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A B S T R À O T

This study utilises OŒipiter programs to reconstruct the 
challenges vdiich faced astronomers at the time of the founding of 
Britain's Royal (XDservatory. It focusses on the lunar theory 
articulated by Isaac Newton in 1702, shewing how it was the precursor 
of %Aat became embodied in the 1713 Principia as its lunar theory. 
Conceived as a kinematic mechanism, it has here been translated into 
trigonometric terms, and thence into machine-readable form. A computer 
replica of Newton's theory has therdDy been composed and tested, and 
its accuracy for the first time assessed, resolving age-old 
controversies.

The first British lunar theory, formed by Jeremiah Horrocks in 
the 1630s, was published by Flamsteed, and later modified and 
developed by Newton. As such it spread across Europe in the first half 
of the eî iteenth century. It was later replaced by lunar theories 
derived from the Newtonian theory of gravity, vhich came to be called 
the 'Newtonian' theory, causing the theory actually promoted by Newton 
to be overlooked.

Newton's theory had seven steps of equation as its distinctive 
feature, little appreciated by historians. No evidence remains that 
gravity theory, applied in a quantitative sense, assisted its 
conposition.

Computer replicas of the lunar theories used by Flamsteed and 
Hailey have been constructed and tested, and Hailey's use of the Saros 
cycle to correct errors in the method is re-evaluated. A survey of 
astronomy textbooks containing tables over the period 1650-1750 has 
been the context for assessing to vhat extent the 1702 Newtcxiian 
procedure was an improvement ipon existing theories.
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in chapter Eî it, I especially thank Jonathan Loretto.



-6-

F O R E W O R D

AT THE DAMN OF THE NEW CENTURY, there appeared the first txijo 
textbooks of Newtonian astronomy: Gregory's Astronomiae Physicae of 
1702, and Whiston's Praelectiones Astronomicae of 1707 (^^ch later 
^çeared in English as Astronomical Lectures). They were meant to 
challenge the Cartesian philosophy then being taiïÿït in the schools of 
England, and both contained the full text of Isaac Newton's Theory of 
the Moon's Motion (hereinafter referred to as 'TMM' ). Thou^ oocL^ing 
a mere five pages of Gregory's book, it formed an essential part of 
that challenge, for it purported to show that the new Newtonian 
philosophy had a practical and not merely theoretical significance.

At least one of these books definitely claimed that TMM had 
achieved ̂ diat was then regarded as well-ni^ impossible: showing how 
to predict the Moon's position in the sky well enou^ to be of service 
for finding longitude. French astronomical treatises in the opening 
decades of the ei^teenth century struck a rather sceptical note over 
this claim, while British ephemerides-oomposers tended to regard TMM 
as a kind of Holy Grail: something which would render possible the 
production of idiat was most desired, a reliable lunar ephemeris, if 
only it could be ri^itly interpreted.

Few were the sailors vho made grey hairs, as the saying went, in 
those days. As their ships sailed back, laden with chocolate from 
Africa or silks from India, they were as we still say today, quite 'at 
sea' once land disappeared. Huge prizes were offered for any means to 
find longitude. And yet, Britain's two most distinguished astronamers 
of the time - Captain Edmond Hailey and the Reveraxi Jdm Flamsteed - 
had more or less diametrically opposed opinions as to the real value 
of TMM. The former claimed that it profoundly improved lunar 
prediction, \diile the latter averred that it gave no real improvement 
upon existing tables.

Historians of science have been reluctant to comment upon the 
matter. Bernard Odien was not exaggerating Wien in 1975 he stated:



'.. .this work [TMM] has hardly ever been discussed (or even 
referred to) in the literature concerning Newton or the history of 
astronomy (Cdien, p.l)

As the literature there alluded to is of no small volume, such an 
omission would tend to suggest that this brief work was hardly 
significant. On the other hand, TMM was frequently reprinted throu^ 
the first half of the ei^teenth century, suggesting that it was 
exerting some kind of influence. To viiat extent this was practical, or 
nythical, is the subject of our inquiry. Just about everything except 
the authorship of TMM remains unsettled. Was TMM ever in fact used? If 
so, would its prescriptions have defined the much-sou^t lunar 
position, to anything resembling the claim made by its publisher?

The onward-rolling tercentenary process has not yet reached the 
date of TMM's publication, vhich gives us some time to re-evaluate the 
traditional myths surrounding the subject. It has now (January 1992) 
passed by the anniversary of the commencement at Greenwich in 1691 of 
the most accurate series of positional astroncmy readings ever made, 
and aĵ roaches Flamsteed's marriage, Newton's nervous breakdown, and 
then the historic commencement of the collaboration between these two 
on the great endeavour, not without strife, a linking together of 
theory and practice.
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Atofcarei>/d_a.*fcJLc>ris u s e d  J_n T e > c t

Correspondence - The Correspondence of Isaac N&/ton
Volume IV 1694-1709, C.U.P. 1967, Ed. J.F.Scott.

DOS - 'Doctrine of the Sphere' by John Flamsteed, published
(anonymously) as De Sphaera in 1681, in Jonas More's Net/ 
Systeae of Mathematics.

DOS-PC - Computer-simulated model of the DOS procedure (Chapter 10).

GHA - The General History of Astronony, Volume 2A, Ed. Hoskins,
1989. The reference will normally be to the two chapters by 
Curtis Wilson.

PNPM - Principia Naturalis Philosophica Mathematica by Isaac Newton. 
References are normally to the Second Edition of 1713. The 
Third Edition of 1727 is available in Motte translation, Cajori 
Edition.

P.T. or Riil. Trans. - Philosophical Transactions of the Boyal 
Society.

IMM - 'Theory of the Moon's Motion' by Isaac Newton, published in
Latin by David Gregory in his Astronomiae Physicae of 1702. An 
English translation appeared in 1702, possibly by Hailey, \itoch 
is the text here referred to as TMM, reproduced by Cohen in 
1975.

TMM-PC - Computer-simulated model of the TMM procedure (Chapter 8).
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Writing in 1975, Bernard Odien posed the challenge:
'It vrould be most useful to have a careful analysis of Newton's 
atteropts to produce a satisfactory lunar theory (in the 1690's), and 
the stages vhereby he either partially or totally abandoned the program 
of deriving such a theory by mathematical methods applied to 
gravitational celestial mechanics' (Cohen, p.80).

Cohen offered no comment ipon either the accuracy of the theory - whether 
it was an improvement upon those available - or, to vihat extent if any it 
was based ipon a theory of gravitation. As Craig Waff commented in his 
review of Cohen's book:

'While I can sympathise with Cohen's reluctance to beocane involved in 
vhat would certainly be an extremely complex study, his failure to make 
even the sli^test effort in this directicxi made it impossible for him 
to answer in any satisfying way a question vAiich he constantly 
raises...' - i.e., that mentioned above (Waff, p.66).

Craig Waff ccanmented ipon the historical irony, that the brief 1702 
essay. Theory of the Moon's Motion (hereinafter referred to as TMM), was 
'probably the most c±scure of Newton's publicaticxis', and yet it 'appeared 
in print during the early ei^teenth century more times than anything else 
which left the hand of Newton. ' Waff then made a claim Wiich regrettably he 
has never substantiated:

'Newton's "rules" had been \diolly or partially used by nearly a dozen 
astroncraers or other interested individuals in order to construct lunar 
tables.'

Were that so, then an assessment of the Newtonian rules would be simple: 
one would merely take the ephemerides published by these persons, measure 
their 'error envelopes' in the manner that (X^ Gingerich has so well 
picxieered, and thereby assess their accuracy. Let us merely remark that no- 
one has ever attempted to do this.
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What strikes the modem reader about the text of MI, apart from its 

cdDSCurity, is the complété absence of any reference to a theory of 
gravitation. The Principia of 1687 dealt with motion under central forces 
as a two-body prx±>lem, and referring only relatively briefly to 
irregularities in lunar motion resulting from its motion as a three-body 
problem (Propn. 66 of Book 1, Propn. 32 of Book III). William Whistcn gave 
the following fine eulogy to MI, published in 1710 vhen he was occupying 
the Lucasian mathematics chair at Cantoridge, as Newton's successor:

"Ihe Moon, I say, viiich is a secondary planet, that hath in it such a 
complication of Motion, such intricacies and perplex'd Anomalies, that 
unto this very Day we are' scarce able to bring it under Numbers, 
altho' it be so harrass'd (as it were) with Astronomical Researches. 
Hiis hath been a knot well worthy of, and vhich requir'd the acutest 
Wit to untie. Nor wanted it such a one at length when the famous Sir 
Isaac Newton set himself to it; who hath this to glory in, That in the 
Compass of a few pages, he hath brou^t more li^t into this dark and 
intricate Business, than all the Volumes of the past ages had done. '

So finally, the Moon had met its match. Or had it? When Whiston came to 
ejq>lain how the Moon's position should be calculated, he said that, no 
doubt Mr Newton's theory was very excellent, however as no-one had yet 
reduced it to a form in vdiich tables could be derived from it, he would 
give the rules as described by 'the famous Mr Flamsteed'. (Whiston,
1710,p.96) The abyss between theory and practice had not in fact been 
bridged.

No historian of science has acknowledged the validity of that judgement 
of Whiston, thoujÿi he was in a fine position to assess the situaticxi: that, 
in the year 1707, the procedure advocated by the Astronamer Royal was to be 
preferred to the Newtcaiian lunar rules, because the latter had not yet been 
unpacked, as it ware. To what extent was Flamsteed concemed to develop a 
lunar theory of his own? This view was somewhat indicated by the astronomer 
Francis Baily, vdio rescued Flamsteed's reputation from mere ĉ livicxi with 
his Account of 1835 (p.703). On the oft-told version of events, Flamsteed 
was allocated no other role than delaying or perhaps refusing to supply 
Newtcwi with lunar data in the 1690s, thereby impeding the formation of the
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NewtOTiian lunar theory! That the Astronomer Royal had in some measure 
fulfilled the mandate of the Monarch vdio appointed him, by achieving an 
improvement in the lunar rules, is seldom considered.

We may wonder whether the six different sets of ephemerides which 
according to Craig Waff applied the Newtonian lunar rules, may to some 
extent have used those of Flamsteed or even of Hailey: the achievements of 
Sir Isaac have after all shewn some propensity to attract towards 
themselves those of others. Later on we will comnent on the apparent 
disappearance of Flamsteed's version of the theory, and the possibility of 
it having migrated across the channel. Ihe brief 1702 IMM reaches into the 
future in twc different ways: as a series of no less than seventeen 
reprints appearing in the first half of the ei^iteenth century, and then 
secondly as the greatly eĵ anded lunar section in Book Ihree of the seccxid 
edition of the Principia of 1712.

We may trace three stages in the development of Newton's lunar theory. 
In 1694/5 the extensive correspondence with Flamsteed recorded a keen 
collaboration, vAien the mathematician clearly believed he could encompass 
the irregularities of the Moon's motion by applying his theory of 
gravitaticxi. Whiteside has well described hew this nctole enterprise was 
shipwrecked in the spring of 1695 upon the sheer intractability of the 
problem. Indeed, Whiteside has even suggested that Newton's decision to 
move to London and abandon his lecturing post at Cambridge may have been a 
consequence of his recognised failure with the lunar theory (Mathematical 
Papers 1976, VII, p.xxv). Secondly, there was the IMM, published using 
Flamsteed's data but without the letter's knowledge or consent and despite 
two signed promises not to do such. As if in reaction against the failure 
of the first stage of the andeavour, no comment was made about a theory of 
gravitaticai. Thirdly, a decade later, there appear the mature Newtonian 
comments ipon the three-boĉ  prc±>lem, which greatly impressed the 
cognoscenti. A review in the Acta Eruditorum (believed to be by Leibniz) 
commented on this section of the 1713 Principia:

'Indeed, the ccanoputation made of the lunar motiœs from their own 
causes, by using the theory of gravity, the phenomena being in accord.
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proves the divine force of intellect and the outstanding sagacity of 
the disooveror.' (Cchen, p.41)

And Laplace said,
'Je n'hésite point à les regarder comme une des parties les plus 
profondes de cette admirable ouvrage. ' (Cohen, p. 41)

À modem evaluation of the achievement ought perhaps to start from the 
result vhich emerged somevAiat unexpectedly from Owen Gingerich's computer 
in the Harvard IMiversity astrophysics department: namely that little by 
way of increase in accuracy of ephemerides appeared as a result of the 
Newtonian revolution*. It was, let us say, a theoretical affair. During the 
period Wiich we are reviaving, Paris became the main centre of ephemerides- 
production.

XX F e rrc e X v e a  acxzajuracy o f  tX ie  ^

We new review the spectrum of judgements uhich history has handed down 
as regards the accuracy of TMM.

Within two minutes; This claim was brazenly made by David Gregory in 
publishing the essay in his Astronomicae Physicae et Geometricae Elementa 
of 1702, and no doubt stimulated its sales. A two-minute accuracy in lunar 
prediction would be sufficient to attain a one degree accuracy in the 
estimation of longitude.

Two to three minutes: this was Newton's cwn view as expressed in a 1705 
edition, given in some corrections to the text vhich he inserted: two 
minutes in syzygies, three in quadratures. When Gregory republished TMM in 
the English translation of his book in 1715, he echoed this view. Thus, 
reprinting the essay 13 years later, Gregory hardly found cause to alter 
his original judgement of its accuracy. William Whiston made much the same 
claim in his published astronony lectures of 1707. The astronany professors 
of Oxford and Cambridge thus concurred in this formidable affirmation of 
TMM's accuracy.

*'Perhaps the most surprising result of our analysis is how little 
immediate and direct impact Newton's work had on the corrputation of 
astronomical positions' (Gingerich & Welther, 1983, p.xi).
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TWo to five minutes; three decades later, Edmond Hailey as Astronomer Royal 
affirmed that after himself preparing tables and ascertaining his 
calculation procedures, it was evident to him that:

'... Sir Isaac had spared no Part of that Sagacity and Industry so 
peculiar to himself, in settling the epochs, and other Elements of the 
Lunar Astronony: the result many times, for vAiole months together, 
rarely differing two Minutes of Moticxi from the CSDservations 
themselvesX (Phil. Trans. 1732 p.191)

Hailey went on to say that, on occasions vAiere the theory did err up to 
five minutes, this was probably the fault of the observer i.e. Flamsteed, 
vho had both supplied inaccurate data and failed to supply any in the third 
and fourth quarters of the lunar cycle. Hailey was in a fine, indeed 
optimal, position to comment, thou^ there is no reason to take seriously 
these slurs upon his predecessor. Ihe letter's lunar positions achieved an 
accuracy of around half an arcminute (Kbllerstrom and Yallop, in 
preparation) and covered the entire lunar cycle.

Five minutes: this seems to have been Newton's estimate vhen appointed in
1714 to the Board of Longitude. Lunar methods he judged to be too 
inaccurate to determine 'a Longitude within IWo or Ihree Degrees. '

Eicht to nine minutes: this was the recent verdict of Curtis Wilson, editor 
of volume 2À The General History of Astronomy, p. 267. He was merely echoing 
Flamsteed's verdict. Ihe latter found, in the beginning of the year 1703, 
that IMM generated errors vHnich were 'frequently' of 5 or 6 minutes one one 
side, and by the same amount negatively at the opposite point of the orbit, 
and that sometimes the errors rose to 8' or 9' in longitude, at positions 
near to quadrature (ie, the half-Mocxi position). Ihese things, he explained 
to his correpondent Mr Caswell, he determined using old data between the 
years 1675 and 1689, ie prior to the setting up of his great mural arc. 
Plainly he would not use data gathered since that date, as it had all been 
sent to Newton so that he could construct his theory. Ihe astronamer was 
especially shocked by the errors in lunar latitude contained in IMM, Âiich 
he said 'were frequently 2,3, or 4 minutes, vhich is intolerable.'
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Next, Flamsteed examined lunar eclipse data, vdiere one mi^t esq)ect 

smaller errors, on the grounds that astræomy had traditionally concerned 
itself only with the syzygy positions in the lunar ortoit, requiring these 
for the prediction of eclipses. Again, he discerned errors of 5-6' in their 
positions. (Baily, pp.213,4)

We may have more to say later conceming the protean flexibility of the 
estimates here represented. To place them in perspective let us cite some 
findings of Gingerich: that La Connoissance (sic) Des T&nps, the ephemeris 
then produced yearly by Cassini from the Paris Observatory, did over the 
years 1695-1701 frequently display errors in its lunar positions of 20-30 
minutes of arc; (Gingerich & Welther, 1983, fig. 14) and secondly, that the 
much-desired predictive accuracy to two minutes of arc was not attained by 
any ephemeris prior to the British Nautical Almanack oonroencing in 1766. 
(Gingerich & Welther, 1983, p.xxi)

There were several notable disasters at sea which stimulated 
astronomers to work with greater zeal on their ni^i-impossible quest, of 
using Luna's erratic path across the ni^t sky to ascertain longitude.

1691: seven British warships wrecked near Plymouth, mistaking the 
Deadman for Berry head due to a misconception over longitude.
1694: Admiral Wheeler's fleet, ignorant of its position, sailed head-on 
into Gibraltar and disaster.
1707: Sir Cloudsley Shovell's squadron of the Royal Navy ran onto rocks 
off the Scilly Isles, with loss of four ships and nearly two thousand 
lives, when they were believed to be in a safe position.

The last of these was due more to inadequacy in the maps used than 
longitude determination (Howse, Autumn 1993, p.47), however it did much to 
arouse public opinicxi on the matter, and led to the passing of the 
Longitude Act: in 1714, huge rewards were offered by Parliamant for anyone 
\dio could devise a method of locating the longitude on a ship, to within 
one degree or less. 'Finding the longitude' entered the vernacular as 
meaning an impossible task which one despaired of ever achieving. A life
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and death issue, it revolved around the most obscure equations. Ihe rewards 
offered began at £10,000 for predicting longitude at sea within one degree, 
and went up to £20,000 for half a degree. They began to be claimed in the 
mid-eighteenth century.

XXX XWc>--CXocsk: M e iz lio c i

local time varies around the glc^ by one hour per fifteen degrees of 
longitude. Therefore, if one had two clocks, one on local time and the 
other on universal time, the longitude would be given from the time 
difference between them. At sea, a clock can readily be set to local time 
by using the times of sunrise and sunset, with noŒi falling midway between 
them. If the Moon's 27.3 day cycle against the stars could be determined, 
then it would enable one to read universal time: it would be like a clock, 
vhose hand revolved once in twenty-seven days. That was the beckcsiing 
dream, the impossible hope, the mirage on the horizon....

The great aim was to predict longitude within two minutes, for this 
would bring it within a useful - thou^ not a safe - range. Without that 
one would be, as the saying went, 'at sea.' It became the most pressing 
scientific prdolem of the period, and was the reason for establishing the 
Observatory at Greenwich. To find longitude within a degree meant 
predicting the Moon's position within 1/27.3 degrees = 2.1 minutes.

We can see this merely by considering that the Earth revolves against 
the stars 27 times faster than does the Moon. So, a two minute error in 
fixing the Moon's position in zodiac longitude would logically imply a 54 
minute error in one's position on Earth, in longitude, neglecting other 
sources of error. The ratio of the period of Earth's rotation to that of 
the Moon's revolution around the zodiac (27.3 days) gives the error 
multiplication factor inherent in the method.

How accurate was the method in practice? An example here comes from an 
entry in the diary of Edmond Hailey, ^en he landed his frigate off the 
coast of Brazil in the year 1699. He was returning from his courageous 
antarctic voyage, and wanted to find out his longitude. He and the crew of
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his 'Pink' (a type of Dutch sailing vessel) the Paranore found themselves 
near the tcwn of Paraiba. Vfe may assume that the inhabitants of Paraiba 
were ignorant of their longitude relative to London.

Hailey first of all set up his telescope to view Jiç>iter, because his 
tables predicted an occultation of one of the Jovian satellites, on the 
ni^t of February 25th. In this he found himself frustrated, because clouds 
obscured his view. (This Jĝ iter-satellite method would have given him a 
universal time estimate, frcan vAiich longitude could be estimated as 
explained above) Ihe Jupiter-moon method having failed, it so happened that 
the MDon was passing ky a first-magnitude zodiac star Antares, and so an 
'appulse' could be observed. An 'ajpulse' meant the time of nearest 
approach of two heavenly bodies. Hailey noted both the time of this event 
to the nearest second, and the lunar altitude when it occurred, and from 
these wrote:

'I conclude the longitude of this Coast full 36° to the Westward of
London.'

Hailey was within almost one degree of the correct longitude, vhich is 
quite inpressive (Ihe longitude of Paraiba is 34° 52' West)*. Ihe ephemeris 
he used was probably the French la Connoissance des Temps,

In the seventeenth century, not the least source of error in using the 
method was the absence of any sound notion of mean time. Ihe observations 
were made using apparent time and then converted to 'equall time' (i.e., 
local mean time). Only then could the comparison with universal time, from 
the lunar sidereal orbit, be accomplished. Tables for this conversion were 
wildly inaccurate: for example, the 'Table of the Aequation of Civill 
Dayes' given in Wing's Harmonicon Coeleste of 1651 had an average error of 
five minutes, and this error in time would give a two or three minute error 
in lunar longitude. I ascertained this using a RGO program for the Equation 
of Time, and also checked the equations of time given by Streets (1664) in 
several of his worked examples, and a column of such figures given in the

...............................................................* The Three Voyages of Edmond Hailey in the Paramore, . N.Ihrcwer,̂  1981, 
p. 103. See also, 'Ihe Edmond Hailey Bull's Eye Enigma' N.Kbllerstrom, 
Jnl,Brit. Astron. Assoc,, 1990, p.7
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French annual ephemeris La Connoisance des Temps of 1686: Wiich showed 
errors usually around 4-5 minutes. The first reliable Equation of Time was 
published by Flamsteed in 1673, in a postscript to the 'Opera' of Horrox, 
(pp. 441-464), after vhich his later more accurate table was published by 
Whiston in 1707. Historians of astronomy generally give little credit to 
Flamsteed for establishing Greenwich mean time, by discerning that the 
Earth's uniform sidereal rotation thrcoÿîout the year should be its basis 
(thou^ Bailly (1779 p. 269) did credit him with having 'restored' the 
equation of time). An improvement of several arcminutes in lunar longitude 
determination came about from Flamsteed's discovery of the Equation of 
Time. Thus TMM could simply presuppose that mean time was being used.

When Newton sat on the Board of Longitude, set ip in 1714, he there 
expressed the view that the lunar method only worked 'within two or three 
degrees' (Westfall,835). The preceding discussion shewed that this was 
equivalent to lunar longitude accuracy of 4-7 minutes, vhich sounds fairly 
reasonable. This suggests that Hailey having obtained longitude within 
almost one degree, two decades earlier, was something of a fluke. Or, 
perhaps after all, the people of Paraiba did know their longitude.

An account of the lunar method of finding longitude given by Howse 
(Address to Royal Society on Chroncmetry, June 25th 1993) elucidated the 
practical problems in the method, and also the success vhioh the method 
eventually enjoyed, from the latter half of the ei^teenth century: 'The 
heyday of lunars was probably from about 1780 to 1840' (Hcwse, November 
1993, p.7). Chronometers became available from the mid-ei^teenth century 
onwards, but remained prohibitively expensive for most vessels, so that the 
Greenwich 'Nautical almanac' published annually from 1767 offered the 
preferred method of finding longitude at sea*.

* According to Gingerich and Welther, 'By 1800 the accuracy of the best 
almanacs was comparable to our tables, that is, better than a minute of arc 
(Gingerich and Welther 1983). Their graphs of the error patterns of the 
Nautical Almananc over 1779-1787 shows errors generally between one and two 
minutes of arc, compatible with statements by Howse and Sadler that lunar 
tables of the 1760s enabled sailors consistently to find their
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Further difficulties arose in the lunar method from the corrections 

due to atmospheric refraction and parallax, ^Aich had to be applied to the 
observations before further computations could be made; a matter with viiich 
IMM was concemed.

Merchant vesssels using the lunar method came to adopt the Greenwich 
longitude meridian as their reference, as the lunar noon positions were for 
that longitude. Thus the endeavours of Newton and Flamsteed did in the end 
bear fruit, a century or so later, with the locus of their endeavours 
becoming accepted globally as the zero meridian of longitude. 1753 was the 
first occasion on vdiich the lunar method was used with success at sea, by 
Nicholas-Louis de Lacaille in an Atlantic crossing (Hcwse op. cit. p.4).

A check of the first page of the 'Nautical Almanac' for January 1767 
for the first twenty lunar meridian transits showed a mean error of 16" ± 
17", one-third of that shewn on the Gingerich-Welther error-graph (1983, 
p.xxi). The 'Nautical Almanac' gave positions in ajparent time, so 
conversion to mean time was first necessary. The Yallop et. al. program for 
Equation of Time (1989) was used, to convert from apparent to mean time, 
plus an I.L.E. program for lunar longitude (both kindly supplied by Bernard 
Yallop of the R.G.O. ).

For example, on January 7th 1767 the Almanac gave the noon lunar 
longitude as 18* 59' 25" of Aries. As the Equation of Time was then 6 
minutes and 50 seconds, GMT was then 11am 53 minutes and 10 secmds (Mean 
time = apparent time - Equation of Time) for ̂ Aich the ccmputer gives a 
position of 18* 59' 16", a net error of 9". These values are more 
compatible with vAiat was believed at the time about the tables, and help us 
to appreciate the extent to which the lunar-lcxigitude method did in the end 
succeed. This case-stuc^ underscores the vital importance of having 
computer programs more accurate than the historical positions to be 
evaluated.

longitude 'within 1*' (Hcwse op. cit. p.4; also Sadler 1976 p. 117), for 
Wiich two minutes accuracy in tables of lunar longitude were adequate.



In the latter half of the seventeenth century, three distinct 
approaches were taken for predicting the Moon's position. They intertwined, 
but were to seme extent logically distinct.

fl') Empirical: Usina the Saros
Edmond Hailey in Hî ibury commenced taking lunar longitude readings 

with a view to tracing a v^ole Saros cycle of 18 years, 11 1/3 days, (ie, 
223 lunar months). It happens that all the principal irregularities in the 
Moon's motion repeat throu^ this period in a precise and cyclic manner. 
Hailey quite sensibly believed that a continuous sequence of observations 
over such a period was the best approach. He was later to be able to follow 
a ccmplete Saros at Greenwich, thouÿi his sucessors did not deem his 
(±servations of much value.

(2) Use of a Model; the Method of Horrocks
As a north-countryman, Flamsteed was proud of having made public and 

improved the technique invented by the young Jeraniah Horrocks in the 
1630s. Horrocks invented a kinematic model, v^eels within vdieels, like some 
Engli^ Heath-Robinson version of the epicycles so recently banished by 
Kepler: but it worked. His great discovery was the rocking motion in both 
the apse line of the Moon (once every six months) and in its eccentricity. 
(N.B., all models of this Morrox-effect use a circle, not an ellipse, for 
lunar orbit, vhere eccentricilŷ  retains its old meaning of Earth's distance 
from centre of that circle) Ihe version published in 1673 by Flamsteed was 
regarded as the Morroxian method improved by Flamsteed.

(3) Mathematical: Ihe Iheory of Gravity
'For 1 find this theory so very intricate, and the theory of gravity 
so necessary to it, that 1 am satisfied it will never be perfected 
but by somebcdy vho understands the theory of gravity as well, or 
better than 1 do. '

Newton wrote these words to Flamsteed on February 16, 1694. They were to be 
vindicated by the mi^ty labours of Clairaut, Lagrange and Laplace in the 
next century, using the Leibnizian calculus. But in that period, Newton was
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faced by abject failure: he later wrote wrathfully to Flamsteed on hearing 
that the latter proposed to make public the fact that he had supplied 150 
lunar positions for the Cambridge mathematican:

'I was concerned to be publicly brou^t içx>n the stage about vÆiat, 
perhaps, will never be fitted for the public, and thereby the world 
put into an ejç)ectation of vÆiat, perhaps, they are never like to have'

(January 6, 1699).

That was his last kncwn comment upon his endeavour with the lunar theory
prior to IMM's composition, vÆiich is curious.

V  M Tie EpocJri o f  I M M :
IMM was composed at the dawn of a new century, in February 1700, by the 

Master of the Mint. Ihe stress of the great recoinage had passed away, and 
perhaps some new hope dawned that he could indeed resolve the problem. IMM 
opens with some basic parameters in celestial longitude. Its epoch spans 
twenty years from noon on December 31 1680 to noon on December 31 1700, 
over which it surveys the Moon's motion. Let us compare the mean values
there given with the actual positions at the time. This will give an idea
of vihat was involved.

Noon 31.12.1680 (O.S.)
Mean sun 20" 34' 46" Cap, true position 21 " 1', difference 26'
Mean moon l" 35' 45" Libra, true position 8" 3', difference 6" 27'
Node 24" 14' 35" Virgo, true position 24" 17', difference 2'

Noon 31.12.1700 (O.S.)
Mean sun 20" 43' 50" Cap., true position 21" 10', difference 26'
Mean moon 15" 19' 50" Aqu., true position 16" 59', difference l" 39'
Node 27" 24' 20" Leo, true position 27" 27', difference 3'

The 'mean' sun and moon are mathematical abstractions. They move at a 
uniform rate, so will normally differ from the true positions. The goal of 
a lunar theory was to bridge that gap, vhich evidently could be as much as 
six degrees, and to do so within a few minutes. This is vhat TMM was 
siçposed to accomplish. (We can either cite longitude by zodiac sign, as
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above, or by quoting the number of signs starting from zero Aries: for the 
mean sun, for exanple, instead of 20° Capricorn, we could give 9s 20°. Both 
conventions were then used.)

VX A pæ  T .i M o tio n

Ihe strange motion of the lunar apse was at the heart of the pn*lem.
A. quote from Newton's System of the World will outline the prdolem:

'By the same theory of gravity, the Moon's apogee goes forwards at the 
greatest rate vAien it is either in ccxi junction with or in opposition to 
the sun, but in its quadratures with the sun it goes backwards; and the 
eccentricity comes, in the former case, to its greatest quantity; in 
the latter, to its least...' Ihis gave a 'semiannual equation of the 
apogee', of amplitude 12° 18' 'as nearly as I could determine from the 
phenomena' (PNEM, p.475).

Horrocks' great discovery, concerning the secondary motioi of the lunar 
apse, made in 1638, was soon confirmed by telescope observations. Ihe new 
eyepiece micrometers could measure the changing size of the Moon. Before 
that, no-one could well discern the motion of the apse line. Ihere was an 
inequality called evection which was related (it was first given that name 
by Ishmael Boulliau in 1645, as the largest of the lunar inequalities); but 
there is no need for us to pursue it here. As Curtis Wilson has shewn, 
Horrocks reached his new model by theoretical means, by re-analysing the 
lunar theory of Kepler (Wilson 1987) ; cxily later on in the 1640s did the 
North-country astronomers Gascoigne and Crabtree provide COTifirmatory 
evidence from the Moon's varying apparent diameter (Chapman 1982, pp.l9- 
21). A letter of Flamsteed's printed in the Royal Society's Phil. Trans, of 
1675 concemed the Horrocksian system, describing hew it was cnly after 
'many curious and careful measures of the Moons diameters' that he came to 
realise that no other theory could account for the phenomena (Phil. Trans. 
1675, p. 368-370).

On top of this rocking motion - nearly 30° to and fro in the case of 
perigee, twice a year - a notional line joining apogee and perigee revolves 
against the stars once in nine years. Ihat line is a mathematical
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abstraction, from Wiich the true apogee and perigee positions can deviate 
quite widely.

We may view this perplexing issue retrospectively, by quoting the 
opinion of the French theoretical astronomer Clairaut given in 1748, in a 
letter to the Astroncmer Royal Bradley:

'Au reste la théorie de la lune qui résulte de ma soluticai est fort 
différente de celle de M. Newton: je ne trouve point corne lui les 
variations d'excentricité et les inégalités dans le mouvement de 
l'apogee.' (Gaythorpe, 1956, p. 136) 

lhat was the Horrocksian theory vhich Clairaut was rejecting. The lunar 
apogee does indeed have the 'inégalités' vhich Horrocks ascribed to it, 
more or less, but does its eccentricity vary as Horrocks described? Modem 
theory lacks anything resembling the ±21% variaticai in the eccentricity 
function, that TMM utilised, a matter further discussed in the next 
chapter.

If one turns to a nineteenth-century account of these things, say 
Stevenson's Newton's lunar theory exhibited Analytically, (1834) then vhat 
there majestically unfolds as 'Newton's Lunar Theory' has no trace of that 
double motion of the apse line: it has merely a single rotation in nine 
years. The whole thing much resembles Clairaut's lunar theory, and that of 
Horrocks is ncWiere to be seen. Clairaut's view, to quote further from his 
letter to Bradley, was: 'les différentes espèces de termes qui sont dans 
mon equation pourront bien faire le même effet que les variations dans 
l'excentricité et dans le mouvement de l'apogee. ' Stevenscxi's 1834 version 
thus ̂ )ears as a mythologised version of the 'Newtcaiian theory'. In a 
preface the author assures us he has merely translated the theory 'from the 
hieroglyphics of geometry' into the workaday language of alĝ ara.

Herein lies the nub of the prcAilem. The hieroglyphics of the geometri<o- 
kinematic forms in vhioh seventeenth century lunar theory expressed itself 
may seem as remote from modem comprehensicai as an arcane alchemic sygil to 
a modem chemist. It will require quite an effort on our part to enter into 
the meaning of these old diagrams, from a pericxi before trigonometric 
functions were used to describe the time-dependent variables of astrcxiomy.
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Whiteside's 1976 tercentenary essay marks the beginning of a realistic 

assessment of IMM. Entitled 'From hi^ Hope to Disenchantment', it has been 
accepted by more recent scholars, pre-eminently Curtis Wilson, Wiose fine 
achievement in the General History of Astronoay (vol. 2À) includes an 
evaluation of IMM. It concludes that Newton's adoption of Horxocks theory 
was a historical mistake, vhich prevented his making further progress. That 
seems a rather pessimistic view. Also it may not adequately assess the 
extent to ̂ hich Horrocks' theory was true. The young Horrocks has after all 
been viewed as initiating the tradition of British astronony (Chapman 
1982).

vnil EnJ-î̂ rrfcjĝ TmieirTtz. o f IMM

Craig Waff and Curtis Wilson both affirm that Newton's lunar theory was 
applied to the construction of lunar epheraerides in the first half of the 
ei^teenth century. If so, this is a matter of vital iirportance, for it 
would demonstrate beyond doubt that HIM had been decoded into practical 
rules. It seems a reasonable claim, for indeed why else would IMM keep on 
being reprinted over this period were in not used in practice? Curtis 
Wilson affirmed that the rules of ŒMM 'were incorporated in the tables of 
Charles Leadbetter's Uranoscopia (1735)'. (General History of Astronomy, 
p. 269) Baily had said the same in 1835, affirming that Leadbetter had given 
'a more perfect adoption of Gregory's Newtonian rales [Baily's term for 
IMM] reduced to a tabular form' (p.709) Baily added, however, that in 1742 
Leadbetter broo^t out a new set of lunar tables, 'without any allusion to 
Newton's labours. '

Turning to the work published by Leadbetter in 1835, chapter nine of 
Leadbetter's Uranoscopia is entitled, 'to calculate the true Place of the 
Moon more exactly than was ever yet done', however this contained no 
allusion to HIM. Half of the book consists of tables, but in the chapter 
introducing these tables, the last of the book, we again find no Newtonian 
allusions. Hie frontespiece of the book merely states that the book will 
give the 'Flamsteedian method of Ccmçuting times of Eclipses'.
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ïhere was an allusion to IMM, but it was ironical in tone. Discussing 

the work of a rival, Leadbetter advised his readers,
'Another tells us, that his Calculations are frcan Sir Isaac Newton's 
Theory of the Moon; and therefore nobody must question the truth of 
them. Indeed, if it were so, not any one living would dare to question 
them. But I der^ the assertion; and can prove, that his calculation is 
not from Sir Isaac Newtai's theory. '

It apears that kudos was available to any almanack claiming to be based 
i:ç)on IMM, and some rivalry is here evident. When Leadbetter compared some 
published predictions for an eclipse, he claimed to have made his own 
prediction 'from new Tables, founded upon. Sir Isaac Newton's Theory of the 
Moon'. Naturally, this gave the most accurate eclipse time. Does that 
amount to a claim that the tables of his book had been derived from TNM? If 
so, one can only say that the claim has been made in a hi^ily equivocal 
fashion. No such claim was made either in the two relevant chapters, or on 
the frontespiece*.

The French astronomer M.Bailly struck a sceptical note over TMM not 
found amongst English historians: he declared that 'mais il [Newton] avoit 
souvent parlé à la manière des prophètes, qui disent ce qu'on ne peut 
voir'. (Histx̂ ±œ de l'Astronomie Moderne, III, p. 150, quoted Baily p.694). 
This is a matter Wiich we may hope to resolve.

* Elsevhere, Leadbetter says of a rival: 'Tycho Wing, in Coley's Almanack, 
vhich he says is from Sir Isaac Newton's Theory of the Moon; but this is a 
mistake, because it is so vastly wide of the truth, that it will not bear 
the test.' Leadbetter appears to be claiming to have fathomed TMM, without 
committing himself to saying that his own tables were based upon it.
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MOTXOlSr

X S tag es  o f  EDeveXopannent:.

Vfe here review some themes leading to viiat was nearly the last stage in 
Newton̂ s lunar endeavour, in the second edition of the Principia of 1713. 
Hiis developed matters vdiich had been tersely stated in IMM of 1702. As was 
emphasised by Whiteside in his 1975 tercentenary address over the founding 
of the Royal Greenwich Ooservatory, the first edition of the Principia 
dealt most successfully with lunar motion as uniform and regular, as a one- 
hoày problem, the motion of a body around an immovable force-centre. In the 
Second Edition the position of the baricerrtre (Earth/Moon centre of 
gravity) was estimated, enabling two-body computations to be performed.

That accomplishment of 1687 did not assist the construction of lunar 
ephemerides. The first step in this direction came following a visit by 
Newton to Flamsteed at Greenwich in November of 1694, vdien he was ̂ cwn a 
table comparing observed and theoretically-derived lunar longitudes over a 
series of meridian-transits. The theoretically-derived positions were from 
Flamsteed's Horrocksian method as published in DOS (1681), and these were 
compared with lunar centre positions for the same times, obtained from his 
lunar limb observations. A column had been drawn i:ç) shewing the 
differences, ie errors in computed longitude, vhich averaged around ei^t 
minutes of arc. On the vhole, Flamsteed's determinations were within half a 
minute of error, thou^ cited to arcseconds.

Newton borrowed this tabulated data, and in the following months 
requested altogether just over two hundred lunar positions from Flamsteed: 
vhich he vjas sent - contrary to centuries of calumny about the latter 
refusing to part vjith his data - in the months following.

No mathematician ever had so many lunar positions of such accuracy. In 
the early months of 1695, Newton's letters to Flamsteed display a keen 
enthusiasm for the subject, and belief that his theory of gravity should be 
able to encompass the problem. After all, the rest of the IMiverse was 
obeying it.
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In this section we will not enter into the political dimension of the 

problem, our prime concern here being with the mathematics. Suffice to say 
that Flamsteed was not permitted to claim any credit for his enormous 
labours in producing the lunar data, and that the 1702 treatise appeared 
without his knowledge or consent. This phase of Newton's lunar endeavour 
terminated rather abruptly in 1695, shortly prior to his moving to London 
and becoming Warden of the Mint. Optimism gave way to bitterness, and vdiat 
had been a friendly and respectful correspondence since 1672 (Wien 
Flamsteed wrote to Newton over the letter's new colour theory) was replaced 
thenceforth by distrust, at least on the astronomer's part.

IMM, written by the Master of the Mint, surveyed the periods and 
inequalities of lunar motion, and described a kinematic model, basically 
that of Horrocks. IMM thus represents a diametric antithesis to the 
Principia's endeavour of 1687. The latter was a work of theory, of zero 
practical utility as far as lunar prediction was concerned. The former 
contained no theory as is nowadays understood (despite its title, conferred 
it is siçposed by David Gregory), and gives no hint that its author had 
developed an inverse square law of gravity. It is as if the hope expressed 
in early 1695 had been extingui^ed, in that no theory was present, and its 
author had regressed to a kinematic approach, with the old epicycles and 
deferents still there. The frequent reprinting of TMM throu^i the first 
half of the ei^teenth century indicates that it was hi^ily esteemed as 
(presumably) of practical utility. In it, Newton had begun to grapple with 
what was widely perceived as the most pressing scientific problem of the 
day, the finding of longitude from the wandering path of the Moon, for 
navigators at sea.

The tension between these two contrasting statements was resolved in 
1713, vdien the new FNFM reviewed the lunar inequalities, and claimed to be 
accounting for them by the theory of gravity. To vhat extent it did so will 
be discussed later. It was an extended attempt to deal c^namically with a 
three-boĉ  problem, viz. the interaction of Sun, Earth and Moon. The lines 
of Hailey's ode.
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At last we leam wherefore the silver moon 
Once seemed to travel with unequal stepŝ
As if she scorned to suit her pace to numbers- 
Till now made clear to no astronomer;

were ocoonposed for the 1687 edition, but did not properly apply to it, 
rather they eĵ ressed vhat Hailey as an astronomer hoped he was going to 
find in it. However, they could be applied to the 1713 edition.

XX XJLinajcr Xlneoxry ±jrk tX ie S^csorici EcXLtion

o f  n s r p M
As given in the Principia 1713, the lunar 'equations' - ie, angular 

distances between a mean and true moon - are based upon angles formed 
between the the Sun's position and both the apse line and nodal axis.

The Newtonian lunar 'theory' has three main conponents, vhich can be 
regarded as additive: (1) his 'equation of the centre', a variant of Seth 
Ward's 'empty focus' method of approximating to Kepler's second law; (2) 
the Horrocksian oscillation of the apse line, with its concurrent 
oscillation in the eccentricity of the lunar orbit; (3) six extra lunar 
'equations' added to these, vhich were entirely original. His method of 
ccmputing the Horrocksian oscillation used an approach of Edmond Hailey, 
whereby the lunar ellipse had its center on an epicycle vhich revolved 
twice yearly around a point near the Earth. A second small epicycle 
revolved around its perimeter.

In addition to these major ccmponents, there was also vhat astronomers 
call 'the reduction', namely the transform necessary to move from the plane 
of the lunar orbit to the ecliptic. However, this was straî itforward and 
unoontroversial, so need not be discussed here.

Let us start by viewing (2) and (3) as oscillations defined by sine 
functions of different periods. The computer can reconstruct the actual 
motions of the Moon over historical time, checking up on any element of the 
theory as required. Or, we may hope to discern them in Brown's lunar
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theory, Wiose gargantuan equations served as the very definition of time up 
until the mid-1980s, when they were formally replaced by atomic time. Our 
historical treatment requires only the first few terms of the modem lunar 
equations.

X I X  rnr&e ^HEo3rjrca>c~i <̂ t i y e a r  ̂  a n d  t h e  A j p s e
I_j_ne

'And those inequalities.. .generate the principle vMch I call the 
semiannual equation of the apogee; and this semiannual equation in its 
greatest quantity comes to about 12° 18', as nearly as I could 
determine from the phenomena. ' (ENFM, p.475)

Over a period of one year and forty-five days the apse line (Ŵ iich is 
the line joining apogee and perigee positions) aligns twice with the Sun- 
Earth axis. Let us call this period the Horroxian year, as there is no 
current astronomical term for it (The latinised form of Horrocks' name will 
here be used, solely for such astronomical terms as pertain to his theory). 
Over half that period, Jeremiah Horrocks in 1638 affirmed, the apse line 
had an oscillation of 12° amplitude. It swung dramatically back and forward 
twice, in addition to its yearly mean motion of 40°. Newton referred to 
this as 'the semiannual equation' (Scholium of Prop. 35, PNFM, p.475), by 
vhich he meant that its period was half a year. More precisely, its period 
is 206 days*. It goes throu^ two cycles per Horroxian year. By plotting 
the longitudes of apogee and perigee positions each month, we may inspect 
this claim (Figure 2.1).

In IMM of 1702, Newton gives the 'greatest Equation of the ̂ xogee 
12°.15'.4" (p.19). In PNEM he gives it as 12° 18'. Ihere is a drawback 
here, that no such oscillaticai is to be found in the heavens. An observer 
of the Moon's apogee, vhich is its position in the sky each month vhen it 
appears smallest, would perceive an oscillation in its ecliptic longitude 
of around two or three degrees only, twice each year, not twelve degrees.

* Ihe duration of the 'Horroxian year' comes from the equation,
1/365.24 - 1/3232.6 = 1/411.7 days
year apse rotation (9yrs)
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Uie perigee position in contrast oscillates more vigorously, moving back 

and forth with an almost twenty degree amplitude. If we take an average of 
these two oscillations, then the figure of twelve degrees appears. Thus the 
concept of an apse line is a rather gross approximation, since perigee 
diverges greatly from such an axis. The apogee and perigee positions have 
distinct motions. It may be useful to make the contrast with the nodal 
axis: the two nodes appear as diametrically opposite in the sl̂ , and have a 
more uniform motion, so it makes sense to visualise a nodal axis between 
them. To quote from a modem astronomy textbook:

'The oscillations [of the apsides] do not take place simultaneously, 
but alternately, so that the apsides are not always directly opposite 
one another in the zodiac, but are continually falling behind and 
overtaking these positions. The retrograde motion of the perigee 
(roû ily 40° ) is very much larger than that of the apogee (roughly 2° 
to 3° ), meaning that the former moves much more quickly than the latter 
against the fixed star background.. .the perigee can regress by more 
than 30° in a single month, vhereas the apogee moves for rp to four 
months within a field of only about 3°'. (J. Schultz, Wbveznezit azr? 
Mythm of the Stars, 1986, p.91)

The graph (see over) illustrates these motions, measured in ecliptic 
lOTigitude, of the apogee and perigee positions in modem times (it was made 
using the times for these events as given in Meeus' Astronomical Tables 
(1983), and conputing positiŒTS therefrom.) The graph shews a mean motion 
of the two positions of 40° per annum, which is approximately thirteen 
anomalistic months as plotted on the X-axis (The positions should really 
alternate on the gr̂ ii, with apogee appearing first followed by perigee two 
weeks later, however the graph program cannot manage this, so they appear 
simultaneous).

À model approximates to reality. In this case, the Horroxian model took 
the apogee and perigee motions as having a mirror-symmetry which they lack 
in reality. As the model was not primarily concerned to account for lunar 
distance - reflected in its apparent size in the sky - but to predict 
longitude, let us hope that this was not too much of a disadvantage.
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We have seen how the unwary reader of PNFM could here be misled on two 

counts: the inequality was not of the apogee as stated, but of the apse 
line; and it was only approximately half-yearly ('semiannual'). Also, 
because this function is discontinuous - there is only one perigee position 
per month, it has no existence in between these times - a degree of 
accuracy quoted to seconds may not be very meaningful.
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Figure 2.1; Apogee and Perigee Motions on a 180° scale of ecliptic longitude, illustrating their 
coincidence on an 'apse line', and the greater notion of perigee as compared to apogee. Programs 
do not give apogee and perigee positions, here reconstructed from times supplied by Heeus (1983).

The graph shews hew the secondary motion of perigee is much larger than 
apogee. 180“ has been subtracted from the perigee positions to align them
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with apogee. Hieir mean motion can be seen as some 80° over two years. Itiis 
is the 'mean apse' motion, of 3° per month or one revolution in nine years.

We can new accept Newton's account as given in PNFM, if we just 
substitute the word 'perigee' instead of 'apogee' :

'.. .the moon's apogee goes forwards at the greatest rate vdien it is 
either in conjunction with or in opposition to the sun, but in its 
quadratures with the sun it goes backwards' (p.475)

In figure (1), the maximal forward motion of perigee corresponds to the 
alignment of the Sun with the mean apse line (ie, the Sun in conjunction or 
opposition to apogee), vàiereas its retrograde motion becomes maximal at the 
quadratures. Ihe converse ajplies for apogee.

Historians of astronomy tend only to discuss the mean apogee motion, of 
3° per lunar month, and the historical problem of accounting for this 
motion by a gravity theory. Ihey seldcm acknowledge that the apse line 
really does have this rather interesting secondary motion, discussing the 
Horrocksian model as if it were merely a reformulation of the antique 
concept of 'evecticai'. Rather, this motion was a fine British discovery by 
the young North-country clergyman Horrocks, and it formed the core of vtot 
Newton recognised as the best lunar model available in the seventeenth 
century. Corollary 7 to PNPM's Proposition 46 of Book I (Motte translation 
p. 178) claims to deduce this oscillating motion from the theory of gravity, 
and one would like to have an expert opinion iç»n the cogency of its 
argument.

X V  A n
Since Hipparchus, eccentricity had meant the Earth's distance from the 

centre of a circle, to vAiich the lunar orbit approximated, as a fraction of 
the radius of that circle. In all the diagrams in the Principia, in those 
of Horrox and Flamsteed, in Whiston and Gregory in the ei^teenth century, 
the lunar orbit appears as a circle. Did eccentricity still mean Earth's 
displacement from such a centre? Historians assume that these writers were 
dealing with an ellipse of varying eccentricity, as we nowadays define the 
term.
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The modem value of lunar eccentricity is 0.05490, however it does not 

alter in modem theories. Gaythorpe (1925) explained how the modem 
evection terms were mathematically equivalent to Horrocks's varying 
eccentricity. TMM's value ranged between 66782 and 43319 parts per million, 
v^ch is a mean of ±0.055050, varying by 21.31%. The earliest recognisably 
modem definition of eccentricity that I have come across appears in a 
glossary of astronomical terms by Leadbetter, \̂ erein it was defined as 
follows:

'Eccentricity is the distance between the center of the ellipse and the 
focus.' (1742, Vol.II)

Ihe classical notion of eccentricity signified the Earth's 
displacement from the centre of a circle. If A and P are then the apogee 
and perigee distances, expressed as Rfx and R-x vhere R is the radius; then 
the eccentricity will be x/R or (A-P)/2R. Ihis is equivalent to the modem 
ellipse-based definition if the circle in question has its diameter equal 
to the long axis of the ellipse. Measuring A and P in Earth semidiameters,
R is 60.2. Ihe corrputer was set to generate successive lunar distances at 
mean apogee and perigee positions and thereby c±tained this function at 
monthly intervals. It is shown in Figure 2.2, with IMM's mean value 
inserted for comparison. It varies by somevtot less than 20%, but may serve 
to indicate how British astronomers of the Restoration viewed it as 
fluctuating. Figure 11.1 diagrams this fluctuation.

LUNAR E C C E N T R IC IT Y  VARIATION
A N O M A L I S T I C  M O N T H S  A F T E R  D E C  31, 1680

C O N J U N C T
A P S E

S Q U A R E
A P S E

SUN S Q U A R E  
A P S E

T M M ' S  MEAN

2 0 6  DAYS

M O N T H S

Figure 2.2: discrete monthly values of a simulated eccentricity value, (À-P)/2R, where À and P are 
mean apogee and perigee values in Earth simidiameters and R is 60.2, for the months of 1680 and 
1681. Its mean value was 0.0543, fluctuating between 0.0639 and 0.0448.
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The long axis of the ellipse (À-+-P) was found to vary ty only 1% over 

this period, indicating that the elliptical shape of the orbit hardly 
altered. It is evident that William Whewell's interpretation of the 
Horrocksian model went somevAat astray:

'Hiat the Inequality of the Eccentricity of the lunar Orbit, vàiich 
is greatest vlhen the Line of the Apsides falls in the Conjunction or 
Opposition, and is then one and a half of vtet it is in the 
Quadratures; v^ch consequently renders the Ellipsis perpetually 
mutable, sometimes coming nearer to a Circle, sometimes a great deal 
more remote from it, so as not to be reduc'd to any certain Species, 
and Wiich is scarcely to be accurately defined...

{AstroTxmical lectures, 1728, p. 130) 
While we have been able to discern something resembling his 50% alteration 
in eccentricity, this does not imply a corresponding alteration in the 
orbit shape, vtoch would indeed be bewildering.

I could not generate values for the modem definition of 'e' in a like 
manner, cwing to the absence of an iterative procedure for locating the 
minor axis of the ellipse: the 90° angle between MDon and mean apse is not 
halfway in time between apogee and perigee positions.

While the fluctuation in eccentricity every 206 days has similar 
periodicity to that of the apse line, of two cycles per Horrocksian year, 
the two are 90° out of phase: eccentricity reaches its maximum as the Sun 
aligns with the mean apse, vAierease the perigee position is moving most 
quickly then, its rate of change in ecliptic longitude being maximal. 
Chapter Seven will cteerve how the model of Jeremiah Horrocks accounted for 
these two interlinked motions.

À comparable function over the Horroxian year was assigned to the 
Moon's varying speed, phased to the apse line's conjunction with the Sun.
It was again a second harmonic (ie, a 20 function), zero \ihen the Sun was 
conjunct the apse line or at quadrature to it, and maximal at the octant 
positions. Newton also calls this equation 'semiannual', giving it the 
magnitude 3'45" (TMM, p.15; PNFM, p.474).
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UJcewise for the nodal axis, Wien the Sun is conjunct or in quadrature 

to it, Wiich he calls the 'second seraestrial equation,' again maximal at 
octants, of amplitude 47". This will be sli îtly shorter than the Horroxian 
year (IMM, p.17; PNFM, p.475). I have not looked at these.

Ihe Anomalistic year is virtually the same as the Tropical year, as 
Earth's aphelion hardly moves. It appears in the annual equation (See next 
chapter). FNFM claimed that the apogee and nodes moved faster at perihelion 
than at aphelion (Bklll, Prop.35, Scholium) than at the aphelion. In other 
words, these two axes revolved faster in January, slower in July. Three 
motions were assigned to the apse line: the first being its rotation every 
nine years, the second that of Horrocks, viz its oscillation every 205 days 
with twelve degrees amplitude, and now a third of annual period and 
amplitude 19' 43" (PNFM, p.474).
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cln - 3 SOME E>ERSE>ECTXVES ON TMM

X Errom M±rïurtûes t o  Sec3ognĉ ff=s

IMM cited its Icxigitudes to seconds of arc. Did astronomers of that 
time really enjoy such accuracy? Curtis Wilscai has ascertained that the 
ephemeris of Thomas Streete was the most exact of any available in the 
seventeenth-century (GHA, p.180). Flamsteed wrote in 1669 that 'I esteem Mr 
Streete's numbers the exactest of any extant' (GHA, p. 179). To give some 
idea of his data accuracy, let us consider a total solar eclipse Wiich 
Streete cited in his Astronomia Carolina of 1661. This was visible in 
London, on May 22nd 1639. Streete gave the '^parent Time' of its end as 6 
hours, 10 minutes, 27 seconds, from vMch he derived vtot he called its 
'Equal time' of six hours, zero minutes, 27 seconds. That is to say,
Streete's 'equation of time' was ten minutes, by subtracting v^ch he 
converted to mean solar time. As the computer shows, his longitudes for 
that moment were well within half a minute, if not justifying their 
oitation to the nearest second:

Streete's positions actual differences
Sun: 10“ 49' 28" Gemini 10“ 49' 53" Gemini - 25"
Moon: 11“ 58' 26" Gemini 11 “ 58' 0" Gemini + 26"

For readings taken in 1639, they are quite iirpressive.

Moving on to the 1690s, research conducted by the present writer in 
collaboratiŒi with Bernard Yallop at the RGO (ur̂ )ublished), has indicated 
that the stellar c±3servations tabulated in Flamsteed's Historia tended to 
be within five seconds of arc or so accuracy. For example, on March 8th 
1695, the star Aldebaran was cited as having a zenith distance of 15“ 51' 
24", in the Historia Coelestis' Volume II. Subtracting that frcan 51“ 28' 
10", v^ch was Flamsteed's value for the latitude of Greenwich, then 
subtracting out the appropriate value for refraction corresponding to that 
altitude as given by modem tables, gave 35“ 36' 18" declination. The 
computer determines the correct declination for Aldd^aran at that time as 
having been 35“ 36' 15", a difference of three seconds. Likewise for the 
star Spica on ̂ ril 12th, 1698, the error was 5 secOTids of arc. These
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vertical star readings are relatively sinple to compare: there is no 
parallax correction as is needed for the Moon, nor any equation of time as 
is needed for ri^t ascension, where acccuracy in timing to minutes or even 
seconds is vital.

Allan Chapman has conservatively estimated the accuracy of the original 
Mural Arc at Greenwich at 12" (Chapman 1982 p.6), but as this historic 
instrument was lost on Flamsteed's death (Possibly a consequence of Hailey 
filing a lawsuit against Flamsteed's widow, claiming the equipment as his 
own, on the grounds that he was the new Astronomer Royal. He lost the case, 
^e  lost the instruments), this estimate was an inference, merely based on 
comparable instruments of the time.

Trmar readings on that lAiral Arc could not aspire to quite such 
exactitude as the stellar positions. Taking a vertical reading as the lunar 
limb touched the central filament of the telescope's eyepiece was a less 
accurate affair. By the time the data had been tabulated and had certain 
astronomical adjustments applied, the errors would be greater. We found 
that, for a batch of 16 positions sent to Newtcxi in Flamsteed's letter of 
February 7th, 1695 (reproduced in CorrespondenceflM, p.84) the mean error in 
longitude was 0.4±1.2 minutes of arc. Ihat was after Flamsteed had applied 
various corrections and converted from equatorial co-ordinates 
(declination, ri^it ascension) to ecliptic (longitude, latitude). The issue 
of how lunar data was reduced into a form suitable for theoretical use will 
be reviewed later. Here we are merely concerned to make some preliminary 
comments about data accuracy.

XX CjCxncajL'tzXons o X

The conditions under whioh TMM was composed have a couple of rather 
strange, indeed startling, features. The original manuscript (kept at 
Cambridge Iftiiversity Library, Add. 3966), was composed on February 27,
1700. Its date of composition comes from David Gregory, a reliable source 
because of the reverence with which he recorded matters Newtonian. His copy 
is in the library of the Royal Society, with the composition date marked.
We have seen how the epochs of TMM are December 31st 1680 and 1700, the two
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limits over vAiich various celestial positions were given. Ihe positions for 
the latter date were therefore predictions. Ihey had not then been reached. 
It appears that, vhen the reference date of December 31st was reached, the 
positions there given were not checked or amended in any way prior to 
publication in 1702. Perhaps they did not need any amendment.

In the very month of IMM's composition, Newton was confirmed as the 
Master of the Mint. On the third of February, a rcyal edict proclaimed:

'Know yee that wee for divers good causes.. .do give and grant unto Our 
trusty and Well beloved Subject Isaac Newton Esqr. the office of 
Master and Worker of all our Moneys both Gold and Silver within our 
Mint in our Tower of London and elsewhere in our Kingdom of 
England.. .And knew yee that wee for the considerations aforesaid have 
given and granted, and by these presents do give and grant unto the 
said Isaac Newton all edifices, buildings. Gardens, and other fees, 
allowances, profitts, privileges, franchises and immunities belonging 
to the aforesaid Office... '

It cannot but strike us as rather extraordinary, that within weeks of 
acquiring such a responsible position, one of the most demanding jobs in 
the country, Newton should find time to ponder the niceties of lunar 
motion, and canpose a brief but (±scure opus on the subject. Not long 
after, Newton would have to ready himself to stand for the Trial of the 
Pyx, Wiereby the quality of the gold of the natioi's currency was tested
and to vdiich the Master of the Mint was personally answerable for
deficiencies. Not less than two thousand pounds was expected to be 
submitted by the Master of the Mint in advance as a security for the 
operation. His full attenticxi was expected over the problems of 
bimetallism, vhereby the differing values of gold and silver defined the 
relative wei^its of the currencies cast in them. In these years he still
retained his position - and income - as a Fellow and professor of Trinity
College, Cambridge.

The twenty-year period specified by the epochs of IMM was a multiple of 
four, whereby the leap years would fit in and not disnçjt the flow of
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œoipitation, and was the smallest such multiple to embrace a Saros and 
nodal cycle, each of ei^teen years. But, in addition, these twD decades 
had a very personal significance for Newton. Without wishing to over­
generalise, they framed the main period of Newton's creative life in 
relation to astronomy. In 1680 there arrived the great comet which the 
Trinity lecturer sat iç> <±)serving, follcwed in 1682 by vhat was later 
recognised as Bailey's comet. His composition of TMM in 1700 appears as the 
grand finale of that output. There is no real evidence of his further 
studies of the matter after this date (Baily, p. 706). His vast ruminations 
on the cosmic process v̂ ere framed by these two decades.

TMM's date of composition being controversial, there are three further 
occasions vhen evidence relevant to this is treated: Chapter Four, Section 
III comiments on IMM mean motions found in a separate document; Chapter 
Seven, Section III comments ipon apse equation values and Chapter Nine, 
Section VIII, evaluates an alleged early draft of TMM.

X X I M a X X e y ^ s  Hcqpe

IMM was published by David Gregory, formerly professor of Mathematics 
at Edinburg Lhiversity, who in 1702 became Savilian Professor of Astronomy 
at Oxford Ihiverity. Ihe title of Gregory's textbook, in which IMM was 
included, vms (in English translation): The Elements of Physical and 
Geometrical Astronomy. The claim to have established a 'physical' astronomy 
echoes that made earlier by Kepler, at the frmt of his Astronomia Nbva. 
Introducing TMM, Gregory dismissed previous endeavours in this area for 
their lack of a physical basis:

'But as they made their Tables not from known Physical Causes and 
their Periods, but only by attending to Observations, it is no vrander 
if they did not ri^tly distinguish the Inequalities from one 
another...' (Gregory 1715, p. 132)

Ihis alludes to the large question of the extent to vhich IMM was based 
upon 'physical causes', vhen nothing in its text indicated such. We vd.ll 
not now return to this issue. But, vhat did Gregory mean by claiming that 
his astronomy was also 'geometrical ' ?
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In a sense, 'geometrical' merely signified, 'perfect, ' alluding to the 

exact nature of geometrical proofs, as free from af̂ jroximations. It echoed 
ancient Platonic notions about astronomy with vàiich his readers would have 
been familiar. Later in the century it would become evident that, for 
matters involving time-dependent variables, geometry was not so suitable. 
Fluxional and differential methods were then just beginning to be adopted 
by mathematicans, and half a century later would become the new format for 
expressing these things.

A comment by Edmond Hailey, made vAiile discussing the Principia's lunar 
section in its first edition, is worth quoting in this context:

'And tho' by reason of the great Complication of the Problem, he has 
not been able to make it purely Geometrical, tis to be hoped, that in 
some further Essay, he may surmount the difficulty*. '

If it strikes us as curious today, it is because we view progress in this 
area as having taken place throu^ the discarding of geometrical methods, 
and their replacement by algebraic functions. Our ability to believe that a 
historical figure was applying a theory of gravitation to deduce or obtain 
results, is likely to depend upon their having progressed in some degree 
beyond a merely kinematic or geometrical mode of reasoning. However, TMM in 
1702 developed a geometrical mode of reasoning, just as Hailey had hoped.

Gregory extolled the accuracy of IMM hi^ily in an introductory paragraph, 
thou^ it was a thing he had no means of assessing:

'By this theory, vtot by all Astronomers was thou^t most difficult and 
almost impossible to be done, the Excellent Mr Newton hath now 
effected, viz. to determine the Moon's Place even in her quadratures, 
and all other Parts of her Orbit, besides the Syzygies, so accurately 
by calculation, that the Difference between that and her true Place in 
the Ifeavens shall scarce be two Minutes, and is usually so small, that 
it may well enou^ be reckoned only as a Defect in CXDservation. '

* 'A True Theory of the Tides', Phil. Trans of 1695, (19, pp.445-457). 
Allegedly this was destined for James II as part of Hailey's presentation 
of the PNFM to the King.
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Gregory has here made the bold claim that the theory developed so far that 
its predictions were only limited by the accuracy of the data on Wiich it 
was based. It was viiat would nowadays be called a sales blurb. Gregory was 
a theoretical astronomer. Flamsteed referred scathingly to him as a 'closet 
astronomer' because he did no practical work (Baily, p. 204). We will soon 
see how Flamsteed's opinion, at least over this specific issue, was quite 
justified.

On the other hand, Gregory's judgement was largely endorsed, years 
later, by no less a person than the Astronomer Royal. Edmond Hailey, vhen 
after 1719 he assumed that post, did have the opportunity to oheck IMM 
against accurate data. His opinion, \diioh we have already in part quoted, 
shows the strongly politicised nature of the discussion, Wiich seems to 
have continued ever since. Hailey found that 'for vÆiole months together'
IMM was:

'.. .rarely differing two minutes of Motion from the Chservations 
themselves; nor is it unlikely but good part of that Difference may 
have ben the Fault of the Observer. And vhere the Errors were greater, 
it was in those parts of the lunar orb vhere Mr Flamsteed had very 
rarely given himslef the Trouble of observing: viz, in the 3rd and 4th 
quarter of the Moan's Age, v^ere sometimes these differences would 
amount to at least 5 minutes.'(Phil. Trans, 37, p. 191)

My investigations have not confirmed either that errors of such magnitude 
were present in the lunar observations of Flamsteed, or that the data came 
mainly for the waxing half of the lunar orbit tending to omit the last two 
quarters. A later section will assess the question of data accuracy and 
reliability. It becomes a rather central issue, if both Whiston and Hailey 
are claiming that the performance of IMM was limited primarily by the data 
on Wiioh it was based.

Ihese days, the pendulum has swung in the opposite direction. Curtis 
Wilson boldly described Newton's great lunar endeavour as a 'failure'
(1987, p. 76), and the reference cited for that claim was the Whiteside 
tercentenary essay. Ihere is room for doubt as to Aether Whiteside adopted 
quite so extreme a position. It is worth quoting the conclusion of
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D.T.Whiteside's tercentenary address, for this study has formed the 
starting-point of modem discussions of the topic:

'It is, unfortunately, one of the most tenacious myths of Newtonian 
hagiography that this derai-god of our scientific past made his 
dynamical explanation of the moon's motion in all its irregulariy the 
siçjreme proof of his monolithic principle of the universal inverse- 
square law of gravitation vMch governs all celestial and terrestrial 
movement, and this in a surpassingly rigorous geometrical manner vhich 
he made inimitably his own. ’’Who", to quote Whewell's eulogistic 
jhrase of a century and a half ago, "has presented in his beautiful 
geometry, or deduced from his simple principles, any of the [lunar] 
inequalities vhich he left untouched?" Ihe truth, as 1 have tried to 
sketch it here, is rather that his loosely approximate and but 
shadcwily justified v^y of deriving those inequalities vhich he did 
deduce was a retrogressive step back to an earlier kinematic tradition 
vhich he had once hoped to transcend, and to a limited Horrocksian 
model vhich was not even his own invention' (1976, p. 324).

More recently, Wilson concluded a fine study of the matter by saying, 
that the Newtonian lunar endeavour had come unstuck because:

'Newton's effective adoption of Hbrrock's lunar theory, by interfering 
vfith ongoing insist into perturbations not actually embraced by that 
theory, proved ultimately an insurmountable chstacle to him' (Q3A, 
p. 267).

That is a novel interpretation of the failure, if indeed we should regard 
it as such. A great British discovery, vhich formed the backbone of the 
finest lunar theory available (that of Flamsteed, the Astronomer Royal), is 
blamed for having prevented a mathematican from having been more 
successful, by virtue of his adopting it. Perturbation theory is something 
one thinks of as developing in the middle of the ei^teenth century, and in 
France. We are merely pointing out that a pn±>lem seems to exist, in 
deciding vhether or not an enterprise was a success or a failure, and if 
the latter, on vhat that should be blamed.

In a sense such verdicts must be conjectural. Ihtil we knew how IMM 
functions, as an integral whole, it must remain so. ISitil then, we can only
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quote the radically opposed views of Hailey and Flamsteed (for example), 
and perhaps side with one or other. Here we shall aspire to reach beycxid 
such an armchair approach, and resolve centuries-old controversies in a 
practical manner. IMM is like a machine, a watch, vhich once wound and 
set in motion will generate positions for the luminaries. It will do this, 
provided only that we can follow its instructions. We here aim to set its 
antique vheels in motion, to see hew they move one against the other, 
thereby to gain insist into what has long been an obscure and neglected 
area in the history of science.

X V  McorvdLng t M e
After the cognoscenti had been nodding their heads over these matters 

for three years, and rumours put about that such profound accuracy had new 
been achieved that Flamsteed need not bother any more in gathering lunar 
observations, for the job was done (Baily, p.176); Newton then submitted 
some Ĉorrections' ajplying to TMM, one of vÆiich shifted the position of 
its 'mean moon' by ten minutes. He thereby displaced the values vhich IMM 
would generate by five times more than its siç:posed maximum error, as 
affirmed by Gregory. Ihe concept of a 'mean moon' and of this adjustment 
will be elucidated further in a later chapter, but suffice to say that it 
is the fundamental starting-point for a lunar theory. It is hardly adequate 
to characterise such an alteration as an 'correction. ' (Cdien,p.87. The 
Corrections appeared in Miscellanea Curiosa of 1705, published by the Rcyal 
Society.)

The year before these 'corrections' appeared, Flamsteed described hew 
the Royal Society's President paid him a visit at Greenwich. Ife was shewn 
some early lunar positions of the 1670s and 80s, and their disagreements of 
up to ten minutes with IMM:

'I shewed him also ity nev lunar numbers, fitted to his corrections; 
and how much they erred: at vMch he seemed surprised, and said "It 
could not be.” But, when he found that the errors of the tables were 
in cAservations made in 1675, 1676, and 1677, he laid hold on the 
time, and confessed he had not looked so far back: vhereas, if his
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deductions from the laws of gravitation were just, they would agree 
equally in all times.' (Baily, p.217)

This was in a letter to Abraham Sharp. Sharp was a mathematics teacher with 
vhcati Hailey corresponded over a formula he developed for the convergence of 
7T, who built the Mural Arc in 1690 that was much admired, and vho stuck the 
stars onto Flamsteed's maps of the constellations. He is thus a fairly 
significant witness to the course of events. Flamsteed may have been by 
this time (1704) rather embittered by certain aspects of Newton's 
behaviour, but that is not a reason for dismissing or marginalising his 
opinions, as haî )ens in some histories of these events. If perchance we are 
able to make TMM function, we should be able to test his view, that it 
works better for the 1690s than for the 1670s, as it was designed to fit 
data over the former period.

We can only speculate. Perhaps the errors shewn on this visit impressed 
the President, and led him to decide that a slip-vç> had occurred. A 
subsequent chapter will ascertain v^ch of these mean positions was the 
more correct.

V  A  M c x a e m
We aspire to follow the path of a new generation of historians of 

astronomy, picmeered in America by Cwen Gingerich and Curtis Wilson. They 
have used computers to probe into the past to ascertain hew accurate were 
the endeavours of any astronomer in history. Thereby they have given a 
greater emphasis on the practical side of astronomy in a historical 
context, vdiich was much needed. Centuries-old discussions are now 
resolvable, and a precise new basis can be given to the history of 
astronomy. Little has been done in Britain along these lines, to-date.

cwen Gingerich (at the Harvard-Smithsonian Center for Astrophysics) 
studied 'error patterns' in ephemerides, by comparing their predictions 
against actual positions over the years. This showed the extent to viiich 
the theories of astronomers were succeeding in practice. If we knew of a 
lunar almanac vhich had used TMM, we could assess its accuracy simply by 
following this approach. Curtis Wilson has prĉ Ded into the specific
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coomponents of lunar theories of this period, comparing the diverging values 
of solar and lunar constants.

In a sense these things all form part of the tercentenary process. In 
Britain, the most accurate lunar and planetary programmes are those 
developed by the Royal Greenwich Chservatory, at the Nautical Almanac 
Office. In the 1950s, the 'Improved Lunar Ephemeris' was there developed, 
and revised in the 1970s, to chtain something near to one second of arc 
accuracy in historical time. It has around sixteen hundred terms for 
longitude, as compared with the historical theory we are examining vhich 
had seven. The I.L.E. programme is powerful enou^ to be able to determine 
the accuracy of the vrark of the founder of the R.G.O., the Reverend Jchn 
Flamsteed. Ihree centuries after Flamsteed set iç) his great mural arc in 
1691 - characterised by Allan Chapman as 'the finest and most exact 
astronomical instrument constructed to-date' (1990, p.57.) - computers can 
finally match its accuracy in checking its positional data.

ÜUÜÜÜÜütXJUÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜOütJÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ̂
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O tl . 4  A  C O M M EN TA R Y  OIST TMM

Our approach here is complementary to that of Bernard C3ohen's 
excellent 1975 treatise. Cohen there discussed the circumstances of IMM' 
production, its various editions in Latin and English, the comments made 
içxDn TMM by astroxfmers, and vhy science historians had largely ignored the 
subject. We on the other hand are concerned with the argument of this 
document. This has scarcely (we believe) hitherto been attempted. This 
section will deal only with its first seven paragraphs. To each paragraph 
of TMM we assign a roman numeral. The reader may wish to refer back to page 
6, vhere some preliminary comments were made, and also to values of some 
Newtcaiian constants in the ̂ pendix.

I 'The Royal Ctoservatory at Greenwich is to the West of the Meridian
of Paris 2° 19'. Of Uranibur^ 12° 51' 30”. And of Gedanum 18° 48".

The Paris meridian is 2° 20' East. In those days there was no general 
agreement on the 'Greenwich Meridian', so the distances between 
chservatories in longitude was vital for comparing ctoservaticais. For once- 
glorious Uraniborg, then fallen into rack and ruin yet still important for 
astronomers as the site ̂ ere 'The prince of astronomers' as Flamsteed 
called him, Tycho Brahe, had once worked, the true longitude is 12° 27' .0 
East. TMM's value for its distance in longitude erred by 24 minutes! This 
would have introduced an error of 1̂  minutes of time into any data that was 
being transcribed, from Uraniborg time to Greenwich time.

'Gedanum' referred to the dDservatory of Danzig (new Gdansk), vhere 
Hevelius worked. This would have grown into the most illustrious 
observatory in Europe, had it not tragically burnt to the ground in 1679. 
Flamsteed coipared many of his observations with those of Hevelius, and was 
startled to find them agree to within a fraction of a minute in many cases, 
even thou^ Hevelius used caiLy his own eyesi^t unassisted by the new 
telescope plus micromster-gauge. With such close agreement, the correct 
time-correction would have been a vital matter. Its correct longitude is 
18° 24'.6, so TMM's position was again in excess, by 23̂  minutes of arc.
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II 'Ihe mean Motions of the Sun and Moon, accounted from the Vernal

Equinox at the Meridian of Greenwich, I make to be as follcweth. Ihe 
last Day of December 1680 at Noon (Old Stile) the mean motion of the 
Sun was 9 20" 34' 46". Of the Sun's ̂ pogaeum was 3 7° 23'
30"'.

'Motions' signified 'positions' at specified epoch times, measured in 
ecliptic Imgitude, and cited for noon as the time of day for vhich an 
ephemeris had to define positions. Ihe zodiac begins from 0° Aries at the 
Vernal Point, so '9 sign' meant the nine zodiac signs on from that position 
on the ecliptic, viz the sign of Capricorn (A modem astronomer would cite 
such a longitude as 9x30 + 20" or 290"). In the next section we consider 
hew accurate was the Newtonian value for the Sun's mean position. Gingerich 
found that solar errors in ephemerides of this period were not more than 
several minutes of arc (1983 p.xix). Solar positions were strai^tforward 
to calculate, depending merely i:ç»n the eccentricity value used for the 
Earth's orbit.

Ihe 'Sun's apogaeum' referred to the Earth's aphelion, its position of 
furthest distance at midsummer from the Sun. Ihis was a remnant in 
terminology from the old geocentric terminology, vhereby the Sun circled 
the Earth. Ihe more or less fixed position of the aphelion is here 
specified to an accuracy of four minutes.

Ill 'Ihe mean Motion of the Mocxi at that time was 6 l" 35' 45". And
of her Apogee 8 4" 28' 5". Of the Ascending Node of the Moon's
Orbit 5 24" 14' 35"'.

'Motion' refers to position in ecliptic longitude. Ihe node position 
has an accuracy of two minutes (p.6). As regards the accuracy Wiich Newbon
hoped his mean moon position to have, we may quote frcan a letter of his to
Flamsteed of January 15, 1695 - the period of early optimism:

'In trying to compute the mean motion of the moon frcan the tezqpus 
apparens in some of your observations, I find that the mean motion, 
gathered by my computations, differs sonetimes from that in your
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synopses 5" or 6”, or above. Which makes roe suspect that, in 
determining the tempos apparens, your servant followed some tables 
which are not sufficiently exact... '

Years later, some 'corrections' were specified for TMM, (Cohen, p.87) one 
of \«hich was a ten minute displacement of the mean moon, from 1° 35' 45", 
to 1° 45' 45". The new value was used in Whiston's reprinting of TMM in 
1707. It does better relate to the final lunar position given for 1700, in 
terms of the mean tropical lunar period vAiich links them together.

Five seconds or ten minutes? Years later Flamsteed concluded that 1'30" 
should be added onto the Newtonian value for mean moon (August 31, 1714, 
Baily p. 698). Chapter Five will ascertain to vhat extent he was correct on 
this matter.

Lunar apogee here refers to a notional mean apse line, ie one having 
uniform motion in longitude, and not the actual position of apogee 
(pp. 11,12). This apse line position is cited as being 244° 28' 5". Its true 
position was about three minutes more than this, which was quite accurate 
for the period. The mean apse line was the foundation for lunar theories.

IV 'And on the last Day of December 1700 at Noon, the mean Motion of
the Sun was 9 sign 20° 43' 50". Of the Sun's ̂ xogee 3 sign 7° 44' 
30". The mean Motion of the Moon was 10 sign 15° 19' 50". Of the 
Moon's ̂ xogee 11 sign 8° 18' 20". And of her ascending Node 4 sign 
27° 24' 20". For in 20 Julian Years or 7305 Days, the Sun's Motion 
is 20 revolut. 0 sign 0° 9' 4". And the Moticffi of the Sun's apogee 
21' 0".'

These positions are intended to be mechanically linked to the previous ones 
of 20 Julian years earlier, throu^ their mean periods. The Sun's position 
in longitude has moved on by 9 minutes, as the Julian year of 365.25 days 
is not quite the same as the Tropical year and so it generates that much

* These dates are January 11th and 12th New Style. To derive mean motions, 
the tropical year of 365.242 days and the tropical month of 27.321 days 
were used.
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displaœment in 20 years. Britain was at this time refusing to abandon the 
old Julian calendar, as most of Europe had a century earlier, for religious 
reasons.

TWO months after TMM's oorrposition, in ̂ sril of 1700, we find the Master 
of the Mint again musing i:ç»n 'Elementa motuum Solis et Lunae ab 
Aequinoctio vemo'. He gave some more mean positions to the nearest second, 
for January 1 1701, Old Style (Corr. IV, p. 328). The computer gives us 
(after converting Old Style to New) the following comparison:

Mean Sun 21° 42' 38" Capricorn true position 22° 12' Capricorn
Mean Moon 28° 30' 12" Aquarius true position 28° 53' Aquarius.

This data clearly supports the date given by Gregory of early 1700 for 
TMM's composition. Normally, one would not require confirmation of so 
reliable a source; however, it was as we have seen a rather extraordinary
period in life to choose an attempt to fathom this hi^ily inscrutable
issue, and we may be grateful for supporting evidence over its date of 
composition.

A mean sun moves 59' 8" per day, every day, thereby going round the 360° 
of the ecliptic in 365.24 days. For a mean sun, one adds on this amount to 
move from the sun's position at noon on December 31, 1700, to its position 
the next day January 1st, 1701. Let us see vhether this has been done*.

Solar motion, from noon December 31 1700- January 1st 1701
as given by Newton: 58' 48"

by mean sun: 59' 8"
actual motion: 1° 2'

Lunar motion, from noon December 31 1700 - January 1st 1701
as given by Newton: 13° 10' 22" 

by a mean Moon: 13° 10' 34" 
actual motion: 12° 54'
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Ihis confirms unequivocally that mean solar and lunar motions were being 
used. The discrepancies then became merely 20 and 14 seconds respectively, 
far less than the divergences from actual positions of 3 and 16 minutes.

The figure given for the motion of the Earth's apse line is of 
interest, as the motion or 'quiescence' as PNTM put it of the planetary 
apses was controversial. Vincent Wing in his Urania Practica (1649) gave it 
a motion of I'Ol" per annum, somevAiat less than TMM's value of 21' in 20 
years. Streete in his Astronomia Carolina said the motion of planetary 
apses was immobile with respect to the stars, ie that their motion in the 
tropical reference was identical with the precession value. Flamsteed in 
the Preface to his Historia Coelestis suggested 1' 3” as its annual motion 
(p. 147) vhich is identical to the TMM value. Sidereally, the apse moves 
11”.8 per annum, and adding the Vernal Point's motion of 50”.2 gives its 
tropical motion of 1'2” per annum.

William Whiston, in his astronomical lectures published in 1710, 
e>q)ressed surprise at TMM's putting the Earth's apse in motion. The notion 
that the planetary apses moved had been 'e>q)loded' out of astronomy, he 
remarked (Oohen, p. 149), and so vhy were they here brou^t back again?

V 'The Motion of the Moon in the same Time is 247 Rev. 4 sign 13" 34'
5”. And the Motion of the Lunar Apogee is 2 Revol 3 sign 3" 50' 15”. 
And the Motion of her Node 1 revol. 0 sign 26" 50' 16”.

The length of the tropical lunar month is here indicated. A figure of 
247 revolutions was accidentally given, in this paragraph and the next, 
vhich was corrected in 1705 (Cohen p. 87) to read 267. A most exact value 
then emerges. Dividing 20 Julian years by the number of revoluticxis here 
specified gives a mean period of the tropical lunar month within a fraction 
of a second*. It must have been the most accurately known physical constant

* Dividing 7305 days by 267.3710 gives 27*, 7‘', 43“, 4®. 9.
The correct value is 27*, 7̂ , 43“, 4“ 7.
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at that period. Ihou^ FNEM cMily cited the sidereal limar month within the 
nearest minute, TMM used its mean duration to a seccaid.

VI 'All which Motions are accounted fron the Vernal Equinox: Wherefore if 
from them there be subtracted the Recession of Motion of the 
Equinoctial Point in antecedentia during that space, vhich is 16' 0", 
there will remain the Motions in reference to the Fixt Stars in 20 
Julian Years; viz. the Sun's 19 revol. 11 sign 29“ 52' 24". Of his 
apogee 4' 20". And the Moon's 247 revol 4 sign 13“ 17' 25". Of her 
Apogee 2 revol 3 sign. 3“ 33' 35". And of the Node of the Moon 1 revol 
0 sign 27“ 6' 55".'

A conversion from tropical to sidereal space here occurs. The reference 
framework becomes that of the fixed stars, no Imger a moving zodiac system 
anchored to the Vernal Point. This move has theological implications, 
because sidereal space was the sensorium of the Deity for Newton, and the 
ascent into that reference framework, vAiere the centre of mass of the solar 
system was immovable, away from the merely human perspective on things, was 
for him a religious exercise, or so he declared at the start of the PNFM 
(Cajori Edn. 1960, Vol.l, p.l2). For now we merely note that the 30“ signs 
here referred to are Sidereal, that is pertaining to that zodiac system 
invQTted by the Chaldeans and defined by fixed stars. TMM's instructions 
pertain to two different zodiac systems.

Against this immobile sidereal space, the monthly orbit of the Moon, 
used with such remarkable succès in PNHI to show that gravity reached as 
far as the lunar sphere, is here ascertained to a few parts in ten million.

Astronomers required the ability to make such a conversion, from 
tropical to sidereal longitude, as the positional data could well be given 
with respect to a fixed star. There was however no generally accepted 
sidereal reference framework. An inaccurate value for precession is here 
given, of 16' 0" in 20 Julian years, corrected in 1705 to 16' 40", which is 
one degree in 72 years.
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VII According to this Conçxitation the Tropical Year is 365 days 5 hours 
48' 57". And the sydereall Year is 365 days, 6 hours, 9' 14".

Hiis concludes the dualistic system introduced in the previous 
paragraph, whereby t ^  different reference frameworks are introduced, 
enabling the reader to switch over to the sidereal, and back to Tropical. 
The values are more accurate than those cited in Streete's Astronomia 
Carolina of 1661. The period of the sidereal year is given correct to five 
seconds, and that of the tropical year to ten.
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can.S
M E A is r ly K D rrx c a s r s  o f  t h e  s o n  a n d  M c x z a sr

To construct a lunar ejAiemeris, five different mean motions were 
required: of the Sun, Moon, apogee, aphelion and lunar node. As the 
aphelion was almost stationary, or only moved a degree or so per century, 
there were to all intents and purposes four positions vhich had to be 
located on the zodiac for any given time, as one's starting-point. Their 
accuracy could easily limit the accuracy that an ephemeris achieved: if a 
mean moon was out by several minutes, its predicted positions would err by 
that amount on average. Hew accurate were the mean motions of TMM, and were 
they better or worse than others of the period? This chapter will attenpt 
to resolve these matters, with the aid of modem equations and a 16- 
megahertz microchip.

A comparison of mean motions gives a good criterion for ascertaining to 
\ihat extent the tables used by ephemeris-makers were 'Newtonian' or not. 
Numerous tables in the first half of the ei^teenth century claimed to be 
so, and William Whewell averred in 1837 that TMM was:

'.. .for a long period the basis of new Tables of the Moon, vhich were 
publi^ed by various persons; as by De L'Isle in 1715 or 1716,
Grammatici at Ingoldstadt in 1726, Wri^t in 1732, Angelo Capelli at 
Venice in 1733, Dunthome at Cambridge in 1739' (History of the 
Inductive Scienceŝ  II, p. 209).

The issue was discussed by Baily (1835, pp. 701-705), and more recently by 
Craig Waff (Cchen, 1975) and Curtis Wilson (ŒA, pp.267-8). Newton gave 
four successive versions of his mean motions, thrice modifying that given 
in TMM of 1702, so it is vital to determine vhich of these a 'Newtonian' 
ephemeris adopted.

Our cOTicem is not with the ephemerides as such, vhich were daily 
tables of positions of the heavenly bodies, but with the mean motion tables 
employed to construct them. The French Connoissance des Temps Wiich ran 
from 1678 onwards was a fine example of the former, prc±ably used by Hailey 
in his South-Atlantic voyages.
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X A. Moc3L<eam EteX d-rxXtXon

Mean motion refers to a concept of imiform angular velocity, without 
periodic terms. As such it is an average path of motion throuÿi time, 
measured in ecliptic longitude. It is nowadays computed in Julian time, 
that is by the number of Julian days from a given epoch. It is a function 
of T, Wiich is time measured in Julian centuries from 1900. Its computation 
requires three terms: a constant representing the starting point, plus a T 
and a term (Higher terms vary by less than an arcsecond).

Initially, one had supposed that long-period periodic terms should be 
incorporated, of amplitude around ten arcseconds. However, esqjerts 
consulted were of the view that a historical conception of mean motion 
should not take account of any periodic terms. Ihey are not used in the 
mean motions of the modem theories of Meeus and Chapront-Touze, but were 
in the older theories of Brcwn and Newcomb. It would be an option to 
include them here, and would displace the error-values estimated in this 
chapter by the above amount.

It is remarkable that the computations here performed would hardly have 
been valid if attempted any earlier than their time of composition, namely 
1992. The new copy of Dr Meeus' book, Astronomical Algoritims, (Willman- 
Bell, 1991) incorporates the improved parameters of Michel Chapront-Touze 
and Jean Ghapront (1988), resulting from hi^-precision ĉ Tiamical studies 
of earth-rotation, and has thereby improved the secular variation terms for 
the five variables that concern us.

In consequence, disagreements new exist between modem equations for 
mean motion. A cross-channel divergence of opinion continues to exist, 
vhere it seems likely that the French tables are to be preferred: the new 
issue of the Explanatory Sappl&nent for the Astronomical Ephemeris (1992) 
is by the same US publisher as the Meeus book, Willman-Bell, but has 
sli^tly diverging mean motions. Its tables have not been revised since the 
earlier edition. Ihe divergence is somevhat larger than the divergence of 
the historical tables from the Meeus values, especially for the Sun (See 
^pendix II). Ihe previous chapter used the U.K. equations for assessing 
IMM's accuracy, and for historic interest it is left unchanged. However,
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thanks to the work of the Chapront-Touze's, we are for the first time able 
to go back into past history, with terras probably accurate enough to assess 
the accuracy of astronomical mean tables for centuries gone by.

In the case of the Sun's motion, an accuracy of an arc second or two is 
required, vàiile for the Moon the errors are usually measured in minutes. 
Only for the latter is the conversion from UT (Iftiiversal time) into TDT 
'terrestrial dynamical time' (prior to 1984 this was ephemeris time, ET) 
relevant, due to its larger daily motion. ET was the uniform measure of 
time, derived 'from the uniform motions of the planets', vàiile UT is 
'defined by the rotational motion of the Earth' (Meeus), having replaced 
GMT in this context in the 1930s. The latter is subject to variations Wiich 
are 'unexpected and unpredictable. ' Here the equation was until recently 
expressed as:

AT = El - UTf 
vhich for historical studies we express as:

ET = GMT + AT

Tables (in the Explanatory Sappleaent to the Astronomical Ephemeris 1992, 
PP.K8-K9) give this variable AT from 1620 onwards, which may be a mere five 
or ten seconds of time, but for the early seventeenth century was over a 
minute. This normally makes a difference of a few arcseconds in lunar 
position. At is added on to the time function before the computation. The 
mean motion formulae give TDT (formerly Ephemeris Time), vhich for 
historical investigaticxi must be translated into UT. The difference may be 
due to astronomical factors such as tidal friction from the Moon's pull, 
\ihich affect the Earth's rotation rate.

The modem convention is to measure Julian time frcrni noon on December 
31, 2000, and not 1900 as was earlier done. Thus, for an epoch value in 
1700 New Style we would substitute T = -3.0 into the time-equations. 
Normally, however, the computations involve multiplying two ten-figure 
numbers together, for example Newton's epoch value of noon, December 31,

t For the development of TDT, Terrestrial Dynamical Time, out of Ephemeris 
Time, giving AT = TDT - UT, see The Astronomical Almanac 1993 pp.B4-B7;.
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1680 Old Style has a value of
-3.189650924 Julian centuries*.

If only nine figures are used for this function, it may lead to erroneous 
seconds of arc positions t. Ihe constant term is related to the tropical 
period in zodiac longitude, also specified to ten figures.

Ihe 'Lotus 1-2-3' coirpiter programme facilitates such comparisons, as 
it can reliably perform these ten-figure computations, giving the answer 
within a fraction of an arcsecond. Ihe large computations are done using 
its 'modulus' function to give a longitude between zero and 360°, for 
exanple 'mod(730,360) ' gives 10°, as the remainder after division.

By way of indicating the improvement that has come about, ^pendix II 
shews the divergences in mean lunar motion estimates from several sources 
for integer Julian centuries. Meeus' 1986 textbook on positional astronomy 
used older formulae from the E.Brown's lunar theory and was considerably 
less accurate than his new algorithms (1991).

X I N ew tcan X an  V a lu e s

Ephemerides usually cited mean motions over twenty-year intervals. 
When an ephemeris cited a mean position for a date, say for 1701, it 
referred to the noon on the last day on the previous year, as remains the 
practice to this day. To quote John Flamsteed,

'Ihe Radices of the mean Motions are fitted to the Meridian 
of London, and the Noon preceding the first of January.'

(DOS,1680, p.33)

* Ihe conversion equation is,
T = (JD - 2451545)/36525 J.cent. ;

2451545 being the Julian date of AD 2000 epoch and 36525 the days in a 
Julian century.

t Assistance in transforming the epoch dates into Julian centuries was 
received from Mr Yallop at the Nautical Almanac Office. Further advice came 
from Neville Goodman, the Briti^ Astronomical Association's expert on 
lunar tables, concerning the need to maintain ten-figure accuracy.
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For example, Whiston's Lactures on Astronomy (1715, 1728) contained tables 
with epoch values vAich for the year 1681 gave mean sun, moon, apse and 
node positions for December 31, 1680. These were identical with those 
specified in IMM, his being the first textbook to use them. TMM cites its 
positions as for noon, without specifying vhether apparent or mean time is 
intended, and we shall assume the latter as it is normal practice for mean 
motions (the difference amounts to half a minute of arc). Caroparing these 
epoch values from DOS and TMM (as corrected in 1705) with the Meeus- 
Chapnont-Tbuze values:

The 'Meridian of London' we may take as five arcminutes due East of 
Greenwich. In the seventeenth-century, London rather than Greenwich would 
have been the prime meridian for British tables. The correction is small, 
one-third of a minute in time, equivalent to about ten arcseconds in lunar 
longitude.

1681 Mean Epoch Positions:
Lunar

DOS (1681) 181° 42' 58" 244*
TMM (1705) t 45' 45"
actual (for Greenwich) 45' 46"
TMM errors: -01"

Solar ^helion*
DOS (1681) 290° 34' 48" 186° 51' 40"
TMM (1705) 34' 46" 23' 30"
actual (for Greenwich) 34' 51" 27' 24"
TMM errors: -05" -03' 54"

À substantial improvement is generally evident over the twD decades 
from DOS to TMM. Newton's 1680 mean happened to be within an arcsecond of

* GHA gives the DOS aphelion value as 96° 50' 0" for 1679, citing its then 
correct value as 97° 25' 25" (p. 192). As the aphelion moves one minute per 
year, our value is a minute in excess of this GHA value.

Apogee Node
11' 51" 174° 14' 33"
28' 05" 14' 35"
30' 53" 17' 6"
-02' 48" -02' 31"
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the correct value, vÆiich was possibly fortituous. We may add that William 
Whiston took the first version of the mean motions, as given in IMM of 
1702, and did not use the modified means that appeared in the PNFM's Second 
Edition of 1713. Naturally, as a FRS he was aware of the correctifs that 
emerged with a 1705 edition of IMM. Others were not so fortunate: certain 
lunar-ephemeris constructors failed as we shall see to note this edition of 
Miscellanea Curiosa, thereby acquiring a ten minute error in mean lunar 
motion.

Ihe 1701 epoch mean motions, for noon on December 31, 1700, were also 
modified in the Principia's second and third edition (Scholium, Propn. 35, 
Book III). Iheir values ccanpared with IMM are as follows:

1701 means: lunar Solar ĵpgee Node Perihelion
TMM (1702) 15°19'50" 20“43'50" 8“18'20" 27“24'20" 7“44'30"
PNFM (1713) 15“20'00” 20“43'50" 8“18'20" 27“24'20" 7“44'30"
PNm (1726) 15 21'00" 20 43'40" 8 20'00" 27 24'20" 7 44'30"
'true' means 15“20'23” 20“44'04" 8“19'49" 27“27'19" 7“48'04"

Each of them lags behind the modem value, at least prior to 1726. The node 
and perihelion remain unaltered, being out by two and four minutes 
respectively, and the apogee value is improved in the Third Edition, 
whereas the Sun's error has more than doubled. The Newtonian lunar mean 
motions contained errors in the region of half an arcminute:

Error Values for Newtonian Mean Epoch Positions
Lunar Solar x̂̂ gee

Epoch: 1680 1700 1700 1700
TMM 1702 -10' -33" -14" -1'29"
TMM correction 1705 -1"
FNFM 2nd Edn. 1713 -23" -14" -1'29"
EMFM 3rd Edn. 1726 +33" -24" +11"

The Third Bditif of the Principia concluded this section remarking, 'the 
mean motion of the moon and of its apogee are not yet obtained with 
sufficient accuracy. '
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From conparing these 1700 epoch means, we can observe that the 1705 
value was adopted by Whiston in his Praelectdones of 1707, Dunthome's 
Practical Astronon^ of 1739 and Wrist's New and Correct Tables of 1732, 
vdiile the the inproved 1713 value was adopted by Leadbetter's Complete 
System of Astrononŷ  of 1742 and Hailey's Astronmnical Tables of 1752. No- 
one used Newton's final 1726 value, as would have been preferable for them.

To construct an ephemeris one needed an estimate of the lunar 
revolutions performed (in zodiac longitude) in twenty Julian years, 
supposedly accurate to seconds, for one's tables of mean motion. This 
interval was crucial for the construction of ephemeris tables, as the error 
in it was cumulative. Values from some major sources are as follows:

Mean lunar Trotion per 20 years:
Error

Wing (1669): 267 rev., 133° plus: 33' 44" -57"
DOS (1681): 33' 46" -55"
TMM & Hailey (1749): It II 34' 5" -36"
PNTM (1726): 35 15" +35"
Cassini (1740): If It 33' 58" -42"

Deviations from the then-correct value are given to the ri^t, by conparing 
with the Meeus-Chapront-Touze equations, vdiich only altered by an arcsecond 
or so over this period. TMM's value was accurate to one part in 10’, but 
this error was enou^ that the seconds column in tables of mean motion were 
not meaningful; and, in the the 1730s and '40s, it gave those using the TMM 
values a two minutes error. TWo minutes of arc was the accuracy required to 
claim the Imgitude prize, enabling longitude to be determined within one 
degree, so this was a significant error.

Those are the vital decades because, to quote the Victorian astroncmer 
Baily,

'.. .it appears that a period of more than 30 years elapsed before 
Gregory's Newtonian rales [Daily's somsMhat perjorative term for TMM] 
were thrown into the form of tables for public use;' (p.702)
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It was generally only in the 1730s and 1740s that lunar tables came to be 
based içon IMM: it took three decades for TMM to be put into practice. This 
may not fully accord with the statement by William Whewell quoted at the 
beginning of the chapter, but I have not as yet seen the earlier tables to 
vÆiich Whewell refered. Merely preparing tables of mean motion was an easier 
matter, and William Whiston was the first to prepare these in accord with 
TMM.

Was there indeed a school of lunar-position astronomers, in the early 
decades of the ei^teenth century, who based their work xçxon TMM, as Dr 
Craig Waff has affirmed? If so, a simple criterion will detect them. Those 
\dTo may be called 'the Newtonians' took their twenty-year epoch values for 
mean lunar motion as identical with that of TMM. This simple criterion 
yields the follcwing rather impressive list of published tables:*

Whiston 1707
DeLisle 1716 Paris (urpublished)
Grammatici 1726 Ingolstadt 
Wright 1732 
Capello 1737 Venice 
IXmthome 1739 
Brent 1741
leadbetter 1742 
Le Monnier 1746 Paris 
Hailey 1749

These astranomers concurred to within a single second of arc per twenty 
years, in the above-defined parameter. The values they took for mean 
positions varied somê tot, but in their twenty-year intervals they were 
identical. As mentioned, Hailey and Leadbetter added ten arcseccnds to 
their mean position tables, throuÿi adopting PNEM's 1713 values. This by no

* Peter Horr^xw's Nova Theoria Lunae published in 1718 in l̂ psala 
described itself as Newtonian. Citing its mean motions as from Copenhagen, 
it gave only one set for the epoch 1700 'vhich agree with Newton's,' and 
contained no tables. Nicholas De Lisle's tables in the archives of the 
Paris Ctoservatory, referred to at the start of this chapter by Sir William 
Whewell, also satisfy the above criterion.



—  60 —

means establishes that such astronomers were using IMM's method, but it is 
a start. This list does indeed hint at a rather wide inpact made by TMM, as 
Dr Waff has claimed.

X IC I A. Oearrtrurry o f  M e a n  M o tio n s

The mean lunar motion specified by TMM was samestot more accurate than 
any hitherto published. The trouble was, that it was mainly adopted several 
decades later, as we have seen, by vdiich time it had accumulated an error 
of two minutes and so was no better than others. Cassini's tables were 
superior at the time vdien TMM began to be used. Figures 1-5 illustrate the 
situation.

To prepare these Figures, three sets of 20-year epoch values were 
selected from each table, centred around their time of publication. The 
difference between these values and the Meeus/Chapront-Touze value of the 
mean position were been plotted, with corrections added for local time 
vhere necessary. The errors were thus {historical values - modem values}.

Each diagram contains the data from just six tables, but more are 
included in Table 5.1. The French tables were in New Style, and so were 
eleven days ahead of the British in their calendar, after February of 1700. 
For the French tables of Le Monnier and Cassini, their epoch values for the 
year 1700 were for 31 Dec 1699, not 31 Dec 1700 as for the English 
ephemerides. By obtaining the Julian date (see Appendix III) I found that 
there were 6929 days between the Newtonian epoch date of 31 Dec 1680, (ie, 
11 Jan 1681 NS) and this French epoch date. Tiroezone adjustments were made 
for Paris (Cassini and Le Monnier), Venice (Capello), Bologna (Ricciolo), 
Belgium (Van Lansberge, Zelandiae, ie Middleburg).

The tables were located from various sources: Gingerich and Welther 
(1983), Curtis Wilson (GHA), and a collection sent by Dr Craig Waff, (Jet 
Propulsion Laboratory, Pasadena). Dr Waff had intended to review these 
ephemerides as regards the extent to \idiich they had incorporated the TMM 
principles (Cohen 1975, pp.77, 79). He did not get round to this, his final 
doctorate treating instead problems with the mean apse line motion 
(Waff, 1975, John Hopkins) and not with its secondary motion of oscillation.
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E iœ O R S  □CM M E A lS r M 0 0 7 X Q N

Moon Sun Apooee Node Arhelion

Morinus (1650) +0'14" -6" +27' +6' -21'
Wing (1651) +3'12” -8" -6' -3' -22'
Shakerley (1653) +1'22" -21" -5' - -34'
J. Newton (1657) +1'22" -42" -9' - -33'
Street (1661) - - 16' +8' -

Riccioli (1665) +10" -2'8" - -15' +1°34'
Flamsteed (1681) -1'59" -3" -19' -3' -36'
La Hire (1687) +2'57" -40" -45' -3' -1'
Greenwood (1689) -16' -8' +53'

Whiston/IMM( 1710 ) -33" -14" -2' -3' -8'
Grammatici (1726) -1'12" -23" -O'.l -4' -3'
Hailey (1749) -58" -38" +2' -4' -10'
Capello (1738) +10" -41" +1' -4' -3'
Cassini (1740) -1'57" -20" +5' -1' -11'
Leadbetter (1742) -2' 0" -32" -3' -5' -4'
Le Monnier (1746) -33" -22" +3' -4' -3'

Table 5.1; publication dates are cited, and mean motion errors computed (by subtracting the
Heeus/Chapront Touze values) for the twenty-year epoch nearest to that date. Errors are cited in
arcminutes for the node, apse and aphelion positions, and to arcseconds for the luminaries. For 
the British texts prior to 1700, London mean time was used. Hissing values indicate that they were
not as such given, probably because the tables gave anomaly values (M-À, S-H).

An extensive collection of tables from this period is contained in the 
Royal Astronomical Society's library in Piccadilly, but is not indexed 
according to subject.
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An extensive collection of tables from this period is contained in the 
Royal Astronomical Society's library in Piccadilly, but is not indexed 
according to subject.

Seme tables did not give values for mean solar and lunar motions, but 
rather gave mean anomaly values (see next chapter) plus the apogee, so that 
anomaly had to be added onto the mean apse position to obtain the mean 
position. This generates sizeable positional errors, as the apse and 
aphelion mean motions were an order of magnitude less well determined than 
those of the luminaries. Our table has omitted such.

The table cites a rou^ily chronological order of publication, modified 
scmevhat by the range of usable mean epoch values. Error values for the 20- 
year epoch were usually nearest the date of publication, eg Morinus' 
'Tabulae Rudolfinae' were publi^ed in 1650, and I have here taken his 1660 
epoch, thou^ I have only been able to locate these as republished in the 
second edition of Streete's opus of 1705. The mean tables of Shakerley and 
John Newton only went i:ç) to 1660, so had to be centred on 1640. It is 
evident that only tables publi^ed in the twenty years following TMM (that 
I could find) were those by Whiston.

The Table has its first twD columns for the luminaries in arcseconds 
and the other three in arcminutes. It relates ancient and modem 
definitions of mean motion. Averaging these errors irrespective of sign, 
and comparing these means for the eî iteenth and seventeenth centuries, 
shows the general drift of improvement:

Sun Moon Node Arhelicn
mean error (arcminutes) : 0.5 1.3 5 16 22
% improvement C.18/C.17: 20% 35% 45% 85% 85%

Gaps in the Table indicate that I was not able to locate (or interpret) 
the relevant data. Van Lansberge's tables did not seem to contain the 
twenty-year epoch values. A more thorough search mi^it locate more, perhaps 
necessary before definite conclusicms can be reached. The 'Newtonians' 
Wri^t, Dunthome and Brent have not been included, having identical tables
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to those of Whistm. Hailey compiled his tables, one gathers, around 1720, 
thoujÿi they were only published posthumously, so his mean motions have been 
cited for 1720. That is Wiy his errors appear different from Leadbetter's, 
thou^ their tables were identical.

X V  X t& e  F X a m s t e e c X  t a b X e s
Shortly after IMM appeared in 1702, the Astronomer Royal Flamsteed 

ejqaressed his diŝ jproval, and set about constructing tables of his own, 
claiming that these would give better positions (Baily, p. 211). Ihe terms 
of his employment drawn up by Charles II mandated him to this task. His new 
tables were '40 quarto pages and içwards' he told Abraham Sharp. His 
letters to Sharp described them, explaining \»hy they occupied 'so many 
pages', adding that Sharp should feel free to tell the world that they had 
been drawn ip, for 'I desire to have them published as soon as may be' 
(Baily, p.212). Nothing further was heard of these documents ... until, 
decades later, a Frenchman lemonnier claimed to have them.

No trace of Flamsteed's decades of work on lunar theory appeared in the 
three bul]^ volumes of his Historia Coelestis Britannica vÆiich emerged 
posthumously in 1725. However, Pierre Le Monnier's Institutions 
Astronomiques of 1746 included the claim that his tables were both new and 
based upon those of the English astronomer Flamsteed. A letter by 
Flamsteed's co-worker Hodgson confirms this, discussed by Baily somestot 
inccmclusively (Baily, p.704). More recently, Curtis Wilson (GHA, p.201) 
averred that Hailey had given Flamsteed's tables prepared in 1702 to Le 
Monnier. We can only wonder how Hailey came to possess these vital 
documents, not published in his 'pirate' edition of Flamsteed's Historia of 
1712. Ihey would be most significant for evaluating Flamsteed's achievment 
as the Astronomer Royal. Ihe Table shows that Le Monnier's mean positions 
were of a hi^ standard.

For the Flamsteed tables to have migrated across the Channel in this 
manner, from GTeenwioh to Paris, three steps of transformation would have 
been required; a nine-minute difference for longitude, an eleven-day 
calendar change to New Style, and finally a year's difference for the mean 
motions owing to a difference in a convention in presentation, in the way
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French tables cited their epoch years. We vrould have to assume Le Monnier 
performed these adjustments, thou^ the Paris Cteervatory archives have no 
record of these manuscripts.

V  M e a n  C^trapiis
Table 5.1 cited figures from a variety of epoch dates, from 1620 to 1760. 

Initially they were all compared over the 1700 epoch, but this was unfair 
on those published at some distance from it, because tables are normally 
more accurate around their time of publication. Ihe present scheme normally 
scored errors at the epoch date nearest publication plus one an either side 
thereof. Yet, this hardly permits inferences as to who derived vhat from 
whom, a major aim of collating these mean motions.

A graphical approach facilitates insist into who copied from vhom, 
necessary to evaluate the extmt of IMM's influence in this field. In the 
following graphs IMM is represented by William Whiston's opus of 1707, 
since his tables were the first to emboc^ IMM's mean motions. Each line 
spans a forty-year period, over three twenty-year epochs, the middle one 
being that vhose error was given in the Table. Source-data is given in an 
Appendix. Ihe plotting of three points in this manner also serves as a 
check LPŒ1 my arithmetic procedure.

Ihe solar mean motions show a common downward slope, 18 arcseconds per 
forl̂  years in the case of Whiston. As Chapter Four noted (Section VIII), 
Newtcxi's period for the tropical year was in excess by ten seconds, in 
vhich time the Sun would move ahead by approximately 10/24 arcsecmds, or 
seventeen arcseconds in forty years. Ihe downward slope thus represents 
that tropical year error. LeMcxinier's means look somevhat as if he were 
using the IMM values, or trying to, vhile Cassini's can be seen as an 
improvement.

Figures 5.1 & 5.2; These graphs show 'errors' in tables of mean motions from six different 
astronomers, for mean Sun and Moon positions. For three sets of twenty-year epoch values, the 
values derived from the Meeus/Chapront-Touze equations (1993) were subtracted from the published 
epoch values.
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Ficnires 5.3. 4 and 5; as before, for apse, lunar node and aphelion mean motions.

Chapter Four saw hew TMM cited the tropical lunar month correct to 0.2 
of a second, and commented: 'It must have been the most accurately known 
physical constant at that period.' Here, we see the cumulative effect of 
that 0.2 of a second, Wiereby over four decades it generated an error of 
about one arcminute. (As can be seen, the graphs are not necessarily 
straight lines, thou^ historical mean motions were linear, vMch is due to 
non-linear terms in the modem equations. )

The twenty-minute apse error in Flamsteed's 1681 publicaticn is 
remarkable. In the year 1673 he caused Jeremiah Horrocks's theory to be 
published, \Khose equation of apse motion was its most remarkable feature. 
Flamsteed wrote, in 1675, of how he discovered the truth of this theory:
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I had found by many curious and careful measurements of the 
Moon's diameter, that the heavens would never admit those 
Hypotheses..' (Phil. Trans, 10, pp.368-372)

referring to the pre-Horrocksian theories. Locating apse position with a 
micrometer screw-gauge can have been no easy matter. However, that same 
year Flamsteed published a criticism of Thomas Streete's textbook, for the 
way it claimed to be based içon Horrocks, in viiich he said:

'Mean time, Wien he hath done Wiat he can (with his apse equation), it 
will not ̂ ew the true place to half a Degree.' (op. cit., p.220)

Apart from the apse equation, his own mean position was hardly better.

Oonclusicn
Whiston's mean values, representing those of TMM, are as good as any in 

the Table. Over the century a large improvement in the mean apogee and 
aphelion values appears, plus a smaller one for the lunar nodes. The graph 
shews Jacques Cassini's lunar means as more accurate than the Newtonian 
ones, reminding one of CX̂ en Gingerich's account of how Paris in this period 
became the world centre for ephemeris contruction (Gingerich and Welther, 
1983, p.xi), thouüÿi Cassini was a generation later than Newton. The graphs 
emphasise a major feature of the Table, Wiereby historic mean values mainly 
lag behind vhat are ncwadays regarded as their correct values. All five of 
TMM's means, for both of its ̂ xxhs, fall behind the modem values; except 
that, as the nodes are moving in the opposite direction, their historic 
values could be regarded as in advance 1

The mean motions here examined are Œie method of comparing the 'flew of 
expertise' in constructing ephemeris tables. Another and equally important 
would compare constants used in the various equations. For example. Le 
Monnier cteerved concerning the Equation of Apogee:

'La plus grande Equation du lieu de I'̂ xDgee avoit été établie 
autrefois par Flamsteed de 11° 47'22”. Mais M. Newton I'a augmenté & 
s'est assuré qu'elle devenoit plus conformé aux Cfcservations 
lorsqu'on la suppose de 12" 18'.' (1746, p.191)

This shows a remarkable degree of interest in the English method of 
computing the secondary apse moticn, four decades after the theory was 
developed. The French had not been using the Hbrrocksian method, and
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Cassini used a quite different approach to developing the 'equation of the 
centre' (ŒA, p.201). Ihus Le Monnier becomes an important source for 
evaluating eighteenth-century reception of IMM. Later we return to this 
theme.

Texthooks oonsulted,, 1650-1750
J.B.Morinus 1650 Tabulae Rudolf inae
Vincent Wing 1651 Harmonicon Coeleste
Jeremy Shakerly 1653 Tabulae Britannicae
John Newton 1657 Astronomia Britannica
Ihoraas Streete 1661 Astronomia Carolina
J.Baptista Riccioli 1665 Astronomia Reformata
John Flamsteed 1681 De Sphaera
Phillipo de la Hire 1687 Tabulae Astronomiae
Nicholas Greenwood 1689 Astronomia Anglicana
Isaac Newton 1702 IMM

II 1713 PNÎM
Nicolas Delisle 1716 Tables du soleil & de la Lune
Nicas. Grammaticus 1726 Tabulae Lunares (Ingolstadii) ;
Robert Wri^t 1732 New & correct Tables of the lunar :
Angelo Capello 1738 Astrosophiae Numericae
Jacques Cassini 1740 Tables Astronomiques
Charles Leadbetter 1742 Complete Astrancmy
Richard Dunthome 1739 Practical Astroroty of the Moon
Charles Brent 1741 The compendious Astronomer
Pierre Le Monnier 1746 Institutions Astronomiques
Edmond Hailey 1749 Tabulae Astronomicae

Tables not located:
a) J.Hecker, Motuum Coelestium Ephemerides 1662;
b) Kirchius, Ephemeridum Motuum Ooelestum 1681 (Lipsia);
c) Bealieu Desforges, Ephemerides des mouvements celeste 1703;

Other tables had mean motions I could not fathom: in Phillipe Van 
Lansberge's Opera Omnia of 1663, Maria Cunita's Urania Propitia of 1650, 
and Comte de Pagan's Lss Tables Ĵ stronomiques of 1658.
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Town Old name Loner. East Time Astronomers
Paris 02“20' 09.3 min La Hire, Cassini, Le Monnier
Bologna, Bononia ll“20' 45.3 " Riccioli
Venice 12“20' 49.3 " Capello
Ingolstadt ll“26' 45.7 " Grammaticus
Copenhagen ll“07' 44.5 " Horrebow
Zelandiae 03“36' 14.4 " Van lansberge
Bicini, Silenorum 18“ 10' 72.7 " Cunitia
Ven, Uraniborg 12“45' 51.0 " Morinus (Denmark)

Mean Motion Oonputaticn

Table 5.2 shows 'true' epoch mean motions in ecliptic longitudes, both 
for Gregorian time (English) and Julian (Continental). Values along the top 
row are labile and the rest are fixed (The top row here shewn is for the 
epoch date of 1620). The G.M.T. value is fed in at the top left-hand 
comer, under 'J.DAIE', vhich generates these labile values. In order to 
generate such, the time is required in Julian centuries, which the program 
derives from the Julian date in the next column using the formula 
(£>-2451545)/36S25), to ten decimal places of vhich five are shown. The 
Meeus-Chapront mean motion formulae are not here shewn, being elsewhere on 
the spread^eet, the values they generate being fed into the top row.

The Julian date values were derived from the epoch dates to the left. 
TWO values are cited for each tvî ty-year epoch, French (N.S.) and English 
(O.S.). For eg Venetian tables, vhose longitude is 12°20' East of 
Greenwich, one subtracts 49.3 minutes from the given values, and the result 
converted into a decimal of a day. For the Sun an aroseœrds column vras 
computed as historical positions vjarranted that acxaracy, vhile, for that 
of the Moon, arcminutes to one decimal plaœ were adequate. For the Moon 
the ccxTversion from Ihiversal Time to Ephemeris Time was required, vhereas 
this difference was negligible for the other, slower-moving functions.
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MEAN MOTIONS FOR EPOCH DATES NOON DEC 31

J. DATE J. CENTUm APHEL SUN
AD 2000: 2313128 -3.78965 deg mins deg mins sec

20yrs: 7305 96 25.65 290 7.21 13
1620 2313128 -3.78965 96 25.66 290 7.21 13

1640 2320433 -3.58965 96 46.25 290 16.42 25

1660 2327738 -3.38965 97 6.84 290 25.63 38
French: 2327728 -3.38990 97 6.82 281 33 0

1680 2335043 -3.18965 97 27.44 290 34.85 51
Fr 2335033 -3.18992 97 27.41 280 43.07 4

1700 2342348 -2.98965 97 48.04 290 44.06 4
Fr 2342338 -2.98992 97 48.01 280 52.29 17

1720 2349653 -2.78965 98 8.64 290 53.28 17
Fr 2349277 -2.79995 98 7.58 280 16.69 41

1740 2356958 -2.58965 98 29.25 291 2.5 30
Fr 2356582 -2.59995 98 28.19 280 25.91 55

1760 2364263 -2.38965 98 49.85 291 11.72 43
Fr 2363887 -2.39995 98 48.79 280 35.13 8

MOON NODE PERIGEE
deg mins mins,E.T. deg mins deg mins

141 1.57 254 46.52 143 3.8
1620 141 1.57 2.69 254 46.52 143 3.8

1640 274 36.26 36.82 227 56.7 236 52.88

1660 48 10.95 11.28 201 6.89 330 41.91
Fr 289 30.56 30.89 201 35.5 329 41.71

1680 181 45.63 45.77 174 17.1 64 30.89
Fr 49 54.65 54.79 174 48.89 63 24.01

1700 315 20.31 20.39 147 27.31 158 19.82
Fr 183 29.33 16.48 147 59.1 157 12.94

1720 88 54.97 55.07 120 37.53 252 8.7
Fr 174 30.36 30.46 140 32.19 210 15.36

1740 222 29.64 30.47 93 47.76 345 57.53
Fr 308 5.02 5.13 113 42.43 304 4.19

1760 356 4.29 4.43 66 58 79 46.31
Fr 81 39.68 39.82 86 52.67 37 52.98

French cor: 376.0065 days (1 yr + 11 days + 9.3min)
up to 1700: 10.0065 days (10 days + 9.3min)
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_ €5 F X I S T D X N G  T H E  A l s T O M A L Y

This chapter surveys how astronomers in Restoration England dealt with 
the motion of a body obeying Kepler's second law. It deals with the two 
fundamental concepts, of 'equation', as in for example the 'Equation of the 
Centre', and 'anomaly'. The astrOToners would proceed from what they 
called mean anomaly to the coequated (or, 'true') anomaly, via the 'Kepler 
equation'. TMM instructs the reader to use tables at these crucial stages 
and that is all that we need to do. We are not obliged to go throng the 
difficult stages then required to construct the tables, thou^ it is 
appropriate that we should have some idea of their principles of 
cŒtposition.

X TTxe soXaiT ancamaXy

Anomaly meant an angle, formed between two mean positions. As such it 
was a computational tool that could not be observed or measured directly. 
The mean anomaly was the angle between the apse line and a mean position in 
the orbit, at ary given time. Whether it was measured from apogee or 
perigee was a matter of convention. To quote Curtis Wilson:

'.. .the aphelicxi was taken as the zero of anomaly in planetary tables, 
and the apogee as the zero of anomaly in solar and lunar theory. '

(GHA, p.275)
That became the agreed convention in the ei^teenth-century. If however we 
go back to Flamsteed's DOS of 1680, that was not the case. For finding the 
Sun's anomaly, DOS instructed:

'Subtract the Longitude of the Perihelion from the Mean Motion, the 
Residue is the Mean Anomaly.' (p.34)

It made sense to start from perihelion at least for the Sun, if that was 
v^en the year began, in January. The tables gave their 'Equation of the 
Centre' as a function of anomaly, over the range 0-180°. We have to be 
clear as regards \)Aiioh convention is in use over the anomaly, as these 
tables were not symmetrical: the 'equation' would tend to be maximal at 
around 91° for the Sun and 94° for the Mocxi. The figure shows this, vhere M 
is the mean anomaly (here measured from apogee) and 0 is the Equation of 
Centre. Table 6.1 is a reproduction of a page from DOS, pointing 
out the maximum value reached at 94° anomaly.
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Figure 6.1; mean anomaly H as measured from 
the apse line, and the 'equation' 6 whereby 
mean and true positions diverge.

true/̂ e r

/ V \
^  1

Ihe Earth's orhit around the Sun 
was an ellipse with 'the Sun's Apogeum' 
as TMM called it at one end. The new terms 
introduced by Kepler, of aphelion and perihelion,
had not yet cau^t on. The former was the point at vhich the Sun was 
furthest away, and so appeared to move most slowly, Wiile the latter was 
the point of closest approach. They are positioned in ecliptic longitude, 
for vAiich reason we use the tropical year period in defining the mean sun, 
of 365.24 days. The motion of the Earth was treated as the motion of the 
Sun around the Earth.

Worked example; We seek the solar aronaly on the epoch date of December 
31 1680. TMM referred to the positioi of aphelion as 3 sign, 7°, 
designating a longitude of 97° measured from 0° Aries. This becomes 
January 10th, 1681 in New Style (that is, the Gregorian calendar), as 
there was a ten-day difference between the two systems in the 
seventeenth century. January 10th (N.S.) was 13 days after perihelion 
vAiich then fell in the morning of December 29th. At the present time 
perihelion falls on January 3rd, at 12° Capricorn. In the 1680s it 
fell on December 29th, in 7%° Capricorn, so it has moved four and a 
half degrees in three centuries.

The mean Sun moves uniformly at 59' 8" per day. The angular 
difference between TMM's mean Sun and perihelion position, for the 
date given of December 31, 1680, comes to 13° 11' (subtracting the 
epoch values given in Ch.4, Section II). Finding the mean anomaly was 
the first step in an arduous series of computations vhich the 
astronomer had to perform.
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XX KepXear MotXon ai-nd tX&e BquatzXcan o f

An 'equaticxi' then signified, to quote Curtis Wilson:
'the angle to be added or subtracted from a mean motion in order to 
'correct' it, that is, in order to obtain a theoretical position in 
agreement with the position dDserved.' (GHA,p.277)

TMM gave the Sun's 'Equation of Centre', or 'equation of orbit' as it was 
called a greatest magnitude of l“ 56' 20”. Ihe terminology derived from the 
old scheme of things, vdiere the Sun had a circular orbit and Earth was not 
quite at the centre of that orbit, and the magnitude of its displacement 
frooa that point generated its 'Equation of Centre'. Ihis equatioi was zero 
at the apses, grcwing to a maximum near the quadratures. It was subtracted 
while moving from aphelion to perihelion, and added during the other half 
of the year, since Earth's orbit is fastest at perihelion and slowest at 
aphelicxi.

Estimates of the maximal value of this solar equation had been 
shrinking ever since lycho Brahe estimated it as two degrees. It is of 
interest to look at values cited by Curtis Wilson (GHA, pp. 168-191) as used 
by astronomers, comparing these with actual, values for the period (the 
latter being derived from modem estimates of historic eccentricities) :

Astronomer Eqn., centre true value Error
Brahe 1580s 2° 3' 15” 1“ 56' 10” 7'
Hbrrocks 1638 1“ 59' 18” 1' 55' 54” 3' 22”
Cassini I 1660 1' 56' 53” 1“ 55' 50” 1' 37”
Flamsteed 1675 1“ 54' 13” 1" 55' 49” -1' 36'

It 1679 1“ 55' 0” 1“ 55' 48” -48”
II 1692 1“ 56' 20” 1“ 55' 45” +35”

Ihe last value was used in IMM, and then in all the tables of 'the 
Newtonians': Whiston (1715), Dunthome (1739), Brent (1741), Leadbetter 
(1742), Le Monnier (1746) and Hailey (1749). Indeed, I have only come 
across one compiler of astronomical tables in the first half of the 
ei^teenth century in France or England Wx) did not use that figure and
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that was Jacjques Cassini (1740), sometimes called Cassini II. He used the 
more accurate value of 1° 55' 50”.

Ihe computations as then performed involved three stages;
1 --------- > 2---------- ^ 3 ----------> 4
mean eccentric coequated : apparent
anomaly anomaly anomaly position

Ihere was no simple means of moving from the mean anomaly to the 
'coequated' anomaly, so-called because an 'equation' had been applied. It 
was done by using 'Kepler's equation' to find vdiat was called the eccentric 
anomaly*. Ihis was the angular position, as viewed from the centœ of the 
ellipse, of a body moving in a circle circumscribing that ellipse. Kepler's 
equation does not have an algebraic solution, so methods of approximate 
solution had to be developed and used. Ihrou^i some means of solving 
'Kepler's equation' one ctotained the eccentric anomaly from the mean, and 
thence derived stage 3f. Ihen the 'coequated' anomaly had to be sou^t, 
which could then be compared to the actual position (called, 'apparent 
position') in the heavens. Ihe goal of a theory was to minimise the 
difference between 3 and 4. What Newton had to say about moving between 
stages 1 and 2 appeared in the Principia and not in IMM, and need not 
concern us.

What the layman would call the true or actual position in the heavens, 
was and still is referred to by astronomers as the 'apparent' position.
Ihis is because the 'coequated' positicxi used to be referred to as the 
'true' position. A lucid account of these terms has been given in GHA by 
Curtis Wilson (GHA ̂ Dpendix, Gi-Gvi).

* The Kepler equation is: M = E + esinE,
vhere M is mean anomaly, e is eccentricity and E is the eccentric qijomaly.

t Gaythorpe, 1925,p.864; Newton used a geometrical equivalent of vtot is 
called 'Newton's method of approximation' to solve the Kepler equation in 
PNEM 3rd Bdn p. 112-116, see Whiteside Math. Papers, IV, 1971, p.665.
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What is ncwadays called the 'equation of the centre' is not the angle 
as we have understood it above, but a formula vdiich generates that angle. 
From, values of eccentricity (e) and mean anomaly (M), it gives that angle 
(in radians) by the following series:

e = (2e-ê /4)siriM - 5/4ê sin2M + 13/12 ê sinSM + ...,

This is the modem expression for the difference between true and mean 
anomaly, measured in radians. For the small eccentricity value of the 
Earth's orbit, two terms of the series are generally adequate, namely:

© = 2esinM - 1.25ê sin2M

These first two terms give the Equation of Centre within about half a 
minute for the Moon. To avoid confusion, we shall refer to the old meaning 
in rpper case, as Equation of Centre. Surprisingly, this modem series 
ejpansicMi concurred within one or two seconds of arc with the tables of 
Flamsteed, indicating that by 1681 at least one astronomer had effectively 
solved the problem of computing elliptic, Kepler motion.

TMM described an elliptic orbit in terms of two different parameters, 
namely eccentricity and maximal EquatiŒi of Centre, and the the above 
equation relates these together. In the case of the solar orbit, TMM 
)̂ecifies eccentricity as 16 11/12 parts in 1000, and the maximum Equation 
of Centre as l“ 56' 20". The anomaly value which generates the maximal 
Bquaticxi of Centre is M=91°, ie solar tables will give the greatest 
'equation' at 91". For the lunar tables the maximal value arises at or near 
to 94". Inserting 91" into the above equaticxi for M links TMM's two solar 
eccentricity parameters together within one secæd of arc.

worked example, continued: For the solar anomaly found of 13" 11', at the 
1680 epoch date, we consult tables for the Equation of Centre:

DOS f 16811 Dunthome f 17391 Cassini (17401
13" 25' 21" 25' 38" 25' 33"
14" 27' 16" 27' 34" 27' 29"
Max.Bqn.(9l") l"55' 0" l"56' 19" l"55' 50"
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IXjnthome used Newtx>n's eooentricity value. Interpolating for an angle 
of 13° 11', Dunthome's tables give 25' 59”. The modem formula gives the 
identical value (I have written a computer program for the function, vhich 
makes conparison easier). The DOS tables would give a sli^tly smaller 
value, as they were composed before Flamsteed had reached his final and 
more exact value for the earth-orbit's eccentricty,

Ihis equation brings us to within half a minute of the Sun's actual 
position. Ihus, the Sun's centre (or rather, the Earth's) was then 
departing from Kepler-motion by that amount.

XXX XXie T ajTiajr o f  Cterxture

Ihe lunar 'equation of centre' was a more conplicated affair, varying 
not only with its mean position in orbit, but also with a half-yearly 
cycle. Ihe Horrocksian theory used the altering eccentricity of the lunar 
orbit to modulate the anplitude of the 'equation of centre'. Here we merely 
introduce the subject, prior to a full account in the next chapter.

À mean moon has uniform angular velocity in ecliptic longitude, 
revolving once per tropical month. For the lunar anomaly one subtracted the 
mean apogee position therefrom. We have seen hew the lunar apogee was a 
great deal more stable than perigee, \diich possibly accounted for such a 
tradition. IMM does not comment on these matters, but merely says that 
tables prepared in the usual way are to be consulted.

In defining mean anomaly as an angle measured from the mean apogee 
position, we are treating the motion of the apse as a continuous function, 
ifhereas in fact the apogee and perigee positions only exist at discrete 
positicxis once a month. Ihe concept is a mathematical abstraction, defined 
as an angle between two points in uniform motion, in the same direction 
around the ecliptic* (see next page). These intersect once per 27.554 days, 
the period of the anomalistic or ̂ xjgee-perigee cycle.
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The tables prepared by Flamsteed in 1679 for his De Sphaera were the 
first British tables to be computed from fully Keplarian principles, as the 
science historians Thoren and Gingerich pointed out in 1974. Gingerich and 
Welther found that the errors in the lunar Equation of Centre tables were 
qp to 3" for minimum eccentricity and 10" for maximum eccentricity, 
concluding "On the face of it...in at least one iitportant case Kepler's 
secOTid law was being used in England before the publication of Newton's

* This definition differs from that given in GHA. We take the mean anomaly 
between two angular positions at the same instant of time, vhile GHA 
advocates taking the angle between a mean moon and its last point of 
intersection with the apse line:

'an angle proportional to the time that has elapsed since the planet 
was last at the upper apse of its orbit, and such that 360° corresponds 
to a complete period. ' (GHA,p.278)

In the case of the Sun and planets, the apses are virtually immobile making 
the two definitions equivalent. Were we to adopt this definition, we would 
first have to locate the previous point of intersection of apse and mean 
moon, by the method indicated above, vhich is 1° 56' of Sagittarius. This 
would give a mean anomaly of 60° 20', vhich differs by nearly three degrees 
from that ̂ diich we have taken.

This GHA definition of mean anomaly would introduce a discontinuity 
each iroith, as the zero-point jumped 3° from one apse-intersection point to 
that of the following month. It would cause TMM's lunar position to jump 
suddenly by three degrees each month at apogee. It is simpler and more 
logical to measure an angle between two positions existing at the same 
moment of time, rather than having a definition based on a conversion 
between time and space measures. Also, we are soon to give the apse line a 
to-and-fro motion of twelve degrees twice yearly; this model may cxily be 
workable if we measure from vihere the apse is at any given moment. My 
reading of the paragraph in TMM beginning 'Having from these Principles 
made a Table...' (1702, p.20) indicates that the 'mean Anomaly of the Moon 
corresponding to any given Time' means angular measure as here used.
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Principia."*, calculations shewed a rather hi^er level of accuracy, that 
DOS's lunar Equation of Centre tables concurred within one or two seconds 
of arc with the modem fonnula. Flamsteed's computation methods used, in a 
very precise manner, the first and second laws of Kepler, f This is a 
remarkable historical fact, as Newton himself had not then used Kepler's 
second law in any astronomical context (Cohen 1980, p.250). It also implies 
that his ccmcept of eccentricity was numerically identical with our modem 
definition. The calculations shewing this level of accuracy are summarised 
at the end of the chapter. Table 6.1 shows the middle of the three tables 
for the DOS Equation of Centre, for 60°- 120° anomaly.

X V  F d jn c a jL n g  tJ n e
The amplitude of the Equation of Centre varied in accordance with Wiat 

TMM called the 'Annual Argument. ' This was the term employed by Hbrrocks, 
took it from Kepler (Curtis Wilson, 1987 p.81). Chapter TXiX) described 

how this has a 6% month period, between conjunctions of syzygy and apse: as 
syzygy is the line joining Full and New Moon, the angle is formed between 
the Sun and the mean apse line, in zodiac longitude, as they line iç) twice 
per 'Horroxian year' of 411 days. Astronomers have no definite term for 
this function, because it does not feature in modem theory, and so I have 
proposed calling it the 'Horrox angle' ($). One may prefer not to use the 
TMM term 'Annual Argument' of the ̂ XDgee, as the period is not really 
annual. It appears in Figure (3) as 46°.

* V.Thoren, Kepler's Second law in England BJHS, 1974,7, pp.243-256;
O.Gingerich and B.Welther, 'Note on Flamsteed's Lunar Tables', BJHS,
1974,7,p.258.

t Flamsteed's assistant Mr Hodgscxi recalled: 'Mr Flamsteed, under vhom I 
had the happiness of my education, was pleased to set me iç»n conputing his 
lunar tables, under his direction; v^en I computed the tables of central 
equations of the moon after the Keplerian method, which had never been done 
before. ' (Introduction to Hodgson's Theory of Jupiter's Satellites,1750, 
quoted in Baily p. 704)



Table 6.1 
Lunar Equation of 
Centre Tables in 
DOS, showing two 
columns spanning 
60°-90° and 90°- 
120°. The values 
peak around 94° 
of anomaly, at 
almost 6° 20'.

TABLE, o/ the Eciuations o f the Moons'  ̂Center
Subtradb.

Sîn 2.
LcaftExc Middle. Greateft.

43619 55327 66854

0 , // 0 1 // 0

4 12 40 5 17 27 6 21 18

4 15 18 5 20 54 6 25 32
4 17 56 5 24 17 6 29 39
4 20 28 5 27 35 6 33 40
4 23 00 5 30 47 6 37 36
4  25 24 5 33 53 6 41 ^5

4 27 44 5 36 54 6 45 08
4 30 00 5 39 49 6 48  44
4 32 12 5 42 39 6 52 14
4 34 19 5 45 24 6 55 36
4 36 21 5 48 02 6 58 52

4 38 18 5 50 35 7 02 01
4 40 I 2 5 53 02 7 05 03
4 4 I 58 5 55 22 7 07 57
4 43 41 5 57 36 7 10 45
4  45 19 5 59 44 7 13 25

4 46 53 6 01 46 7 15 58
4 48 22 6 03 42 7 18 24
4 49 44 6 05 3 1 7 20 4 i
4 51 02 6 07 15 7 22 53
4 52 ' 5 6 08 52 7 24 56

4 53 22 6 10 23 7 26 52
4 54 23 6 11 46 7 28 39
4 55 20 6 13 03 7 30 20
4  5^ 12 6 14 14 7 3 I 52
4 59 6 15 19 7 33 16

4 57 38 6 16 17 7 34 32
4 58 14 6 17 08 7 35 4 '
4  5% 4 5 6 17 52 7 36 41
4 59 10 6 18 29 7 37 34
4 59 30 6 t8 59 7 38 17

9

LcaftExc
43619

4  59 30

4  59 48  
4  59 56 
4  59 59 
4  59 5  ̂
4  59 49

3. . : 
Middle. 
55327 '

4  59 36 
4 59 20 
4  5^ 53 
4  5 8  2 4  

4  57 48

57 06
5 6  1 9

55 - 7  
54 30 
53 27

4  52 
4  51 03 
4  49 45 
4  48 2 1 
4  46  51

4  43 "34
4  41 44

0 f (/

6 1 8 59
6 1 9  2 3

6 1 9  4 0

6 19 5 0 ,
6 19 5 4I
6 19 51

6 19 4 0

6 19 2 3
6 1 8 57
6 1 8 2 5
6 1 7  4 6

6 17 C O

6 1 6  0 8

6 I S 0 8

6 1 4 0 0

6 1 2  4 6

6 1 1 25
6  0 9 56
6 0 8 20
6 0 6 37
6 0 4 4 8

6 0 2 51
6 0 0 4 8

5 58 37j 5 6 1 9

5 53 54

Grcatcft.66Sĵ

7:1

4 35 56 
4 33 47 
4 31 33 
4  29 13
4 26 49

5 48 43
5 43 04

Stçn

17 30
52 29  

20 28  
| 40  
51

,^3|0

A3&

Figure 6.2 
Mean positions on 
epoch date of 
December 31st, 1680,

46 Ag



-  81 -

Over this period the lunar Equation of Centre varied between 7° 39' 30” 
and 4° 57' 56” in its maximal value over a monthly orbit, according to IMM. 
Newton composed a table to assist finding this for Flamsteed 
(correspondence, IV p. 107, here reproduced as Table 7.1). Hiis 'Equation of 
the Moon's centre,' was sometimes called the Prostaphaeresis, a function 
still harder to find than it was to pronounce.

The first step in determining this 'equation' is to find the Horrox 
angle, $. Ihen, as a first approximation we may assume that the oscillation 
of the 'Equation of the orbit' is a cosine function, maximal at zero 
degrees vhen the Sun is conjunct the lunar apse and minimal vdien the two 
axes are at ri^t angles, ie a cosine of 2$ with the function oscillating 
twice per Horroxian year. Ihen, at any given moment, its magnitude will be

6' 18' 43” + 1 “ 20' 47” cos2$ 
giving a maximum value of 7“ 39' 30”, viien $ is zero,
and a minimum of 4* 57' 56” vAien #=90°,

as IMM requires. Ihis merely indicates how the functions are linked. IMM 
does not use such trigonometric functions, but develops a kinematic/ 
geometrical afproach, vhich is a little more complex than the above.

Ihe greatest 'equation of the centre' is half as much again as its least 
value, vhereby the second or 'Kepler motion' moon comes to differ by a
greater amount frcm the mean moon. Astronomers of the period would have
visualised this effect in terms of an unchanging circular orbit, vhere vhat 
altered was its relation to the Earth as epicenter, vhose position deviated 
by varying amounts from the center of a circular orbit.

Worked Example, contd: On the epoch date of December 31st, the mean moon 
was at 1° 46' of Libra and the mean apogee at 4%° Sagittarius, giving a 
mean anomaly of -63°. It was 6° ahead of its mean position, having 
moved ahead, travelling faster vhile near perigee (See Figure (3)).

Ihe 'Horrox angle' was 46° giving 6° 15' for the maximal Equation of
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Center, and an eccentricity of 0.05460*. Inserting this into the 
formula, together with the mean anomaly of M = -63° gives 5° 44' as the 
equation of centre. The difference between the mean and coequated 
positions that we are looking for was 6° 17' (Ch.l,V), so our 
computation is half a degree short.

In this chapter we have performed some rudimentary computations, 
obtaining the Sun's position within half a minute and the Moon's within 
half a degree. Ihis may gives us some respect for the difficulties 
involved, and a notion of how to apply an 'equation. '

Note on Accuracy of Flamsteed's Timar FSquation of Centre Tables
Ihe Table below gives, for some selected mean anomaly angles, their DOS 

Equation of Centre, then subtracts therefrom the correct or Keplerian value 
as derived from the first three terms of the modem equation of centre 
(Ch.6,II) to give their errors. Ihe 75° and 90° anomaly values are shown in 
the DOS tables of Figure 2, and Flamsteed's middle eccentricity value of 
0.055237 was used in the formula. We regrettably lack details of how 
Flamsteed (with his assistant Mr Hodgson) accomplished these remarkably 
accurate computations.

Anomaly 30° 45° 60° 75° 90°

DOS 2°59'4" 4°15'47" 5°17'27" 5°59'44" 6°18'59”

Errors: -1.5" +0.5" +2" +2" -1.5"

* When the Horrox angle # = 46! 11, 0.05505 is the mean eccentricity and 
0.01173 is half the difference between maximum and minimum eccentricity, 
then: e = 0.05505 + 0.01173 cos 2$ — 0.0546
Ihis is discussed further in Ch.7, Section II.
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Olri - "7 THE HORROX—WHEEH. XIST MOTXOIST

'Horrox had left no description of the theory itself, bat Crabtree 
was helped in his reconstruction by rough diagrams drawn on loose 
papers...'

Forbes, 1975,p.63.

TMM embodies a developed version of Jeremiah Hbrrockŝ  limar theory, 
what one mi(̂ it call Newton's interpretation of Hailey's variation of 
Flamsteed's version of Crabtree's account of Horrocks's lunar theory. Had 
Horrocks lived beyond the brief span of twenty-two years, he might have 
described his theory more fully; and yet, even in the incomplete state in 
vdiich he left it, it was in Flamsteed's view the greatest of his 
achievements.

Curtis Wilson has described hew the theory began to dawn on Horrocks in 
January 1637 (JHA,1987, p.86), and had been formed by December 1638, \iihen 
he prepared 'the new calculus of the Moon' and sent it to William Crabtree. 
Figure 7.1 depicts Horrocks's kinematic model, and Figure 7.2 is another 
diagram, showing the process throu^ a thirteen-month cycle*. This same 
diagram was sent from Crabtree to William Gascoigne in June 1642. These 
were the three north-countrymen vho initiated the traditicxi of British 
astronomy, vdiose work became known via Flamsteed, as he moved from Derby to 
London in the early 1670s.

Flamsteed became the chief exponent of the Horrocksian theory, such 
that astronomers knew it largely as Flamsteed's development thereof, as 
presented in his epilogue to Jeremiae Horoccii,.. .Opera Posthama published 
by John Wallis in 1673. A succinct version thereof was given in a letter of 
Flamsteed's to Newton (Correspondence, Vol. IV, p.27).

* Figure 7.1 occurs in Horrocks's Philosophical Exercises notebook, now in 
the R.G.O. library (1.68B, section 19), Cambridge, and is reproduced in GHA 
p. 199. Figure 7.2 originally appeared in the letter from Horrocks to 
Crabtree dated 20 December 1638, published in a Latin translation in the 
Opera Posthma 1673 pp. 467-8.
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Figure 7.1;
Diagram in Horrocks' 
notebook for computing 
semi-annual variations 
in lunar eccentricity 
and apse (his 
'Philosophical Exercises')

Figure 7.2:
Diagram drawn by William 
Crabtree to illustrate 
Horrocks' theory of the 
evection (in his 
letter to Gascoigne of 
June or July 1642) a m p  ,E )
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Whiston referred to it as 'Mr Horrox's Lunar Hypothesis, as cultivated and 
explained by Mr Flamsteed' (1726, p. 104). Before Flamsteed published this, 
Ihanas Streete used vàiat he called a Horrocksian scheme in his Astronomia 
Carolina of 1661, as he had gleaned it from Horrocks's notes, but I cannot 
claim to understand it.

X  A  v a r r X a t D X e
In dealing with the Horrocks model, one is to a large extent dealing 

with HiEçjarchus' concept of eccentricity, with its image of circular motion 
about an epicentre, vdiere Earth's displacement from that epicentre is the 
eccentricity. Mathematically this is equivalent to the distance between a 
focus and the centre of an ellipse, if the circumscribing circle is of unit 
radius; one could sû p̂ose that this is is really meant*, hcwever no 
seventeenth-century text states such a thing, nor does IMM contain any 
reference to an ellipse.

It was a model in ̂ Aich the apse line and eccentricity co-varied, by a 
similar amount and 180° out of phase, by a crank-wheel mechanism rotating 
once per 6̂  months. To quote William Whiston, Newton's successor at the 
Lucasian chair at Cambridge, from a lecture of his given in 1703:

'.. it is to be noted that the Eccentricity of the lunar Orbit is 
mutable; and that the same, in the Ocxijunction and Opposition of the 
ĵogee, is One and a Half of the Eccentricity, vAiich is in the 
quadratures. So that TE the Distance between the Focus and the Center 
of the Ellipsis, in the position of her Orbit, marked [3] is One and a 
Half of the same Distance in the Position marked [5]'.

(1726, p.104)
Ihe figure to vdiich Whiston was referring is Figure 7.2, Crabtree's 
illustration of the Hbrrocks model. In a section, 'To Determine the Earth's 
Eccentricity', Whiston explains hew it is 'to be reckoned frcm Focus to 
Center.' All diagrams of the Hbrrocks theory without exception displayed

* 'Kepler neglects the elliptical shape of the orbit in computing the 
evection... Ihe error could not be very large, since the moon's orbit is 
constricted by only about ê  = .002 of its radius. ' (Stephenson,B., 1987,
p. 182, 186).
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circular orbits - in Hbrrocks, in Crabtree, in Newton, in Flamsteed, and in 
Whiston - with displaced centres.

The Crabtree diagram displays the twin features of apse line 
oscillation and eccentricy variation, out of phase with each other. Hie 
primary motion of the apse line has been subtracted out, so that the 
diagram only depicts the secondary oscillation. It does not depict motion 
in sidereal space, because after one revolution of its eight stages, taking 
411 days, the apse line will have revolved 46°, v̂ ereas it is represented 
by a vertical line in each phase.

Every 6% months the Sun meets the apse line, depicted by steps 3 and 7 
of the figure, with Sun at perigee and apogee respectively. These are 
supposed to depict maximum eccentricity, vtole steps 1 and 5 in contrast 
shew minimum eccentricity. The octants of this diagram, when the Horrox- 
angle (our name for the Sun-apse angle) is 45° or 135°, correspond to the 
greatest size of the apse line's secondary motion. This amopits to soæ 

^ twelve degrees, /XWlA

The model is strai<ÿitforward to follow, provided we use the old, 
Hifparchus definition of eccentricity. A previous chapter, 'Finding the 
Anomaly' discussed hew the first two laws of Kepler were encoded into the 
'Equation of the Centre', which had indeed been used by Flamsteed in 
constructing his tables. Things wDuld became rather complex, if one tried 
to picture Keplerian ellipses of varying eccentricity.

Whiteside in his tercentenary essay of 1976 affirmed that the young 22- 
year old Horrocks had constructed the following obscure edifice:

'The theory of the moon's motion thereby subsumed [ie, the Horrocks 
theory], by which (on conflating the Ptolemaic equation of excentre - 
essentially our modem elliptical inequality - and the evection from 
this) the lunar orbit is taken to be basically a Keplerian ellipse of 
periodically varying eccentricity with a corresponding fluctuation to 
and fro in the mean secular advance of its line of apsides, and 
further adjusted in fine by - in longitude - Brahe's twin inequalities 
of variation and the annual equation...' (p.318)
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ŒMM contains no vrord about elliptical orbits and we follow its example. 

Figure 7.1 ^cw the Horrocks diagram, as it appears in his unpubli^ed 
Philosophical Exercises (Ihis notebook is stored together with Flamsteed 
documents in the R.G.O. archives at Cambridge Ifiiiversity Library, ROD 
1.68B; Wilson, GHA p. 197). Curtis Wilson's researches showed that HorrocOcs 
derived the diagram from van Lansberge's Theoricae motuüm coelesthm, but 
that he altered the theory involved, so that from the 'very inaccurate' 
Lansberge model, he constructed what remained for almost a century the 
finest available. I remained in the dark as to how the Horrocks model 
functioned, until I started to follow carefully the instructions given in 
IMM, its diagram being given in Figure 7.3. The two diagrams are basically 
identical, thouÿi separated in time by six decades.

IX  D ia g ra m

In the IMM diagram, there is an immobile Earth positioned at T, around 
vÆdch the Sun S revolves yearly, and an immobile mean apse line IB, around 
vtoch we could picture the stars revolving every nine years. Ihat is the 
required frame of reference in space and time. IF is the apse line varying 
by its second equation (its first equation, the annual, not being here 
represented). In Horrocks' version. Figure 7.1, a centre C to the lunar 
orbit is defined, but IMM refrained from specifying such. We are not told, 
for example, that C or F in Figure 3 represents the centre of a circle or 
ellipse of the lunar orbit.

According to Newton and Hailey, the eccentricity was represented by the 
line TF in Figure 7.3, vhereas according to Flamsteed it was represented by 
the projection of that line onto IB. Ihese have the same maximum and 
minimum values, TB and TA respectively, but different mean values. Ihe 
experts agree that the former is the correct view (from the modem 
equations for the evection inequality), but disagree over vhich v̂ as 
employed by Horrocks.

Ihe previous chapter discussed (p. 41) how the 'Equation of Orbit' could 
be considered as varying according to the sinusoidal function
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6°18'43" + l“20'47»*œs2§

In figure 7.3, STA is the Horrox-angle and PCB is defined as being of 
double its magnitude, ie 2$ - althou^ IMM's diagram does not show it very 
well. The above formula thus gives us Flamsteed's version of the varying 
'Equation of Orbit', if CF is equated to 1°20'47" (half the difference 
between minimum and maximum eooartricities), and 6°18'43" the mean value is 
equal to TC.

For the Newtonian version, we require the length of TF in terms of $. 
TC represents the mean eccentricity namely 0.055050 and CF is half the 
difference between maximum and minimum eccentricity, namely 0.011731. 
^plying the cosine formula in triangle FTC gives:

or

TF"= TĈ  + FĈ  -2PC.T0COSFCT 
TF = TC/Cl+PĈ /TĈ  +2FC/IC.COSFCT)

= 0.05505/(1 + 0.2131= + 2x0.2131cos2$) 
TF = 0.055057(1.0454 + 0.4262cos2§) (1)

That is our equation representing the Newtonian instructions in TMM. The 
important ratio CF/TC of 0.2131 represents the eccentricity fluctuation 
(Ch. 2 Section IV)) of 21.3%. Using the same terms, Flamsteed's version as 
given above was sinply:

Eccentricity = TD = TC+CD
= 0.05505 + 0.01173cos2§ 

We shall see later hew the two equations 
differ ccnsiderably in their effect.

Figure 7.3; THH's diagram of the Horrox- 
wheel, where angle FTB is the apse 
equation S ,  STB the Sun-mean apse 
angle $ and FCB is 2$, though 
not well drawn to scale (ST 
should be parallel to ÂF). TC 
is mean eccentricity, while TÀ and 
TB are its minimum and maximum values respectively.

(see Figure 4a)
(2)



Ficnire 7.4a; Horrox-wheel 
diagram showing TD as 
Flamsteed's version of eccentricity
and TF as Newton's. TB is the mean apse 
line and F is the centre of the lunar orbit.

Figure 7.4b: the condition for 
maximum 5, where sin <5„̂ =̂FC/TC. 
TF is a tangent to the circle.

Figure 7.4c: TMM's mean eccentricity
position: TF=TC, where TF is not tangential 
to the circle, then cos FCT=CM/CT=FC/2TC.
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lb obtain 'Ye Equation of Ye ̂ xjgee' as Flamsteed called it, or the 

'second Equation of the Moon's apogee' as IMM called it, we require the 
angle FTC. Following the example of Curtis Wilson in GHA we take this as 6 , 
then applying the sine formula to the same triangle gives

sin5= (0.011731 sin2$)/e,
= sin2$/85.25e (3)

In the next chapter, these procedures for obtaining the length TF and the 
angle S will be referred to as the functions f and g respectively.

X IX  O XXtoeatz O crfcaixts

Ihese Newtonian functions are asymmetric about the octants of Figure 
7.2. In Figure 4b, the angle S will be maximal Wien TF is a tangent to the 
circle so TPO90*. Ihen,

sin6 ^̂  ̂= FC/TC = 0.2131 (4)
so S = 12*18'15".
This maximal value arises Wien the Iforrox angle is given by cos (180-2$) = 
0.2131, or # = 51°. It seems doubtful Wiether this asymmetry has any 
astronomical significance, but tables Wiich follow the IMM instructions all 
have the apse equation peaking at 51° of the 'Annual Argument. ' Table 7.1 
shews the table Wiich Newton sent to Flamsteed in ̂ ril of 1695, with 
maximum value at 51°.

Ihe three columns of this Table are each of 30] so that the middle 
column at 21° is equivalent to 51° of the 'annual Argument', ie, the Sun- 
mean apse angle. Ihe apse equation Wiich there appears of 12° 10'25” is the 
peak value given in the Table. It is larger than that given in DOS (11°47') 
and smaller than IMM's value of 12°15', indicating that IMM was not 
composed in this period. Adjacent to this column in the Table are the 
eccentricity values, and the mean value (55050 parts in 10®) appears as 
just after 48° of the annual argument.

Ihe eccentricity values in Figure 7.2 reach their mean values at the 
octants, and indeed they did do in Flamsteed's version, given by equation
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(2). In Newton's version however, vÆien TFXDC (in Figure 4c) the 
eooentricil̂  TF has its mean value: then cos FCT = (180-2$) = CM/CT =

Table 7.1: Table sent by Newton to Flamsteed on 23 April 1695, with three columns 0-30J 30-60* and 
60-90) for the Horrox angle ('Annual Argument'); showing mean eccentricity of 55050 generated by 
such an angle of 48-49*, while maximal apogee equation (12*10'25") falls at 51*.

The Equations of the Moons Apoge & the Excentiicities of her Orbit 
in such parts as the radius is 1000000." •

Add the Equations of the Apoge

1 =ÎI Sign® Excentr. Sign 7 Excentr Signf Excentri

II0 , , parts parts 0 , " parts

0 0 0 0 66850 9 22.50 61855 11.32.17 50406 30

1 0.20.54 66845 9.36.57 61537 11.22.59 50022 29
2 0.41.46 66827 9.50.31 61211 11.12.37 49645 28
3 1. 2.38 66798 10. 3.40 60878 11. 1.10 49274 27
4 1.23.27 66757 10.16.14 60438 10.48.39 48908 26
5 1.44.12 66705 10.28.17 60192 10.35. 2 48551 25

6 2. 4.54 66638 10.39.47 59838 10.20.21 48201 24
7 2.25.31 66562 10.50.41 59479 10. 4.36 47859 23
8 2.46. 0 66475 11. 0.58 59113 9.47.47 47527 22
9 3. 6.24 66375 11.10.40 58742 9.29.55 47204 21

10 3 26.41 66265 11.19.42 58366 9.10.59 . 46891 20

11 3.46.50 66146 11.28. 5 57986 8.50.58 45266 19
12 4. 6.48 66012 11 35.46 57600 8.29.57 45040 18
13 4.26.37 65870 11.42.44 57211 8. 7.57 44829 17
14 4.46.15 65716 11.48.58 56819 7.44.58 44633 16
15 5. 5.41 65549 11.54.27 56422 7.21. 1 44452 15

16 5.24.55 65373 11.59.11 56023 6.56. 8 44287 14
17 5.43.53 65185 12. 3. 6 55622 6.30.23 44138 13
18 6. 2.38 64988 12. 6.12 .55218_ 6. 3.49 44824 12
19 6.21. 9 64779 12. 8.28 54814^ 5.36.28 44628 11
20 6.39.22 64562 12. 9.53 54408 5. 8.22 • 44447 10

21 6.57.20 64343 12.10.25 54001 4.39.34 44283 9
22 7.14.55 64094 12.10. 1 53595 4.10. 8 44134 8
23 7.32.14 63847 12. 8.43 53190 3.40.10 44003 7
24 7.49.11 63590 12. 6.28 52784 3. 9.41 43888 6
25 8. 5.47 63323 12. 3.16 52381 2.38.45 43789 5

26 8.22. 0 63046 11.59. 6 51980 2. 7.27 43709 4
27 8.37 51 62761 11.53.58 51581 1.35.51 43647 3
28 8.53.17 62467 11.47.45 51185 1. 4. 2 43602 2
29 9. 8.17 62165 11.42.14 50794 0.32. 3 43575 1
30 9.22.56 61855 11.32.17 50406 0. 0. 0 43566 0

5
Sign

11

4
Sign

10

3
Sign

9

I Substract the Equations o f the Apoge

calculo proprio 
correcti sequentes 
46891 numeri

46588 -JF 
46298 Maij 4 h  
46019 1695
45753 
45500

45260
45034
448231 
<=---

mean value 
55050

57 02 = 15% 44"
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0.2131/2, giving $=48°. The 'Newtonian' tables for eccentricity therefore 
reach their inean value at 48°. Again, I am not clear as to whether this has 
an astronomical meaning. It would give one pair of octants (moving from 
conjunction to square) a different form of motion from the other two (from 
square to conjunction).

Ihus, the 'Horrocksian' table of lunar eccentricity vhich Flamsteed 
published in 1673 (lunares Numeri M  Ncvam Iimae Theoriam, p.480) resembles 
the equivalent table in DOS in having a mean value at 45° of the Horrox 
angle, and so being symmetrical about the octants. Ihis difference offers 
us a simple and distinctive fingerprint whereby we should be able to 
recognise vho in the ei^teenth-century was using Newton's version of the 
Horrocksian mechanism.

.iJTV' Ha T le y  ̂  s  Oorrturi toufc±on

'Hailey afterwards made a slight alteration; but hardly, I think, 
enough to justify Newton's assertion. '

(William Whewell, History of the Inductive Sciences, Vol.l, p.466)

An adjustment to the Iforrooksian model was recommended by Hailey to 
Newton, vhich the latter regarded as quite valuable. Confusion has arisen 
over this matter, for the resolution of vhich we need to review the 
development of %hat was regarded as Horrocks's lunar theory. It took place 
in four stages:

I II III IV
Horrocks (1638) Crabtree (1642) Flamsteed (1673) Flamsteed (1681)

 >     ^notes ' letters ^ Opera Omnia DOS

Streete (1661) Whiston (1707-26)

Ihe first coherent account of Britain's first lunar theory emerged from 
Salford, now a suburb of Manchester, in June of 1642, as penned by William 
Crabtree to Gascoigne from notes left by Horrocks. Ihey had both been his 
colleagues. Crabtree cast the new theory into seven steps, the third of 
which is here of interest to us. In the 1673 publication of Horrocks's
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Wbrks, Flamsteed 'polished' Horrocks's method, to use his expression, 
chiefly by inserting his cwn Equation of Time in place of the imaginary 
Keplerian 'equation of physical parts' in vAiich Earth's rotation rate 
altered through the year. In 1681, Flamsteed adjusted some of the mean 
motions as canpared with his earlier 1673 statement, but otherwise left his 
method unchanged. Whiston merely repeated the DOS procedure, presenting it 
to his students in the early decades of the new century as the best lunar 
theory available.

Crabtree's letter was reprinted in the collection assembled by Flamsteed 
in 1673 as the posthumous works of Hbrrocks. His third step specified the 
manner in vMch eccentricity varied in the new theory:

'3. Dtplicetur Argumentum annum, & duplicati Co-sinui addatur 
3,065206 (Logar. numeri 1162, semi-differentiae inter mediam & extremam 
Excentricitatem) prodibit logarithraus numeri addendi Excentricitatem 
mediae 5524, si duplum Arg. annui fit in 4° vel l“ quadrantibus, alias 
subtrahendi, & habetur Lunae excentricitatis vera. '

(Horrox, 1673, p.469*)

This text describes the addition of mean eccentricity (the line TC in 
Figure 4a), here given the value of 5524, and vhat in the previous chapter 
we described as PCoos2§. PC as the radius of the Horrox-wheel here has 
magnitude 1162, being the amplitude of the sine function - described by 
Crabtree as half the difference between maximum and minimum eooentricity - 
and the cosine is of twice the 'annual argument' as it was called. Terras

* Horrocks's own words on the subject are to be found in his notebook. 
Philosophical Exercises (RGO 1.68 B, Second Part, section 19), entitled, 'A 
New Theory of the Moon' : '.. .to the sine of the remainder adde 306446 (the 
logarithme of 1160, or halfe the difference of the greatest and least 
eccentricity of the Moon) so have you the logarithm of a number to be added 
to 5493 (the middle eccentricity).. .so have you the moons eccentricity'
What Horrocks meant by 'the remainder' pertained to double the 'Sun's 
distance from ye moan's apogaeum or perigaum'. These notes have never been 
published.
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are converted to logarithms and instructions given as to Wiether the 
P0oos2§ term is added or subtracted by quadrant - done automatically by our 
cosine function. Horrocks's method projected the rotating radius vector PC 
onto the mean apse line TC to define the altering eccentricity.

Flamsteed adopted this account, Wiereby eccentricity was represented fcy 
the projection of the line TF (see Figure 3) onto TB. In the early 1690s, 
Hailey came to disagree with this, averring that the eccentricity should 
rather be represented by the line TF itself. We lack any statement by 
Hailey on this matter, Wiich is regrettable. Flamsteed reported it to 
Newton, evidently puzzled, and the letter's reply a week later was,

'By your cAservations I find it to be a very good correction. I 
reckoned it a secret which he [Hailey] had entrusted with me; and 
therefore never spake of it till now. '

(Correspondence, IV, p.34, letter of 24 October, 1694)

In the Principia of 1713, Newton gave this curious account thereof:
'Our countryman Horrox, was the first Wio advanced the theory of the 
moon's moving in an ellipse, about the earth placed at one focus. Dr 
Hailey improved the notion, by putting the centre of the ellipse in an 
epicycle Wiose centre is uniformly revolved about the earth; and from 
the motion of the epicycle the mentioned inequalities in the progress 
and regress of the apogee, and in the quantity of eccentricity, do 
arise.' (PNFM, p.475)

Ihe first sentence describes the achievement of Johann Kepler, attributing 
it to Jeremiah Horrocks, and the second describes the achievement of 
Jeremiah Horrocks, attributing it to Hailey. We may add that the uniform 
revolution alluded to has a nine-year period: if Earth forms one focus of 
an ellipse, then the 'centre of the ellipse' will revolve round it as the 
apse line moves once round the zodiac.

Ihis is all that PNFM has to say about Hailey's contribution, thou^ it 
bears little relation to the letters of October, 1694. Flamsteed presented 
the Horrocksian method to Newton in his letter of 11 October, and then 
added, referring to a diagram: 'But he [Hailey] affirms that not Cx but Cl 
is the excentricity in this & all other cases'. His letter then goes on to
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describe how Thomas Streete (in his Astronomia Carolina) made a sli^t 
adjiastment to the Hbrrociksian model, and for vhat purpose this was done.

It was fairly well known that Kepler had applied his laws to the lunar 
orbit but had not thereby made much progress (Wilson, 1987,p.80). An 
article by S.B.Gaythorpe, F.R.À.S. in 1957 on Jeremiah Horrocks and his 
'New Theory of the Moon commented upon the Principia's text, that it

'.. .does not indeed seem a particularly striking claim to fame, but the 
sentence irrplies more than it immediately conveys. Before Horrox no one 
had atterrpbed to take an ellipse as the basis, so to speak, of the 
Moon's path, on account of the number, size, and rapid variation of the 
periodic inequalities involved, and the difficull̂  of combining them 
with other than circular motion. ' (p. 134)

As well as endorsing the Principia's version of Horrocks originality, in a 
manner that is questionable, Gaythorpe concluded that Horrocks had omitted 
a certain factor (sec 6) in the eccentricity formula, and thereby '...he 
lost the honour vdiioh Newton gave instead to Hailey...' (p. 137) Sec 6, or 
cos 6, is the factor by vhioh the two recipies disagree (see Figure 4a).

A different viewpoint appeared in Whiteside's essay on the subject 
(1975, p.325, note 10) affirming that Hailey had not made any innovation, 
but had merely adopted Horrocks's method:

'..it was Flamsteed's understanding (founded on a passage in Hbrrocks 
vAere he himself uses this simplification for ease of calculation) that 
the eccentricity of the lunar ellipse in not - as Horrocks himself 
indubitably took it to be in his basic precepts - TF [in Figure 3a] but 
the projection of this on to the mean apsis-line.'

Whiteside gave as his authority Gaythorpe (1956, p. 137). As we have seen, 
however, this was not Gaythorpe's view.

Curtis Wilson in the GHA endorsed the Whiteside view:
'On one point of interpretation Flamsteed went astray, thereby deeply 

changing the structure of Horrock's theory: in place of the varying 
eccentricities intended by Horrocks, he used their projections onto
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the mean line of apsides, so diminishing their values by the factor 
cos 6, Ihe mistake was later perceived and corrected by Hailey.'

(GHA, p. 199)
What Hailey imparted to Newton as a secret, and to Flamsteed as his cwn 
idea, is viewed as merely a reversion to the earlier model. (See also 
Correspondence, vol. IV, p.32, note 6, discussing the above-menticmed 
letter of 11 October).

Ihis Whiteside - GHA viewpoint detracts from Hailey's originality and 
Flamsteed's conpetence. We cannot readily appreciate vhat people then meant 
by 'Horrocksian' if we adopt it. For example, in 1710 a Mr CTessner 
published in the Philosophical Transactions a comparison of two different 
longitude computations, one vdiich he called Newtonian and the other 
Horroxian (P.T., 27, pp. 16-19). Ihe latter turned out to be William 
Whiston's Praelectiones astronomicae (1707) version of Flamsteed's 1681 DOS 
procedure.

We rather adopt the more traditional Forbes-Gaythorpe view, vhereby 
Flamsteed's eooentricity procedure was sinply that of Horrocks; vhereby 
Hailey's proposal vfas indeed an innovation; implying that Whiteside erred 
in believing Flamsteed failed to comprehend the nature of the theory vhich 
he brought from the North Oountry and ushered into the lî rt of day. A 
later chapter vd.ll look at the question of how much difference was made by 
this adjustment, vhether it vjas a 'very good correction' (Newtm) or but a 
'sli^t alteration' (Whewell).

Forbes affirmed that a geometrical construction for the altering 
eccentricity was supplied 'for the first time' by Flamsteed in his epilogue 
to the Horrox Opera Posttuma of 1673 (Forbes, 1975, pp.63-67). One could 
query such a claim on the grounds that the above Figure 7.1, showing his 
eccentricity equation and deferent-vheel, are from the Horrocks's 
'Philosophical Excercises' adjacent to the passage above-quoted. Ihe area 
has been lit±le investigated by science historians.
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V  T .i Tikage o f  o anci 5

Hcw well do the apse and eccentricity equations tie iç) together? 
According to IMM, the maximal value of the Equation of the Apogee is a 
simple function of the varying eccentricity, as in the above equation (4). 
Hcwever, IMM's figures are not quite consistent with this relationship:

Eccentricity Eqn of Apogee Iheor.Eqn.
Horrocks 0.05524 ± 0.01162 ll*47'22"t 12°8'35"
Flamsteed 11 ”47'22"
Newton (1695) 12*10'25"

(1702) 0.055050 ± 0.011731 12*15' 4" 12*18'15"
" (1713) " " 12*18'. "

What has here been called the theoretical greatest apse equation was 
derived from equation 4 in Section III, inserting the given eccentricity 
value. Not prior to the Priiicipia's second edition were the values 
interlinked in accord with IMM's geometrical model. It thus apgpears that 
the form of the Horrocks model, above described, was originated by Newton. 
One cannot say which of these equations of apogee has the 'correct' value, 
as the concept is not used in modem lunar theory.

As was remarked earlier, Dunthome in his Practical Astronon^ of the 
Moon had faithfully reproduced the instructions of IMM in drawing iç) 
tables, etc, but gave an Equation of the ̂ xogee as 12*18'15", and it new 
beccanaes clear that Dunthome has siitply calculated its value from the 
model, as it should be. In fact, this difference of three arcminutes is 
quite immaterial.

t In his letter of June 21 1642 to Gascoigne, William Crabtree cited the 
value above-quoted, in turn cited by Gaythorpe, (1956, p.137) as Horrocks' 
value. Hcwever, Horrocks' Philosophical Exercises notebook states 'Ihe 
greatest aequatio apogai is 12*30' (RGO 1.68B,17). In 1675, Flamsteed in a 
letter to the Philosophical Transactions averred that: 'I find by Mr 
Horrockses papers, that he used at first 12* precise, but içx>n farther 
experience diminished it to 11*48.' {Phil. Trans. 1675, Vol.̂ lO pp.369-70.)
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Godfray's lunar Theory of 1871 discussed the interlinkage between these 

two functions, and his treatment was recommended by Whiteside (1976, p328, 
note 47). Turning to the page recommended by Whiteside (Godfrey p.70), we 
find equations given for the two above-defined functions in error 
by fifty percent:

6 = 15m/8 sin2(a'-®) 
and E = e{l + 15m/8cos2(a'-®)

vhere S is the second equation of ̂ x̂ gee, E is the varying eccentricity, e 
is mean eccentricity, m is the ratio of lunar tropical noith/solar tropical 
year, and (a'-®) is the Hbrrox angle between apse and Sun. Hiis gives 
maximal values for S of 8°, and an eccentricity fluctuation of a mere 12%, 
whereas it has to vary by 21% according to IMM. This may serve to remind us 
hew difficult a matter is our subject, and how easy it is to err therein.

A more reliable maximal value for 6 was derived by Gaythorpe (1925, 
p. 859, 1957, p. 136) as arcsin(e/2e), where e is the coefficient of the 
evection term (ll274, see below). This is equal to 11*39', using the TMM 
value of eccentricity. The 'correct' value of this vitally important 
constant thereby ajçears as closer to Horrodks's final value, than to the 
considerably hi^er value vhich Newtcn, following Hailey's advice, gave to 
it. Gaythorpe derived this value by showing how the modem evection and 
equation of centre terms were equivalent to a single equation of centre 
term using an oscillating apse line, 6 being its maximal oscillation.

V I C  Nor f c .  t i n e  E v s e c r f c J - o n
'By thus coupling the libratory motion of the apse line AP with a 

variable eccentricity, Horrox (and subsequently Flamsteed) united the 
two principal lunar inequalities: namely, the equation of the centre 
and the evection.' (Forbes, 1975, Ch.4, p.65.)

The first three of the modem equations of the lunar orbit are,
6.288 sin M' or in our symbols: sin (If-A)
+1.274 sin (2D-M') sin [(2(M-S) - (M-A) ]
+0.658 sin 2D sin 2(M-S)
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v/tiere the first tem is the elliptic inequality, the second is the evection 
and the third is the variation. M' represents the Moon's mean anomaly, ie 
distance from its mean apse in longitude, D its mean elongation ie distance 
from the mean Sun, and M, S and A the mean positions of Moon, Sun and 
apogee. The Horrocks model conflates the first two of the above equations. 
Hew its performance conpares with these, is something we may hope to 
apprehend in due course.

The evection has the characteristic that one cannot picture it, as 
varying with the sine of twice the elongation minus the anomaly. In this it 
contrasts with the kinematic model we are considering, vhich is vholly 
visual. The evection was named by Ishmael Boullieau in 1645, however its 
meaning varied rather (GHA, p. 195). As the 'second inequality', it was 
discovered by Ptolemy, vho fixed its maximum value at l" 19', described by 
Dreyer as 'very near the true value' (|TS3 1 _ y < % ' - " " ^
: , p. 195). Its modem meaning, as having a period of 31̂  days,
developed in the later eighteenth-century.
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C J tl . 8 THE SEVEN MOONS OF TMM

'...and the Moon's Place will be equated a seventh 
time, and this is her Place in her proper Orbit.'

TMM

Newton originated the concept of seven steps of equation as his 
distinctive approach to lunar theory, in his TMM of 1702. As he discerned 
just seven colours in a rainbow in 1675, and as his Optics of 1704 found 
seven steps of colouration in his 'Newton's Rings'*, so in like manner he 
found seven steps appropriate for his lunar endeavours. We have seen how 
William Crabtree's formulation of the Horrocksian theory in 1642 described 
seven steps, vhich may also have influenced him.

This sevenfold structure became a distinctive hallmark of the various 
'Newtonian' ephemerides that utilised TMM. To quote Dr Waff, r-

"...nearly all new lunar tables constructed during the first half of 
the ei^teenth century utilised in some fashion his [Newton's] tabular 
theory."

(Cohen,1975, p.79) That is a strong and bold claim by Dr Waff, but 
regrettably it has never been substantiated. It will here be investigated 
in due course. By 'tabular theory' Dr Waff was presumably referring to 
Newton's seven steps of ccnputation. Leadbetter's Uranoscopia of 1735 
contained the seven steps. Le Monnier's Institutions of 1746 in Paris 
contained them, as (mainly) did Hailey's Astronomical Tables of 1752. Thus, 
its shadow stretched over half a century, greatly ignored by science 
historians.

The first summary of TMM's seven steps in trigonometric form was given 
by Francis Baily, President of the newly-formed Royal Astronomical Society

* P.Gouk, 'The Harmonic Roots of Newtonian Science', in Let Newton be! Ed 
Fauvel et. al., 1988. For the sevenfold pattern of 'Newton's rings' see 
D.Castillejo, The Expanding Force in N&frton's Cosmos, Madrid 1986, p.97. 
Castillejo also noted that Optics was composed in seven sections.
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(1835, p.742), as follows:

Table 8.1: Bailŷ s account of the N̂ewtx>nian Rules
I) 11' 49" the annual equation
II) 3' 45" sin 2(D-A)
III) 47" sin 2(On)
IV) Equation of centre, including evection
V) 35' 15" sin 2D the Variation
VI) 2' 10" sin (2EH-a-A)
VII) 2' 20" sin D

Baily gave no details beyond this bare outline. He pointed out that 
four of the equations were entirely new, nainely numbers two, three, six and 
seven. The magnitudes of the sine functions in Daily's summary were mostly 
mean values, and as we shall see they are made to vary, in relation to 
several different cycles. (His symbols are different from those used here: 
he took D as the Sun-moon angle, D as node, O as Sun, and a, A as solar and 
lunar anomalies).

The instructions of TMM have here been translated into a sequence of 
machine-readable functions. I accomplished this in the winter of 1991/2, 
and then with the aid of a computer expert, Mr Jonathan Loretto, it was 
written onto a 'Lotus 1-2-3' program. As input this program takes the time 
in days after noon GMT on December 31, 1680 Old Style, and as output it 
gives lunar longitude. Its latitude function is described later (Ch.9, V). 
Figure 8.1 is a diagram of TMM's sequence of operations. I was startled to 
discover that the program based on TMM did rather accurately accord with 
the heavens, at least around the time of its composition.

The seven 'steps of equation' are here presented as a sequence of 
additive functions, and are given without explanation. The reason for this, 
is that it seemed preferable to start with the conplete sequence, shewing 
its structure, and then in the next chapter to justify each step. The 
program starts with a given time, vhich defines five different mean motions 
(Chapter Five), and these mean motions become modified by sucessive 
'equations'. A sequence of interactions takes place, ending with a seventh-
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tirae equated moon. Later in the chapter some equivalent algebraic terms are 
given, for each step.

The sequence here presented contains no twentieth-century astroncanical 
constants, using only those given in TMM; and, with only one exception, it 
contains no modem equation: it does include the 'equation of centre' 
formula as discussed in Chapter Six, since TMM merely states that tables 
for the equation of centre were to be compiled, implying that a standard 
procedure was to be followed, and merely gives maximum and miniiaum values 
for it. TMM's instructions on how to accomplish the 'reduction', ie 
conversion to the plane of the ecliptic, are also rather brief, this being 
a quite standard operation. Thus, with only one exception, vtot is here 
presented is merely:

"a translation from the hieroglyphics of geometry into vAiat is now 
the vernacular language of science [ie, algebra],"

- as was claimed by Stevenscxi's 1834 opus, Newton's lunar Theory Exhibited 
Analytically (1934, Preface). However, as was indicated earlier (Ch.l,
VII), vhat Mr Stevenson presented was not in fact the Newtonian procedure, 
but an idealised version thereof, resembling the mid-ei^teenth century 
French theories and quite lacking the Horrocksian mechanism (Cohen, 1975, 
p.79). Such a translation of TMM into 'the vernacular language of science' 
is here accomplished for the very first time.

Checks that were used to test the program have been included as shown 
below, together with a complete worked example in the form of the case- 
stLK̂  by Richard tXmthome, a Camibridge student vho pr^jared tables vtoch 
adhered closely to TMM. He published this in 1739 as Practical Astronony of 
the Moon: or. New Tables of the Moon's Motions, the purpose of vhich was to
see how well TMM actually worked. IXmthome put his maximum equation of
apogee at 12° 18' 15", as given in the third editicxi of FNEM, vdiereas TMM 
had given it as 12° 15' 4", that being the sole difference.

While the equations below were all bar one derived from the
instructions of TMM, I was at times uncertain about the signs, especially 
for the nodal equations. A worked example given in IXmthome was here 
useful for checking that the addition and subtraction of the trigonometric
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functions was proceeding correctly, for the varying angles. Dunthome's 
1739 opus appears to me as the one work vdiich has embodied 100% the TMM 
rules in its lists of tables and instructions on how to use them. A 
convention has here been adopted that the faster orb was always subtracted 
from the slower, for example the solar 'anomaly' is represented by (H-S) ; 
bearing in mind that sin(A-B) = -sin(B-A) and cos(A-B) = cos(B-A). The 
discussion of the four new Newtonian equations given in Œ A  (p. 267) was 
also of assistance in ri^tly applying their signs.

The treatment of the 'equation of the centre' using the Horrooksian 
model is far larger than any other of TMM's 'equations', and is positioned 
in the centre of the seven steps, so that there are three antecedent stages 
and three following. The fifth stage comprises the well-known inequality 
discovered by Tydho Brahe called 'Variation'.

X XMM ±jn Fcxtrm.
The five variables, measured in degrees of zodiac longitude from zero 

Aries, are: Moon M, Sun S, apogee A, aphelion H and node N. These have
motion in degrees/day, and values from zero to 360°. They depend on time
t, measured in days from nocxi G.M.T. Dec. 31, 1680 Old Style. The five 
variables have these starting positions at time zero and speeds of motion:

M = 181:763 +13.17639535 x t
S = 290:580 + 0.98564697 X t
A = 244:468 + 0.1114083 x t
H = 97:392 + 0.0000479 x t
N = 174:243 - 0.0529551 X t

These are the mean motions. These linear functions can be checked by 
putting t equal to 7305, the number of days in twenty Julian years. This 
will give the follcwing positions for TMM's second epoch date (Ch.4, IV). 
Test One:
for t=7305, M = 315:331

S = 290:731 
A = 338:306 
H = 97:742 
N = 147:406
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Œhese five longitude values are those specified by TMM for noon on December 
31, 1700, confirming that the mean motions tie i:ç) with those specified. A 
'modulo' function is employed to retain the value of each function within 
0-360°.

The following flow-chart outlines the sequence of interaction of these 
five variables through the seven steps, with angles measured in degrees.

Figure 8.1 
M

The Steps of Equation in TMf
M 1STiS 1ST

E

M

ML

THE FOUR FUNCITŒS f ,g,h and j:
TMt^PC utilises four functions, vhose operation may be outlined as 

follows:
f:
g: Â  - A,

M.

A i + S i - E

h: E + Â  + M3
j: N3 - N3

Function 'h' applies the equation of centre, vhich gives radian measure 
(Ch.6,II) and so has a ISO/tt conversion factor to bring it into degrees.
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The next chapter will e>q)lain the derivation of these functions vhile here 
we merely describe them. They are as follows:

Eccentricity from Horrox angle (A-S) :
f(A-S) ->0.05505 X 7(1.0454+ 0.4262cos2(A-S) }

Second Apse Bquaticai from the îforrox angle: 
g(A-S) —> arcsin (sin2(A-SU

(85.24 X f(A-S)}

EquatiOTi of Centre from lunar anomaly and eccentricity:
h(E,A-̂ )-̂ [2E X sin(A-M) - 1.25 x Ê  x sin2(A-41) ]xl80/7r

The Node Equation:
j(N-S)— >arctan ( sin2(N-Sl }

(38.33 + cos2(N-S)}
The following Test TVro will check whether the functions are working.
For f, put A-S - 48"  >  0.05507,

g, put A-S = 48" 12.X3
h, put AHM = 30" and E= 0.05 2.717
j, put N-S =120" -1.311

The Seven Steps
The steps of equation are inserted in accord with the above flcw- 

diagram. Thus, the apogee first-equated (Â ) feeds into functions f and g, 
then adding g to Â  gives the apogee second-equated, vhich in turn feeds 
into functicxi h, the equaticxi of centre, to give M̂ . The node Œi the other 
hand caily receives its seomd equaticai after the seventh step.

STEP ONE - the annual equation
Ŝ  = S + 1.939 X sin(H-S) - 0.0205 X sin 2(H-S)

= M - 0.197 X sin(H-S)
Â  = A + 0.333 X sin(H-S)

= N - 0.158 X sin(H-S)
This step begins from the 'mean motions', linearly time-dependent functions 
with modulo 360", as given earlier.
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STEP TWD + [6.25 - 0.31 X OOS(H-Sj] x sin 2(A^-SJ 4- 100

STEP THREE + 0.0131 X sin 2(N̂ -Ŝ )

STEP POUR Put E = f(S^,Àj
a n d  Aj =  -  g ( S ^ , A J

thsn H. = + h(E,M, ,AJ,

STEP FIVE - the Variation
Mg = + [0.5923 - 0.0312 X oos(H-SJ] X sin 2(M^-SJ

STEP SIX Mg = Mg + 0.0361 sin(S^-Mg4M-AJ

STEP SEVEN M̂  = Mg + [0.0389 + 0.015 x cos(H-AJ] sin (S^^g)

REDUCnm Put - j(S^,NJ
then M(end) = M̂  + 0.1160 x sin2(Ng-Mg ) [l+0.0586oos2(N̂ -Ŝ  ) ]

The following Test Three checks the entire sequence of equations, 
utilising Dunthome's worked exairple (1739, pp. 50-59; Table 8.2), vhich 
took the instant of 3.40 pro on January 2nd 1737. Ocxrversion to a TMM t- 
value as defined gives 20456.1528 days. This position has been used as a 
standard test for setting i:ç) the program. The TMM Lotus spreadsheet for 
this instant is given in Appendix V, which is comparable to Table 8.2. The 
follcwing positions are generated by TMM-PC for this instant:
M= 80.119 80.069
S= 293.124 M = 80.112
2^ 3.453 K = 80.124
B= 98.372 E = 0.04670 Mg= 74.815
N= 170.985 Mg= 74.207

74.186
293.628 M,= 74.163

2̂ =
3.538

354.212
74.142 = 74"8'31"

170.945
2̂ = 169.572
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For this date and time, the t-value fed into the ŒMM-PC program was 

20456.1528 days. One can be a day out in computing these t-values owing to 
leap-years, and so the solar values are first checked to see if they 
concur. A Lotus 1-2-3 spreadsheet has the form of a flow diagram, where 
from the t-value inserted at the top, all the other values are defined. It 
shows merely the figures generated at each stage, but not the functions 
that produced them. A page is reproduced in ̂ pendix V.

The mean motions concur with those of Dunthome within an arcsecond, 
confirming vhat was said in Chapter Five that 'the Newtonians' in this 
period based their mean motion tables firmly içon IMM. The programme has 
IMM's value for lunar tropical motion defined to ten figures as

13!17639535/day.
That level of accuracy is vital if results are to be quoted to arceconds.
It differs from the then 'true' value, that is to say as interpolated into 
historical time using Meeus's modem values (Ch.5,II), of

13:1763967/day.
The difference only appears in the sixth place of decimals, but without 
this accuracy our mean values would never concur so well with those of 
amateur astronomer Richard Dunthome. For the slower, solar mean motion, 
ei^t figures appear as sufficient, for arcsecond accuracy. For comparison, 
the equations for locating correct lunar mean motions in historical time 
(̂ jpendix II) require an eleven-figure term.

The final results differ in ecliptic longitude by ei^teen arcseconds, 
vdiich is tolerable. Richard Dunthome was an eminent astronomer in his own 
ri<ÿit: it was he vÆio first established Edmond Hailey's conjecture of the 
secular acceleration of the Moon. Hailey had proposed in 1696 that such an 
effect was causing eclipses in antiquity to be displaced by an hour or so 
from their expected times, but he never shewed any computations cxi the 
matter. Dunthome did this, and Brewster's Memoirs of Isaac Newton referred 
to Dunthome in this context.

We can inspect the 'equations' for each of the seven stages, comparing 
Dunthome's with TMM-PC (see over). The largest discrepancy is ten 
arcseconds, in the sixth equation. A 'correct' answer is given from a



-108-
itodem program, shewing how final values err by nearly seven minutes of 
arc, vdiich is rather shocking considering that it is thrice the maximum 
error claimed by Gregory for TMM in 1702. Later cti, we may hope to discover 
how often IMM would generate an error of such magnitude.

IXmthome TMM-PC Dunthome TMM-PC
Eqn (1) -3' 2" -3' 0" 1st node egi: -2'27" -2'24"

(2) +2'33" +2'32" 2nd node eqn: -1°22'23" -1°22'23"
(3) +43" +42"
(4) -5°18'29" -5°18'30" 1st apse eqn: 5'9" 5'5"
(5) -36'28" -36'28" 2nd apse eqn: 9°19'27" 9°19'34"
(6) -1'27" -1'17"
(7) -1'28" -1'20" eccy. (xlO®): 46703 46705

Reduction -1'17" -1'16"
Final ans. 74° 8'13" 74° 8'27"
Correct value: 74° 15'3"

The above 'correct' value was obtained using a copy of the I.L.E. 
program kindly siçjplied by Dr. Bernard Yallop at the Royal Greenwich 
Cteervatory, said to be accurate to within a second or two of arc in 
historical time, vhich contains sixteen hundred terms.

Omitting the mean motions, we can cast the central chain of equations 
into a more algebraic format, as follows. The constants utilised have been 
listed at the end of the chapter. Concerning the signs of the functions, 
siçpose for exanple one were doubtful about that presait in "l-3Boos(H-S)", 
a term vhich appears in the second and fifth stages and represents an 
annual fluctuation about a mean value. TMM states that this 'equation' has 
to be maximal at perihelion (ie midwinter) and minimum at aphelion. (The 
'3E' term derives from Newton's claim that the function varies as the cube 
of distance from the Sun, later linked with a theory of gravity, however 
this need not here concern us). To check the correctness of the expression, 
one inserts a date when the Sun is near ̂ helion giving S and H similar 
values, vhen the expression (in the Lotus program layout) should reach its 
minimum value, vÆiile conversely it should rise to a maximum value vAen 180° 
or thereabouts separates S and H. This was found to be the case.
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n  The Seven Steps as trigonometric functions
STEP ONE: the solar equation of centre

Ŝ  = S + 180A[2Esin(H-S) - l.ZSxÊ sin 2(H-S)]
E is solar eccentricity 

180A converts radians to degrees 
= M - ll'49"sin(H-S) M is mean lunar longitude

STEP TWO + 3'45”[1 - 3Ecos(H-S) ]sin 2$

STEP THREE M3 = + 47”sin 2 (N-S)

STEP POUR: the lunar equation of centre 
In the figure, TO is unity, 

and radius OF has length e, vÆiere 
e= half the difference between 
inaxiinum and irunimum eccentricites 
divided by the mean value (=0.2131).
Then TF represents the varying eccentricity e, FTC is S the 
equation of apogee, and FOB is 2§, twice the Sun-apse angle

B

i

e = 0.055057(1 + + 2ecos2§)

sin5 = sin2# x 0.01173 
e

cosine formula on PIC 

sine formula on FTC

0.011731'is half the difference between 
maximum and minimum eccentricity,

0.055050 is the mean.
À3 = a; - 5

and = M3 + 180/7T[2esin(A-M) - 5/4ê sin2(A-41) ]

STEP FIVE: the Variation
Mg = M̂  + 35'32”[1 - 3Ecos(H-S) ]sin2(M-S)

STEP SIX Mg = Mg + 2'10"sin(S-MfH-A)

STEP SEVEN M̂  = Mg + [2'20” + 54"cos(H-A) ]sin(S-M)
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Uie sign of the seventh equation is confusing, since one version of TMM 

(Cohen, 1975, p.113) specified that it be additive for the waxing Moon and 
subtractive for the waning, Âiile another version a few pages later (Ibid, 
pp. 138-9) specifies the converse. Hie latter version has been used by ŒA, 
and is indeed the correct way round in accord with modem equations. Both 
these versions were published in 1702, but no-cxie, not even Flamsteed or 
Baily, has remarked upon this divergence. The sign of the sixth equation 
was later reversed, as Flamsteed pointed out (Cohen, p.59), but not the 
seventh. Its sign as above is negative for the waxing Moon.

I X X  A  O o sn a g o g a t^ j-sg a n . w d L "tJn  F X a x n s t z e e d
Table 8.2 shews Dunthome's mode of summarising his computation. By 

contrast, the customary format for these matters, prior to HIM, is shown by 
a coarputation example as given in DOS (p.38), Table 8.3. More than half a 
century separates these two case-studies, indeed the arrival of the 
Principia separates them. How do they compare?

DOS presented ten steps for finding lunar longitude. It began with the 
equation of time, converting solar into mean time - a stage strangely 
omitted by TMM. The proud claim was made that:

'For he [the author, Flamsteed] will not dissemble it, that tho he 
esteems these [principles] far better than any yet publi^ed; he is 
sensible that the solar may be some little faulty, but scarce more 
than a Minute; the lunar he finds often to Err 5 or 6 Minutes, and 
sometimes (tho rarely, and at most) 10 or 11 minutes; which yet he can 
the easier bear, vdiilst he sees the Numbers of other more famous and 
celebrated Men to err 15 or 16 minutes, at the same time viien his 
agree nearly with the Heavens' (p. 34).

As ill-luok would have it, this declared maximum possible error turned 
in the sole example to illustrate Flamsteed's theory! Its true place of the 
Moon was eleven minutes in advance of vtot it should have been: at 6.35 pm 
GMT, on Deconber 22 1680 Old Style, its Icaigitude was 4“ 59' of Gemini, 
compared with the computed value of 5° 10' found in DOS. DOS's mean Moon 
positions were two minutes iDehiud their prcper values (Chapter 5), so it
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wDuld appear as if his ten steps had introduced no less than thirteen 
minutes of error.

The accuracy of this example accords with the pessimistic view that 
Flamsteed expressed in the Philosophical Transactions of 1683, after he had 
been the Astronomer Royal for seven years:

'the best tables of the Moon's Motions do err 12 minutes or more, in 
her Apparent Place' (FT, Vol. 13, p.405).

In his view the moons of Jtç)iter offered the best means of finding 
longitude, as using the lunar method 'the calculations will be so perplexed 
and tedious. ' Hiis view expressed by Britain's Astronomer Royal was quoted 
in John Harris' Lexicon Technicum of 1704, so may well have expressed a 
general view. Hie research of Owen Gingerich (Ch.l, p.4) entirely confirmed 
this assessment, finding indeed that larger errors were common in 
ephemerides of the period.

Let us compare the accuracy of these two woriced examples half a century 
apart, taking the three variables of solar, lunar and node positions.

Source 
1) DOS 
True posns: 
Errors:

Mocai posn 
5“ 09' 52” Gemini 
4° 59' 18”
+10' 32”

Sun posn node posn
12° 09' 35” Capricorn 23° 44' 30” Virgo
12° 08' 00” 24° 01' 16”

+01' 35” -16' 45”

2)Dunthome 14° 8' 13” Gemini
True posns: 14° 15' 00
Errors: -6' 47”

23° 37' 22” Capricorn 19° 35' 13” Virgo 
23° 37' 27” 19° 49'

-05” -14'

1) 22 December, 1680 at 6.35pm GMT, London.
2) 2 January, 1737, 3hr 40' p.m., 'Time equated.'

Errors are measured here and throughout as (historic-true) values (We ask 
the computer for true node not mean node positions). Only for solar 
longitude is the position to seconds of arc really relevant.



Table 8.2; Lunar 
longitude computation 
by Dunthome (1739) 
using a procedure 
identical to that of 
TMM. For 3.40 pm on 
Jan. 2nd, 1737, he 
found 74"8'13", the 
correct value being 
74'14''29".

Table 8.3: a similar 
computation by Flamsteed 
(1681) for 6.35pm, Dec. 
22nd, 1680. He obtained 
5°9'52" of Gemini, the 
correct answer being 
4'59\

Example continued.
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IXmthome's 'txj the Reader' does not extol IMM's accuracy, but rather 

admits 'that the Newtonian Numbers are a little deficient... ' The above 
figures suggest a mild improvement over half a century. The DOS solar error 
of one and a half arcminutes is surprisingly large, considering that as we 
saw in Chapter Five his mean motion was within arcseconds at this period. 
Flamsteed's solar numbers were improved several times after DOS's 
composition.

A summary of the constant terms given for the equations of TMM appears 
in Table 8.4.

X V  A  X t e s t  <z>X A c x zzu jL rrs tc zy
The accuracy of TMM was investigated using the above computer program 

(hereinafter referred to as TMM-PC), by comparing its results against a 
modem ephemeris program accurate to seconds of arc. Nocxi values of 
Icxgitude on successive days of December 31st (Old Style) were taken, 
sampling at two year intervals over a period of six decades, 1680 - 1740. 
TMM-PC measures time from December 31st 1680, vhich means that the initial 
reading was at time zero, then the next was for 730.5 days, and so forth. 
Both solar and lunar longitude values were read off from the program, the 
former being necessary to check that the number of days inserted was 
correct, since an extra day from a leap year shews up as a degree 
displacement in longitude. The program to obtain the longitudes was checked 
against standard values detained from the R.G.O. The results obtained are 
given in Table 8.5 (at end of Chapter) for six decades, depicted 
graphically in Figure 8.2.

There is a sli^t drift in the baseline of TMM throu^ the decades, 
as cumulative error of its mean motion. The overall error-values in 
arcminutes were -1.6 ± 3.8 for the moon and 0.2 ± 0.3 for the Sun. A long­
term pattern appears as present in the data, of period fifty years or so, 
vhich is a consequence of the sampling interval used being a multiple of a 
major TMM period, viz the year. Chapter eleven will treat this issue more 
thorou^y.
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ACCURACY TEST OF TMM
SAMPLING TW O-YEARLY

oa:<

g '
D S  ICCÎ -5 —w

YËÂR OF É%MPLIN(T 
LUNAR ERRORS

Figure 8.2; Sampling from Dec.31st noon GMT, Old Style, two-yearly (every 730.5 days) 
showing errors in arcminutes over six decades.

V  MaZLZLey-^s CTuKageoment:
Hailey's mature and final opinion on the subject was given in 1731, 

vdien he was Britain's foremost astronomer and both Newton and Flamsteed 
were mere memories for him. Then, after consulting both his cwn lunar 
tables (as Astronomer Royal) and those of his predecessor, his view of TMM 
three decades after its composition was that:

'.. .the Faults of the Computus formed therefrom rarely exceed a 
quarter Part of vhat is found in the best Lunar Tables before that 
time extant.
.. .By this it was evident that Sir Isaac had spared no Part of that 
Sagacity and Industry peculiar to himself, in settling the Epoches, 
and other Elements of the Lunar Astroncany, the Result many times, for 
vhole Months together, rarely differing two Minutes of Motion from the 
Observations themselves.. '

(Hailey, 'A Proposal of a Method for Finding Longitude at Sea within a 
Degree, or TWenty Leagues', Phil, Trans, 1731/2, Vol.37, p.191)
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Ttiis comment was made a propos of the 1713 version given in PNFM, vhich 
Hailey viewed as an inpxveraerft upon IMM. These remarks of his echo what he 
had written years earlier in 1710, in a Foreword to Streete's Astronomia 
Carolina that he re-issued.

Considering the above-discussed verdict of Britain's first Astronomer 
Royal, that even the best lunar ephemerides were liable to err by twelve 
minutes 'or more', it seems likely that TMM was capable of delivering a 
sli^t enhancement of predictive pcwer. Plainly, however, it achieved 
nothing remotely resembling that which H^ley has here claimed for it. It 
may be, however, that an improvement was accomplished in the Principiâ s 
second edition, vhich could somevhat justify Hailey's remarks. The views of 
astronomers using TMM vd.ll be addressed in due course. Dunthome was not as 
we saw over-impressed ky its accuracy.

Of marginal relevance here is the note in Edmond Hailey's diary for 
vhen he landed on the coast of Brazil in 1692 (Ch.l, III), and determined 
his longitude from an 'appulse' of Aldebaran (ie, time of nearest approach 
to a fixed star). This turned out to have an error of only l“8', which 
vrould imply a lunar position accurate to two or three minutes. It seems 
likely, either that this was a lucky chance, or that the inhabitants of 
Paraiba near to vhere Hailey landed did indeed have some cognisance of 
their longitude.

Later, væ vd.ll study the various Newtonian ephemerides vhich modelled 
themselves ipon TMM, and try to determine vhether or not they achieved a 
superior predictive accuracy to others such as that by Jacques Cassini in 
Paris, vho did not use it.
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Table 8.4: U n e  Oonstzerrtzs o f  Œ M M :

The annual equation (I)
Moon
apogee
node

11' 49" 
20'

-9' 30"

Equation (II) 
maximum (in winter) 
minimum (in summer)

3' 56" 
3' 34"

Equation (III) 47"

The equations of the center
Sun 1“ 56' 20"
Moon 7“ 39' 30"

Equation of apogee (IV) 12' 15' 4"

Eccentricity
maximum (apse conjunct Sun) 0.066782 
minimum 0.043319

Variation (V) 
maximum (in winter) 
minimum (in summer)

37' 25" 
33' 40"

Equation (VI) 2' 10"

Equation (VII) 2' 20"

Angle to ecliptic
maximum (nodes conjunct Sun) 5' 17' 20" 
minimum (quadrature) 4° 59' 35"
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Table 8.5: Solar arx9 Tunar LcyKfitude Aocuracies from TMM

Data for Figure 8.2 was obtained by sampling at intervals of two Julian years, ie 730.5 Julian 
days, and subtracting the ILE values from those of TMM. Solar TMM errors are shown for comparison.

I.LE. TMM arcminutes of error
a b b-a solar

1680 188.043 187.924 -7.2 0.65
82 81.359 81.311 -2.9 0.58
84 357.762 357.704 -3.5 0.37
86 251.588 251.633 2.7 0.42
88 167.651 167.658 0.4 0.68
90 62.325 62.341 0.9 0.35
92 337.129 337.12 -0.5 -0.03
94 233.537 233.593 3.4 0.08
96 147.035 147.119 5.1 0.13
98 44.748 44.837 5.4 0.02

1700 316.977 317.021 2.6 0.42
2 216.95 217.003 3.2 0.78
4 126.913 126.944 1.9 0.65
6 29.056 29.107 3.1 -0.33
8 297.311 297.34 1.7 -0.02
10 201.522 201.542 1.2 -0.12
12 107.423 107.391 -1.9 0.05
14 14.165 14.102 -3.8 0.03
16 277.675 277.613 -3.7 0.12
18 186.392 186.329 -3.8 0.33

1720 87.903 87.838 -3.9 0.28
22 358.499 358.409 -5.4 0.23
24 257.715 257.612 -6.2 0.43
26 170.328 170.203 -7.5 0.3
28 67.681 67.56 -7.3 -0.02
30 341.298 341.216 -4.9 -0.13
32 237.361 237.319 -2.5 -0.25
34 152.425 152.346 -4.8 -0.13
36 46.896 46.827 -4.1 0.22
38 322.811 322.738 -4.4 0.42

-1.6 0.22
3.8 0.29

means
S.O.s
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ClTL _ 9 COMMENTAJRY ON TMM ,

CONT 3: NUT ED

Hiis chapter continues the Oommentary from Chapter 4, and indicates how 
the equations just described were obtained from IMM. This involves 
summarising the content of previous chapters, viiile avoiding repetition 
wherever possible.

I  A n  Ermg]L Panwphl

The quotations from TMM, here as in previous chapters, came from the 
first English edition, publi^ed in 1702. This edition had no editor or 
translator specified, but a Preface attached to it contained remarks 
indicating that it appeared shortly after Gregory's AstronomiaB Physicae, 
containing a latin version of TMM, vhich appeared in that same year.
Bernard Cohen endorsed the idea that Hailey was the author of its Preface 
(1975, p. 32), originally proposed by Augustus De Morgan in the nineteenth- 
century. While there is no definite evidence on the matter, by way of 
correspondence, it is plausible from considerations of Hailey's style, and 
familiar manner towards the persons concerned, Newton and Gregory. Its 
brief Preface praised Gregory's book and added that, since many vrould not 
be able to afford it, the pamphlet vrould be convenient. It is not 
necessarily a translation from Gregory's latin, since, as Cchen argued, the 
original version of TMM was probably in English. The manuscript is 
identical in content vfith that published by Gregory, except for a 
divergence in the seventh equation discussed belcw, unnoticed by Cohen.

I I  U n e  Amm-xa.1 Eqpnatlcarms
TMM conferred annual inequalities içxxi four of its ecliptic variables, 

the node, perigee. Sun and Moon, the first two being innovative;
'These mean Motions of the Luminaries are affected vn.th various 

inequalities: Of which,
1. There are the Annual Equations of the aforesaid mean Motions of the 
Sun and Moon, and of the ̂ xDgee and Node of the Moon.
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"Ihe annual Equation of the mean Motion of the Sun depends on the 

Eccentricity of the Earth's Orbit round the Sun, vMch is 16 11/12 of 
such parts, as that the Earth's mean Distance from the Sun shall be 
1000: Whence 'tis called the Equation of the Centre; and is when 
greatest 1°56'.20”.

'Ihe greatest Annual Equation of the Moon's mean Motion is 11'.49". 
of her ̂ XDgee 20'. and of her Node 9'.30"'.

The Equation of Center derived from Flamsteed's value of 1692. There is 
an exact equivalence between it and TMM's eccentricity values, though the 
method by v»hich this computation was then performed in unclear. Chapter Six 
looked at hew the modem equation of center links the two together, viz 

0= (2e-ê /4)siriM - 5/4e^sin2M + 13/12ê sin3M ...
In the case of the Earth's orbit, the function reaches a maximum value at 
an anomaly M of 9l“. Inserting it in the equation together with an 
eccentricity value of 16 11/12 parts in 1000 (ie 0.016917) gave, using a 
Lotus 1-2-3 program for computing this Equation of Center, an agreement 
within one second of arc! This Equation differs from vhat was then the true 
value by 45 arcseconds, while the value given for eccentricity differs from 
the modem value by 0.5%, taking the latter as 0.01683*.

TMM comments further about the interlinking of these annual equations, 
of interest as shewing how tricky such things were before trigonometrical 
formulae became available:

'And these four Annual Equations are always mutually proportional one 
to another: Wherefore vAien any of them is at the greatest, the other 
three will be greatest; and Wien any one lessens, the other three will 
also be diminished in the same Ratio.
'The Annual Equation of the Sun's Centre being given, the three other 

corresponding Annual Equations will be also given; and therefore a 
Table of That will serve for all. For if the Annual Equation of the 
Sun's Centre be taken from thence, for any time, and be called P, and

* Using the secular-variation term for the eccentricity of Earth's orbit, 
according to the Explanatory Simplement of the Astronomical Ephemeris,p.98.
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let P/10 = Q, Q+Q/60 = R, P/6 = D, D+Ü/30 = E, and D-D/60 = 2F; then 
shall the Annual Equation of the Moon's mean Motion for that time be R, 
that of the apogee of the moon will be E, and that of the Node F.
'Only observe here, that if the Equation of the Sun's Centre be 

required to be added; then the Equation of the Moon's mean Moticxi must 
be subtracted, that of her apogee must be added, and that of the node 
subtracted. And on the contrary, if the Equation of the Sun's Centre 
were to be subducted, the Moon's Equation must be added, the Equation 
of her ̂ )ogee subducted, and that of her node added.'

These four functiœs vary as the sine of solar anomaly, so are maximal 
near the equinoxes and zero near the solstices. The four equations we 
extracted from these instructions were:

Ŝ  = S + 1.939 sin(H-S) - 0.0205 sin2(H-S)
= M - 0.197 sin(H-S)

Â  = A + 0.333 sin(H-S)
N̂  = N - 0.158 sin(H-S)

The solar annual equaticm is the only one large enou^ to merit a second 
term of the equation of centre in the TMM program. It is evident that these 
constant terms are linked throu^ the ratios specified by TMM, eg:
1^1/60.P/10 (since Q=P/10 and R=61Q/60) vhere P is the maximal solar 
equation of ll939, giving R = 0°197. These ratios nowadays appear as 
sL̂ ierfluous, as the amplitudes of the four annual equations have alreaĉ  
been given.

Such are the positions 'first equated' in TMM's terminology, meaning 
fluctuations of yearly periods around the mean motions. The Sun has only 
this one equation, vhereas the node and apogee receive second equaticxis at 
later stages.

XXX XW o N ew  B q u atX can s

The first of TMM's new equations new appears:
'There is also an Equation of the Moon's mean Motion depending on 

the Situation of her ̂ xjgee in respect of the Sun; vhich is greatest 
vhen the Moon's apogee is in an Octant with the Sun, and is nothing at



-121-
all vAien it is in the Quadratures or Syzygies. This Equation, vAien 
greatest, and the Sun in Perigeo is 3'.56”. But if the Sun be in 
Apogeo, it will never be above 3'.34”. At other distances of the Sun 
from the Earth, this equation, v^en greatest, is reciprocally as the 
Cube of such Distance. But Wien the Mcon's ̂ xDgee is any where but in 
the Octants, this Bquaticxi grows less, and is mostly at the same 
distance between the Earth and the Sun, as the Sine of the double 
Distance of the Mean's ̂ xegee from the next Quadrature or Syzygy, to 
the Radius.

"Ihis is to be added to the Meon's Motion, while her ̂ xegee passes 
from a Quadrature with the Sun to a Syzygy; but is to be subtracted 
from it, while the Apogee moves from the Syzygy to the Quadrature. '

Ihe function is given as varying with the Horroxian year, which we have 
designated as the (A-S) function, marking solar canjunctions with the apse, 
of period 411 days. Ihe function evidently varies as sin2(A-S), peaking at 
the octants, ie at the 45“ angles, since it passes throu^ two maxima and 
minima per revolution. Ihe phrase, 'nothing at all when it is the 
Quadratures or Syzygies' implies a sine functim crossing its baseline four 
times per cycle.

While the annual equations had constant coefficients, here the 
anplitude itself varies during the course of the year, being maximal at 
perihelicai i.e. midwinter. Multiplying by

1 - 0.0489cos(H-S)
will accomplish this. As a cosine function it has maxima and minima at the 
solstices, giving the required range of ± 11” about a mean value of 3'45” 
as specified. We esgaress this mean airplitude as 0.0625“. Ihe overall 
expression is thus:

+ 0.0625[1 - 0.0489cos(H-SJ] X sin2(A^-SJ
Ihe terms as first equated are fed into this esgsression, to generate 

IMM's second 'Equation' of the Moon. Ihis second equation was called ty 
Hailey aeqaatio prima semestris, Daily's comment was, 'We have nothing 
equal to it in amount (depending on. the same argument) in the tables of 
Mayer, Bur^, or Burckhart' (p.742). On the other hand, Curtis Wilson
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expressed the view that, of the four new equations, it was the only correct 
one (GHA, p. 267). Uie next chapter will resolve this matter.

The phrase 'reciprocally as the cube of distance' contains an echo of 
gravity theory, the sole trace in IMM, vAiich was to be much developed in 
the secmd edition of PNFM. Ihe Earth's distance from the Sun varies by ± 
1.70% in the course of a year, so an inverse-cube relation would give 
thrice this, vhich is ± 5.10%. Ihe second and sixth equations have their 
airplitudes modified, siçposedly varying inversely as the cube of the 
Earth's distance form the Sun. Wilson in GHA (p.267) gave the second 
equation as:

- 3'45”[l-3Ecos(S-fl)]sin2(Ŝ -AJ 
vhere (S-H) is the Earth's 'true anomaly'. Our TMM program uses the term 
cos (H-S), vhich gives identical values.

Inserting the earth's eccentricity into Professor WilsOTi's term gives 
an amplitude modification of 5.1% as his '3e' term, for both the second and 
sixth equations. Wilson has derived his term from the instruction, 
'inversely as the cube of the difference*', vhile we have simply taken the 
amplitude variations specified, the results being similar. For equation 2, 
the given amplitude fluctuation is ± 4.9%, vhile for equation 6 it is ± 
5.3%, vhich is tolerably close to the inverse-cube relationship. Our TMM 
program has used these latter values. These fluctuations are small changes 
in a three arcminutes functicxi, so the differences are immaterial.

The third equation introduces the nodes:
'There is moreover another Equation of the Moon^s Motion, vhich 

depends cxi the Aspect of the Nodes of the Mocxi's Orbit vdth the sun: 
and this is greatest vhen her Nodes are in Octants to the Sun, and 
vanishes quite, vhen they come to their Quadratures or Syzygies. This 
Equaticxi is pn^ortional to the sine of the double Distance of the Node

* Wilson in GHA (p. 267) has also assigned an inverse-cube amplitude 
modulaticMi to the third equation, in vhich ve do not follow him: it is 
merely the second and sixth equations vhich have this adjustment.
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from the next Syzygy or Quadrature; and at greatest is but 47". Hiis 
must be added to the Moon's mean Motion, Wiile the Nodes are passing 
from their Syzygies with the Sun to their quadratures with him; but 
subtracted vdiile they pass from the Quadratures to the Sygies. '

Hiis is again a sin20 function passing throng two cycles per solar 
revoluticxi against the nodes. Its amplitude is fixed, and we readily 
ascertain its formula to be

M3 + 0.0131sin2(N3-SJ
To ascertain the signs of these functicxis, we recall that sin(A-B) = - 

sin(B-A), vhereas cos(A-B) = cos(B-A). Interpretaticxis of vhether a sign 
should be added or subtracted have been checked against the worked example 
of Richard rxmthome. Ihe instruction that a function is additive 'vhile 
the Nodes are passing from their Syzygies with the Sun to their Quadratures 
with him', and subtractive for the ccxwerse, is interpreted as -sin2(S-N), 
or sin2(N-S), as used in the function.

X V  X T ie  M o in r o s c —W b ie e X  M e c c tx a rx d L s m
The fourth equation is by far the largest of the seven steps. The 

deferent-vdieel invented by the young Horrocks in 1638 is here made to 
generate both the eccentricity fluctuaticxi and the apse-line motion, as it 
revolves once per 6% months. We have just seen how TMM's value for solar 
eccentricity agreed exactly with that used in the modem equation of centre 
within an arcsecmd or so. That implies a definition identical with the 
modem cxie of b̂  = a:(l-e2), vhere a and b are the major and minor axes of 
an ellipse. The eccentricity 'e' thereby defined is the square root of a 
ratio functicxi, but it can more relevantly be viewed as the distance 
between focus and centre divided by 'a,' the radius of a circumscribing 
circle (Ch. 2, IV).

'Prom the Sun's true Place take the equated mean Moticxi of the Lunar 
x̂Dgee, as was above shewed, the Remainder will be the Annual Argument 
of the said Apogee. From Whence the Eccentricity of the Moon, and the 
second Equation of her ̂ xjgee may be compar'd after the manner



- 124 -

following (which takes place also in the Cowpatations of any other 
interwediate Equations.)'

Referring to the diagram, the 
first sentence defines (S^-AJ, 
represented by the angle STA. What 
is here called the Annual Argument 
must not be confused with the 
Annual Equation, discussed 
earlier. Ihe eĵ lanation given in 
Chapter 7 avoided the term Annual 
Argument, as liable to confuse, 
instead calling it the Horrox 

angle. After all, the cycle is only quasi-annual. I have not grasped the 
meaning of the final phrase in brackets.

We new come to IMM's operating instructions, using the familiar Horrox- 
Wieel diagram. We should note that angle PCB is siçposed to be twice the 
size of STA.

'Let T represent the Earth, TS a Right Line joining the Earth and Sun, 
TACB a Ri^it Line drawn from the Earth to the middle or methn place of 
the Moon's Apogee, equated, as above: Let the Angle STA be the Annual 
Argument of the aforesaid ̂ )ogee, TA the least Eccentricity of the 
Moon's Orbit, TB the greatest. Bisect AB in C; and on the Centre C with 
the Distance AC describe a Circle AFB, and make the angle BCF=to the 
double of the Annual Argument. Draw the Ri^t Line TF, that shall be the 
Eccentricity of the Moon's Orbit; and the angle BTF is the second 
Equation of the Moon's apogee required. '

Ihe revolution of F around the circle twice a Horrox-year defines two 
functions, Âiich are thereby mathematically linked: the second equation of 
the apse line, FIA, with a maximum of twelve degrees, and the eccentricity 
of the lunar orbit as the length FT. Ihe dimensions of the Horrox-Wieel are 
then specified as follows:



-125-
'In order to vdiose Determination let the mean Distance of the Earth 
from the Moon, or the Semidiameter of the Moon's Orbit, be 1000000; 
then shall its greatest Eccentricity TB be 66782 such Parts; and the 
least TA, 43319. So that the greatest Equation of the Orbit, viz. vhen 
the ̂ xDgee is in the Syzygies, will be 7*.39'.30". or perhaps 7*.40'. 
(for I suspect there/^ll be some Alteration according to the position 
of the apogee in Caixer or Capricorn. ) But vhen it is in Quadrature to 
the sun, the greatest Equation aforesaid will be 4*.57'.56". and the 
greatest Equation of the ̂ XDgee 12°.15'.4".

This is innovative, being the first time that these two functions had been 
so defined, as derived from the same geometry. The modem equation of 
centre enables us to check vhat TMM calls the Equation of Orbit, which is 
the amount vhereby the Moon's position diverged from the mean motion, 
maximal at seven and a half degrees.

The magnitude of the apse equation here specified is considerably larger 
than that specified by DOS, about four percent more in fact. In Newton's 
letter of April 23rd 1695 a table for vhat was called the 'Annual Argument' 
gave an eccentricity function virtually unchanged from Flamsteed's, vhile 
the apse equation's maximum value has increased from 11°47' to 12°10'. It 
is here increased further, and vdll reach Newton's maximum value of 12° 18' 
in the PNEM Of 1713. Gaythorpe shewed hew this Newtonian value was more 
than half a degree larger than vjas warranted by its modem equivalent, the 
evection term (Ch.7,V).

Our three functions f ,g and h accorrplish these steps. The first of 
these cbtains the eccentricity, as the length FT, given the angle PCB as 
2(S-A) and the lengths PC and TC as 1173 and 55050 as parts per million. 
From applying the cosine rule to triangle PTC:

f(A-S) = 0.05505 X 7(1.0454 + 0.4262cos2(A-S) }
As a cosine function it vd.ll make eccentricity peak at zero and 180° Horrox 
angles, the solar conjunctions to the apse. Then, ajplying the sine rule to 
the triangle PIC, angle FTC vhich is the second equation of apogee is found 
by the function g(A-S), vhose maximum value is 12°15'.
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The suggestion here appears, that the apse position in relation to the 

a^elion line has some effect. In the winter of 1694, Newton urged 
Flamsteed to take lunar c±)servations because of the great inportance of 
'apogee in ye summer signs', during 'ye sun's opposition in midwinter' 
(letter of Novernber 17th). Frcm the TMM program we discern that, Wien the 
Sun reached zero Càprioom in that midwinter, the mean apogee stood within 
a degree or so of zero Cancer, ie they were in close oHX5sition. Newton's 
next letter reiterated the urgency of the matter:

'For the position of the apogee in the Sun's opposition in midwinter is 
a case of great moment and will not return for many years. Ihe 
observation in the full and both the quadratures are of greatest 
moment... (Letter of December 4th, 1694,Baily, p.143)'

Flamsteed was well able to locate apogee, using the micrometer screw gauge 
on his telescope ̂ epiece to measure lunar diameter, a inethod he did much 
to pioneer*, so would have appreciated this event. But, as for vhat 
equation Newton was then searching for, we remain in the dark. Evidently, 
by the time IMM was composed, he had reached no conclusion as to the 
relevance of the nine-year apse cycle (except for a very minor role in 
modulating the sixth equation, see below).

'Having from these Principles made a Table of the Equation of the 
Moon's ̂ ogee, and of the Eccentricities of her Orbit to each degree of 
the Annual Argument, from Wience the Eccentricity TF, and the Angle BTF 
(viz. the second and principal Equation of the ̂ XDgee) may easily be 
had for any Time required; let the Equation thus found be added, to the 
first Equated Place of the Moon's ̂ xDgee, if the annual Argument be 
less than 90°, or greater than 180°, and less than 270°; otherwise it 
must be subducted from it: and the sum or Difference shall be the Place 
of the Lunar Apogee secondarily equated; Wiich being taken frcm the 
Moon's Place equated a third time, shall leave the mean Anomaly of the 
Moon corresponding to any given Time. Moreover, frcm this mean Anomaly

* For a practical account of the development of this new technology in the 
North of England, chiefly by Yorkshireman William Gascoigne, Wiile 
Flamsteed was living in Derby, see Chapman's Three North Coantry 
Astronomers (1982 p. 21), and his Dividing the Circle (1990).
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of the Moon, and the before-found Eccentricity of her Orbit, may be 
found (by means of a Table of Equations of the Moon's Centre made to 
every degree of the mean anomaly, and some Eccentricitys, viz 45000. 
50000. 55000, 60000 and 65000) the Prostapha&resis or Equaticxi of the 
Moon's Centre, as in the ccmoon way: and this being taken from the 
former Semicircle of the middle anomaly, and added in the latter to the 
Moon's Place thus thrice equated, will produce the Place of the moon a 
fourth time equated. '

The lunar Equation of Centre was required for preparing tables, and 
here the instructions are to prepare them with anomaly angle against 
eccentricity values, using five columns of differing eccentricities as 
ccmpared with DOS's three columns. Some astronomers of the first half of 
the ei^teenth-century did follow this advice, eg Le Mænier in Paris. 
Interpolating between, say, anomaly values at one degree intervals and 
several eccentricity values was not in itself easy. In Chapter Ei<ÿit, we 
saw hew the main error in Dunthome's worked example came from this fourth 
step of equation, creeping in during his interpolations over the Equation 
of centre table.

Our function h is the modem formula for equation of centre, inserting 
the eccentricity and* equated apse position as derived from the Hbrrox- 
vÆieel. Our method uses the modem equation rather than a function defined 
by IMM. As explained, this was felt to be justifiable because Flamsteed's 
method of deriving the Equation of Centre from elliptic orbits agreed 
within arcseconds of the modem formula (Ch.6, III). Our computer-model 
could be criticised for not properly modelling errors likely to arise at 
this step, from interpolating an Equaticxi of Centre table, eg in Streete's 
Astronomia Carolina, as reprinted by Hailey in 1710.

V  A m ç> U _-tU fca !e  Q f  t h e  T /ia a r ia tJ L a n
Ihe Variation was one of the three known lunar inequalities. Its cause 

was the Moon's swifter motion in the syzygies than in its quadratures, 
vAiereby it reached its maximum equation in the octants. In Proposition 66 
of Book One of PINTM Newton undertook to give a derivation of it, as
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resulting frcm the Sun's pull on the lunar orbit. Tycho Brahe announced its 
discovery in 1598, giving it an aiiplitude of 40'.5, vhich was quite close 
to its true value of 39'.5. Horrocks in his first exposition in the 1630s 
had settled on a smaller value of 36'45", which he later reduced to 36'27" 
(Opera, 1673, p.483). Despite being a keen disciple of Brahe's colleague 
Kepler, Horrocks adopted a much smaller value for his Variation term. In 
IMM Newton made it 35'32". His letter to Flamsteed of November 1st, 1694, 
discussed this matter.

This divergence mystified commentators for a vhile, with the nineteenth- 
century astronomer Gaythorpe declaring that the British astroncmers had 
been simply mistaken (1956, p. 40). More recently it was discovered by 
Jorgensen (1974, p. 317) that the Horrocksian mechanism itself incorporated 
a sizeable fraction of the Variation, in fact "some 5'.25 of the variation" 
(GHA, p. 265), making the correct amplitude of Variation in the Horrocksian 
theory a mere 34'15". Ihe term used by Newton and Hailey was thus more or 
less correct.

Ihe GHA averred that Flamsteed took a value for the Variation of 36'45" 
'obtained on the basis of observation' (p. 264). Flamsteed's value for the 
maximum Variation was given in DOS's table for Variation, and this goes up 
to 38', the same value as was adopted by William Whî^1^ in his 1707 opus.

IMM makes the tern vary with the seasons:

'Ihe greatest Variation of the Moon (viz, that vÈiich happens vhen the 
Moon is in an Octant with the Sun) is, nearly, reciprocally as the cube 
of the Distance of the Sun from the Earth. Let that be taken as 
37'.25". vihen the Sun is in Perigeo, and 33'.40". vhen he is in Apogeo: 
and let the Differences of this Variation in the Octants be made 
reciprocally as the Cube of the Distances of the Sun from the Earth; 
and so let a Table be made of the aforesaid Variation of the Moon in 
her Octants (or its Logarithms) to every Tenth, Sixth, or Fifth Degree 
of the mean Anomaly: And for the Variation out of the Octants, make, as 
Radius to the Sine of the double Distance of the Moon from the next 
Syzygy or Quadrature : : [sic] so let the aforefound Variation
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in the Octant be to the Variation congruous to any other Aspect; and 
this added to the Moon's place before found in the first and third 
Quadrant (accounting from the Sun) or subducted from it in the second 
and fourth, will give the Moan's Place equated a fifth time.'

IMM here specifies a sine 2(M-S) function, with two cycles per lunar month, 
zero at the four quarters. It has an amplitude of 35%', or 0̂ 591 (Ihe IMM 
computer program requires conversion of arcminutes into decimals of a 
degree). Ihis is then made to vary with the seasons, being maximal at 
perihelion (̂»diat IMM calls the Sun in Perigeo) and minimum at aphelion. It 
is therefore a cosine function.

As once before, an inverse cube relation to the solar distance is 
affirmed (\idiich can be viewed as implying an inverse-square gravity 
principle, discussed in the Second Edition of PNPM), implying a ten percent 
fluctuation in the course of the year. Thereby our fifth equation becomes:

Mg = + [0.591 - 0.03cos(H-SJ] x sin2(M^-SJ
Ihe small value of Variation gives a convenient means of checking whetdier 
astronomers were using a Horrocks-based system.

Next we ccme to "the sixth equation, which marred IMM in its initial
versiCTi, as it was given the wrong way round. In the next chapter we see
hew Newton's additional equations for IMM's seven steps were all valid, 
except that this one operated in reverse, adding vhere it should be 
subtracted, as he later realised. Having a correct equaticxi the wrong way 
round is much worse than having an irrelevant or mistaken equation: it 
continually creates an error of twice its amplitude. Here are the 
directions for the sixth and seventh:

'Again, as Radius to the Sine of the Sum of the Distances of the Moon 
frora the Sun, and of her ̂ xjgee from the Sun's ̂ xjgee (or the sine of 
the Excess of that sum above 360°.) : : so is 2'. 10”. to a sixth 
Equation of the Mccxi's Place, ^hich must be subtracted, if the 
aforesaid Sum or Excess be less than a Semicircle, but added, if it be 
greater. Let it be made also, as Radius to the Sine of the Moon's 
Distance from the Sun : : so 2'. 20” to a seventh Equation: vhich, vhen 
the Moon's li^t is encreasing, add, but vhen decreasing,sizbtract; and
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the MDon's place will be equated a seventh time, and this is her place 
in her proper Orbit, '

The eĵ aression meant 'in prc^rtion to', used for comparing or 
equating (in the mcxiem sense) ratios. Effectively, we are instructed to 
sum (S-M) and (H-À) in a sine function having an amplitude of 2'10'*, vàiich 
gives:

IK, == Mg 4- 0.0361sin(S-Mrti-A)
William Whiston's comment içxan the sixth, made in his Lucasian lectures to 
students of Cambridge IMiversity in 1703, is often quoted:

'Hew it should come to pass that this sixth Equation of the Moon should 
arise from Causes vMch are so unlike join'd together amongst
themselves, as are the motion of the Moon from the Sun, and the Motion
of the Apogee of the Mocxi from the ̂ xjgee of the Sun; I must 
acknowledge myself altogether ignorant; nor is there Opportunity for 
enquiring in these Matters merely Astronomical. In the mean vdiLle, I 
suspect that this Equation was rather deduced from Mr Flamsteed's 
observations, than from Sir Isaac N&rton's cum Argumentation.'
(Cohen,1975, p.361)

We will shortly observe how the modem equaticms of lunar longitude, at 
this amplitude range of 2-3', contain much stranger-looking combinations of 
terms than the above, as puzzled Mr Whistcxi.

Finding the Moon's place 'in her proper Orbit' reminds the reader that
all the above computations have not been in the plane of the ecliptic, but 
rather in an orbit tilted at five degrees thereto. IMM does not give 
instructions over the 'reduction', for converting to ecliptic longitude, 
this being a standard procedure.

The seventh equation varies with lunar phase, additive in the waxing 
period and subtractive in the waning, ie as sin(S-̂ ). Its amplitude is 
modulated by a nine-year period:

'Note here, the Bquaticxi thus produced by the mean Quantity 2'.20**. is 
not always of the same Magnitude, but is encreased and diminished 
according to the Position of the Lunar ̂ x̂ gee. For if the Moon's Apogee 
be in conjuncticxi with the sun's, the aforesaid Bquaticxi is about 54**. 
greater: but vben the Apogees are in exposition, 'tis about as much
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less; and it lilarates between its greatest Quantity 3'.14". and its 
least 1V.26". And this is vdien the Lunar ̂ xjgee is in Conjunction or 
Opposition with the Sun's: But in the Quadratures the aforesaid 
Equation is to be lessened about 50". or cne minute, vAien the Apogees 
of the Sun and Moon are in Conjunction; but if they are in Opposition, 
for want of a sufficient number of Observations, I cannot determine 
whether it is to be lessen'd or increas'd. And even as to the Argument 
or Decrement of the Equation 2'.20". above mentioned, I dare determine 
nothing certain, for the same reason, viz the want of Observation 
accurately made.'

This is a cosine function because it reaches a maximum vhen the apse line 
oonjuncts perihelicxi, so we represent it as cos (H-Â ). The apse-position 
twice-equated is used:

M, == M; 4- 0.0389[1 + 0.3857cos(H-AJ ] X sin(S^-MJ

At waxing Moon, lunar longitude must be larger than solar longitude, so 
the function sin(S-M) must be negative, contrary to the above-quoted 
instructions. Professor Wilson however in GHA quoted the seventh equation 
in the above form. Corresponding with him over this dilemma, he pointed out 
that the latin text of Gregory's opus, publi^ed in 1702, has the converse 
instructicai, namely 'Hanc auser quando Lunae Lumen augetur, & (e contra) 
adde cum illud minuitur' (Cohen, 1975, p. 127). Likewise an Ehgli^ 
translation of Gregory's text, published later in 1715, also reproduced in 
the Cchen opus, gives that version, vhich v^ should presumably take as 
authentic. In addition, this is the correct sense in the modem equation.
It remains hard to imagine Edmond Hailey, if indeed he vas the producer of 
the IMM version ve have been using, and possibly its translator, 
introducing such an error. The matter remains conjectural.

There is the hint of a second modulation to the seventh, in the 
reference to Conjunction and Opposition, vhich we have ignored. A further 
modulation of both sixth and seventh equations follows, vhich can also be 
ignored as well belcw the limit of detectability, adjusting by a mere few 
percent the anomalistic cycle:

'If the sixth and seventh Equations are augmented or diminished in a 
reciprocal Ratio of the Distance of the Mocn from the Earth, i.e., in a
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direct Eatio of the Moon's Horizontal Parallax; they will become more 
accurate: And this may readily be done, if Tables are first made to 
each Minute of the said Parallax, and to every sixth or fifth Degree of 
the Argument of the sixth Equation for the Sixth, as of the Distance of 
the Mocxi from, the Sun, for the Seventh Equation. '

V X  A. SGCxyryidL HoarrroK—W h e e l

A second Hbrrox-vheel new appears, for an 'Annual Argument' of the 
nodes. This varies with the 6̂  month period, and it is all rather similar.
A second diagram appears, identical with that here reproduced on p.Hol^ ̂ 

'Let T as before represent the Earth, TS a ri^t line conjoining the 
Earth and Sun: Let also the Line TACB be drawn to the Place of the 
Ascending Node of the moon, as above equated; and let STA be the Annual 
Argument of the Node. Take TA from a Scale, and let it be to AB : : as
56 to 3, or as 18 2/3 to 1, Then bisect BA in C, and on C as a Centre,
with the distance CA, describe a Circle as AFB, and make the Angle BCF
equal to double the Annual Argument of the Node before found: So shall
the Angle BTF be the second Equation of the Ascending Node: vAiich must 
be added viien the Node is passing from a Quadrature to a Syzygy with 
the Sun, and subducted vAien the Node moves from a Syzygy towards a 
Quadrature. By Wiioh means the true Place of the node of the Lunar 
Orbit will be gained : Wience from Tables made after the common way, 
the Moon's latitude, and the reduction of her orbit to the Ecliptick, 
may be computed, supposing the Inclination of the Moon's Orbit to the 
Ecliptic to be 4!59'.35”. when the Nodes are in quadrature with the 
Sun; and 5!l7'.20". vhen they are in Syzygys.'

The ratio of TA to AB is 18 2/3 to 1, echoing the period of the rotation of 
the nodes of 18.6 years. Our function j finds the angle PEA, the second 
nodal Equation, by drofping a perpendicular from F onto TB and taking the 
tangent of FTC.

The angle STA is (N-S), so the angle PCB being double its magnitude is 
2(N-S). The ratio of TC:CB is, by the ratio given above, 38.3:1. If the 
perpendicular is FÜ, then the tangent of FTC is H)/(CD+TC), vhence the 
function j is obtained. The maximum value of this angle is arcsin 1/38.3 or
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1*29'44" (See fig 7.4b). Uiis second nodal equation appears after the seven 
steps of equation, being used solely for finding the reduction and 
celestial latitude.

Flamsteed's tables had a similar but larger node equation, of 1°39'46” 
at 45° anomaly; vÆiich equation came from Kepler (Tabulae Radolphinae 1627 
p. 87) as Gaythorpe pointed out (1956 p. 142), and these node tables were 
used ty Whiston. This Keplarian value is more accurate, ie nearer the 
modem value*, than that of IMM. On the other hand, the amplitude of IMM's 
newly-invented first nodal equation was within a remarkable 2% of the 
modem value. Summarising, we may compare the maximal values of the two 
node equations as follows:

Function Modem value IMM Flamsteed/Kepler 
First node equation: sin (S-H) 9'43" 9'30"
Second node equation: sin2(S-N) 1°36'11" 1°29'44" 1°39'46"

Ihe amplitude of IMM's second node equation is unspecified in the 
text, and had to be found by those constructing IMM-based tables. Persons 
composing such independently would be unlikely to arrive at the same 
magnitude to an aroeseccaid. Ihis provides a 'fingerprint' technique for 
ascertaining vho was working independently and Wio copied, that a later 
chapter will pursue.

Ihe reduction as the final step for our IMM program was modelled on the 
reduction tables of DOS, but using the parameters given fcy IMM. Ihe 
correction is zero at the two nodes, and also at their quadratures, i.e. 
it is a sin20 function. Ihe angle of the lunar orbit to the ecliptic
varies, TMM tells us, as the Sun's angle to the nodal axis, being maximal
at conjunction and minimal at quadrature. Consulting a standard table of 
reductions, for vihich we select Flamsteed's in DOS as was reprinted without 
alteration by L̂ fonnier in Paris in 1746, we observe that the reduction's

* Ihese two amplitudes were kindly found by Bernard Yallop, with the aid of 
Brower and Clemence's Methods of Celestial Mechanics (1961, p. 312).
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maxiraal value varies between 6'33" and 7'22", depending cai the orbit's 
angle of inclination. IMM instructs us to follow the tables prepared 'after 
the ccnEucai way'. DOS's maximal reduction varies by 12%, ^Aile the angle of 
inclinaticxi of the orbit to the ecliptic is given by TMM as varying by 
merely 6%, so the reduction is changing by twice as much as does the orbit 
angle each year. We require a modulating term with an amplitude of six 
percent, and the reduction term is therefore

M,ad = + 0.116 X sin2(N^^J[l+G.C59oos2(N^-Sj],
the cosine term giving maximal values for solar conjunctions with the nodal 
axis and smallest at quadratures.

V X X  T a t d L t U K a e
Celestial latitude varies as sin(N-^), going throu^ one cycle per 

month. Nodal longitude is measured from the North Node, so that its 
latitude function starts off with increasing values. Latitude is maximal at 
the quadrature position midway between the two nodes, and this maximum 
value is ± 5°17'20" viien the nodes are conjunct the Sun and ± 4°59'35” vhen 
in quadrature; thus there is a modulating function varying as 20 function, 
as for the reducticxi but with half the amplitude. The mean value is 5° 8' 
31" or 5.142°. Latitude becomes positive as the Mocxi passes the North 
node, vhen (M-N) has a positive value. Putting the slower̂ moving positicxi 
first, a sin(N-M) function will require a minus sign in front. Thus, TMM's 
instructiŒTS give us a celestial latitude formula of:

Latitude = -5.142 x sin(N^-MJ[l+ 0.0288cos2(N^-Sj]°
Later on we vd.ll ascertain hew væll this latitude functicai performs. 

Flamsteed found it to be TMM's v̂ eakest point vhen commenting (xi it in 1703: 
'The errors in latitude are frequently 2,3, or 4 minutes, vhich is 
intolerable' (to Casvæll, 23 Iferch 1703, Baily p.213). Newton's mean value 
for the inclinaticxi of the lunar orbit is 16 arcseconds less than the 
modem value.

TMM concludes with some remarks about parallax and refracticxi vhich do 
not ocmcem us. Overall, as far as monthly cycles are concerned, TMM 
appears as largely based cm the tropical and anomalistic cycles, vdth the 
phase and nodal cycles only playing minor, ancillary roles.
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vn An.  E a j t r ly  Daraf"tz. o f  *IMMT?

À manuscript of Newton's published in the Correspondence (pp. 3-5, Volume 
IV) is entitled A Theory of the Moon. Ihe commentary there stated that 
Wiile there was 'no clue' as to the date of its composition, it was 
probably written 'some time prior to' IMM, adding that its text was 
published 'almost verbatim' in PNFM of 1713.

Westfall referred to this manuscript in his view that:
'...a paper called 'A Iheory of the Moon' listed rules for computing 
seven corrections without discussing their theoretical foundation ... 
Several years later, Newton allowed David Gregory to take a copy of it 
and to publish it...' (1980, p.547) 

adding that the version published in Correspondence was 'probably from 
1695.' In Chapter Ihree a composition date of IMM was suggested as 1700, 
i.e., shortly before Gregory saw it. Westfall's view, in contrast, is that 
Newton had virtually composed it some years earlier, and merely reproduced 
it in 1700. Of relevance here is an irate letter from Newton to Flamsteed 
of January 6th, 1699, \Æien the latter had planned to mention, in a 
forthcoming opus of John Wallis, his ccxitribution to Newton's endeavours 
over lunar theory. People were wandering vtot Flamsteed had been doing all 
these years as the 'King's Ctoservator', as he had published little, so he 
wanted to state his contribution towards the advance of theoretical 
astronomy, as having siçplied the cteervations. After all, several years 
earlier he had heard stories, put about by Hailey, that Newton had so far 
perfected the lunar theory that further observations by him were hardly 
necessary (Baily, p. 162). Newton forbade this act, on the grounds that:

'.. .with respect to the theory of the mocxi, I was concerned to be 
publicly brou^t upon the stage about what, perhaps, will never be 
fitted for the public, and thereby the world put into an expectation of 
viiat, perhaps, they are never likely to have.'

Ihat must surely be read as an admission of failure, as a statement to 
his colleague that his endeavours had not been such as to warrant any 
proclamation to the learned world. Are we to believe that IMM had then been 
substantially composed, implying that the above-quoted words to Flamsteed 
were mere deception? Much depends here on whether IMM is viewed as having
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been a success, or a failure. The leading Briti^ theoretical astronomers, 
Hailey, Whiston and Gregory, were as we have seen in no doubt upon this 
issue, once they saw it. That is why it has here been affirmed, that TMM 
was coirposed after the above-quoted remark and not before.

Westfall has claimed that TMM was conoposed in the 1690s, and therefore
by inplication viewing it as a failure, since, as he ri^tly observed of
this period, 'Newton himself regarded the effort as a failure' (Ibid 
p.547). Science historians, as was pointed out in Chapter One in 
discussing Bernard Cdien's view, have never viewed TMM as a working 
mechanism, that defined five positions in ecliptic longitude and one in 
latitude for a given time.

À letter from Newton to Hailey of March 14, 1695 requested that the 
latter would deny prevalent reports that he was 'about the longitude at 
sea. ' As this goal was the stated purpose of TMM when it was published, we 
must assume that no such composition had been formulated at the end of his 
main period of endeavour over lunar theory in the 1690s; to do so would 
imply a level of duplicity that we should not readily contemplate.

The view here taken, is that Newton did indeed regard his endeavours of 
the 1690s as a failure, but that he was then attempting to acconplish a 
derivation of the lunar inequalities from a gravity theory. Only after that 
had ended in failure, was TMM composed, effectively lacking reference to a 
gravity theory and merely improving Hbrrox's kinematic model.

Against the Westfall thesis, let us note that the brief 'earlier'
manuscript has no seven rules or stages as does TMM, has no Horroxian
mechanism, is far from being a complete procedure for locating longitude 
positions, and is rather a fragmentary discussion of gravity theory as was 
attempted for the second edition of FNFM. I query the vhole notion that it 
is an earlier draft. It refers merely to the first three equations of TMM, 
and none of the subsequent ones. Later on we address the manner in vdiich 
gravity theory was related to the instructions of TMM, a matter of the 
utmost importance to subsequent astronomers, where a discussion of this 
manuscript's gravity arguments will be appropriate.
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Cançaring the two new annual equations introduced by IMM, viz. 20' for 

the apse line and 9'30” for the nodes, with those given in the unpublished 
'Theory', the latter are seen to be more exact. Its figures are, 20'9" for 
apse and 9'34" for the nodes. An additional order of magnitude accuracy has 
â jeared. There is no more distinctive difference between the first and 
second editions of the Principia than the increase in numerical accuracy. 
Often, the accuracy of the Second Edition went beyond vtot was warranted by 
the data, as if endeavouring to convey credibility by an increase in the 
number of decimal places (as Wèstfall described in his 'Newton and the 
Fudge Factor' of 1970). This strongly indicates I suggest the arrow of 
time, demonstrating that the undated manuscript was composed long after 
TMM, and not earlier as Westfall has assumed.

The manuscript has an interesting remark about the 'annual equation': 
'Moreover in deducing celestial motions from the laws of gravity we 
also discovered that the annual equation of the Moon's mean motion 
vAich Kepler and Horrocks ooiç)led with the equation of time, but 
Flamsteed published separately, arises frcm the varying expansion of 
the Moon's orbit by the force of the sun, in accordance with Corollary 
6 to Proposition 66 in Book 1.'

Its value of 11' 49" derives from Flamsteed's discovery that Earth's 
rotation rate was constant, vhich he established frcm daily transits of 
Sirius. This was the major theoretical issue on vhich Flamsteed disagreed 
vdth Kepler, vho had acounted for the annual equation by supposing that 
Earth's rotation rate varied over the course of the year. Subsequent 
astroncmers credited Flamsteed vdth having discovered the Equation of Time, 
linking mean and apparent solar time, as the seasonal variation in day- 
length. In the Principia's second Edition this passage appears vdth the 
reference to Flamsteed deleted, for reasons into vhich væ need not enter. 
The value of 11'49" is in excess by about 37".

The last paragrajh of this manuscript speculates about a nine-year cycle 
varying vdth the apse rotation (vhich vrould be, sin[A-H]). TMM has no 
period of this length - thou^ Newton speculated upon one for the fourth 
equation as we saw, vhile the apse position passed throuKÿi Cancer- 
Capricom. It has no terms longer than a Horroxian year of 411 days. That
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is a quite surprising feature about it from a modem viewpoint. Newton only 
grappled with the subject for just over half a year, frcm September 1694 
until June 1695, and his most reliable positional data was after 1690, vàien 
Flamsteed's mural arc was working. In contrast with this emphasis upon 
short-term cycles, Hailey was convinced that the 18-year Saros cycle was of 
vital relevance. After their discussions on this topic, Newton may have 
considered incorporating a longer cycle into his theory:

'I have learned furthermore from the same theory of gravity that the 
Sun acts ipon the Moon more strongly in the individual years when the 
Moon's apogee and the Sun's perigee are in conjunction than vhen they 
are in «opposition. From this there arise two pericxtLc equations, one 
for the Moon's mean motion, the other for the motion of her apogee. 
These equations are nil when the Moon's apogee is either in conjunction 
with the Sun's perigee, or in opposition to it, and in other positions 
of the ̂ xjgee they have a given proportion to each other. The sum of 
these equations, vhen they are at their maximum, is about 19 or 20 
minutes...'

This is a further basis for believing that it was «oomposed years after TMM, 
perhaps a decade or so later.

While having to disagree wdth both Westfall and the Correspondence 
commentator, our «conclusion happily a«ccords vdth Whiteside's view: he 
characterised this published manus«cript as an 'initial version' of the 
opening paragraphs of the revised scholium of Proposition 35 of Brok Three 
of the 1713 Second Edition of EMEM (Whiteside 1975, p. 327, Note 46).
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C2Jtl _ JLO

TESTXISTG  T H E  S E V E IS TE O E D  O H A X  1ST

Having formulated a model in accord with Newton's instructions, we new 
test its validity. There are three ways we will do this, the first being a 
comparison with historic computations by astronomers vho adcpted the TMM 
procedures. Such a comparison may help to establish confidence in the 
validity of the TMM-PC model; and further, to ascertain the extent to ̂ Aich 
historical authors used TMM, a question not yet well resolved by 
historians.

The other two approaches to be developed in this chapter are 
analytical, and they test the individual steps of TMM. This is first done 
theoretically, by comparing modem equations of lunar longitude with those 
of TMM. Thereby we may evaluate statements made by Baily, Whiteside and 
Wilson on the subject. Complementing this is a practical approach, hereby 
any step of TMM can be tested, by altering TMM-PC in some respect, and 
noting vhether, on average, it thereby becomes more or less accurate.

The latter method should be able to give a definite answer as to the 
validity of any component of TMM, as may not be readily discerned from 
theoretical considerations. After all, none of the modem equations have 
their amplitudes modulated, in the way of TMM, by long-period functions.
If, for example, we should be curious as to how much of an improvement was 
accomplished fcy Hailey's modification of the Horroxian model for 
eccentricity, as compared with Flamsteed's model, then such a testing on 
TMM-PC should resolve the matter.

X EdLve HdLstjonrXc:

Astronomy text±ooks of the period always carried examples of longitude 
computation. TMM-PC will model these worked examples, provided their method 
was Newtonian. If possible we should avoid worked examples involving 
eclipses, since exact longitude would then be known, as solar longitude 
could te determined with great accuracy. These would provide a tempting 
opportunity for the astronomer to claim a greater accuracy. By the time
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that the vrorked examples appear in the 1730s and 1740s a systematic error 
had accrued of nearly two arcminutes in the mean motion.

If, as with Hailey and Leadbetter, the method involved logarithms, the 
steps may not be easy to follow. Ihe present approach overcomes this 
difficulty, by viewing merely the beginning and end of the operational 
sequence. For the selection of our case-studies, we are guided by the most 
recent claim as regards vho adopted IMM's procedures, made by Professor 
Wilson in GHA:

'Newton's rules for calculating the place of the Moon være 
incorporated into the tables of Charles Leadbeater's Uranosoopia (1735); 
in the tables that Flamsteed constructed about 1702 and vhich, having 
been given by Hailey to P.C.Lemonnier, v̂ ere published by the latter in 
his Institutions astronomiques of 1746; and in Hailey's Tabulae 
astronomicae (1749).' (p.267)

William Whewell gave, in the nineteenth century, a more extensive list of 
such persons, vhich a later chapter will consider. CXar historical 
comparison vdll use the vcrks above-cited by Wilson, plus the IXmthome 
example treated earlier.

Table 10.1 gives the 'mean moon' position for the local mean time in the 
left hand column, vdth final ecliptic longitude belcw that, as given in the 
worked examples cited. To the ri^t of these historic computations are 
those of IMM-PC for these times, showing a 'correct' value for that moment 
in time. Subtracticai gives the difference between the two methods, in the 
'a-b' column.

Ihe table has utilised three different computer programmes for going 
back into past time. A hi^-precision lunar ephemeris gives the Icmgitudes 
shewn in italics. Subtraction of these values gives the error-values, both 
of the historic textbooks and of our IMM-PC program, cited in arcminutes. 
All longitudes have been converted to degrees, thus 6s 27° 59' 18" is given 
as 2071988. In the first example, Leadbetter can be seen to agree vdth the 
IMM-PC mean value vdthin ten arcseconds, an acceptable error for him to 
make in reading his tables.
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Table 10.1; OMf GCMEUE^GNS, HISOQRIC VS GCMEUEQl, OF IDNAR IXWGITDDE

Historic TMM-PC
degrees degrees
a b

Leadbetter (1735)
May 7th 1731, lOhrs mean 207.988 207.991

answer: 202.337 202.337
actual posn. 202,407
errors: -4'.2 -4'.2

Difference
arcseconds

a-b

- 10"

+  0"

Leadbetter (17351
Sept 16 1734 noon mean: 183.112 183.111

answer: 188.426 188.424
actual 188.459
error (answer-true posn.): -2'.0 -2'.1

+ 3" 
+  6"

tXmthome (17391
Jan 2nd 1737,3h 40m mean: 80.119 80.119

answer: 74.137 74.136
actual position 74.251
errors: -6'.8 -6'.9

0
+4" - 6th

L^fonnier (17461
Aug 4 1739,5h 55m 25s mean: 134.869 134.862

answer: 132.642 132.639
actual 132.622
errors: +1'.2 +1'.0

+25" 
+ 9"

Hallev (1749)
Dec 5th 1725, 9h 8m 5s mean: 51.428 51.431

answer: 45.709 45.701
actual 45.713
errors: -O'.2 -O'.7

— 911

+ 25"
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We have seen how IXmthome is the case-study vdiich exactly mirrors TMM- 

PC, and his answer differs from TMM-PC by a mere 0.001 = 4”. The others 
have generally made sli^t adjustments, chiefly to the sixth and seventh 
equations, either omitting them or reversing its sign. A later chapter will 
examine the methods used by the ei^teenth-century astronomers viho claimed 
to be using TMM.

All the others -IXmthome, Leadbetter, Hailey and LeMbnnier - reversed 
the . { sign of the 6th equation as in the 1713 version. As it has to 
two and a half minutes aroplitude, this is of considerable significance. The 
TMM-PC program is modified accordingly.

Of the above worked exanples, only Hailey's had the node position 
cOTijunct the Moon and described an eclipse. It was the only worked example 
in his posthumously published opus, so we had no choice. The accuracy of 
his worked example could be ascribed either to some improvement of the 
method, or to his selection of the eclipse. We refrain from more definite 
comments until Chapter 14.

The agreement in the right-hand column is generally within arcseconds, 
vhich conclusively endorses the GHA's claim, that the above persons were 
using TMM, albeit modified somevhat in the last two equations. It may tend 
to sipport Baily's view that: 'It was not until the year 1735, vhen 
Leadbetter published his Uranosoopia, that we find a more perfect adoption 
of Gregory's N&/tx>nian rules reduced to a tabular form' (p.702).

The modem longitude program given in italics runs on Julian time, and 
so is suitable for all five dates except for L^fonnier in Paris. For 
LeMonnier's date and time, the procedure vjas: subtract eleven days, add 
twelve hours to the given time, then subtract nine minutes and twenty 
seconds to convert from Paris local time to G.M.T. This gave July 24th 1739 
O.S., at 17 hours 46 minutes 5 seocxids G.M.T., vhich was inserted into the 
program*.

We saw in ch^Æer Fwe that L& Monnier'Q mean moaf̂  vjas more apcurate

tthan TMM's over l̂ his peri^. Using j Le Mamie's tableŝ  for the epoch d^te
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We saw in chapter Five that Le MDnnier's inean moon was more accurate 

than IMM's over this period. Using Le Monnier's tables, for the epoch date 
1720, differences were coicpared from true values as in Chapter five, 
showing that it was then out by a mere 7 arcseconds. Ihe same was done for 
the IMM program, whence we find that Lemonnier's mean moon was displaced 
1'12" or 0*.02 from that of IMM, so that amount was added to the first step 
of IMM's procedure solely for the L̂ fonnier exairple. Summarising, we 
modelled Le Monnier's operation sequences fcy using IMM-PC with the sixth 
equation reversed, and with just over one arcminute added to its mæn 
motion.

After that adjustment to LeMonnier's mean moon, his method still 
diverged from IMM-PC fcy forty arcseconds, vhich divergence arose in his 
fourth step, the Equation of Centre. A later chapter will consider 
characteristics of the different astroncmers, here we merely compare the 
program with their worked examples in a general manner.

In the case of the two worked examples by Charles Leadbetter, their 
first three equations echo IMM, then vhat seems to be IMM's sixth equation 
came next as the fourth, followed fcy the Equation of Centre. He used 
Hailey's mean motions (̂ 3pendix III) but differed in keeping the seventh 
equation. Ihese two worked examples of Leadbetter's 'Uranosoopia' of 1735 
had values for the 'Sun's true place' agreeing with IMM within one or two 
arcseconds.

Ihe above Table does not show the error in mean positions. As vas 
earlier esqjlained, this amounted to nearly two arcminutes for this period, 
and the error values can be seen to cluster around this value.

* Ihe time-values fed into the IMM program (days after noon, December 31st 
1680, GMT, Old Style) were, respectively: 20456.153 (Dunthome), 18389.417 
(Leadbetter 1), 19617.000 (Leadbetter 2), 21389.240 (L̂ fonnier) and 
16410.381 (Hailey).
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XX T tije  E in ra n o ia s  S X x tX i

In the year 1713, Flamsteed wrote to a friend:
'I told you that the heavens rejected that equation of Sir I.Newton, 
vhich Gregory and Whiston called his sixth. I had then compared but 72 
of my observations with the tables: new, I have examined above 100 
more. I find them all firm in the same, and in the seventh too. And 
whereas Sir I.Newton has in his new book (pages 424 and 425) thrown 
off his sixth, and introduced one of near the same bigness but always 
of a contrary denomination, and a bigger in the room of the seventh, 
if I reject them both, the numbers will agree something better with 
the heavens than if I retain them: so that I have determined to lay 
these crotchets of Sir I.Newton's vtolly aside.'

Ihis view of Flamsteed's appeared in response to the new edition of PNFM 
(Baily, p. 698). Earlier he had commented in general terms about discarding 
some of IMM's ancillary equations, but this would appear to be his first 
definite statement upon the matter. He has plainly noticed the reversal of 
sign for the sixth and enlargement of amplitude of both sixth and seventh, 
but was not impressed. His unfortunate conclusion was, that both the sixth 
and seventh equaticxis were best emitted, and that 'the heavens rejected' 
the sixth even with its sign reversed.

Flamsteed was probably the first to discern the erroneous nature of the 
sixth equation, but otherwise his view is mistaken. For, as we shall now 
shew, all four of the Newtonian ancillary equations turn up in the modem 
formulae. It is ironic that the person vdio supplied the data from vMch the 
theory was wrou^t, should end rp sceptical about vtot had been attained. 
Before making such a coraparison, our versions of the formulae are compared 
with those of others.

XXX N e w t o n N e w  Bcguartâ-ons

Four new equations appeared as the second, third, sixth and seventh 
stages of IMM. Ihe present work is the fourth to propose an algebraic 
format for them. Versions given previously by Baily (1835), Whiteside
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(1975) and Wilson (1989) are here ocampared with ours, thoujÿi omitting the 
ainplitude-inodulating terms. Symbols used in the present text are employed 
for the comparisons.

The second Equation;
Baily 3'45" sin2(A-S)
Whiteside 3'45" sin2(S-A)
Wilson (G.H.A.) 3'45" sin2(A-S)
TMM-PC 3'45" sin2(A-S)
Whiteside's term is reversed in sign as compared with the other three.

given as sin2[(M-S) - (M-A) ] 

given as -sin2(S-A)

given as -sin2(S-N)

Third equation;
Baily 47" sin2(S-N)
Whiteside 47" sin2 ( S-N)
Wilson 47" sin2(N-S)
TMM-PC 47" sin2(N-S)
Both Baily and Whiteside have the functions in reverse mode, ie 180° out of
phase as compared with Wilson. I ascertained the plus and minus signs 
largely empirically, by writing the equation into the computer then 
(deserving Wiether the plus/minus values changed in accxjrd with TMM's 
instructicmis for varying time-values.

Sixth equation;
Baily 2'10" sin(l̂ -StA-H) given as sin[2()̂ -S)+(S-4I)-(M-A) ]
Whiteside 2'10" sin(M-S+A-H)
Wilson 2'10" sin(S-M+H-A) given as -sin(M-S+A-H)
TMM-PC 2'10" sin(S-M+«-A)
The first two have the signs reversed as compared with the others.

Seventh Bouation:
Baily 2'20" sin(M-S)
Whiteside 2'20" sin(M-S)
Wilson 2'20" sin(S-M) given as -sin(M-S)
TMM-PC 2'20" sin(S-M)
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To avoid confusion over signs, we quote GHA, that 'M-S is the angular 

distance of the Moon from the Sun' (p. 267): envisaging the luminaries as 
revolving anticlocikwise around Earth, angles measured anticlockwise are 
positive. In a sense, Baily and Whiteside were unconcerned with the signs 
of these terms, which only have meaning within an operating system.

X V  C3oamg>e=aT~j-scan. x n o c a s a m . t e r m s
The new equations of TMM appeared, as Baily complained, without 

justification:
'Newton has not eq)lained, in the document under review, how he deduced 
these new equations, nor vhether any of them are derived from his own 
theory of gravitation, or from Horrox' theory of the libratory motion of 
the lunar apogee...' (Baily, p.694)

While this is true, it will here be argued, in contrast with the views of 
others on this matter, that the new equations showed the profound intuition 
of their author. Not only did Newton originate the concept of ancillary 
equations in this context, an unheard-of thing prior to about 1695/6, but 
all four of them were substantially valid, and even had near to their 
optimal amplitudes. TMM was marred by having its sixth equation the wrong 
way round, however this was corrected in 1713, well prior to the period 
when astronomers commenced using it. We have already seen how several 
astronomers vho took up the Newtonian theory accomplished this vital 
reversal of sign in the sixth equation.

The modem equations for lunar longitude are normally cast in terms of 
solar anomaly (M), lunar anomaly (M'), lunar elongation (D) (angular 
distance from the Sun) and mean lunar distance from ascending node (F). 
These are used because th^ turn up most often in the hundreds of terms 
comprising the theory. We may add an astérie to the modem solar anomaly 
term, as M*, to avoid confusion with the TMM symbol.To compare these with 
the TMM program, we must recall that the modem definitions of anomaly are 
with respect to perigee and perihelion, and so are 180* out of phase with 
the old. We may then transform them using the symbols M (Moon), S (Sun), N 
(node), A (Apogee), and H (^helion); thus, D=M-S, F=ff-N, M*=S-H+180* and 
M'=M-A+180*. The modem term

+0.041sin(M'^*)
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becomes 2'28" sin [(M-A) - (S-H)] = 2'28” sin(M-SfH-A), vMdi we can 
recognise as the sixth equation. The first fourteen modem equations are 
presented in order of diminishing amplitude.

MODERN EQUIVALENT NEWraHAN
1) -f€.2888siriM' 6“17'24" sin(M-A) ellipse function
2) +1.274sin(2D-M') 1“16'26" sin(MfA-2S-180) evection
3) -K).658sin2D 39'29" sin2(M-S) 35'32" sin2(M-S) 5th eqn.
4) +0.213sin2M' 12'49" sin2(M-A) Horrocks theory
5) -0.185sihM* -11' 8" sin (S-H) 11'49" sin(H-S) 1st eqn.
6) -0.114sin2F -6'51" sin2(M-N) 6'57" sin2(N-M) reduction
7) +0.058sin(2D-2M') 3'32" sin2(A-S) 3'45" sin2(A-S) 2nd egi.
8) 40.057sin(2D-^*^') 3'26" sin(M-3S4-A4H) -

9) +0.053sin(2EHM') -3'12" sin(3M-A-2S) -
10) -K).046sin(2D-M*) -2'44" sin(2M-3S4H) -

11) +0.041sin(M'-M*) 2'28" sin(M-SfH-A) -2'25" sin(S-MfA-H) 6th,1713
12) -0.034sinD -2' 5" sin(M-S) 2'20" sin(S-M) 7th egi.
13) -0.030sin(M*4M') -1'49" sin(M-AtS-H)
14) +0.015sin(2D-2F) 55" sin2(N-S) 47" sin2(N-S) 3rd eqn.

Table 10.2: The first fourteen modern terms for lunar longitude are given on the left, then 
restated in the adjacent column using TMM-PC symbols. The TMM equations are given in the third 
column, where the first equation refers to the annual equation and the fifth to the Variation.

The first four terms indicate the fundamentally different basis of 
modem lunar theory from that of Newton. With the annual equation, the 
fifth in the modem sequence, the first of TMM's steps appears. Three or 
four of the modem terms do not correspond with anything in the old theory. 
If omitted, their amplitudes are such that they would generate errors well 
beyond the 6 arcminutes or so maximum of TMM. Only to a limited extent can 
we compare these sets of terms, as their mode of use differs: the modem 
procedure uses the same mean values at every stage, whereas the Newtonian 
procedure changes these at each step by 'equating' them.

Baily acknowledged the validity of three of the four new equations, 
thou^i appearing very doubtful about their amplitude. Of the second, he
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wrote rather sceptically that: 'Hiis equation, depending on twice the 
annual argument, or 2(D-A) according to Delairibre's system of notation, does 
not amount to so much as 1' in the tables of Mayer, Bur^ or 
Burckhardt'(p.737). That is curious, since in the modem scheme it amounts 
to 3% arcminutes, ie it should have been larger.

On the small third equation, Baily ccxnmented that it was 'somê ĥat 
greater in the tables of Mayer, Bur^, and Burckhardt. ' One hopes it was 
not much greater, since in the modem scheme its amplitude is a mere 55”.
Of the sixth, Baily observed that its coefficient and sign as given in the 
1713 Principia were adopted by Hailey.

Whiteside in his 1976 essay did not commit himself to affirming that any 
of the new, Newtonian equations were valid, but merely concluded: 'Pity 
those - notably Hailey - who in the early decades of the ei^teenth century 
tried to found solidly accurate tables of the moon's motion içx>n such a 
flimsy, rickety basis.' That was far from being Hailey's view. Wè are not 
able to support the GHA view that, of the four new equations, only the 
second 'has the correct form and, very nearly, the correct coefficient' 
(p.267).

V  J_n y e  Suirnniear
In the winter of 1694/5, as was mentioned in the previous chapter, the 

lunar and solar apses drew into alignment as the Sun crossed over them both 
at midwinter. In November of that year Newton sent an urgent request for 
lunar data vhen 'apogee is in ye summer signs' (Oorr. IV p.47). Newton 
sou^t in vain for any (A-H) perturbation terra linked to this nine-year 
cycle, absent from his IMM. On July 27th 1695 he wrote to Flamsteed,

'I had rather you would send me those [observations] from Aug. 24th, 
1685, to July 5th, 1686, vhen the aphelium was in the same position as 
in the year 1677.'

At the Full Mocn of December 21 1694, mean apogee was at 5"* Cancer (a 
'summer sign'), merely 5° away from the syzygy axis. It would appear from 
the above equations that there are no simple terms involving the (A-H) 
function that could have been discovered.
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Vfould it have been possible for Newton to discern any further lunar 

equations? One answer is, that no further equations were discernible at 
that time, as they were too complex; that he found all there was to find, 
then left Cambridge for London. His sustained work on the lunar theory 
occupied half a year, from September '94 to June '95. In September, Hailey 
discovered the cyclic return of the coæt that bears his name, vAiich may 
have tended to move Newton's attention away from the subject. In the autumn 
of 1695 IMM's author accepted a job as Master of the Mint: on November 26, 
1695, Wallis wrote to Hailey, 'We are told here [Oxford] that he [Newton] 
is made Master of the Mint, vhich if so, I do congratulate him' (More,
1934, p.435).

Terms such as 'sin(3M-A-S) ' are not intelligible as the seventeenth and 
first half of the ei^teenth-century understood the notion: merely, they 
come out of the mathematics after complex differential equations have been 
applied, and as such belong to an entirely different epoch.

V in  T e s f c L n g  t J n e  e q y ig a tz J L c a n s .
To investigate TMM's four new equations, a sampling period of 160 days 

was chosen. iMs was selected as avoiding multiples and fractions of IMM's 
main cycles, namely 365, 205, 29.5 or 27.5 days. Forly such positions 
following the epoch date of 1680 were generated on IMM-PC, together with 
equivalent Icaigitudes generated on a modem program, then the two values 
were subtracted, and the mean and standard deviations of the differences 
obtained. Lotus readily performs these operations for columns of figures, 
obviating human error. The means of these samples ou^t to be close to the 
error value of mean lunar mctiŒi used by IMM, or not significantly 
different from it, if our sample is indeed random with respect to the 
rhythms of the mechanism we are investigating.

The second, third and seventh equations were omitted, one at a time. 
Ihis was done using IMM-2, ie with Newton's 1713 value of the sixth 
equation. As this version is more accurate, it will plainly be more 
sensitive to other factors. Ihe third equation is of very small amplitude, 
so as can be seen its sign had to be reversed for appreciable effect.
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Lastly, the Flamsteed-Horrociks method of varying the eccentricity was used 
in place of the Balley-Newton method. Here are the results, citing the 
percentage increases of standard error.

Table 10.3: Accuracies of IMM-2 Modifications
Percent error increases in right-hand column ccmpare standard 

deviations cited against that of lMM-PC-2. Eg, on removal of the second 
equation in (b), the S.D. of errors appeared as ±3.08 arcminutes, this 
being 64% more than 1.88, its optimal value.

a) lMM-PC-2: -0.38 ± 1.88'
b) no second: -0.43 ± 3.08' 64% more
c) no third: -0.40 ± 2.03' 8% more
d) reversal of third: -0.42 ± 2.30' 22% more
e) no seventh: -0.40 ± 2.75' 46% more

f) IMM-PC -0.50 ± 3.77' 200% more
g) DOS eccentricity: -0.53 ± 4.34' 230% more.

The results for b-e confirm Wiat was inferred from theoretical 
considerations above, that all four of the 'new' Newtonian equations 
contribute to predictive accuracy. Both their removal and their sign 
reversal iitpaired IMM's function - contrary to Flamsteed's opinion.

Line 'f ' gives our second estimate of the error in the original lMM-1, 
the first being at the end of Chapter Ei^t, using a two-year sampling 
period, \dien a comparable result was obtained.

Flamsteed's Horrocksian method for finding eccentricity left it reduced 
by a factor cos5 as Gaythorpe pointed out (Ch. 7,IV), vitiere S is the second 
equation of apogee. To estimate its accuracy, the function 'f' in TMM-PC 
was adjusted to give the simpler Horrocksian movement. Sir William Whewell 
took a derogatory view of Hailey's adjustment in this regard, as being a 
mere 'sli^t alteration' (Ch.7,IV), and similarly Whiteside expressed the 
view that 'Newton himself (not that it matters a great deal from a 
ccmputational viewpoint) was in fact to adopt Hailey's variant on this...
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(Whiteside 1975 p.327 note 35).' In contrast, our quantitative approach has 
revealed that Hailey's contribution was the greatest single inprovement 
vAiereby the Newtonian approach differed frcan the Horrocksian. IWo-thirds of 
the error was removed by that one adjustment (line 'g' above), thereby 
confirming Newton's own view that it was a 'very good' iirprovement (Corr.
IV p.34).

A statistical 'confidence limit' is normally taken as double the 
standard deviation, being the range containing 95% of the data. On this 
basis, IMM-2 had a confidence limit of 3.6 arcminutes.

An attempt was next made to optimise the program, by giving the four new 
equations the amplitudes of their corresponding above-quoted modem 
functions. Ihose of the second and third were reduced sli^tly, Wiile for 
the sixth and seventh they were increased. This increased the standard 
deviation by one percent. Next, the lunar eccentricity value was decreased, 
from the 0.055050 value of IMM, to 0.05490 as the modem value for this 
constant (equivalent to using the modem equation's amplitude, as in the 
above-cited Table, of 6* 17' 24", in place of IMM's 6° 18' 3"). Again, a 
sli^t increase in standard deviation for the forty data-points was 
observed. I could not find any case vhere adjustment of the IMM parameters 
improved accuracy.

VXX Ooamgpca~r~j-SQn. wdLtzlnL DOS

Reconstructing the DOS procedure will help us to appreciate the 
relation between Flamsteed and Newton, as well as vihat was meant by 
'Horrocksian.' Such a model ou^t to generate the same errors as Newton and 
Gregory were shown three centuries ago on their visit to Greenwich.

Ihe idea of tackling lunar theory seems to have come to Newton in 
September of 1694 vhen with David Gregory he paid a visit to Flamsteed at 
Greenwich, and was shewn a table of lunar latitudes and longitudes as 
deserved, together with their discrepancies from vhat Flamsteed calculated 
ought to be their positions (both Gregory and Flamsteed have left notes of
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this event). Hie challenge was for Newton to construct something better 
than the DOS method.

Flamsteed's De Sphaera gave the furthest development of the Horrocksian 
method of finding lunar Icxigitude. It is the proper point of comparison for 
assessing IMM, being its immediate ancestor. William Whiston, in his 
astronomy lectures to the Cambridge Iftiiversity mathematics students, in the 
year 1703, advised them:

'Take, therefore, Mr Horrox's lunar Hypothesis, as cultivated and 
ejq)lained by Mr Flamsteed.' (Astronomical Lectures, 1716, p. 104)

It had three stages: the annual equation, equation of centre, and 
Variation. They are similarly described in the procedure given by 
Flamsteed in Horrox's Opera Omnia of 1673 (Horrox, 1673, p.494), except for 
minor alterations in constants and mean motions.

We shall call the program simulating the DOS procedure DOS-PC. 
Flamsteed's De Sphaera dealt with many other issues, but 'DOS-PC' 
designates solely its method of finding lunar longitude. The IMM program 
was deconstructed to reach this more primitive procedure, as follows: 
remove equations 2,3,6 and 7; remove annual equations from node and apse; 
diminish solar eccentricity to the Hbrroxian value; remove the modulating 
factor from equation 5 (the Variation) and increase its amplitude to 38 
arcminutes; insert DOS epoch values in place of IMM's* and DOS parameters 
for lunar eccentricity; measuring the latter along mean apse by the 
function:

E = 0.05524 + 0.01162cos2$ 
in place of the Newtonian

E = 0.05505/(1.0454 + 0.4262COS 2§) (Ch.7,II);
add in a proportionality factor to make the equation of apogee, as produced 
by the Horrox-wheel, sli#tly smaller, of maximal amplitude 11° 47' 22” in

* Ch. 5, II, also ̂ jpendix III. Ihe daily mean lunar motion was also 
adjusted, the difference between DOS and IMM being one arcsecond a year.
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place of IMM's 12° 15' 4”*; and simplify the equation of the node, so that 
it becomes a simple sine function of 2(Ŝ -N), and no longer has a Horrax- 
v̂ eel mechanism as TMM gave it.

Flamsteed's DOS gave ten steps to the method; Uie first comprised his 
'Equation of Days' of viAiich he was regarded as the pioneer (See, eg,
Thomas Streete in his introduction to the second edition of his Astronomia. 
Carolina of 1705) ; vdiereby the uniform rotation of the Earth in sidereal 
space became the basis for the definition of time, mean time as opposed to 
clock time, later standardised as Greenwich Mean Time. This was discovered 
by Flamsteed using an immobile telescope on his balcony, timing Sirius's 
transit each day.

His steps two and three c±tained the mean motions from tables. Step four 
subtracted out the annual equation for the two luminaries. Step five used 
vhat was called the 'Annual Argument' and vdiich we have called the Hbrrox- 
angle, to 'equate' the apogee and eccentricity. The sixth used the mean 
anomaly (ie, - Â ) to give the true equation of orbit; which we may 
represent by

M, = + h{M^-AJ
where h is the equation of centre function. Then the seventh stage adds the 
Variation. As our TMM-PC used the DOS reduction procedure, no adjustments 
are here required. The node had to be once equated before it could be used 
for finding the reduction and latitude, using tables based on the (Ŝ -N) 
angle. The overall latitude angle, ie the tilt of the Moon's orbit, 
likewise varied with that angle. The node's maximal equation was 1° 40',

* From Figure 7.4a, DOS's equation of apogee 6 is given by tan<5 = FD/DT =
0.011286sin2$/E, vhere E is the varying eccentricity. Figure 7.4b d^icts 
the maximal value of S vhich DOS gave as ll!789, vhere CF/CT = sin<S = 
0.2043; taking the mean eccentricity line TC as equal to 0.055237, the 
radius PC is 0.011286. Effectively, DOS has two deferent vheels concentric 
upon. C, the centre of Earth's orbit, the one for the apse equation being 
2.9% smaller than that for the eccentricity function, as v^ also the case 
for Horrocks' theory (see 'linkage of e and 6' section in Chapter 7). Not 
prior to TMM did their magnitudes coincide.
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sudh amplitudes being ascertained as the maximal values given in the DOS 
tables. Thereby a Lotus 1-2-3 program was constructed, here described 
firstly by a flow diagram of its steps of equation, and secondly by the 
trigonometric functions involved:

The Steps of Equation in DOS-PC

H

MEAN MOTIONS M = 181 !7328 + 13.1763946t S = 290“580 + 0.9856469t
A = 244̂ 1975 + 0.1114083t H = 96“861 + 0.0000479t
N = 174“2430 - 0.0529550t, 

vhere t is the time in Julian days from noon of December 31st, 1680.

ANNUAL BQUATTŒ* = M - 0.197 sin(H-S)
Ŝ  = S + 1.9368 sin(H-S) - 0.0202 sin2(H-S)

BQÜATTŒ1 OF CENTRE E = 0.055237 + 0.01162 cos2(A-Sj (eccentricity)
Â  = A - arctan sin2fA-S )____

4.8943 + cos2(A-Sj 
+ h{E,(A^-MJ)

where h is the equation of centre function (Ch.6,II and Ch.8,1).

VMONT1Œ M 3 = M^ + 0.633sin2(M3-Sj

REDUCTION N3 = N - 1.663 sin2(N-Sj 
ênd = ̂ 3 + 0.116 sin2(N3-M3)[l + 0.059 cos2(N3-SJ]
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Œtiere are only two worked exairples \idiereby we can check the working of 

this program. There was the worked example given in DOS, discussed in 
Chapter Ei^t; later in 1694 Flamsteed sent a table of computed positions 
to Newton, vhich we analyse in the next chapter. We may surmise that he had 
not by then altered his procedure, but his letter to Newton did not 
explicitly affirm such. Regrettably, William Whiston in 1703 used the same 
example as given in DOS; another was given by Cressner, discussed below. 
That is all, and it is not very much.

The DOS example had as we saw (Ch. 8, III, Table 8.3) an error of 
eleven arcminutes. London is five arcminutes due East of Greenwich, and we 
subtract one-third of a minute from its local mean time to obtain GMT. The 
Table below conpares the magnitudes of its three equations: the annual 
equation, the Equation of Centre and the Variation, for the moment given in 
this example of 6.35p.m. London mean time, 22 Decemiber 1680 (t = -8.72596 
for the Lotus program).

DOS-PC DOS
Eccentricity: 57681 57678 parts per million
Apse equation: 10°50'32” 10°50'32"
1) Annual eq. : -1'03" 1'03"
2) Eq. of centre: -54'27" -54'22"
3) Variation: -36'15” -36'16”
Reduction: -3'59” -4'00”
Long, in ecliptic: 65°9'51” 65° 9'52”

Five arcseconds is here the largest discrepancy in the steps of equation. 
Next, the accuracy of DOS-PC was tested using the method described earlier. 
Forty positions at 160-day intervals were generated, giving a mean error 
of:

-2.4 ± 6.5 arcminutes, 
or a confidence limit of thirteen arcminutes. This well accords with 
Newton's remark made in a letter to Flamsteed of July 20, 1695, that 'The 
Horrocksian theory, .never errs above 10 or 12 minutes' (to Flamsteed, Baily 
p. 158); althou^, on January 15th, 1681, DOS-PC erred by 15 arcminutes. It 
also echoes the conclusion that Flamsteed expressed in the Philosophical 
Transactions of 1683, that 'even the best' lunar tables erred by at least
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12 minutes. (Phil. Trans. 154, Vol.13, p.405); suggesting he had then made 
little progress with the problem.

Flamsteed gave a worked example in his collation of the posthumous works 
of Hbrrox (Horrox, 1673, p.494) vdiich had, I found, an error of 13 
arcminutes, vhich is similar to that in the above DOS example.

V I I  IE H ie  C^cangpurtzatdLcari

The first ever IMM-based calculation on record was published in the 
Philosophical Transactions of 1710, by 'the Reverend Mr H. Cressner, M.A., 
Fellow of the Royal Society. ' He also gave a computation based on DOS, as 
published by William Whiston. Ihe occasion was a lunar eclipse observed at 
Streatham in South London. Ihus, at the dawn of the Age of Enlightenment, 
there existed two rival British lunar theories. Mr Cressner made the claim 
that he was the first to do this:

'There being therefore no Examples of any Calculation (that I knew 
of) according to that Theory, nor of the Theory's Agreement with 
ODservations yet made Public; I thought it proper to offer this one to 
this learned Society's perusal...I have added the Calculation frcm the 
famous Mr Flamsteed's Tables, according to Horrox's Theory, as I find 
them published in the Ingenious Mr Whiston's Astronomical Lectures, 
with the Radix's of the Mean Motions, corrected according to their 
first Author's later (XDservations, vhich are the same as Sir Isaac 
Newton's Theory.

'By comparing these two Calculations we may observe, that tho' most 
of the additional Equations in Sir Isaac Newton's Theory be very small 
in this situation of the Moon, yet they all conspire so as to make its 
Place considerable more agreeable to Observation, than those of 
Horrox's System. '

There is the curious assertion that TMM's mean motions represented 
Flamsteed's later views on the matter. The passage could be taken to imply 
that Flamsteed had not developed his lunar theory beyond vtot he published 
in 1681, even three decades later, except for sli^t modification of his 
mean motions.
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We are told that both conopitations start from the same mean motions. 

The TMM-PC and DOS-PC programs were here used , the latter with TMM's mean 
motions, for the time given. The two calculations as shewn by Cressner 
purport to ascertain the beginning and end of the eclipse. To iry knowledge, 
TMM cannot be used for such, but only for the moment of exactitude. We take 
Wiat Cressner called 'The Mean Time of the True Opposition' for the Julian 
date of 2nd February 1710 10 hrs (ie, 10pm), 54min, 48 sec at Streatham 
(t = 10625.4547 for TMM-PC).

The steps of equation agreed tolerably well, and show that Cressner 
adopted the correct sign for the sixth equation. His finally-equated value 
(M̂ ) differed from TMM-PC by 48 arcseconds, while for the DOS program it 
differed by a mere 25 arcseconds. The latter ouüÿït to be smaller, since 
tables then existed for the DOS procedure, vhile none then did for TMM's 
procedure. We cite the final values for M̂  :

loncfitudes for Feb. 2nd 1710. lOhrs 54 mins 48 sec GMT:
TMM-PC 145* 1' 12"
TMM (Cressner) 145° 00' 24"
DOS-PC 144° 55' 51"
DOS (Cressner) 144° 55' 23"
Actual 145° 2' 9”
Eclipse mi(%)oint 144° 45' (at 10.45 p.m.)

The errors for TMM-PC and DOS-PC respectively amount to %' and 5'. Cressner 
concluded, with regard to the ending of the eclipse:

'The Error therefore of Sir Isaac Newton's Theory is by this 
Ctoservation but half a Minute, or none; of Horrox's System, Nine 
Minutes and a half,'

For the time specified, a few minutes after eclipse exactitude, for vihich 
Cressner presented his conpitaion, Flamsteed's method erred by five 
arcminutes.
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I X  SoŒTfce O a n d i a s d - o n s

We can new resolve certain issues that have remained conjectural for 
almost three centuries.
1) Newton's 1702 lunar theory had an error of -0.5 ± 3.8 arcminutes in the 
1680s, taking mean motion values as corrected in 1705. Its mean error 
gradually increased with time.
2) This was almost twice as accurate as the lunar theory published by 
Britain's expert œi the Horrox theory, Flamsteed, two decades earlier.
3) Hailey's adjustment of the Horrocksian eccentricity function was the 
most important single improvement in Newton's construction of TMM, 
decreasing its mean error by nearly sixty percent.
4) IMM's four new equations were all sound, except that the sixth had its 
sign the wrong way round, and their coefficients were close to optimal, in 
giving agreement of the method of computation with observation.
5) Newton went as far as anyone then could have done in discerning such 
ancillary equations as were capable of irnproving the Horrocks theory.
6) With the sixth equation adjusted as specified by the 1713 Principa, 
IMM's standard deviation was no more than a mere 1.9 arcminutes (or, a 
confidence limit of ±3.8 arcminutes).
7) Ihe next chapter will ̂ cw that IMM's accuracy increased at syzygy 
positions, traditionally the most important.

Historically, Flamsteed's assessment of TMM's longitude accuracy in the 
years prior to 1713 was sound Wiile Hailey's was, over that period, 
mistaken. It was not remotely within the bounds claimed by Gregory or 
Hailey. Furthermore, Newton himself misjudged the matter, as evidenced by 
the several public statements of his on the subject discussed in Chapter 
One; we may also note an ascerbic recollection by Flamsteed, of a meeting 
at Greenwich on April 12th, 1704. At first he and Newton disagreed on 
optical matters (relations being less than cordial), after idiich:

'I showed him also ity new lunar numbers, fitted to his corrections; 
and hew much they erred: at Wiich he seemed surprised, and said "It 
could not be." But, vdien he found that the errors of the tables were in 
observations made in 1675, 1676, and 1677, he laid hold on the time, 
and confessed he had not looked so far back: vhereas, if his deductions
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frcm the laws of gravitation were just, they would apply equally in all 
times.' (Letter to Abraham Sharp, Baily p.217)

In fairness, however, Newton had avoided making any claims about 
gravitation in the context of IMM, thou^ David Gregory had averred that 
such a link existed in its Foreword. Ihis report therefore appears as an 
early expression of vdiat became a widespread viewpoint, albeit made with 
some scepticism. One can only regret the disappearance of the papers vhich 
Flamsteed shewed to Newton on this occasion.

À verification of the conputer-generated longitude positions of Table
10.1 was kindly performed by Dr David Harper, the astronomer and ccarputer 
expert of St Mary and Westfield College, London. He composed a IMM program 
according to the specifications of Ch.8, using different software, and 
obtained close agreements.
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E R J R O R — r>  A T T E R l S r  s

IE Erxroir— E n v e l o p e
To construct graphs using TMM, one needs to be able to run the program 

repetitively for given time-increments. The first step involves creating a 
table of sequential, TMM-PC-derived lunar longitudes. A 'macro' was written 
to accomplish this, vAich fonns a loop in the program moving the time-value 
on by a fixed increment after printing out the corresponding longitude 
value.

Using this procedure, the program was first set to subtract mean lunar 
motion from the finally-equated position, at daily intervals. This gave the 
ellipse function, the lunar equation of center, thereby 'true anomaly' can

Figure 11.1: Mean lunar longitude subtracted from TMM's 'true' values, for 365 days.
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inove nearly seven degrees away from the mean position. It oscillates to the 
anmalistic month period. Figure One shews this, samping over a year. Its 
envelope has an amplitude varying with the 'Horroxian year' cycle, twice 
per thirteen months.

To construct the error-envelope of IMM, a lunar longitude program 
accurate to seconds of arc in historical time was used, able to generate 
columns of positions at any specified time-interval. Ihose columns had to 
be imported into the Lotus program. Ihe program was set for the identical 
times as employed in the IMM-iteration procedure. Its columns of longitude 
data were then placed adjacent to those generated by IMM within the Lotus 
1-2-3 spreadsheet, vhereiçon the error values {IMM - modem) could be found 
by subtraction.

Figure 11.2a; Comparison of daily error-values of original 1702 version of TMM (thin line) with 
that obtained after reversing the sixth equation (dotted line).
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Figure 11.2a shews the graph of the two versions of IMM that were 
discussed in the previous chapter: the original of 1702, and that same 
program adjusted by reversing the sixth equation and sli^tly increasing 
its airplitude, as specified in 1713. A lunar-monthly rhythm is a{ç>arent, 
here peaking at the first lunar quarter, though this is not a permanent 
feature. A 50% decrease in mean error has appeared from reversing the sixth 
equation. Figure 11.2b shews the pattern continued somevhat longer, over 
ei^t lunar months.

ERROR PATTERN OF TMM
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Figure 11.2b: As before, but sampling over 240 days.

H  Errnrozr
What error-pattem is generated by sairpling periodically at apogee 

positions? TMM has several terms of the form (It-A) and (S-À), so one should 
expect rhythms to be discernible at these periodicities. The patterns 
generated are shewn in Figures 3a and 3b.
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We start by locating an apogee time as the zero position. Mean 

positions are used, as they are required to stay in position over a period 
of time. Steps of 27.66 days were added, proceeding throu^ a conplete apse 
revolution of nine years. A large-amplitude rhythm of about six arcminute 
amplitude appears, going through seven cycles per apse revolution, of 
period 460 days. Ihe astronomical motion generating such a cycle, TMM's 
strongest periodicity, is obscure.

TMM’S APOGEE ERROR
OVER A 9 - YEAR APSE CYCLE
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Figure 11.3a: Monthly TMM errors sampled at each mean lunar apogee, over a nine-year apse cycle.
Sampling instead at conjunctions of the mean Sun and mean apse, that is 

every 6% months or 206 days - another period strongly encoded into the TMM 
program - then the rhythm shewn in Figure 3b ap̂ êars. The graph shown 
presents a six-yearly rhythm. A three-point moving average has been put

Figure 11.3b; TMM errors on successive Sun/apse apse conjunctions every 6.5 months over a thirty- 
year period. A three-point moving average has been added.
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through the data to smooth it. The effect is weaker than the previous 
monthly-iteration cycle, shown by its smaller amplitude of merely three 
arcminutes.

If instead sampling is done at each Full Moon, a fairly random pattern 
emerges. The syzygy errors are smaller than usual, as shown in Figure 3c, 
being mostly within two or three minutes of arc: Hailey's claim made about 
the accuracy of TMM in his afterword to the third edition of Streete's 
Astronomia Carolina here af̂ jears as valid. And yet, the Full Moons do have 
an error-rhythm, albeit quite a weak one. Sampling was here done on 
alternate Full Moons, over a nine-year period, and a five-point moving 
average put throu^ the data. This time (with some relief) we are able to 
identify the error-rhythm, as that of the nine-year apse cycle.

TMM’S FULL MOON ERROR
SAMPLNG EVERY 59.06 DAYS_____________

MONTHS AFTER DEC 31,1680

Figure 11.3c; TMM errors on alternate Full Moons over nine years, plus five-point moving average.

TMM is primarily linked to the anomalistic cycle, via its functions 
involving (M-A), and contains little by way of synodic terms involving (M-
S), reflected in the differing amplitudes of these error-rhythms. The first 
has an amplitude of up to seven arcminutes, vhich is two or three times the 
claimed maximal error of the system. Furthermore, it is a coherent rhythm, 
in contrast with the other two vhich required smoothing with moving 
averages to discern them.
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XXX c3c3en. T e rm s  ̂  o f  XiongXlruica.e

In the previous chapter, it was (±served that the modem equations for 
lunar longitude had four terms in the 2-3 arcminutes range, not included in 
IMM, ie modem longitude terms within IMM's amplitude range, not evidently 
incorporated into it. Were these related to its error-pattem? To ascertain 
this, the follcwing sum was plotted over a three-month period:

3.4sin(2D-M*-M') +3.2sin(2D+M') +2.7sin(2D-M*) -1.8sin(M*-+M')
(For these symbols, as used in the RGO formulae, M* and M' represent 
anomaly values.) Ihe sum of these functions gave nothing resembling IMM's 
error pattem, either in the shape of their envelope or in amplitude. Ihey 
generate a function having a standard deviation of 4.0', far larger than 
IMM's error. Ihe terms all have different periods, and so align now and 
then, giving an amplitude of ip to ten arcminutes, \)Aile the IMM-2 function 
has only half such a maximal error. A puzzle thereby arises.

Ihe IMM equations contain amplitude-modulating functions. Ihose for 
equations two and five vary throu^ the course of a year, while that of the 
seventh varies throuÿi one apse cycle. As the modem equations do not have 
such, would the comparison be improved by their removal? To find out, IMM- 
PC? had its modulating functions removed. Ihis meant that, in the case of 
the second equation for example, in place of

6.25-0.31cos(H-SJ
merely 6.25 remained. Iheir removal did not increase the resemblance: the 
programme's standard deviation remained at ±1.8 arc minutes over a period 
of daily sampling.

Did that result mean that IMM's modulating functions served no useful 
purpose, that their author had merely imagined their efficacy? After all, 
the modem equations have nothing like them. Forty values were generated at 
160-day intervals as in the previous chapter, with these modulating terms 
removed, and compared with correct longitudes. Ihe mean error thereby 
generated was 0.4±2.1 arcminutes. Ihis is a larger value than IMM-PC2 gives 
otherwise. From this we conclude, that the three modulating functions 
within IMM's equations did serve a useful purpose.
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If we OQtnpare the modem and traditional longitude equations, the 

former apply the mean motions at every stage, without any 'steps of 
equation' concept whereby each stage took 'equated' values from the 
previous level. They use four variables in their terms: using our symbols, 
these are given by (M~A+180°) and (S-H+180“) as the anomalies, (M-S) as 
elongation and (M-N) as the Moon's distance from its node. Ihe terms add 
onto the mean lunar longitude L.

To ascertain how many of the modem terms give a comparable accuracy to 
IMM, the first dozen or so of them (see p. 134) was written onto the Lotus 
spreadsheet. We here recall that their anomaly terms differ by 180° from 
those used in IMM, see p.63. Ihese modem terms are quite standard, and 
used in lunar longitude computer programs. IMM's mean motion equations were 
used, with the four variables as above defined constructed from them. Ihe 
error-estimation procedure was used as in the previous chapter, with a 160- 
day period. Ihirty such times were taken, from the epoch date of December 
31, 1680, shewing a diminishing error as successive terms were added:

Ihe first twelve terms only gave a mean error of -0.44 ±2.1 arcminutes 
" thirteen " -0.48 ±1.60 "
" fourteen " -0.46 ±1.56 "

IMM-PC2 " -0.38 ±1.88 " (p.l37)

It is evident that IMM had an accuracy almost equivalent to the first 
thirteen of the modem equations.

I am not able to account for this phenomenon, beyond observing that 
TMM's construction was quite different from the modem set of functions and 
so there may be a limit to vhich we can compare them. In the previous 
chapter's list, the modem terms without any evident equivalence are 
numbers 8,9,10 and 13. It is accepted that the Horrox function incorporates 
equations 1 and 2 (elliptic function and evection), and presumably also 4.
I believe that IMM cannot be improved by adding on these equations as 
extras, thou^ admittedly, equations 8, 9, 10 and 13 have only been so 
checked altogether and not individually. Around the summer of 1695, vdien 
Flamsteed was puzzled that his letters were no longer being answered.
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Newton had discerned all of the ancillary equations that could have then 
been found, to the level of accuracy at Wiich he was working.

À major criticism of TMM by Flamsteed was that it lacked accuracy in 
latitude:

'The errors in latitude are frequently 2,3 or 4 minutes, vAiich is 
intolerable. They result not only frcm ray cwn observations, but from 
those of others at the same time. '

(Letter to Caswell, March 1703, Baily p.213)

TMM LATITUDE ERROR
DAILY NOON VALUES

O  20

U_20 L

DAYS'XFTER'bEC 3 ^ 6 8 0  
 LUNAR LATITUDE RHYTHM

Figure 11.4: Daily errors in TMM latitude formula, in arcseconds, with lunar latitude shown for 
comparison.

In Chapter Nine a latitude formula was given, derived from the TMM 
instructions. The graph (Figure 11.4) depicts the error of this function, 
for the opening months of 1681. The error here remains largely within an 
arcminute. To check this, forty latitude values were derived from TMM at 
160-day intervals, and subtracted from latitude values generated by the RGO 
program for those tiroes. These forty values gave a mean of:

latitude error = -2±36 arcseconds, 
indicating a confidence limit of within an arcminute. This appears as the
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sec»nd major issue viiere Flamsteed's judgement over TMM has turned out to 
be erroneous: he was as we have seen also mistaken in his dismissal of the 
new equations.

V s  V iew  o f  DOS

We may compare Flamsteed's comments içx3n supposed IMM latitude errors 
with those of his own latitude predictions, as he sent them to Newton in 
his letter of February 7th, 1695 (Table 11.1). Ihe last column gives 
latitude errors of his own DOS procedure, and their mean error amounts to 
1'.4 ± I'.O. It is odd that he should have regarded errors in someone 
else's theory of two to three arcminutes as 'intolerable' Wien his own were

Annus Men die Tempus Appar d h '
D A Rect D dist a P Longitud 

s ®
Latitude diff: aT Lengit

ab Flam Latit

1692 Maij 16 17 
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Table 11.1: 16 of Flamsteed's lunar positions, with dates in Old Style and 'Apparent time' 
measured from noon, i.e. from solar meridian transit; lunar right ascension to the nearest sixth 
of an arcminute, North polar distance (90’-dec.) converted to longitude (measured 0-30’, together 
with zodiac sign) and latitude marked A or B to distinguish north or south of the ecliptic; plus 
errors from using his DOS tables; as sent to Newton (February 1695, Corr. IV p. 85). A 
transcription error is present: for Dec 30, 1694 longitude should read 13’41' instead of 14’31'.
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of the much the same magnitude.

On September 1st 1694, Newton and David Gregory visited the Greenwich 
ODservatory. Gregory's diary recalled how they were shown 'about fifty 
positions of the Moon reduced to a synopsis... Flamsteed is about to show 
him another hundred, ' vAiile Flamsteed recalled that the data included 'the 
places of ye Moon derived to ye same times & the differences or errors in 3 
large sheets of paper in order to correct the Iheorys of her motions' 
('Memorandum by David Gregory', Corr. IV pp.7,8). Table 11.1 was presumably 
a part of that set of data. Sadly, it is all that survives of the lunar 
meridian readings vMch Flamsteed sent to Newton during their collaboration 
frcm September 1694 to June 1696.

The Table gives clock-time measurements ('Tempos Apparent') of meridian 
lunar transits, ie transit times for viien the lunar limb first reached the 
meridian position. An Equation of Time was first applied to give mean time, 
then using the notion of the sidereal day, the column of Right Ascension 
was obtained. 'Distance from Vertex' ie (90“-Declination) as measured was 
converted into 'Distance from Pole' using a value for the latitude of 
Greenwich taken as 51“ 29'.

The data was converted frcm topcx3entric into geocentric form by 
applying parallax (and refraction) corrections to the vertical 'Distance 
frcm Pole' reading. Then, using a value for the obliquity of the ecliptic 
(taken as 29“30'), he derived longitude and latitude. The table gives 
longitudes for lunar centre, recjuiring a further correction based on lunar 
distance.

Thus, the c3ata had to be considerably processed before it was usable to 
check a lunar theory. Newton once complained to Flamsteed, 'I want not your 
cxmputations but your observations only (June 29, 1685, Corr. IV p. 133).' 
There is no raw data in this Table. Flamsteed's observed data for a 
meridian transit would œnsist of: inacxurate clcxok times, up to half an 
hour out, a solar ncmn transit for estimating clock error, vertical mural 
arc angle, plus instrument correction(s) for that vertical reading. 
Flamsteed preferred not to reset his Tampion pendulum clocks each day.
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giving his actual clock times in the Historia Coelestis Volume II, 
sometimes with the corrected clock times adjacent.

Ihe longitude error column in the Table has a mean value of
3.1 ± 4.8 arcminutes, 

notably less than the value ascertained in the previous chapter for the DOS 
model, of ± 6.5 arcminutes. This leaves open the possibility that positions 
generating larger errors on. his theory had been removed. This column 
indicated how well his version of Horrocks's theory could work. The error 
column displays a large systematic error, as inherent in his mean motion. 
(The Table shews a contrast between the three early-morning cteervation, 
December 28-31, 1694, and the rest, but that is a mere coincidence, as the 
program has no diurnal component). These are the very error-values \rtiich 
Newton and David Gregory gazed upon in their September 1694 visit to the 
Greenwich CXDservatory.

Chapter Five showed that the DOS mean lunar motion was almost three 
arcminutes less in value that the 'true' mean. This we expressed using a 
negative sign. Flamsteed has here adopted a different sign convention, 
vdier̂ Dy the 'difference from Flamsteed's Tables' columns represent {actual 
longitude - theoreticcd longitude). For example, for June 15th, the 
longitude was given as 1° 40' in the sign Sagittarius, vAile our DOS-PC 
model gives 1° 32' of Sagittarius (ie, 241* measured from zero Aries). This 
deficiency of ei^t minutes is expressed as +8 arcminutes in Flamsteed's 
table. Therdiy the systematic error of plus three arcminutes in his 
longitude error column accords with the error in mean motion Wiich in 
Chapter Five we expressed as almost -3' for DOS in the 1690s.

From the clock tiroes as given, GMT was reconstructed using a modem 
program for the equation of time (Hu^es, Yallop & Hohenkerk, 1989). From 
those times, the actual longitudes were computed, shown in Table 11.2. Pour 
things are here coaoapared; Flamsteed's longitudes derived from c±servation 
F(dDs), his computed longitudes F(DOS), the modem HE estimate, and our 
reconstruction of DOS, PC(DOS), described in Chapter Ten.
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Hie first oolurms give the dates plus estimated GMT values, in hours, 

minutes and seœnds. Ihese are followed by two longitude columns, firstly 
as generated using the HE program, and secondly a reconstruction of 
Flamsteed's DOS longitudes (minutes and seconds only) for those times. Ihe 
latter was obtained from Table 11.1, subtracting his longitude error 
estimates from his ( ŝerved longitudes. Ihese two columns are derived from 
theories: one using three equations and the other, sixteen hundred.

Table 11.2: Analysis of the Flamsteed Longitude Data (Feb 1695). Columns show: dates, 'GMT' in 
hours, minutes and seconds reconstructed from Flamsteed's LAT column in Table 11.1, longitudes from 
ILE program and by Flamsteed from his tables, and difference columns showing: accuracy of 
observational data, historic estimate of theoretical errors, and reconstructed errors in the theory.

Date G.M.T. ILE Loner. F(DOÇ) AFfobs'l AFfDOŜ AfDOS-PĈ
1) May 16 1692 20/55/45 203°11'10” 10'02” O'.2 O'.9 1'.9
2) May 17 1692 21/48/46 218° 1'19” 59'32” -O'.4 2'.2 2'.3
3) May 19 1692 23/43/12 247°15'42” 13'40” -O'.l 2'.1 1'.2
4) Jun 13 1692 19/42/54 212°58'23” 56'22” -O'.l 2'.1 6'.6
5) Jun 15 1692 21/32/53 241°40'39” 31'47” O'.6 8'.3 8'.3
6) Jun 16 1692 22/31/01 255°44'49” 36'16” O'.7 7'.8 8'.0
7) Dec 29 1694 5/38/07 195°28'03” 30'49” 1'.7 -4'.5 -1'.3

1 8) Dec 31 1694 7/21/19 223°42'12” <̂ 5'18” O'.6 -3'.7 -3'.2
9) Jan 1 1695 8/19/34 238°31'35” 35'55” 1'.7 -6'.0 -3'.9
10) Jan 8 1695 15/08/27 346°36' 9” 38'02” -1'.9 -O'.l -1'.3

i
11) Jan 9 1695 15/56/28 0°50'21” 49'32” -1'.4 2'.2 O'.7
12)Jan 11 1695 17/30/22 27°48'15” 42'27” 7'.2 5'.3
13) Jan 12 1695 18/17/33 40°39'25” 32'60” -O'.6 8'.0 7'.1
14) Jan 13 1695 19/05/40 53°12'28” 4'02” -O'.l 8'.5 8'.4
15) Jan 14 1695 19/54/25 65°32'50” 24'22” O'.3 8'.2 8'.9
16) Jan 18 1695 23/08/29 114°23'29” 18'08” -1'.9

-0'.1±1.1
7'.3 

3'.1±4.8
5'.1

3'.4±4.2

AF(obs) = ILE - F(obs) Our reconstruction of data accuracy
AF(DOS) = F(obs) - F(DOS) Historic errors seen by Newton & Gregory
AF(D0S-PC)= ILE - PC(DOS) Modem reconstruction of theoretical errors.
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Hie AF(dDS.) column has the difference between ILE longitudes and 

those in the above Flamsteed table. Ihis gives the only estimate that 
exists of the accuracy of the raw data from Wiich Newton derived his 
theory, a standard deviation of one arominute. We may consider to vdiat 
extent this was good enou^, as IMM's third equation had an amplitude of 
less than an arcminute. Curiously, there was virtually no systematic error 
in the longitudes derived from (±servation (8 arcseconds). Ihe above Table 
is regrettibly our sole record of Flamsteed performing such computations, 
putting his data into a form needed by a theoretician, and as such is of 
especial interest.

Ihe next column AF(theor. ) merely repeats that given in the previous 
table, having as was found an unduly lew error values of 3'±4'.8. We may 
say that the longitude data was some five times more accurate than 
predictions from the best theory available, clearly leaving scope for 
improvement.

Next, a PC(DOS) longitude value was chtained for each of these dates. 
Noon times were used for simplicity, as the error-pattem of such a lunar 
theory does not vary greatly with time of day. Ihe last column shews the 
errors it generated, as {PC(DOS) - ILE} values, these being sli^tly 
smaller than those ascertained by Flamsteed from his computations.
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used, the present writer lacking any expertise in computing. Mr Jonathan 
Loretto set ip the Lotus 1-2-3 program, and wrote the seven kilobytes of 
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diagrams suitable for the Lotus commands. Ihe 'macro' used for plotting the 
graphs giving sequential values of IMM at specified time-intervals, was 
written by Vemcn White. A modem program giving longitude positicxis 
correct to arcseconds was supplied by Bernard Yallop of the Rpyal Greenwich 
CXDservatory. Ihe means of importing the astronomy program data into the 
Lotus 1-2-3 program, such that the two columns were created for identical 
time-series and so were comparable, was accomplished by Guy Atkinson.
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oiTL - 1 2  T M M  X N  T H E

The seven steps of TMM became embodied in the Second Edition of 
Newton's Principia, in the Scholium to Proposition 35 of Book III. This 
Scholium ajpear̂  midway throuÿi the lunar arguments of Book III, following 
a summary of lunar inequalities in Proposition 22, and three sections 
deriving the Variation from gravity theory (Propositions 26, 28 and 29), 
and before the treatment of the Moon's influence upon the tides. Ihe aim of 
its text was subtly altered, such that the prediction of longitude was no 
longer its primary goal.

The Scholium began with the affirmation:
'By these corrpitations of the lunar motions I was desirous of shewing 
that by the theory of gravity the motions of the moon could be 
calculated frcm their physical causes.'

The word 'theory' has here a different meaning from that used by Gregory in 
his title of 1702, Theory of the Moon's Motion, Whereas the text of 1702 
had been prefaced by Gregory's claim that 'Physical Causes' had been 
reached at last, here that claim was made by its Author.

However, the Scholium apparently retained TMM's function of finding the 
longitude. The 1713 text served two different but hopefully concurrent 
purposes. After describing the seven steps, it averred:

'Sic habebitur locus verus Lunae in Orbe, & per reductionera loci hujus 
ad Bclipticam habebitur Longitudino Lunae. '

('Thus you have the true place of the Moon in her orbit, and by reduction 
to its place in the ecliptic will be found its longitude.') There was no 
menticMi of latitude, and indeed the paragraph making this affirmation 
vanished from the Third Edition.

The 1713 Scholium emitted vÆiat had previously been all-important, 
namely the numbered steps of equation. It lacked instructions for the 
sequence in vhich the various 'equations' were to be performed on the five 
zodiacal variables; althou^ it did present the seven steps of equation in 
a sequence, almost identical with that of 1702. The Variation, treated 
earlier, was briefly recapitulated in the Scholium. The second node
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equation of 1MM was omitted. Was it the case that the 1713 text could only 
be 'worked', ie made to give longitude values, by presupposing the IMM 
operation sequence?

If IMM resembled a watch, then vhat aĝ aeared in 1713 was more an account 
of its gears, with a new gear added, rather than their assembly. 
Conceptually, the Variation is independent of eccentricity, being a 
deformation suffered by a circular orbit from the Sun's pull, and as such 
was presented in the Principia as a successful application of the three- 
body problem to 'explain' the inequality discovered by Tycho Brahe. It was 
therefore treated prior to the other IMM stages. A summary of vhere IMM's 
seven steps reappeared in the final Third Edition of 1726 may help:

1726 1702 Equivalents
29 Eqn.5 (the Variation)
35, Scholium Para 1 Etyi.l (lunar annual egi. )

Para 2 Eqn.l (other annual ecyis.)
Para 3 Eqn.2
Para 4 Ecyi.3
Para 5 Eqn.4 (Eqn. of Centre)
Para 6 Eqn.4 (Eqn. Centre epicycle)
Para 7 Eqn.6

There remain seven stages! All but the last of the above seven 
paragraphs in the Scholium began with a phrase like 'By the same theory of 
gravity... ' or 'because of the Sun's force... ' The kinematics of TMM was 
transformed into a new dynamics, with the cause of the equaticxis given, in 
terms of forces. We can to some extent retrace the steps of the new 
approach.

X  Qz>i~irtiT~i IrjLxtzj-QTi.
The Scholium into vhich TMM metamorphosed in FNPM in 1713 comprised ten 

paragraphs. It had been changed considerably as a result of conments from 
Roger Cotes, astronomy professor at Trinity College, Cambridge, who 
assisted Newton in preparing his Second Edition. The correspondence of
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Newbon and Cotes was published by Jdm Bdleston in 1850, Edleston 
contributing some evaluations of Newton's modifications to the theory Wiich 
remain of interest.

A 'New Scholium to Prop. XXXV' (reprinted in Oorr. V jp. 291-5) was 
sent to Cotes, probably in the first week in July 1712 in the view of 
Edleston (1850, p. 109). It comprised twelve paragraphs, of vÆiich the first 
seven opened with the repetitive phrases we have noted, 'by the theory of 
gravity', etc. Ihese presented the first four steps of equation of IMM, and 
added two extra epicycles to the fourth: one was a yearly-period epicycle, 
to be discussed below, vMle the other was a nine-yearly one (in its 
seventh paragraph), varying the rate of motion of the apse line in relation 
to the Earth's aphelion. It omitted any discussion of the last three IMM 
equations.

There is an undated manuscript entitled Theoria lima, published in the 
Correspondence (IV pp. 1-5) probably belonging to this same period (see 
Chapter 9, section VIII). It discussed only the first three steps of 
equation of TMM, and also a nine-year inequality to the apse motion. Its 
logic is comparable to that of the 'New Scholium,' partly because both 
shewed Newton contemplating a long-period epicycle.

Newton and Cotes discussed the yearly epicycle \Khich was being added 
onto the Horrox-^eel. A letter of 20th July 1712 found Cotes apprehensive 
as to vhen the new emendations to the lunar theory would arrive. Finally, a 
'revised draft' arrived, undated, inserted into the Correspondence's mid- 
August 1712 period (V, jp. 328-9). This draft curtailed the fifth paragraph, 
re-cast the sixth, and added a new seventh, containing the sixth equation. 
Ihe seventh paragraph now began, 'Computatio motus hujus difficilis 
est...', ('Computation of this motion is difficult..') instead of referring 
to the theory of gravity.

Sometime after that, an ei<ÿ±h paragraph must have been sent, starting 
'Si computatio accurator desideratur... '. It alluded to the Variation, 
which maximised in the octants, and then proposed an adjusted seventh 
equation, vhioh it called the 'Variationem Secundum', vhioh maximised at
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the quadrants. We m y  conjecture that Newton found it harder to justify his 
sixth and seventh equations by reference to his gravity theory, vdiich is 
vÆiy they were missing from the original 'New Scholium' draft. Ihereby the 
Variation became the sixth equation, preceded by what had been IMM's sixth 
equation, new the fifth. We summarise this as follows:

Ihe 1713 sequence 
3rd para 
4th para 
5th & 6th paras 
7th para 
8th para 
8th para

The Principia names 
Aequatio seraestris 
Aequatio semestris secunda 
Aequatio centri 
Aequatio centri secunda 
Variatione Prim 
Variationem Secundam

the TMM steps 
2nd sin2(A-S) 

sin2(N-S)3rd
4th
6th
5th
7th

sin(S-M+H-A)
sin2(SHM)
sin(S-M)

X I An Xitî arx>\/-<exnen*t. on XMMT?

From Edmond Hailey onwards, commentators have inclined to the view 
that the theme of TMM was more fully developed in PNFM of 1713. In 1732 
Hailey as the Astronomer Royal wrote:

'.. the great Sir Isaac Newton had formed his curious Theory of the 
Moon, a first Sketch of vhich was inserted by Dr David Gregory in his 
Astronomia Physicae & Geometria Eleaenta, publi^ed at Oxford 1702; 
and again, in the second Edition of Sir Isaac's Principia, vhich came 
out in 1713, we have the same revised and amended by himself... ' 
(P.T., 37, p.190-1)

In 1977 Craig Waff wrote:
'... a revised and much expanded version of the 'Theory of the Moon' 
was published as the new Scholium to Proposition XXXV... I might 
further point out (from ny own study in progress of the lunar tables 
based on Newton's 'Theory of the Moon') that many table-makers in the 
early ei^teenth century considered the Principia version to be more 
iç)-to-date (as indeed it was) than the version vhich Cohen reprints, 
and consequently used it as a basic foundation for some of the lunar 
tables vhich they constructed. ' (p. 71)
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Waff was criticising Bernard 0±ien for siçjposedly not having appreciated 
that the Scholium of 1713 was a 'revised and much expanded' version of the 
1702 opus.

On the other hand, William Whewell was a science historian vAio 
appreciated the practical significance of TMM, and he affirmed that 'These 
calculations were for a long period the basis of new Tables of the moon, ' 
referring to TMM (1857, I, p.162). His review of these matters did not 
suggest that the 1713 Principia was an improvement, or that it was ever 
utilised as such by astronomers.

Table 12.1 shews the constants of TMM as modified in 1713. The lunar 
Equation of Centre maximal values were omitted from the Principia's 
Scholium. These would have had to be generated using the Kepler equation 
from the eccentricities, no simple task. Thereby the Principia text 
provided less of a practical guide to finding longitude than did TMM.

We may note that TMM introduced a tropical reference into the Second 
Edition of PNFM, vhereas the First of 1687 was primarily sidereal. PNEM's 
quest for 'physical causes' was within sidereal space, this being the 
inertial reference framework - the immdoile sensorium of the Deity, in 
Newton's language. TMM in contrast functioned within the tropical framework 
ie the zodiac, as being vihat astronomers used. Thus, the yearly motion of 
the nodes is given as 19 *20'31” sidereally in the Scholium to proposition 
33 (Motte, p.467) vhile also a tropical-year period is cited for 
cŒoparison.

□CXI Ark E caytat^on  o X  Ec^cseriiiarj-csj-tzy

When Flamsteed originally es^lained the Hbrrox model to Newton in a 
letter of October 11th 1694, he added: 'To make the aequations bigger in 
winter yn Summer it will be requisite to make the diameter of this 
libratory Circle bigger in Winter yn Summer' (Corr. IV p. 27). There was a 
hint that this modulation was Hailey's idea, as being mooted between the 
three of them.
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Table 12.1: The Constants of TMM. from 1702 to 1725 
These constants represent the maximum values of 'equationŝ  ie the peak values found 
in tables. When these values vary, eg seasonally, maximum and minimum values are given.

Annual Eqns.: Moon 
Sun 
^xogee 
Node

TMM 
11'49" 

l“56'20" 
20'

-9'30"

FNFM 1713 
11'52" 

l“56'26" 
19'52" 
-9'27"

PNFM 1725 
11'51' 
same 
19'43" 
-9'24"

Eqn. 2 3'56"/3'34" same same

Eqn. 3 47" 4911/4511 same

Lunar Eqn. Centre 7*39'30"/4°57'56"

Eqn. of ̂ xogee 12”15'04" 12 18' same

Ecĉ  in 10* 66782/43319 66777/43323 same

Horrox-wheel size 
in 10*

2nd Epicycle
55050 ± 11732 55050 ± 11727 same

± 352 same

Eqn. 5 Variation 

Eqn. 6 

Eqn. 7

37'25"/33'40" 

2'10"

2'20"

37'11"/33'14" same

-2'25"

1 - 2'

same

omitted

Mean Motions 
Aphelion in 100 yrs 
Moon 1700 epoch 
^XDgee 1700 epoch 
Sun 1700 epoch

21'40" 
315”19'50" 
338”18'20" 
290”43'50"

18'36" 
315“20'00" 
338”20'00" 
290“43'40"

15 21'00" 
same 
same
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In his letter of November 1st, 1694 (Corr. IV, p.42), Newton agreed: 
'The excentricity & equation of ye Moons Orbit is sensibly greater in 
winter then (sic) in summer & seems to be sametimes as great as Mr 
Hailey makes it, but ye law of its increase I am not yet master of, 
nor can be till I have seen ye course of the Moon as well when her 
apogee is in ye summer signes as in ye winter ones' 

implying that several years of continuous data would be required to 
ascertain Hailey's equation. That inequality was omitted from IMM, however 
it appeared in PNTM of 1713, as its chief innovation (For a discussion of 
Hailey' theory here, vMch must remain conjectural as he published nothing 
on the matter, see Correspondence V, pp.296-8, note 3).

À new epicycle was added to the IMM mechanism, of yearly period, Wiich, 
placed on the Hbrrox-^eel, generated a twice-equated eccentricity and apse 
motion. Cotes drew a helpful diagram, here shown (Figure 12.1), together 
with the Principia's diagram for comparison. The centre of the lunar orbit 
is now positioned at F instead of D as formerly.

This yearly expansion and contraction should not be confused with a 
supposed overall expansion and contraction of the lunar orbit throo^ the 
seasons, vdiereby Newton was perceived as successfully having linked the 
'annual equation' to a 'physical cause' ie gravity. Rather, it is a 
perturbation of the orbit that increases in the winter season, at 
Principia figure fp.4241 Cotes' version fCbrr.V 0.285)

B

Figure 12.1: The New Epicycle of 1713. The first diagram is from the Principia, where 'F' represents 
the twice-equated position of the lunar orbit centre; the other is Professor Cotes' version, showing 
more clearly TF as the equated eccentricity value.
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perihelion, with greater eccentricity and oscillation of the apse, from the 
Horrox-wheel's dilation.

In the diagram, TC represent the mean eccentricity. ID the eccentricity 
once equated and TE that twice equated. Ihe apse equation new becomes FTC, 
instead of DIC. Ihe wheels have magnitudes specified by: TO5505, CD=1172.7 
and DF=35.2. Ihese dimensions signify that the lunar eccentricity 
fluctuates by ±21% semiannually, Wiile this fluctuation itself varies 
seasonally by ±3%. Tiro paragraphs, the sixth and seventh, of PNFM esq)lain 
this new epicycle, its period being given as follows:

'.. .and set off the angle BDF equal to the excess of the aforesaid 
annual argument above the distance of the moon's apogee from the sun's 
perigee forwards; or, Wiich comes to the same thing, take the angle 
CDF equal to the complement of the sun's true anomaly to 360*. '

Ihese tvro sets of instructicxi are equivalent. Ihe first we may phrase
as:

EOF = (S-A) - (A-H+180)
=180+S+H-2A

(S-A) is the 'annual argument', viz. the 'Horrox angle', while (A-H+180) 
gives the 'distance' in zodiac longitude 'of the moon's apogee from the 
sun's perigee.' 180* is added, as the IMM symbols A and H are measured from 
apogee and aphelion respectively. Ihe second is given by:

CDF = [360-(Ŝ -H)] - (.1)
vhere Ŝ  is the 'first-equated' solar longitude. However, we know the angle 
EDC, since DCB = 2(S-A),
so EDC = DCT = 180-2(S-A),
and EDF=[360-(Ŝ -H)] - [180-2(S-A)]

= 2(S-A) - (Ŝ -H) + 180 - (2)
=180+S+H-2A,

as above.

Ihe Principia^s two accounts are identical only if we ignore the 
difference between Ŝ  and S. PNFM was not primarily concerned with the 
steps of equation. Its phrase 'true anomaly' was written as (Ŝ -H) in
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equation 2 above. In IMM the difference between true and inean anomaly was 
crucial, here it is not.

This new epicycle responded to the varying distance of the Earth from 
the Sun, given in the sixth paragraph; no commentators have remarked L^n 
its function. It amends the equation of centre, so should use a once- 
equated solar longitude.

Cotes was puzzled by this epicycle, and wrote (17 August, 1712, Oorr. V 
p.325):

'It is evident that in the Earth's ̂ iielium DF will coincide with 
DG, & in ye Earth's Perihelium DF will coincide with EH, so revolving 
about the centre D, that the angle GDF may always be equal to the Suns 
mean Anomaly. Hence the angle EOF... will be equal to the excess of ye 
doubled Annual Argument above the Suns mean anomaly as I observ'd in 
ity last. This is the only way according to vAich I can apprehend the 
motion of the point F in ye Secondary Epicycle. '

Cotes' phrase 'the excess of ye doubled annual argument above the Suns mean 
anomaly' is equivalent to equation (2) above - provided we overlook the 
difference between the sines of mean and true anomaly. At perihelion in 
midwinter, the Horrox-vheel is required to dilate and be larger than in 
summer, vhen F is furthest from C and reaches the point H as Cotes 
observed: in equation (1), CDF is then 180°.

In the original text of twelve paragraphs another epicycle was added of 
period nine years, to give eccentricity equated a third time and an apse 
equated a fourth time. This was subsequently omitted, so we have something 
to thank Cotes for.

X V  O o T i s - t n r u c i r t i i  r& g  t i n e  N e w  E p X c z y c X e
The editor of the Correspondence commented as follows upon the new 

epicycle:
'Thou^ Newton's description does not make this clear, the point F is 
now the empty focus (later centre) of the Muon's ellipse; it rotates 
semiannually about the point D.'(Cbrr.V p. 298 note 3)



-182-

Fiaure 12.2: Orbit Centres for THH-1713

There are two errors here: the point F cannot be a focus of the ellipse, 
because the Earth's centre at T is such, and eccentricity was the distance 
between Earth's centre and the orbit centre; nor was the rotation period 
semiannual, but was seasonal, conferring a yearly expansion and contraction

upon the Horrox- 
wheel. To avoid such 
confusion, a further 
diagram is here 
presented, in vdiich 

represents apogee 
and the sun's 
position, both once- 
equated, and the 
three lunar orbit 
centres, zero,once 
and twice equated, 
are shown as C, 
and C..

A.

Figure 12.3: Reconstructing the 1713 epicycle, in which 
a  = CTD, B = CTF, 2(p = DCB and a = EDF

The seventh paragraph of the Scholium described how to prepare tables 
that WDuld give the angle FID, to add onto the second apse equation. We 
shall not proceed in this manner, but will instead determine the horizontal 
(ie parallel to TC) and vertical co-ordinates of F with respect to T, 
(Figure 12.3). Putting TC equal to unity, CD becomes 0.2130 and DF 0.00639.
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If y = ŷ +Yj and x = 1 + x̂ +x̂
then y = CDsin# + DFsin <\
vdiere a = EDF = 180+S+H-2A (equation (2) above) and § is the îforrox angle; 
and X = 1 + CDoos# + DFoos<\.

The eccentricity twice equated is given by
TF = 0.05505/(x̂  + ŷ ) 

vMle two steps of equation for the apse line are conjointly given by
B = arctan y/x 

For the IMM program, we write this as
A, = A, - 6,

replacing the S function, the angle ŒD, by 6 which is CTF; likewise the 
new term for TF siiiply replaces that for ID. Ihe point D in Figure 1 was 
represented by F in IMM's diagram, so the point F has acquired a different
position, though it retains the same meaning, viz the centre of the lunar
orbit.

Ihe eccentricity function has now its own steps of equation, as 
follows:

= 0.055050 = TC
Ê  = E,(l + 0.2131sin2#) = ID
E, = E^(x^ + yj = tf

V  S±j>ctln
Ihe seventh paragraph of the Scholium contains the sixth equation, its 

sign now reversed: 'addendam si surama ilia fit minor semicirculo, 
subducendam si major' ('add if their sum comes to a minor semicircle (ie, 
<180°), subtract if it is more') the converse of the 1702 instructions. Ihe 
great error of IMM was at last corrected.

On October 31st, 1713, three months after the publication of PNFM's 
Second Edition, Flamsteed complained to Sharp:

'...(Newton's) sixth equation is not allowed by the heavens. He has 
lately publi^ed his Principa anew, vherein he makes this equation 
ablative vhere it was formerly to be added, and to be added where it
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was subductive; and has altered his seventh, so as in part to destroy 
it' (Daily p. 304).

Flamsteed here erred, as the sixth equation is indeed 'allowed by the 
heavens' once its sign is reversed, as we saw earlier. He returned to this 
theme in another letter to Sharp of March 20th, 1714, averring that 'if I 
reject them both (ie, the sixth and seventh equations), the numbers will 
agree something better with the heavens than if I retain them' (Daily 
p. 309).

Daily endorsed Flamsteed's general view as to hew modified sixth and 
seventh equations appeared in PNFM of 1713 (1835, p.697), as did Whiteside 
(1975,pp.323-4) and Cohen (1975, p.61-2). In 1989 however GHA stated 
categorically that: 'no mention is made of them (ie, the sixth and seventh 
equations) in any edition of the Principia' (p.267). We cannot endorse the 
GHA view. The sixth equation is clearly specified as having its argument 
(ie, angle) formed:

'by adding the distance of the moon from the sun to the distance of 
the moon's apogee from the ̂ XDgee of the sun,' (Motte p.477) 

vhich is the same (S-M+H-A) function about iihich Whiston had complained in 
1703. Its amplitude has increased slî itly, by 12% to 2'25", yet it remains 
unequivocally the same function.

Admittedly it was not referred to as the sixth equation, but as the 
'Aequationum centri Secundam', and described cryptically as : 'the angle 
vhioh the line DF contains with the line drawn from the point F to the 
moon... ' Newton remarked, in a letter to Cotes of 12 August 1712 
{Correspondence, V, p. 320) that:

'Ihe Equation described in this Paragraph I had first from 
observations of Lunar Eclipses, & afterwards found that it answered 
the Theory of gravity in the manner here described. Its quantity vhen 
greatest came to about 2'10" by eclipses. Dy ye theory tis 2'25".

The suggestion here (vhether or not Cotes believed it) is that the 1702 
amplitude was derived enpirically, vhereas the new amplitude was computed 
from theory. Lunar eclipses would have given accurate times at vhioh the 
(L-S) component was 180*, presumably enabling the apse terms to be 
investigated.
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cohen published two statements iç»n this matter, before and after Dr 
Waff's comments, the latter appearing in a book review of Cohen's 1975 
publication of IMM. In this 1975 opus, Cohen averred, concerning the 
modification of the sixth equation:

'But after 1713, Wien Newton had published the above-mentioned 
correction in ed. 2 of the Principia, there was no longer any excuse 
for continuing to reprint Newton's essay without alteration, as was 
done in both English editions of Gregory's textbook (and the second 
Latin edition), and the two English editions of Whiston's Astronomical 
Lectures, even thou^ all declare in their second editions that the 
text has been 'corrected'. Nor was the correction introduced into the 
later reprintings of the Miscellanea Cariosa or of Harris's Lexicon 
Technicam; and it is not even mentioned as an annotation in Horsley's 
version in his edition of Newton's Opera,' (p.62)

Ihus, astronomers were castigated by a historian for not having introduced 
a 'correction'. We concur with the inçortance of reversing the sign of the 
sixth equation, without Wiich the function of IMM is greatly impaired, and 
shall in the next chapter survey these ei^teenth-century publications in 
this context.

In 1980, Cohen merely made the cautious statement that:
'Ihese results [ie, IMM of 1702] were then corrected and revised and 
in large measure introduced into the second edition of the Principia 
(1713)...' (p.276) 

with Wiich one can hardly disagree.

Ihe ei^th paragraph of the 1713 Scholium contains a restatement of 
the seventh equation, as the 'Variationem Secundam.' Ihe Variation is a 
sin2(L-S) function, Wiile the seventh equation has the form sin(L-S).
Ihe 1713 text is:

'Ut radius ad sinum versum distantiae Apogaei Lunae a Perigaeo Solis 
in consequentia, ita angulus quidam P ad quartum proportionalem. Et ut 
radius ad sinum distantiae Lunae a Sole, ita surama hujus quarti 
proportionalis & anguli cujusdam alterius Q ad Variationem Secundam, 
subducendam si Lunae lumen augetur, addendam si diminuitur' (p. 425).
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where P and Q were assigned magnitudes of 2' and 1' respectively*.

While PNFM's language describing the seventh equation is obscure, 
Edleston interpreted its meaning as:

-[2'{l-cos(A-H+180))+l']sin(M-S)
Three sets of brackets within brackets may strain credulity, however 
Whiteside in 1975 (p. 325) gave a comparable formula for the seventh 
equation. Its coefficient (ie, of sin(M-S)) he found to be:

l'+2'{l-oos(A-H)}
There is a 180* shift in the cosine function between the two, equivalent to 
a reversal of sign. CXir IMM function was, approximately:

+ [2' + l'cos(H-A)]sin(S-M).
We adjust the two modem interpretations for comparison:
Edleston: [1' + 2'{1 + cos(H-A))]sin(S-M)
Whiteside: -[1' + 2'{1 - oos(H-A)}]sin(S-M)
IMM 1702 [2' + l'oos(H-A)]sin(S-M)
From Bdleston's formula, sin(M-S) has been changed to -sin(S-M), and
-cos(A-H+180) to +oos(H-A).

EdlestCTi's version of the function had the same signs as TMM's 1702 
expression. We adopt his version of the TMM seventh equation in the 
Principia, this being the sole instance vAiere we accept an equation on the 
authority of another. We thereby differ from Cohen's statement concerning 
the 1713 version that:

'this equation (the seventh) is, to all intents and purposes, no 
longer a part of Newton's system' (1975, p.62).

However, the language is obscure, and as we have already noted that some 
astronomers dropped the seventh equaticxi, let us not Wholly dismiss Odien's

* 'As the radius is to the versed sine of the distance in consequentia of 
the apogee of the Moon from the perigee of the Sun, so is the angle P to a 
fourth proportional. And as the radius is to the sine of the distance of 
the Moon from the Sun, so is the sum of this fourth proportional and of a 
certain angle Q to the second variation, to be subtracted if the li^t of 
the Moon is waxing, and to be added if it is waning.'
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view. The paragraph containing the seventh equation disappeared from the 
Third Edition.

The seven steps finally reappeared in 1713, with amplitudes slightly 
adjusted, with the sixth and seventh reversed in sequence, with latitude 
omitted and omitting the second nodal equation. The last two steps were 
truncated from the Third Edition without eiplanation, in a paragraph vhich 
contained the statement, surely rather vital, that lunar longitude and 
latitude were discernible by these equations. Three components of TMM were 
thus omitted in the 1713 Scholium: the magnitude of the lunar equation of 
centre, the second nodal equation, vhioh had its own epicycle, as would 
have affected the 'reduction,' and any latitude procedure. An extra 
epicycle was added to the Horrox-vheel, supposedly required by gravity 
theory.

While absent from the Scholium, a qualitative reference to the node 
equation was present in the earlier Proposition 22:

'But the nodes, on the contrary (by Cor. XI, Prop.LXVI, Book I), are 
quiescent in their syzygies, and go fastest back in their 
quadratures.'

That represents the TMM node equation, with syzygy meeting the nodal axis 
twice-yearly. Thus the syntax of TMM suffered a dismemberment, serving to 
support the theory of gravitation.

V X X  TzTLzncatjea VearsJLcan
The Third Edition of PNTM contained no explicit affirmation that the 

Scholium to Proposition 35 of Book III was of practical value. The 
pjaragraph containing such, the ei^th as we saw in the 1713 edition, was 
omitted, along with TMM's fifth and seventh equations. We refrain from 
conjecture as to vhy that concluding pjaragraph was deleted. One would not 
expect astronomers vho used TMM to have taken their directions from the 
Third Edition.

The Third Edition, the only edition to have been translated into 
English, concluded its account of the TMM equaticxTS with the cryptic words:
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'Ànd from the moon's place in its orbit thus corrected, its longitude 
may be found in the syzygies of the luminaries.'

This was followed by some considerations of refraction and mean motion. The 
literal meaning of the sentence is that longitude may be found at 
fortnî itly intervals. The opacity of its meaning may have encouraged a 
tendency amongst posterity not to see a working mechanism, viz. TMM, buried 
under its gravity theory. It can however be understood by reference to the 
earlier 1713 edition, as follows.

The above statement concerning syzygies meant, in the Second Edition, 
that the theory thus far (ie iç) to the sixth equation) was acccurate in 
those positions only, Wiereas, once the last two 'variation' equations were 
added, as was done in the following paragraph, it would become accurate 
over the vhole month. Its omission thus damaged the meaning as originally 
intended.

V X X X  NTo B a a r j - c s e n t z r e  C 3 c a n r e c t ± c a n
If linkage with gravity theory was the goal, an equation could have 

been derived from the Earth's monthly path around the Earth-̂ foon centre of 
gravity. Such a di^lacement would affect the Sun's longitude by something 
resembling the solar parallax each month. Newtcxi had written to Flamsteed 
in November of 1694 e5ç>laining how motion around a common Earth-Moon centre 
of gravity would lead to a monthly solar equation, maximum in the quarters: 

'The quantity of this angle I do not yet know certainly. Tis not so 
great as I thou^t vben I was in Lmdon. If you assume it to be 16" or 
20" & find that by such an assumption ye greatest errors of ye suns 
place are diminished you may retain yt quantity, till it shall be 
determined more exactly.' (Corr, IV p.43)

Flamsteed missed the point of the argument, replying that:
'The parallactic equation of ye Sun is so small it will scarce be 
sensible by observation a single vibration of ye pendulum is equall to 
it...' (November 3rd, 1694, Oorr. IV p.46)

- confounding diurnal motion with that around the zodiac: the 20" proposed 
by Newton, as motion in the Sun's longitude, takes ei^ït minutes in time.
It was far from Newton's view that such a magnitude could be ignored, but 
for vbatever reason no such solar equation appeared in any version of TMM.
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Hcwever, IMM in its concluding remarks did specify the value of the 'Sun's 
Horizontal Parallax' as 10", but made no use of it. Later in the century, 
D'Alembert argued that this baricentre equation would affect the Sun's 
position by 11"-13" (1754, p.xvii).

Ihe equation is smaller, some 8" (Corr. IV p.44, note 11). Newton had 
initially overestimated the lunar relative mass by two hundred percent in 
PNFM of 1687 (Kollerstrom, 1991). In 1713 a baricentre computation appeared 
in PNFM with the lunar mass error reduced to an excess of merely 100% 
(Wilson 1980 p. 60, Kollerstrom, 1985). Inclusion of such a term would have 
introduced an error as large as the equaticai, so its omission was just as 
well. D'Alembert greatly improved i:pon this mass ratio value.

I X  A c a d L n g r  t i n e  E p i c y c l e
A century after Kepler had banished epicycles from the heavens with a 

new, physical astronomy, the second edition of the Priucipia employed two. 
We reconstruct them on the Lotus 1-2-3 spreadsheet, translating their 
revolutions into simple trigonometric terms. Regrettably, no improvement in 
accuracy thereby results. We use the interpretaticxi given ty Roger Cotes, 
as a check that our construction is sound.

What has here been called IMM-2 had but one modification, namely the 
sign-reversal of its sixth equation. Here we create two further steps of 
the 1713 version: the adding of an epicycle, designated as IMM-2E; and the 
insertion of the various adjusted constants given in Table 1, plus 
Edleston's version of the seventh equation*. Ihis final step was found to 
increase the accuracy of the end result by 1-2%, however this is a 
negligible amount. Astrœomers of the ei^teenth century would have noticed 
no improvement from so doing.

* Four Lotus spreadsheets were thereby used. Ihe values they gave for lunar 
longitude at t=0, ie the IMM epoda of nocxi GMT on December 31st 1680 Old 
Style, are: IMM 187:933, IMM-2 187:993, IMM-2E 187:979, IMM-1713 187:979
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The working of the two combined epicycles in "IMM-2E' was checked 
using the positions of the 1679 perihelion (midwinter) for vdiich t^l3.3 
days and the next aphelion at t=169.2 days. These positions, for H-S=180° 
and 0° respectively, give simple triangles (see below. Figure 12.3) vhereby 
the equations of apse and eccentricity can be found: to four figures (ie, 
as parts in 10®), the lengths of OĈ  are 1208 and 1138 respectively, ie 
1173135 units (of eccentricity, with repect to its mean value CT of 5505).

Cotes, in his comments to Newton içon the new epicycle, wrote more 
than once: 'As I apprehend it, the words additur and sabducitur should 
change places' (Corr.p.285, Cotes to Newton, 3 May 1712). If even the 
Author ejperienced confusion on this matter, we should not expect to avoid 
this ourselves. We start with the relevant celestial longitudes, measuring 
angles anticlockwise as for the TMM diagrams.

Figure 12.4; Aphelion/Perihelion Positions for the epicycle, showing greatest and least radius of 
the 1713 Horrox-wheel, with the varying values for eccentricity and apse equation, at the 
perihelion (1679) and aphelion (1680) positions.

Perihelion:
(S-A)=34'

T

Aphelion:
(S-A)=194'

s,

A

From simple trigonometry, at these dates of 1679 and 1680:
Horrox-anale giA Eccy. TC . (parts in 10®) Apse eqn.. ATC 

Perihelion: 34° 6045 10.7°
aphelion: 194° 6531 4.7°
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Tîie functions f and g in the Lotus program were readjusted, using the above 
construction, to give the and values. Ihe IMM-2E program took A-S as
the Horrox-angle by convention, vhereas we have here taken it as S-A, 
making its apse equations negative. Apart frcrni this sign convention, it 
agreed with the above values. Ihus, our function is working as Cotes 
specified it should.

Ihe graph shewn in Figure 12.5 conpares error patterns of IMM-2 and 
IMM-2E, sampling daily over a four month period. It indicates that the 
latter was less precise. (As before, the program subtracts lunar longitude 
as given by an accurate modem program in arcminutes from that given by our 
reconstruction of a historical model ). Both versions manifest a synodic 
error-pattem: adjusting the duration to give four repetitions of the 
pattern as shewn, spanned 118 days of daily sampling, and dividing this 
period by four gives 29.5 days.

Figure 12.5; Diminished accuracy of the 1713 version (dotted line), compared with 
that of THH-2, over daily sampling January-April 1681.

u v

DAYS AFTER ÙEC 311680 
TMM (-6th) TMM (-6th) + EPICYCLE

Error-values were sampled every 160 days, taking this period for the 
reason given earlier, that it was not near to multiples of the main periods 
of IMM. Ihis gave, for groups of forty:

IMM-2 -0'.4±1.9
IMM-2E -0'.3±2.2
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Ihe new epicycle was given a reverse direction such that it still aligned 
with OCj at aphelion/perihelion, Wiich gave:

IMM—2(“"E) —O'.5+2.1 
We thereby conclude, that the notion of a seasonal eĵ jansion and 
contraction of the Horrox-^eel, Edmond Hailey's second contribution to 
IMM, was erroneous. What we have called lMM-2 was the best version for 
astronomers, vto had nothing to gain from the greater corrplexities 
propounded in the Principia.

The notion discussed by the three astronomers back in 1694 was an 
expansion and contraction of the Horrox-^heel. One could merely put the 
radius of that wheel equal to

1173-35cos(S-H) parts in 10® 
to give the required maximum value in winter, and the minimum in summer 
vAien S-H=0“. Testing as before every 160 days, still gave no improvement to 
TMM-2.

At his house in Jermyn Street, behind St James' church in London, the 
seventy-year old Master of the Mint re-cast his earlier 'theory', so that 
it would more resemble the result of forces interacting between three 
bodies. Far from being a 'much expanded version of the 'Theory of the 
Moon"' as Craig Wiaff claimed (1977,p.71), d̂iat appeared in 1713 was a 
rather abbreviated version. After toying with a nine-year periodicity based 
upon apse rotation, as two documents prdoably belonging to this period 
indicate, he finally decided against it, probably because his reliable data 
did not extend over a long enou^ period.

He did however introduce an epicycle, deriving from discussions of 
the 1690s. Having introduced four valid new equations, and linking up two 
of the zodiac variables to annual equations, he conferred an annual 
equaticxi içxon the Horrox-vrtieel itself, in a manner that simply did not 
work. Thus, vdiat we have earlier called TMM-2 was the optimal format for 
Newton's lunar theory. We now ascertain to vhat extent ei<ÿiteenth-century 
astronomers, and Edmond Hailey in particular, applied these modifications.
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Ctl . 1 3

H A L L E Y  A J S T D  T H E  S A J R O S  S  Y I S T C H R O I S T Y

Once he became established as the new Astronomer Royal, Edmond Hailey 
commenced a systematic study of the error-pattems generated by IMM. Table 
13.1 shews his manner of making the comparisan, a page from his 18-year 
Saros Cycle of observations plus error-estimates, published posthumously. 
Greenwich mean time is specified on the left, together with lunar 
longitude, plus longitude as predicted by IMM for that time, and then the 
difference between these two in arcminutes*. His procedure was thus rather 
comparable to that employed here.

It is normally averred that Hailey's data from his two decades spent as 
Astronomer Royal was unpubli^ed and inaccurate. It will here be argued 
that this data was (a) published and (b) rather accurate. Even more 
surprisingly, we shall conclude that Hailey may have been justified in 
claiming that his method was accurate enou^ to win the longitude prize, 
being the most accurate method for determining longitude proposed anywhere 
in Europe in the first half of the ei^teenth century, thou^ largely 
ignored by posterity. Ihe fate of his proposals lies outside the scope of 
our inquiry.

Ihe approach here developed will indicate the benefits of a quantitative

* Ihe first line of data here tabulated is for June 21st 1732. On the left 
is ŒT  time for a lunar limb transit; adding the time that a lunar 
semidiameter takes to cross the meridian, 1.08 minutes, gives the time for 
lunar centre transit. Ihe true lunar longitude then was 218"3'50” (ie, 8" 
Scorpio, as Hailey wrote it), so Hailey's dDservation was within 14.” Our 
IMM-2 program gives for this time 218"2'52”, thus having an error of one 
arcminute. Ihis is someWiat more accurate than Hailey supposed, however it 
is in the other direction. What Hailey called 'Argument. Annum' is the 
Horrox angle, ie (Ŝ -Â ), vdiich the program gives as 282", within two 
minutes of Hailey's value. Ihe Sun-Moon distance, ie (M̂ -Ŝ ), is 118"4'.6, 
which is one minute more than Hailey's value.
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Table 13.1: a page of Haileyerror estimates for longitude of lunar centre, for June-September 
1732, with GMT given for lunar limb transits, from his Tabulae Astronomicae.

L U N Æ  M E ( S ^ I T } 1 A K Æ  L O N G I T U D I N E S  
G  R E  N O  F I  C l  O B S E R F J T Æ  

C U M  C 0 M T U T O  N O S T R O  C O L L J T Æ -

A n n o  J u L i A N o  M D C C X X X I Î /  C u r r e n c e .

Tranfitus L im it Argum ent, T )iflan tiû Longitudo Longitudo Error
Lunm  T . Annuum. €  ^ @ C entri Lunt£ C entri Lunæ Comp

O hfervata, Comput,

M. D. H. / / / s. a j. 0 / Q / // 0 ; rf I n

Tunii. 2 1 7 3 2  44 9 I I 58 3 2 7  28 ÏÏL 8 3 3 (̂ ÏÏI 8 5 8 4-1 32
2 2 8 2 1  2 2 9 I 2 50 4 9  2 6 IR 20 5 0 35 ÏÏI20 52 6 -r I 31

23 9 13  15 9 13 43 4 21 32 {  3 58 20 I  3 59 18 4 - 0 5 8
2 4 1 0 7 57 9 1 4  3<̂ 5 4  G / 1 7 2 9 31 / 1 7 2 9 41 -4-  0 10-

2 5 I I 4  22 9 15 2 9 5 1 6  4 7 I 2 4 13 I 2 4 10 — 0 3
J f i m i . 2 9  1 4  4 6  18 9 19 0 7 1 0  4 9 K  0 11 19 K  0 9 33 — 1 4 ^
Jtilii^ 2 1 7 1 9  38 9 21 38 8 2 2  5 1 T 1 4  57 4 1 T 1 4 54 I — 3 4 0

6 2 0 ’ 5 8  3 2 9 2 ) 9 10 1 6  5 8 IT 1 2 18 2 4 IT i 2 1 3 55 — 4 2 9

1 4 2 37  31 10 I 1 8 I TO 37 % 3 50 2 6 Tq;i3 5 0 31 •4-0 5 i
« * 3 1 8  32 10 2 10 I 21  53 ^ 2 6 7 2 8 " ^ 2 6 8 2 0 4-0 5 2

1 7 4 4 Î 54 1 0 3 55 2 1 4  32 : ^ 2 o 32 35 ^ ^ 2 0 35 3 4-2 2 8
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A u g . I : 7 5 8  4 10 :7 10 9 3 2 4 ^  2 4 2 3 8 M 23 5 8  55 — 3 43
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study of historic positional astronomy oarnputations, permitting conclusions 
not drawn from mere opinions handed down. It first estimates the accuracy 
of Bailey's method in general terms, without evaluating the last column of 
his tables which shews his estimate of IMM's error over the years. Hailey's 
method of applying TMM will need to be examined in more detail before 
attempting that. We here review his application of that cycle to vhich he 
gave the name: Saros.

What Hailey began, upon becoming Astronomer Royal, comprised the first 
TMM-based conputations of a systematic nature. Once he had finalised his 
procedure, and the tables which it utilised, he was as we shall see not at 
liberty to adjust it for the following ei^teen years. The Second Edition 
of the Principia made some ajustments to the TMM protocol, beyond the mere 
reversal of the sixth equation, seme of vhich Hailey adopted.

The Saros cycle as was known to antiquity was given its name 
unintentionally by Hailey, during his historical researches. He named it in 
1691, by mistake (Armitage, Edmond Hailey 1966, p. 126; Phil. Trans. 1691, 
Vol. 16, Emendationes ac Notae p.537; Gingerich, The Saros Cycle in 
Batjylonia, JHA,1992, 23, p. 229). When in 1682 the 26-year old Hailey turned 
his telescope towards the Moon from his Highbury residence, it was his 
ambition to follow a complete 18-year Saros cycle, but turbulent events 
took him to London instead, involving the funding of the Principia from his 
wedding-dowry, vhioh was prchably just as well for posterity; however, once 
established as the Astronomer Royal in 1720 at the age of 64 he recommenced 
this scheme, that he had first aspired to 38 years earlier.

Hailey set forth his notion of tackling the longitude problem in that 
same article of 1691 (P.T., Vol 16, p.536) in vhioh he referred to the 
Saros. Years later, in 1716, he brou^t out a third, posthumous edition of 
Thomas Streets's Astronomia Carolina. After printing three years' of his 
sextant observations at the end of the book, he explained his view 
concerning the Saros cycle (without using that word), vhereby it enables 
error-pattem in TMM-based tables to be accurately predicted. His 
reputation for the accurate prediction of eclipses derived, he explained.
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from this cycle. He was now applying his insist into the Saros in a more 
general manner:

'.. .so that vyhatever Error you found in a former Period, the same is 
again repeated in a second, under the like Circumstances of the same 
Distance of the /toon from the Sun and Apogaeon.. .Being this assured 
from the Certainty of these Eê rolutions, that all the intermediate 
Errors of our Tables were not uncertain Wanderings, but regular faults 
of the Theories; I next thou^t hew I mi^t best be inform'd of the 
Quantity and Places of these Defects... Nor was there any other way, 
but from the Heavens themselves, to derive this Correction; by a 
sedulous and continued series of Observations, to be collated with the 
Calculus, and the Errors noted in an Abacus: from whence, at all times 
under the like situation of the Sun and Moon, I mi^t take out the 
Correction to be allow'd. '

I  *I3rxe s
Ihat was the method. We next hear about it within the pages of the 

Journal Book of the Royal Society, in May, 1720. Hailey had become the new 
Astroncaiier Royal, having taken residence in the ODservatory two months 
earlier, and was explaining to the Royal Society the new terms of his 
employment, for the improvement of the art of finding longitude. Having 
sailed a ship across the South Atlantic as well as holding the Savilian 
Geometry chair at Oxford, he was indeed competent to hold an opiniŒi on the 
matter. His advice as recorded made no allusion to the Saros concept 1 His 
concern was merely for the accurate positioning of zodiacal stars, whereby 
lunar 'appulses' thereto could be used to find longitude.

It was not Hailey's view that lunar ri^it ascension and declination 
could be accurately measured on board a tossing ship: his proposal was that 
a telescope of up to five feet in length could be used to give accurate 
measurement of such stellar transits, on a ship. His predecessor had left 
many gaps in the band of zodiac stars that were necessary for sucii, he 
complained, and he proposed to fill these in. Newton's lunar theory (ie, 
TMM) should be used together with such tables of stellar positions for 
finding the longitude. He added the fairly evident oomment that lunar
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quarters were optimal for observations because Full Moons were too bri^t 
for the timing of stellar appulses. That was all he said.

Sir Isaac Newton, occupying the presidential chair, was moved to comment 
- and proposed Bailey's Saros method! Ihis is a rather curious role 
reversal. Bad we not got Bailey's 1716 proposal of his method, it would 
aï̂ )ear from this altercation as if the vdiole idea came from the President: 

'l^n mention made in the above Discussion that it was proposed to use 
the President's Iheory of the Moon's motion for putting the method for 
the finding of longitude into practice, the President was pleased to 
observe that he founded his Theory chiefly Lçon observations of the 
Moon's place in the conjunctions and oppositions to the Sun, but it 
would be necessary for the further correction of the Iheory, to collect 
first of all the errors of it in the quadrants, and afterwards vhat 
errors there are in the Octants, for which end he proposed it an useful 
work to frame an Ephemeris of the Moon's motion from the Theory for 
ei<ÿTteen years in which period the errors return & this would be a reaĉ  
means to Examine how much the Iheory may Err from the Ctoservations, made 
at any other time.'

(Journal Book of the Royal Society, XII, 1720-26, pp. 11-12)

Bailey did this. Be commenced the vast labour of creating an almost 
daily ephemeris of lunar positions. After following half of a Saros cycle 
or one revolution of the lunar apse over nine years, he reported on his 
conclusions. In the year 1732 vdien aged 76 he submitted to the Royal 
Society's journal 'A Proposal of a Method for finding Longitude at Sea 
within a degree, or twenty leagues' (P.T. 1731/2, 37, pp.185-195). Be 
concluded that his study of the Saros pattern enabled him to improve upon 
IMM, because its errors recurred over the Saros period. Be did not suggest 
that this approach had derived from the Society's President in 1720.

Ihe second Astronomer Royal ccnpleted a vhole Saros cycle of 
observations in the year 1739. Bis posthumously published Tatulae contained 
a section 'Precepts for using the Tables' \^ch gave instructions for using 
his complété Saros of ercor-conputations, by vhich means, he explained, 
errors may 'in great measure' be corrected. One merely had to find a
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oanparable position in his 18 years, 11 days of observations (or 223 
synodic months) as published before or after the date required. Preferably 
the exact day should be used, however one could manage with estimating the 
day before or after.

H^ley then went on to claim that alternatively. 111 lunations could be 
used, as the period of one apse revolution, rou îly half the Saros period, 
thouüÿi he admitted this was not so exact. I believe that this method does 
not in fact work, because no such synchrony then occurs as for the Saros, 
Wiich may well have undermined the credibility of his hi(ÿi-precision Saros 
proposal.

No-one could investigate Hailey's proposal during his lifetime, since 
he never published his data! ^plying his method depended on having almost 
daily readings such as he was amassing, but no-one else had them. He turned 
out to have a rather similar attitude towards the publishing of his data as 
his predecessor, thou^ for a different motive. When a stem rebuke was 
delivered for the neglect of his public duty by Newton from the 
Presidential chair, at a meeting of March 2nd, 1727, warning H^ley that it 
mi(ÿit be 'of ill consequence to continue in the neglect of it', ie the 
presenting of his observations (Baily, 1835, p. 188), Hailey explained by 
way of reply:

'he had hitherto kept his observations in his own custody, that he 
mi^t have time to finish the theory he designs to build upon them, 
before others mi^t take the advantage of reaping the benefit of his 
labours.'

Having an eye on the longitude prize, he explained, he wished to keep his 
data until he had perfected the method. His persistence in this attitude 
for the rest of his life surely goes far towards accounting for the 
ignoring of his 1731 proposal by posterity as seems to have happened. His 
dDservations were not published until 1749, by vtoch time IMM had ceased to 
exercise a formative effect upon astronomers.

The challenge of finding longitude at sea within a degree iirplied a 
two-minute prediction of lunar longitude (Ch.l, III). Hailey had by 1731
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taken fifteen hundred lunar observations over a nine-year period, which is 
one every two days:

'And that these mi<ÿït be duly applied to rectify the Defects of our 
confutations, I have myself compared with the aforementioned Tables, 
made according to Sir Isaac's Principles, not cxily my cwn 
CSDservations, but also above eight hundred of Mr Flamsteed'ŝ .,.

'Comparing likewise many of the most accurate of Mr Flamsteed, 
made ei< t̂een or thirty-six Years before (that is one or two Periods 
before mine) with those of mine \^ch tallied with them, I had the 
satisfaction to find that vhat I had proposed in 1710 was fully 
verified; and that the Errors of the Calculus in 1690 and 1708, for 
example, differed insensibly from what I found in the like Situation 
of the Sun and apogee, in the Year 1726. Ihe great Agreement of the 
Theory with the Heavens compensating for the Differences that mi^t 
otherwise arise from the Incommensurability and Excentricity of the 
Motions of the Sun, moon and ̂ xogee. '

Hailey ncWiere here names the Saros, as neither indeed did Sir Isaac Newton 
in his 1720 comments, only referring to it as the 'Period, ' and IMM is 
referred to familiarly as 'the Theory.'

In 1735 Charles Leadbetter published the two volumes of his Compleat 
System of Astronomy, then in 1742 his Uranoscopia. Hailey is mentioned 
respectfully as the Astronomer Royal, and the virtues of TMM are extolled, 
and the question as to Aether anyone has as yet ri^tly applied it for the 
preparing of tables is aired, without any mention of Hailey's method, and 
its glossary of terms gave under 'Saros' merely a method of predicting 
eclipses.

m x  Agocajuracy o f  H a l  M&tzJmcxdL
We shall new evaluate the degree of validity of Hailey's claim, using 

the TMM program. The Saros is a period of 223 lunations, or 18 years and 
ten or eleven days, depending on hew many leap-years are involved, plus an 
extra one-third of a day. It expresses three fundamental synchronies, by
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\idiat can only be described as a remarkable coincidence, causing the 
patterns of lunar motion to recur over this cycle:

synodic 223 x 29.5306 = 6585.32 days
nodal 242 x 27.2122 = 6585.35 days
anomalistic 239 x 27.5545 = 6585.52 days.

The sidereal cycle also coincides moderately well, within ten degrees or so 
(thou^ that is here without relevance), the annual cycle does also as it 
is a mere ten days into the new year, and the apse cycle of just under nine 
years also coincides fairly well. Hailey regarded the latter as quite 
important, thou^ it has only a very minor function in TMM.

A new Moon fell on December 31, 1689, Old Style. We may conveniently 
start at twelve noon on that date. One Saros cycle takes us to January 11, 
1708, 20 hours, and another to January 22nd, 1726, 4a.m.* Precision in the 
time of day is not here required, since TMM has no diurnal component to it, 
however it is required in the tie-up between the Julian days on vMch TMM- 
PC runs, and the Julian date used for the longitude program. The dates were 
checked against the program in the usual manner, using solar longitude to 
ascertain them correctly.

Wè thereby model Hailey's own investigation, since the above-quoted text 
cited the years 1690, 1708 and 1726. 1690 was the date Wien Flamsteed, with 
the help of Abraham Sharpe, erected the Greenwich mural arc, recently 
described by Allan Chapman as being for its time, 'the finest and most 
exact astronomical instrument constructed to-date' (Chapman, 1990, p.57), 
presumably Wiy Hailey chose to start from this date.

Three sets each containing a hundred TMM error-values were generated, 
sampling at two-day intervals, giving just over six lunar months, separated 
by 18-year intervals. Modem values of longitude were subtracted from TMM- 
PC2 longitudes at each of those 100 times, generating three columns of

* The t-values for TMM-PC come out to 3287.000, 9872.333 and 16457.666 for 
these three dates of Saros-period intervals.
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errors in arcaninutes. These had average values of:
-0.6 ± 1.7, -1.3 ± 1.6, -2.0 ± 1.6 arcaninutes.

These standard deviations are conparable to those given for TMM-2 in the 
previous chapter, vhile the mean values follow the increasing error in 
TMM's mean motion over the decades (Figure 13.1).

The graph shews these three plotted, greatly suj^rting Hailey's 
approach. It shews hew, over a half-year period, the errors recur exactly 
according to their position in the Saros cycle. The synchrony of the Saros 
does indeed provide a key to predicting perturbations, but was it good 
enou^ for the longitude prize? To answer that, we next subtract the three 
error columns one from the other. This was after all Hailey's method. This 
gives three sets of error-differences, vhich came to:

Sarosl - Saros2 Sarosl - Saros3 Saros2 - Saros3
O'.7 ± 0.32 1'.4 ± 0.64 O'.8 ± 0.32.

TMM AND THESAROS
errors in T M M -2  over 18year,ll-day intervals

I
ifyi

80 100 120 

sampling at 2 -d a y  intervals
SAROS 1 _ ^  SAROS 2 _ _ _  SAROS 3

Figure 13.1: Hailey's Saros Synchrony depicting three sets of TMM error-patterns, over half-year 
periods, in identical phases of successive Saros cycles, for the years 1690, 1708 and 1726.

The first of these figures shews a drift of 0.7 arcminutes in mean motion 
per ei^teen years. )̂art frcm this, our use of Hailey's method, using one
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error to estimate another one Saros later, has given a standard deviation 
of less than one arcminute.

This was by far the most accurate technique of lunar prediction prĉ x)sed 
anyv̂ ere in Europe in the first half of the ei^teenth century. It was a 
subtle new approach, depending içon periodic return of error-pattems. 
Whether it was sufficient to claim the longitude prize would depend upon 
the errors in two sets of dDservaticxis: one in the present time, and 
another one Saros earlier. Regrettably, Hailey undermined his cwn case by 
belittling his predecessor. 'A good part' of the merely two minutes of arc 
error vhich Hailey viewed as TMM's error may have been he felt 'the Fault 
of the Chserver. ' This occurs in the same 1731 report from vhich v^ have 
just quoted. If Flamsteed's observations were so bad, how could readers 
trust his argument over Saros, vhich entirely depended on his predecessor's 
chservations? Ihpublished studies by Yallop and the present writer, 
indicate that Flamsteed's lunar-limb transit chservaticns v̂ ere vd.thin 
twenty arcsecmds or so.

Part of the error in Hailey's method comes from the drift of mean 
moticxis, losing about 41" per twenty years, or 0.00009 arcminutes per day*. 
Subtracting this amount out from Hailey's error patterns gives the 
'corrected' graph, shewing the marvellous synchrony of the Saros, within a 
fraction of an arcminute in its deviation from the TMM mechanism (Figure 
13.2) ! Subtracting these drift-corrected error columns from each other gave

0 ± O'.46, 0 ± O'.39 and 0 ± O'.86 
or 29,23 and 51 arcseconds as standard deviations of their differences.

How accurate were his observations? Hailey's lunar meridian transit 
observations, published in 1749, began in January 1722 and ended in 
December 1739. He cited G.M.T. values on the left, together vjith ri^t 
ascension values for limb transits, over the first five years of

* The mean motion error v^ found to be 41 arcseconds per twenty Julian 
years, equivalent to a 0.000082 arcminutes per day error (Chapter 5); 
however, adding that amount still left in a small systematic error over the 
three Saros cycles we are here investigating.
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Figure 13.2: Hailey's Saros Synchrony, as before but after subtracting out 
the error in mean motion over the three successive Saros cycles.

observation. Hailey then corpjted right ascension values from IMM's 
latitude and longitude values for the given times, then took the 
difference, ie the error-value in right ascension.

From December 1725 he changed to a method more convenient for 
evaluation, giving positions of lunar centre in longitude instead of R.A. 
His predecessor Flamsteed's observations were all recorded merely as clock 
or apparent time and not as observed G.M.T., and were for limb transits as 
cteerved. Hailey omitted declination values, v̂ iich are not easy to take 
simultaneously with R.A. for a lunar transit. A cepy of his notebook exists 
at the Royal Astronomical Society's library. His data post-1725 is in the 
form most convenient for comparison with IMM, v̂ cii was the aim of the 
exercise.

The longitude accuracy of twenty of Hailey's conputed longitude 
positions for the year 1732 I found to be 14” ± 20". Considering that 
conversions from apparent to mean time and from limb to lunar centre had 
been applied, these are plainly the most exact observations recorded up 
till then within Britain. One is perplexed by the customary comments about 
inaccuracy and carelessness that historians bestow upon this series of over 
twD thousand lunar transits, with times acxurately given in G.M.T. for the 
first time ever.
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Às regards the accuracy of his published RA values, Bernard Yallop of 

the R.G.O. kindly analysed the first 35 vAiich Hailey published for January 
1722, and found their errors to average -10”± 33”. They were commonly cited 
to the nearest arcminute, vAiich may account for their being less accurate 
than his longitude readings, which began five years later.

Let us summarise Hailey's proposed method. It involved two sets of IMM 
computations, and could be used on a day which had a reliable lunar 
longitude observation of one Saros earlier (or later). Ihe deviation of the 
old measurement from the TMM-computed longitude at that earlier time, 
conveniently tabulated by Hailey, was added on to the IMM-computed position 
for the new position. Ihe method had three sources of error: that in mean 
motion drift over ei^teen years, that in the observations, and that 
between successive Saros periods in relation to IMM. Inherently, the method 
is accurate to about half of an arcminute, in terms of the third of these 
errors. Ihis is prc±ably more accurate than Hailey himself suspected. For 
persons taking the view that Hailey's data was more reliable than his 
predecessor's, 1740 would have been the first year on vhich his method 
could be tried, since Hailey's observations started in 1722.

In principle, Hailey's method could be used with any lunar theory. If, 
for example, one removed the four auxiliary equations from IMM, then one 
voiLd merely obtain a larger error-pattem repeating throu^ the Saros 
cycle, to be subtracted. It was Hailey's opinion, however, that IMM was the 
best theory to use for applying his Saros-error correction procedure.

XXX MtLsxmcaearstzaricXLrig o f  H a X X e y ^ s

Merttioci
We have argued that science historians have hardly ever recognised the 

existence of IMM as a vrorking mechanism. Ihe problem becomes acute vhen v^ 
seek evaluations of vhat Hailey vras doing as Astronomer Royal, as the 
above-mentioned project then formed his principal occupation. Wë new quote 
Francis Baily, vho was President of the Royal Astronomical Society in the 
year 1835, the year in vtoch his Account of Flamsteed v/as published, vAiich 
did so much to rescue the lather's reputation. Ihe sarcasm of tone is 
unmistakeable :
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'In the year 1731, Dr Hailey recalled the attention of the public to 
an opinion vhich he had promulgated, about twenty years previously, 
relative to a prĉ xjsal for finding the longitude at sea, by means of 
the motions of the moon: and in a paper inserted in the Philosophical 
Transactions of that year, took occasion to advert to the number of 
observations of the moon that he had made at the Royal Observatory: 
vhich amounted, according to his statement (the accuracy of vhich I 
have no reasŒi to suspect), to nearly fifteen hundred. The major part 
of these chservations, however, vfere made v/ith the transit instrument 
only: so that declinations remained still to be satisfactorily 
adjusted. But, it may be amusing to us to know, and may also in some 
measure lead us to judge of the state of practical astrcaxmy at that 
day to be informed, that he CŒisidered it a subject of boast and 
congratulation that, by means of those observations the lunar tables 
vjere then rendered so exact that he vjas "able to compute the true 
place of the moon vd.th certainty, vfithin the compass of two minutes of 
her moticxi, during the present year 1731; and so for the future:" and 
therefore that this exactness was a motive for suggesting it as a 
means for determining the longitude. The idea, however, was an 
excellent one: and the method of lunar distances, then in embryo, is 
now become one of the most important and valuable means of determining 
the longitude at sea'. (F.Baily, Account of the Astronomical

Observations of Dr Hailey, 1835, p. 189.)

I suggest that Baily had not apprehended the method that Hailey was then 
proposing. Hailey was not claiming that any lunar tables had attained suoh 
exactitude, but rather that a method of predicting the errors of those 
tables could reach such, based on the 18-year Saros cycle of vhich Baily 
made no mention.

To suggest that the Astronomer Royal was merely taking ri ît ascension 
readings, vhile the 'major part' of his declination measurements remained 
useless because his telescope vas not adjusted, implies some degree of 
incompetence. We merely note that, to compute longitudes as Hailey 
published after 1726 requires both RA and declination readings.
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To quote from a popular acœunt, 'Periiaps because of his age, or 

because of the equipment used, Hailey did not take the great care needed in 
making the proper adjustments to his equipment.' (B.Heckart, Eâmond Hailey 
1984 p.78). In the Armitage biography, Baily's comments are alluded to: 

'Baily concluded that no useful purpose could be served by publishing 
Hailey's cteervatians... Thus the great bulk of Hailey's Greenwich 
cteervations remain unpubli^ed. ' (Armitage, 1960, p.205)

What Francis Baily said in 1834, in his Presidential Address to the RAS, 
was that 'Ihe astroncmiical observations, vAiich he [Hailey] made in that 
situation, have never yet been published. ' (Baily, 1835, p. 169) In this he 
erred: rather, none were uzçublished. Ifow did such an idea develop, 
concerning the over two thousand meridian transit cteervations of Hailey 
published in 1749, an unprecedented number of unprecedented accuracy?

To substantiate our claim, \diich may strain credulity, we specify the 
following. If the clock times as recorded in Hailey's notebook, of vhich a 
copy exists at the R.A.S. library, are adjusted by applying the Equation of 
Time (see Howse, Greemich Time 1980 p.38), they will equal the mean times 
as given in Hailey's Tabulae Astronomicae of 1749. The 'Distance a vertice' 
readings in his notebook (from about 1725 onwards) are two or three degrees 
from the correct declination readings, implying an instrument correction, 
possibly specified somevhere in his notes (Zenith distance = 90* - 
declination). Hew Baily could have made so awesome an error of judgement, 
and vhy successive science historians should have followed him, is not our 
concern.

The source from vhich one v̂ ould expect an authoritative account is Eric 
Forbes in the Greenvdch tercentenary volume (1975). Forbes struck a note of 
scepticism over Hailey's method, proposed in 1731:

'This proposal is a repetition of that published in the appendix to the 
second and third editions of Streete's Astronomia Carolina. He [Hailey] 
claims optimistically that the differences between the predictions of 
the revised lunar theory publi^ed in the second edition of Newton's 
Principia (1713) and Flamsteed's lunar observations seldom exceeded 
±2'...'



-207-
(Ihe proposal appeared only in the third edition of Streete's opus) Ihe 
phrase, 'the revised lunar theory' as published in PNFM of 1713 customarily 
refers to the inferring of lunar motions from gravity theory. That is the 
sense in vhich science historians understand it. The previous chapter 
evaluated to vhat extent FNEM gave certain modifications to IMM, by way of 
adjusting its parameters, and to vhat extent it repeated the chain of 
equations.

Forbes' account gave no hint that eighteen years of observations had 
been published as the basis for Hailey's accurate method of finding 
longitude:

'Seven years after Hailey's death, his Tabulae Astronomicae was 
published in London by John Bevis. These tables, with precepts in both 
English and Latin, had been submitted to the press by their author as 
early as 1717 and printed off two years later -before he became 
Astronomer Royal. In fact, it had been as a result of this appointment 
that Hailey decided to defer their publication so that the lunar tables 
could be compared with the results of his intended corrections. '

(1975, p.89)

Forbes' account implied that Bailey's tables (as required for computing 
Hailey's version of TMM) were printed in 1719, then held back for three 
decades to allow for their improvement using his new data acquired as 
Astronomer Royal. The rather important issues here raised will be treated 
in due course, vÆien we come to the transmission of TMM-based lunar theories 
to France; beginning with Hailey handing over certain documents to Delisle 
on a visit the latter made to London in 1724. Had it been Hailey's aim to 
correct his tables by his long series of observations, then he would at 
once have noticed the drift in mean lunar motion, from his ri^t-hand 
column of errors. On the page of positions reproduced above, the mean error 
in his TMM values is -1.4 arcminutes. He did not do so however, as we saw 
earlier in Chapter Five. Contrary to Forbes' claim, once Hailey commenced 
his immense ta^ of error-ccmparisons, he would not have wi^ed
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to readjust his tables any further, since that would have necessitated re­
doing all the computations*.

Thus the culmination of the Newtonian TMM endeavour, to which Britain's 
most eminent astroncmer Edmond Hailey dedicated his two decades as 
Astronomer Royal to the perfecting, so that he could claim to have resolved 
the most pressing scientific challenge of the age, the finding of longitude 
- passed into oblivion, remaining to this day unnoticed by historians.

X V  S y z y g y
Newton's above-quoted belief given in 1720 implied that his theory was 

most accurate at syzygies and less so at the quarters. The data sent to him 
by Flamsteed contained no emphasis on the syzygies, but possibly he 
utilised more the syzygy data. It was traditional for a lunar theory to 
concentrate on this portion of the month vhen eclipses occurred. To check 
this on TMM-PC, fifty successive mean syzygy positions were selected, and 
fifty square positions, following the epoch date of 1680, and their

* The French historians D'Alembert and Delambre both described Hailey's 
Saros method, citing reascais as to v^y it could not work. D'Alembert argued 
that each of the 'arguments on vhich the inequalities depend' would have to 
return to the same value at the end of the period, vrtiich is plainly not the 
case, for example the mean anomaly is more than three degrees away vhile 
the solar anomaly is more than ten degrees. Hailey's method compared 
residual errors from a theory separated by 223 lunations, as D'Alembert 
realised: 'l'erreur des Tables qu'on en tire doit se trouver la meme dans 
une seconde période' (1754, Vol.3, p.xv), v^oh does net require the above 
assumption.

D'Alembert had a second criticism, that as the errors recorded by 
Hailey were not generally within 24 hours of the previous Saros, the error 
may not be 'rigorously found. ' However, D'Alembert should have been able to 
see from Hailey's tabulations that the TMM error Œily changed gradually 
over days. Delambre found similar shortcomings in Hailey's method, adding 
that others including L̂ fonnier had tried his method without success,
(1827, p.282).
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longitude errors were:

syzygy -O'.21 ± 1'.52
quarters -O'.23 ± 1'.70

That only spans a two-year period, but suggests that its accuracy may
indeed have iirpxved around the syzygy positions, as appeared in the error-
pattem of Figure 11.3.

V  H a Z L Z L e y  ̂  s  V a a r s d - o n  o f  I M M
We have previously assumed that Hailey used lMM-2, as this concurred 

fairly well with the worked example given in Hailey's Tabulae Astronomicae 
(Ch. 10, I). Having reviewed the modifications added in 1713, we now 
recreate more exactly Hailey's procedure.

Sli^t divergences from TMM-2 should not affect conclusions reached 
earlier, since the error-replication characteristic of the Saros synchrony 
will apply vÆiatever lunar theory is utilised. We now describe what Hailey 
did each day, over eighteen years. Not even the early accounts by Baily 
(1835 p.722) or Whewell (1837 II p.210) recognised this, nor have his 
biographers appreciated the extent to vhich the astronomer used Newton's 
procedure on a more or less daily basis during his tenure of the Greenwich 
Observatory.

His version of TMM is described in his Tabulae Astronomicae, under the 
section 'To find the Moon's Place for any given Time', and is given as a 
twelve-step procedure. The mean motions are formed from those of TMM as 
indicated in Ch 5: adding 1'40" to the mean apse, subtracting 1' from the 
node and adding 10" to the mean moon, for the 1680 epoch. The first three 
equations are unaltered, but then TMM's sixth equation was inserted before 
the equation of centre:

'For the argument of the fourth Equation add the Place of the Sun's 
^XDgee to the Annual Argument, and subtract their sum from the Place of 
the Moon thrice equated. But this being Sir Isaac Newton's sixth 
Equation,...'

The sine function involved thus has the 'argument' M̂ -[(Ŝ -Â )4H] 
or -(S^-Mj+H-Â ), the negative of TMM's sixth equation term (Ch.8, I).
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ïhe next section states:
'In the second column of Tabula J^quatlonis Apogai & Excentricatum 
Orbis lunae is the second Equation of the Moon's ̂ XDgee; in the fourth, 
the Excentricity of her orbit; and in the seventh, the logarithm for 
finding the Equation of Center, all answering to the Annual Argument. ' 

Ihe modification to IMM given in 1713 is here alluded to, vhereby the 
Hbrrox-vdieel e>q)ands and contracts seasonally 'answering to the annual 
argument' ; it being evident as we saw from the correspondence of 1694 that 
this idea came from Hailey.

Newton added an extra epicycle to accomplish this, but Hailey's 
procedure can be modelled by a sine function that will expand and contract 
the radius of the Hbrrox-vheel by the 3% specified in PNFM, making it 
largest in winter (perihelion) and smallest in summer (aphelion). His 
tables have small additional tables to give the small increments according 
to the (S-H) argument. Ihe previous chapter found no difference in accuracy 
between these different approaches, both being less accurate than the 
original design without them.

Ihe Variation was his last equation, followed by the Reduction using a 
twice-equated node. Ihe six steps of Hailey's worked exanple, compared 
with our version, are as follows:

Hallev's results 1 TMM
1 21“25'40"Me

Eqn 1 (annual)
Eqn 2 
Eqn 3
Eqn 4 (- IMM's 6th) 
Eqn 5 (Egi Centre) 
Eqn 6 (Variation) 
Reduction 
M .

+2'38* 
4-1' 0* 
-0'41* 
-1'41* 

-5“ 3'56* 
-36'15* 
-4'11* 

1 15*42'34*

IMM-PC-'Halley' 
1 21°25'33" 

4-2'36** 
4-1' 2" 
-0'40** 
-1'35" 

-5“ 4' 5" 
-36'17** 
- 4'12**

1 15*42'21"

-5 2'54**

Eccentricity 
Apse Eqn

0.06643 
-2*41' 0"

0.06676
-2*45'10"

for December 5th 1725 O.S., 9hrs 8m 5., vhen tp=16410.3806

0.06643
2*41'2"
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Uie steps of equation tie up tolerably well. However, the eocentricity and 
apse equation values indicate that Hailey has used the sinple Horrox-^eel 
of IMM. Ihe itionth was December, vhen it would be maximally-expanded if 
varying seasonally.

Earlier, Hailey gave a worked example at a New Moon, treated rather 
more briefly, with no eccentricity or apse equatiœs specified, however we 
may compare its fifth equation, the 'Equation of Centre':

Hailey's value lMM-2 value TMM-1713
4°58'28" 4°58'4" 5°0'26"

for July 2nd, 1684 O.S., 2h 41m., t = 1279.1119 days.

It is again evident that the simple TMM procedure has been used. These 
worked examples indicate that H^ley made only two modifications to the 
TMM-2 procedure, as well as modifying its mean motions: he removed the 
seventh equation and made the sixth TMM equation his fourth. This version 
will be called, TMM-H.

In Chapter 12, a page of Hailey's longitude data was given, from June 
21 to Sept 4th, 1732. We new recreate the error-pattems of that period to 
compare with those recorded ty Hailey. As it was half a century after TMM's 
CŒiposition, we start by checking TMM-PC-H's mean motions (Appendix III) 
for 1700, 1720 and 1740: putting t equal to multiples of 7305 days, as the 
integer value for twenty Julian years, gives these three sets of mean 
motion within an arcsecond or so.

The error-values Wiich Hailey tabulated with such heroic patience, 
given in the last column of Table 13.1, were the result of a subtraction, 
between two computed values: (a) longitude of lunar centre, computed from 
meridian-transit lunar limb conservations at 'time equated', ie GMT times as 
given, using his value of lunar parallax; subtracted frcm (b) the predicted 
value of that same parameter, as ccxnputed from his tables, using his 
version of TMM.
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He did not do this every day, but rather performed it intermittently - 
2100 observations over one Saros is just under one per three days. His 
method could still work using such data because, as we have seen, the IMM 
error-pattem has no diumal corrponent, it varies only gradually over days.

Figure 13.3: Accuracy of Hailey's version of TMM. His own error-estiiates, in arcminutes of 
ecliptic longitude (separate squares), are compared with the computer replicas 'TMM-2' and 'TMM-H' 
(Squares along top of graph represent no-observation days).
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Hailey's tables were arguably the first to be conposed in a manner that 
was derived from TMM, and so the extent to Wiich their values concur with 
our replica thereof is of interest. Figure ̂  depicts a typical page of 
Hailey's error-values, shewing hew they were sli^tly larger than would 
have been generated by TMM-2 (dotted line), the optimal form for Newton's 
lunar theory, Wtiereas they are generally within an arcminute of the TMM-H 
erxor-curve (thin line).

If Hailey's errors deviate by up to an arcminute from our 
theoretically-constructed error curve, we could conjecture that that was in 
part due to his observation errors and in part from the interpolating of 
his tables.



-213-
In addition, a 1713 version of IMM with the variable-radius Horrox-

viieel (Ch.12, IX) was tested for errors over the same range of data as has
been plotted in Figure 4a. Standard deviations of the respective error- 
pattems were as follows.

Hailey's page of 34 error-estiraates; ±2'.60
IMM-2 ±1'.30
IMM-H ±2'.69
IMM-1713 ±3'.44

Ihis result establishes what had earlier been surmised, that Hailey was not 
using a variable Horrox-Wieel, with its extra equations of eocentricity and 
apse. Rather, he was proceeding with a six-step method using IMM's sixth 
equation as his fourth. In 1710 a Mr Cressner became the first person to 
ajply IMM-2 (Ch. 10, Section 9), the optimal format for Newton's lunar 
theory, reporting this in the Riilosophical Transactions. Hailey did not 
follow this example, but rather developed his cwn less accurate version.

Each of Hailey's meridian readings (Table 13.1) were taken at a 
different time of day, whereas the error-curves plotted in Figure 13.3 were 
for the same time of day (arbitrarily set at 0.4 of a day after noon, or 
9.36pm.) IMM's error-pattem only changes gradually from day to day.

V 3 I  A  S i X e a r r t  O i r X s J L s
For most of the Saros period recorded by Hailey, errors remain around 

the two to three arcminutes shown in Figure 13.3. In the spring of 1733 
however, Hailey's use of Newton's method started to give him errors vAiich 
were twice that vAiioh he had averred before the Rcyal Society as IMM's 
maximum. Figure 13.4 plots exactly the same three parameters as before, 
less than a year after the previous page of data. Some combination has 
maximised conditions so that the 77-year old Hailey was regularly, and 
faithfully, recording ei^t arcminutes of error.

In part this was due to the mean value having accrued twD arcminutes 
of error, so that most of the error-values were negative - a fact analysed 
years later by D'Alembert, vho inferred an error of -2'10" in Hailey's 
value of mean lunar motion, on the basis of these error-values (D'Alembert
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Fiqiire 13.4; À Silent Crisis. The same variables plotted as in Figure 13.3, for April-June 1733, 
showing maximal errors arising at 30-day intervals (Squares along top of graph represent 
no-observation days).
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1754, Preface p.xv). Hailey's corrputations were made every two or three 
days on average, and the days omitted appear as points along the top of the 
grapii. The graph plots the subtractions performed by Hailey, expressed in 
minuties of arc: his computed lunar centre longitudes derived from 
observatiions, and those derived from his version of TMM. It is evident that 
his daily error-estimates concentrated ipon the maximal error-pjeriods and 
the descending parts of the graph, then ceased once the curve began its 
ipward movement. His ei^teen years of data tabulation shows no other 
Period of such large errors. One could wish for some comment, but the 
historical record remains silent.

From these error-values may be derived a further estimate of Hailey's 
accuracy, by subtracting from them the value of TMbE-H. For the page of 
Hailey's data represented in Figure 13.4, this gave a value of O'.2 ± O'.8, 
vhich may be compared with the above-found mean error in Haley's lunar 
longitudes as O'.2 ± O'.3. A small error of about half an arcminute has 
entered, presumably due to Hailey interpolating values from his own tables.
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Figure 13.4 shows maximal errors arising around ̂ aril 26th and on two 

further occasions after 30-day intervals. They have a 30-day periodicity, 
coinciding temporarily with the 27.5 day recurrence of perigee. Let us 
perform vtot we may hope that Hailey did, by comparing the maximal errors 
in their 30-day periods with those of the Saros before and after. Comparing 
the noon values then generated by H#-PC-H, and also at noons nearest to 
one Saros before and after to these dates, in the usual manner, we obtain: 

Maximal Error Values fin arcminutes 1 at Saros intervals. Oompared:
1715 1733 A 1751 A

16th ̂ aril: -5.8 27th ̂ ril: -7.1 1.3 8th May: -8.2 1.1
+ 30 days: -6.5 + 30 days -7.4 0.9 + 30 days: -8.5 1.1
+ 60 days: -5.9 + 60 days: -6.9 1.0 + 60 days: -7.5 0.6
Mean: -6.1 -7.1 1.1 -7.9 0.9

IMM accumulates a mean motion error of half an arcminute per Saros cycle. 
What we have called A in the above Table, is the error that would result 
from using Hailey's method, throu<ÿi comparison with the previous Saros*. 
This reinforces the conclusion of Chapter TWelve, that Hailey's method was 
in principle accurate enou^ for the longitude prize. His method gives an 
error of about one arcminute, or half that if the drift in mean motion is 
removed, even for the maximal error cambination in the spring of 1733. 
(Hailey's method could moreover have survived the abandoning of TMM: 
Âiatever more exact theory was used, its error-pattem would still recur 
throoÿi the synchrony of the Saros.)

Baily claimed that Hailey's tables were based on Newtonian rules 'as 
corrected in the Second Edition of the Principia' (p.705). Hailey 
occasionally used the adjusted values there given, for example his tables 
of eccentricity have their maximal values range from 66777 to 43323, as 
there specified, and not 66782 to 43319 as in TMM; on the other hand, his 
annual equations used the 1702 values. His method took little of 
significance from the 1713 version. His tables came to be widely used in 
France, and it is to France that we turn for further developments.

* Here the systematic error in the mean motion values appears as somevAat 
larger than it really was. Adding sinusoidal terms sometimes used for mean 
moticms (Ch.5,1), the drift was -41" per 20 years (cf -36", Ch. 5,11).
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C tl - a_4 C O N S T R U C T X O N  O F  T A B I_ .E S

Newton's prĉ xDsal to add on half a dozen extra 'equations' was indeed 
innovative, not least in doubling the number of tables required. Three 
decades elapsed after TMM's publication before tables based iç»n it were 
published, in Britain. The historical record remains scant over the rather 
mysterious decades after TMM's composition, when the first tables were 
composed but not published. The key figures appear as Flamsteed, Nicholas 
Delisle in Paris, and Hailey.

In 1712, in his preface to his 'Pirate' version of Flamsteed's Historia 
Coelestis, Hailey wrote:

'.. .the fluctuations of this roving planet [the Moon] doubtless 
returning into orbit after the cycle of 223 synodic mæths. Thus the 
position of the Moon, discovered from the most perfect tables shortly 
to be published...' (Chapman, 1982, p.193)

What were these 'most perfect tables? Regrettably, the present study will 
not succeed in removing this vital questicm from the realm of conjecture. 
The previous chapter shewed how the first systematic use of TMM-based 
tables was by Hailey in his capacity as Astronomer Royal; however, all 
trace of the tables he used, and even the copies which others made thereof, 
appear to have vanished, all that remains being contained in his 
posthumously publi^ed work of 1749.

X F X a m s t je e a

A notebook of Flamsteed's in the archives of Cambridge University 
Library (RQO 1/50H) contains thirty-seven quarto pages of solar and lunar 
tables, preliminary drafts for vhich exist in another notebook (1/50 G). 
Each of TMM's seven steps of equation was there tabulated, with peak values 
as specified, reaching their maxima at the non-symmetrical positions 
required. The table for the apse equation, for example, reached its maximum 
of 12° 15'00" at 51° of the 'annual argument' (Ch.7,III).

This is the sole surviving set of lunar tables composed in the 
eî ÿiteenth-century by Britain's first Astronomer Royal, dated February and
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Àugust, 1702. Saæ conputations are given in the notebook, follcwed by an 
ei^teen-step sequence of instructions for using the tables. On the 
following page is written 'July 1714, Burstcw', Burstcw being Flamsteed's 
parish church in Surrey. In 1702, some months after TMM's publication, 
Flamsteed wrote to Abraham Sharp that he had prepared some 'new tables' 
vdiich were '40 quarto pages and i:çwards' (Dec. 14th, 1702, Baily p.210).

A letter to Sharp of January 1703 (Ch. 5, IV) gave hints about the 
tables. His procedure:

'makes every sign [ie, a 30° interval] of mean anomaly take iç> a vAole 
page...It cost me and Mr Hudson [Hodgson?] above 3 month's pains to 
calculate these tables...I have formed the tables for finding the 
variations with the small inequalities in the same manner... The tables 
of the second equations of the apogee and node... '

A 'second equation' of the node can only have come from TMM. The allusion 
to 'variations with the small inequalities' must likewise refer to the new 
equations. His letter to Sharp affirms that his forthcoming Historia 
Coelestis Britannica will contain his newly-constructed tables, so that his 
pains 'will be of great use. ' This turned out not to be the case.

The letter continued with the strange claim that the tables were based 
upon his cwn procedure: '

'... to calculate the moon's place in iry correct theory (I call it 
mine, because it consists of my solar tables and lunar numbers 
corrected by myself; and shall cwn nothing of Mr Hewton's labours till 
he fairly cwns what he has from the Observatory; ) and I believe that 
none but myself wDuld have been at the pains to make so many tables as 
I have for this purpose.'

TMM's 'solar equation' derived from Flamsteed (Ch.6, II), and he evidently 
believed that he had supplied other of its constants, (letter to Sharp, 
March 30th 1704, Baily p. 216).

Francis Baily inspected the RGO notebook, after vhich he wrote a 
letter to the then Astroncmier Royal, Professor Airy. It was written in 
1836, the year after the publication of Baily's Account of the Bevd. John
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Flamsteed, and has never been publi^ed. It contains a notable shift in his 
viewpoint and is wrth quoting in full: 

dear Sir,
I herewith return the Ms. of Flamsteed, Vol.50 I, vÆiich contains 

one of the sets of lunar tables that he composed for his cwn use. Hiey 
are founded on the Newtonian Rules given by Dr Gregory in his 
Astroncmda Elementa, pages 323-336; and are a curious and interesting 
historical document, inasmuch as they are the first that were computed 
acording to Newton's theory, and afford incontrovertible internal 
evidence that they are the same as those v»Mdh, according to Mr 
Hodgson's account (in his 'Theory of Jupiter's Satellites') were 
surreptitiously conveyed into the hands of M.LeMonnier, and published 
by him in his Institutions Astronomiques,

'D'Alembert, in his Recherches sur différons points importans du 
Système du monde, speaks hi<ÿily of LeMonnier's lunar tables; & 
(notwithstanding the then existing tables of Euler, Clairaut & even 
Mayer) proposes them as the touchstone by vhich the lunar motions were 
to be rectified. If any merit however is due, it ou^t to have been 
given to Flamsteed. I have a paper on the anvil, in vhich I shall 
endeavour to set the public ri^t in this respect.

'The tables in pages 51 & 52 v̂ ere formed 12 years after the 
preceding ones, & are computed agreeably to the corrected values for 
the 6th & 7th equation given by Newton in his 2nd edition of the 
Principia. The second of these two tables v̂ as afterwards vholly 
abandoned by Newton in the third edition of the Principia. But nothing 
of these alterations is mentioned by, nor do they appear to have been 
known to, L̂ fonnier: vho has rigidly followed the first set of tables, 
vhich være probably those that had been conveyed to him by some person 
or persons unknown to us.

Between us yours truly,
Francis Baily'
(the letter is folded into the Flamsteed notebook)

In Baily's Account, the tables composed in 1702/3 by Flamsteed v̂ ere hardly 
viewed as TMM-based (pp. 703-4), and it was therefore not made clear that 
L̂ fonnier's procedure was Newtonian. We shall see shortly how the tables of
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LeMDnnier formed the case par excellence of TMM's adoption by an 
astronomer. In consequence, Baily underestimated the extent of TMM's 
influence.

Table 14.1 shews hew several sources have differently evaluated the 
astroncmers who published textbooks utilising TMM. The only major source 
vAiich Baily perceived was Hailey, as Leadbetter abandoned TMM in his secmd 
publicaticxi while Wri^t confused the procedure somevÉïat, vhich explains 
the rather dismissive tone adopted in the Axount.

Table 14.1; Listings of 'Newtonian' astronomers in the early eighteenth century
N. Delisle F. Baily W.Whewell C.W^f. G.H.A.
1750 1835 1837 1977 1989

N. Delisle 1717 * * *
P.Horrébow 1718 * *
N.Graramatici 1726 * * *
R.Wrî ït 1732 * * * * *
A.Capello 1733 * * *
C.Leadbetter 1735 * * * *
R.Dunthome 1739 * *
C. Brent 1740 *
P.LeMonnier 1746 * *
E.Halley 1720/1749 * * * *

Baily never published the paper that he had 'on the anvil'. îfow, after 
all, could he have recœciled his wi^ to credit Flamsteed for LeMonnier's 
hî ily accurate tables, with Flamsteed's dismissive letters averring that 
TMM generated errors of iç) to 8-10 arcmiiiutes? (to Sharp, 31 Oct 1713, 20 
March & 31 Aug 1714; Baily, pp. 309-11). The Flamsteed tables did however 
exert a great influence upon ei^teenth-century Newtonian astronomers.

William Whiston, \iho was on good terms with Flamsteed, affirmed 
categorically in his Lucasian lectures of 1703 that no tables based 
TMM existed (Ch.1,1), published this view in 1707, and did not alter it in 
any successive edition. Abraham Sharp's letters of reply to Flamsteed in 
1703, and later in 1716 vhen the ccxistruction of lunar tables was again
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raised, contained no confinnation that he had seen the new tables (Baily 
pp.323, 328).

XX D e X X s X e

Ihe first claim to have composed 'Newtonian' tables was made by a 
Frenchman, Joseph-Nicholas Delisle*. Ihe claim was made in the context of 
the 1713 Principia, without reference to the 1702 publication. To quote 
Schaffer, Delisle was

'cc*nmitted to the construction of astronomical tables in vhich the 
celestial mechanics of Newton would be compared directly with the best 
existing observations.' (Ihrcwer, 1990, p.265).

Letters of Delisle's from 1717 (urpublished) remarked that Newtonian-based 
lunar tables could not be found, and that they would be hard to compose 
because a fresh start was required:

'J'en ai calculé pour le soleil & pour la lune uniquement sur les 
determinations que M.Newtcn a tirées de l€̂ théorie de la pesanteur. 
Mais j'ai trouvé dans la construction de ces tables beaucoup plus de 
difficulté que l'on n'en a ordinairement dans la construction de 
pareilk tables, lorsque les fmidementjen sont établis; & cela parce 
que M.Newton reconnaq̂ ant beaucoup plus d'irrégularités dans les 
mouvements de la lune que les autres Astronomes n'en admettant & 
attribuent ces irrégularités à des causes physiques, le calcul s'en 
est trouvé fort long & fort embarassé. '

(to Teinturier, 7 Féb 1717, Paris Chservatory Archives) 
Delisle had a prolific correspondence with European astronomers and became

* Historical reviews pertinent to IMM's reception in France are:
D'Alembert, Recherches sur different points importans du Systems du 
Monde, Vol. 1,1754;
M.Bailly, Histoire de l'Astronomie Moderne 1779 Volume II; and 
M.Delambre, Histoire de l'Astronomie au 18th Siecle 1827;
J.Francois de Lalande, Astronomie, 1764, II, (p.171).

A recent essay by Dr Schaffer Haileŷ  Delisle and the Making of the Comet 
(1990, Ed. Ihrcwer, pp.254-298) has much of relevance.
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a F.R.S. in 1724. He succeeded Riillipe de la Hire as lecturer at the 
College Royale in 1718. Of this period Greenberg has written: 'Delisle had 
already tried and failed to interest the Parisians in Newton's lunar theory 
as a means for resurrecting mathematical astronomy in Paris' (1984, p. 152).

Delisle's tables, in manuscript at the Archives of the Paris 
Observatory, are entitled merely:

'Tables du Soleil & de le Lune suivant la théorie de Mr Newton dans la 
2nd Edition de ses Principles'.

They have no author's name, being classified under 'De la Hire'. They 
contain no worked examples, making it hard to ascertain hew well they 
worked. His Lettres sur les Tables Astronomiques de M. Hailey were 
publi^ed in 1749 and 1750, the second of \»*iich exists in the library of 
the Paris Ooservatory, containing his claim to be the first to prepare such 
tables (Baily, p.705). It also gave the list of others as cited in the 
above Table.

X IX  Hfal l e y
The anonymous Preface to Edmund Hailey's posthumous 'Tables' published 

in 1749 averred that they had been 'sent to the Press in the year 1717, and 
printed off in 1719, ' a view echoed by Baily, that they were 'constructed 
in 1717 and printed in 1719' (1835, p.705). Contemporary accounts make 
these dates a little early, with the lunar tables only completed after 
Hailey became Astronomer Royal in the spring of 1720.

In 1718, an account of lunar tables owned by Edmond Hailey reached 
Delisle. Writing from Amsterdam after a visit to London, the Konigsberg 
astronony professor G.H.Rast informed Delisle that:

'.. .exist a [Hailey] quidem perpétua motuum lunarium ephemeris (quae 
lunae ac solem situs post 18 armos et horas paucissimas, eosdem 
recurrere praecipue ostendere volvite)... (1 July)

Delisle replied by way of confirmation that Louville
'm'avoit communiqué à son retour d'Angleterre ce que vous épelez 
l'Ephemeride perpétuelle des mouvements de la lune...'
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and added that Hailey was claiming an accuracy of half an hour in past time 
(equivalent to 12 arcminutes, ie no improvement on earlier tables). Decades 
earlier, Hailey had erfiibited before the Royal Society such 'perpetual 
tables' for working his Saros method of eclipse prediction (2nd November 
1692, McPike p.230), so there was nothing new in vhat was then reported to 
Delisle.

Hailey was proposing to add on various smaller tables, DeLisle added 
in the same letter, 'le tout suivant la theorie de M.Newton'. These were 
expected to limit the errors to no more than 4' (Delisle to Rast 16 July 
1718 (I 103). Thus by mid-1718 a beginning had been made. Flamsteed 
reported on this enterprise in the last letter of his life, written to 
Sharp in November of 1719:

'Dr Hailey has showed his new tables at the Temple Coffee-house: but I 
am told, by one that dwells in Lmdon, they are not yet finished. ' 

(Baily p.332) The first account of the new tables as having been completed 
comes in May of 1720, with Hailey as the new Astronomer Royal. Crosthwaite 
wrote to Sharp that he was shewn:

'Dr Hailey's lunar tables (not yet published) ; but I cannot find they 
will give the moon's place so near the observed as Mr Flamsteed's. ' 
(Baily p.335.)

In 1720, Pierre des Maizeaux wrote to Conti that he was esqpecting to 
receive a copy of Hailey's tables:

'Nous aurons bientôt les tables astronomiques de Mr Hailey, corrigées & 
augmentées' (Corr. VII p. 100, 11 Sept.).

Halley commenced his sequence of meridian-transit observation in January of 
1722 (Ch. 12,II). By the spring of 1722, Delisle was advised that the Tables 
were almost reac^ for printing:

'le livre de M.Halley sur ce sujet etpit presque achevez d'imprimer'
(N.Struyk to Delisle 4 April 1722 II34). 

Delisle came to visit Halley in the summer of 1724 after vhich, to quote 
Schaffer: 'Delisle's endorsement of Hailey's tables was little short of 
ecstatic' (1990, Ed Thrower, p.269). Contrasting his 'Engli^' approach 
with that of his predecessor Fhillipe de la Hire, Delisle esq)lained:
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'J'avais aussi eu soin de construire ines tables sur une théorie 
régulière & unifome, tant géométrique que physique, qui était celle 
des Anglais... Prêt à publier ces tables j'ai enterprises le voyage 
d'Angleterre, uniquement pour savoir ce qui en étoit des tables de 
M.Halley que l'on m'avait dit qu'il étoit sur le point de publier & qui 
devoient surpasser tout ce qui avait été fait jusqu'à present; & j'ai 
trouvé effectivement les tables de M.Halley déjà imprimées depuis 
quelques années main non pas encore publlççs •’

(Delisle to P.Nicasius Graramatici, Ingolstadt Oct 1724 II 128) 
It thus appears that, by 1724, Hailey's tables were 'effectively' printed 
thou(ÿi not published. There was no hint that Hailey had decided not to 
publish them, indeed Delisle's non-publication of his own tables would 
hardly make sense in such a context. No original manuscripts of Hailey's 
tables remain (Gorr. VII, Note 14 on p. 101). DeLisle's 'Lettres sur les 
Tables astronomiques de M.Halley' of 1749 reviewed this situation.

I V  l Æ M a r m J L e a r

LeMonnier's Institutions Astronomiques of 1745 fully embodied the 
procedures of TMM, being in fact the publication giving Newton's sevenfold 
lunar theory in its most accurate form. TWo modifications from the 
Principia were introduced, namely the reversal in sign of the sixth 
equation, first accomplished in 1710 by Mr Cressner (Ch. 10,IX), and the 
adjustment of mean apse and Moon motions as in the 1726 Third Edition. 
Lemonnier used what we have called TMM-2, the optimal form of Newton's 
lunar theory.

Each table in LeMonnier's Institutions reached its maximum at the 
appropriate TMM value, with the equations in their proper sequence. Whereas 
Hailey's tables alternated in using sometimes the 1702 constants, at other 
times those of 1713, L̂ fonnier consistently used the former. Thus his 
tables of the Variation reached their maximum at 37'25", as TMM specified, 
vhile his text discusses the fact that in 1713 Newton gave between 37'11" 
and 33'14" as the range of this maximal value, between winter and summer. 
For the seventh equation, Lemonnier used 2'10" as TMM had specified, vhile 
discussing the addition of 15" to that equation in 1713. The extra epicycle
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was discussed as an option, and the mode of constructing the additional 
table outlined. Iheir author was aware of the modified values to the 
equations given in 1713, contrary to vtot Baily stated in the above-quoted 
letter.

Concerning the apse equation, LeMonnier discussed how Newton's value 
of 12°18' was greater than Flamsteed's value of 11*47', and he used the 
former. His mean apse position (Ch.5, Fig 5) was one of the most accurate. 
LeMonnier's mean motions were more accurate than those of Hailey, due to 
his adopting the Hiird Edition values for mean apse and Moon.

LeMormier gave two worked examples, vMch differed by a mere two hours 
in time, and were immediately prior to a solar eclipse, of 1739. To convert 
lMM-2 to Lemonnier's procedure, 1.4 and 1.7 arcminutes are added on 
respectively to the mean Moon and ̂ Dse positions (See Ch.5, Section V). In 
these two worked examples (subtracting nine minutes, twenty seconds of time 
from his 'temps moyen' to give GMT), his seven steps of equation appear as 
within arcseconds of the IMM program, except only for the Equation of 
Centre, vhich was forty arcseconds too small; this was the case for both 
his worked examples.

L^fonnier's title page merely averred that 'new tables' had been 
constructed, vHnile its preface affirmed:

'On s'est done appliqué uniquement à achever les Tables de la Lune de 
M.Flamsteed, (p.xxiv)

À later introduction to the Tables referred to the British astronomer 
seven times, opening as follows:

'Les Tables de la Lune que l'on donne ici sont dues principalement aux 
grandes découvertes que M.Newton a faites dans la Théorie de cette 
Plarfete: on ayoit regardé jusqu'ici comme les meilleures celles que 
Flamsteed publia pour 1<( seconde fois il y a plus de 60 ans dans le 
cours de Mathématique du Chevalier J. Moore; mais ces Tables étant 
encore fort imparfaites, l'Auteur s'appliqua depuis à les 
perfectionner, en y substituant lô  plus grande partie de celles que 
l'on trouve ici. Quoique ces dernières Tables de Flamsteed n'ayent pas 
été publiées,on ne scaurx\Lt assurer cependant si c'est uniquement parce
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qu'elles n'étĉ ent pas achevées. Dans l'état où elles se trouvaient 
lorsqu'elles nous ont été communiquées, on jugea d'abord qu'il n'y 
manquait que la Table qui sert à calculer les Latitudes... '

Lemonnier here ajpears as knowing more about Flamsteed's post-DOS labours 
than ever did the British, in the manner of one announcing a scoop Wio is 
not at liberty to disclose his source. Ihe Flamsteed tables, it was 
claimed, contained all he had required except the procedure for finding 
latitude...

The historian Lalande endorsed this claim:
'Ces 'Institutions Astronomiques' sont un des meilleurs ouvrages qu'on 
ait faits en Français sur l'astronomie élémentaire. On y trouve des 
tables de la lune de Flamsteed... (pp.428-9)' 

and Delambre wrote likewise:
'il fut le confident et le continuateur de Halley at de Bradley; par 
ses observations, il tient a l'âoole de Piccard; par ses livres, il est 
de l'école de Greenwich;' 

adding, 'les tables de la lune sont une oeuvre posthume de Flamsteed. ' 
(1827, p. 179,182). This remark appears to be the sole basis for the GHA's 
claim, that Hailey gave the Flamsteed tables to LeMonnier (GHA p. 268).

D'Alembert described how, in mid-ei^teenth-century France, the most 
widely used lunar tables were those of Hailey and L̂ fonnier (1754, p.iv).
He noted differences between the Hailey and LeMonnier tables (III, pp.5,7, 
10,13,33-35), eg that H^ley had omitted the seventh equation while 
L^fonnier kept it.

Flamsteed's assistant James Hodgson inherited the Flamsteed archives 
through marriage to the astronomer's niece. He claimed, in the Foreword to 
a 1749 publication (concerning the positions of Jupiter's satellites, on 
vhich he had worked vhile at the Ctoservatory), that:

'But, as to the lunar tables, the publication of them was delayed for 
very good reasons; and now to my very great surprise I find them 
printed in M. Le Monnier's Institutions Astronomiques: but how he came 
by them is to me at present a mystery... But now, after rçwards of 20 
years, when it was well known that I had the original by me, and did at
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a convenient time intend to send them into the world according to Mr 
Flamsteed's own directions, it was base...' etc (Baily, p.704)

Yet more mysterious is the question as to vdiy, if something resembling the 
set of tables published by L^farmier were in Hodgson's hands when the 
Historia Coelestis Britannica went to print, no trace afpeared therein. 
Hodgson made no subsequent effort to publish them.

Baily's remark that LeMonnier's tables were 'evidently copied' from 
the unpublished Flamsteed manuscripts is partially true, in that he had 
access to them. However, it is equally evident that he wanted his tables to 
differ sufficiently from Flamsteed's that he could not be accused of 
plagiarism. His six pages of Equation of Centre are substantially those of 
Flamsteed, and gave columns for five different eccentricity values as did 
Flamsteed, however the last two values have been altered, and so all his 
Equation of Centre values are different in these columns. Ihe Flamsteed 
tables have pages of logarithms of the Earth-Moon distance, vtose values 
were between 5 and 6.5 for the most part, as are often found in'tables of 
this period, but these are absent from LeMonnier's opus. LeMonnier's second 
node equation is different, to vÆiich we new turn.

V  N c D d e  E q r  agatod-can .
Ihe ei^teenth century saw a diminution in the amplitude of this 

equation under the influence of IMM. We saw earlier hew IMM defined a 
triangle that generated the second node equation, but did not as such 
specify its peak value (Ch.9, VI), and hew this spawned a range of values 
for this function.

Table 14.2 shews hew Kepler's 1627 value appears as generally more 
accurate than subsequent ones; also, that Dunthome has copied from the 
Flamsteed tables, vdiile LeMonnier constructed his own node table; and that, 
with the exception of Cassini (1740) whose opus appeared to have no node 
equation table, the De la Hire textbook and Leadbetter's later 1742 cpus, 
all the ei^teenth-century textbooks here consulted were seeking this node 
equation in accord with the IMM instructions.
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Table 14.2: Amplitudes for the lunar node equation, ie the sin2(S-N) term

TMM - BASED OTHERS
1627 Kepler 1° 39' 46”
1653 Shakerley 1° 46' 00”
1661 Streets 1° 45' 00”
1681 Flamsteed 1° 39' 46”
1703 Flamsteed MS 1° 29' 41”
1716 Delisle 1° 30' 00”
1726 Graramatici 1° 29' 58”
1732 Wri^t 1° 29' 45”
1735 De la Hire 1° 34' 00”
1736 Leadbetter 1° 29' 45”
1738 Capello 1° 30' 00”
1739 IXmthome 1° 29' 41”
1742 Leadbetter 1° 45' 00”
1746 LeMonnier 1° 29' 34”
1719/49 Hailey 1° 29' 45”

correct value: 1 36' 11”

\ 7 n i  W m rd L ^ n -t. C X a J L m s  sl F t r X z e
In 1728, An Bmble Mdress to the Rt Honorable lords.., relating to the 

longitude was published in London by 'R.W', claiming to contain 'Sir Isaac 
Newton's theory freed from some errors of the Press'. It contained no 
Tables, but had six worked examples shewing TMM's seven-step procedure.
Both its third and sixth equations had their sign reversed. The average 
error of these six worked exanples was 8'.*

* Selecting two worked examples from the 1728 publication:

1698 June 16th 14h 47 min 
Wrist's answer: 274° 17' 35”
TMM2-PC 273° 46' 0”
correct 273° 47' 59”

1714 Sept 6th. 6h 35m 34sec LMT 
316°53' 10”
316°50' 46”
316°53' 30”
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Wri^t published a more extensive account in 1732, entitled N&/ and 
Correct Tables of the lunar Motions according to Nei/tonian Theory in which 
thirty worked exanples were given, all at lunar eclipse times, a position 
viiich set equations three, five and seven to zero. The accuracy of these 
worked exanples was ostensibly within an arominute or two.

Baily observed that Wri^t was the first Briton to public IMM-based 
tables, but then added:

'Ihe whole however is an abortive producticxi; for, only the second of 
Newtxai's equations is distinctly introduced; vhile the third & fourth 
seem to be wholly emitted, and the seventh united to the Variation. 
Moreover the maximum of eccentricity is quite at variance with 
Newton's assumptions.' (Baily p.701)

Baily was evidently misled by perusing Wrist's pages of worked exanples 
for the Moon at syzygy, where several of the new equations are omitted, 
having a zero value at the syzygy positions. Wrist's lunar eccentricity 
was indeed strangely small, reaching its maximum at 0.0619 as compared with 
IMM's of 0.0668.

Wri^t badly confused the apse equation: 'And above all it is to be 
remembered, that in order to find the eccentricity, from the Sun's true 
place was subtracted, not the first aequated but the second or true place 
of the Moon's apogee...' (1732, p.81) Conversely, IMM's text indicates that 
the 'Annual Argument' (Â -Ŝ  ) is represented in the IMM diagram by angle 
STB and not STF as it would be on Wright's interpretation (Ch.9, IV).

VXX T

In the view of Baily, the 'more perfect adoption' of IMM into a tabular 
form was accomplished by Charles Leadbetter in his Uranoscopia of 1735 
(Baily, p.702). Ihe computation there presented has seven steps and is IMM- 
based (Leadbetter 1735 p.84).

What Leadbetter published in 1735 resembled Hailey's then-urpublished 
version of IMM in several respects. It emulated this in employing:
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1) the sixth equation as its fourth. It did not incorporate Newton's 
modulations of the equations by seasonal etc terras, in Wiich respect it was 
a more rudimentary version.
2) the 1702 constants for the annual equations and for most of the other 
equations, except the sixth equation, iiAich became the fourth, for Wiich he 
took the 1713 value of 2'25”.
3) 35'10” for the variation without modulation.
4) the 1713 version of the maximal apse equation 12“ 18'.
5) the second node equation at l“29'45”.
This suggests that Leadbetter c±tained his tables priraarily from Halley. On 
the other hand he maintained the seventh equation, vMch Hailey omitted, 
and there was a distinctive feature in his presentation: his lunar Equation 
of Centre used the 'upper focus angle' of the ellipse, an approximate 
method associated with the Cambridge mathematician Seth Ward, and had a 
rather small maximal value of 4° 57'40”.

On the question of whether Leadbetter used Hailey's tables without 
acknowledgement, the testimony of Nicholas Delisle is relevant. His Lettres 
sur les tables astronomiques de M.Halley of 1749 recalled that, in the year 
1724, Hailey gave him a copy of his tables after he had promised not to 
shew them to any astronomer, and to reserve them for his private use (Baily 
p.705).

In 1742 a more comprehensive twa-volume textbook was publi^ed by 
Leadbetter, as the Second Edition of The Cowpleat Astronomer, the first 
edition having been in 1728 (I have not found any copy). Vol. 1 claimed 
that its tables were 'grounded iç»n Sir Isaac Newton's radices, and the 
Observations of Mr Flamsteed'; despite vhich, as Baily noted, all trace of 
the Newtonian theory has vanished, replaced by an older three-stage 
procedure.

In 1742 Leadbetter retained his 'upper focus' equation of centre 
method, calling it the 'evection', and vtot he called the 'reflection' now 
has the maximal value of 37'33” (See Ch.9, V for the Variation having a 
hitler value in non-Horrocksian theories) His 'reflection' varies as 2(L-S) 
and is clearly the same function. Delambre's Histoire had a section on
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Leadbetter, thooÿi admitting 'Cet astronome est peu connu'. Conceming the 
tables in Leadbetter's lunar theory of 1742, given without specifying his 
source, Delambre averred that one was from Streete and another from 
Shakerley, 'souvent reproduite'. I could not discern these resemblances.

Each of the 1735 and 1742 Leadbetter textbooks had two worked exanples, 
using radically different methods: the first using largely Hailey's versicai 
of lMM-2 and the second his own versicxi, of uncertain origin. Iheir 
accuracies for lunar longitude in arcminutes were as follows:

Leadbetter's worked examples compared: Error
1735 p.88 1731 May 7 lOh 6s 22“20'15" -4'.2
1735 p.90 1735 Sep 16 noon 6s 08"25'32 -2'.0
1742 p. 384 1741 Aug 28 16h2m 5s 06 “34'59" +26'
1742 p.383 1740 ̂ r  7 noon 9s 18“24'04" +16'

We can only wonder, as to how the author of the main British astronomy 
textbooks during Hailey's tenure as Astronomer Royal came to lose faith in 
the procedure of Hailey, and revert to a far less accurate method. Like 
Brent and in the same decade, he tried and then threw off the new 
equations. This may remind us of how novel was the notion of adding new 
equations.

IX. OfzJruesrr T a t t l e s
The Conpeiidioas Astronomer by Charles Brent of 1741 was similar to 

Wrist's in giving both the third and sixth equations the wrcxig sign, 
explaining: 'that Author [ie, Newton] having, by an Oversî it, made the 
third equation additive, Wiere it should be ablative' (p. 161). Ife also 
followed Hailey and Wri^t in taking the sixth equation as his fourth. He 
not surprisingly concluded that Newton's new equations were hardly 
necessary, and gave several final examples omitting them. His equation of 
centre was also rather inaccurate, giving one or two arominute errors. 
Brent's textbook was the worst of the 'Newtonians'*.

In Venice, tables were published by Angelo Capello in 1737, viiich 
followed the example of Hailey and Leadbetter of omitting the seventh 
equation and adjusting the remaining sequence. Capello compared their
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aocuracy with the ephemerides of Manfradius and Ghislerius, and with tables 
of Nicasius and De la Hire, for lunar latitude and longitude, finding his 
own the most accurate.

Richard Dunthome's 1739 opus reconstructed Mt-1, ignoring earlier 
works with its claim to be the first to construct such tables. Some years 
later he sent a letter on the subject to the Royal Society, A Letter 
concerning the Moon's Motion, vdiich offered two iicprovements to the lMM-2 
procedure: from the data in Flamsteed's Historia. Coelestis, Dunthome 
ascertained more accurately the solar equation of centre at 1°55'40", and 
that the mean moon required one arominute to be added on, which was 'very 
nearly' that advocated in the Third Edition of the Principia (Phil, Trans, 
1747, xliv fp.412-420; Delambre, 1827 p.598). Using these amended values, 
IXmthome ascertained that, for 100 eclipse times, the method predicted the 
lunar longitudes within 2-3 arcminutes (Ch. 11, III).

The treatise Nova Theoria Iimae (%psala archives) ty the Danish 
astronomer Peter Hbrrebov of 1718 purported to be Newtonian. Quoting from 
an English translation of its preface:

'.. .The maximum equation of ̂ xxjentre Newton has establi^ed to be 
12°18', from Wiioh the table has been computed according to the 
Flamstedian method. The excentricities of the Moon have been taken over 
from the Hbrrox-Flamsteedian tables... '

(Source: Craig Waff, vho at the Ihiversity of Aahrenius in Denmark received 
an English translation from Niels Jorgensen). The six pages of tables 
prepared by Flamsteed in 1702/3 for the Equation of Centre involved 
solutions of the Kepler equation accurate to arcseconds, v̂ iere both anomaly 
and eccentricity values varied. His achieving of such precision evidaitly 
had significance for other astronomers. Hbrrebov's theory was publi^ed in

* Comparing Brent's two worked examples with the TMM-2 program gave:
1729 Jan 2nd noon 1738 Dec 12th 5.27 pm. GMT

Brent c±tained: 3s 2°20' 15" 2s 5°24' 16"
TMM-2-PC gives: 3s 2°25' 59" 2s 5°27' 23"
Correct value: 3s 2°28' 20" 2s 5“28' 50"
- averaging seven arcminutes of error (see Table 14.3 over).
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Table 14.3: Accuracy of lunar longitude computations in textbook worked examples, 1650-1750. 
Author and publication date plus date and local mean time for the computation are given, then 
'LONG.' as the estimated longitude in degrees, minutes and seconds is followed by the 'error' 
column, the divergence of these values from the 'correct' modem value, with THM-based values 
displaced to the right.

AUTHOR Publican. DATE L.M.T LONG. E ERROR (MIN)
Lansberg 1632 1601 11 29 12.15 081 27 45 - 1 7
Lansberg 1632 1602 09 26 16.59 087 24 32 - 1 3
Wing 1651 1587 08 17 18 33 086 22 47 — 8
Shakerley 1653 1651 05 13 23 10 119 24 52 12
J.Newton 1657 1587 08 17 18.19 090 57 39 14
Pagan 1658 1638 09 04 11.47 127 37 17 31
Streete 1661 1586 09 22 14.24 067 24 24 - 1 0
Streete 1661 1594 12 19 15.03 133 49 36 2
Wing 1669 1587 01 15 14 23 145 34 35 1
Flam/Horrox 1673 1672 02 23 11.35 055 37 13 13
Flamsteed 1681 1680 12 22 06.35 065 09 52 11
Greenwood 1689 1594 12 19 15.03 133 48 08 -0 .4
Greenwood 1689 1586 09 22 14.24 067 26 24 -11
P.de la Hire 1727 1704 05 15 18 37 187 40 03 - 6
Wright 1728 1692 03 18 20.55 139 41 26 + 4
Wright 1728 1714 09 10 22.11 332 52 05 10
Wright 1732 1690 06 11 12.13 273 24 15 4-0
Wright 1732 1698 06 16 14.49 316 53 10 - 2
Leadbetter 1735 1731 05 07 10.00 202 20 15 - 4
Leadbetter 1735 1734 09 16 12.00 188 25 32 - 2
M.de la hire 1735 1704 05 15 18 45 187 43 38 - 3
Capello 1737 1719 10 30 10 42 065 52 53 4-0
Capello 1737 1719 11 26 16 50 065 49 05 - 5
Dunthome 1739 1737 01 02 03.40 074 08 13 - 7
Brent 1741 1738 12 12 05.27 065 24 16 - 5
Brent 1741 1729 02 02 12.00 092 20 15 — 8
Cassini 1740 1709 11 23 12.00 145 40 01 - 6
Cassini 1740 1710 02 28 00.31 339 34 31 - 2
Leadbetter 1742 1740 04 07 12.00 288 24 04 16
Leadbetter 1742 1741 08 28 16.02 156 34 59 - 2 6
Le Monnier 1746 1739 08 04 03.41 131 31 44 -1
Le Monnier 1746 1739 08 04 05.55 132 38 31 4-1
Hailey 1749 1684 07 02 02.41 110 52 29 - 2
Hailey 1749 1681 08 18 15.19 336 13 32 4-1
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Biblioteca Ncvissima in Magdebourg (according to Delisle's 'letter' of 
1750), however a substantial section on Hbrrebov in Delambre's Histoire 
(1827) made no mention of it, not did it a^jear in Horrebov's posthumous 
three-volume Operum (1741) so it can hardly have been widely known.

Table 14.3 compares the lunar longitude accuracies from worked examples 
given in textbooks 1650-1750, against a modem program, citing up to two 
per textbook. The date and time given as local mean time have been cited, 
together with the longitude as given.* Dividing these computations into the 
three groups of pre-1700, post 1700 non-Newtonian, and TMM-based, their 
mean errors appear as:

1) pre-1700 1'.9 ± 13' for 13 cases
2) post-1700 non-Newtonian -4'.5 ± 12' for 6 cases
3) TMM-based -2'.7 ± 4' for 15 cases

More of the ncxi-Newtonian textbooks of Europe would improve the second 
group, vAiich remains rather small. Nonetheless, this table provides 
evidence for a striking improvement in accuracy, even if not to the extent 
to vdiich, as we have seen, the TMM procedure was capable of delivering. It 
supports Gautier's view that the Newtonian tables of this period

'...surpassèrent toutes les précédents en exactitude' (1817, p.l3).

* Several adjustments are required to convert historical IMTs into the 
Ephemeris Time required for this test: a calendar change between New Style 
and Old for most European sources? twelve hours added on, as their IMTs 
started from noon; for European sources, longitude-based conversion from 
their IMP to GMT? and a AT correction prior to around 1680 (Ch.5,1), after 
vhich date it remains around merely ten seconds and so can be ignored. The 
AT adjustment as given in the Explanatory Sappleaent begins for the year 
1620, and alters rapidly in the first half of the seventeenth century, from 
124 seconds for 1620 (R.Stephenson and L.Morrisson, 1984). These AT values 
have been re-evaluated by Dr R. Stevenson in a paper submitted to the Phil. 
Trans, j, giving values of only about half this magnitude. He kindly provided 
AT values from 1580 (90 seconds) to 1650 (50 seconds), enabling the early 
worked examples of Table 3 to be computed, thou^ uncertainties in the 
value of AT remain large over this period.
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coisroHiXJS X oisr

Concerning the lunar observations siçplied by Flamsteed to Newton in 
1694, William Whewell wrote:

'And during this interval [ie, after publication of the Principia in 
1687], the result of the struggle depended \:çx:n the accordance of the 
theory with the best observations, which the Greenwich ones undoubtedly 
were. l%ion these obserations, then, depended a greater stake in the 
fortune of science than was ever before at hazard...' (1836, p.5).

A year later, he returned to the theme, this time in the context of 
Flamsteed's suçpDsed reluctance to part with his observations, his comment 
upon vhat was achieved being:

'The reformation of the tables [by Newtm] turned out more difficult 
than had been foreseen, and did not lead to any very great improvement 
till a later period.' (1837, p.180)

Whewell acknowledged IMM as the outcome of this endeavour (p.209), ie he 
appreciated that it worked to generate longitude positions from a given 
time. This apprehension hardly reappears until a century and a half later, 
in the 1989 account by Curtis Wilson (GHA pp. 266-268).

We have seen how IMM was a self-contained mechanism or set of 
procedures, devoid of theory. It cannot be defined primarily in terms of 
'the reformation of tables', after all it was first used in 1710 by the 
Rev. Cressner to generate lunar positions, before any such tables existed. 
Likewise, the present work has expressed its instructions as a flew diagram 
written onto a computer spreadsheet.

One would be unlikely to find a history of astroronoy or Newton 
biography Wiich mentioned IMM's sevenfold structure - even thou^, as Dr 
Waff has observed, its tabular format became widely emulated in astronomy 
textbooks of the first half of the ei^teenth century. Its seven-stage 
sequence was undoubtedly its distinctive feature. Starting with mean lunar 
motion, one 'equated' it throuÿi seven stages to reach an estimate of lunar 
centre in geocentric celestial longitude.
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ïhis Conclusion will survey briefly the evolution of lunar theory, as 
well as IMM's paradoxical role in Newton's theorising about gravitation. 
Ihere was never much to indicate that the practical prdolem of finding 
longitude was as such of interest to him, his primary motive remaining 
theoretical. Our study began with Gingerich's finding of little improvement 
in ephemerides accuracy through the Newtonian era (Ch. 1,1), which accords 
with the above-quoted view of Whewell, vhile the last chapter concluded 
that IMM-based worked examples in textbooks were indeed substantially more 
accurate than their rivals. We ccmment finally on the arrival of 
'Newtonianism' into Britain in the form of Tobias Mayer's tables, vhich 
ended the career of the Horrocksian model.

Ihis thesis has given definite answers to issues that have remained 
conjectural over centuries, by means of computer-aided reconstruction of 
the past. Home computers have of late become powerful enou^ to contain the 
very accurate equations required for reconstructing the observations of 
past astronomers, giving a new basis for evaluating their achievement. It 
is a fairly recent thing that this can be done reliably, eg the mean motion 
equations that Meeus published in 1991 were significantly more accurate 
than those in his earlier publications, to an extent that may have been 
critical for our investigation.

ability to decode IMM's instructions came about from a comparison of 
its diagram with Crabtree's diagram of the Horrocksian mechanism of 1642 
(Figs. 7.1 and 7.2). For about two years I wondered, what was the framework 
of space and time within vdiich they revolved? I realised that these 
diagrams pertained to motion within a space defined by the immĉ ility of 
the mean lunar apse. We could say that the Crabtree diagram thereby linked 
the numbers thirteen and ei^t: its eight stages unfolded over a period of 
thirteen months, depicting quarters and octants of solar apparent motion 
with regard to the lunar apse, during vhich period the epicycle in IMM's 
diagram revolved twice. Ihis generated apse and eccentricity equations out 
of phase, such that vihen one was at its maximum/minimum the other reached 
its mean position, and vice versa. Once this had been grasped, then the way 
was open to writing all the IMM 'equations' as simple trigonometric
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functions. Finally, the exact sequence of operations, here called the steps 
of equation, had to be interpreted from IMM.

CXdt computer model turned out to be considerably more accurate than the 
textbook worked examples of the period utilising TMM-based tables (Ch. 14, 
IX). This was due in part to the computer model lacking interpolation 
errors from use of tables, primarily from the Equation of Centre: the 
average standard deviation of IMM's errors was nearly two arcminutes in 
longitude, using its optimal format, vhereas a collection of worked 
examples from textbooks using IMM gave errors vhose standard deviation was 
four arcminutes.

With that qualification. Table 15.1 traces the evolution of lunar 
theories from Ptolemy to Meyer, comparing their accuracy (standard 
deviation in arcminutes) against the number of 'equations' in each theory. 
The initial five error-estimate values were derived from computer 
reconstruction of the models, ^hile sources for the last three are 
described below.

Astronomer Date No. of 'Equations' Aocuracv
Ptolemy 145 2 ±40
Flamsteed 1681 3 ±6.5
Newton 1702 7 ±3.8
Hailey C.1722 6 ±2.2
Lemonnier (IT®̂ 2) 1745 7 ±1.9
Euler 1753 ±1.7
Mayer 1754 13 ±0.5
Mayer 1763 ±0.3

Table 15.1: Lunar Theories from Ptolemy to Mayer, AD 145 - 1763, 
showing number of equations versus accuracy.

Gingerich reconstructed Ptolemy's lunar theory (1993, pp. 60-62), lowing 
not surprisingly that its main source of error was the then-undiscovered 
Variation, fluctuating by ±40 arcminutes. IWo lunar equations were known in 
the time of Ptolemy, as remained the case in the time of Copernicus, these 
being the evection and equation of centre. IWo further terras were



-237-

discovered by Tycho Brahe and Kepler, namely the annual equation and 
Variation (GHA p. 194, Stephenson 1987 pp.176-7), as well as the node 
equation. The first of these did not receive its correct physical 
interpretation until Flamsteed (Delambre p. 98). Horrocks combined the 
evection and equation of centre into a single mechanism, giving his theory 
just three stages. Flamsteed came down from the North of England with it, 
proclaiming it as the best lunar theory in existence.

Ihe first edition of HtFM contained gravitational arguments over the 
known inequalities, viz. the annual equation and Variation, as well as the 
Horrooksian rocking apse mechanism, but it had no practical value for 
astronomers. Its celebrated 'M̂ on-test' used uniform circular motion around 
an immobile force-centre to demonstrate the inverse-square law of gravity. 
Ihis utilised the sidereal period of the Moon (27.3217 days), its monthly 
rotation against the stars.

In the autumn of 1694, Newton perused Flamsteed's list of errors in 
lunar latitude and longitude as derived from the latter's De Sphaera of 
1681, which had been ascertained by comparison with the astronomer's own 
observations of ri^it ascension and declination. Ihe tabulated errors of up 
to ei^t arcminutes were almost an order of magnitude greater than those 
inherent in the cAaservations, therein Newton discerned the possibility of a 
new endeavour.

In the months following this visit he made at least one definite 
improvement, by adopting Hailey's modification of the Horrooksian 
procedure. In January 1696, Flamsteed was informed (by Hailey, presumably) 
that Newton had discerned six new equations (Oorr. IV p. 192). Our inquiry 
did not find that these were then articulated into a synthesis: Whiteside 
has well characterised this period as a transition 'From hi^ hope to 
disenchantment'. An unbridgeable gulf seemed to loom between the dynamics 
of an emerging gravity theory and the kinematic series of circular motions 
required by a lunar theory that would work. Ihe latter was based on the 
tropical lunar month (27.3216 days) as was used in practice by astronomers.
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Apparerrtly abandoning the task, Newton departed from Cambridge to 
become Warden of the Mint. Tatar in the 1690s, expression of pessimism were 
reported, with Flamsteed prohibited frcan publicly announcing that he had 
devoted a year to preparing and rectifying his lunar observations for use 
by the mathematician (Chi,IV). Instead, David Gregory was informed that 
Newton could not complete his lunar theory on account of the unwillingness 
of the astronomer to part with his data ( Memoranda by David Gregory, July 
1698, Corr. IV p.277). Some years later and in Germany, Leibniz heard that 
'Flamsteed withheld his observations of the moon from Newton. On that 
account they say he has as yet been unable to complete his work on the 
lunar moticai' (to Roemer, 1706, Westfall p.546), a story vhich endures to 
this day.

IMM appeared as a distinctively new synthesis, with six new equations 
added, four to the Moon plus one each to the node and apse, with a neo- 
Horrocksian formulation forming the centrepiece of its seven steps of 
'equation'. Its sole and rather conjectural allusion to gravity theory lay 
in two of its equations varying inversely as the cube of the Earth-Sun 
distance. In 1975 Cchen asserted of IMM that 'the rules contained therein 
had been derived in a new manner from a physical theory' (1975 p.56), 
echoing Gregory's claim in his preface to IMM of 1702 and many others 
since. A year later, Whiteside argued to the contrary, pointing out that 
IMM had introduced a Ptolemaic-type equant, as had been bani^ed from the 
heavens by Kepler a century earlier and resuscitated by Horrocks in the 
1630s. It contained this because the mathematics of circular motion was the 
only means then available for describing the required inequalities.

A more recent assessment coming from Dr Craig Waff may be cited. From 
preliminary manuscripts for IMM remaining in the 'Portsmouth collection' at 
Cambridge, Dr Waff discerned:

'a total absence of any evidence of theoretical deduction of these new 
equaticms. Most of the folios in this collection deal with the 
construction of lunar tables, the calculation of eclipses and related 
subjects; but there are no references to or uses of the theory of 
gravitation found among them' (1977, p. 70).

We can almost concur with such a view, except that, in these manuscripts.
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the tMD new annual equations to node and apse are presented as so deduced*. 
In general, however. Dr Waff's view concurs with the conclusion here 
reached, that Newtcm did not evidently deduce his new equations from such 
principles. And yet, we found that these equations were all valid and not 
far from their optimum amplitudes.

The separate components of IMM entered into the Principia of 1713, but 
in a manner that required familarity with the original version to discern 
their odierence, at least for a modem reader. Not all were in sequence, 
and the context was now dynamical, no longer kinematic, with each component 
analysed in terras of gravity theory. Ihis did not prevent a second epicycle 
from being added to the Equation of Center, a fact noted ironically by 
French historiansf. It was chiefly in this form, as given in the Second

* In 1976, Whiteside observed that these manuscripts (ULC, Add. 3966, 
section 15) were assembled 'mostly in wholesale confusion. ' Ihis largely 
remains the case, and is the reason why they have not been more referred to 
in the present treatise. Some evidently pertain to the 1694/5 period, Wiile 
the latest are pages of Hailey's tables transcribed, starting in June 1722. 
Of these Wiich can be dated, I suggest that those prior to 1700 hardly 
indicate use of the four new lunar equations. The Mathematical fapers of 
Isaac Newton edited by Whiteside, Volumes VII and VIII, surprisingly 
contain nothing on this subject, except for a few brief allusions in an 
Introduction (VII, pp.xxiv-xxviii).

I found that IMM-oriented computations in these papers tended to be 
written in English, the language in whioh it was first composed (Ch.9,1), 
Wiereas those concerning the Principia were all in Latin.

t  'Ce qu'il y a de plus remarquable dans ce traité ... adcpté̂  aujourd'hui 
de presque tous les Astronomes, et sur-tout par Newton, c'est que M. Maohin 
y fait revivre les Epicycles, pour expliquer tous les mouvements et toutes 
les irrégularités lunaires' ('De l'Orbite de la Lune dans le système 
Newtoniî n', Histoire de l'Académie Royale des Sciences, Paris 1746, p. 128). 
John Maohin composed an exposition on lunar theory for the 1729 English 
translation of PNFM.
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Edition of the Principia, that Hbrrocks's model spread across Europe, from 
Venice to %]sala, a century after its birth, and flourished briefly.

The SecCTid Edition's uneasy alliance between theory and practice in the 
lunar equations fractured in the Third Edition of 1725, with the deletion 
of a final paragraph in the Scholium to Proposition 37. As well as a 
derivation of the seventh equation (amongst the last to be added prior to 
1713), the paragraph contained the affirmation that lunar longitude was 
obtainable from these several inequalities as the aim of the exercise. In 
the Third Edition, the only one to appear in English, this Scholium merely 
discussed hew certain equations of motion were derivable from an inverse- 
square law.

I  Ftner&cdn Caonciitierrt

Pierre LeMannier treated PNFM's e>q>lanation of the Moon's annual 
equation as his prime case-study of gravity theory, and held forth for 
three pages on the matter:

'...I'orbite de la Lune se dilate, pour c^i dire, plus ou moins par 
l'action du Soleil, selon que Iĉ Terre & Iĉ Lune se trouvent à une plus 
grande ou à une plus petite distance de cet Astre.' (1746, p.142) 

D'Alembert rather doubted Wiether this derivation of the the annual 
equation was really sound:

'...il en est quelques-unes que M.Newton dit avoir calculées par la 
Théorie de la gravitation, mais sans nous apprendre le chemin qu'il a 
pris pour y parvenir. Telles sont celle; de 11' 49' qui dépend de 
l'ë%uation du centre du soleil...' (1754,1, p.xiv)

He was sure however that Newton had derived the Variation from gravity 
theory 'avec beaucoup de clarté et precision' (1754, Vol.l, p.xiii).

D'Alembert's also commented on the accuracy of Newton's lunar theory. 
Astrmomers had assumed TMM's error was within two minutes of arc, he 
recalled, only later discovering that it could rise to five:

'.. .ce n'a été qu'après plusieurs années qu'on s'est apijercu que 
l'erreur montent quelquefois à 5 minutes...' (1754, Preface, viii).
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Tîiis was an imderestimate as IMM had a twioe-yearly periodic error of six 
or seven minutes of arc (Ch.11, Fig 3a), plus a mean motion error of one or 
two arcminutes over its period of use.

The root of the problem was a lack of credibility in accounting for the 
Hbrroxian rocking apse line and oscillating eccentricity by a gravity 
theory. Concerning the claim that the Horrocksian mechanism had been 
derived from gravity theory (Ch. 12, V), the French historian Bailly 
remarked:

'il [Newton] I'a laissé subsister comme une vraisemblance que 
peut faire attendre la vérité et tenir sa place' (1779, p.509).

He dismissed the Hbrrociksian theory tersely: 'ce n'est point une cause 
physique'.

I I  mrtG  S H ^ r r t .  D e c a d e s

Several decades elapsed prior to astronomers adc^ting the IMM 
procedure. Those in early ei^teenth-century Europe vho declined to do so 
retained a three- or four- stage method, the former based on that of 
Streete or Flamsteed and the latter exemplified by the French family 
traditicxis of the De la Hires and Cassinis. Notable in Britain was 
Leadbetter, vho first advocated the Newtonian procedure with modifications 
due to Hailey, then in 1742 renounced it in favour of a less accurate 
Flamsteedian procedure.

Edmond Hailey was the first to use IMM systematically, completing his 
tables in the early 1620s, shortly after he became the new Astronomer 
Royal. Hailey made one or two adjustments, simplifying IMM and adjusting 
the ordering of its equaticxis, on the basis of having cŒisidered the matter 
for two decades, whioh as we saw rendered his procedure less accurate than 
the (corrected) 1702 version.

Around 1724, both Nicholas DeLisle in Paris and Hailey at Greenwich 
had TMM-based tables ready for publication but declined to do so, for 
reasons not entirely evident. Ihe view as given by eg Forbes, that Hailey 
withheld publicaticxi of his tables on account of his wish to improve them
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frcm his tvro decades of observations (Ch. 13, III), was rejected, as his 
final tables published posthumously were unaltered from those he started 
off with in 1722.

A copy remains of Delisle's tables in the Cassini Ctoservatory 
Archives in Paris, lacking a statement of authorship. No copy remains of 
the 'Flamsteed' tables copied by L^fonnier for his Institutions 
Ĵ stronomigaes of 1749, nor have copies been located of the tables Hailey 
used in his two decades as Astronomer Royal, even thouÿi they were eagerly 
copied by European astronomers. The non-publication of Nicholas DeLisle's 
extensive correspondence is here regrettable. Débité such gaps in the 
historical record. Dr Waff's thesis has been largely ccxifirmed, that;

'.. .nearly all net/ lunar tables constructed during the first half of 
the ei^iteenth century utilised in some fashion his tabular theory 
[ie, IMM]' (Cohen 1975 p.79).

We have not improved upcn his list of ten European astronomers vtoo prepared 
such tables (Ch.14, I).

XXX SacircDS

Hailey appears as something like the discoveror of the 18-year Saros 
cycle*. His skill in eclipse prediction was based upon it, as DeLisle 
observed in his 1750 letter on the subject, d̂iich eqaertise was transferred 
to the problem of longitude. A section entitled 'Saros' in Leadbetter's 
textbook of 1742 is presumably its first mention in an astrcxicmy textbook 
where its duraticxi was clearly specified. Leadbetter there inserted an 
apology to the effect that, earlier, he had

'...called [it] Mr Whiston's Period; but Dr Hailey assured me, that 
that gentleman had it from himself & desired me to let the world know 
so much' (A Compleat System of Astronon̂ , Vol. 1.), 

indicating its novelty to astronomers of the period. Later, Nicholas 
Delisle, vAx) was in wide correspcxidence with other astronomers, affirmed 
that:

'M.Halley avoit établi cette période de 223 lunations [the Saros] ou 
revolutions synodiques de la Lune, que s'achevoient, suivant lui, en 18 
ans,10 ou 11 jours, 7 heures, 43 minutes, 45 seconds' (letter of 1750).
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adding that Hailey had in 1714 'chosen' the Saros that began in 1700 to 
compute solar and lunar eclipses. Shortly after, D'Alembert referred to 'Le 
période de M.Halley' as comprising 223 lunations (1754, Vol.3, p.xv). While 
he was thus credited with discovering this period, posterity was less 
enthusiastic about his application of it.

Astronomers on both sides of the Channel rejected Hailey's use of the 
Saros in an error-correction procedure. The French doubted that errors in a 
theory would recur in such a manner: Delambre damned the method as 
'useless', and worse, 'ce n'était pas selon le science' (D'Alembert 1754, 
p.xv; Delambre 1827, p. 282). In Britain it was widely misunderstood (Ch.
13, III). Our basis for disagreement with such experts lay in the 
computer's ability to reconstruct the synchrony vhich Hailey soumit, ^Aich 
confirmed that his method would in fact have worked, just as he claimed.

Hallo's evident failure of communication on this matter suggests 
more originality on his part than is normally assumed. In Hailey's time it 
was fashionable to attribute notions to the ancients by way of conferring 
respectability, and his attribution of this period to antiquity seems to 
have been unduly successful*. One of the first astronomers to be overtaken 
by the pace of progress, his painstaking observations and his Saros 
technique were obsolete vdien published posthumously in 1749, replaced by 
Newtcxiianism arriving from the Continent.

* Neugebauer argued against the view that the Chaldeans used the Saros 
cycle for eclipse prediction, or that th^ assigned any definite meaning to 
the terms 'Saros', describing these as 'generally accepted historical 
myth. ' However, he accepted that they used a 'crude 18-year cycle' for 
predicting lunar eclipses. He noted that 'There exists no cycle for solar 
eclipses visible at a given place' (1957, pp. 141, 142). Clearly, however, 
the cycle was given in Ptolemy's Almagest as known to the Chaldeans and as 
interlinking the synodic, anomalistic and draconic months (Neugebauer, 
History of Ancient Mathematical Astronon̂ , Vol. 1, 1975, p.310). For a more 
recent discussion see North, 1994, pp. 35-47.
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m v  E n c i  o f  t z ln o  H o % r z r o c ü < s j_ a r i E z r a
What came to be called the 'Newtonian' approach rejected Newton's actual 

procedure. Ihe features vhich came to be ascribed to him in popular 
accounts, such as use of second-order time-differentials, and for that 
matter trigonometric functions of temporal variables, entered Britain in 
the shape of Tobias Mayer's theory of lunar motion. Ihis was a theory in 
the modem sense, as having been derived from principles of gravitation. It 
had no oscillating apse line or varying eccentricity, the core of 
Horrocks's theory.

Mayer was posthumously awarded the longitude prize in 1760 for having 
accomplished vAiat in 1683 Flamsteed viewed as unattainable. His work was 
grounded upon that of Leonhardt Euler, whose Theoriae Motuum lunae was 
published in St Petersburg in 1753. The latter's theory had maximal errors 
of ± 5' (Forbes, 1980, p. 142), and as such was hardly any improvement upon 
that of Newton half a century earlier. One year later, Mayer's Novae 
Tabulae Solis et Iimae were published in the Gottingen Cowwentarii (Forbes, 
p. 142), with Britain's Astronomer Royal Bradley expressing the view that 
they did not err by more than one and a half arcminutes (letter to the 
Lords commissioners of the Admiralty of ̂ Dril 14, 1760, Mayer, 1770, 
p.cxi).

Britons read about Mayer's theory in the August 1754 edition of the 
Gentleman's Magasine. It was there eĵ lained hew the remarkable accuracy 
had been obtained by use of eclipse positions separated by Saros intervals, 
or multiples thereof, vMch facilitated the checking of his mean motions.
To quote Forbes, Mayer used 'the method proposed by Edmond Hailey for the 
calculation of lunar and solar eclipses' (1980, p. 136). Where Hailey used 
the Saros to add an irregular error-correction to IMM, Mayer used it for 
discerning the fine adjustment to his equations (Forbes, 1980, p. 136).

Mayer followed Euler in halting the oscillation of the apse and lunar 
eccentricity : Euler had 'first substituted a constant equation of the 
centre, along with the evection, instead of a variable eccentricity. ' For a 
century, centred on the Newtonian endeavour, the lunar apse oscillated, 
since which it has retained but a single forward motion. Ihe oscillating
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ellipse in the Horroxian theory did however suggest to Euler his method for 
analysing the variation of orbital elements (GHA, p. 201).

Lastly, the author of this article (J.B., identified as John Bevis) 
explained that 'the motion of the Moon's longitude is to be corrected by 13 
equations.' It had thirteen stages requiring tables, althou^, using 
'equation' in its modem sense, Mayer's theory contained a far larger 
number, a sequence of 122 such being listed in his Theoriae Iimae published 
posthumously in 1767 (pp. 23-28).

Mayer died in 1762, leaving some improvements to his theory, tables 
utilising which were prepared in 1763. Ihe Nautical Almanac of 1767 
utilised Mayer's final version of his theory, and had a standard error of 
±17” in its lunar noon longitudes (Ch. 1,111). If we conjecture that vhat 
historical persons meant by maximum error of a theory, was thrice the 
standard deviation of its error, then Mayer's first theory had a standard 
error of ±30", indicating the remarkable inprovement he achieved between 
first and final formulations of his theory.

Eight decades after Newton and Gregory visited Flamsteed in the 
Autumn of 1694 at Greenwich, there inspecting tables of discrepancies 
between theoretical and observed values of lunar longitude, stimulating the 
mathematician to begin that endeavour vhich we have here examined, the 
great prc±>lem was resolved. Ihe three-body problem was solved in a manner 
far beyond the scope of the present treatise. Ultimately it was a story of 
success, of successful endeavour: in the course of vhich, the stars 
received their numbers frcm the Observatory's first occupant, time became 
measured from the setting of his clock, and longitude divisions of the 
globe were marked from his workplace.



-246-

A.E>r>ElSrD X  C E S  
I Some AstrcncmiccLL Oonstants, ocmpared with Hf€
Seme values such as solar eccentricity have a secular carrpionent, and the 

Explanatory Supplement of the Astronomical Ephemeris has been used to 
locate these, with advice from Bernard Yallop of the Nautical Almanack 
Office of the ROD.

LUNAR
Etacentrioy, mean 0.055050 0.5490 +0.2%

max 0.066782
min 0.043319

Inclination, mean 5“08'27" 5“08'43" -16"
max 5“17'20" 5“20'06"
min 4“59'35" 4“57'22"

SOLAR
Eccentricity 0.016917 0.016834 +0.5%
^3se motion l“45'/century l“ 43'/century
Tropical year 365d 5h 48m 57s 365d 5h 48m 47s +10s
Sidereal year 365d 6h 9m 14s 365d 6h 9m 9s +5sec.

X X  XTne E q u a t i X o n s o f  Mearsn M o t d L o n
Table 16.1 shows mean epoch positions computed for several centuries, 

using formulae of: Meeus 1992 (Belgium), Chapront-Touze (France), the US-UK 
1992 Explanatory Supplemement, and occasionally the 1961 UK Explanatory 
Supplement (of the Astronomical Ephemeris). Ihis Table shows a Lotus 
spreadidieet, vAich does not give formulae as such, but merely the numbers 
generated at each step by the formulae. The Chapront-Touze computation is 
in arcseconds, vdiile those of the Astronomical Ephemeris and Meeus are in 
degrees. Mainly, Meeus has just converted Chapront-Touze's equations from 
arcseconds to degrees.

For lunar longitudes, the ri^t-hand column (c-b) shews the Meeus and 
Chapront-Touze equations giving comparable positions, for integer Julian 
century values AD 1600 to 2000. A fraction of arcsecond difference results 
from a speed of lî it correction applied by Meeus. The adjacent column, (a- 
b) shows differences between the US-UK values and the Continental ones.
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Table 16.1: Mean solar/lunar notions for century epoch dates, comparing results from modem formulae.

MEAN MOON COMPARISON JULIAN TIME NOON, DEC 31, N.S.
a b c a -b c -b

J.DATE J.CENTURY DATE ASTR. EPH. MEEUS CHAPR-T differences in arcsecs
2451545 0 2000 218.3164 218.3165 218.3166 -0.36 0.36
2415020 -1 1900 270.4335 270.4338 270.4338 -1.08 0
2378495 -2 1800 322.5474 322.5485 322.5487 -3.96 0.72
2341970 -3 1700 14.65816 14.6605 14.6607 -8.424 0.72
2305445 —4 1600 66.76568 66.7699 66.7701 -15.192 0.72
2335043 -3.18965 OS 1680 181.7579 181.7605 181.7607 -9.36 0.72

ASTR. EPH. for J.cent:
—o

218.3164 -Hl337r.T +307.881 .T -■0.0016.T.T
218.3164 0 156.3562 0.0144 = 14.65816 degrees

MEEUS for J.cent:
“O

218.316 + 481267T -  0.0013T*T
218.3165 -203.644 0.011943 — 14.66049

CHAPRONT -TOUZE:Q
218.3166

—O
-733118 -42.984 14.66068

-203.656

SUN for J. cent: —3
EXP.SUPP. 280.465 -357.151 0.0027 — 278.1622
MEEUS 280.4665 -2.30949 0.002729 — 278.1597
RG01961 279.6967 -1.53785 0.00121 — 278.16

PERIGEE for J. cent: —3
MEEUS: 83.35324 -327.041 -0.09292 — 116.2192
CHAP-T: 83.3532 -327.041 -0.09292 116.2192

NODE for J. cent: —3
EXP.SUPP: 125.0445 -42.4087 0.018495 — 167.4717
MEEUS 125.0446 -42.4086 0.018684 — 167.4718
CHAP-T: 125.0446 -42.4086 0.018686 — 167.4718

APHELION for J.cent: —3
MEEUS: 102.9373 -5.15856 0.004 = 97.78279
R.G.O. ’61: 101.2208 -3.43835 0.001811 = 97.78426
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amounting to as much as 15 arcseconds for 1600. The latter are more iç>-to- 
date, and are more convenient, since they give the five variables as we 
require them, vàierease the others give anomaly values. The rest of the 
Table oorapares different coraputatians for mean node, perigee, sun and 
aphelion, for a time-value here set at -3 Julian centuries, ie the ̂ x)ch 
Dec. 31 noon GMT 1700.

The formulae from Meeus' 'Astronomical Algorithms' (1992) supercede 
the formulae given in his 'Astronomical Formulae for Calculators' of 1986, 
”vhich were based on the older lunar theory by Brcwn" (Meeus). For solar 
longitude Chapront-Touze's table (1988, p.346) differed from Meeus', as 
Chapront's table gave solar position refered to a fixed equinox of 2000, 
whereas tropical longitude requires the equinox of date. See also 
M.Chaprcxit-Touze and J.Chapront, 1992, p. 12 for mean equations in degrees.

The Meeus 1992 equations for mean motion are as follows. Let JD be 
(classical) Julian Day, then the time T measured in Julian centuries from 
J2000 is given by:

T = JD - 2451545.0 
36525

The the following Meeus expressions are all in degrees of tropical 
longitude, ie referred to the mean equinox of date.
Moon's mean longitude:

L' = 218.316459 + 481267.881342T -0.0013268T"
Mean longitude of Sun (gecxnetric, ie without aberration) :

L = 280.46645 + 36000.76983T + 0.0003032T"
Longitude of mean ascending node of Moan's orbit: 

n = 125.044555 - 1934.136184T + 0.002076T"
Longitude of perihelion of Earth (=aphelion of 'Sun'):

TT = 102.93735 + 1.719526T + 0.00045962T"
Longitude of perigee of lunar orbit:

TT' = 83.353243 4- 4069.013711T - 0.0103238T̂
TVü examples of Explanatory Supplement Equations: 

n = 125°2'40”.3 -(5̂  + 134°8'10".5)T 4- 7”.4T"
L'- n = 93“16'18”.9 + {1342̂  + 82°1'3".1)T - 13".25T̂
(5̂  = 5 X 360:)
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X I X  M e a n  M o t i o n s  Xaroxn
T e x t i o o o ü c s  X e S O  — X "750

Ecliptic longitudes were cited as signs (ie, 30“intervals), degrees, 
minutes and seconds, for mean positions, normally for noOTi on Dec. 31.
Three sets of epoch values for the five variables are given, see Ch.5.
There were different conventions for their use, some tables citing them for 
1680 eg and others, 1681. The series of Julian dates shewn in the 
spreadsheet (end of Ch.5) differ by 7305 days, as the period between 20- 
year intervals; however, sometimes I had to add one day to the 1620-1660 
epochs to fit the tables. Thus, Shakerley had a solar longitude of 291° for 
1660 epocti, vhile the Lotus table (Ch.5, V) gives 290“ for that period. For 
continental values, calendar change and time adjustment also had to be 
allowed for: in matching the modem equations to historic values, a 
discrepancy of a year appears in apogee and node values, that of a day in 
solar positicxi and that of hours in lunar longitude.

MCXK SUN NODE APOGEE APHELION
Wing (1651)
1601 0.7. 33.29 9.19.58.34 9.11.35. 4 7.19. 0.30 3. 5.43.28
-H40 8.27. 7.28 17.57 1.23.40.27 6. 7.43. 8 0. 0.41. 5
-H60 1.10.41.12 26.56 2.20.30.40 9.11.34.42 1. 1.38
4-80 5.24.14.56 35.54 3.17.20.54 0.15.26.16 1.22.10

Shakerley (1653) anomaly
1620 5. 4.15.14 9.21.6.15 - 6.11.16.17 3.5.54.14
1640 9.17.48.57 15.13 7.20.58.19 6.13.11
1660 2. 1.22.41 24.12 9. 0.40.20 6.32. 8

Newton, J (1657) (in decimals) anomaly
1620 154.2539 291.0982 191.271 95.9068
1640 287.816 291.2477 - 230.972 96.2227
1660 61.378 291.3972 270.672 96.5385

Streete
1641
1661
1681

(1661)
7.17.50. 0 
6.20.59.30 
5.24. 9. 0

1.26.35.0 
5. 0.25.0 
8. 4.15.0
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Riocioli (1665) 
1600 7.25.19.20
4-40 8.27. 7.32
4-60 1.10.41.19
4-80 5.24.15. 5

SUN

9.19.55.58
18.24
27.36
36.48

NCX)E

9.11.22.50
1.23.40.27
2.20.30.40
3.17.20.54

APOGEE

0. 7.27. 9
2.19.24. 2 
3.29. 6. 4 
5.18.48. 5

APHETTON

3.7.39. 8
0.41.23
1. 2. 5
1.22.46

Flamsteed (1681) 
1661 1.18.10.14
1681 6. 1.43.58
1701 10.15.17.44

9.20.25.46
34.48
43.50

6.21. 4.47
5.24.14.33
4.27.24.20

5. 0.21.51 
8. 4.11.51 
11. 8. 1.51

3.6.35. 0
6.51.40
7. 8.20

La Hire (1687) 
1600 0.20.38.25
-1-60 1.10.42. 1
4-80 5.24.16. 1
1700 6. 3.32. 1

9.11.5.45
27.30
36.40

9.10.52.27

9.11.38.14
2.20.30.40
3.17.20.54 
4.28. 2. 4

7.18.52.56
9.11.32.34
0.15.23.25 
11. 6.53.40

3.6.25. 0
1. 1.30 
1.22. 0

3.8. 7.30

GreenwcxDd (1689) 
1661 
1681 
1701

anomaly
8.17.44. 0
9.27.27.45
11. 7.11.30

6.20.59.30
5.24. 9. 0
4.27.18.30

5. 0.25. 0 
8. 4.15. 0
11. 8. 5. 0

Whiston (1710) 
1681 6. 1.45.45
1701 10.15.19.50
1721 2.28.53.55

9.20.34.46
43.50
52.54

5.24.14.35
4.27.24.20
4. 0.34. 6

8. 4.28. 5
11. 8.18.20 
2.12. 8. 6

3.7.23.30
40.10
56.50

Grammatici (1726) 
1700 5.19.58.10
4-20 10. 3.32.15 
4-40 2.17. 6.20

9. 9.51.25
9.10. 0.29
9.10. 9.33

0.27.59.23
4. 1. 9. 8 
3. 4.18.53

11. 7. 4.35
2.10.54.50
5.14.45. 5

3.7.44.28
3.8. 5.28
3.8.26.28
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Wri^t (1732)
1721 2.28.53.55 9.20.52.54 4. 0.34. 6 2.12. 8.35 3.8. 5.30
1741 7.12.28.00 21. 1.58 3. 3.43.51 5.15.58.50 26.30
1761 11.26. 2. 5 11. 2 2. 6.53.35 8.19.49. 5 47.30

Capello (1737)
1720 10.3.32.20 9.10. 0.14 4. 1. 9. 8 2.10.54.50 3.8. 5.28
1740 2.17.6.25 9.17 3. 4.18.53 5.14.45. 5 25.28
1760 7.0.39.45 18.21 2. 7.28.38 8.18.37. 3 47.29

Dunthome (1739)
1721 2.28.53.55 9.20.52.54 4. 0.34. 5 2.12. 8.35 3.8. 5.30
1741 7.12.28. 0 21. 1.58 3. 3.43.50 5.15.58.50 26.30
1761 11.26. 2. 5 11. 2 2. 6.53.35 8.19.49. 5 47. 3

Cassini (1740)
1720 5.24.29.14 9.10.16.26 4.20.31.53 1. 0.18.26 3.7.56.30
1740 10. 8. 3.13 25.35 3.23.41.39 4. 4. 9.17 8.17. 5
1760 2.21.37.12. 34.43 2.26.51.25 7. 8. 0. 9 37.40

Le Monnier (1746)
1720 5.24.30.29 9.10.16.19 4.20.28.46 1. 0.16.51 3.8. 4.25
1740 10. 8. 4.34 25.23 3.23.38.31 4. 4. 7. 5 25.25
1760 2.21.38.39 34.27 2.26.48.16 7. 7.57.20 46.25

Leac3better (1742) anomaly solar anomaly
1721 2.28.54. 5 9.20.52.54 4. 0.33. 5 0.16.43.50 6.12.47.24
1741 7.12.28.10 9.21. 1.58 3. 3.42.50 1.26.27.40 35.28
1761 11.26. 2.15 11. 2 2. 6.52.35 3. 6.11.20 23.32

Hailey (1719/49)
1701 10.15.20. 0 9.20.43.33 4.27.23.20 11. 8.20. 0
1721 2.28.54. 5 15.39 4. 0.33. 5 2.12.10.15
1741 7.12.28.10 28.45 3. 3.42.50 5.16. 0.30
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I V G L O S S A R Y  O F  T E R M S  U S E D  XIST
T E X T

ANNUAL ARGUMENT ÏMM's term for the angle in zodiacal longitude between the 
aphelion and mean sun.

ANNUAL EQUATION Correction to be applied, using Kepler's second law or 
some approximation thereto, to uniform circular motion in the course of a 
year, eg of the Sun.

ANOMALISHC 10ÏIH 27.5 days, the interval between lunar conjunctions with 
its mean apse.

APOGEE Furthest distance of Moon from Earth each month; this term was also 
used to denote aphelion. Earth's furthest distance from the Sun, in TMM.

ARGUMENT Angle from vAiich an 'equation' was computed, eg the 'annual 
argument' referred to the Sun-apse angle.

APSIDES The two points in the orbit of a planetary boc^ at which it is at 
the greatest or least distance from the body about vhich it revolves. The 
APSE LINE joins these two points. For an elliptical orbit (not assumed in 
TMM) it is the major axis.

DECUNATICN Angle measured from the celestial equator and at ri^t angles 
to it, taken conjointly with Right Ascension; this was replacing the older 
system of measuring position by celestial latitude and longitude.

BCGENTRIdTY Conceiving an orbit as circular about a displaced centre, and 
taking the radius as 10% then eccentricity was the distance of that orbit 
centre from the position of the Earth about which that orbit was described; 
or, about the Sun instead of Earth.

EPHEMERIS Table shewing predicted positions of a heavenly body for every 
day, or some multiple of days, during a given period.
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EEOCH for mean motion values: usually over twenty-year periods, mean 
motion 'radix' positions were specified usually for nocxi of December 31st.

BGUATIŒ The angle that is required to be added to a mean moticxi in order 
to 'correct' it.

BQUINCXmAL POINT Zero Aries in tropical longitude.

BQÜAITCW OF ÏHE CEMIRE is the difference between true and mean anomalies. 
The principal adjustment used in TMM, vtereby an approximation to the 
Kepler-equation, for a given eccaitricity and apse positicxi, was added to 
mean moticxi.

BQUAnON OF TIME What Flamsteed called, 'The Equation of the Naturall 
Days', vdiereby the noon 'teanopus apparens' deviated from uniform time, based 
on the Earth's uniform rotation.

'HQRROX ANGLE' What TMM called the 'Annual Argument' varied with the angle 
between the mean sun and mean apogee, here referred to as the Horxox angle. 
Its period is thirteen months or 411 days.

'IO®OX-WEIEEL' The name here given to a deferent-Wieel attached by Hbrrox 
to the mean apse line, vdiose revolution period was 6.75 months, vdiich 
generated both the seccxjd apse equation and the varying eccentricity.

JULIAN YEAR, by which time in TMM was measured, was 365.25 days, as 
compared with 365.2425 days of the Gregorian calendar which Europe was then 
using.

MEAN ANOMALY Angle between planet or luminary and its mean apse.

MEAN SUN This moves with uniform angular motiŒi along the ecliptic, and 
coincides with the true or co-equated sun twice yearly, at the apsides.

IKXfES Points \j*iere the lunar orbit intersects the plane of the ecliptic.
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OBLIQUITY OF ECLIPTIC Inclination of the ecliptic to the celestial 
equator.

OCTANTS Usually the 45° and 135° angles between the Sun and Moon, formed 
four times per month; or, when Newton wrote 'Wien the moons apoge is in the 
Octants' it referred to the Sun-apse angle having such a magnitude.

PEEUIGEE Nearest approach of Moon each mcxith (or of Earth to Sun, in TMM).

FKOSIHAFHAEEŒSIS Term(s) to be added to an anomaly value to 'co-equate' it 
Wiereby the 'true' orbit positicai was attained.

QUADRAIURE 90° angles between (usually) Sun and Mocti, formed fortni^tly.

RnXJCncxi The transform of positions from the lunar orbit plane onto that 
of the ecliptic.

RIGHT ASCENSIŒ This term is not used in TMM, but was the form in Wiich 
data was supplied to Newton by Flamsteed, as degrees measured on the 
celestial equator.

SAEÎOS A period of 223 lunations, or 11 years, 10 or 11 1/3 days (depending
on leap years), Wien several mæthly cycles closely coincided.

SIDEEŒAL Lunar period of 27.32 days as orbit period against stars,
referred to but not used in TMM.

SYNODIC Lunar period 29.53 days, as mean period between Full Moons.

SYZYGY The ccxijunction and c^positioi of Mocti and Sun, or the line joining 
these two positicxis in space.

TROPICAL Year is time for Sun to return to the Vernal Equinox.

VARIATTĈ T A lunar inequality of period half a lunar month, maximal in 
octants.



V *IMM on. a ILotus iSpatrea.c3slnœft.
The program has been set for the moment of Dunthorne^s worked example, see Chapter 8,1 and 
table 8.2, with time value at the top left, below which are the 'mean motions.'

t = 
M= 
S= 
A= 
H= 
N=

T -  VALUE 
20456.15 
80.11963 
293.124 

3.453208 
98.37185 
170.9854

SEVEN MCKNS STEPS OF EQUATION

M1 = 
M2= 
M3= 
M4= 
M5= 
M6=

80.06947
80.1117

80.12357
74.81506
74.20712
74.18568

Deg

-5

Min 
-3  
2 
0 

— 18 
-36 

- 1
SI = 293.6279 M7= 74.1633 -1
A1 = 3.538003 M end = 74.1421 -1
A2= 354.2118 ANSWER: 74 8
N1 = 170.9451
N2= 169.5718

FIVE MEAN MOTIONS
THE FUNCTIONS M: 181.763 13.1764 269720.1
f = 0.046705 S; 290.579 0.985647 20453.12
9 = 9.326157 A: 244.468 0.111408 2523.453
h = -5.30851 H: 97.392 0.000048 98.37185
j = 1.37332 N: 174.243 0.052955 -909.015

Sec
0

32
42

-30
—28
-17
-20
-16

31

Annual Eq 
2nd Eqn 
3rd Eqn 
Eqn Centr 
5th (Variar 
6th Eqn 
7th Eqn 
Reducn

PI
3.141593

360

-189.015

FOUR ANNUAL EQUATIONS
S1 = 293.6279 0.493744 0.254639 -3.39907 -194.752 -0.0101 -0.49249

Ml = 80.06947 -0.05016 0.254639 0.051224

A1 = 3.538003 0.084795 0.254639

N1 = 170.9451 0.040233 0.254639

f = 0.046705 0.848405
THREE
0.71979

FUNCTIONS
-0.32562 -0.76402 -10.126 -580.18

9 =

j =

9.326157

1.37332

0.162772

0.023969

0.162054

0.023974

13.81419

37.91617

0.645187
0.908985
-0.41683

-10.126

-4.28244

-580.18

-245.365

M2=

M3=

80.1117

80.12357

0.006452
0.042226
0.011871

SECOND AND THIRD EQUATIONS 
0.645187 -10.126 -580.18

0.908985 114.6346

6.544831 -0.96476

A2=

h=

-5.78815

-5.30851 57.29578

EQUATION OF CENTRE 
-0.02222 -10.186 

0.093384 
-5.33689 0.093384 

3rd term: 0.00616

-0.14222

-0.99746
0.000108

3.2843

4.783743
0.977204

188.1766

274.0883
102.2648

M4= 74.81506

M5=

M6=

74.20712

74.18568

-0.60794

-0.02144

-0.97677

-0.59369

-7.63801

5.64755

-437.626

323.5808

0.622401 -0.0301
-0.96476

M7= 74.1633 -0.02238 219.4422 -0.6353 1.817935 -0.00367 0.035221

N2=

M end =

169.5718

74.1421
-0.02121

THE REDUCTION

-0.02185
-0.02121

-0.02168

-0.37279

-0.18691

-4.33037

3.329605

-248.112

190.7723
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Josefii-Nioolas Delisle, Tables du Soleil & de la Lune suivant la théorie de 
Mr Newton dans la 2nd Edition de ses Principles, calculées en 1716 
Observatoire de Paris Archives, MSS A2.9, No.23.

Josefii-Nicholas Delisle correspondence, Paris Conservatory MSS Bl.

John Flamsteed, Lunar Tables, 36 pages at CUL, RGO1/50H, notebook dated 
1702-1714.

Edmond Halley, Astronomical Notebook, fair manuscript copy 518 , in
Royal Astroronical Society Library.

Jeremiah Horrox, RiilosofOiical Exercises. Ihe Second Part, ULC, RGO 1.68B.

ty 1726
between Newton and Hailey).

Journal Book of the Royal Society 1726, XII, 1720-261̂ (report of exchange

Isaac Newton, Theory of the Moon Royal Society MS 247, ff. 15/16, copy by 
David Gregory, 4 sides written on two pages, dated 27 Feb then 25 Mar 
1700; original at ULC, Add.3966,10.

Isaac Newton, manuscripts on Camoarison of the calculated place of the Moon 
with Observation, (c. 1694-1724, but not in chrcaTological sequence), ULC 
Add. 3966,15.

Francis Baily, An Account of the Revd. John Flamsteed. The first 
astroronaer-Royal. compiled from his own manuscripts, and other 
authentic documents, never before published ' 1835, reprinted
(Holland) 1966.

Francis Baily, Supplement to the Account of the Revd. John Flamsteed. 
London 1837, facsimile reprinted (Holland)) 1966.
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I.Bernard Cciien, Isaac Newton's Theory of the Moon's Motion C17021. With a 
bibilioaraphical and historical introduction. Folkestone, 1975.

La Connoissance des Temps Paris 1686 (for Equation of Time).

The Correspondence of Sir Isaac Newton and Professor Cotes. Ed. Jose^ 
Edleston _ 1850, facsimile reprint 1969.

William Crabtree's letter to Gascoigne of July 21, 1642, on Horrox theory, 
see Horrox Opera, below.

Josejii-Nicholas DeLisle, Lettres sur les Tables Astronomicfues de M.Hailey 
Paris, 1749 and 1750. The second letter of 1750 (vhich claimed DeLisle 
was the first to prepare tables from IMM) is in the Archives of the 
Paris Observatoire. The first is quoted by Baily (1835, p.705) but I 
have not found a copy.

John Flamsteed Da Inaequalitate Dierum solarium Dissertatio Astronomica 
London 1673 published as a supplement to Jeremiah Horrocks Opera 
Posthma London 1673, pp. 441-464.

J.Flamsteed, "Doctrine of the Sfhere", in Sir Jonas Moore's A New svsteme 
of the Mathematics. 1681, Vol.l, part VI, gp.1-75.

The Gresham Lectures of John Flamsteed. Ed E. Forbes, 1975.

John Flamsteed, Historia Coelestis Britannica. 1725, Vols II and III.

The Preface to John Flamsteed's Historia Coelestis Britannica Ed. Alan 
Chapman, (̂ Maritime Monograph, 1982.

David Gregory, Astronomiae Physicae at Geowetricae Elementa 1702,
reprinted 1726; translated as The Elements of Ihysical and Geometrical 
Astronomy 1715, 2nd Edition 1726, 2 vols ; facsimile reprint
(Sources of Science, no. 119) NY & London, Johnson Reprint 1972.
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Edmond Hailey, Catalocrus Stellanm An<rhraliim ('Quaedam lunaris 
theoria emendationem spedantia' p. 12), 1679.

Edmond Hailey, Ed., Historia Coelestis T.ihri nuo ̂'by Jcto Flamsteed',
1712.

“IkTkhic  ̂N/vJ"TkVdKI®K , 1% f ,
J.Horrox, Opera Posthma 1673, epilogue by Flamsteed p.491, edited by 

John Wallis (esp. J.Horrox letter to W.Crabtree December 20th 1638, 
for 'germ of new theory': Wallis erroneously printed the year as 1628).

Newton's Prlncipia. Motte translation (1729) of 3rd Edition (1725), F. 
Cajori edn., Vol II, University of California Press, 1962.

Isaac Newton, 'Philosophiae Naturalis Principia Mathematica' 2nd Edition
1713.

W.Hodgson, Theory of Jupiter's Satellites. Introduction (on LeMonnier 
publishing Flamsteed's tables), 1750.

The Correspondence of Isaac Newton. Volume IV 1694-1709. Ed. J.F.ScottJ

R.Stephenson, Newton's Lunar Theory Ê diibited Analytically. Cambridge 1834.

Thomas Streete, Astrononda Carolina, a new theorie of Coelestial Motions. 
1661; latin trans. Nova Theoria Motaum Coelestuan, 1674; 2nd Edn, with 
added Tabulas Eudolphinas Jnhann Baptista Morino. 1705; 3rd Edn. 
(posthumous) ed. Hailey, with Hailey's 1680s sextant conservations and 
'a proposal hew to find the Longitude', 1716.

William Whiston, Praelectiones astronomicae Cantabriaae in scholios
publiais habitas.,, 1707, containing 'Tabulae plurimae astronomicae 
Flamstedianae correctae; ' TMM plus commentary jp. 309-327, with date 
Dec.6, 1703; trans. Astroncmical Lectures. Read in the Publick Schools 
at Cambridge 1715, 2nd Edition Corrected London 1728; Facsimile Reprint 
(Sources of Science, no. 122) N.Y & London 1972. (N.B. Whiston's



BcaJ_-tzJLc>ns o f  mynyr, — G e n t u x i y
David Gregory, Astronomiae Kivsicae (Latin) 1702 ; Elements of ... Astronomy 

(English) 1715, 1726;
A New and most Aocurate Theory of the Moon^s Motion; Whereby all her

Irregularities mav be solved, and her Place truly calculated to Two 
Minutes. Written by That Incomparable Mathematican Mr. Isaac Newton 
(English pairphlet, no name) 1702;

Harris's Lexicon Technicum under heading 'Moon' (English) 1704, 1708, 1716, 
1725, 1736;

Miscellanea Curiosa 1 pp. 270-281 (English) 1705, 1708, 1726;
William Whiston, Praelectiones Astronomicae (Latin) 1707; Astronamical 

Lectures 1715, 1728; 1782 (English);
Samuel Horsley Ed., Opera of Newton (Latin) 1782.
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Praelectiones Physico-̂ âthematicaG of 1710 has no IMM or astronoinical 
tables).

I

F i r  jL m ca~ r~ y—s o u i r c e  A s t n r o n a m y  T e o c t f b o o i k s

C.Brent, The OŒnpendious Astronomer. Containing New and Correct Tables 
('The Tables of the Moon are disposed according to sir Isaac Newton's 
Theory'), London 1741.

Angelo Capello, Astrosophiae Numerica Sapplementum... Exactissimae
Iiminanm Tatulae iuxta hypotheses ac wensuras celeb, Geometrae Isaacci 
Navtoni (Venice), 1737.

Jacques Cassini, Tables Astronomiques. Paris 1740.

Richard Dunthome, Practical Astrorony of the Moon: or. new Tables__
Exactly constructed from Sir Isaac Newton's Theory, as rublished by Dr 
Gregory in his Astronomv. London & Oxford, 1739 (copy at ULC).

Leonhard Euler, Theoriae Motuam Timafi exhibens omnes eius inaequalitates.
St Petersburg 1753.

Nicasius Grammaticus, Tatulae Tnnarfis ex Theoria et Mensuris Geometrae 
Celeberrimi domini T<iaeci Newtoni ( Ingolstadii ), 1726.

Nicholas Greenwood, Astronomia Analicana 1689.

Edmond Hailey, Tatulae Astronomicae, accédant de nsii tjitulanm preacepta. 
London 1749; trans; Astronamical Tables with Precepts both in English & 
Latin for comparing the places of the Sun. Moon etc.. 1752.

Peter Hbrrebov, Nova Theoria Innae was published in 'Biblioteca Nbvissima' 
Magdebourg 1718, according to Delisle.
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Charles Leadbetter, Uranoscopia, or the Contemplation of the Heavens__
Also, an Explanation and Demonstration of the Keplarian and 
Flamsteedian Methods of Ctomputim the Times and Principal appearances 
of Solar Eclipses r 1735.

Charles Leadbetter, A Complete System of Astronomy. 2nd edition 1742, 2 
vols.

Tobias Mayer, Theoriae jijxta Systema Ne^/toniamm. London 1767.

Tobias Mayer, Novae Tabulae Solis et Lunae. Gottingen 1754.

Tobias Mayer, Tatulae Motuam smi<̂  et Timae  ̂Lcmdon 1770 (contains letters 
of Bradley, and review of Hailey's method).

Nicholas Mercator, Institatiomm Astronomicamm. T.ihri run cum Tatulis 
Tychpnianie. Lĉ idon 1676.

Pierre Le Monnier, Institutions Astmimmiques, on leçons eTem̂nt-jii-refz 
d'astronomie. Paris 1746.

John Newton, Astronomia Britaimicae. 1657.

G.E.Riocioli, Astronomia Feform̂ rtji tnmi duo Bononia (Bologna) 1665.

Jeremy Shakerly, Tatulae Britaimicae 1653.

Van Lansberge, Theoriae Motuum Coelestum. in Opera Omnia 1663, Zelaniae.

Vincent Wing, Urania Practica. with divers rvdeR and tahlAs nf 
extraordinary use in navigation. London 1649.

Vincent Wing, Harmoni non Ooeleste. conteinina an absolute and entire Piece 
of Astroncanie. 1651.

Vincent Wing, Astronomia Britannica 1669.



-261-

Robert Wri(ÿït, New & Correct Tables of the lunar motions, aooording tn thc» 
Newtonian Theory. Manchester 1732.

(a) RiilosorAiical Transactions:
"Extract of two Letters, written by Mr Flamsteed..." (contra Streete), 9 

(1675), fp.219-221.

"Mr Flamsteed's letter of July 24, 1676.. .concerning Mr Horroxes lunar 
Systems" 10 (1675), jp. 368-377.

"À Letter from Mr Flamsteed...", 13 (1683) Section 154, pp.404-8.

"An Account of the Moon's Eclipse, February 2, 1710 (̂ served at Streatham 
near London, and compared with the Calculation, by the Rev. Mr H.
Cressener, FRAS" 27 (1710-12), gp.16-19.

E.Hailey, "A Proposal of a Method for Finding Longitude at Sea within a
Degree, or IWenty Leagues", 37 (1731/2), ïp. 185-95.

"A Letter from Mr Richard Dunthome...concerning the Moon's Motion", 44 
(1747), gp.412-420, read on 5th February.

(b) Others:
Review of TMM in: Histoire des Ouvrages des Savans. January-March 1703, 

gp.121-23.

"De l'Orbite de la Lune dans le système Newtonian", Histoire de l'Acad^iA 
Rovale des Sciences. 173, Paris 1741̂  R<X,n{f4 (i|5. 1 Vi-i 1*̂. " '

Gentleman's Magazine, August 1754 London: (regxort on Mayer's theory by John
Bevis, ̂extract quoted in Forbes 1980, gp. 143-146.

John Harris' Lexicon Technicum of 1704, section entitled "Moon".
(reprint of TMM with comments, and quotes from Flamsteed).
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Ecîmond Halley, Forerord to Mi<^^nanea Curiosa 1708 (on accuracy of TMM)
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facsimile reprint Brussels 1966.

Jean Baptiste Delambre, Histoire de l'Astronomie au Dix-huitième Siècle 
Paris 1827, pp.29 (apogee & node equations), 282 (Hailey's use of 
Saros).

Eric Forbes, Greenwich Observatory Volume I, "Origins and Early History 
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Eric Forbes, Thobias Meyer f 1723-621 Pioneer of Enlichtened Science in 
Gentany. Gottingen 1980v

Alfred Gautier Essai historique sur le problème des Trois Corps. Paris 
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reprinted New York, Dover 1962.

Otto Neugebauer, The Exact Sciences in Antiquity. Brown University Press, 
printed in Denmark, 1957 (Hailey's use of term 'Saros', p.142).

0#b ^  Vi).! \^1Ç.
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