization mechanism suggested by Persson 

and Avouris [86]. The lateral coupling between the SiH surface oscillators generates 

a band of propagating SiH phonon modes, promoting the spatial energy dissipation 

(Forster transfer). If the STM tip is centred over a certain SiH bond, the local elec­

tric field under the tip might shift the SiH vibrational frequency (Stark shift) outside 

the band of propagating adsorbate phonons [86]. In the experiments considered, the 

electric field under the tip is estimated to be <0.5 V/Â [17]. Actually, this is too 

weak to induce field desorption, but high enough to produce a Stark shift leading 

to a vibrational state mainly localized in the adsorbate under the STM tip. Lower­

ing the substrate temperature leads to further reduction of Forster type vibrational 

energy transfer, because the dephasing rate of the SiH modes decreases, has been

77



measured by IR spectroscopy [101]. This increases the localization of the vibrational 

energy and enhances the probability for multiple excitation and desorption.

The SiH vibrational modes of the Si(100):H and S i(lll):H  system have been 

studied by various spectroscopic methods [75, 91]. Lateral coupling between the SiH 

oscillators on the S i(lll)  surface generates a band of propagating SiH phonon modes 

with a measured bandwidth Acu %10 cm“  ̂ and a similar bandwidth is expected for 

the Si(100):H system [75, 91]. If now an STM tip is placed over the SiH bond, 

the local electric field under tip will cause a Stark shift of the SiH frequency from 

frequency cjQ to wp. Density functional theory calculations on SiH clusters (assuming 

a one-atom tip symmetry) showed that a potential difference of a few volt between 

the tip and the substrate gives Stark shifts of % 50 cm“  ̂ which shift the resonance 

frequency ujp outside the band of adsorbate phonon modes [86, 67]. If thus \üüf — üjq\ 

is larger than the bandwidth A u , a localized vibrational state in the Stark-shifted 

SiH oscillator under the tip is created. However, the lifetime of this state is not 

infinite. The decay rate of the localized state under the STM tip is given by the 

Forster formula which in the case of |no) —)■ |ni) relaxation takes the form [86]:

+  • (3.43)

K has to do with the adsorbate symmetry and is 0.23 for Si(lOO) [26]. The temper­

ature dependence of the linewidth 0 has been measured using IR spectroscopy and 

is well described by [101]:

where 9q = 1.4 cm~^ for the Si(100)-H system and ujs % 200 cm~^.

The bond anharmonicity U of the SiH vibrational mode (difference |fo) f -  |ni) 

and |r;i) f -  1̂ 2) transition energies) was measured to he U % 80 cm~^ [102]. So 

it is likely that for vibrational quantum states n > 1 the bond anharmonicity will 

strongly reduce the lateral energy transfer, as it was also found theoretically [86, 26].
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3.4.4 Truncated oscillator model

A simple model that allows an insight into the factors that affect vibrational heat­

ing is provided by the truncated harmonic oscillator model (see Fig.3.15). In the

U)k_ |m>
0)c
0)

AE|n+1>

|n-1>

Z

Figure 3.15: The truncated harmonic oscillator model.

truncated harmonic oscillator description of the energy transfer, the adsorbate vibra­

tional motion is assumed to be harmonic and the energy transfer is assumed to occur 

irreversibly as soon a vibrational level \vm) with energy (m + l/2)hujo just above the 

barrier height A E  is reached. The transitions among the different vibrational levels 

can be described by a Pauli master equation

dt — (n +  1) • Fgj • Pn+i + n ‘ r{ o • P n - l

■ 0̂,1 + (̂  + 1) • rî,o] • Pn (3.45)

where Pn{t) is the probability to hnd the system at time t in the vibrational state 

\vn) of the harmonic oscillator and Fq  ̂ and F | q are linear excitation and relaxation 

rates for vibrational states |uo) and |ui).
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The truncated harmonic oscillator model and the rate equation (3.45) were used 

by Avouris and co-workers to model the STM-induced bond-breaking in the “below 

threshold” domain for the Si(100):H system [72, 26]. With dissipative energy decay 

rates formulated analogous to Eq.(3.41), the corresponding “upward” rate is given, 

due to the principle of detailed balance, as

. (3.46)

Using additionally the harmonic-linear expressions for the inelastic tunneling rates, 

Eq.(3.38) and Eq.(3.39), Avouris et al. obtained for the total excitation rate \vn-i) —> 

I'̂ n)

=  n • [ t  . (T,) • (3,47)

while for the de-excitation, |%+i) -4- |u„), the rates in the harmonic-linear excitation 

model are given by

r i . „ + i  =  (»  +  ! ) '  [ E  f in  +  < r m ) ]  • (3.48)

To obtain the temperature dependent energy decay rate the authors eval­

uated the temperature dependence of the vibrational lifetime Tyib theoretically under 

the assumption of a multi-phonon decay process and estimated Tyî  to be about 10 

ns at room temperature and about 18 ns at 100 K [72]. Avouris et al. found an 

exponentially decrease of the decay rate Wq'̂ {̂ (Ts) = l/ryib{Ts) over the temperature 

range considered, as it is shown in Fig.3.16.

Inserting these “up” and “down” rates in the kinetic equation Eq.(3.45), they 

finally obtained the following expression for the desorption rate [72]

(I/e)f,„ + • exp(-huFlkBT,ŷ ’̂ '̂ "
(3.49)

Here, hujp is the quantum of vibrational energy in the presence of the tip-induced 

electric field F  (% 0.25 eV) and AE7 is the effective barrier that needs to be sur­

mounted for desorption to take place (see Fig.3.15). Avouris and co-workers chose
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Figure 3.16: The energy relaxation rate = l/ryib{Ts) o f the SiH naode as

calculated by Avouris et al. [72], showing an exponential temperature dependence. 

The vibrational quenching rates correspond to Tyn, = 10 ns at 300 K  and Tyib = 18  

ns at 100 K.
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the effective barrier to be slightly lower D — Tiüjq/2) than the bond dissociation 

energy D, because they considered the process not as typical desorption but atom 

transfer over a barrier and tunneling to a potential well associated with the tip. 

Their choice of AE' =  3 eV [18] corresponds to % 12 bound states in the truncated 

harmonic oscillator.

The parameter A in Eq.(3.49) is a “reduction” factor which is caused by the 

Forster transfer and < 1. Both the vibrational quenching rate and the lateral 

energy diffusion rate are temperature-dependent (see above). Calculations of the 

energy transfer rate show a change of A by less than a factor of 2 upon cooling 

for a typical Stark shift of 50 cm~^ of the SiH frequency [26, 72]. Therefore, the 

main factor that controls the temperature dependence of the desorption yield is the 

vibrational decay rate

While a nonlinear dependence of the desorption rate on the tunnel current 

(oc E ,?7 > 1) naturally arises from Eq.(3.49), the experimentally observed volt­

age dependence of the desorption yield should be accounted for by the fraction fin 

of tunneling electrons scattering inelastically. Avouris et al. fitted the inelastic frac­

tions fin to the experimental desorption yields (e.g. fin = 7.6 x 10"^ at 2 V and 

f i n  = 2.8 X 10"^ at 3 V [18]) and found good agreement between the desorption 

rate computed with Eq.(3.49), shown in Fig.3.17, and the experimentally observed 

desorption yield. [18, 72].

3.4.5 Beyond the harmonic-linear approximation

Despite the success of the harmonic-linear model for the description of the STM- 

induced desorption in the “below threshold” limit, the process is virtually neither 

“harmonic” nor “linear” . In a quantum mechanical wave packet description, an 

excited wave packet typically splits into parts, of which some reach the continuum 

and desorb while others remain trapped in the potential well. The trapped parts 

will vibrationally relax, while parts in the continuum (or very high on the vibra-
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Figure 3.17; STM  induced DIMET of H form Si(lOO). Current dependence of the 

desorption yield for hydrogen with sample bias 2 and 3 V  for Tg = 11 and 300 

K. The lines are obtained by a truncated harmonic oscillator model with Eq.(3.49) 

and fitted values for the inelastic tunnel fractions: fin = 7.6 x 10"^ at 2 V  and 

f i n  =  2 .8 X 10“  ̂ at 3 V  [18]. The theoretical values are in good agreement with 

experimental data, represented by large circles (3 V, 300 K), bullets (3 V, 11 K) 

and triangles (2 V, filled for 11 K).
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tional “ladder”) hardly feel the dissipative influence of the substrate. Therefore, the 

system-bath coupling has to be nonlinear at least in the system modes. Also, to 

allow for bond-breaking to occur, the system coordinates have to be anharmonic.

Thus, for a more rigorous description of the STM-induced desorption in the “be­

low threshold” limit, an anharmonic (Morse) potential for the electronic SiH ground 

state and mostly nonlinear models to determine all transition rates numerically were 

chosen in this work. Furthermore, the sample bias, i.e., the applied electric field, 

has been implicitly included in the excitation/ deexcitation rates and the fractions 

and were determined numerically with generalised versions of Eqs.(3.32) 

and (3.36), rather than being fitted.

3.4.5.1 Inelastic tunneling rates

With generalised versions of Eqs.(3.32) and (3.36) for the fractions and 

the total energy transfer rate which arises from inelastic scattering STM

electrons, is given, according to Eq.(3.29), by

i n e l  __

2

ea„ )  (y^^^(0) - V ; ( 0) - e K )2 +  ( « a )2

[VeslO) — ^ (0 ) — e V  +  (e„ — £n)]  ̂— (5al2i)2

[K-es(O) — 1^(0) — e V  +  ( e ^  — Sn)Y  +
(3.50)

To get the transition rates beyond the harmonic approximations, the ma­

trix elements (vnljLi(Z)jvm) and {vn\Z\vm) were computed numerically with |u„) and 

\vm) now being the vibrational eigenfunctions of the field-perturbed Hamiltonian 

Eq.(3.27).

To obtain the transition rates the parameters Kes(O) and %.gg(0) were

taken from Ref.[19] (see Table 3.4), as was also done for the estimate in section 3.4.4. 

In Eq.(3.36), the width of the resonance level is accounted for in the parameter 7 ,
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which was also calculated by Stokbro et al. to 7 (0) =  1 eV [19]. Because \vn) and 

\vm) are no longer eigenfunctions of the harmonic oscillator, the harmonic frequency 

hujQ has to be replaced by the difference Sm — Sn of the vibrational energy levels of 

the Morse oscillator Eq.(3.5) as computed with the Hamiltonian Eq.(3.27).

No linear approximation was made for the dipole moment //(%) and the dipole 

function as given in Eq.(3.28) was used with the ab initio calculated permanent 

dipole moment fiQ and the polarizability a  (see section 3.3). Thus, the applied 

electric field, i.e. the sample bias, is explicitly included in the inelastic tunneling 

fraction f f ^ .  However, in regard to the more accurate calculations by Stokbro [100] 

and the most likely over-estimated dipole function calculated here (see section 3.4.3), 

the dipole function is from now on considered to be /!(%) ;= 1/4 • p,(Z).

With the Morse potential given in Eq.(3.5), a SiH bond dissociation energy of 

~  3.2 eV is obtained, which implies 25 bound states in the potential well (field- 

free case). As discussed in section 3.3, dissociation energy and number of bound 

states varies with the field strength. However, replacing yu by // in the perturbation 

Hamiltonian Eq.(3.27) leads to less pronounced field effects so that 77̂ ) the number 

of bound states, remains 26 for all bias investigated here. Additionally to the bound 

vibrational states, 69 continuum states were computed with the sine function DVR 

method as in section 3.3 (for grid parameters see Table 3.4). Finally, transitions 

between non-nearest neighbour states were allowed.

As expected from the estimate in section 3.4.3, replacing ji by the more accurately 

calculated jl diminishes the transition rate drastically, but does not alter the

“shape” of as function of the vibrational quantum number. This can be seen

in Fig.3.18, exemplary for a sample bias of 2 V and a current 7 =  1 nA for transitions 

between states \vn+i) and |u„). The function shows a distinctive minimum around 

quantum number n = 18, which is due to the fact that the eigenfunctions with 

M % 18 are centred around a coordinate Zk for which ~  \zk ~  0- This

finding means that the desorption rate arising from the dipole mechanism would be 

zero if the selection rules would apply strictly, because no population could climb
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high enough on the “vibrational ladder” to reach the continuum, i.e. desorb.

(A

2e-08

1.56—08

16-08

56-09
with \xJA

0
0 5 10 15 20 25

vibrational quantum number  n

Figure 3.18; The transition rate originate from tunneling electrons scat­

tering inelastically due to the dipole mechanism, as obtained with Eq.(3.32) in the 

anharmonic-nonlinear model as a function o f quantum number n for bias = 2V  and 

I  =1 nA. The values represented by the dashed line were obtained with the dipole 

function /a(Z), while the solid line shows as obtained with Ji{Z) (see text).
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Grid parameters for sine function DVR

Grid spacings =  0.05 ao (for H and D)

Nb. of grid points =  1089

Parameters for rate calculations [19, 26]

Number of vibrational states considered 95

Resonance centered at V-es(O) =  4.6 eV

Force —dVres/dZ\Q =  - 3.12 eV/Â

Resonance width 7 (0) =  1 eV

Parameters for Forster formula Eq.(3.43) 9q =  1.4 cm~^ 

n =  0.23 

Aw =  10 cm“  ̂

ujs = 200 cm“ ^

Propagation parameters

Number of vibrational states included 27

Newton interpolation propagation parameters

Time step At =  2.4 ps

Total propagation time t f  = 363 ns

Polynomial order M =  16

Table 3.4; STM-induced DIMET on Si(100)-(2x 1):H(D): Numerical parameters for 

the DVR grid, the excitation rates and for the direct density matrix propagation.

87



The resulting rates are shown in the lower panel of Fig.3.19 for bias

2 and 3 V ( /  =  1 nA) and transitions between states |u„) and [un+i). They show 

a much stronger voltage dependence than the corresponding rates shown

in the upper panel of Fig.3.19, and are much higher than those, consistently with 

the estimates made in section 3.4.4. In contrast to the inelastic dipole rates, the 

transition rates arising from the resonance mechanism increase monotonously up to 

n = 23, before becomes negligible small.
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Figure 3.19; The transition rates (upper panel) and (lower panel)

origin from inelastically scattering tunneling electrons, as obtained in the anhar­

monic model for a current I  =1 nA and sample bias 2 V  (solid lines) and 3 V  

(dashed lines). The transition rates arising from the resonance mechanism are much 

higher and show a stronger held (bias) dependence.

In Fig.3.20, the total rates origin from inelastically tunneling STM elec­

trons are shown for vibrational transitions between \vn) and |u„+i) as a function of



vibrational quantum number rr for bias 2 and 3 V (/ = 1 nA). Because the contribii-
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fjn numerically, 2 V 
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Figure 3.20; The total anharmonic-nonlinear inelastic transition rates as

functions of vibrational quantum number n for bias 2 (squares) and 3 V (bullets) 

and current f  = 1 iiA. The grey lines represent harmonic-linear results with the frac­

tions fin in Eq.(3.39) fitted to experimental desorption curves (2 V: f^n = 7.6 x 10“'*, 

dashed line; 3 V: fin = 2.8 x 10“  ̂ [18], solid line). The solid black line also gives 

harmonic-linear results, but with f\n = 0.022, as estimated in linear approxima­

tion (see section 3.4.3), presenting a good “average” of the anharmonic-nonlinear 

transition rates

tion from the resonance mechanism is so much higher than the dipole contribution, 

hardly any difference can be seen between the total rates and the resonance

rates and the influence of looks negligible. To compare with the

harmonic-linear models, different corresponding harmonic-linear rates are shown in 

Fig.3.20 as well. The grey lines correspond to obtained with the truncated



harmonie oscillator and fin fitted to the experimental results, as it was done by 

Avouris and co-workers (see section 3.4.4). These rates are notedly smaller than 

the inelastic rates computed here and also much smaller than the harmonic

rates calculated with fin = 0.022 as estimated in linear approximation in

section 3.4.3 (solid black line). Those “estimated” however, represents a

good “average” of the anharmonic-nonlinear transition rates

3.4.5.2 D issipative rates

To model the vibrational energy decay due to substrate phonon coupling, an ap­

proach suggested by Nest and Saalfrank [103, 104] was used, which accounts for 

system anharmonicity and nonlinear system-bath coupling. Starting from a well es­

tablished harmonic model with bilinear system-bath coupling the authors replaced 

the harmonic creation and annihilation operators involved by the corresponding op­

erators of a Morse potential and obtained the following expression for the vibrational 

decay rate

■ (3.51)

is the rate for the relaxation of system from its first vibrational excited state 

to its ground state and equal to the reciprocal, temperature dependent vibrational 

lifetime

=  l/r„it(T,) . (3.52)

For the calculations, the vibrational lifetimes of SiH/SiD measured for 100 and 

300 K by Guyot-Sionnest et al. [75] (see section 3.4.3) were taken rather than the 

much higher theoretical values of Avouris et al. (see section 3.4.4) and exponentials 

were fitted to get Wq^i^(Ts) over the complete temperature interval [0 K, 400 K], 

as it was suggested in Ref. [72]. Because the measurements of Tyib at 100 K were 

^I.e., only terms linear in the SiH “system” and the Si(lOO) “bath” modes occur in the coupling 

operator H s b -
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inconsistent, three different lifetimes were considered for the SiH vibrational mode 

at 100 K, namely =  2.8, 6.6 and 8.1 ns, while for 300 K Tyib = 1.2 ns was chosen. 

For SiD vibrational mode Tyib{ll K) =  270 ps was estimated from the experimental 

data (see section 3.4.3).

The resulting decay rates for hydrogen as functions of the surface temper­

ature Ts can be seen in the upper panel of Fig.3.21; they respectively correspond 

to Tyib = 3.4, 8.6 and 20 ns at Tg =  11 K. For comparison, as obtained by

Avouris (see also Fig.3.16) is marked as dashed grey line; indicating a much smaller 

vibrational decay rate.

In the lower panel of Fig.3.21, the dissipative decay rates for surface

temperature Ts = 11 K are shown (field-free case). As given by Eq.(3.51), the 

smaller the vibrational lifetime Tyib and the higher the energy gap (s» — 6o), i.e., 

the higher the vibrational excitation, the higher the decay rate An energy

quenching rate proportional the vibrational quantum numbers n is also found in the 

harmonic-linear model (see Eq.(3.41)). However, the anharmonic-nonlinear rates 

level off for higher excited states, reflecting the fact the the coupling to the substrate 

phonons weakens with increasing distance to the surface. The straight dotted line 

in Fig.3.21 correspond to as obtained by the harmonic-linear model with

kFo,?^(ll K) =  1/8.1 ns. For small vibrational quantum numbers n, where the 

harmonic approximation is justifiable, the harmonic-linear rates are in good

agreement with as calculated with the anharmonic-nonlinear model. The

weakness of the harmonic-linear coupling model, however, lies in the prediction of a 

continual increase of the decay rates. This corresponds to a continual increase of the 

coupling strength, i.e. the further away from the surface the stronger the coupling 

to the substrate, a clearly unphysical behaviour.

Because the external electric field, i.e. the applied bias, only enters indirectly in 

Eq.(3.51) in the form of the eigenfunctions of the Hamiltonian Eq.(3.27), the held 

dependence of the dissipative decay rate is generally weak, as it is shown in Fig.3.22.

This is qualitatively different from what was found for the Forster transfer rate
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Figure 3.21; The relaxation rates for hydrogen as a function of the surface

temperature Tg (upper panel). Tyn,(300 K) = 1.2 ns was chosen according to experi­

mental results [75]. Three different lifetimes were considered for the SiH vibrational 

mode at 100 K (see text). For the thus resulting lifetimes at 11 17, =  3.4, 8.6

and 20 ns, the resulting total decay rates are shown in the lower panel

as functions of vibrational ciuantum number n, together with the harmonic-linear 

result for Tyib = 8.6 ns.
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Figure 3.22: Dissipative decay rate sampie bias 1 (black line) and 4 V

(grey line). Because the influence of the external field enters only through the eigen­

functions of the Hamiltonian Eq.(3.27), a weak voltage dependence of the dissipative 

decay rate is observed.
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Figure 3.23; Voltage dependence of the Forster transfer rate for Ts = 300 K 

(upper panel). The frequency shift luq ujp gets larger with increasing voltage, 

thus diminishing the lateral energy transfer. The temperature dependence of the 

dissipative decay rates WqY  ̂ and 1 3 and the sum is shown in the lower

panel (bias = 3 V). As it can be seen in the inserted blow-up, the Forster transfer 

rate is negligible for very low temperature, but changes the total energy decay rate 

drastically for temperatures Tg > 50 K.
94



which was calculated according to Eq.(3.43) and Eq.(3.44) with the parame­

ters as given in Ref.[26] (see Table 3.4). The field dependence enters quadratically 

through the field induced Stark shift, {ujp — Wo), in the denominator of the Forster 

formula Eq.(3.43). The frequency shift cjq cop gets larger with the strength of the 

applied electric field (see Table 3.3). This means an increasing shift of the SiH bond 

under the tip, away from the band of the other propagation SiH phonons. Thus, 

the lateral energy transfer is diminished with increasing electric field strength, as it 

is shown in the upper panel of Fig.3.23.

In the lower panel of Fig.3.23 , the temperature dependence of the Forster trans­

fer rate is shown, exemplary for a sample bias =  3 V, as a function of the substrate 

temperature Ts (solid black line). Also shown is the corresponding vibrational en­

ergy decay rate (solid grey line) and the resulting total dissipative decay rate

y^diss,tot _  ^rd^ss ^  /̂■F̂  (dot-dashed black line). As it can be seen in the inserted 

blow-up, the Forster transfer rate is negligible for very low temperature, but changes 

the total energy decay rate drastically for temperatures Ts > 50 K.

So far calculations on the field-induced Stark effect (Refs.[86, 67, 26] and this 

work, see section 3.3) assumed that the STM tip has an ideal “one atom” structure, 

thus producing an electric field which is localized on a single adsorbate below the 

tip. However, this is not the case for real tip geometries. A tip curvature in the 

range of 100 - 1000 Â is usually found [105, 106] and it is generally assumed that the 

atomic resolution arises from a small protrusion or a single atom sticking out of the 

tip. Recently, Stokbro modelled the electric field under the STM tip for realistic tip 

structures and calculated the resulting vibrational SiH frequencies and Stark shifts, 

using density functional theory within the generalized gradient approximation and 

a slab with 12 Si atoms and 6 H atoms [100]. His calculations confirmed that a 

localized mode exists below the tip, but showed that it is not completely localized 

at a single site. With a more realistic tip geometry, the electric field right on top 

of an adsorbate is not very different from the nearest neighbour sites, allowing for 

a high diffusion rate to these sides. Therefore, Stokbro found that the decay of the
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localized vibrational excitation due to the Forster transfer is about two orders of 

magnitude higher than the one obtained with the non-realistic tip geometry. Fur­

thermore, Stokbro’s calculations confirmed the suppression of energy diffusion from 

higher excited states (n > 1) due to the anharmonicity of the SiH bond potential 

(see section 3.4.3), justifying the inclusion of the Forster energy transfer just for 

transitions between states |uo) and |ui);

W lm  = K l  5on <5lm (3.53)

3.4.6 Desorption dynamics

3.4.6.1 Open system  density m atrix approach

In this work, the vibrational heating and the desorption dynamics of the STM 

induced hydrogen desorption from silicon in the “below threshold” regime were 

modelled within open-system density matrix theory. A dissipative Liouville - von 

Neumann equation of Lindblad form (Eq.(2.10)) was solved subject to the initial 

condition

Ps(0) =  \g){g\®^Wn{Ts)\Vn){Vn\ , (3.54)
n

where |u„) is the n-th vibrational wave function in the electronic ground state and

—  f,— {^n-£o)lkBTs j  ^  g — (En—Goi/kaTgWn — 6

is the Boltzmann weight of state |u„) at surface temperature Tg. The direct prop­

agation scheme outlined in section 2.2.1 was used and all propagation parameters 

are given in Table 3.4. For all operators, a state representation was chosen. Vibra­

tional excitations and de-excitations of vibrational states |u) were modelled with the 

Lindblad operators

Cm,n \/^m,n I'̂ m) {'̂ n\ (3.56)

Cfi,m v/Fn,m l”̂n) ('̂ m| , (3.57)
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where the relaxations and excitation rates F are given by

r„.™ =  5o„ (3.58)

r™.n =  +  (3.59)

with '^n]m SLnd as defined in Eqs.(3.50), (3.51) and (3.43).

The energy transfer was considered as irreversible as soon a continuum state 

was reached on the “vibrational ladder” , i.e., population in the continuum was 

considered as desorbed. All 26 bound states of the SiH system were included in 

the propagation, but while the computation of the “up-” and “downward” rates 

comprised 69 continuum states (see above), just the first continuum state |ci) := |c) 

was explicitly considered in the propagation. The transition rates from a bound 

state \b) to all the regarded continuum states |q) were included by a summed rate,

Tc6 — ^Cib-

With the Hamiltonian Eq.(3.27) and the dissipative Liouvillian Eq.(2.11), the 

following expression thus results for the nuclear density evolution among the vibra­

tional states (see Appendix B)

{'^n\Ps\'^n) Ps,nn ^  ̂ ^n,mPs,mm Ps,nn ^  ̂ 1̂771,71 (3.60)
m:̂ n m^n

and

{,'^n\Ps\'^m) Ps,nm ^m)Ps,nm ^ ^  y( f̂c,n T ^k,m)Ps,nm • (3.61)

In the system considered, there are no initial coherences

Ps,7777i(0) — Ps,nm{^)^nm • (3.62)

In the Lindblad ansatz, coupling between the off-diagonal elements ps,nm and di­

agonal elements pŝ nn can only arise by a direct coupling term in the Hamiltonian 

(see, for example, section 4). Because direct coupling was not considered here, the 

off-diagonal elements remain zero. Thus, a generalized Pauli master equation is 

obtained, where the first term on the right hand side of Eq.(3.60) models the gain
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of population in state from all other vibrational states |n^), while the second 

one describes the population transfer from vibrational state \vn) to the other states 

I'̂ m) •

3.4.6.2 D esorption rates

The rate of desorbed atoms per electron was obtained by weighting the time evo­

lution among the continuum state considered, (c|,Oa|c), with the number of incident 

electrons per second. As shown in the following, all the different excitation and 

de-excitation rates influence the desorption yield.

In Fig.3.24, the current dependence of the desorption rate is shown for voltages 

2 V in the upper panel and 4 V in the lower one, on a double logarithmic scale. The 

surface temperature is 11 K and the results were obtained assuming Tyib(llK) = 

8.6 ns. The desorption yields show a strong current dependence and are significantly 

higher for the higher sample bias. Additionally to the desorption yields obtained 

including all inelastic and dissipative “upward” and “downward” rates (black solid 

line), the desorption rate under neglect of the dipole tunneling mechanism, i.e.

is shown (dashed grey line). At the smaller voltage, the inclusion 

of leads to slightly higher desorption rates. At higher voltages, however, the

resonance mechanism dominates even more, because is not only significantly

higher than but also shows a stronger voltage dependence (see section

3.4.5). Thus, the desorption rate calculated considering the resonance mechanism 

only is almost identical to the one computed with the total rate The same

observations were made for the other considered vibrational lifetimes at 11 K and 

for surface temperature Ts = 300 K, at it is shown in Fig.3.25.

At 300 K, the Forster type energy transfer becomes important, and the influence 

of on the desorption yield is notedly stronger than the one of As

discussed in section 3.4.5, becomes smaller with increasing voltage. Thus, 

the difference in the desorption yields calculated with (black, dot-dashed line) and
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Figure 3.24: STM induced hydrogen desorption from Si(100)-(2x 1):H in the “below 

threshokr limit. The influence of on the desorption rate at different sample

bias for Ts = 11 K, = 8 .6  ns. At the smaller voltage, the inclusion of

leads to only slightly higher desorption rates. At the higher voltage, the 

desorption rate calculated considering the resonance mechanism only (dashed grey 

line) is almost identical to the one computed with the total rate 14%̂  ̂ (solid black 

line).
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Figure 3.25: STM induced DIMET of hydrogen from Si(100)-(2x 1 ):H. The influence 

of and W on the desorption yield at different sample bias for Ts = 300

K. Again, the influence of is minor, especially for the higher voltage. The

inclusion of the Forster energy transfer rate has more notedly eflect. With 

higher voltage, the difference in the desorption yields calculated with (black, dot- 

dashed line) and without (solid black line) the Forster energy dissipation becomes 

smaller, but is still pronounced.
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without (solid black line) the Forster energy dissipation becomes smaller (see lower 

panel of Fig.3.25), but is still pronounced due to the weak voltage dependence of
y ^ r d i s s  

n , m  •

The most significant infiuence on the desorption rate, however, has the vibra­

tional lifetime included in as it can be seen in Fig.3.26. For Tg =  11 K, where

the experimental lifetime measurements for SiH were inconsistent [75] (see section 

3.4.3), three different lifetimes, Tyib{llK) = 3.4, 8.6 and 20 ns, were considered. 

In accordance with the observations from section 3.4.5, the desorption yield is the 

higher the voltage and the longer the vibrational lifetime. In Fig.3.26, the desorp­

tion rates calculated for the truncated harmonic oscillator model with Eq.(3.49) and 

the values fin as fitted by Avouris (see above) are indicated as grey lines (2 V: trian­

gles; 3 V:bullets) to mark the approximate position of the experimental results (see 

section 3.4.4). As it can be seen, the yields computed including =  1/20 ns,

i.e., with a vibrational lifetime close to the one estimated by Avouris et al. [72], fail 

completely; they are orders of magnitude higher than the experimentally observed 

desorption yields. Unfortunately, even with much lower lifetimes, i.e., much higher 

dissipative decay rates, the computed desorption yields are still too high compared 

to experiment.

For 300 K, = 1/1.2 ns was assumed, in agreement with the experimen­

tally measured vibrational lifetime [75] (see section 3.4.3). However, for a sample 

bias of 2 V, the so obtained desorption yields are too high as well, as it can be 

seen in Fig.3.27, where the harmonic-linear results as approximate marks for the 

experimental data are also given as grey lines (2 V: triangles; 3 V: circles). The 

solid black lines represent the desorption yield computed with transition rates F as 

defined in Eqs.(3.58) and (3.59). The dashed lines give the desorption rate under 

the assumption of a 100 times higher Forster energy transfer rate, as it was cal­

culated by Stokbro for a more realistic tip geometry[100] (see section 3.4.5). The 

higher dissipation rate leads to smaller desorption yields, thus bringing the rates 

calculated for 2 V closer to those observed experimentally. In contrast, for a sample
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Figure 3.26: STM induced desorption in the “below threshold lim it”. The influence 

of the vibrational lifetime on the hydrogen desorption rate from Si(100)-(2x 1):H 

for Ts = 11 If and voltage 2 V (upper panel) and 3 V (lower panel). Because 

of inconsistent experimental measurements at low tempera ture, three different life­

times, =  3.4, 8.6 and 20 ns, were considered. The desorption yield is

the higher the higher the voltage and the longer the vibrational lifetime. However, 

the computed desorption yields are generally higher than the experimental yields, 

symbolised by the harmonic rates obtained with Eq.(3.49) and the fitted fractions 

f^n (see text) and indicated as as grey lines (2 V: triangles; 3 V:bullets).
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Figure 3.27: STM stinmlcited DIMET of hydrogen from Si(100)-(2x 1):H. The im­

pact of the Forster energy transfer rate \Vq̂  ̂ on the desorption yield and comparison 

with experimental results for Tg = 300 K, Tyib{3001\) = 1.2 ns. Given as approxi­

mate marks for the experimental data are the harmonic-linear results obtained with 

Eq.(3.49) and the values fin fitted by Avouris (see text) as grey lines (2 V: triangles; 

3 V: circles). For a sample bias of 2 V, the computed desorption rates are again 

notedly higher than the “experimental” results, but because of a too small voltage 

dependence of the anharmonic-liriear rates, the yield calculated for 3 V seems in 

good agreement with it.
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bias of 3 V, the calculated desorption yields were already in good agreement with 

the harmonic-linear results, representing the approximate experimental values; the 

assumption of a higher Forster energy transfer rate leads to too small yields.

However, the fact that the desorption rates are too high for the smaller voltage, 

but seem correct for the higher bias indicates that the experimentally observed 

voltage dependence is not reproduced correctly in the transition models applied here. 

It can be assumed that with the correct voltage dependence the desorption yield 

calculated for 3 V will also be higher than the one experimentally observed. One 

reason for the too weak voltage dependence could be the quite roughly calculated, 

respectively estimated, dipole function entering in Nevertheless, the

excitation (relaxation) rates caused by the dipole mechanism are much smaller than 

those of the resonance mechanism. So it is more likely that the problem arises from 

the dominating contribution which is still modelled in linear approximation

(see Eq.(3.36)). An improved, non-linear approach to resonant tunneling is clearly 

preferable, for reasons discussed above.

There are not many experimental data available for the “below threshold” deu­

terium desorption, just for a bias of 3 V and substrate temperature T5 =  11 K. 

The yield calculated with the anharmonic-nonlinear model is also higher than the 

one experimentally observed, but the isotope effect in the desorption yield is repro­

duced correctly. This is shown in Fig.3.28 for Tg =  11 K and a sample bias of 3 

V (solid black line). The isotope effect is much higher than the one observed for 

desorption in the “above threshold” regime (section 3.2) and involves an isotope 

effect on the vibrational lifetime: the deuterium desorption yield is much smaller 

than the H yield because of the much shorter vibrational lifetime (see section 3.4.3). 

Again, the harmonic-linear result obtained with Eq.(3.49) is included (grey line) 

as approximative mark for the experimental values. Because deuterium desorption 

is experimentally not detectable for higher temperatures or smaller voltages, the 

deuterium yield calculated for 300 K can not be compared to experimental data. 

Nevertheless, the temperature dependence looks reasonable, considering the fact the
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Figure 3.28: STM induced deuterium desorption in the “below threshold” limit. 

Deuterium desorption is experimentally not detectable for higher temperatures, but 

the temperature dependence calculated here looks reasonable because the tempera­

ture dependence of the vibrational lifetimes is very weak for D; = 270_ps at 11 

I\ and 225 ps at 300 K [75].
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there is just a minor difference in the temperature dependent lifetimes; Tyn̂  =  270 

ps at 11 K and 225 ps at 300 K [75].

3.4.7 Summary and conclusions

The STM induced desorption dynamics of hydrogen and deuterium from Si(lOO) in 

the “below threshold” limit was investigated using an anharmonic, nonlinear ID 

+  1) state model. For this, various factors responsible for vibrational excitation and 

relaxations were discussed and different theoretical approaches to model vibrational 

heating by inelastically scattering tunnel electrons were introduced.

The current dependence of the desorption rate was examined for different sample 

bias and surface temperatures, the influence of the vibrational lifetime and the 

Forster transfer on the desorption yield were investigated and isotope effects were 

addressed. It results that the most prominent factor to determine the desorption 

rate is the lifetime of the vibrational excitation, which is also the origin for the 

enormous isotope effect in the desorption yield.

With the anharmonic and nonlinear excitation model introduced in this work, the 

experimentally observed temperature and current dependence of the desorption rate 

can be reproduced, as well as the isotope effect in the desorption yield. However, the 

theoretical desorption rates are usually shifted to lower currents. This discrepancy 

can be due to different reasons. Presumably, the most critical point is the one 

dimensional modelling of the excitation/de-excitation processes. As seen above, the 

main factor that controls the desorption yield is the vibrational energy decay rate 

and thus the vibrational lifetime Tyib. The energy of the fundamental SiH 

vibrational mode is about 2000 cm~^, so the only way the excitation can decay 

is by a multi-phonon process. It is most likely that the relaxation channel involves 

coupling to the SiH bending modes (hujQ ~  600cm“ )̂ as well as to substrate phonons 

{hujQ up to 520 cm~^) [72, 107]. Thus, a description of the “vibrational heating” 

process and the eventual succeeding desorption in a 2 dimensional model seems
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essential.

Another reason for the too high theoretical desorption rates -  also observed by 

Stokbro et al. using a completely different theoretical modelling [19] -  might be 

the basic assumption that the desorption process involves only one single SiH bond. 

Even if the experimental observations imply single H(D) desorption [73], it might 

happen that sometimes two H atoms from the same Si-dimer recombine and desorb 

as H2 [68]. This is so far unaccounted for in the theoretical modelling here.

Concluding it can be said that the modelling of the complex process of desorp­

tion by multiple vibrational excitations with the manifold of excitation/relaxation 

mechanisms involved is a fruitful area for further research.
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Chapter 4 

Direct photoinduced desorption of 

H and D from a 

Si(100)-(2xl):H (D ) surface [64]

4.1 Review of experimental results and related 

theoretical investigations

Recent experimental studies by Vondrak and Zhu [108, 109] showed that photo­

excitation of the SiH bond on the Si(100)-(2xl):H surface at 157 nm leads to desorp­

tion of atomic hydrogen (deuterium). Quantitative measurements using polarized 

light demonstrated that the photo-desorption yield is related to the transition dipole 

moment of the SiH bond rather than the substrate absorbance. These observations 

indicate a direct coupling of the laser field to the transition dipole moment of the 

adsorbate system rather than an indirect excitation mechanism via the substrate. 

This is in contrast to UV/Vis laser experiments on metal surfaces, where nearly all 

photodesorption studies point to an indirect mechanism [11, 110, 111, 112].

The 7.9 eV photon energy of 157 nm laser light coincides approximately with the 

energy for the cr —> cr* transition of the SiH bond on Si(lOO), which is believed to
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be responsible for the electron induced desorption of H and D in STM experiments 

in the “above threshold limit” (section 3.2). For the optical excitation of a cr a* 

transition, the transition dipole moment should lie along the bond direction, which 

was indeed verified in the polarization measurements of Vondrak and Zhu [108, 109].

In the experiments laser desorption experiments [108, 109], a large isotope effect 

in the photodesorption yield

of 10±3 was observed. In the STM studies of electron-induced desorption of H 

and D from the same surface, Avouris et al. estimated the isotope ratio Ides ~  

50 for the desorption induced by field-emitted electrons with energies greater than 

~  6 eV [18]. Vondrak and Zhu [108, 109] as well as Avouris et al. [17] carried 

out quantum dynamical calculations for zero surface temperature, both with an 

MGR type model and potentials based on ab initio cluster calculations [29]. These 

calculations explained the large isotope effect in the desorption yield by assuming 

an ultrashort excited state lifetime r  of less than 1 fs. For both experiments, the 

theoretical modelling was essentially the same, since the excitation leading to a 

DIET process was always treated as an initial Franck-Condon transition, i.e., no 

specifics of the STM or the laser entered the formalism.

In this work, DIET of H and D from Si(100)x(2xl) was also investigated (sec­

tion 3.2). In addition to the earlier works by Avouris et al. [17, 29] and by Zhu 

and Vondrak [108, 109], it was demonstrated that a coordinate-dependent electronic 

relaxation (r =  t {Z)  with lim^_>oo t'(^ ) =  oo) leads to increased desorption prob­

abilities Pdes- For coordinate-independent electronic quenching, an approximate 

semiclassical expression for the isotope effect was derived (see Eq.(3.20));

Ides = (4.2)

with A being related to the excited state potential parameters and the masses of H 

and D respectively.
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In principle, both the laser and the STM experiment should involve the same 

a (7* transition, making the large difference in the observed isotope ratios difficult 

to understand. However, the analytic expression Eq.(4.2) and the further results 

obtained in section 3.2 demonstrate that the isotope ratio I^es increases exponentially 

with decreasing excited state lifetime r. Hence, for ultrashort lifetimes, already tiny 

differences in r  (or A) will cause enormous differences in the ratio /^es, as it is shown 

in Fig.3.3. Thus, even smallest differences in the experimental conditions may lead 

to large differences in the observed isotope ratio. This is a tentative explanation 

for the quantitatively different isotope effects observed in the photo- and electron- 

induced DIET experiments by Zhu et al. and Avouris et al. respectively.

The aim of the following investigations was the active control of the photodesorp­

tion outcome. One of the best known reaction control strategies in photochemistry 

is optimal control theory [113, 114, 115] which involves specially shaped laser pulses, 

i.e. optimal electromagnetic fields in terms of spectral and temporal compositions 

for the reaction considered. However, this was developed for photochemistry in the 

gas phase and the application of optimal control theory in the condensed phase is 

non-trival. One reason for this is the difficulty of treating multi-mode problems, 

in particular on the quantum level of theory. Other problems are connected with 

the ultrafast decay of the electronically excited states. But above all, optimal con­

trol theory often requires a propagation backwards in time and the Liouville - von 

Neumann equation for open quantum systems is not time reversal invariant.

For these reasons, optimal control theory is not applied in this work, but the use 

of high-intensity fs lasers is proposed rather than the low-intensity ns lasers as in the 

experiments [108, 109] to control the desorption of H(D) from Si(lOO). Influencing 

the desorption yield and possible isotope effects may be possible by varying the 

fs laser parameters to an extent which is less possible when long-pulse lasers with 

low intensities are used. This hypothesis is investigated theoretically with the help 

of quantum dynamical model simulations within Markovian open system density 

matrix theory.
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4.2 Desorption dynamics

The desorption has been modelled within the same MGR model and the potentials 

introduced in section 3.2.2 for the STM induced process in the “above threshold” 

(DIET) regime. For the theoretical description of the laser-induced desorption dy­

namics, a direct coupling model is adopted to simulate the laser excitation and a 

coordinate-dependent electronic decay rate is assumed, if not stated otherwise.

The system Hamiltonian in the Liouville-von Neumann equation (2.10) is now 

chosen as

H s = H g \ g ) { g \ - \ - H e \ e ) { e \ - \ - V g e \ g ) { e \  + Veg\e){g\  . (4.3)

Whilst the diagonal blocks of Hs are the same as in Eq.(3.4), the off-diagonal ele­

ments now induce direct transitions between the electronic states. Here, only transi­

tions stimulated by an electric field are included, and for the adsorbate-field coupling 

the semiclassical dipole approximation is made:

Veg = Vge = ~!leg{Z) • E{t) (4.4)

where iieg[Z) is the component of the transition dipole moment parallel to the 

adsorbate-surface bond and E{t) the external electric field assumed to be polarized 

along the same direction.

The field is chosen as:

E{t) =  E q • s{t) ■ cos{bJt) . (4.5)

Here, uo is the laser carrier frequency and s{t) is the shape function, for which two

half Gaussians (eventually separated by a plateau region) are chosen:

s{t )  =

for

1 for 0̂ <  ̂ < 0̂ +  tpia (4.6)
g-(t-to-Va)V(2cr2) fQj. t > t o  + tgia

Finally, the Condon approximation is made, i.e., the coordinate-dependence of the
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transition dipole moment fJ>eg(Z) is neglected in Eq.(4.4). In this way, the product 

—fieg ' E q can be interpreted as a coordinate-independent coupling amplitude A q.

This ansatz results in four laser parameters (the amplitude A q, the width param­

eter (7, the plateau time tpia and the frequency lj) which can be varied independently. 

The Gaussian peak time parameter to (time for which the pulse becomes maximal) 

is selected so that for a given a the field is practically zero at t =  0.

Dissipation is treated within the Lindblad semi-group approach and enters again 

through the coordinate-dependent Lindblad quenching operator C defined in Eq.(3.9), 

Possible indirect excitations through the substrate are assumed to be negligible, fol­

lowing Zhu’s experimental observations of a direct excitation mechanism (see above).

As in section 3.2, all operators are represented on an equidistant, spatial grid in 

Z  and the EFT algorithm is used to calculate the kinetic energy (see also appendix 

A). For the photo-induced desorption in the H/Si(100) system, the Liouville-von 

Neumann equation (2.10) was solved numerically subject to the initial condition

=  , (4.7)

by the direct density matrix propagation scheme introduced in section 2.2,1. All 

calculations were carried out for zero temperature. The grid and propagation pa­

rameters are the same as the one for the direct density matrix propagation in section 

3.2, except that the propagation time step At,  which because of the fast oscillationg 

electric field involved was chosen to be smaller, namely A t  = 2 Ti/Eh ~  0.05 fs. The 

total propagation time t f  depends on the duration of the laser pulse.

The time resolved desorption probability can be calculated from

Pdes(t) = tr{h{Z -  Zc)ps{t)} , (4.8)

where h{Z — Zc) is a step function which is zero for Z  < Z^ and 1 for % > Z^ (see 

section 3.2.3). The observable desorption probability P^es itself is given by P^es =  

limi_^oo Pdes{t)- The numerical propagation of the density matrix is rather costly and 

convergence to the point where Pdes{t) —̂ Pdes can be slow. Additional problems
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can arise by reflection phenomena. The set of basis functions for the density matrix 

propagation is built by just 512 grid points with the maximum possible  ̂ grid spacing 

Az, i.e. the grid is relatively short. A larger grid corresponds to more basis functions 

L and because the memory required for a direct propagation of the density matrix 

scales a  a direct propagation scheme then becomes unfortunately technically 

hard to realize.

To optimise convergence towards the flnal Pdes, a new ansatz to obtain the flnal 

desorption probability was chosen:

Pies =  /m i[l -  N ^ M  (4.9)

where Ng{t) is the sum of the populations of all rib vibrational bound states in the 

electronic ground state. Here,

rifc-l
= Ys Mft(<)b9>(«'9l} (4.10)

Uo=0

with tr{ps{t)\vg){vg\} being the population of the vibrational state |ug).

For hydrogen and a laser pulse with parameters Aq =  0.0145 Eh, to = 1500 

h/Eh, (T = 400/r/F'/j and uj =  0.268 Eh/h  respectively, the results obtained by 

Eq.(4.8) and Eq.(4.9) are compared in Fig.4.1. With both Eq.(4.8) and Eq.(4.9), 

Pdes = 8.4 X 10“  ̂ is obtained after a certain propagation time Pdes = 8.4 x 10“ .̂ 

The desorption probability Pdes{t) (black dashed line) starts to increase after a time 

t % 2000/i/jE/i =  43 fs and reaches the flnal Pdes after % 5500 =  133 fs (see

blow-up in the inset of Fig.4.1). In contrast, [1 — Ng{t)] (solid grey line in Fig.4.1) 

passes a maximum at % 1500 h/Eh = 36 fs before it reaches it flnal value Pdes 

after less than 3000 h/Eh = 72 fs. Fig.4.1 shows clearly where the main advantage 

and disadvantage of the use of Eq.(4.9) lies: the “convergence” towards the final 

value for the desorption probability is indeed much faster, i.e. a lot of propagation 

time (almost 50% in the above example) can be saved. However, all information 

^“possible” in respect to the evaluation of the kinetic energy; A z  dependes on the shortest 

resolvable De Broglie wave length (see section 3.2.2 and 5.3)
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Figure 4.1: Coinparison of the “desorption prohabilities” obtained by Eq.(4.8) (black 

dashed line) and Eq.(4.9) (solid grey line), exemplary for hydrogen and a laser pulse 

with parameters .4q =  0.0145 Eh, to = 1500 fi/Eh, o =  4{)0ti/Eh arid w = 0.268 

Eh/h. The inset in the top right corner is a blow-up. One sees that the respective 

final values are reached after % 5500 H/Eh = 133 fs using Ecf(4.8) and after less 

than 3000 fi/Eh = 72 fs using Eq.(4.9).

concerning the tinie-evolution of Pdes is lost and no predictions about how long it 

will take the particles to leave the surface are possible.

4.3 Nanosecond laser desorption

The photodissociation of molecules with low-intensity cw lasers can be modelled 

within a sudden-transition excitation model [116]. A similar sudden-transition DIET 

model is used here to compare to the nanosecond lasers experiments of Zhu et al. 

[108, 109]. As the laser-excitation is not explicitly accounted for, this model is
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analogous also to the treatment of the STM-induced “above threshold” desorption 

in section 3.2. Assuming a coordinate-independent excited state lifetime of r  =  0.75 

fs, a desorption probability of 2.4x10“  ̂ is obtained for hydrogen and 2.0x10"^ for 

deuterium. This corresponds to an isotope ratio I^es = 12, which is close to that 

observed experimentally [108, 109].

It is shown in section 3.2 that the assumption of the electronic decay as coordinate- 

dependent is important for the SiH sudden-transition DIET model. Therefore, the 

coordinate-dependence of the excited state lifetime should also be included here. 

As it was suggested on the basis of Refs.[78, 117] (see also section 3.2.4), the range 

parameter 7 in Eq.(3.10) is chosen to be 1.4 üq.

If the excitation quenching is considered as dependent on the adsorbate-surface 

distance Z, Fq =  1/ r  in Eq.(3.9) must become larger, about 1/0.4 fs, to reproduce 

the experimentally observed isotope effect of 10 ±  3. This is because the yield 

obtained using a coordinate-dependent decay rate is about 35 times larger than in 

the coordinate-independent case (Fig.4.2), for reasons discussed in section 1.4) and 

in general, larger yields are associated with smaller isotope ratios and vice versa.

However, even if the desorption rates are generally much larger if one assumes a 

coordinate-dependent quenching process in the MGR model, the desorption prob­

abilities for the shorter lifetimes are naturally smaller. Thus, for an excited state 

lifetime of r  =  0.4 fs Pdes(H) = 1.85 x 10“  ̂ and Pdes(D) = 173 x 10“  ̂ are obtained. 

The lifetime r  =  0.4 fs was used in the following calculations, since it provides an 

isotope effect Ides ~  11 and so reproduces the experimental observed isotope ratio.
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Figure 4.2: Photoinduced DIET of H from Si(100)-(2xl). Shown is the function 

[1 — Ng{t)] for hydrogen as obtained with a coordinate-independent electronic relax­

ation rate (dashed line, F =  Fq =  1/0.4 fs in Eq.(3.9)) and assuming a coordinate- 

dependent electronic decay (solid line, Fq =  1/0.4 fs and 7 =1.4 ao in Eq.(3.9)). 

The desorption probability Pdes = lini(_^oo[l — Ng(t)] obtained with the coordinate- 

dependent model is about 35 times larger.

4.4 Towards optimal femtosecond laser pulses

In order to enhance the desorption probability for the photo-induced desorption of 

hydrogen from Si(100)-(2xl) and to perhaps control the isotope ratio, the laser pulse 

parameters uj,Ao,a and tpia were partly optimized. Unfortunately, these calculations 

are quite costly, hence a complete and systematic variation of the full parameter 

space can not be presented here. Nevertheless, basic trends are clearly obvious.
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4.4.1 Variation of the carrier frequency

>»
U)k.
0)c

L L I

D H zZ, Z,0 ■0

Figure 4.3; Sketch of the initial wave functions of the two isotopes. Initially, the 

centre-of mass position {vg\Z\vg) of the hydrogen wave function (sketched with ver­

tical lines) is at larger Z than the centre-of mass of the deuterium wave function 

(sketched with horizontal lines). Marked as arrows are the resulting resonance fre­

quencies, for the photodesorption of H and D from Si(100).

To optimise the laser carrier frequency cj, first excitation with a simple Gaussian 

pulse without a plateau region was modelled. While u  was varied between 0.230 

Bh/h and 0.270 Eh/h in steps of Ace = 0.005 E^/h, the other laser parameters were 

kept fixed:

• a = 400 h/Eh

• To = 0.145 Eh

• to = 1500 h/Eh
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The choice of these parameters follows a pulse optimisation for the dissipation-free 

case in Ref. [64], where it leads to a desorption probability of % 1 for a carrier 

frequency üü = 0.262Eh/h.

Due to the higher mass of deuterium, the vibrational ground state of D has a 

lower energy =  0.09 eV) than the one of hydrogen =  0.12 eV) and thus, due 

to the vibrational anharmonicity of the system, the initial centre-of mass position 

(vg\Z\vg) = Z q of deuterium is at a slightly shorter Z  than |0g) of hydrogen. This 

implies different optimal resonance frequencies ujr for the two isotopes, pictured 

schematically in Fig.4.3. With Z q = 0.029 Uq and Z q = 0.018 ao, one can estimate 

for ujr (see Fig.3.1):

huj^ = =  0.262% =  7.13ey

■Og=  V ;(Z f)-6 g , =  0.265E/, =  7.20ey

However, as it can be seen from Fig.4.4, the desorption yield for both isotopes 

actually reaches a maximum for carrier frequencies ujr smaller than expected, namely 

Pdes{H) = 8.115 X 10~  ̂ at TiUJr =  0.245F'/i and Pdes(D) = 1.064 x 10"^ at hcur = 

0.250 Efi for deuterium. This indicates that the main excitation cross-section is at 

a larger distance Z, where the corresponding resonance frequency uJr is smaller (see 

Fig.4.3).

These desorption probabilities for the fs laser excitation are clearly larger than 

the desorption probabilities for the ns laser DIET case, which were for the same 

lifetime r  (and the same range parameter 7 ) Pdes[H) =  1.85 x 10"^ and Pdes{D) = 

1.73 X 10“  ̂ respectively. This enhancement of reactivity appears to be even more 

evident considering that the desorption probabilities in the sudden-transition DIET 

scenario as calculated here (sections 3.2, 4.3) are per excitation event and therefore 

an upper limit, whereas for the fs laser the finite excitation probability is explicitly 

accounted for.

There is little variation in the calculated isotope effect, which changes from 9.8 

at the lowest w to 7.6 at the region of the respective and then increases again
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Figure 4.4: Photo-induced desorption of H /D from Si(100)-(2x1). Shown is the 

desorption probability P^es of H (solid line) and D (dot-dashed line) as a function 

of the laser carrier frequency u j  (semilogarithmic scale, upper panel) and the corre­

sponding isotope ratio Ides (stars, lower panel). The desorption probability reaches 

a maximum for both H and D for u  = 0.245 — 0.25bEh/h, while Ides Is minimal for 

this region.

(up to 8.1) for higher carrier frequencies, corresponding to lower desorption yields.

For the further calculations the “optimal” u  =  0.245 E ^ /h  for hydrogen was 

used.

4.4.2 Variation of the field amplitude

In a next step, the field amplitude Eq of the simple Gaussian pulse is varied, which 

means, under the Condon approximation, that effectively A q = —pegEo is varied. 

Calculations for A q = 0.0097, 0.0145, 0.0193, 0.0217 and 0.0324 Eh were carried out;
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all other parameters are kept fixed:

• Uuj = 0.245 Eh

• a = 400 h/Eh

• to =  1500 h/Eh

As shown in the upper panel of Fig.4.5, the desorption probability Pdes for both 

isotopes H and D increases almost linearly with the square of the laser coupling 

amplitude A q and hence quasi-linearly with the laser intensity and laser fiuence, 

indicating a “DIET-like” scaling (see section 1.2). The lower panel of Fig.4.5 shows 

the corresponding isotope ratio Ides- Again, a higher isotope effect is found for lower 

yields and vice versa.

However, simply increasing the laser intensity to obtain higher photodesorption 

yields is not practical. The intensity of a laser beam with amplitude A q = 0.0193 Eh 

for example is % 1.3 x 10̂  ̂ W/cm^ (assuming a transition dipole moment l^eg{Z) = 

1 eao =  8.4784 x 10"̂ ® C m), while for the highest applied Aq = 0.0324 Eh it is % 

3.7x10^^ W/cm^. Whilst it is technically feasible to reach such high intensities (up to 

10^  ̂ W/cm^) experimentally, side-processes like thermal heating and ionisation are 

very likely to take place [118], which are not considered in the theoretical modelling 

here.

For the further calculation Aq =  0.0193 Eh has been used, if not stated other­

wise. Using this coupling amplitude, one obtains Pdes{H) =  0.01443 and Pdes{E) =  

2.129 X 10“ .̂ This is an increase in the desorption probability of hydrogen relative 

to the DIET (ns laser) case by a factor of about 8. For deuterium, this factor is 

even larger, namely % 12 -  again without taking the finite excitation probability 

into account. The isotope effect with this choice of A q is still pronounced and % 7.
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Figure 4.5: The iiiüuence of the held coupling amplitude in photo-induced desorp­

tion of H/D from Si(100)-(2xl). In the upper panel, the desorption probabilities 

of H (circles, dark line) and D (triangles, grey line) are shown as a function of the 

square of the laser coupling amplitude Aq = -pegEo. In the lower panel the corre­

sponding isotope ratios Ides are given. Their decrease with rising amplitude reflects 

the increase of the desorption probabilities of both H and D with increasing .4q.

4.4.3 Variation of the laser pulse width a

With the optimal carrier frequency for hydrogen desorption, u = 0.245 Efi/k, ob­

tained by the variation of w, the influence of the pulse width parameter a was 

examined. The Gaussian peak time parameter to, i.e. the time for which the pulse 

becomes maximal, was chosen such that for a given a the held is practically zero at 

t = 0 (e.g., pegE{0) % 10~^£'/i). All laser parameters investigated are given in Table

4.1 together with the resulting laser huence T .

Shown in Fig.4.6 are the desorption probabilities of hydrogen and deuterium
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Figure 4.6: Prohahilities (semilogarithmic scale) of photo-induced desorption of hy­

drogen (circles, resp. diamonds) and deuterium (triangles, resp. stars) from Si(lOO)- 

(2x1) as a function of the pulse width parameter a (upper panel) and of the laser 

fluence T  (lower panel).

122



to[h/Eh] ^̂ o[Eh] u[Eh/h] E  [J/cnF]

300 1500 0.0193 0.245 0.66

400 1500 0.0193 0.245 0.72

500 1600 0.0193 0.245 0.82

600 1800 0.0193 0.245 0.94

Table 4.1: Photo-induced desorption of H/D from Si(100)-(2xl). Gaussian laser 

pulse parameters and the resulting laser huence T  for the study of the inhuence 

of the width parameter a (and the corresponding peak time to) on the desorption 

yield.
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Figure 4.7: Photo-induced desorption of H from Si(100)-(2xl) with Gaussian fs 

laser pulses. In the upper panel, the pulses for a width a = 300 h/Eh (black) and 

a = 600 h/Eh (greyj are given. In the lower panel the corresponding time evolution 

of the total system energy for the hydrogen desorption is shown. With the broader 

pulse, the system can gain more energy and so has a higher desorption probability.
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from Si(lOO) obtained with the laser parameters in Table 4.1 as a function of the 

laser width parameter a itself and as a function of the resulting laser fluence T . 

The desorption probability of H increases from % 6.0 x 10“  ̂ for the smallest cr to % 

1.3 X 10"^ for the broadest Gaussian pulse, while Pdes{D) increases from % 7.7x  lO"'  ̂

to % 1.7 X 10~^.

A broader pulse implies a larger area J E'^s‘̂ (t)dt and thus a higher laser fluence, 

as shown in the lower panel of Fig.4.6 and, for hydrogen, in Fig.4.7. With the 

broader pulse the system can gain more total energy, thus resulting in a higher 

desorption probability.This holds for both isotopes H and D likewise, so that the 

isotope ratio Ides stays unchanged for all different a at Ides ~  8 .

However, as with the field amplitude, simply increasing the pulse width to enforce 

higher desorption rates is not realistic. The pulse energy density will increase likewise 

and thus lead to unwanted side-reactions like thermal heating, ionisation or even a 

melting of the surface . Hence, the same a = AOOH/Eh as in the previous sections 

was used for the following calculations.

4.4.4 Laser pulses with a plateau region

In accordance with the results obtained for broader Gaussian pulse it is expected 

that pulses with a plateau region (tpia > 0 in Eq.(4.6)) will lead to higher desorption 

probabilities for both isotopes, because connected to the width of the plateau region 

is a higher pulse energy density.

Whilst the time tpia for the plateau duration was varied between 1000 h/Eh and 

6000 h/Eh, the other pulse parameters were kept fixed:

• hoj = 0.245 Eh

• a — 400 h/Eh

• A q = 0.0193 Eh

• to = 1500 h/Eh-
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The significant increase of the desorption probability P^es with the width of the 

plateau is shown in the upper panel of Fig.4.8; the numerical values are given in 

Table 4.2.

tpia[h/Eh]

0 0.0144 2 T 3 x l0 -s

1000 0.0443 0.0077

2000 0.0853 0.0176

3000 0.1319 0.0325

4000 0.1827 0.0520

5000 0.2350 0.0754

6000 0.2870 0.1019

Table 4.2: Influence of the plateau time tpia on the photo-desorption yield of H and 

D from Si(100)-(2xl).

Without a plateau region, the corresponding simple Gaussian pulse gives =

0.0144 and Pdes{D) =  2.13 x 10“ .̂ With a plateau region, however, the desorption 

probabilities increase by a factor of 3-4 for the smallest plateau width already, while 

with tpia = 6000h/Efi 20 times the yield for H and 48 times the yield for D is ob­

tained, proportional to the yield produced by the corresponding simple Gaussian 

pulse. Gomparing the desorption probability obtained with this plateau laser to the 

DIET case, it is found that that Pdes of H is about 155 times as large for the fs laser 

than for the ns laser, while for deuterium the desorption probability is 590 times as 

large. With the higher yields, again the isotope effect in the desorption decreases 

from % 6 for tpia = 1000 h/Eh  to Ides ~  3 for tpia = 0000 h/Eh, demonstrating again 

that also the isotope ratios can be influenced by using fs rather than ns lasers.

In Fig.4.9, the situation for tpia = ^000 h/Eh  is shown in more detail. From 

Fig.4.9(c), which shows the population of the excited state Ne both for H (black) 

and D (grey) as a function of time, it can be seen that the cw-like plateau pulse
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Figure 4.8: Photo-induced desorption of H/D from Si(100)-(2xl) with “plateau 

pulses”. Shown in the upper panel are the desorption probabilities for H (circles, 

black line) and D (triangles, grey line) as a function of the plateau time tpia. 

lower panel, the corresponding isotope effects are given.
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Figure 4.9: Photo-induced desorption of H/D from Si(100)-(2xl) with a “plateau 

pulse”. Shown is (a) the pulse with parameters A q = 0.0193 E/,, a = 400/i/F’/,., fnu 

= 0.245 Eh, to = 1500 h/Eh and tpia = 4000h/Eh. In (h), the resulting function 

[1 -  Ng(t)] for H (black) and D (grey) are given, (c) and (d) show the population 

on the excited state Ne{t) and the total system energy, respectively for H (black) 

and D (grey). In (d), the system energy for an ordinary Gaussian pulse with the 

same parameters (but tpia = bk/Eh) is shown for comparison (H: light grey; D: dark 

greyj.
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shown in Fig.4.9(a) enforces damped Rabi oscillations, as it is typical for a cw laser 

field driven 2-level system. However, whilst for deuterium the dissipation always 

outweighs the energy gain through the laser field, the time evolution of TVg(Ff) shows 

that for times > 3000 h/Eh, the energy gain “beats” the dissipation. The reason is 

that after % 3000k/Eh parts of the hydrogen wave packet are indeed so far away 

from the surface (larger %), that the coordinate-dependent quenching rate becomes 

smaller than the excitation rate. Over the same time period, the slower deuterium 

has not come so far yet and so dissipation still dominates.

In Fig.4.9(d) the system energy curves are shown for the plateau pulse and the 

corresponding simple Gaussian pulse (H: light grey; D: dark grey) as a function 

of time. The energy increase for the isotopes is 15-20 times as high relative to 

the simple pulse without plateau region, leading to a strongly enhanced desorption 

probability Pdes, as demonstrated in Fig.4.9(b).

4.4.5 Linearly chirped laser pulses

Along with the production of intense short laser pulses, various techniques have 

been developed in recent years to modulate and “shape” laser pulses. The most 

commonly exploited feature of modulated pulses is the chirp, which describes the 

temporal variation of the carrier frequency [119, 120, 121, 122, 123, 124]. A laser 

pulse is generally called positively chirped if the frequency increases and negatively 

chirped if it decreases with time.

The application of chirped pulses to shape nuclear wave packets and enhance vi­

brational coherence was first suggested by Ruhman and Kosloff [119]. They showed 

that negatively chirped pulses are more efficient than their unchirped counterparts 

for generating large-amplitude vibrational motion on the electronic ground state 

surface of Csl. Following this numerical study, Cerullo et al. [120] observed strong 

chirp dependence for high-power pulse excitation of dye molecules in solution. These 

authors found that the excitation process is enhanced by negatively chirped pulses
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and suppressed by positively chirped ones. Negatively chirped laser pulses are also 

used in surface photochemistry. As argued by Yamashita et ah, chirped pulses 

may greatly enhance the photodesorption desorption probability of NH3/N D 3 from 

C u (lll)  [123]. Positively chirped pulses whereas can promote reactions in the gas 

phase, as it was shown experimentally by Pastirk and co-workers [122]. By using 

positively chirped fs laser pulses they obtained an order of magnitude enhancement 

in the concerted elimination pathway leading to I2 product formation in the pho­

todissociation reaction of CH2I2. Conversly, negatively chirped pulses minimised 

the yield of I2.

To investigate whether it is feasible to control the photodesorption of H/D from 

Si(lOO), and in particular to achieve Ides < 1, i.e., favour the desorption of deuterium 

to the one of hydrogen, the implications of linearly chirped fs laser pulses on the 

desorption yield of H and D were tested. In this case, the laser carrier frequency uj 

is a function of time:

Lj{t) =  LJq —t  . (4.11)

Negative chirps with ac < 0 are expected to be useful here, since in this case 

the laser frequency u  decreases with time and hence should adapt optimally to the 

reduced resonance frequency of a wave packet moving away from the surface where 

the energy difference Ve(Z) — Vg{Z) comes progressively smaller (see Fig.4.3). The 

optimal chirp is expected to be different for H and D, because the latter moves more 

slowly.

While experimenting with different chirp parameters ac, the other laser parame­

ters were kept fixed (if not stated otherwise):

• Tiuj =  0.245 Eh

• a = 400 h/Eh

• A-o =  0.193 Eh

• to = 1500 h/Eh
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• tpia = t)ThlEh or alternatively tpia = 2000 h/Eh  for the chirped pulses with 

plateau region (see section 4.4.5.2).

4.4.5.1 Chirped Gaussian pulses

For Gaussian pulses without a plateau region different negative chirp parameters 

K, were tested between —8 x 10~^ (Eh/h)^ and ac =  —1.8 x 10“  ̂{Eh/h)^ (see Table 

4.3). The smaller negative k, produces an ever decreasing laser frequency u  up to 

the final propagation time, so the laser pulses are negatively chirped in the sense of 

the definition given above. The larger ones, however, produce “atypical chirps” , i.e. 

laser pulse shapes, where the carrier frequency first decreases up to a certain time 

(which depends on ac), before it increases again (see Fig.4.10). In this work, those 

pulses will still be referred to as negatively chirped, because %<0 .  Similarly, pulses 

are called positively chirped if At > 0 .

Exemplary Gaussian pulses for k  = —8x10“  ̂ { E h / h Y  and At =  —1.5x10“  ̂ [ E h / h Y  

are shown in the upper part of Fig.4 .10 as example. In the lower half of Fig.4.10, 

the corresponding functions [1 — Ng{t)] for hydrogen are given. The shape of the 

[1 — Ng{t)] curves follows closely the respective pulse shape and one can see that 

the pulse with At =  —1.5 x 10'"  ̂(E h /h ^  (right side of the diagram) can at no 

time transfer as much population out of the bound electronic ground state as the 

pulse with the lower At. In Table 4.3, the corresponding desorption probabilities 

Pdes = limt_^oo[l — A^g(t)] are given for the pulses of Fig.4.10 as well as for the other 

laser pulses with negative chirp parameters At. The desorption probabilities are 3 - 

4 orders of magnitude smaller than for the corresponding unchirped fs laser pulse.

Those findings are perhaps surprising in the light of the introductory discussions, 

but a closer look at the desorption dynamics shows tha t the initial assumption 

that the excited wave packet moves significantly towards larger Z  does not hold. 

The situation is shown for hydrogen in Fig.4 .11 respectively, where the probability 

density of the wave packet in configuration space at time t = 0 and t f  = 2900 k/Eh
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is given for (a) the unchirped Gaussian pulse with laser parameter .4q = 0.0193 

(7 = 400/l/£^/i, ÎIUJ = 0.245 to = 1500 h/Eh and (b) the same pulse, but with 

UJ = uj(t) = ujq — 8.0 X lOr^ [Efi/hy • t.
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Figure 4.10: Photo-induced desorption of H and D from Si(100)-(2xl):ff/D with 

chirped laser pulses. On the left hand side, a pulse with k = ~8 x 10~^ (E/i/h,y 

(upper panel) and the corresponding function [1 — Ng{t)] of hydrogen (lower panel) 

is shown. On the right hand side the same for a Gaussian pulse with k =  -1.5 x 

10“  ̂[EhjhŸ is given.

Because of the ultrafast excitation quenching (excited state lifetime r  = 0.4 

fs), with both the chirped and the unchirped laser pulse, the wave packet remains 

mainly localized around Zq, conversely for the chirped pulse, hardly any difference 

is noticeable between the wave packet at time t = 0 and tj = 2900k/E^. Because 

the excitation rate is so poor, hardly any population has the chance to reach larger 

distances Z where the resonance frequency becomes significantly smaller. Thus,

131



4 { E k / h y ] Pdes ^des

0 H: 1.44 xlO"*^ 6.8

D: 2.13 xlO"®

- 8.0x10"® H: 8.48 xlO"® 3.1

D: 2.74 xlO"®

- 1.0x10"^ H: 2.63 xlO"® 1.2

D: 2.18 xlO"®

- 1.2x10"^ H: 9.81 xlO"^ 0.48

D: 2.04 xlO"®

- 1.5x10"'* H: 5.38 xlO"’’ 0.26

D: 2.09 xlO"®

Table 4.3: Photo-induced desorption of H and D from Si(100)-(2xl):H/D with lin­

early chirped pulses. Influence of negative chirp parameters n on the desorption 

yield and the isotope ratio Ides-

when the pulse frequency uj{t) decreases with time, the discrepancy between Lu{t) 

and the required ujr increases and the excitation process becomes more and more 

inefficient, thus resulting in very small desorption probabilities.

However, also an increase of the pulse frequency uj(t) with time does not lead 

to significantly higher desorption probabilities (see Table 4.4). Compared to the 

corresponding unchirped laser pulses, the desorption probabilities obtained with 

positively chirped laser pulses are still 2 - 3  orders of magnitude lower. The reason 

here is that the pulse frequency Lu{t) very quickly becomes much larger than the 

optimal resonance frequency cUr- Thus the excitation of the adsorbate becomes more 

and more inefficient with time as well, producing just small desorption probabilities.

An interesting point is the influence of the chirped pulses on the isotope ra­

tio Ides- As listed in Table 4.3, even Ides < 1 can be achieved for the “atypical”

132



N
N
Q.

Wc
0)■D

Si
(0
Sio

0.2

0.1

0
0.2

0.1

0
-2 1 0 1 2 3

surface coordinate Z [a j

Figure 4.11; Probability density of the hydrogen wave packet in configuration space 

at time t  = 0 (dot-dashed grey line) and t f  — 2900 h/E^ (solid black line) for (a) 

the unchirped Gaussian pulse with laser parameter Aq = 0.0193 a = 400 k/E^, 

huj = 0.245 Eh, to = 1500 h/Eh aud (b) the same pulse, but with u = uj{t) = 

luq — 8.0 X 10  ̂[Eh/h)‘̂ ■ t.
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4{E„/hy] Pdea ^des

0 H; 1.44 x io -^ 6.8

D: 2.13 xlO-®

+ 8 .0x 10-® H: 7.60 xlO-® 6.2

D: 1.23 xlO-®

+ 1.0 x 10- “ H: 3.74 xlQ-® 3.9

D: 9.60 xlO-®

+  1.2 x 10- “ H: 2.24 xlO-® 3.1

D: 7.29 xlQ-®

Table 4.4: Photo-induced desorption of H and D from Si(100)-(2xl):H/D with lin­

early chirped pulses. Inûuence of positive chirp parameters k, on the desorption yield 

and the isotope ratio Ides-

negative chirps. Further tests with other Gaussian pulses show that for exam­

ple with Aq = 0.0145 Eh, o =  400h/Eh, hu = 0.268 Eh, to = 1500 h/Eh and 

K = —1.5 X 10"^ {Eh/hy, ratios Ides as small as 0.1 can be obtained (in this case 

Pdes{H) =  2.107 X 10“  ̂ and Pdes{D) =  1-975 x 10“^). Albeit the definite origin 

of these isotope ratios is not yet fully understood, it seems possible to significantly 

infiuence the isotope ratio of the photodesorption process. However, further exami­

nations are clearly necessary.

4.4.5.2 Chirped pulses w ith  a plateau region

Tests were also performed for chirped pulses with a plateau region. Here, the 

desorption probabilities are 1-2 orders of magnitudes higher than for the chirped 

pulses without a plateau region, but still very small compared to the corresponding 

unchirped ones (see section 4.4.4) for the reasons discussed above.

In Fig.4.12, two pulses with parameters A q =  0.0193F̂ /i, a =  AOOK/Eh, hcu 

= 0.245 Eh, to =  1500 h/Eh  and tpia = 2000 h/Eh  are shown, while in (a) k, =
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—5.0 X 10“  ̂(Eh/fiY  and in (b) k, = —6.2 x 10“  ̂[EiJfiY. In the lower panels of 

(a) and (b) the computed function [1 -  Ng{t)] for H (black) and D (grey) are given. 

While for the unchirped plateau pulses [1 — Ng{t)] increases for the whole time the

0.01

0

- 0.01

0.015

0.01

0.005

0
2000 4000

tim e  [h/27iE,l

- 0.01

0.015

A n#,; A

0.005

2000 4000
tim e [h/27iE| j

Figure 4.12: Photo-induced desorption of H/D from Si(100)-(2xl) with chirped 

“plateau pulses”. In the upper panel of (a), the laser pulse with parameters Aq = 

0.0193 a = 400h/Eh, huj = 0.245 E^, to = 1500 h/E^,, = 2000 h/E^ and

K, = —5.0 X 10“  ̂(Eh/hy is shown with the resulting function [1 — Ng{t)] for each 

H (black) and D (grey). In (b) the same is given for an similar pulse, but k = 

- 6 . 2  X 10-^

pulse is switched on (see for example Fig.4.9), here it decreases with decreasing 

laser frequency thus producing lower desorption probabilities compared to the 

unchirped case (see Table 4.5). The reason is again that no parts of the wave packet 

can reach larger Z in time to adapt to the decreasing laser frequency cj(t) and be 

efhciently excited. However, because of the higher pulse energy density a higher
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desorption rate can be achieved than with simple chirped Gaussian pulses.

Pdes f-des

0 H: 8.54 xlO-2 

D: 1.76 xlQ-^

4.8

-3.4x10-^ H: 4.83 xlO“  ̂

D: 3.11 xlQ-^

16

-5.0x10-^ H: 4.01x10'^ 

D: 2.41 xlO-4

17

-6.2x10-^ H: 8.17 xlO-^ 

D: 3.88 xlQ-^

21

+3.4x10"^ H: 3.98 xlO-3 

D: 3.88 xlO-"^

10

+5 .0x10“^ H: 2.22 xlO-^ 

D: 3.68 xlQ-^

6

-H6.2x 1Q-^ H: 1.16 xlO-4 

D: 2.43 xlO-^

5

Table 4.5: Photo-induced desorption o f H and D from Si(100)-(2xl):H/D with lin­

early chirped “plateau” pulses. Influence of the chirp parameter k, on the desorption 

yield and the isotope ratio Ides-

With positively chirped plateau pulses one obtains only slightly different des­

orption probabilities than with negatively chirped ones. This indicates that the 

magnitude of the desorption rates is dominated by the overall pulse energy density 

rather than the chirp, i.e., the laser frequency.

Remarkably high isotope effects are found with negatively chirped pulses. For 

n = —3.4 X 10~^ (E fi/hy, the ratio Pdes(H)/ Pdes{D) ~  16 and for k = —6.2 x 

10“  ̂{Eh/h)‘̂, Ides is even higher, % 21. But here, as in the previous chapter, further 

investigations about the origin of the isotope ratios are clearly necessary.
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4.5 Summary and conclusions

An open system density matrix approach was adopted for the theoretical investi­

gation of the photo-induced desorption of hydrogen and deuterium from Si(lOO)- 

(2xl):H/D. The modelling of the desorption dynamics was done within a 1 mode 

- 2 state MGR type model, including a coordinate-dependent decay rate of the 

electronically excited state.

The use of femtosecond rather than nanosecond lasers has been suggested to 

directly photodesorb hydrogen and deuterium from the Si(lOO) surface. By shaping 

the ultrashort pulses, the possibility of influencing the desorption process, i.e. yields 

and isotope ratios, emerges. This was not obvious from the outset because the 

quenching of the excited state resonance proceeds within less than a fs, which is 

much shorter than the pulses employed.

Very substantial increases in the desorption yield compared to the ns laser in­

duced DIET process can be accomplished by using fs Gaussian pulses with a plateau 

region, while variations of the isotope effects in the desorption yields between 0.1 

and 21 were achieved by using linearly chirped pulses.

However, for final conclusions directly relevant for a quantitative experimental 

veriflcation a more systematic investigation of the parameter space is required to­

gether with a more detailed treatment of the process, e.g. including multi-dimensionality.
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Chapter 5 

Photodesorption of NO from  

P t ( l l l )  [62]

The photodesorption of NO from various metal, semiconductor, insulator and al­

loy surfaces is a “prototypical” case for laser-induced photochemistry at surfaces, 

extensively studied both experimentally and theoretically [11]. W ith low-intensity 

ns-lasers, DIET experiments have been carried out, for example, for N O /P t( ll l)  [48, 

49], N 0/Pt(100) [125], N 0/N i(100)-0 [126], N O /P t(lll)-G e  [127], N 0 /S i( l l l )7 x  7 

[128], N 0/N i0(100) [129], N O /N iO (lll) [130]. Similarly, with high-intensity laser- 

pulses in the (sub-) ps range, DIMET for N O /P d (lll)  [131], N O /P t( ll l)  [28] and 

N 0/N i0(100) [132] has been observed. In most of these experiments, not only were 

the integral desorption cross sections and product translational energies measured, 

but also state-resolved quantities, e.g., the population of vibrational, rotational, or 

spin-orbit coupled states.

In contrast to the laser-induced desorption of H from Si (100) (see previous sec­

tion) an mdzrec^ mechanism is assumed for the excitation process in the N O /P t( ll l)  

system. An initial creation of “hot electrons” in the metal substrate is assumed, 

which then transfer energy to the adsorbate and eventually lead to the forming of 

a “negative ion resonance”. Subsequent evolution of the non-stationary excited ad-
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sorbate and simultaneous electronic relaxation can lead to the desorption of neutral 

molecules in their electronic ground state.

5.1 Review of experim ental results and previous 

theoretical treatm ent

For the DIET of NO from P t ( l l l ) ,  Buntin et al. [48, 49] found that the desorption 

probability is typically low; When 355 nm laser pulses with a FWHM of 9 ns were 

used, % 5 X 10~^ NO molecules desorbed per absorbed photon, corresponding to 

a total cross section of 2.5 x 10"^^ cm“ .̂ The desorbates are both translationally 

and vibrationally hot. The average kinetic energy is {Ekin) ~  0.2 eV, giving a 

flux-weighted “translational temperature” of =  (Etrans) ~  1200 K. Only 

V = 0 and v = 1 vibrational states of free nitric oxide are significantly populated, 

with a ratio of Pi/Pq % 0.04. This corresponds to a “vibrational temperature” of 

the desorbates of Tyn, = 850 K, which is in fact “hot” as compared to the surface 

temperature of Tg = 200 K. These results depend somewhat on the ns laser pulse 

parameters. For instance, for pulses of 5 ns FWHM (at a wavelength of 355 nm), a 

cross section of 4 • 10“ ^̂  cm“  ̂ and a translational temperature of about Ttrans ~  670 

K was reported [28].

When ultrashort (sub-ps), high-intensity lasers are used for excitation, an ad­

sorbate can undergo multiple transitions between ground and excited state(s). This 

DIMET case can be distinguished from DIET by the so-called “DIMET hallmarks” 

(see section 1.2). Experiments for N O /P t( ll l)  in the multiple excitation limit have 

bee carried out by Ho and co-workers [28]. Using lasers with EWHM below 200 fs, 

it was observed that the desorption yield can increase by orders of magnitude, and 

that it scales superlinearly (according to with laser fluence P. In contrast,

the DIET yields typically increase linearly with P. Further, the translational energy 

{Ekin) was found to increase for fluences larger than 2 mJ/cm^ near-linearly with
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T  ̂ while under DIET conditions (Ejkin) is independent on the laser fluence. Usually, 

DIMET conditions lead to enhanced vibrational excitation [131, 132].

Quantum theoretical simulations on the photodesorption in NO/metal and NO/oxide 

systems have been carried out by various groups [31, 32, 35, 36, 42, 47, 60, 61, 133,

134, 135]. Most of these theoretical treatments made use of an one-dimensional (ID) 

Antoniewicz-type (see section 1.4) two-state negative ion resonance model [42]. The 

ID model is attractive computationally and the relative success of ID models for 

N O /Pt relies on the fact that excitation of an internal adsorbate mode (the NO 

stretch) is not as important as for other systems, such as ammonia desorbing from 

various substrates [111, 110] . However, for a more complete and quantitative de­

scription of the NO desorption process, the inclusion of the NO vibration is manda­

tory. So far, for this purpose mostly simplifled semiclassical [42, 136] or single­

quantum trajectory wave packet treatments [47] of two-dimensional (2D) models 

(including Z, the molecule-surface distance and r, the NO stretch) have been con­

sidered. In the latter, a single residence time tr for the wave packet in the excited 

state is assumed, rather than a distribution of residence times.

5.2 Potential energy surfaces

In this work, DIET and DIMET of NO from P t ( l l l )  have been described by a 

two-state Antoniewicz-type model, considering two degrees of freedom, namely the 

molecule-surface distance Z  and the NO stretch r. The nuclear system Hamiltonian 

is again assumed to be uncoupled:

Hs = Hg\g){g\ +He\e){e\ , (5.1)

where |p) is a stable ground state and \e) a short-lived excited intermediate state.

The Hamiltonian is taken to be of the form
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with r and Z  being the vibrational and the centre-of-mass motion of NO, respec­

tively. TTir = rriNmol[rriN +  mo) is the reduced mass of NO and m z — mo  +  mjq 

the total molecular mass.

For the electronic ground state, corresponding to a neutral ground state NO 

molecule adsorbing on top of a P t ( l l l )  substrate with its molecular axis perpendic­

ular to the surface, a model potential as suggested by Chakrabarti et al. [47] was 

used. The potentials are given in terms of the shortest distance from the metal sur­

face to N and O, XptN and Tpto, respectively. The coordinates transform as follows:

XptN = Z  -  r   ----  (5.3)
mo  +  m ^

and

^pto — Z  r {1 ---------------- ) (5.4)
mo  +  mN

with mo  and being the mass of oxygen and nitrogen, respectively, and

T =  3:pto :TptN . (5.5)

Thus, the electronic ground state potential is given by

y  g — FptN +  Fpto +  Pno 5 (5.6)

where the % are Morse potentials for i =PtN  and i = N 0 ,

Vi{y) =  A[1 -  (5.7)

{y = ajptN or y =  r), while for the PtO interaction an exponential repulsion is

assumed:

Vpto(a;pto) =  . (5.8)

This potential predicts a binding energy % 1.1 eV and vibrational frequencies con­

sistent with experiment [47].

Unfortunately, the excited state surface is poorly characterised. Chakrabarti

and co-workers assumed that it is of the negative ion resonance or metal-to-ligand
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charge transfer type [47], describing the interaction of an NO molecule with the 

P t substrate with one electron removed. The suggested potential is [47]

— ^PtN +  VptO +  +  ^Pt +  Km J (5.9)

where 0pt is the work function of P t and Km is an image-charge attraction term 

accounting for the attraction of NO" by a positive image charge in the metal surface:

"  ~ 4 ( Z - Z J  ■

In deviation from Ref. [47], Finger and Saalfrank introduced a shift parameter 

A, which produces an energy difference Ve — Vg of 1.5 eV at the Franck-Condon 

point, consistent with inverse photoemission data [137]. Finally, K<fo- in Eq.(5.9) is 

a Morse potential for NO":

Kfo- (r) =  D^o- [l -  . (5.11)

Both the ground and excited state potentials are bound. The equilibrium geometry 

of the ground state is at = 1.16 Â and =  2.16 À with the parameters given 

in Table 5.1.

For the NO" resonance state, Chakrabarti et al. assumed a gas phase bond 

length difference between NO and NO" of A r % 0.1 Â remains the same also in 

the adsorbed state [47]. By simply using the parameters of a free gas-phase NO", 

the equilibrium geometry is r  =  1.24 Â, Z =  1.93 Â (this surface model will be 

called henceforth “model A”). This implies that upon excitation the wave packet 

will initially move inward (towards lower Z) and at the same time towards increasing 

NO bond length r  [47, 135, 60], leading eventually to vibrationally excited products.

Guo found [135] that the experimentally measured moderate vibrational exci­

tation of the desorbing NO molecule is incompatible with the model potentials 

proposed in Ref. [47], as it was also found by Finger and Saalfrank [60]. As a con­

sequence, the negative ion resonance model for the photodesorption of NO from
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metal surfaces was questioned [136, 138]. The too pronounced vibrational excita­

tion results from too large a NO bond-lengthening in the excited state after a full 

one-electron charge transfer into the anti-bonding 27t* level of NO.

To obtain a better agreement between theory and experiment, in Refs.[60] and 

[135] the problem was “solved” by simply reducing tq^no- in (5.9). In this work, a 

slightly more sophisticated ansatz is chosen in relaxing the full one-electron charge 

transfer assumption. It was argued on the basis of tight-binding Green’s function 

calculations [117] that a full charge transfer should occur only asymptotically, i.e., 

S =  0{Z) and lim^_>oo5(Z) = —l|e |, while closer to the surface the transfer is 

incomplete, \ô(Z)\ < 1. This is because the closer the molecule is to the surface, the 

broader the excited state resonance becomes, eventually back-donating charge to the 

metal substrate. Particularly around the Franck-Condon point the excited, adsorbed 

NO molecule may actually be only slightly negatively charged. Accordingly, there is 

a smooth transition between partial and full charge transfer with increasing distance 

Z. Therefore, a coordinate-dependence of the NO" Morse parameters in Eq.(5.9) is 

expected to be more realistic than assuming a full electron transfer irrespective of 

geometry.
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Potential parameters: Ground state
Morse well depth V^o D no =  0.2433 E/j =  6.62 eV
Morse well depth VptN DptN = 0.0429 Ea =  1.17 eV
Morse well location V^o '̂ 0,NO ~  1-151 Â
Morse well location Vpt^ ^o,ptN ~  1.50 Â
Morse exponent Vato ,9^0 =  2.743 Â-^
Morse exponent VptN l^ptN — 1.682 Â ^
Exponential prefactor Vpto A = 23.3182 Ea =  634.51 eV
Exponential range parameter Vpto =  3.366
Potential parameters: Excited state(s)
Morse well depth V^o- D no- = 0.1889 E/j, =  5.14 eV
Morse well location Vjqo- '1̂0,NO- = 1-258 Â
Morse exponent V^o- =  2.229
“image plane” Zim - 0.847 Â
Work function P t ( l l l ) $  =  5.70 eV
Shift parameter (model A) A =  1.7749 eV
Shift parameter (model B) A =  1.5267 eV
Range of “switch” function ô[Z) (model B) C =  32.139 Â-2
Propagation: Grid parameters
Grid spacings A z  =  0.01 À

Ar =  0.024 Â
Nb. of grid points %  =  2048

Â r =  32
Grid starts at Z  = 1.19 Â

r =  0.84 Â
Propagation: Cutoff function f (Z )  =  1 — [1 -)- i
Wave packet considered desorbed for > 5.29 A
Range parameter a =  7.559 A -i
Propagation: Split operator propagation parameters
Time step A t = 0.19 fs
Total propagation time (DIET) t j  = 754.7 fs
Total propagation time (DIMET) t f  = 1064.7 fs
Lifetime averaging parameters (Gadzuk)
“Residence time grid” starts at Trq =  1 fs
“Residence time grid” spacing A r =  1 fs
Number of residence times considered N  =  80
Electronic temperature profile parameters
Energy difference parameter AR =  1.50 eV
Characteristic times Ti =  145.2 fs

T2 = 96.8 fs
Tg =  16.94 fs

Table 5.1: Photodesorption of NO from P t ( l l l ) :  Numerical parameters for the 
potentials, wave packet propagation, lifetime averaging, and for the electronic tem­
perature Telit) (Eq.(5.30)).
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In “surface model B” the Z-dependence of the NO" Morse parameters is in­

cluded, reflecting a continuous transition from weak charge transfer at small Z  to 

full charge transfer at Z ^  oo. Speciflcally it is chosen

0̂,NO“  ̂ '̂ 0,NO~ {Z) =  ' '̂ 0,NO“ d" [l ~  ^{^)] ' 0̂,NO ? (5.12)

where the tq^no and ro,No- are the equilibrium positions for the electronic ground 

and excited state Morse functions of NO, as given in Table 5.1. Analogous transfor­

mations are used for the Morse well depth, D ^ o- -4 - D no- ( Z )  and for the exponents, 

/3no- —> Pno-(Z) ^ 6{Z) is a “switch” function which can also be interpreted as a 

^-dependent charge transfer, chosen as

| l _ g - ( ( ^ - ^ i m ) 2  if

For 2D model surface B, also the shift parameter A in Eq.(5.9) was adjusted to 

produce the correct excitation energy (see Table 5.1). Both excited state models A 

and B are of very similar topology. However, model surface B predicts an equilibrium 

geometry for the excited state of r=1.17 Â, Z=1.91 Â, i.e, the NO bond length 

difference Ar is now only A r % 0.01 Â.

5.3 Computation of properties

Stochastic wave packet methods were used to model the photodesorption of NO 

from P t ( l l l ) ,  and for each quantum “trajectory” n  the properties of interest were 

calculated as follows: The population of the electronic states is given by

Ni,n = {^i,n(^, r; t)\^i^niz, r; t))z,r with i = e,g; (5.14)
Hn principle, the Z-dependence of the charge transfer should also enter the image-charge term 

in Eq.(5.10), for example by replacing the 1 in the denominator by S{Z)^.  Since the image charge 

approximation is anyway questionable for Z  smaller than % 2 A, it was refrained from doing so.
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where ()z,r denotes the integration over Z  and r. For the analysis of the desorbed 

part, an asymptotic part r ;t) )  of the nuclear wave function is computed by

multiplying the ground state wave packet at time t  with a smoothing cut-off function:

\ -HliZ,  r; t ))  =  r; t ))  ■ ( l  -  1[1 +  . (5.15)

The cut-off function makes it possible to to perform Fourier transforms of the des­

orbed part without obtaining artificial oscillations in order to calculate its kinetic 

energy (see below).

The desorption probability for each quantum trajectory is given as

. (5.16)

The final population of the vibrational states of desorbed NO is obtained by pro­

jecting the asymptotic wave function |^ “(Z, r ;t))  on the asymptotic vibrational 

eigenstates \vg{r)) of free NO and integration over Z

Pdes,v,n{t) = J  . (5.17)

Summation over the eigenstates v gives then the total desorption probability {Pdes){t)'

{Pdes,n){t) — Pdes,v,n{t) • (5.18)
V

The state resolved translational energy in Z  direction is obtained as

^ t i w ( ^ )  =  , (5.19)

with

\ K n ( k z , t ) )  =  4 =  r  e - " = ^ ^ \ ^ l , { Z - , t ) ) d Z  (5 .20)
V  Z7T J —oo

being the Fourier transform of

\% ^^(Z-t)) = { U r W n { Z ,r - t) ) r  . (5.21)

The total translational energy of the desorbed part is the sum over the eigenstates

v:

Pkin,ni^) ~  Pkin,v,n{t) ■ (5.22)
V
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For the total kinetic energy and the vibrational population distribution of the 

desorbed part, the averaged expectation values are obtained by dividing by the 

averaged desorption probability to give the values per desorbed molecule:

( S i  ■

and the total vibrational energy Eyib(t) per molecule (excluding zero-point motion)

IS

{Evit){t) = • (5-24)

Again, a grid representation for the wave functions and the operators was chosen 

and the propagation was done using the FFT method and a split-operator propa­

gator (see appendix A). All computational parameters for the propagation and the 

averaging procedure are given in Table 5.1; they are more strictly adopted to the 

problem than in Ref. [60].

5.4 DIET dynamics in the two-mode model

The DIET dynamics is treated within the (generalized) Gadzuk algorithm as out­

lined in sections 2.2.2.2 and 2.2.2.3. The electronic quenching of the excited state is 

modelled by the single Lindblad operator

Cl =  \/r,« |g )(e | . (5.25)

The decay rate F^e in Eq.(5.25) is in general expected to be a function of the co­

ordinates. Coordinate-dependent quenching must be assumed, because free N 0 “ is 

stable (NO has a positive electron affinity), and hence lim^_^oo Fge(r', Z) = 0. r  —> oo 

corresponds to the creation of free a 0 “ ion, which is also stable, and a neutral N 

atom on the surface. Thus, also ge{r̂  Z) = 0. To account for this, the

quenching rate is taken to be

Tpe(r, Z) = • g-OXi-rmi.) . g-gz(Z-Zmm) (5.26)
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where the [i = r, Z) are range parameters and are the coordinates of

the electronic ground state minimum.

The simulations were performed by (i) numerically diagonalizing the electronic 

ground state Hamiltonian Hg to obtain the bound states \vg) of the system, (ii) 

repeatedly propagating |0g) under the influence of the excited state Hamiltonian 

(5.1), (iii) analyzing the part of the wave function passing a hypothetical line at 

Zd which separates the reactants from the product (see above), and (iiii) averaging 

according to Eq.(2.38) respectively Eq.(2.44).

5.4.1 General aspects of DIET dynamics

As a first step, the DIET process was investigated for Tg = 0 K and a coordinate 

independent decay rate Fge =  =  1/ r  (thus assuming Pr = = 0 in Eq.(5.26)),

which is reasonable as long as the wave packet does not undergo large-amplitude 

motions in the excited state. For the simulation of the coordinate-independent 

quenching scenario, the original Gadzuk method (section 2.2.2.2) was used. In 

Fig.5.1 the expectation values (r)(T/e) and {Z){tr) are shown for the coordinates of 

a ground state wave packet evolving in the electronically excited state as functions 

of the residence time tr . Both surface models A and B are given. At tr =  0, the 

expectation values are those of the ground state wave function |0g), i.e, (r)(0) = 

(Og|r|Og) % =  1.16 Â and (%)(0) =  (Og|%|Og) % =  2.16 Â. For finite tr

up to % 10 — 15 fs, the wave packet moves towards the surface -which is typical 

for an Antoniewicz-type scenario (see section 1.4)- and at the same time towards 

increasing NO bond length r. Due to the fact that the model is two-dimensional, 

the wave packet in the excited state does not move directly towards the P t surface, 

but starts oscillating in the NO coordinate. Thus, it will reach the point from where 

higher desorption yields are achieved later than in a one-dimensional model, and 

consequently the lifetime r  of the excited state must be larger to obtain the same 

desorption probabilities. The oscillatory motion along the r  coordinate becomes
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Figure 5.1: Expectation values for the coordinates (Z) (upper panel) and (r) (lower 

panel) for an excited ground state wave function, transfered to the excited state to 

move there for a certain time tr . The solid curves are for model surface A, the 

dashed ones for model B. For tr < 5 fs, the wave packet moves towards the surface 

and for longer tr away from it. In the two-dimensional model the wave packet does 

not move directly towards the Pt surface, but starts oscillating in the NO coordinate; 

the (r) expectation value oscillates with a period o f % 25 fs for model A and ^ 1 9  

fs for model B.
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visible at larger residence times, while (Z) steadily decreases up to the r/? % 50 fs 

when the wave packet is reflected from the repulsive wall of the potential at low 

adsorbate-surface distance Z. The amplitude of the (r) oscillation is considerably 

larger for surface model A (solid lines in Fig.5.1) than for model B (dashed lines). 

This indicates that upon return to |^) the wave packet in model A will be much 

more vibrationally excited than in model B. Also, because excited model B is less 

N0 “ like, the vibrational period is shorter since > w^o-.

\ exp. 
range-610

0.9

0.6   model A
 model B

0.3

0.0

0.20
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0.05
6 8 10
T[fs]
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Figure 5.2; Averaged desorption probabilities per excitation event (Pdes)(i) (upper 

panel), averaged vibrational energies per desorbing particle {Eyit)[t) (middle panel) 

and averaged translational energies per desorbing particle (lower panel),

as a function of excited state lifetime, r for DIET of NO from P t( l l l )  with a 

coordinate-dependent quenching rate. Shown are the results of the 2D models A 

(solid lines ) and B (dashed lines) and experimental estimates values or ranges of 

values (horizontal thin lines; see text).
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After the averaging of N  individual quantum trajectories for various tr (see 

Table 5.1) according to Eq.(2.33), the final expectation values for the properties of 

interest are obtained. Shown in Fig.5.2 is the averaged desorption probability per 

excitation event, {Pdes){t) (Eq.(5.18)), the averaged kinetic energy per desorbing 

particle, (Ekin){t) (Eq.(5.23)) and the averaged vibrational energies per desorbing 

particle, {Eyn){t) (Eq.(5.24)), as functions of r. Both the results for model surfaces 

A and B are given, together with the experimental values (or estimates thereof) as 

horizontal lines. Experimentally, the desorption probability per excitation event is 

estimated to be in the order of 10“  ̂ to 10“  ̂ [31, 42], the kinetic energy is between 

{Ekin) % 0.12 eV [28] and % 0.20 eV [48, 49]. The experimental vibrational energy 

is {Ey,b) = 0.04 • 0.232 eV =  9.3 meV [48, 49].

From the plot of the desorption probability in the upper panel of Fig.5.2, a 

lifetime of T % 7 - 12 fs can be estimated from model A to be compatible with 

the experiment, while the 2D model B implicates a shorter excited state lifetime of 

T % 4 - 6 fs. The lifetime predicted by model A in particular is significantly longer 

than that obtained by direct density matrix propagation within a ID model (with 

only Z  included) [31], where T % 2 - 3 fs was estimated. In the 2D models used in 

this work, larger lifetimes are needed to achieve reasonable desorption probabilities, 

because the excited state wave packet does not move straight along the desorption 

coordinate, but also along the NO mode.

From the lower panel of Fig.5.2, one similarly notes that the translational energies 

per desorbate are “reasonable” for surface model B, assuming r  > 3 fs. However, for 

the 2D model A, the desorbates are translationally too “cold” at least by a factor 

of 2 as compared to experiment, irrespective of r . At the same time, the computed 

vibrational excitation of the desorbing NO is much too strong (by a factor of % 100) 

as shown in the middle panel of Fig.5.2. The vibrational excitation predicted by 

surface model B is also too high, but at least qualitatively correct (see below). In 

the following it is assumed that r  is between 3 and 6 fs for surface model B and r  =  

10 fs for 2D model A, to account for experiment in an “optimal” way.
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Figure 5.3: Averaged vihrational state populations of desorbing NO, Py \= {Pv){t) 

for DIET of NO from P t( l l l)  with coordinate-independent quenching. The left 

column is for DIET 2D model A, the right one for surface model B. In both cases, 

three lifetimes ( t  = 3,6 and 10 fs) are considered. Qualitatively, the experimentally 

observed moderate vibrational excitation of the desorbates is reflected much better 

in 2D model B than surface model A.
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As mentioned above, the enormous vibrational excitation predicted by the 2D 

model A [60, 135, 136], was used as argument against the negative ion resonance 

model of the NO desorption from P t( l l l ) .

In Fig.5.3 the vibrational state population of desorbing NO, Py := (Py)(t), is 

shown in the form of histograms for the 2D DIET models A and B. In both cases, 

three respective lifetimes (r =  3,6 and 10 fs), are considered, where the first two 

cover the possible range for surface model B and the last is more appropriate for 

model A (see above). It is recognised that the moderate vibrational excitation found 

in experiment (Pi/Po ~  0.04; ~  0(n > 1), [48, 49]) is at least qualitatively

met by the more realistic 2D model B. In contrast, model A for which an integer 

charge transfer had been assumed, fails completely, by even predicting a population 

inversion. These findings are almost independent of the particular choice of r. 

Therefore, within the “asymptotic negative ion” picture (surface model B) there 

is no contradiction between the observed moderate vibrational excitation and the 

assumed charge transfer.

5.4.2 The effects of coordinate-dependent quenching

Even in the improved surface model B the computed vibrational excitation of the 

desorbates is somewhat overestimated. For r  =  3 fs, for example, the model predicts 

Pi/Pq =  0.26, and P2 /P 0 ~  0.11. The quantitative difference with experiment may 

be due to many reasons. First is the model character of the potentials, another one 

the reduced dimensionality of the dynamics. Rotations and frustrated translations 

will absorb some energy in a higher-dimensional approach. Further, it was shown 

in Ref.[60] that the coordinate-dependence of the decay rate Tge{r,Z) as expressed 

in Eq.(5.26), may cause further vibrational cooling of the desorbates.

Unfortunately, nothing is known about the r-dependence of Tge(r, Z). Also be­

cause the NO bond cannot be broken in contrast to the NO-surface bond at the 

energies considered here, just the effects of a finite range parameter along Z  in
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Eq.(5.26) are considered now.

Computationally, the treatment of coordinate-dependent quenching is done most 

efficiently using the generalized Gadzuk method (see section 2.2.2.3). To demon­

strate how the generalized Gadzuk algorithm works in practice, in Fig.5.4 the nu­

merically determined generalized Gadzuk weighting factors Wn are shown as a func­

tion of Tjin (see Eq.(2.45)) for the 2D surface model B. Exemplary, the parameters 

1/Fge =  6 fs, Pr =  0, =  1.0 and =  2.16 A were chosen for Eq.(5.26).

The exponential decrease of Tgg with Z  is reasonable in view of the exponentially 

decreasing overlap between adsorbate and metal orbitals [78, 117]. For Z —)• oo, 

Tge = 0 because this corresponds to a stable N0~ ion separated from the positively 

charged metal. The parameters where chosen such that, at the Franck-Condon 

point {Z = 2.16 Â), the decay rate is identical to a coordinate-independent decay 

rate of =  1/6 fs“E In the coordinate-independent scenario =  /dz =  0), the 

generalized Gadzuk weights are identical to those of the simple Gadzuk procedure 

(wn =  r°g • . A t r ), as also demonstrated numerically in Fig.5.4. From the

blow-up for large residence times t r  in the lower panel of Fig.5.4 it can be seen that 

in the coordinate-dependent case the generalized Gadzuk weights are, for instance 

for Tr % 40 fs, smaller by a factor of about 2 than for coordinate-independent 

quenching. In general, from t r  > 30 fs the coordinate-dependent weights are smaller 

than the coordinate-independent ones. Since the weights are normalized, therefore 

at smaller t r  the generalized Gadzuk weights have to be slightly larger than in the 

coordinate-independent case, making quantum jumps more probable for small t r .

After the averaging of the expectation values of the single quantum trajecto­

ries according to Fq.(2.44), the time-resolved desorption probability (Pdes){t) is ob­

tained. As shown in Fig.5.5a, coordinate-dependent electronic quenching leads to a 

reduction of the yield by a factor of 2. This is due to the fact that in the coordinate- 

dependent case “trajectories” with smaller tr , for which Pdesi'^u) is small, have a 

larger weight. Within the Antoniewicz model this can be rationalised with the ob­

servation that that part of the wave packet closer to the metal surface (i.e. at shorter
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Figure 5.4: The effects o f coordinate-dependent quenching in D IET of NO from 

P t( l l l ) .  Shown are the numerically obtained Gadzuk weighting factors Wn as a 

function o f TRn for surface model B for 1/F°g =  6 fs, /3r =  0, =  1.0 and

=  2.16 A in Eq.(5.26), respectively, as open squares. For the choice j8z = 0 

(coordinate-independent quenching) the analytic Gadzuk weights (solid line) and 

the numerically determined generalized Gadzuk weights (stars) are shown as well. 

The lower panel is a blow-up of the upper one, for larger residence times.
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Figure 5.5: The effects o f coordinate-dependent quenching in D IET o f NO from 

P t( l l l ) .  The solid curves are for 2D surface model B obtained with l/F^g =  6 fs, 

(3r = ^, = 1.0 and = 2.16 A  in Eq.(5.26), showing (a) the time-resolved

desorption probability (Pdes){t), and (b) the corresponding decay o f the excited state 

population (Ne)(t) (logarithmic scale). The dashed curves are (a) ( P d e s ) { t )  ^nd 

(b) the excited state population (NA{t) for fdz =  0, i.e., coordinate-independent 

quenching.
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Figure 5.6; Coordinate-dependent electronic quenching in the Antoniewicz model. 

The electronic relaxation is faster at short adsorbate-surface distances Z. Thus the 

wave packet has less chance to reach the steep repulsive wall of the electronic ground 

state, resulting in a reduced desorption probability.
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z )  is quenched most efficiently, so it has no chance to reach the steep repulsive wall 

of the electronic ground state opposite the desorption chanel which would cause 

desorption (see Fig.5.6). This finding is qualitatively different from that found for 

the MGR desorption scenario, where coordinate-dependence of the relaxation rate 

leads to significantly higher desorption probabilities (see section 3.2.4).

The decay of the resonance population (Ng)(^) is shown in Fig.5.5b. It appears 

only slightly different at larger times compared to the coordinate-independent relax­

ation scenario; for coordinate-dependent quenching the population decays somewhat 

faster. This is because of the smaller weighting factors for longer residence times 

and can be explained in a wave packet picture by the fact that the wave packet on 

the excited state moves towards shorter Z-values where the electronic quenching is 

more efficient than with a constant, coordinate-independent rate. The same effects 

were found in Ref. [31], using a ID model and a different computational method. 

No significant effect of finite on the kinetic energy distribution of the desorbates 

and only small effects on their vibrational energies were found. Here, however, the 

inclusion of finite could be essential to arrive at a more qualitative level of agree­

ment with the experiment. Preliminary results by Finger and Saalfrank [60] have 

shown a substantial reduction of the overpopulation of higher NO vibrational states 

by also including the dependence of F^g on r and further examinations are clearly 

necessary.
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5.5 DIM ET of NO from P t ( l l l )

5.5.1 Theoretical treatment of the DIMET process

The open system density matrix Lindblad approach and the direct and stochastic 

wave packet methods to solve the Liouville-von Neumann equation (2.10) (see section 

2.2) can easily be generalized to treat desorption processes induced by multiple 

excitations/ de-excitions (DIMET). For this, the initial condition

m  =  , (5.27)

is chosen and the dissipative Lindblad functional has to be supplemented by a term 

accounting for the excitation of the adsorbate \g) -4- |e). The hot electron-mediated 

excitation is modelled by the corresponding Lindblad operator, Ô2:

C2 =  r ,,( t) |e )(p | , (5.28)

with Tgg(t) being the transfer rate of nuclear density from the electronic ground to

the excited state. The inclusion of the excitation in the dissipative part of Eq.(2.10)

corresponds to the indirect nature of the excitation process and is in contrast to the 

photodesorption of H from Si(100) (see section 4), where the adsorbate excitation 

was assumed to be direct and included in the Hamiltonian.

The excitation rate is determined from the deexcitation rate Tge(r, %) by the 

principles of detailed balance

=  r,e (r, Z) ■ (5.29)

Detailed balance expresses the fact that the excitation and the deexcitation originate 

from the same metal-adsorbate coupling mechanism and are reversible microscopi­

cally.

The potential energy difference A F  = Ve — Vg and the prefactor Tge(r, Z) make 

Egg(t), in principle, coordinate-dependent. Under the assumption that the dominant 

excitation region is localized around the ground state equilibrium distance ro,Zo,
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the coordinate-dependence of A V  is neglected and a constant A y  =  ^o) —

Vg{ro, Z q) is assumed. For simplicity, but also because coordinate-dependent quench­

ing causes no order-of-magnitude effects for N O /P t( ll l) ,  a coordinate-independent 

decay rate Fgg(r, =  F°g is chosen, which makes the excitation operator Teg{t) 

coordinate-independent.

The time dependence of Fgg(t) arises from the fact that a pulsed laser experiment 

is to be modelled. The modelling includes a time dependent electronic temperature 

profile Tgi(t), which can be calculated semi-microscopically using a coupled diffusion 

equation formalism containing laser and substrate characteristics [139]. In this work, 

a model form suggested in Ref. [139] is used instead:

p-Vn
Tel{t) = Tm ' 2 ' ’ (5.30)

with g{t) := 1 — e(^-^2)/T3 % Eq.(5.30) is used as a rough analytical represen­

tation for the response of an electron gas to a (sub-)ps laser pulse. It is a function 

which starts from Tei ~  0, reaches a peak Tmax TL) of several thousands of K 

after a few hundred fs and then falls off on the ps-timescale (see Fig.5.8). The 

parameters ri, T2, Tg used in this work are given in Table 5.1, while Tm is varied 

parametrically to simulate different laser fluences.

The treatment of DIMET by the direct method for solving the Liouville-von 

Neumann equation (2.10) is no more complicated than the treatment of DIET. 

However, it is numerically too costly because the two dimensions considered result 

in a density matrix too large in memory requirements. Thus, the Liouville - von 

Neumann equation (2.10) is solved by the stochastic Monte Carlo Wave Packet 

Method (MCWP) introduced in section 2.2.2.1. The MCWP method, however, is 

numerically much harder for DIMET than for DIET. The presence of the excitation 

term leads to an effective, non-Hermitian Hamiltonian

H' = H - j [ r , , \ e ) { e \  + r,,{t)\9){g\] , (5.31)

and to quantum trajectories corresponding to P-fold excitation/ deexcitation cycles,
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which are in the case of coordinate-independent transition rates of the type (t >

E ïï in y .

To, n ,  . . . , T 2 P -1 , T 2p )) =

(5.32)

e>

19>

T, T, T T  T

t

Figure 5.7: DIM ET o f NO from P t( l l l ) .  Sketch of an P-fold excitation/deexcitation 

cycle for P  = 3. The \g){e\ and \e){g\ operators in Eq.(5.32) enforce transitions 

between both surfaces.

Here, the \g){e\ and \e){g\ operators enforce transitions between both surfaces. 

The “odd minus even” residence time intervals T2 k+i—T2 k [/c =  0 , . . . ,  P — 1 ; (tq =  0)] 

and the interval t — T2 p correspond to situations where the wave packet resides on 

the ground state surface; the “even minus odd” residence time intervals T2 k — T2 k-i 

[k =  1, . . . ,  P) denote propagations in the excited state. The situation is sketched 

in Fig.5.7 for the example P  =  3.

As explained in section 2.2.2.1, the expectation values for the randomly selected 

quantum trajectories (which are independent of the initial propagation tq on |p)),

K { t)  =  nn, Dn, . • • , T2P^)\A\'ll){t] Tin, T2n, • • • , T2P^))
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are simply averaged over using Eq.(2.30).

5.5.2 DIMET dynamics

The time evolution of the electronic temperature, Eq.(5.30), and the electronic exci­

tation rate, Eq.(5.28) are shown in Fig.5.8. The electronic temperature rises within 

% 140 fs to the respective peak value (see Table 5.2) and decays to zero in about 1 

ps.
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Figure 5.8: The electronic temperature profile (upper panel) and the electronic exci­

tation rate h'eg{t) (lower panel) as a function of time t for the electronic temperature 

considered (see Table 5.2. The electronic temperature prohle induces an electronic 

excitation rate which depends exponentially on the electronic temperature.

The choice of parameters for the electronic temperature profile (see Table 5.1) 

is motivated by computational reasons. The peak temperatures are chosen rather 

high to reach reasonable converged results with a feasible number of Monte Carlo
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quantum trajectories. Four peak electronic temperatures, between % 3900 K and 

% 11800 K, have been considered, where the latter value is by about a factor of two 

above what has been realized experimentally so far [131].

V 1.2

V 1.2

4 6 8 10 12 14
<z> [A]

Figure 5.9: DIMET of NO from P t( l l l) .  Expecta tion values in the r and Z  coordi­

nate of all trajectories at equidistant time steps of 36.3 fs. The expectation values 

for two peak electronic temperatures are given: in the upper panel for Tmax = 

5730 K  (Tm = 20000 K) and in the lower panel for Tmax = 11820 /v (Tm — 41255 I\ ). 

Eor the higher electronic temperature, the sampled space is larger than for the lower 

one, in particular along Z, and thus more quantum trajectories” will lead to des­

orption.

The sampled coordinate space for the MCWP calculations within the DIMET 

scenario is shown in Fig.5.9 for Tmax = 5730 K (upper panel) and Tmax = 11820 

K (lower panel) respectively. Every 36.3 fs, a snapshot of the position of the wave 

packet has been taken for each trajectory. All the snapshots are displayed together. 

It can be seen that for a maximum electronic temperature of 11820 K the sampled 

space is larger than for Tmax = 5730 K, in particular along Z, and thus more 

molecules will desorb.
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Tmax [K] Tm [K] N

3950 13787 4000

5730 20000 3000

9455 33000 2000

11820 41255 2000

Table 5.2; The electronic peak temperatures Tmax, the corresponding Tm values for 

Eq.(5.30) and the number of MCWP quantum trajectories N  for DIMET of NO 

from P t ( l l l ).

Depending on Tmax, different number N  of quantum trajectories was chosen 

to account for the slower statistical convergence in the low-T^^a; (low-probability) 

regime. The electronic peak temperatures Tmax considered and the corresponding Tm 

values for Eq.(5.30) are given in Table 5.2 together with the corresponding maximum 

number of MCWP quantum trajectories N.

Increasing the laser fluence leads to higher electronic peak temperatures Tmax 

and thus, according to Eq.(5.29), to a non-linear increase of the excitation rate 

keg{t) (see Fig.5.8). Because the lifetime of the excited state is so short, the non­

linear increase of the excitation rate Peg{i) considerably enhances the chance for 

multiple-excitations, and therefore leads to the “DIMET hallmarks” referred to in 

section 1.2. Using the Monte Carlo wave packet method (see section 2.2.2.1), the 

number of excitations per quantum trajectory can be counted and hence the term 

“multiple” be quantified [31].

In Fig.5.10a the average number of excitations per laser pulse.

(m) =
N

(5.34)

is shown for 2D model B and a quenching rate Tge — P̂ g =  1/6 f s " \  where m  in 

Eq.(5.34) is the number of excitations, s(m) is the number of m-fold excitations per 

quantum trajectory and N  is the number of MCWP trajectories.

From test calculations it was estimated that, except for the lowest Tmax, the
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Figure 5.10; DIMET of NO from P t( l l l )  within 2D model B and coordinate- 

independent transition rates (T°g = 1/6 fs~^). Shown are several computed quan­

tities or observables of the desorbates, as a function of the maximum electronic 

temperature Tmax- (a) the average number of excitations per laser pulse (m), in 

(b) the averaged desorption probability {Pdes){t) and in (c) the averaged desorption 

probability per excitation event For the latter two cases, also the DIET value

is given as a horizontal, dot-dashed line. The electronic peak temperatures Tmax con­

sidered are (the corresponding Tm values for Eq.(5.30) in brackets): Tmax =  3950 K  

("7;̂  =  13787 Kj, 5730 (20000;, 9455 (33000/, aud 11820 (41255/ K. For diese cases, 

N= 4000, 3000, 2000 and 2000 MCWP trajectories were used, to assure that in all 

cases the estimated error (based on the scattering of computed data) is less than 10 

%. (In the case of the lowest temperature, the estimated relative error is around 30 

%./
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statistical errors made for different computed properties, are of the order of ±  10 

%. It is seen that the average excitation number (m) increases as Tmax  ̂ i.e., as 

laser fluence, increases. For the lower Tmax, (m) increases slightly super-linear and 

quasi-linear for the larger Tmax (> 9000 K).

Closer inspections for low Tmax show that, in most cases, no excitation at all 

takes place. For example, for Tmax = 3950 K (Tm = 13787 K), out of N  = 4000 

trajectories only % 500 lead to a transition \g) -4- |e). This observation can be used to 

accelerate the MCWP algorithm considerably. Namely, for coordinate-independent 

transition rates the norm loss 6p{t-\-At) due to the upward operator Ô2 in Eq.(5.28) 

is given analytically as

Sp{t + At) = l -  (5.35)

Since the time-evolution of the stationary vibrational ground state wave packet 

|0g) in the ground electronic state is trivial, the numerical propagation of the wave 

packet has to be carried out only from that time on when a random number e G 

[0,1] becomes larger than ôp(t +  At), i.e., when the wave packet indeed performs a 

quantum jump.

In Fig.5.10(b) the desorption probability ( P d e s ) ( t )  of NO from P t ( l l l )  is shown. 

Further, in Fig.5.11(a) the average kinetic energies per desorbate {Ekin)(t) and in 

Fig.5.11(b) the average vibrational energies (Eyib)(t) for the various Tmax studied 

are given. A super-linear increase of { P d e s ) ( t )  can be clearly observed for lowest 

three Tmax < 9000 K as well as a quasi-linear increase of (F̂ t%n)(̂ ) with peak elec­

tronic temperature. The computed superlinearity of the desorption yield with peak 

temperature will translate in a somewhat less pronounced increase of ( P d e s ) ( t )  with 

the laser fluence T  because Tmax is expected to increase approximately proportional 

to the square root of T  [140]. Therefore, the experimentally observed distinct power 

law scaling [28] cannot be fully accounted for by the model. This was also unex­

pected since, for a quantitative agreement, a more realistic parametrization of the 

hot-electron function Tei(t) is essential.
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Figure 5.11: The same as Fig.5.10 for (a) the averaged kinetic energies (Ekin){t) and 

(h) the averaged vihrational energies of the desorbates (Eyih)(t); for the latter, the 

theoretical DIET value (see also Fig.5.3) is shown as a horizontal, dot-dashed line.
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The “linear regime” for (m) at large Tm {Tmax) (Fig.5.10(a)), translates into a 

slower, quasi-linear increase of {Pdes)j and a “levelling off” of the kinetic energies 

with Tmax (Fig.5.11(a)). This theoretical prediction holds for very large, perhaps 

impractically large peak temperatures. However, the observed behaviour is reason­

able because the desorption probability cannot increase forever according to a power 

law, but must level off at some point to approach a finite value. The increase of the 

desorption in DIMET probability relative to DIET is demonstrated in Fig.5.10(c). 

There, the desorption probability per excitation event

{ P D  ■■= ^  • (5.36)

is shown as a a function of Tmax- ft is seen that for large Tmax  ̂ {^des) is indeed 

much larger than (F^gg)(DIET) % 1 • 10“ ,̂ which is included in Figs.5.10(b) and 

5.10(c) as a dashed horizontal line. It should be noted that even at much lower 

Tmax: the DIMET process is expected to lead to higher desorption yields than DIET 

because only a small fraction of adsorbates will actually be excited in DIET [42]. 

The results suggest that at high enough fluences, DIMET is even more efficient than 

DIET when in both cases one excitation took place. Finally, {Pies) is observed to 

increase somewhat with increasing Tmax: & “synergetic effect” already found in the 

ID model [31].

Concerning the vibrational energies per desorbate, {Eyib){t) (Fig.5.11(b)), one 

finds for all cases studied that in the DIMET case the vibrational excitation is 

always larger than for the DIET scenario (dashed horizontal line in Fig.5.11(b)), 

in agreement with experiments [131, 132]. Further, as a general trend {EyHj){t) 

increases with increasing Tmax-

5.6 Summary and conclusion

The photodesorption of NO from P t ( l l l )  has been investigated for the DIET (sin­

gle excitation limit) and DIMET (multiple excitation limit) process within a two­
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dimensional model, using a Markovian open system density matrix approach for the 

simulation of the desorption dynamics.

Concidering the DIET dynamics, it was found that the negative ion resonance 

model makes sense also for NO desorbing from metals, as long as the transfer of 

a full electron is assumed to happen only asymptotically, i.e., for % —> oo. The 

excited state lifetime is estimated to be ultrashort with r  < 10 fs, in agreement with 

a previous ID model [31]. Coordinate-dependence of the quenching rate along Z  

slightly decreases the desorption probability, while a coordinate-dependence of Tge 

along r leads to vibrationally cooler products [60]. In the 2D “asymptotic negative 

ion resonance model” , the desorption probabilities and kinetic and vibrational en­

ergies of the desorbates are qualitative, sometimes even in quantitative agreement 

with experimental data [48, 49, 28].

In the DIMET case, the experimentally known “DIMET hallmarks” [28] (larger 

desorption yields, scaling of yields, translational and vibrational energies with laser 

fluence) are at least qualitatively accounted for. For very large electronic peak 

temperatures (laser fluences), a “saturation regime” for those observables at very 

large laser fluences is predicted.

Future work should concentrate on several aspects. More reliable excited state 

potentials and their lifetimes are required to achieve satisfying quantitative agree­

ment between theory and experiment. It it also important to use more realistic 

Tei{t) curves [131] and to extend the model to multi-dimensions. In particular, the 

experimentally observed, substantial rotational excitation of the desorbates [48, 49] 

should be accounted for.
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Chapter 6

Final summary and conclusions

This thesis is focused on the theoretical modelling of stimulated desorption processes 

of adsorbate-surface systems. The underlying theme is the implication of transient 

excited intermediates on the dynamics and the mechanism of bond breaking in 

complex systems.

In the first part of this thesis, section 1, a short introduction to general aspects of 

surface chemistry is given. Basic features of excitation and desorption processes in 

condensed phase are discussed and simple models for their description introduced.

In section 2, theoretical models and methods relevant to the applications in this 

work are reviewed in general. This includes open system density matrix theory and 

different quantum dynamical approaches to solve the underlying dissipative Liouville 

- von Neumann equation.

Various aspects of STM induced desorption are investigated and discussed for 

Si(I00)-(2xl);H(D) in section 3. Results obtained by quantum mechanical wave 

packet and density matrix propagation, as well as classical methods are presented 

and compared to experiment.

Laser induced desorption of H(D) from Si(100)-(2xl) is treated in section 4 and 

possibilities for an active control of the photodesorption outcome are suggested.

In section 5, a two dimensional model is applied to the photodesorption of NO
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from a P t ( l l l )  surface. Results are represented which confirm the experimental 

observation that the desorption outcome is substantially different if a pulsed (fs) 

laser is used rather than a cw (ns) laser.

All induced processes considered have in common a theoretical description with 

relatively simple two state models. MGR and Antoniewicz type models have been 

adopted and extended to make predictions and simulations of non-adiabatic desorp­

tion systems of actual interest. While quantum effects and a proper treatment of 

electronic (and sometimes vibrational) relaxation are accounted for, the simplicity of 

the original MGR and Antoniewicz models is largely retained. This simplicity allows 

for the investigation of various, often opposing trends during the non-adiabatic sur­

face reactions and despite the simplifications involved, the presented model studies 

give already reliable basic trends.

However, the nature of relaxation and excitation processes involved in STM or 

laser driven surface reactions and the eventually following bond breaking is most of 

the time not simple. Hence, effects neglected in the modelling may be important 

for quantitative predictions. Multi-dimensionality, the participation of more than 

one electronically excited state, an explicit inclusion of vibrational relaxation and a 

more detailed treatment of the excitation processes involved are issues which have 

to be addressed in the future. A very important factor is the calculation of reli­

able potential energy surfaces, in particular for the excited states. There is also a 

need for efficient numerical methods, for example because of the heavy scaling of 

density matrix calculations. Effective numerical techniques are essential not only 

for the treatment of complex surface reactions but also for the modelling of other 

process where a high number of degrees of freedom needs to be considered, e.g. in 

biochemistry.

Various groups are already working on those problems and towards possible 

improvements in the direction of more complete and even larger system simulations, 

aiming at a quantitative comparison with experimental results. Nevertheless, due
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to the complexity of processes like non-adiabatic dynamics at solid surfaces, it is 

to expect that simple models, like the ones introduced and used in this work, will 

continue to be most useful in surface science, both as a source for a general physical 

insight and as a starting point for a more sophisticated treatment.
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A ppendix A

Num erical solution of the nuclear 

Schrodinger equation

A .l The DVR m ethod for the com putation of 

eigenstates and eigenenergies

The numerical solution of the time-independent Schrodinger equation for the calcula­

tion of the (vibrational) system eigenstates requires a discretisation of the respective 

wave functions and operators in configuration space. The task of an efficient coor­

dinate discretisation is to construct a preferably small grid x i , . . . . , x g , s o  that by 

representing the Hamiltonian and the wave function on this grid, the one dimen­

sional eigenvalue problem

2fidx^

becomes a matrix eigenvalue problem

+ V( x ) (A.l)

/ H 11 H IG
\

GO

= E„ (A.2)
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In this work, the Discrete Variable Representation (DVR) method was used for 

the coordinate discretisation. This method, based on earlier works by Harris [141] 

and Dickinson [142], was introduced by Light and co-workers [143, 144] in chemical 

physics for solving the time-independent Schrodinger equation. The idea of the sine 

function DVR method [89] used in this work is very simple and has a universal 

character. The Hamilitonian matrix and all aspects of the calculations have no 

explicit reference to an underlying basis from which the DVR comes and involve 

only the grid points themselves.

For a one-dimensional system with coordinate x restricted to an interval (a, b) 

the kinetic energy operator is

 ̂= ”1 ^  •

Using an equidistant grid

Xi = a (̂b — ofji/G , i =  1,..., G — 1 (A.4)

the basis functions (f)i for a uniform grid are Fourier-functions (i.e. eigenfunctions 

of a particel-in-a-box):

g7r{x -  a)
g — 1,..., G — 1 . (A.5)

b — a

Under the assumption that the wave functions vanish at the interval endpoints a and 

b, one obtains G — 1 functions and G —1 grid points. The grid point representation 

of the kinetic energy, or DVR, is then given by

Tij = -  ̂  Ax  (A.6)
5=1

where A x  = {b — a ) /G is the grid spacing. With Eq.(A.5) one so obtains

(^ )  1 5  (Ç) (W) ■2pL \b  — a

As shown by Colbert and Miller [89], this becomes for i ^  j

( - 1)-^  f 1_________________ 1 1

2/i (6 — a )2 2 \ s i n ‘̂[K{i — j)/2G] sin'^[7T{ij)/2G] j
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For the diagonal elements one obtains accordingly

Tü = -
1 7T̂

2// (6 -  a )2 2
(2G" +  l) /3  -  -

1
(A.9)

As it is with all DVR methods, the potential energy matrix is diagonal

Vij = V[xi)6ij (A.10)

and with the sinc-function DVR, a simple expression for the kinetic energy matrix is 

obtained. Considering for example the special case of an interval (a, h) = (—oo, oo). 

In this case, a finit grid spacing Ax =  [h — a) j G requires that G ^  oo also. With 

the grid as defined in Eq.(A.4), it is also i-\-j -4- oo, but i — j  is finit. Thus Eq.(A.S) 

becomes

The resulting Hamiltonian is greatly simplified and the Hamiltonian matrix sparse, 

which allows efficient diagonalisation. The application of the sine function DVR 

for other intervals, e.g. [0, oo] or [0, tt] for systems described in polar coordinates is 

straightforward and described by Colbert and Miller as well [89].

To compute the eigenvalues and eigenenergies of the eigenvalue problem A.2, an 

explicit grid has to be chosen, i.e. a step size Ax and a maximum index G, which 

determines the grid limits Xmin = —G A x  and Xmax = G Ax, have to be defined. 

For this, a maximum energy E^ax is fixed, up to which the eigenvalues and -vectors 

should be calculated. The extent of the grid is then chosen so that V[xmax) > Emax 

and V[xmin) Emax- The step size Ax results from the observation that wave 

functions are well represented on a grid if 3-4 grid points N b are used per De 

Broglie wave length Xmin of Emax

^min = (A. 12)

^ A x  = ^  . (A.13)
N b  ̂ ’
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A .2 The split-operator propagator

The time dependent Schrodinger equation

=  . (A.14)

is a first-order differential equation in time. The Hamiltonian ^  is a sum of an 

operator T  for the kinetic energy and an operator V  for the potential energy. H  is 

given in one dimension as

H  = f  + V  (A.15)

^

The initial (one dimensional) wave function |T(j:; t =  0)) is represented on a discrete 

grid with G equidistant grid points in configuration space. The potential energy op­

erator V  is diagonal in configuration space and the calculation of y |^ )  is a simple 

multiplication of |T(a:)) with the potential V{x) on every coordinate x. The kinetic 

energy operator T is diagonal in momentum space. Thus, for the spatial derivative, 

the wave function is transformed to momentum space by FFT {Fast Fourier Trans­

form). There, the spatial derivative corresponds to a simple multiplication with 

the square of the momentum coordinate and is thus numerically simple. After the 

multiplication, the resulting wave function is back-transformed to coordinate space.

To get the time derivative of Eq. A.14, the split operator technique by Feit 

and Fleck [77] was used in this work. The wave function |^(T, t)) is propagated in 

discrete time steps At up to a final propagation time tf.  The wave function at time 

t-h At is calculated from the wave function at time t using the short-time propagator 

U (At) according to (atomic units)

|^(t,(^t)) =  e-'^"^'|^(t)> =  (7(At)|^(t)> . (A.17)

In the split-operator method, U (At) can be approximated by

[/(At) =  +  O(At^) . (A.18)
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The propagation scheme is norm conserving since only unitary operators are in­

volved.
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A ppendix B 

Tim e evolution of the density  

m atrix elem ents

The elements of the density matrix result from the action of the Liouvillian super­

operator £  on the density pg. With the Lindblad operators

= (B.l)

the Liouville - von Neumann equation (2.10) {§iPs = Ps) becomes

Ps = -  j^Ws.Ps] +  ^  [pijpsClj — -[C\jCijPs\j^ (B.2)

and the change of the matrix elements pnm in time is given by

(nlp^lm) =  -^{n \{H sP s-P sH s)\m )  (B.3)

+  {^ijV){j\ps\j){A -  l '^ iji\j){A^){j\Ps^  l^>

The single terms of Eq. B.3 will be treated separately.
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B .l  Hamiltonian part

The change of the density matrix elements in time due to the Hamiltonian evolution 

results in

{n\pH\m) =  - ^ { n \ { H s P s  -  PsHs)\m)

- -  “ ^(^1 i ^ n P s  — P s E m )  \m)

=  -^{n\Enps\m ) -  {n\psEm\m}

= —^{En — Em)(n\ps\m) . (B.4)

The complete term vanishes for the diagonal elements, where n = m.

B.2 Dissipative part

By exploiting orthonormality, (i\j) = the second term of Eq. B.3 becomes 

{n\pD\m) =  ^ ry (n |z ) ( j |p5 | j ) (z |m )

+  MPs\j){j\m))  . (B.5)

In the first term, products (n\i) as well as {i\m) appear. Thus this term will only 

contribute ii i = n = m. The same holds for the second term with products {n\j) 

and {j\m). In this way, Eq.B.5 becomes for the diagonal elements (m =  n)

(n\pD\n) = ^Tnj(j \Ps\j)  -  ^Y,rin{{n\ps\n)  +  (n\ps\n))
j j ^ n  i ^ n

=  IZ  ^ n j { j \ P s \ j )  -  { n \ P s \ n )  Y ,  Bin 
j ^ n  i ^ n

= Y  ' ^ n m { m \ p s \ m )  -  { n \ p s \ n )  Y  ^mn • (B.6)
m^n m^n

In the same way.

{n\pD\m) = -] -Y ^ in { n \p s \m )  ~ \ Y  ^im{n\ps\m)
i^n i^m
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i^n

— — - { n \ p s \ r n ) ' ^ ( r k n ' ^ ^ k m )  (B.7)
^ k^n

for the off-diagonal elements (m ^  n) is obtained.

In summary, the time evolution of the density matrix elements is given for the 

diagonal elements by

{n \p s \ n )  =  ^ n m ( m \ p s \ m )  -  ( n \p s \n )  ^  Tmn
m^n m^n

Pnn ^  y Pmm Pnn ^  ] ^mn (B -8)
rriÿ̂ n m^n

and for the off-diagonal elements

( ^ | P s | ^ )  — ^ rn ){p \P s\'^ ')  q ( ^ | P s | ^ )  ^  y (Tfcn "h ^km )
^ ^ kj^n
i 1

Pnm — % (-^71 ^ m ) Pnm % Pnm ^  y kn "b ^km ) (B  9)
^  ^ k^n

is obtained.
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