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We present an application of the extended stochastic Liouville–von Neumann equation (ESLN) method
introduced earlier [G. M. G. McCaul, C. D. Lorenz, and L. Kantorovich, Phys. Rev. B 95, 125124 (2017); 97,
224310 (2018)], which describes the dynamics of an exactly thermalized open quantum system reduced density
matrix coupled to a non-Markovian harmonic environment. Critically, the combined system of the open system
fully coupled to its environment is thermalized at finite temperature using an imaginary-time evolution procedure
before the application of real-time evolution. This initializes the combined system in the correct canonical
equilibrium state rather than being initially decoupled. Here we apply our theory to the spin-boson Hamiltonian
and develop a number of competing ESLN variants designed to reduce the numerical divergence of the trace of
the open-system density matrix. We find that a careful choice of the driving noises is essential for improving
numerical stability. We also investigate the effect of applying higher-order numerical schemes for solving
stochastic differential equations, such as the Stratonovich-Heun scheme, and conclude that stochastic sampling
dominates convergence with the improvement associated with the numerical scheme being less important for
short times but required for late times. To verify the method and its numerical implementation, we first consider
evolution under a fixed Hamiltonian and show that the system either remains in, or approaches, the correct
canonical equilibrium state at long times. Additionally, evolution of the open system under nonequilibrium
Landau-Zener (LZ) driving is considered and the asymptotic convergence to the LZ limit was observed for
vanishing system-environment coupling and temperature. When coupling and temperature are nonzero, initially
thermalizing the combined system at a finite time in the past was found to be a better approximation of the true
LZ initial state than starting in a pure state.

DOI: 10.1103/PhysRevB.101.224306

I. INTRODUCTION

In open quantum systems, interactions between the system
of interest and its environment drive behaviors which are
not found in isolation such as dissipation and decoherence.
Such phenomena play a strong role in quantum computing
[1] and quantum thermodynamics [2] where the ability of
an open system to stay in a superposition of states is de-
sirable, though the treatment of such systems is analytically
and numerically challenging. Existing methods are typically
characterized by use of the reduced density matrix, obtained
by taking the partial trace over the environment variables of
the full density matrix. This began with the development of the
Feynman-Vernon influence functional formalism where the
response of a linear bath is expressed as a path integral over an
infinite number of displaced harmonic oscillators [3]. Several
techniques have since been developed, including hierarchical
equations of motion [4,5], stochastic Liouville–von Neumann
equations [6–10], stochastic Schrödinger equations [11], and
quasiadiabatic path integrals [12]. Importantly, none of these
methods make the Markov assumption, where environment
correlation times are taken to be negligibly short compared
to the characteristic timescales of the system of interest.
This assumption has the physical interpretation that any

information dissipated from the system to the environment
will never be returned; i.e., the system-environment coupling
is memoryless. However, these methods do assume that the
system of interest and its environment are initially partitioned
from each other; that is, they are initially decoupled and
thermalized independently rather than as one combined sys-
tem. This is fundamentally unphysical, especially for driven
systems where a partitioned state is certainly not a good
approximation of the correct initial thermal state and leads to
incorrect transient dynamics with the possibility of the wrong
asymptotic behavior.

This is not the case for the recently proposed extended
stochastic Liouville–von Neumann equation (ESLN) method
[10], which builds on the earlier work of Graber, Schramm,
and Ingold [13] and allows one to derive the equations of
motion for the reduced density matrix of an open quantum
system without assuming a partitioned initial state. The theory
considers a formally exact solution of the Liouville equation
for the density matrix of the combined system, consisting of
the open system and a harmonic (bosonic) environment (bath).
Using the path-integral method, one can calculate exactly the
reduced density matrix for the open system by integrating
out the bath degrees of freedom. The resulting representation
for the open system reduced density matrix contains nonlocal

2469-9950/2020/101(22)/224306(18) 224306-1 ©2020 American Physical Society

https://orcid.org/0000-0002-3222-1348
https://orcid.org/0000-0002-5252-9286
https://orcid.org/0000-0001-9379-6834
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.224306&domain=pdf&date_stamp=2020-06-22
https://doi.org/10.1103/PhysRevB.95.125124
https://doi.org/10.1103/PhysRevB.97.224310
https://doi.org/10.1103/PhysRevB.101.224306


LANE, MATOS, FORD, AND KANTOROVICH PHYSICAL REVIEW B 101, 224306 (2020)

path integrals that can only be calculated numerically with
considerable effort, assuming a finite number of time divi-
sions (and hence integrals). Instead, we apply the Hubbard-
Stratonovich transformation to recast the density matrix as an
average of a stochastic density matrix which satisfies simple
stochastic differential equations with colored Gaussian noises.
These noises are constrained to satisfy specific correlation
functions which are fixed by the environment and its inter-
action with the open system (including the coupling strength),
and which explicitly contain the temperature.

The theory provides an exact, nonperturbative description
of the dynamics of an open system in the harmonic bath.
There are two stochastic differential equations (SDEs): one
in imaginary time that thermalizes the coupled system and
the environment as a whole, and a second being the typical
stochastic Liouville–von Neumann equation (SLN) for the
open system. The thermalized state obtained at the end of an
imaginary-time evolution becomes the initial state for the SLN
so that sampling over all manifestations of the noises leads to
the exact dynamics of the reduced density matrix of the open
system starting in its thermal state. Equations for observables
can then be obtained in the usual way. Crucially, the real-time
SLN dynamics is affected by the coupling of the system
to the environment during thermal preparation through the
correlation between the real-time and imaginary-time noises.
This has the natural interpretation that the preparation of the
system may influence any early-time transient dynamics and
perhaps even its asymptotic behavior at long times.

To simulate these stochastic differential equations, particu-
lar care should be taken with the choice of numerical scheme
and the manner by which the colored noises are generated.
The latter point is not trivial as the correlation functions in real
time, imaginary time, and a cross-time correlation between
them must be satisfied with sensible choices being made [14].
It turns out that some allowed choices result in numerical
instability during the early-time dynamics, even though the
correlation functions are fully satisfied. In our previous work
[15], a method for noise generation was proposed which we
shall review and further develop here, introducing a modi-
fied noise generation scheme that diminishes the exponential
growth of the trace of the density matrix which seems to
characterize these methods. This is the latest in a series of
proposals aimed at tackling this problem [16,17].

To test the accuracy of the ESLN method, the spin-boson
model will be considered as the test bed. It is typically the
initial starting model for any approach that deals with open
quantum systems, due to its relative simplicity while still
exhibiting dissipative behavior. The model consists of a two-
level spin system surrounded by bosonic degrees of freedom
that describe the environment, and can naturally be applied
to qubits coupled to an environment [18–22], electronic en-
ergy transfer in biological systems [16], Josephson junctions
[23–25], cold atoms [26,27], and solid-state artificial atoms
[28]. The spin-boson model has already been considered pre-
viously by us in the context of the ESLN [15]; however, due to
a recently discovered implementation error, the numerical re-
sults were inaccurate. Here we present further implementation
development and update our numerical results.

So, the purpose of the present paper is fourfold: (i) review
and extend existing methods of solving the dynamics of

open quantum systems when the density matrix is initialized
in the correct canonical equilibrium state; (ii) pay special
attention to the generation of colored Gaussian noises for
both real- and imaginary-time evolutions; (iii) examine the
convergence properties of two numerical schemes, one of
which uses Stratonovich calculus; and (iv) test the numerical
behavior of different trace-preserving forms of the ESLN and
explain their divergent behavior in detail. In Sec. II we briefly
review the ESLN [10] before moving on to the spin-boson
model. Section III presents the schemes for noise generation
along with techniques for reducing the exponential growth
of the trace, while Sec. IV discusses various forms of the
ESLN including two trace-preserving forms obtained via a
Girsanov transformation [9,29]. In Sec. V we discuss schemes
for solving the ESLN numerically using methods rooted in
stochastic calculus. Results of numerical simulations are given
in Sec. VI and the discussion and conclusions are presented in
Sec. VII.

II. THEORY

A. Extended stochastic Liouville–von Neumann equations

Following the influence functional formalism of Feynman
and Vernon [3], we consider the standard setup of an open
quantum system with coordinates q and Hamiltonian Hq that
may describe either an electronic or bosonic subsystem, or
both, and may depend explicitly on time. This system is
coupled to its environment: a heat bath of harmonic atoms
i with masses mi, and a potential energy that is quadratic in
their displacement coordinates ξi.

The coupling between the open system and its environment
is linear in the environment coordinates but fully general in q,
taking the form −ξi fi(q), with the set of fi(q) being arbitrary
functions of q. The full system Hamiltonian is thus

Htot(q, {ξi}, t ) = Hq(q, t ) +
∑

i

p2
i

2mi
+ 1

2

∑
i j

�i jξiξ j

−
∑

i

ξi fi(q), (1)

where pi are momenta coordinates canonical to ξi, and �i j

is the force constant matrix of the bath. A transformation to
normal modes then represents the bath as a set of noninter-
acting harmonic oscillators. This is a more general form of
the Caldeira-Leggett Hamiltonian [30] since the environment
coupling is a general function of q rather than being strictly
bilinear.

In typical studies, the open system and environment density
matrix is initialized in a partitioned state where the full system
density matrix ρ0 = ρtot(t0) is the tensor product of the open
system density matrix ρq(t0) and that of its environment ρξ (t0)
at some initial time t0,

ρ0 = ρq(t0) ⊗ ρξ (t0). (2)

The more appropriate and useful initial state would be the one
where the open system and its environment are coupled and
in thermal equilibrium. This can be obtained via appropriate
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preparation of the canonical equilibrium density matrix [13],

ρ0 = 1

Z0
e−βH0 , (3)

where H0 = Htot(t0) is the initial Hamiltonian of the combined
open system and its environment, Z0 = Tr(e−βH0 ) is the equi-
librium partition function of the total system, and β = 1/kBT
is the inverse temperature.

Following the seminal work of Graber, Schramm, and
Ingold [13], it was recently shown [10,15] that it is possible
to thermalize the reduced density matrix of the open system
via a novel application of the influence functional formalism
in which the environment variables are integrated out for
arbitrary real time t . The resulting pair of SDEs describing the
thermalization in imaginary time and subsequent dynamics in
real time of the stochastic reduced density matrix are known
as the extended stochastic Liouville–von Neumann equations
(ESLNs), with the evolution of the reduced density matrix
being driven by complex correlated Gaussian noises in both
cases. Expressing the equation of motion of the physical
reduced density matrix as an ensemble average over stochastic
paths via a Hubbard-Stratonovich transformation in this way
is commonly referred to as stochastic unraveling [31–33].

Thermalization is described by the evolution in imaginary
time τ of a density matrix ρ(τ ) over the domain τ ∈ [0, β h̄]
via

−h̄
dρ(τ )

dτ
=
[

Hq(t0) +
∑

i

μi(τ ) fi(q)

]
ρ(τ ), (4)

with ρ(τ ) initialized in the unitary state, ρ(τ = 0) = I. The
final value of this evolution at τ = β h̄ corresponds to the
equilibrium density matrix, up to a normalization constant
which will be fixed later. This is then used as the initial
condition for the real-time dynamics of the reduced density
matrix which satisfies

ih̄
dρ(t )

dt
= [Hq(t ), ρ(t )] −

∑
i

(
ηi(t )[ fi(q), ρ(t )]

+ h̄

2
νi(t ){ fi(q), ρ(t )}

)
, (5)

where the square (curly) brackets represent the standard
(anti)commutators.

The functions ηi(t ), νi(t ), and μi(τ ) are the complex Gaus-
sian driving noises, distributed via the multivariate Gaussian

W[{μi}, {ηi}, {νi}]

= N exp

{
−1

2

[∫ t

0
dt ′
∫ t

0
dt ′′zT

1 (t ′)�11(t ′ − t ′′)z1(t ′′)

+ 2
∫ t

0
dt ′
∫ β h̄

0
dτ zT

1 (t ′)�12(t ′, τ )z2(τ )

+
∫ β h̄

0
dτ

∫ β h̄

0
dτ ′zT

2 (τ ′)�22(τ − τ ′)z2(τ ′)
]}

, (6)

and arising from the application of a two-time Hubbard-
Stratonovich transformation [8,10,34] to the environment in-
fluence functional. Here N is a normalization constant, z1 =
({ηi} {η∗

i } {νi} {ν∗
i })T and z2 = ({μi} {μ∗

i })T are the vector

noises, and the �i j are time-dependent matrices to be dis-
cussed shortly.

The physical reduced density matrix is obtained by the
average 〈. . .〉 of an ensemble of stochastic reduced density
matrices, taken over the noises with the multivariate Gaussian
weighting given above. In particular, the average at the end of
imaginary-time evolution yields the exact thermalized initial
state of the real-time evolution, that is, ρph(t0) = N〈ρ(β h̄)〉 ≡
N〈ρ(t0)〉. Here, N is a time-independent prefactor that is to be
fixed [10,15] after sampling using the condition Tr[ρph(t )] =
NTr[〈ρ(t )〉] = 1. In practice this can be done at any time
including t0, so the physical density matrix is obtained by
taking N = 1/Tr[〈ρ(t0)〉].

The blocks of the matrix � = (�
11 �12

�21 �22 ) in the Gaussian
of Eq. (6) are defined such that the corresponding elements
of its inverse are equal to the appropriate noise correlation
functions (given below). Only correlation functions between
noises ηi(t ), νi(t ), and μi(τ ) are needed; other correlation
functions involving complex conjugated noises can be ignored
[15]. It is important to note that each realization of these
noises will produce a unique trajectory describing an initial
thermalized stochastic density matrix and its subsequent real-
time dynamics, with the physical density matrix obtained by
stochastic averaging over a sufficiently large sample of such
realizations. This has the pleasingly intuitive interpretation of
averaging over all possible behaviors of the bath, reminiscent
of the direct link to the sum over all possible paths in the
path-integral representation, only now this sum is replaced by
the stochastic average over environmental noises.

We emphasize that this not an ad hoc representation of the
system where the stochastic fields would have been introduced
artificially to model the environment. Instead, they have been
introduced and their properties derived rigorously from an
appropriate consideration of the whole system, consisting of
both the open system and its bosonic environment, by means
of elimination of the environment using the path-integral
method and the Hubbard-Stratonovich transformation.

B. Noise correlation functions

The noises are defined by their site-dependent correlation
functions,

〈ηi(t )η j (t
′)〉 = h̄√

mimj

∑
λ

eλieλ j

2ωλ

coth

(
1

2
β h̄ωλ

)
cos (ωλt ),

(7)

〈ηi(t )ν j (t
′)〉 = −2i�(t − t ′)√

mimj

∑
λ

eλieλ j

2ωλ

coth

(
1

2
β h̄ωλ

)
× sin (ωλt ), (8)

〈ηi(t )μ j (τ )〉

= − h̄√
mimj

∑
λ

eλieλ j

2ωλ

cosh
[

1
2β h̄ωλ − iωλ(t − iτ )

]
sinh

(
1
2β h̄ωλ

) ,

(9)
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〈μi(τ )μ j (τ
′)〉 = h̄√

mimj

∑
λ

eλieλ j

2ωλ

[
coth

(
1

2
β h̄ωλ

)
× cosh (ωλτ ) − sinh (ωλτ )], (10)

〈νi(t )ν j (t
′)〉 = 〈νi(t )μ j (τ )〉 = 0, (11)

where �(t ) is the Heaviside step function. Here, the eλ

are the eigenvectors of the bath dynamical matrix, Di j =
�i j/

√
mimj , with eigenvalues ω2

λ.
In the standard SLN without any thermalization, there

would be no μ noise and no η-μ correlation. This is indicative
of the neglected information inherent in initializing the system
in a partitioned state. In the thermalized ESLN, thermalization
leads to entanglement between the system of interest and
its environment, manifested in the η-μ cross correlation,
which may persist after thermalization during the real-time
dynamics. At first glance this may seem strange, since the
cross-correlation between real and imaginary times refers to
two intrinsically different time coordinates. Regardless, the
noises are auxiliary variables introduced by the application of
a two-time Hubbard-Stratonovich transformation; they do not
have physical meaning by themselves. Similarly, components
of the stochastic density matrix are simply mathematical
degrees of freedom from the perspective of the correlations
functions, describing a random trajectory first along the imag-
inary coordinate τ and second along the real coordinate t ,
with the particular realization of the latter depending on the
final realization of the former. The physical density matrix
is obtained after averaging over these realizations, with each
realization being a different stochastic quantum trajectory.

The general ESLN, Eqs. (4) and (5), requires three noises
ηi, νi, and μi per lattice site i. In normal mode represen-
tation λ the correlation matrices are diagonalized. Next, by
assuming that the system variable dependence of the system-
environment coupling, −∑λ fλ(q)ξλ, is the same for each
mode up to a scaling factor, fλ(q) = cλ f (q), the set of noise
terms can be reduced from three per site down to only three
[15]. For example, taking the ηi → ηλ noise, the ηi term in
Eq. (5) becomes

∑
i

ηi(t )[ fi(q), ρ(t )] → η(t )[ f (q), ρ(t )] (12)

with η(t ) = ∑
λ cληλ(t ) being a new Gaussian noise. The η-η

correlation function is then

〈η(t )η(t ′)〉 = h̄
∑

λ

c2
λ

2ωλ

coth

(
1

2
β h̄ωλ

)
cos[ωλ(t − t ′)],

(13)
where the sum over environmental modes can be replaced by
an integration over frequency in the continuum limit,

∑
λ

c2
λ

2ωλ

· · · →
∫ ∞

0

dω

π

[
π
∑

λ

c2
λ

2ωλ

δ(ω − ωλ)

]
· · ·

=
∫ ∞

0

dω

π
J (ω) · · · .

Here, J (ω) is the spectral density of the environment, taken in
this work to be the Drude spectral density,

J (ω) = αω

[
1 +

(
ω

ωc

)2
]−2

, (14)

where α is proportional to the squares of the cλ coefficients
and so parametrizes the effective coupling strength between
the system and environment. ωc is the Drude-Lorentz cutoff
frequency which ensures that the density goes smoothly to
zero as ω becomes large [22,35].

Just as for the η noise, the sets of νi and μi noises may
be reduced to only a single ν and μ Gaussian noise, and the
sums over i in Eqs. (4) and (5) are completely removed. The
correlation functions for these three reduced noises are

〈η(t )η(t ′)〉 = h̄
∫ ∞

0

dω

π
J (ω) coth

(
1

2
β h̄ω

)
cos[ω(t − t ′)]

≡ Kηη(t − t ′), (15)

〈η(t )ν(t ′)〉 = −2i�(t − t ′)
∫ ∞

0

dω

π
J (ω) sin[ω(t − t ′)]

≡ Kην (t − t ′), (16)

〈η(t )μ(τ )〉 = −h̄
∫ ∞

0

dω

π
J (ω)

cosh
[

1
2β h̄ω − iω(t − iτ )

]
sinh

(
1
2β h̄ω

)
≡ Kημ(t, τ ), (17)

〈μ(τ )μ(τ ′)〉 = h̄
∫ ∞

0

dω

π
J (ω)

[
cosh[ω(τ − τ ′)]

×coth

(
1

2
β h̄ω

)
− sinh[ω(τ − τ ′)]

]
≡ Kμμ(τ − τ ′), (18)

〈ν(t )ν(t ′)〉 = 〈ν(t )μ(τ )〉 = 0, ∀t, t ′, τ, (19)

where we have defined so-called physical kernels on the right-
hand sides. Note that Eq. (19) is possible because the noises
are complex valued. Correspondingly, Eqs. (4) and (5) are
simplified as

−h̄
dρ(τ )

dτ
= [Hq(t0) + μ(τ ) f (q)]ρ(τ ), (20)

ih̄
dρ(t )

dt
= [Hq(t ), ρ(t )] − η(t )[ f (q), ρ(t )]

− h̄

2
ν(t ){ f (q), ρ(t )}. (21)

Note that formally Eq. (21) coincides with the SLN dynamics.
The important difference here lies in the cross-correlation
with the imaginary-time dynamics associated with thermaliza-
tion, and the use of the final result of each ρ(τ ) as the initial
condition for each ρ(t ).

C. Spin-boson model

Thus far, the system Hamiltonian Hq has been kept fully
general, as has the form of the system-environment coupling,
f (q). The spin-boson Hamiltonian for a generic two-state
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system,

Hq(t ) = 1
2 h̄�(t )σx + 1

2 h̄ε(t )σz

= 1
2 h̄�(t )(|0〉〈1| + |1〉〈0|) + 1

2 h̄ε(t )(|0〉〈0| − |1〉〈1|),
(22)

is a good model in which to confirm the efficacy of the ESLN.
Here σx and σz are the standard Pauli spin matrices with σx

flipping the spin from one state to the other with tunneling
strength �(t ), and σz biasing the states with magnitude ε(t ).
The system-bath coupling is just σz so that Eqs. (20) and (21)
become

−h̄
dρ(τ )

dτ
= [H (t0) + μ(τ )σz]ρ(τ ), (23)

ih̄
dρ(t )

dt
= [H (t ), ρ(t )] − η(t )[σz, ρ(t )] − h̄

2
ν(t ){σz, ρ(t )}.

(24)

The total system is first jointly thermalized using Eq. (23) so
that at τ = β h̄ the sample average produces the equilibrium
state Eq. (3). Each stochastic ρ(t ) is then initialized at t0 in
the corresponding equilibrium state ρ(β h̄) and evolved in real
time according to Eq. (24). Finally, the normalization factor
N is determined and the full physical reduced density matrix
becomes completely defined.

In this work two simple tests for the dynamics are dis-
cussed. First, we consider equilibrium evolution with constant
driving whereby the system decays toward the thermal state
if initialized elsewhere or remains unperturbed if initialized
in the thermal state. And second, a linear driving after some
initial time t0 of the form ε(t ) = κt with constant � is inves-
tigated, known as the Landau-Zener sweep [36]. Importantly,
for an isolated spin being linearly driven from ε(−∞) = −∞
to ε(+∞) = ∞ at zero temperature starting in the ground
state |1〉, or ρi j (−∞) = δi1δ j1, the survival probability as
t → ∞ is [11,36–40]

PLZ = exp

{
−π�2

2h̄κ

}
, (25)

which corresponds to an asymptotic mean z spin of

〈σz〉LZ = 2 exp

{
−π�2

2h̄κ

}
− 1. (26)

Though this result was originally derived for an isolated
spin, it has since been shown that the same asymptotic be-
havior is valid for a dissipative spin coupled to a harmonic
environment at zero temperature, where coupling is provided
entirely via σz [11,38,39,41]. This correspondence breaks
down if the initial condition is not the ground state |1〉 in the
infinite past, or for nonzero temperature.

Finally, using Eqs. (23) and (24) for the spin-boson Hamil-
tonian it is straightforward to derive coupled SDEs for the
x, y, and z spins and also for the trace, Tr[ρ(t )],

h̄
dσx(t )

dt
= −[ε(t ) − 2η(t )]σy(t ), (27)

h̄
dσy(t )

dt
= −�σz(t ) + [ε(t ) − 2η(t )]σx(t ), (28)

h̄
dσz(t )

dt
= �σy(t ) + iν(t ) Tr[ρ(t )], (29)

h̄
d Tr[ρ(t )]

dt
= iν(t )σz(t ), (30)

where the last equation is obtained by taking the trace of
Eq. (24). To be clear, here σi without time is just the usual
Pauli spin matrix, while σi(t ) = Tr[σiρ(t )] is the quantum
average using a single realization of the density matrix, and

〈σi(t )〉 = Tr[σiρ
ph(t )] = Tr

(
σi

〈ρ(t )〉
Tr[〈ρ(t0)〉]

)
(31)

is the quantum average using the physical density matrix
obtained after stochastic averaging and normalization.

III. NOISES

A. Noise generation scheme

Compared to the SLN, the noises in the ESLN have the
additional complexity of an extra colored noise μ with its
own time coordinate τ , introducing cross-time correlations
[10]. Adopting the notation for the noises used in [15], the
correlation functions for the spin-boson Hamiltonian reduce
to Eqs. (15)–(19). These correlation functions act as con-
straints on any noise generated, but the noises are not uniquely
defined by them. This provides some freedom in specifying
the generation procedure, as long as the correlation functions
are satisfied.

Decomposing each noise into its orthogonal components
such that each component is correlated with only one other
component, and denoting the correlations between compo-
nents with subscripts, the noises can be written as

η(t ) = ηη(t ) + ην (t ) + ημ(t ), (32)

ν(t ) = νη(t ), (33)

μ(τ ) = μμ(τ ) + μη(τ ). (34)

Explicitly, this means that ην is only correlated with νη, with
equivalent products for other orthogonal pairs. This orthog-
onality can be achieved by expressing each component as
a convolution of an unknown time function G (to be called
a filtering kernel) with a sum of real-valued white noises,
satisfying

〈xi(t )x j (t
′)〉 = δi jδ(t − t ′), (35)

〈xi(τ )x j (τ
′)〉 = δi jδ(τ − τ ′), (36)

〈xi(t )x j (τ )〉 = 0 for ∀i, j. (37)

Here xi(t ) and xi(τ ) refer to a white noise in real and imagi-
nary time, respectively. The convolutions thus take the form

ηη(t ) =
∫ ∞

−∞
dt ′Gηη(t − t ′)x1(t ′), (38)

ην (t ) =
∫ ∞

−∞
dt ′Gην (t − t ′)[x2(t ′) + ix3(t ′)], (39)

ημ(t ) =
∫ β h̄

0
dτGημ(t, τ )[x2(τ ) + ix3(τ )], (40)
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νη(t ) =
∫ ∞

−∞
dt ′Gνη(t − t ′)[x3(t ′) + ix2(t ′)], (41)

μμ(τ ) =
∫ β h̄

−β h̄
dτ ′Gμμ(τ − τ ′)x1(τ ′), (42)

μη(τ ) =
∫ β h̄

0
dτ ′Gμη(τ − τ ′)[x3(τ ′) + ix2(τ ′)], (43)

from which it is straightforward to show that the expecta-
tion values of component pairs correspond to the appropri-
ate correlation functions, e.g., 〈η(t )ν(t ′)〉 = 〈ην (t )νη(t ′)〉. The
choice of each G is made by equating the expectation values of
the noises to the appropriate physical kernels, K (t ), Eqs. (15)–
(19), and taking Fourier transforms (indicated by the tilde)
where appropriate to obtain

G̃ηη(ω) =
√

K̃ηη(ω), (44)

G̃ην (ω) = G̃νη(−ω) =
√

− i

2
K̃ην (ω), (45)

G̃μμ(ω) =
√

K̃μμ(ω), (46)

Gημ(t, τ ) = − i

2
Kημ(t − iτ ), (47)

with the remaining filtering kernel given by a delta function
Gμη(τ ) = δ(τ ). Note that in our previous work [15] we used
Gνη(t ) = δ(t ) instead of Eq. (45), which we have found leads
to much less stable dynamics [14]. The noises can then be
obtained by applying the convolution theorem to Eqs. (38)–
(42) before taking the inverse Fourier transform.

B. Variance reduction technique

From the equation of motion for the trace, Eq. (30), and
given that ν is complex valued, it is found that the trace
can grow exponentially in time [17], requiring punitively
large sampling for convergence. Recent proposals to opti-
mize the noise generation method [16,17] have managed to
reduce this growth by many orders of magnitude, though here
we present a much simpler method of exploiting the relative
magnitudes of correlated pairs of orthogonal noises such that
their correlation functions do not change.

Since the noise components are orthogonal, the correlation
functions depend only on the two appropriate components,
e.g., Kην (t − t ′) = 〈ην (t )νη(t ′)〉, so νη can be multiplied and
ην divided by the same factor without modifying the correla-
tion, and equivalently for Kημ. To accomplish this, we define
the scaling factors

aμη = √
rμη

√
1
M

∑M
m=0 |μη(τm)|

maxn |ημ(tn)| , (48)

bνη = √
rνη

√∑N
n=0 |νη(tn)|∑N
n=0 |ην (tn)| , (49)

where M = β h̄/dτ and N = tmax/dt are the number of real
and imaginary time steps, respectively, with τm = mdτ and
tn = ndt , while rμη and rνη are the desired average ratios of
the relative components of the noises over a single realization.
The desired new noises are thus obtained by simply rescaling

the components as ηnew
μ = aμηημ and μnew

η = μη/aμη, and
ηnew

ν = bνηην and νnew
η = νη/bνη. Here, the maximum abso-

lute value of ημ rather than the average over its realization is
used in Eq. (48) since ημ rapidly attenuates with time. This
ensures that the typical magnitude of features in ημ and μη

are scaled, making it possible to control the spread of initial
values for the real-time dynamics by reducing the variance of
thermalization trajectories.

For example, for rνη = 1, the average magnitudes of ηnew
ν

and νnew
η over a realization are approximately equal. Alterna-

tively, rνη can be chosen to reduce the variance of Tr[ρ(t )]
by reducing the magnitude of ν close to zero. However, in
Sec. VI A we will show that taking this limit is not desirable
as Im[ην] grows with rνη, resulting in numerical instability.

IV. DIFFERENT FORMS OF THE ESLN

From Eq. (30), it is clear that the dynamics of each
stochastic ρ is not trace-preserving. This can lead to expo-
nential blowup [42,43] of the trace and requires punitively
large sample size for convergence. One way of enforcing
trace preservation is to instead consider the trace-normalized
density matrix, ρ̃(t ) = ρ(t )/Tr[ρ(t )], satisfying [9]

ih̄
d ρ̃(t )

dt
= [H (t ), ρ̃(t )] − η(t )[σz, ρ̃(t )]

− h̄

2
ν(t ){σz − σ (t ), ρ̃(t )}, (50)

where we have introduced the guide spin

σ (t ) = Tr[σzρ(t )]

Tr[ρ(t )]
= Tr[σzρ̃(t )]. (51)

Simulating this normalized ρ̃(t ) still requires knowledge of
the original Tr[ρ(t )] to perform the required statistical aver-
aging since ρph(t ) = 〈ρ(t )〉 = 〈ρ̃(t )Tr[ρ(t )]〉. It is possible to
overcome this problem via a transformation that enforces trace
preservation for each realization while preserving the origi-
nal ensemble mean [6–8,44,45], i.e., ρph(t ) = 〈ρ̃(t )〉. Such a
transformation of the probability measure, W → W ′, is called
a Girsanov transformation, where both the transformed and
the original measures give rise to identical observables [9,46–
48]. That is,

ρph(t ) = 〈ρ(t )〉W = 〈ρ̃(t )〉W ′ , (52)

where 〈. . .〉W = ∫
dz1dz2W[z1, z2] . . . denotes the ensem-

ble average over noises z1 = (η η∗ ν ν∗)T and z2 = (μ μ∗)T

drawn from the original Gaussian distribution W[z1, z2], and
similarly 〈. . .〉W ′ over noises z′

1, z′
2 drawn from the trans-

formed distribution W ′[z′
1, z′

2], with ρ̃(t ) being evolved using
the z′

1, z′
2 noises. This technique is well understood in the

context of stochastic Schrödinger equations [6,49,50].
Performing a Girsanov transformation of the SLN

Eq. (50), we arrive at an alternative equation of motion (see
Appendix A for details) which we refer to as the guided SLN,

ih̄
dρ(t )

dt
= [H (t ), ρ(t )] −

[
η(t ) + i

h̄

∫ t

0
dt ′Kην (t − t ′)σ (t ′)

]

× [σz, ρ(t )] − h̄

2
ν(t ){σz − σ (t ), ρ(t )}, (53)
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noting that ρ(t ) is evolved rather than ρ̃(t ), with σ (t ) being
the guide spin of Eq. (51). From Eq. (52), the physical density
matrix is then obtained by averaging over realizations of this
new guided dynamics.

Another equivalent strategy is to start from the trace-
violating Eq. (24) and divide ρ by its trace at each time step.
When performing stochastic sampling, the trace still needs
to be taken into account according to Eq. (A1). This can be
avoided as shown above by shifting the mean of the η noise
which leads to the same Eq. (53) but without the guide term
σ (t ) in the anticommutator,

ih̄
dρ(t )

dt
= [H (t ), ρ(t )] −

[
η(t ) + i

h̄

∫ t

0
dt ′Kην (t − t ′)σ (t ′)

]

× [σz, ρ(t )] − h̄

2
ν(t ){σz, ρ(t )}. (54)

The physical density matrix is then obtained by the stochastic
average ρph(t ) = 〈ρ(t )/Tr[ρ(t )]〉, and we refer to this equa-
tion of motion as the normalized SLN.

To summarize, three forms of the SLN have been derived
here:

(i) The original SLN, Eq. (24), which is not trace-
preserving.

(ii) The guided SLN, Eq. (53), which preserves the trace
via a Girsanov transformation.

(iii) The normalized SLN, Eq. (54), where the trace of the
density matrix is explicitly normalized.

Alternatively, it is straightforward to derive all three (orig-
inal, guided, and normalized) versions of the spin dynamics,
Eqs. (27)–(30). For completeness, we give below their guided
form, equivalent to Eq. (53):

h̄
dσx(t )

dt
= −[ε(t ) − 2η̂(t )]σy(t ) − iν(t )

σx(t )σz(t )

Tr[ρ(t )]
, (55)

h̄
dσy(t )

dt
= −�σz(t )+[ε(t ) − 2η̂(t )]σx(t )−iν(t )

σy(t )σz(t )

Tr[ρ(t )]
,

(56)

h̄
dσz(t )

dt
= �σy + iν(t ) Tr[ρ(t )] − iν(t )

σ 2
z (t )

Tr[ρ(t )]
, (57)

and Tr[ρ(t )] evolving according to Eq. (30), with η̂ being
simply the shifted η,

η̂(t ) = η(t ) + i

h̄

∫ t

0
dt ′Kην (t − t ′)

σz(t ′)
Tr[ρ(t ′)]

, (58)

having written the guide spin σ (t ) in the form given by
Eq. (51). As before, the time-dependent spins here represent
quantum averages over a single stochastic density matrix
σi(t ) = Tr[σiρ(t )].

The same transformation has also recently been applied
to density matrices starting in partitioned or pure states and
evolved via the SLN [7–9], though the reasoning was slightly
different, thermalization was not included, and no numerical
results were shown. The authors started from the original SLN
and applied the transformation

ρ̃(t ) = ρ(t ) exp

{
i

h̄

∫ t

0
dt ′ν(t ′)γ (t ′)

}

with γ (t ) being an unknown function. γ (t ) was later chosen
to enforce trace-preserving dynamics, leading to the obvious
choice γ (t ) = σ (t ) and an equation identical to Eq. (53).
Following the same steps as above, the exponential factor in
the sampling procedure is removed to arrive at the simple
averaging of the trajectories.

V. STOCHASTIC DIFFERENTIAL EQUATIONS

It is well known that Langevin equations are ill defined
when expressed as differential equations due to the white
noise being everywhere discontinuous [46,51–55]. Instead,
discretized integral equations involving the Wiener process
increment are used to bring them into a well-defined form.
The standard result for a set of coupled SDEs of a vector of
functions ρh = {ρk

h} is

dρk
h = ak (th, ρh)dt +

∑
j

Bk j (th, ρh)dW j
h , (59)

where a(th, ρh) is the deterministic (so-called drift) compo-
nent of the dynamics and the index h is associated with the
discrete proper time th = h dt . B(th, ρh) = {Bk j (th, ρh)} is a
matrix whose rows bk (th, ρh) are vectors associated with each
ρh, and dW j

h = W j
h+1 − W j

h is the Wiener increment, where

W j
h = ∫ th

0 dt ′x j (t ′), with x being a white noise. This is just
a first-order Taylor expansion known as the Euler-Maruyama
approximation or the Cauchy-Euler method [54], for which
the deterministic and stochastic Taylor expansions are the
same.

For a higher-order scheme, additional terms that do not
appear in the deterministic Taylor expansion arise from the
application of stochastic calculus in either Stratonovich or Itô
form [53]. For example, the second-order Itô scheme, known
as the Milstein scheme, reads

ρk
h+1 = ρk

h + ak (th, ρh)dt +
∑

j

Bk j (th, ρh)dW j
h

+
∑

l

∑
j1, j2

Bl j1 (th, ρh)
Bk j2 (th, ρh)

∂ρ l
h

I j1, j2 , (60)

where

I j1, j2 =
∫ th+1

th

∫ th+1

th

dW j1
h dW j2

h (61)

is the Wiener integral. The solutions to these integrals grow
in complexity as the number of noises and/or the system
size increases, though general solutions are known [52]. In
addition, the normal rules of calculus do not apply in Itô
calculus but do for Stratonovich, at the cost of introducing
a correction which modifies the deterministic drift [54]. For
the purposes of this work, where many noises are necessary,
Stratonovich calculus is more computationally efficient with
easier implementation and hence this interpretation will be
used. The dynamics still has the same form as Eq. (59), but
the drift ak (th, ρh) is replaced by the modified drift

ãk (th, ρh) = ak (th, ρh) − 1

2

∑
l j

Bl j (th, ρh)
∂Bk j (th, ρh)

∂ρ l
h

.

(62)
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Since Stratonovich SDEs obey the rules of ordinary cal-
culus, a family of Runge-Kutta numerical methods can be
developed. We shall use a Heun scheme [56] with strong
order convergence of 1.0 compared to only 0.5 for the naive
Euler-Maruyama approximation [53], making it the same as
the second-order Itô-Milstein scheme [57]. The Heun scheme
uses an intermediary prediction step to calculate a supporting
value ρ̂h+1 which improves on an initial guess, so that the next
time step prediction becomes

ρk
h+1 = ρk

h + 1

2
[ãk (th, ρh) + ãk (th, ρ̂h+1)]dt

+ 1

2

∑
j

[Bk j (th, ρh) + Bk j (th, ρ̂h+1)]dW j
h , (63)

where the supporting value ρ̂h+1 is obtained via an Euler-
Maruyama integrator with the Stratonovich correction,

ρ̂k
h+1 = ρk

h + ãk (th, ρh)dt +
∑

j

Bk j (th, ρh)dW j
h . (64)

The derivation of the final Stratonovich corrections in
imaginary and real time are provided in Appendix B. We give
there the explicit form of the Heun scheme of Eq. (63) for the
spin-boson model in terms of the components of the density
matrix, as well as for mean x, y, and z spins. Note that there
is no correction for the trace.

The final procedure for the numerical solution of the ESLN
is as follows:

(1) Generate the appropriate filtering kernels G(t ),
Eqs. (44)–(47), from the model-specific physical kernels K (t ),
Eqs. (15)–(18), via application of the discrete Fourier trans-
form and its inverse.

(2) For each new realization of the stochastic density
matrix, generate a set of orthogonal noise components
ηη, ην, ημ, νη, μη, and μμ.

(3) Rescale the ην, νη and ημ, μη noises as required, as
detailed in Sec. III B.

(4) Initialize the prethermalized density matrix in the state
ρ(τ = 0) = I before evolving in imaginary time for τ ∈
[0, β h̄], using the Stratonovich modified drift as detailed in
Appendix B, Eq. (B19).

(5) Initialize the real-time stochastic density matrix using
the final value from the imaginary-time evolution, ρ(t0) =
ρ(β h̄). Evolve it in real time with the Stratonovich modi-
fied drift, Eq. (B14) in Appendix B. If desired, one of the
trace-preserving variants of Eqs. (53) and (54) may be used.
Alternatively, spin dynamics given by Eqs. (27)–(30) can be
used instead, with the corresponding Stratonovich corrections,
Eqs. (B15)–(B17).

(6) Repeat the simulation (points 4 and 5) as many times
as required, before taking the ensemble average over the
realizations of the density matrix, then divide by the value
of the trace of the ensemble average after thermalization
Tr[〈ρ(t0)〉] to obtain the physical density matrix.

VI. RESULTS

A. Noise and convergence

Using the noise generation procedure detailed in Sec. III
where the noise components are generated in Fourier space

before taking the inverse Fourier transform, it is found that the
required correlation functions (Fig. 1) are satisfied and con-
verge well. The cross-correlated noise ημ presents a compu-
tational bottleneck in terms of simulation time, since Fourier
methods cannot be employed and weighted sums of white-
noise random numbers must be computed directly. Choosing
ημ as a colored noise and μη as a white noise also reduces the
rate at which the cross-time correlation matrix converges with
sample size, making the cross-correlated noise generation
doubly expensive [14]. No alternative choice is known to us
at the time of writing.

Next we discuss the importance of the higher-order nu-
merical scheme (Heun) considered in Sec. V (and derived
in Appendix B) in solving the SDEs. To this end, we shall
consider the real-time dynamics of 〈σz(t )〉 for a constant spin-
boson Hamiltonian, initialized in the proper thermal state. In
Fig. 2, we compare the convergence properties of 〈σz(t )〉 for
increasing sample size using both the Euler-Maruyama and
Heun discretization schemes.

The expected result is for the spin to remain constant
and equal to the value obtained during thermalization (t =
0) during all real times t � 0; this behavior is only evi-
dent for sufficiently large sample size. It is clear that the
error depends almost entirely on the properties of the noises
rather than inclusion of higher-order dynamical terms coming
from stochastic calculus, since the results obtained using the
Heun scheme are indistinguishable from the Euler-Maruyama
scheme. This indicates that the convergence is solely statisti-
cal, depending almost entirely on the sample size. However,
in the special case of weak coupling being simulated out to
late times when the statistical convergence is well controlled,
the Heun scheme is necessary. If the Euler-Maruyama scheme
is used, the coherences (x and y spins) oscillate within an ex-
ponentially growing envelope at late times, whereas the Heun
scheme reduces the time-stepping error sufficiently to recover
decoherent dynamics. For this reason we use the Heun scheme
for all subsequent results, but note that future work should
focus on optimizing the noise generation method for better
convergence instead of improving the discretization scheme.
The Stratonovich corrections of Eqs. (B15) and (B16) are
also used in all subsequent results for completeness, though
their effect is negligible. This is unsurprising since they are
of order O(dt ). Finally, the η-η correlation in the inset in
Fig. 2 uses the same noises as the dynamics, averaged over the
same number of runs, emphasizing the equivalence between
the convergence of the noise correlations with the convergence
of the sample dynamics.

Though the correlation functions can be obtained for any
choice of scaling rμη and rνη introduced in Sec. III B, choosing
rνη to minimize the growth of the trace should extend the time
accessible by simulation. The effect of increasing rνη from 0.1
to 5 on the standard error of the mean trace Tr[〈ρ(tmax)〉] for
a sample of 10 000 realizations is shown in Fig. 3 for two
different environment coupling strengths α. It is tempting to
take the limit where rνη becomes large and ν → 0 so that the
dynamics becomes exactly trace preserving, see Eq. (30), but
such a choice would cause ην to be very large, leading to poor
convergence or instability. We see that the order of magnitude
of the error increases rapidly beyond a narrow band of ratios
for which it is at a minimum around rνη ≈ 0.5, evidence that
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FIG. 1. Correlation functions of the noises, where the black line is the appropriate kernel given in Eqs. (15)–(19) and the orange line is
the numerical correlation computed for 1 million realizations with β = 1, tmax = 6, dt = dτ = 10−3, and ωc = 20. If only the black curve
is visible, the orange curve lies exactly underneath. All other correlations (not shown) are zero to within 0.001. (a) The η-η autocorrelation.
(b) The η-ν correlation. (c) The ν-ν autocorrelation, which is zero as required (within the adopted precision). (d) The real part of the η-μ
correlation when τ = 0, with the imaginary part given in the inset. (e) The η-μ correlation when t = 0. (f) The μ-μ autocorrelation. Optimal
scaling of rνη = 0.5 with rμη = 1 has been used in all cases.

the convergence of the system dynamics is very sensitive to
the properties of the noises even when they satisfy the neces-
sary correlation functions. In all subsequent results, scalings

FIG. 2. Convergence of 〈σz(t )〉 for a constant Hamiltonian with
� = 1 and ε = −1 for the Euler-Maruyama (solid colored lines) and
Heun (dashed black lines) schemes for the same sets of parameters,
both performed for a range of sample sizes and using the original
SLN of Eq. (24). The inset shows the η-η correlation for the same
range of sample sizes, as well as the corresponding physical ker-
nel Kηη(t − t ′) (black line). β = 1, tmax = 6, dt = dτ = 10−3, α =
0.05, ωc = 20, rνη = 0.5, and rμη = 1.

of rνη = 0.5 and rμη = 1.0 are used. While similar optimal
scaling rμη could be chosen to minimize the spread of initial
values from thermalization, the variance is not significant and
the simpler choice of rμη = 1.0 is sufficient. It is also clear
that increasing the coupling strength α makes the convergence
worse as expected, since the noise amplitudes scale like

√
α.

FIG. 3. The standard error of the mean Tr[ρ(tmax)] at its final time
step for several values of the scaling factor rνη. For each scaling
factor, 10 000 runs for real-time dynamics were performed. β =
1, tmax = 10, dt = dτ = 10−3, ωc = 20, and ε = � = 0. In this
case, the minimizing value of rνη is ≈ 1

2 .
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FIG. 4. Physical spins evolved by means of the original SLN, Eq. (24), for different initial conditions using a constant Hamiltonian with
� = 1 and ε = −1. Other simulation parameters are β = 1, tmax as shown, dτ = dt = 10−3, α = 0.05, and ωc = 20. Dashed black lines are
the values of the thermalized spins obtained from the end of imaginary-time evolution. (a) Each realization was initialized in the canonical
equilibrium state obtained from thermalization in imaginary time and averaged over 10 million runs. Inset: The elements of the density matrix
during imaginary-time evolution. (b) Initially decoupled from the environment and initialized out of equilibrium, the spin components all decay
toward the correct canonical equilibrium state (black dashed lines) as obtained separately from thermalization. 100 million realizations were
used. Since there was no thermal preparation, the η noise has no ημ component. Spins initialized in the pure initial state σz(0) = 1, σx (0) =
σy(0) = 0 are given by the solid colored lines, while the zero initial state σx (0) = σy(0) = σz(0) = 0 spins are given by dashed colored lines.

Unlike the noise amplitudes, the variance within a sample
grows nonlinearly with α rather than ∼√

α.

B. Thermalization

The ESLN is unique in its ability to simulate quantum dy-
namics exactly, starting in the canonical equilibrium state with
system-environment entanglement arising from joint prepara-
tion. In Fig. 4(a), stationary-state dynamics for the spin-boson
system is shown using the original SLN of Eq. (24), with
the open system having been initialized in the thermal state
via evolution in imaginary time [Eq. (4)]. Small-amplitude
oscillations around the equilibrium state are observed, most
likely caused by variation in the initial condition arising from
the stochastic nature of thermalization, and vanishing as the
sample size increases. For completeness, the elements of the
prethermalized density matrix 〈ρ(τ )〉 are included in the inset,
being evolved in τ from the initial unitary state at τ = 0 to
the thermal state at τ = β h̄. This is the physical expectation
obtained by the ensemble average over many realizations
of the environment noises, divided by the final trace after
averaging. The physical trace is divided by Tr〈ρ(β h̄)〉 to
ensure that Tr[ρph(t0)] = 1.

It is also necessary to check that the system decays to the
correct thermal state after being initially partitioned from the
environment. In Fig. 4(b), the open system was initialized
in the pure state ρi j (0) = δi1δ j1 (solid lines), corresponding
to σz(0) = 1 and σx(0) = σy(0) = 0. In another simulation
(dashed lines) the density matrix was initialized in the half-
half state ρ11 = ρ22 = 1

2 and ρ12 = ρ21 = 0, which corre-
sponds to the spin-zero state σx(0) = σy(0) = σz(0) = 0. In
both cases, the coupling to the environment was switched on
at t = 0 so that the system then begins to thermalize. Clearly,
when initialized in both the pure state σz(0) = 1 (colored solid

lines) and the σz(0) = 0 state (colored dashed lines), the spins
decay toward the thermal state as obtained from imaginary-
time evolution (black lines) in the manner expected.

C. Forms of the ESLN

Since each realization of the trace undergoes noisy growth
within an exponential envelope, Eq. (30), such that the average
trace converges poorly (see Fig. 3), it may be desirable to use
one of the trace-preserving variants of the ESLN: the guided
ESLN of Eq. (53) or the normalized ESLN of Eq. (54). In both
cases, the physical trace after the ensemble average should be
constant. As for individual realizations, in the case of guided
dynamics, the trace is preserved exactly since the guide spin
forces the derivative of the trace to be zero. For individual
realizations of the normalized dynamics, however, the trace is
not required to be constant and the ensemble average is taken
over ρ(t )/Tr[ρ(t )] rather than over ρ(t ), forcing the physical
trace to be 1.

Figure 5(a) shows example dynamics for a single realiza-
tion of the z spin evolved using the guided ESLN of Eq. (53).
In Fig. 5(b), the spins are evolved using the normalized
ESLN of Eq. (54), and the guided ESLN for comparison
and averaged over an ensemble of 1000 realizations. A single
realization of the z spin for the original ESLN of Eq. (24) can
be found in Fig. 2, and an ensemble average in Fig. 4(a); the
size of the ensemble average is not the same as in Fig. 5(b),
but this does not affect the point being made here. In the case
of the normalized ESLN, the trace of a single spin trajectory is
not required to be constant or even positive at all times. Since
the trace is always initially positive, there are individual real-
izations where the trace crosses zero and becomes negative.
Since the ensemble average is taken over ρ(t )/Tr[ρ(t )], the
physical density matrix and its observables will exhibit large
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FIG. 5. (a) A single realization of the normalized ESLN spin dynamics, where σz(t ) is the z spin, evolved by Eq. (54). The inset highlights
the behavior when Tr[ρ(t )] crosses zero. The magnitude of the spikes in σz(t )/Tr[ρ(t )] at these points reaches ≈1300. (b) 1000 realizations
of the normalized (main figure) and guided (inset) ESLN spin dynamics. In all cases β = 1, tmax as shown, dt = dτ = 10−3, � = 1, ε =
−1, α = 0.05, and ωc = 20 were used.

(infinite) spikes whenever Tr[ρ(t )] = 0; however, in practice
it is unlikely that the trace would ever be exactly zero so
the spikes remain finite. Figure 5(a) is an example of such a
pathological trajectory. As a result, even a small sample of
1000 realizations as in Fig. 5(b) accumulates many spikes,
completely destroying the physical dynamics. The averaged
trace in Fig. 5(b) also fails to be constant, since individual
realizations of the trace are computed directly [see black line
in Fig. 5(a)] and their averages are obtained in the normal
way. The variation in the average trace is thus an indication of
undersampling only, whereas the rapid fluctuation of the spins
is largely independent of the sampling, arising only from this
division by (nearly) zero.

Individual realizations of the spins and trace evolved via
the guided ESLN are qualitatively similar to those evolved
by the normalized ESLN, with the exception that the guided
trace is constant by definition; it is not simulated directly but
remains at its initial value Tr[ρ(β h̄)]. This is true even when
ρ(t ) is simulated rather than the spins and trace, in which
case ρ11 + ρ22 stays constant to within ±10−13 of its initial
value. However, the guided ESLN includes a term contain-
ing the guide spin of Eq. (51), σ (t ) = Tr[σzρ(t )]/Tr[ρ(t )] =
σz(t )/Tr[ρ(t )], in which the z spin is divided by the trace.
This is just as pathological as taking the ensemble average of
ρ(t )/Tr[ρ(t )] rather than ρ(t ) in the normalized ESLN, since
the guide introduces the (possibly infinite) spikes directly
into the dynamics of individual trajectories. The system is
usually unable to recover, with individual realizations of the
spins exceeding the maximum allowed integer size of 263 − 1.
The ensemble average similarly diverges, after which time
the expectation values cease to be physically meaningful. An
example for a sample of 1000 realizations is shown in the inset
in Fig. 5(b). For both the guided ESLN and the normalized
ESLN in Fig. 5, the breakdown occurs at t ∼ 1.1. This feature
is intrinsic to the equations of motion themselves, and cannot
be removed using a larger sample since the probability of in-
cluding a trajectory where a spike occurs at t � 1.1 increases
with sample size.

Such behavior occurs regardless of whether the equations
of motion for the density matrix or the spins are used, and does
not appear to depend on the parameters chosen in any mean-
ingful way. While Eqs. (53) and (54) with their corresponding
ensemble averages analytically describe the correct physical
dynamics, the averages appear to be valid only in the limit
that the sample size is infinite—that is, for the analytic path
integral of the distribution W over the noise variables z1, z2,
rather than a statistical average as is practically obtained, for
which the results are pathological. Thus improvements in con-
vergence to address the growth of the trace must be obtained
via other methods, such as exploiting or even optimizing the
generation of the driving noises [14].

Concluding, both trace-conserving ESLN variants result
in a pathological behavior in the dynamics that in practice
cannot be cured by increasing the sample size. Hence, in the
following, only the original SLN, Eq. (24), is used.

D. Landau-Zener sweep

1. Modified limit for finite-temperature coupling

In Fig. 6, the spin-boson system is linearly driven from
negative to positive ε by a Landau-Zener (LZ) sweep for a
range of inverse temperatures β ∈ [0.1, 5.0] [panel (a)] and
environment coupling strengths α ∈ [0.01, 0.05] [panel (b)].
The analytic LZ limit of Eq. (26) is valid for a spin which was
initialized at zero temperature in its ground state in the infinite
past, σz(−∞) = 1, with all other spins being zero. This limit
describes the asymptotic state as t → ∞ and while it was
originally derived for an isolated spin [36], the result is valid
for a zero-temperature dissipative spin as well [11,38,39,41]
so is often used as a numerical test for approximate methods
[8,9,11,27,39,40].

In practice, the spin is initialized with σz(t0) = 1 at some
finite time in the past t0 < 0 instead, rather than when t0 →
−∞. This causes the late-time dynamics to approach a
slightly different limit 〈σz〉t0

LZ that deviates from the asymp-
totic limit, approaching 〈σz〉LZ only as t0 → −∞. This can
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FIG. 6. Evolution of the physical z spin 〈σz(t )〉 under LZ driving ε(t ) = κt with κ = 5. The black dotted and dashed lines are the original
and modified (for t0 = −10) LZ limits, respectively. (a) Dynamics for a range of coupling strengths α ∈ [0.01, 0.05] color coded from blue
to red with increasing α, all with the same temperature β = 1, are shown. The inset shows the observed asymptotic value for each coupling
using the same colors, obtained using 12 equally temporally spaced independent estimates of the mean for α = 0.01, 0.02, 0.03 over 1 million
realizations and 6 equally spaced independent estimates of the mean for α = 0.04, 0.05 over 10 million realizations, taken over the regions
indicated by the labeled boxes. (b) Dynamics for a range of inverse temperatures β ∈ [0.1, 5.0], color coded from blue to red with increasing
temperature. As before, the inset on the left shows the observed asymptotic value of the results using the same colors, obtained using 20
independent estimates of the mean over the boxed region. The solid circles are for the data shown in the main figure with α = 0.01, while the
empty circles are for stronger coupling of α = 0.03 that remained well converged throughout the simulation. The inset on the right shows the
detailed dynamics for times 8 � t � 9 (see text). All other simulation parameters are dt = dτ = 10−3, � = 1, and ωc = 20.

clearly be seen in Fig. 7, where the deviation from the ana-
lytical limit is calculated for the isolated system (no coupling
to the bath, α = 0) for many values of t0. Thus Fig. 7 acts as
a form of approximate calibration of the simulations with the
bath coupling turned on, allowing us to modify the LZ limit

FIG. 7. The deviation of σz(t ) from the exact LZ limit for an
isolated spin (no bath, α = 0) with initial preparation σz(t0) = 1. The
error on the average is the filled pink area, with the average taken
over the time period from the first maximum after the minimum in
the inset to the end of the simulation. The solid points are colored to
correspond to the used t0 values for the evolution examples given in
the inset. t0 = −10 is also highlighted (orange circle) since this is the
t0 used in subsequent results. dt = dτ = 10−3, � = 1, ε(t ) = κt ,
with κ = 5.

using the value obtained for the isolated system to account for
the finiteness of t0. Note however that this calibration alone is
not sufficient to fully correct the limit for finite β and nonzero
α, as Fig. 7 was obtained for the closed system with no bath
rather than for an open system at zero temperature.

Using Fig. 7, we find that the deviation from the modified
limit 〈σz〉t0

LZ (shown by the dashed line) for a system coupled to
a finite-temperature bath is larger for stronger coupling. This
can been seen in Fig. 6(a). It is apparent that for the largest
coupling α = 0.05, the required ensemble size becomes larger
than the 10 million realizations used here, which for the
reasonably long simulation time −10 � t � 10 takes ∼15
hours on 360 CPUs, compared to only ∼1 hour for 1 million
realizations. As such, a smaller box has to be taken for higher
coupling when calculating the mean z spin as an estimate of
the observed asymptote; see Fig. 7(a). This poor convergence
may explain the otherwise anomalous mean value for α =
0.05 in the inset, which moves toward the shifted limit rather
than away from it.

If the modified LZ limit 〈σz〉t0
LZ for t0 = −10 had not been

used, the observed asymptotes would never approach the
original LZ limit, not even in the α → 0 limit. However, by
using the modified limit we recover the expected asymptotic
dynamics for small α while stronger coupling forces the z spin
away from the limit. This can be understood in terms of the
renormalized tunneling matrix element [58],

�r = �

(
�

ωc

) α
1−α

,

which depends on the ratio �/ωc. In this work where �/ωc <

1, �r decreases with the coupling strength. After t = 0, the
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σz = −1 state becomes the lower energy state with both ther-
mal fluctuations and tunneling contributing to transitions out
of the initial σz = +1 state. Since the renormalized tunneling
element �r decreases with α, the system is less likely to
tunnel from σz = +1 to σz = −1, resulting in the observed
increase in 〈σz(t � tmax)〉.

In Fig. 6(b) we examine the behavior of the limit for a
range of inverse temperatures β ∈ [0.1, 5.0], and again find
that the modified limit is required to observe the expected
asymptotic results; the original limit is missed altogether. As
the temperature is decreased, the observed asymptote tends
toward the modified limit as expected, with strange behavior
for high temperatures (see inset, discussed below). Consistent
with Fig. 6(a), increasing the coupling to α = 0.03 (empty
circles) from α = 0.01 (solid circles) in the inset has the effect
of lifting the observed asymptote, though the exact scaling of
this shift for different (α, β ) pairs has not been investigated as
it is not of interest to us here.

For medium to high temperatures 0.5 � β < 2, the asymp-
totic z spin decreases. This is as expected, since thermal
fluctuations in the bath serve to destroy coherence, with the
mean of all the spin components being zero in the high-
temperature limit. Strangely, for very high temperatures β <

0.5, the z spin increases toward the modified limit before
surpassing it altogether. This is not caused by poor statistical
convergence, as is shown in the magnified inset between t = 8
and 9 where the position of the curves clearly increases for the
two hottest temperatures. We suggest that this rapid increase
in the observed asymptote for higher temperatures occurs as
the energy scale of thermal fluctuations in the bath approaches
the typical energy separation between the two states at the
end of the simulation, ε(tmax), providing enough energy for
the system to jump into the higher energy state. This is not
a true asymptotic effect, but a transient effect in the window
0 < t � tmax that should vanish as t → ∞. The dimensionless
energy ratio q between the thermal energy scale of the bath,
kBT , and the energy separation between the states, h̄ε(tmax)
(setting h̄ = kB = 1),

q = kBT

h̄ε(tmax)
= 1/β

ε(tmax)
,

will be of order 1 when thermal fluctuations are large enough
to overcome the finite bias within the simulation window.
For the hottest temperature in Fig. 6(b) (β = 0.1) the thermal
energy scale is ∼10 and the energy separation is ∼50 so that
q = 0.2. While not of order 1, an observable increase in the
mean spin would be expected, though the observed promi-
nence of the high-temperature increase in the spin remains
surprising.

2. Thermalization to recover the original limit

It is possible to circumvent the need for a modified LZ limit
altogether by initializing the z spin to be closer to the true LZ
spin at the actual finite (negative) t0, rather than being equal to
one at t0. The true LZ spin is initialized with σz(−∞) = 1
in the infinite past when the bias was infinitely large. It is
obvious that the change in spin acquired during its evolution
from −∞ up to the finite time t0 would be different from
σz(t0) = 1, which is commonly taken as the initial condition at

FIG. 8. Observed mean asymptotic z spin when initialized with
σz(t0) = 1 and all other spin components zero (blue) and when the
system is initially thermalized in accordance with the initial value of
the bias ε(t0) (red). Two different values of t0 are shown, specifically
chosen so that one shifts the LZ limit upward (t0 = −10) while
the other shifts it downward (t0 = −10.06), with the limits shown
by dashed black lines. The error on the mean was obtained using
15 independent estimates of the mean in the region 3.5 � t � 10.
Here dt = dτ = 10−3, β = 1, � = 1, ε(t ) = κt with κ = 5, ωc =
20, α = 0.01, averaged over 1 million realizations.

the start time of the simulation. In other words, the commonly
simulated spin has some “catching up” to do with respect
to the true LZ spin. As we shall demonstrate below, a more
appropriate initial state should recover the correct asymptotic
dynamics without needing to take the particular value of t0
into account.

For the dynamics over the period −∞ < t � t0 the system
may be approximately thermalized; this should be exact in
the adiabatic limit of the LZ sweep rate κ → 0. Hence, one
possible state that we can choose at t0 instead of the t →
−∞ initial LZ value of σz(t0) = 1 would be the equilibrium
(thermalized) state associated with ε(t0). As long as |ε(t0)|
is still much larger than the other relevant energy scales of
the system, this will be a good approximation of the true LZ
spin at t0. The ESLN provides an exact way of initializing the
system in this equilibrium state by the initial preparation in
imaginary time, Eq. (23), and as such the full ESLN represents
an improvement on SLN methods for modeling systems of
this kind. Examples of the observed asymptote of the z spin
are shown in Fig. 8 for both initial conditions [thermalized
and σz(t0) = 1] to serve as a point of comparison.

One can see that if the modified limit is shifted up or
down compared to the original limit due to the finiteness of t0,
the thermalized initial condition approaches the original limit
very well, regardless of the direction of the t0 shift. Instead,
it sits just above 〈σz〉LZ as would be expected for a finite
simulation time rather than for one which runs to t → ∞.
This cleanly demonstrates that thermalizing the system with
ε(t0) correctly accounts for the fact that the actual system
is initialized at the infinite past, and the original LZ limit
is recovered. We emphasize that this has not been achieved
before.
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VII. DISCUSSION AND CONCLUSIONS

In this paper we have demonstrated a successful imple-
mentation of the extended stochastic Liouville–von Neumann
equation (ESLN) computational method for obtaining real-
time dynamics of the reduced density matrix of an open
quantum system coupled to a harmonic bath. This method is
exact and can be used for arbitrary open quantum systems
at arbitrary temperature and coupling strength, at least in
principle, provided that the coupling is linear in the bath co-
ordinates. Unlike existing SLN schemes where the system is
initially decoupled from the bath, in our method the combined
system of the quantum system of interest and the bath are fully
thermalized together, with the coupling already established.
The main difference compared with SLN simulations is that
the density matrix has to be initially evolved in imaginary time
before the real-time propagation for each sampling trajectory.

The utility of the method has been demonstrated on two
simple systems, both based on the spin-boson Hamiltonian:
(i) a case where the Hamiltonian remains constant during real-
time evolution, and (ii) the Landau-Zener (LZ) sweep that is a
fully nonequilibrium evolution.

The first case was chosen to prove that our ESLN simula-
tion can maintain the thermalized state at any t > 0 and also
reach it asymptotically if initialized in an arbitrary state. These
simulations served as a test bed for choosing the appropriate
method of generating correlated noises and establishing a
computational scheme. We find that the noise generation
method proposed earlier [15] represents the worst possible
choice of the noises [14], in the sense that the associated
dynamics are highly unstable, restricting simulation to only
very short times. This presented something of a paradox, in
that the correlation functions were still fully satisfied, which
is the only requirement of the theory on the noises. We provide
a modified scheme here, although other possibilities also exist
[14]. In addition, we have also concluded that trace-preserving
variants of the ESLN lead to pathological behavior and so
must be discarded, leaving us with the original form of the
SLN whose dynamics is not unitary. As long as an appropriate
noise generation scheme is used, this turns out to be sufficient
for the system to be well behaved.

Since the ESLN equations are stochastic in nature, care
is required in developing an appropriate numerical scheme.
We find that in our case the choice of the numerical scheme
is essential if long-time simulations are needed, while for

short timescales a regular Euler-Maruyama discretization is
enough. For long-time simulations the higher-order schemes
originating from the Stratonovich stochastic calculus, such as
the Heun scheme, are advantageous.

Applications to the LZ model, in which the initial state
is not thermalized, also demonstrated that our method works
well even in this rather complex nonequilibrium situation.
We showed that the LZ limit for a system coupled to an
environment differs from that of the isolated system, but
approaches it in the limit of zero environmental coupling and
temperature. We have also found that in actual simulations the
asymptotic limit is sensitive to the choice of the simulation
time t0 at which the system is prepared. We find that this
dependence can be weakened substantially if the thermalized
state corresponding to the LZ Hamiltonian at the initial time
is used instead of the correct LZ initial state, demonstrating
another utility of our method.

We hope that this work will stimulate further investigations
of the nonequilibrium dynamics of open quantum systems by
means of the ESLN method.
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APPENDIX A: GIRSANOV TRANSFORMATION

To ensure that the normalized ρ̃ have the correct physical
ensemble average ρph, the transformation W → W ′ must take
the form

W ′[z′
1, z′

2] = W[z1, z2] Tr[ρ(t )], (A1)

as can be seen by substituting ρ(t ) = ρ̃(t ) Tr[ρ(t )] into
Eq. (52). Here Tr[ρ(t )] is easily obtained from Eq. (30) as

Tr[ρ(t )] = exp

{
i

h̄

∫ t

0
dt ′ ν(t ′)σ (t ′)

}
. (A2)

The task is now to remove this exponential factor from the
average by completing the square in W ′ and identifying
transformed noises z′. Writing out Eq. (A1) explicitly, this is

W ′[z′
1, z′

2] = N exp

{
−1

2

[∫ t

0
dt ′
∫ t

0
dt ′′zT

1 (t ′)�11(t ′ − t ′′)z1(t ′′) + 2
∫ t

0
dt ′
∫ β h̄

0
dτ zT

1 (t ′)�11(t ′, τ )z2(τ )

+
∫ β h̄

0
dτ

∫ β h̄

0
dτ ′zT

2 (τ ′)�22(τ − τ ′)z2(τ ′)
]}

exp

{
i

h̄

∫ t

0
dt ′ST (t ′)z1(t ′)

}
,

where vectors of noises z1 = (η η∗ ν ν∗)T , z2 = (μ μ∗)T ,
and z = (z1 z2)T and the vector S(t ) = (0 0 σ (t ) 0)T have
been introduced. Note that the guide spin couples to the
ν noise only in S(t ). Making use of the fact that � is a
symmetric matrix of time differences, and introducing its

inverse via

∫ t

0
dt ′�−1(s − t ′) �(t ′ − t ′′) = δ(s − t ′′), (A3)
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the result of completing the square in symbolic notations is

−1

2
zT �z + i

h̄
ST z = A(t ) − 1

2
z′�z′,

where A(t ) is a function independent of z to be absorbed into
the normalization of the physical density matrix N, and

z′ = z − i

h̄
�−1S (A4)

are the transformed noises. These can be simplified by not-
ing that the vector S has just one ν nonzero component.
Hence, since ν is only correlated with η, only the η noise is
modified,

η′(t ) = η(t ) − i

h̄

∫ t

0
dt ′Kην (t − t ′)σ (t ′), (A5)

ν ′(t ) = ν(t ), (A6)

μ′(τ ) = μ(τ ). (A7)

According to Eq. (52), the physical density matrix is now

ρph(t ) =
∫

D2[η]D2[ν]D2[μ]W ′[η′, ν ′, μ′]ρ̃(t )[η, ν, μ],

(A8)

where the integrals are still performed over the original noises
and their complex conjugates. Since only η is modified, the
only change of variables needed is η → η′ for which the
Jacobian J = |δη′/δη| contains the elements

δη′(t ′)
δη(t ′′)

= δ(t ′, t ′′) − i

h̄

∫ t

0
dsKην (t ′ − s)

δσ (s)

δη(t ′′)
, (A9)

where Kην (t ′ − s) is a known correlation function (16), in-
dependent of any particular realization of η, so does not
need to be differentiated. It is also causal, requiring that
t ′ > s, as is σ (s), so δσ (s)/δη(t ′′) is only nonzero for s > t ′′.
This bounds the integral over s from t ′′ to t ′ which corre-
sponds to a triangular matrix with zeros on the diagonal,
and hence the integral does not contribute to the determi-
nant J = |δη′/δη|. Hence the Jacobian is simply equal to
unity and applying the change of variables η → η′ completes
the transformation. Since the transformed distribution has
the same precision matrix � as the original distribution,
the correlations for η and η′ have been preserved and the
primes can be omitted. Replacing ρ̃ with ρ for simplicity,
we obtain the equation of motion (53) given in the main
text.

APPENDIX B: STRATONOVICH CORRECTION
FOR THE SPIN-BOSON MODEL

1. Real-time propagation

For the ESLN, it is convenient to rewrite the 2 × 2 density
matrix as a 4-fold vector with elements ρk

h (where k ∈ [1, 4])
with the original matrix elements ordered as 11, 12, 21, and
22. The dynamics is then split into one deterministic part and
two noisy parts associated with η and ν,

dρk
h+1 = ak (th, ρh)dt + bk

η(th, ρh)η(th)dt + bk
ν (th, ρh)ν(th)dt,

(B1)
where ak (th, ρh), bk

η(th, ρh), and bk
ν (th, ρh) on the right-hand

side are elements of the vectors

a(th, ρh) = − i

h̄
[Hh, ρh], (B2)

bη(th, ρh) = i

h̄
[σz, ρh], (B3)

bν (th, ρh) = i

2h̄
{σz, ρh}, (B4)

and Hh = H (th). The noises are expressed as weighted sums
of white-noise random numbers using the discretized form
of Eqs. (38)–(40), where each white noise xi and x j is ex-
pressed as x j (t )dt → dW j (t ) and x j (τ )dτ → dW j (τ ), the
overbar once more denoting a function of imaginary time τ

and indices j = 1, 2, 3 referring to specific white noises to
enforce the necessary correlations. For example, the ηη noise
is expressed as

ηη(th) =
N∑

n=−N

Gηη(tn)dW 1(th − tn) (B5)

with j = 1. Here we shall use the index n ranging between
−N and N to denote discretized real-time integrations with
tn = n dt , and the index m between −M and M for the
integration in imaginary time, τm = m dτ . The inverse Fourier
transforms of the filtering kernels, Eqs. (44)–(46), and any
other numerical prefactors can freely be absorbed into the
diffusion function, giving them an additional index n or m
associated with the appropriate sum over time. This trans-
forms the right-hand side of Eq. (B1) into the compact form∑

j Bk j (th, ρh)dW j
t . The rows Bk of the matrix B(th, ρh) =

{Bk j
h } form vectors, each associated with one of the elements

ρk of the density vector, and are composed of the following
components:

Bk (th, ρh) =

⎡
⎢⎣( bk

ηGηη(tn)dt︸ ︷︷ ︸
−N�n�N ; j∈dW 1

) (
bk

ηGην (tn)dt + ibk
νGνη(tn)dt︸ ︷︷ ︸

−N�n�N ; j∈dW 2

) (
ibk

ηGην (tn)dt + bk
νGνη(tn)dt︸ ︷︷ ︸

−N�n�N ; j∈dW 3

)

(
bk

ηGημ(th, τm)dt︸ ︷︷ ︸
−M�m�M; j∈dW 2

) (
ibk

ηGημ(th, τm)dt︸ ︷︷ ︸
−M�m�M; j∈dW 3

)⎤⎥⎥⎦. (B6)

Bk contains five sets of elements, each associated with a different white noise. The index j identifies the Wiener increment of the
appropriate white noise, and within each set of elements the indices n and m run across real and imaginary times, respectively.
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For each th, the increments dW j form a 2(2M + 1) + 3(2N + 1) long vector dW, elements of which are ordered in the same
way as inside the vector Bk above:

dWh =
[(

dW 1(th − tn)︸ ︷︷ ︸
−N�n�N

) (
dW 2(th − tn)︸ ︷︷ ︸

−N�n�N

) (
dW 3(th − tn)︸ ︷︷ ︸

−N�n�N

) (
dW 2(τm)︸ ︷︷ ︸
−M�m�M

) (
dW 3(τm)︸ ︷︷ ︸
−M�m�M

)]
. (B7)

These notations enable us to refer to either of the five sets
of terms in the sum

∑
j Bk j (th, ρh)dW j

h by the particular

family of the noise increments, e.g., dW 1 or dW 2, as is also
indicated underneath each term in Eq. (B6). The ESLN now
has the standard form of Eq. (59), and it is clear that there
are many white noises appearing in this Langevin equation.
This justifies the choice of using Stratonovich calculus since
Itô calculus would be punitively expensive.

To transition into the Stratonovich-Heun scheme, we have
to calculate the Stratonovich correction

−1

2

∑
l j

Bl j (th, ρh)
∂Bk j (th, ρh)

∂ρ l
h

needed for the modified drift, Eq. (62), for each family of
the increments j ∈ dW 1, dW 2, dW 3, dW 2, and dW 3. For
j ∈ dW 1, we have Bk j = bk

ηGηη(tm)dt , and only

bη = 2i

h̄

(
0 ρ12

h−ρ21
h 0

)
→ 2i

h̄

(
0 ρ2

h −ρ3
h 0

)T
(B8)

(where we have used both the 2 × 2 matrix and the 4-fold
vector notations) depends on the elements ρ l

h of ρh, so the
derivatives ∂bk

η/∂ρ l
h are easily calculated forming a 4 × 4

matrix

(
∂bk

η

∂ρ l
h

)
= 2i

h̄

⎛
⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

⎞
⎟⎟⎟⎠ (B9)

with respect to indices k, l . Substituting these into the
Stratonovich correction, we obtain the following contribution
from the dW 1 terms:

−1

2

∑
l, j∈dW 1

Bl j (th, ρh)
∂Bk j (th, ρh)

∂ρ l
h

= 2

(
dt

h̄

)2
(

0 ρ12
h

ρ21
h 0

)
M∑

m=−M

G2
ηη(tm), (B10)

where we have returned back to the matrix notations for
clarity.

Similarly, for j ∈ dW 2, we have Bk j = ibk
νGνη(tm)dt +

bk
ηδm0, and only bν and its derivative are left to calculate:

bν = i

h̄

(
ρ11

h 0
0 −ρ22

h

)
→ (

ρ1
h 0 0 −ρ4

h

)
, (B11)

(
∂bk

ν

∂ρ l
h

)
= i

h̄

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

⎞
⎟⎟⎟⎠, (B12)

and the appropriate contribution to the correction from dW 2

noises is

−1

2

∑
l, j∈dW 2

Bl j (th, ρh)
∂Bk j (th, ρh)

∂ρ l
h

= −1

2

(
dt

h̄

)2(
ρ11

h 0
0 ρ22

h

) M∑
m=−M

G2
νη(tm)

+ 2

h̄2

(
0 ρ12

h
ρ21

h 0

)
. (B13)

In the same way, the correction for j ∈ dW 3 is found to be
identical to the correction (B13) for j ∈ dW 2 but with the
opposite sign such that they exactly cancel.

For the Wiener increments associated with white noises
in imaginary time, j ∈ dW 2 and j ∈ dW 3, inspection of the
elements of the B matrix, Eq. (B6), reveals that the terms
associated with dW 3 are just i times the terms associated with
dW 2. The Stratonovich correction for these terms will thus
be identical apart from a minus sign coming from i2 = −1 in
dW 3, and they will also exactly cancel. Thus only terms from
j ∈ dW 1 contribute to the modified drift in Eq. (62),

ã(th, ρh) = a(th, ρh) + 2

(
dt

h̄

)2(
0 ρ12

h
ρ21

h 0

) M∑
m=−M

G2
ηη(tm).

(B14)
It is then straightforward to convert this into the correspond-
ing corrections for the spins Sx, Sy, Sz and the trace STrρ,
Eqs. (27)–(30), yielding, respectively,

Sx(th) = 2

(
dt

h̄

)2 M∑
m=−M

G2
ηη(tm)σx(th), (B15)

Sy(th) = 2

(
dt

h̄

)2 M∑
m=−M

G2
ηη(tm)σy(th), (B16)

Sz(th) = STrρ(th) = 0, ∀h. (B17)

2. Imaginary-time propagation

It is straightforward to repeat the same procedure for
thermalization, Eq. (23),

ρk
h+1 = ρk

h − H0ρ
k
hdτ + σzρ

k
hμ(τh)dτ, (B18)

where H0 is the initial Hamiltonian at the beginning of the
real-time evolution, and h is now an index associated with the
imaginary time τh = h dτ . There is no additional complexity
here as compared to the real-time evolution, so for expedience
the result for the modified drift is simply stated

ã(τh, ρh) = −
[

H0 + 1

2

(
dτ

h̄

)2 N∑
n=−N

G2
μμ(τn)

]
ρh. (B19)
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