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ABSTRACT

This study utilises computer programs to reconstruct the
challenges which faced astronomers at the time of the founding of
Britain’s Royal Observatory. It focusses on the lunar theory
articulated by Isaac Newton in 1702, showing how it was the precursor
of what became embodied in the 1713 Principia as its lunar theory.
Conceived as a kinematic mechanism, it has here been translated into
trigonometric terms, and thence into machine-readable form. A computer
replica of Newton’s theory has thereby been composed and tested, and
its accuracy for the first time assessed, resolving age-old
controversies.

The first British lunar theory, formed by Jeremiah Horrocks in
the 1630s, was published by Flamsteed, and later modified and
developed by Newton. As such it spread across Europe in the first half
of the eighteenth century. It was later replaced by lunar theories
derived from the Newtonian theory of gravity, which came to be called
the ’Newtonian’ theory, causing the theory actually promoted by Newton
to be overlooked.

Newton’s theory had seven steps of equation as its distinctive
feature, little appreciated by historians. No evidence remains that
gravity theory, applied in a quantitative sense, assisted its
composition.

Computer replicas of the lunar theories used by Flamsteed and
Halley have been constructed and tested, and Halley’s use of the Saros
cycle to correct errors in the method is re-evaluated. A survey of
astronomy textbooks containing tables over the period 1650-1750 has
been the context for assessing to what extent the 1702 Newtonian

procedure was an improvement upon existing theories.
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FOREWORD

AT THE DAWN OF THE NEW CENTURY, there appeared the first two
textbooks of Newtonian astronomy: Gregory’s Astronomiae Physicae of
1702, and Whiston’s Praelectiones Astronomicae of 1707 (which later
appeared in English as Astronomical Lectures). They were meant to
challenge the Cartesian philosophy then being taught in the schools of
England, and both contained the full text of Isaac Newton’s Theory of
the Moon’s Motion (hereinafter referred to as /TMM’). Though occupying
a mere five pages of Gregory’s book, it formed an essential part of
that challenge, for it purported to show that the new Newtonian
philosophy had a practical and not merely theoretical significance.

At least one of these books definitely claimed that ™M had
achieved what was then regarded as well-nigh impossible: showing how
to predict the Moon’s position in the sky well enough to be of service
for finding longitude. French astronomical treatises in the opening
decades of the eighteenth century struck a rather sceptical note over
this claim, while British ephemerides—composers tended to regard ™M
as a kind of Holy Grail: something which would render possible the
production of what was most desired, a reliable lunar ephemeris, if
only it could be rightly interpreted.

Few were the sailors who made grey hairs, as the saying went, in
those days. As their ships sailed back, laden with chocolate from
Africa or silks from India, they were as we still say today, quite ‘at
sea’ once land disappeared. Huge prizes were offered for any means to
find longitude. And yet, Britain’s two most distinguished astronomers
of the time - Captain Edmond Halley and the Reverend John Flamsteed -
had more or less diametrically opposed opinions as to the real value
of T™M. The former claimed that it profoundly improved lunar
prediction, while the latter averred that it gave no real improvement
upon existing tables.

Historians of science have been reluctant to comment upon the
matter. Bernard Cohen was not exaggerating when in 1975 he stated:
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’...this work [TMM] has hardly ever been discussed (or even

referred to) in the literature concerning Newton or the history of

astronomy (Cohen, p.l) ‘
As the literature there alluded to is of no small volume, such an
omission would tend to suggest that this brief work was hardly
significant. On the other hand, ™M was frequently reprinted through
the first half of the eighteenth century, suggesting that it was
exerting some kind of influence. To what extent this was practical, or
mythical, is the subject of our inquiry. Just about everything except
the authorship of ™M remains unsettled. Was ™M ever in fact used? If
so, would its prescriptions have defined the much-sought lunar
position, to anything resembling the claim made by its publisher?

The onward-rolling tercentenary process has not yet reached the
date of ™M’s publication, which gives us some time to re-evaluate the
traditional myths surrounding the subject. It has now (January 1992)
passed by the anniversary of the commencement at Greemwich in 1691 of
the most accurate series of positional astronomy readings ever made,
and approaches Flamsteed’s marriage, Newton’s nervous breakdown, and
then the historic commencement of the collaboration between these two
on the great endeavour, not without strife, a linking together of
theory and practice.
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Abbreviations used in Tesxxt

Correspondence - The Correspondence of Isaac Newton
Volume IV 1694-1709, C.U.P. 1967, Ed. J.F.Scott.

DOS - ‘Doctrine of the Sphere’ by John Flamsteed, published
(anonymously) as De Sphaera in 1681, in Jonas More’s New
Systeme of Mathematics.

DOS-PC - Computer-simulated model of the DOS procedure (Chapter 10).

GHA - The General History of Astronomy, Volume 2A, Ed. Hoskins,
1989. The reference will normally be to the two chapters by
Curtis Wilson. .

PNPM - Principia Naturalis Philosophica Mathematica by Isaac Newton.
References are normally to the Second Edition of 1713. The
Third Edition of 1727 is available in Motte translation, Cajori

P.T. or Phil. Trans. - Philosophical Transactions of the Royal
Society.

T™M - ‘Theory of the Moon’s Motion’ by Isaac Newton, published in
Latin by David Gregory in his Astronomiae Physicae of 1702. An
English translation appeared in 1702, possibly by Halley, which
is the text here referred to as ™M, reproduced by Cohen in
1975.

T™M-PC - Computer-simulated model of the T™MM procedure (Chapter 8).
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Ch.21 INTRODUCTTITON

xr The Problem
Writing in 1975, Bernard Cohen posed the challenge:
Tt would be most useful to have a careful analysis of Newton’s
attempts to produce a satisfactory lunar theory (in the 1690’s), and
the stages whereby he either partially or totally abandoned the program
of deriving such a theory by mathematical methods applied to
gravitational celestial mechanics’ (Cohen, p.80).

Cohen offered no comment upon either the accuracy of the theory - whether
it was an improvement upon those available - or, to what extent if any it
was based upon a theory of gravitation. As Craig Waff commented in his
review of Cohen’s book:
'While I can sympathise with Cohen’s reluctance to become involved in
what would certainly be an extremely complex study, his failure to make
even the slightest effort in this direction made it impossible for him
to answer in any satisfying way a question which he constantly
raises...’ - i.e., that mentioned above (Waff, p.66).

Craig Waff commented upon the historical irony, that the brief 1702
essay, Theory of the Moon’s Motion (hereinafter referred to as TMM), was
’probably the most obscure of Newton’s publications’, and yet it ’‘appeared
in print during the early eighteenth century more times than anything else
which left the hand of Newton.’ Waff then made a claim which regrettably he
has never substantiated:

Newton’s "rules" had been wholly or partially used by nearly a dozen

astronomers or other interested individuals in order to construct lunar

tables.’
Were that so, then an assessment of the Newtonian rules would be simple:
one would merely take the ephemerides published by these persons, measure
their ’error envelopes’ in the manner that Owen Gingerich has so well
pioneered, and thereby assess their accuracy. let us merely remark that no-
one has ever attempted to do this.
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What strikes the modern reader about the text of ™M, apart from its
obscurity, is the complete absence of any reference to a theory of
gravitation. The Principia of 1687 dealt with motion under central forces
as a two-body problem, and referring only relatively briefly to
irregularities in lunar motion resulting from its motion as a three-body
problem (Propn. 66 of Book 1, Propn. 32 of Book III). William Whiston gave
the following fine eulogy to TMM, published in 1710 when he was occupying
the ILucasian mathematics chair at Cambridge, as Newton’s successor:

'The Moon, I say, which is a secondary planet, that hath in it such a

complication of Motion, such intricacies and perplex’d Anomalies, that
unto this very Day we are’ scarce able to bring it under Numbers,
altho’ it be so harrass’d (as it were) with Astronomical Researches.
This hath been a knot well worthy of, and which requir’d the acutest
Wit to untie. Nor wanted it such a one at length when the famous Sir
Isaac Newton set himself to it; who hath this to glory in, That in the
Compass of a few pages, he hath brought more light into this dark and
intricate Business, than all the Volumes of the past ages had done.’

So finally, the Moon had met its match. Or had it? When Whiston came to
explain how the Moon’s position should be calculated, he said that, no
doubt Mr Newton’s theory was very excellent, however as no-one had yet
reduced it to a form in which tables could be derived from it, he would
give the rules as described by ‘the famous Mr Flamsteed’. (Whiston,
1710,p.96) The abyss between theory and practice had not in fact been
bridged.

No historian of science has acknowledged the validity of that judgement
of Whiston, though he was in a fine position to assess the situation: that,
in the year 1707, the procedure advocated by the Astronomer Royal was to be
preferred to the Newtonian lunar rules, because the latter had not yet been
unpacked, as it were. To what extent was Flamsteed concerned to develop a
lunar theory of his own? This view was somewhat indicated by the astronomer
Francis Baily, who rescued Flamsteed’s reputation from mere oblivion with
his Account of 1835 (p.703). On the oft-told version of events, Flamsteed
was allocated no other role than delaying or perhaps refusing to supply
Newton with lunar data in the 1690s, thereby impeding the formation of the
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Newtonian lunar theory! That the Astronomer Royal had in some measure
fulfilled the mandate of the Monarch who appointed him, by achieving an
improvement in the lunar rules, is seldom considered.

We may wonder whether the six different sets of ephemerides which
according to Craig Waff applied the Newtonian lunar rules, may to some
extent have used those of Flamsteed or even of Halley: the achievements of
Sir Isaac have after all shown some propensity to attract towards
themselves those of others. Later on we will comment on the apparent
disappearance of Flamsteed’s version of the theory, and the possibility of
it having migrated across the channel. The brief 1702 ™M reaches into the
future in two different ways: as a series of no less than seventeen
reprints appearing in the first half of the eighteenth century, and then
secardly as the greatly expanded lunar section in Book Three of the second
edition of the Principia of 1712.

We may trace three stages in the development of Newton’s lunar theory.

In 1694/5 the extensive correspondence with Flamsteed recorded a keen
collaboration, when the mathematician clearly believed he could encompass
the irreqularities of the Moon’s motion by applying his theory of
gravitation. Whiteside has well described how this noble enterprise was
shipwrecked in the spring of 1695 upon the sheer intractability of the
problem. Indeed, Whiteside has even suggested that Newton’s decision to
move to London and abandon his lecturing post at Cambridge may have been a
consequence of his recognised failure with the lunar theory (Mathematical
Papers 1976, VII, p.xxv). Secondly, there was the ™M, published using
Flamsteed’s data but without the latter’s knowledge or consent and despite
two signed promises not to do such. As if in reaction against the failure
of the first stage of the endeavour, no comment was made about a theory of
gravitation. Thirdly, a decade later, there appear the mature Newtonian
comments upon the three-body problem, which greatly impressed the
cognoscenti. A review in the Acta Fruditorum (believed to be by Leibniz)
commented on this section of the 1713 Principia:

’Indeed, the computation made of the lunar motions from their own

causes, by using the theory of gravity, the phenomena being in accord,
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proves the divine force of intellect and the outstanding sagacity of
the discoveror.’ (Cohen, p.41)
And ILaplace said,
’Je n’hésite point & les regarder comme une des parties les plus
profondes de cette admirable ouvrage.’ (Cchen, p.41)
A modern evaluation of the achievement ought perhaps to start from the
result which emerged somewhat unexpectedly from Owen Gingerich’s computer
in the Harvard University astrophysics department: namely that little by
way of increase in accuracy of ephemerides appeared as a result of the
Newtonian revolution*. It was, let us say, a theoretical affair. During the
period which we are reviewing, Paris became the main centre of ephemerides-
production.

IT Perceived accuracy of the “Theorvyv”
We now review the spectrum of judgements which history has handed down
as regards the accuracy of TMM.

Within two minutes: This claim was brazenly made by David Gregory in
publishing the essay in his Astromomicae Physicae et Geometricae Elementa
of 1702, and no doubt stimulated its sales. A two-minute accuracy in lunar
prediction would be sufficient to attain a one degree accuracy in the
estimation of longitude.

Two_to three minutes: this was Newton’s own view as expressed in a 1705
edition, given in some corrections to the text which he inserted: two
minutes in syzygies, three in quadratures. When Gregory republished ™M in
the English translation of his book in 1715, he echoed this view. Thus,
reprinting the essay 13 years later, Gregory hardly found cause to alter
his original judgement of its accuracy. William Whiston made much the same
claim in his published astronomy lectures of 1707. The astronomy professors
of Oxford and Cambridge thus concurred in this formidable affirmation of
™M’s accuracy.

*’Perhaps the most surprising result of our analysis is how little
immediate and direct impact Newton’s work had on the computation of
astronomical positions’ (Gingerich & Welther, 1983, p.xi).
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Two to five minutes: three decades later, Edmond Halley as Astronomer Royal
affirmed that after himself preparing tables and ascertaining his
calculation procedures, it was evident to him that:
... Sir Isaac had spared no Part of that Sagacity and Industry so
peculiar to himself, in settling the epochs, and other Elements of the
Lunar Astronomy: the result many times, for whole months together,
rarely differing two Minutes of Motion from the Observations
themselves;’ (Phil. Trans. 1732 p.191)
Halley went on to say that, on occasions where the theory did err up to
five minutes, this was probably the fault of the observer i.e. Flamsteed,
who had both supplied inaccurate data and failed to supply any in the third
and fourth quarters of the lunar cycle. Halley was in a fine, indeed
optimal, position to comment, though there is no reason to take seriously
these slurs upon his predecessor. The latter’s lunar positions achieved an
accuracy of around half an arcminute (Kollerstrom and Yallop, in
preparation) and covered the entire lunar cycle.

Five minutes: this seems to have been Newton’s estimate when appointed in
1714 to the Board of Longitude. Iunar methods he judged to be too
inaccurate to determine ‘a Longitude within Two or Three Degrees.’

Eight to nine minutes: this was the recent verdict of Curtis Wilson, editor
of volume 2A The General History of Astronomy, p.267. He was merely echoing
Flamsteed’s verdict. The latter found, in the beginning of the year 1703,
that ™M generated errors which were ’‘frequently’ of 5 or 6 minutes one one
side, and by the same amount negatively at the opposite point of the orbit,
and that sometimes the errors rose to 8/ or 9’/ in longitude, at positions
near to quadrature (ie, the half-Moon position). These things, he explained
to his correpondent Mr Caswell, he determined using old data between the
years 1675 and 1689, ie prior to the setting up of his great mural arc.
Plainly he would not use data gathered since that date, as it had all been
sent to Newton so that he could construct his theory. The astronomer was
especially shocked by the errors in lunar latitude contained in ™M, which
he said ’‘were frequently 2,3, or 4 minutes, which is intolerable.’
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Next, Flamsteed examined lunar eclipse data, where one might expect
smaller errors, on the grounds that astronomy had traditionally concerned
itself only with the syzygy positions in the lunar orbit, iring these
for the prediction of eclipses. Again, he discerned errors of 5-6’ in their
positions. (Baily, pp.213,4)

We may have more to say later concerning the protean flexibility of the
estimates here represented. To place them in perspective let us cite some
findings of Gingerich: that La Connoissance (sic) Des Temps, the ephemeris
then produced yearly by Cassini from the Paris Observatory, did over the
years 1695-1701 freguently display errors in its lunar positions of 20-30
minutes of arc; (Gingerich & Welther, 1983, fig.14) and secondly, that the
much—desired predictive accuracy to two minutes of arc was not attained by
any ephemeris prior to the British Nautical Almanack commencing in 1766.
(Gingerich & Welther, 1983, p.xxi)

There were several notable disasters at sea which stimulated
astronomers to work with greater zeal on their nigh-impossible quest, of
using Iana’s erratic path across the night sky to ascertain longitude.

1691: seven British warships wrecked near Plymouth, mistaking the
Deadman for Berry head due to a misconception over longitude.

1694: Admiral Wheeler’s fleet, ignorant of its position, sailed head-on
into Gibraltar and disaster.

1707: Sir Cloudsley Shovell’s squadron of the Royal Navy ran onto rocks
off the Scilly Isles, with loss of four ships and nearly two thousand
lives, when they were believed to be in a safe position.

The last of these was due more to inadequacy in the maps used than
longitude determination (Howse, Autumn 1993, p.47), however it did much to
arouse public opinion on the matter, and led to the passing of the
Longitude Act: in 1714, huge rewards were offered by Parliamant for anyone
who could devise a method of locating the longitude on a ship, to within
one degree or less. ‘Finding the longitude’ entered the vernacular as
meaning an impossible task which one despaired of ever achieving. A life
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and death issue, it revolved around the most obscure equations. The rewards
offered began at £10,000 for predicting longitude at sea within one degree,
and went up to £20,000 for half a degree. They began to be claimed in the

mid-eighteenth century.

IrITT The Two—Clock Maethod

Local time varies around the globe by one hour per fifteen degrees of
longitude. Therefore, if one had two clocks, one on local time and the
other on universal time, the longitude would be given from the time
difference between them. At sea, a clock can readily be set to local time
by using the times of sunrise and sunset, with noon falling midway between
them. If the Moon’s 27.3 day cycle against the stars could be determined,
then it would enable one to read universal time: it would be like a clock,
whose hand revolved once in twenty-seven days. That was the beckoning
dream, the impossible hope, the mirage on the horizon....

The great aim was to predict longitude within two minutes, for this
would bring it within a useful - though not a safe - range. Without that
one would be, as the saying went, ’‘at sea.’ It became the most pressing
scientific problem of the period, and was the reason for establishing the
Observatory at Greerwich. To find longitude within a degree meant
predicting the Moon’s position within 1/27.3 degrees = 2.1 minutes.

We can see this merely by considering that the Earth revolves against
the stars 27 times faster than does the Moon. So, a two minute error in
fixing the Moon’s position in zodiac longitude would logically imply a 54
mimrte error in one’s position on Earth, in longitude, neglecting other
sources of error. The ratio of the period of Earth’s rotation to that of
the Moon’s revolution around the zodiac (27.3 days) gives the error
multiplication factor inherent in the method.

How accurate was the method in practice? An example here comes from an
entry in the diary of Edmond Halley, when he landed his frigate off the
coast of Brazil in the year 1699. He was returning from his courageous
antarctic voyage, and wanted to find out his longitude. He and the crew of
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his 'Pink' (a type of Dutch sailing vessel) the Paranore found themselves
near the tcwn of Paraiba. Ve may assume that the inhabitants of Paraiba

were ignorant of their longitude relative to London.

Hailey first of all set up his telescope to view Jigxiter, because his
tables predicted an occultation of one of the Jovian satellites, on the
ni”t of February 25th. In this he found himself frustrated, because clouds
obscured his view. (This Jg*iter—-satellite method would have given him a
universal time estimate, frcan vAiich longitude could be estimated as
explained above) The Jupiter-moon method having failed, it so happened that
the MDon was passing ky a first-magnitude zodiac star Antares, and so an
'appulse' could be observed. An 'ajpulse' meant the time of nearest
approach of two heavenly bodies. Hailey noted both the time of this event
to the nearest second, and the lunar altitude when it occurred, and from
these wrote:

'T conclude the longitude of this Coast full 36° to the Westward of
London.'
Hailey was within almost one degree of the correct longitude, vhich is
quite inpressive (Ihe longitude of Paraiba is 34° 52' West)*. Ihe ephemeris

he used was probably the French la Connoissance des Temps,

In the seventeenth century, not the least source of error in using the
method was the absence of any sound notion of mean time. The observations
were made using apparent time and then converted to 'equall time' (i.e.,
local mean time) . Only then could the comparison with universal time, from
the lunar sidereal orbit, be accomplished. Tables for this conversion were
wildly inaccurate: for example, the 'Table of the Aequation of Civill
Dayes' given in Wing's Harmonicon Coeleste of 1651 had an average error of
five minutes, and this error in time would give a two or three minute error
in lunar longitude. I ascertained this using a RGO program for the Equation
of Time, and also checked the equations of time given by Streets (1664) in
several of his worked examples, and a column of such figures given in the
* The Three Voyages of Edmond Hailey in the Paramore, . N.Ihrower,” 1981,
p-103. See also, 'Ihe Edmond Hailey Bull's Eye Enigma' N.Kollerstrom,
Jnl,Brit. Astron. Assoc,, 1990, p.7



-17-

French annual ephemeris ILa Connoisance des Temps of 1686: which showed
errors usually around 4-5 minutes. The first reliable Equation of Time was
published by Flamsteed in 1673, in a postscript to the ’Opera’ of Horrox,
(pp. 441-464), after which his later more accurate table was published by
Whiston in 1707. Historians of astronomy generally give little credit to
Flamsteed for establishing Greenwich mean time, by discerning that the
Earth’s uniform sidereal rotation throughout the year should be its basis
(though Bailly (1779 p.269) did credit him with having ’‘restored’ the
equation of time). An improvement of several arcminutes in lunar longitude
determination came about from Flamsteed’s discovery of the Equation of
Time. Thus ™M could simply presuppose that mean time was being used.

When Newton sat on the Board of Longitude, set up in 1714, he there
expressed the view that the lunar method only worked ‘within two or three
degrees’ (Westfall,835). The preceding discussion showed that this was
equivalent to lunar longitude accuracy of 4-7 minutes, which sounds fairly
reasonable. This suggests that Halley having obtained longitude within
almost one degree, two decades earlier, was something of a fluke. Or,
perhaps after all, the people of Paraiba did know their longitude.

An account of the lunar method of finding longitude given by Howse
(Address to Royal Society on Chronometry, June 25th 1993) elucidated the
practical problems in the method, and also the success which the method
eventually enjoyed, from the latter half of the eighteenth century: ’The
heyday of lunars was probably from about 1780 to 1840/ (Howse, November
1993, p.7). Chronometers became available from the mid-eighteenth century
orwards, but remained prohibitively expensive for most vessels, so that the
Greenwich ’‘Nautical almanac’ published anmually from 1767 offered the
preferred method of finding longitude at sea*.

*  According to Gingerich and Welther, /By 1800 the accuracy of the best
almanacs was comparable to our tables, that is, better than a minute of arc
(Gingerich and Welther 1983). Their graphs of the error patterns of the
Nautical Almananc over 1779-1787 shows errors generally between one and two
minutes of arc, compatible with statements by Howse and Sadler that lunar
tables of the 1760s enabled sailors consistently to find their
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Further difficulties arose in the lunar method from the corrections
due to atmospheric refraction and parallax, which had to be applied to the
observations before further computations could be made; a matter with which
™M was concerned.

Merchant vesssels using the lunar method came to adopt the Greemwich
longitude meridian as their reference, as the lunar noon positions were for
that longitude. Thus the endeavours of Newton and Flamsteed did in the end
bear fruit, a century or so later, with the locus of their endeavours
becoming accepted globally as the zero meridian of longitude. 1753 was the
first occasion on which the lunar method was used with success at sea, by
Nicholas-Iouis de Lacaille in an Atlantic crossing (Howse op. cit. p.4).

A check of the first page of the ‘Nautical Almanac’ for January 1767
for the first twenty lunar meridian transits showed a mean error of 16" +
17", one-third of that shown on the Gingerich-Welther error-graph (1983,
p.xxi). The ‘Nautical Almanac’ gave positions in apparent time, so
conversion to mean time was first necessary. The Yallop et. al. program for
Equation of Time (1989) was used, to convert from apparent to mean time,
plus an I.L.E. program for lunar longitude (both kindly supplied by Bernard
Yallop of the R.G.O.).

For example, on January 7th 1767 the Almanac gave the noon lunar
longitude as 18° 59’/ 25" of Aries. As the Equation of Time was then 6
minutes and 50 seconds, GMT was then 1lam 53 minutes and 10 seconds (Mean
time = apparent time - Equation of Time) for which the computer gives a
position of 18° 59/ 16", a net error of 9". These values are more
compatible with what was believed at the time about the tables, and help us
to appreciate the extent to which the lunar-longitude method did in the end
succeed. This case-study underscores the vital importance of having
computer programs more accurate than the historical positions to be
evaluated.

longitude ‘within 1°/ (Howse op. cit. p.4; also Sadler 1976 p.117), for
which two minutes accuracy in tables of lunar longitude were adequate.
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IV Three Approaches to the Problem of
Prediction
In the latter half of the seventeenth century, three distinct
approaches were taken for predicting the Moon’s position. They intertwined,
but were to some extent logically distinct.

(1)_Empirical: Using the Saros

Edmond Halley in Highbury commenced taking lunar longitude readings
with a view to tracing a whole Saros cycle of 18 years, 11 1/3 days, (ie,
223 lunar months). It happens that all the principal irregularities in the
Moon’s motion repeat through this period in a precise and cyclic manner.
Halley quite sensibly believed that a continuous sequence of observations
over such a period was the best approach. He was later to be able to follow
a complete Saros at Greenwich, though his sucessors did not deem his
observations of much value.

(2) Use of a Model: the Method of Horrocks

As a north-countryman, Flamsteed was proud of having made public and
improved the technique invented by the young Jeremiah Horrocks in the
1630s. Horrocks invented a kinematic model, wheels within wheels, like some
English Heath-Robinson version of the epicycles so recently banished by
Kepler: but it worked. His great discovery was the rocking motion in both
the apse line of the Moon (once every six months) and in its eccentricity.
(N.B., all models of this Horrox—-effect use a circle, not an ellipse, for
lunar orbit, where eccentricity retains its old meaning of Earth’s distance
from centre of that circle) The version published in 1673 by Flamsteed was
regarded as the Horroxian method improved by Flamsteed.

(3) Mathematical: The Theory of Gravity
’For I find this theory so very intricate, and the theory of gravity
SO necessary to it, that I am satisfied it will never be perfected
but by somebody who understands the theory of gravity as well, or
better than I do.’
Newton wrote these words to Flamsteed on February 16, 1694. They were to be
vindicated by the mighty labours of Clairaut, Lagrange and Iaplace in the
next century, using the leibnizian calculus. But in that period, Newton was
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faced by abject failure: he later wrote wrathfully to Flamsteed on hearing
that the latter proposed to make public the fact that he had supplied 150
lunar positions for the Cambridge mathematican:
'T was concerned to be publicly brought upon the stage about what,
perhaps, will never be fitted for the public, and thereby the world
put into an expectation of what, perhaps, they are never like to have’
(January 6, 1699).

That was his last known comment upon his endeavour with the lunar theory
prior to ™M’s composition, which is curious.

AY4 The Epoch of T™MM

T™M was camposed at the dawn of a new century, in February 1700, by the
Master of the Mint. The stress of the great recoinage had passed away, and
perhaps some new hope dawned that he could indeed resolve the problem. TMM
opens with some basic parameters in celestial longitude. Its epoch spans
twenty years from noon on December 31 1680 to noon on December 31 1700,
over which it surveys the Moon’s motion. Let us compare the mean values
there given with the actual positions at the time. This will give an idea
of what was involved.

Noon 31.12.1680 (0.S.)
Mean sun 20° 34’ 46" Cap, true position 21° 1/, difference 267
Mean moon 1° 35/ 45" Libra, true position 8° 37/, difference 6° 27/
Node 24° 14’ 35" Virgo, true position 24° 17/, difference 27

Noon 31.12.1700 (0.S.)
Mean sun 20° 43’ 50" Cap., true position 21° 10’/, difference 26’
Mean moon 15° 19/ 50" Aqu., true position 16° 59/, difference 1° 39/
Node 27° 24’ 20" Leo, true position 27° 27/, difference 37

The ‘mean’ sun and moon are mathematical abstractions. They move at a
uniform rate, so will normally differ from the true positions. The goal of
a lunar theory was to bridge that gap, which evidently could be as much as
six degrees, and to do so within a few minutes. This is what TMM was
supposed to accomplish. (We can either cite longitude by zodiac sign, as
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above, or by quoting the number of signs starting from zero Aries: for the
mean sun, for example, instead of 20° Capricorn, we could give 9s 20°. Both
conventions were then used.)

AV aAapse ILuine Motion
The strange motion of the lunar apse was at the heart of the problem.
A quote from Newton’s System of the World will outline the problem:
’By the same theory of gravity, the Moon’s apogee goes forwards at the
greatest rate when it is either in conjunction with or in opposition to
the sun, but in its quadratures with the sun it goes backwards; and the
eccentricity comes, in the former case, to its greatest quantity; in
the latter, to its least...’ This gave a ‘semiannual equation of the
apogee’, of amplitude 12° 18’ ’as nearly as I could determine from the
phenomena’ (PNPM, p.475).

Horrocks’ great discovery, concerning the secondary motion of the lunar
apse, made in 1638, was soon confirmed by telescope observations. The new
eyepiece micrometers could measure the changing size of the Moon. Before
that, no-one could well discern the motion of the apse line. There was an
inequality called evection which was related (it was first given that name
by Ishmael Boulliau in 1645, as the largest of the lunar inequalities); but
there is no need for us to pursue it here. As Curtis Wilson has shown,
Horrocks reached his new model by theoretical means, by re-analysing the
lunar theory of Kepler (Wilson 1987); only later on in the 1640s did the
North-country astronomers Gascoigne and Crabtree provide confirmatory
evidence from the Moon’s varying apparent diameter (Chapman 1982, pp.19-
21). A letter of Flamsteed’s printed in the Royal Society’s Phil. Trans. of
1675 concerned the Horrocksian system, describing how it was only after
'many curious and careful measures of the Moons diameters’ that he came to
realise that no other theory could account for the phenomena (Phil. Trans.
1675, p.368-370).

On top of this rocking motion - nearly 30° to and fro in the case of
perigee, twice a year - a notional line joining apogee and perigee revolves
against the stars once in nine years. That line is a mathematical
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abstraction, from which the true apogee and perigee positions can deviate
quite widely.

We may view this perplexing issue retrospectively, by quoting the
opinion of the French theoretical astronomer Clairaut given in 1748, in a
letter to the Astronomer Royal Bradley:

’An reste la theorie de la lune qui résulte de ma solution est fort
différente de celle de M. Newton: je ne trouve point come lui les
variations d’excentricité et les inégalites dans le mouvement de
1’apogee.’ (Gaythorpe, 1956, p.136)
That was the Horrocksian theory which Clairaut was rejecting. The lunar
apogee does indeed have the ’inegalites’ which Horrocks ascribed to it,
more or less, but does its eccentricity vary as Horrocks described? Modern
theory lacks anything resembling the *#21% variation in the eccentricity
function, that ™M utilised, a matter further discussed in the next
chapter.

If one turns to a nineteenth-century account of these things, say
Stevenson’s Newton’s lunar theory exhibited Analytically, (1834) then what
there majestically unfolds as ’‘Newton’s Lunar Theory’ has no trace of that
double motion of the apse line: it has merely a single rotation in nine
years. The whole thing much resembles Clairaut’s lunar theory, and that of
Horrocks is nowhere to be seen. Clairaut’s view, to quote further from his
letter to Bradley, was: ‘les différentes espéces de termes qui sont dans
mon egquation pourront bien faire le meme effet que les variations dans
1’excentricité et dans le mouvement de 1l’apogee.’ Stevenson’s 1834 version
thus apears as a mythologised version of the ‘Newtonian theory’. In a
preface the author assures us he has merely translated the theory ‘from the
hieroglyphics of gecmetry’ into the workaday language of algebra.

Herein lies the nub of the problem. The hieroglyphics of the geometric-
kinematic forms in which seventeenth century lunar theory expressed itself
may seem as remote from modern comprehension as an arcane alchemic sygil to
a modern chemist. It will require quite an effort on our part to enter into
the meaning of these old diagrams, from a period before trigoncmetric
functions were used to describe the time-dependent variables of astronomy.
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Whiteside’s 1976 tercentenary essay marks the beginning of a realistic
assessment of T™M. Entitled ‘From high Hope to Disenchantment’, it has been
accepted by more recent scholars, pre-eminently Curtis Wilson, whose fine
achievement in the General History of Astronomy (vol. 2A) includes an
evaluation of ™M. It concludes that Newton’s adoption of Horrocks theory
was a historical mistake, which prevented his making further progress. That
seems a rather pessimistic view. Also it may not adequately assess the
extent to which Horrocks’ theory was true. The young Horrocks has after all
been viewed as initiating the tradition of British astronomy (Chapman
1982).

VII Enlighternment Reception of TW™WM

Craig Waff and Curtis Wilson both affirm that Newton’s lunar theory was
applied to the construction of lunar ephemerides in the first half of the
eighteenth century. If so, this is a matter of vital importance, for it
would demonstrate beyond doubt that TMM had been decoded into practical
rules. It seems a reasonable claim, for indeed why else would TMM keep on
being reprinted over this period were in not used in practice? Curtis
Wilson affirmed that the rules of T™MM ‘were incorporated in the tables of
Charles leadbetter’s Uranoscopia (1735)’. (General History of Astronomy,
p.269) Baily had said the same in 1835, affirming that Leadbetter had given
’a more perfect adoption of Gregory’s Newtonian rules [Baily’s term for
T™M] reduced to a tabular form’ (p.709) Baily added, however, that in 1742
Leadbetter brought out a new set of lunar tables, ’‘without any allusion to
Newton’s labours.’

Turning to the work published by Leadbetter in 1835, chapter nine of
Leadbetter’s Uranoscopia is entitled, ’to calculate the true Place of the
Moon more exactly than was ever yet done’, however this contained no
allusion to ™M. Half of the book consists of tables, but in the chapter
introducing these tables, the last of the book, we again find no Newtonian
allusions. The frontespiece of the book merely states that the book will
give the ’Flamsteedian method of Computing times of Eclipses’.
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There was an allusion to ™M, but it was ironical in tone. Discussing

the work of a rival, Leadbetter advised his readers,

’Another tells us, that his Calculations are from Sir Isaac Newton’s

Theory of the Moon; and therefore nobody must question the truth of

them. Indeed, if it were so, not any one living would dare to question

them. But I deny the assertion; and can prove, that his calculation is

not from Sir Isaac Newton’s theory.’
It apears that kudos was available to any almanack claiming to be based
upon ™M, and some rivalry is here evident. When Leadbetter compared some
published predictions for an eclipse, he claimed to have made his own
prediction ‘from new Tables, founded upon Sir Isaac Newton’s Theory of the
Moon’. Naturally, this gave the most accurate eclipse time. Does that
amount to a claim that the tables of his book had been derived from ™M? If
so, one can only say that the claim has been made in a highly equivocal
fashion. No such claim was made either in the two relevant chapters, or on

the frontespiece*.

The French astronomer M.Bailly struck a sceptical note over ™M not
found amongst English historians: he declared that ‘mais il [Newton] avoit
souvent parlé a la maniére des prophétes, qui disent ce qu’on ne peut
voir’. (Histoire de 1’Astronomie Moderne, III, p.150, quoted Baily p.694).
This is a matter which we may hope to resolve.

* Elsewhere, Leadbetter says of a rival: ’Tycho Wing, in Coley’s Almanack,
which he says is from Sir Isaac Newton’s Theory of the Moon; but this is a
mistake, because it is so vastly wide of the truth, that it will not bear

the test.’ lLeadbetter appears to be claiming to have fathomed T™MM, without
comitting himself to saying that his own tables were based upon it.
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Ch.2 LUNAR INEQUALITTIES AND APSE
MOTTITON

. . Stages of Development

We here review some themes leading to what was nearly the last stage in
Newton’s lunar endeavour, in the second edition of the Principia of 1713.
This developed matters which had been tersely stated in ™M of 1702. As was
emphasised by Whiteside in his 1975 tercentenary address over the founding
of the Royal Greenwich Observatory, the first edition of the Principia
dealt most successfully with lunar motion as uniform and regular, as a one-
body problem, the motion of a body around an immovable force-centre. In the
Second Edition the position of the baricentre (Earth/Moon centre of
gravity) was estimated, enabling two-body computations to be performed.

That accomplishment of 1687 did not assist the construction of lunar
ephemerides. The first step in this direction came following a visit by
Newton to Flamsteed at Greemwich in November of 1694, when he was shown a
table comparing observed and theoretically-derived lunar longitudes over a
series of meridian-transits. The theoretically-derived positions were from
Flamsteed’s Horrocksian method as published in DOS (1681), and these were
compared with lunar centre positions for the same times, obtained from his
lunar limb observations. A column had been drawn up showing the
differences, ie errors in computed longitude, which averaged around eight
minutes of arc. On the whole, Flamsteed’s determinations were within half a
minute of error, though cited to arcseconds.

Newton borrowed this tabulated data, and in the following months
requested altogether just over two hundred lunar positions from Flamsteed:
which he was sent - contrary to centuries of calumny about the latter
refusing to part with his data - in the months following.

No mathematician ever had so many lunar positions of such accuracy. In
the early months of 1695, Newton’s letters to Flamsteed display a keen
enthusiasm for the subject, and belief that his theory of gravity should be
able to encompass the problem. After all, the rest of the Universe was
obeying it.
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In this section we will not enter into the political dimension of the
problem, our prime concern here being with the mathematics. Suffice to say
that Flamsteed was not permitted to claim any credit for his enormous
labours in producing the lunar data, and that the 1702 treatise appeared
without his knowledge or consent. This phase of Newton’s lunar endeavour
terminated rather abruptly in 1695, shortly prior to his moving to London
and becoming Warden of the Mint. Optimism gave way to bitterness, and what
had been a friendly and respectful correspondence since 1672 (when
Flamsteed wrote to Newton over the latter’s new colour theory) was replaced
thenceforth by distrust, at least on the astronomer’s part.

™M, written by the Master of the Mint, surveyed the periods and
inequalities of lunar motion, and described a kinematic model, basically
that of Horrocks. ™M thus represents a diametric antithesis to the
Principia’s endeavour of 1687. The latter was a work of theory, of zero
practical utility as far as lunar prediction was concerned. The former
contained no theory as is nowadays understood (despite its title, conferred
it is supposed by David Gregory), and gives no hint that its author had
developed an inverse square law of gravity. It is as if the hope expressed
in early 1695 had been extinguished, in that no theory was present, and its
author had regressed to a kinematic approach, with the old epicycles and
deferents still there. The frequent reprinting of ™M through the first
half of the eighteenth century indicates that it was highly esteemed as
(presumably) of practical utility. In it, Newton had begun to grapple with
what was widely perceived as the most pressing scientific problem of the
day, the finding of longitude from the wandering path of the Moon, for

navigators at sea.

The tension between these two contrasting statements was resolved in
1713, when the new PNPM reviewed the lunar inequalities, and claimed to be
accounting for them by the theory of gravity. To what extent it did so will
be discussed later. It was an extended attempt to deal dynamically with a
three-body problem, viz. the interaction of Sun, Earth and Moon. The lines
of Halley’s ode,
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At last we learn wherefore the silver moon
Once seemed to travel with unequal steps,

As if she scorned to suit her pace to numbers-
Till now made clear to no astronomer;

were composed for the 1687 edition, but did not properly apply to it,
rather they expressed what Halley as an astronomer hoped he was going to
find in it. However, they could be applied to the 1713 edition.

IXI Iaanar Theory in the Second EAition
of PNEFPM
As given in the Principia 1713, the lunar ‘equations’ - ie, angular
distances between a mean and true moon - are based upon angles formed
between the the Sun’s position and both the apse line and nodal axis.

The Newtonian lunar ‘theory’ has three main components, which can be
regarded as additive: (1) his ’equation of the centre’, a variant of Seth
Ward’s ‘empty focus’ method of approximating to Kepler’s second law; (2)
the Horrocksian oscillation of the apse line, with its concurrent
oscillation in the eccentricity of the lunar orbit; (3) six extra lunar
'equations’ added to these, which were entirely original. His method of
computing the Horrocksian oscillation used an approach of Edmond Halley,
whereby the lunar ellipse had its center on an epicycle which revolved
twice yearly around a point near the Earth. A second small epicycle
revolved around its perimeter.

In addition to these major components, there was also what astronomers
call ‘the reduction’, namely the transform necessary to move from the plane
of the lunar orbit to the ecliptic. However, this was straightforward and
uncontroversial, so need not be discussed here.

let us start by viewing (2) and (3) as oscillations defined by sine
functions of different periods. The computer can reconstruct the actual
motions of the Moon over historical time, checking up on any element of the
theory as required. Or, we may hope to discern them in Brown’s lunar
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theory, whose gargantuan equations served as the very definition of time up
until the mid-1980s, when they were formally replaced by atomic time. Our
historical treatment requires only the first few terms of the modern lunar
equations.

ITTY The ‘Horroxian year’ and the 2Apse
Line
’And those inequalities...generate the principle which I call the
semiannual equation of the apogee; and this semiannual equation in its
greatest quantity comes to about 12° 18/, as nearly as I could
determine from the phenomena.’ (PNPM, p.475)

Over a period of one year and forty-five days the apse line (which is
the line joining apogee and perigee positions) aligns twice with the Sun-
Earth axis. Let us call this period the Horroxian year, as there is no
current astronomical term for it (The latinised form of Horrocks’ name will
here be used, solely for such astronomical terms as pertain to his theory).
Over half that period, Jeremiah Horrocks in 1638 affirmed, the apse line
had an oscillation of 12° amplitude. It swung dramatically back and forward
twice, in addition to its yearly mean motion of 40°. Newton referred to
this as ‘the semiannual equation’ (Scholium of Prop. 35, PNPM, p.475), by
which he meant that its period was half a year. More precisely, its period
is 206 days*. It goes through two cycles per Horroxian year. By plotting
the longitudes of apogee and perigee positions each month, we may inspect
this claim (Figure 2.1).

In ™M of 1702, Newton gives the ’greatest Equation of the Apogee
12°.157.4" (p.19). In PNPM he gives it as 12° 18’. There is a drawback
here, that no such oscillation is to be found in the heavens. An observer
of the Moon’s apogee, which is its position in the sky each month when it
appears smallest, would perceive an oscillation in its ecliptic longitude
of arourd two or three degrees only, twice each year, not twelve degrees.
* The duration of the ’Horroxian year’ comes from the equation,

1/365.24 - 1/3232.6 = 1/411.7 days
year apse rotation (9yrs)
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The perigee position in contrast oscillates more vigorously, moving back
and forth with an almost twenty degree amplitude. If we take an average of
these two oscillations, then the figure of twelve degrees appears. Thus the
concept of an apse line is a rather gross approximation, since perigee
diverges greatly from such an axis. The apogee and perigee positions have
distinct motions. It may be useful to make the contrast with the nodal
axis: the two nodes appear as diametrically opposite in the sky, and have a
more uniform motion, so it makes sense to visualise a nodal axis between
them. To quote from a modern astronomy textbook:

'The oscillations [of the apsides] do not take place similtaneously,
but alternately, so that the apsides are not always directly opposite
one another in the zodiac, but are contimually falling behind and
overtaking these positions. The retrograde motion of the perigee
(roughly 40°) is very much larger than that of the apogee (roughly 2°
to 3°), meaning that the former moves much more quickly than the latter
against the fixed star background...the perigee can regress by more
than 30° in a single month, whereas the apogee moves for up to four
months within a field of only about 3°’/. (J. Schultz, Movement amd
Rhythm of the Stars, 1986, p.91)

The graph (see over) illustrates these motions, measured in ecliptic
longitude, of the apogee and perigee positions in modern times (it was made
using the times for these events as given in Meeus’ Astromomical Tables
(1983), and computing positions therefrom.) The graph shows a mean motion
of the two positions of 40°per anmum, which is approximately thirteen
anomalistic months as plotted on the X-axis (The positions should really
alternate on the graph, with apogee appearing first followed by perigee two
weeks later, however the graph program cannot manage this, so they appear
similtaneous).

A model approximates to reality. In this case, the Horroxian model took
the apogee and perigee motions as having a mirror-symmetry which they lack
in reality. As the model was not primarily concerned to account for lunar
distance - reflected in its apparent size in the sky - but to predict
longitude, let us hope that this was not too much of a disadvantage.
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We have seen how the unwary reader of PNFM could here be misled on two
counts: the inequality was not of the apogee as stated, but of the apse
line; and it was only approximately half-yearly ('semiannual'). Also,
because this function is discontinuous - there is only one perigee position
per month, it has no existence in between these times - a degree of

accuracy quoted to seconds may not be very meaningful.
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Figure 2.1; Apogee and Perigee Motions on a 180° scale of ecliptic longitude, illustrating their
coincidence on an 'apse line', and the greater notion of perigee as compared to apogee. Programs
do not give apogee and perigee positions, here reconstructed from times supplied by Heeus (1983).

The graph shews hew the secondary motion of perigee is much larger than

apogee. 180™ has been subtracted from the perigee positions to align them
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with apogee. Their mean motion can be seen as some 80° over two years. This
is the ‘mean apse’ motion, of 3° per month or one revolution in nine years.

We can now accept Newton’s account as given in PNPM, if we just

substitute the word ‘perigee’ instead of ‘apogee’:

’...the moon’s apogee goes forwards at the greatest rate when it is

either in conjunction with or in opposition to the sun, but in its

quadratures with the sun it goes backwards’ (p.475)
In figure (1), the maximal forward motion of perigee corresponds to the
aligmment of the Sun with the mean apse line (ie, the Sun in conjunction or
opposition to apogee), whereas its retrograde motion becomes maximal at the
quadratures. The converse applies for apogee.

Historians of astronomy tend only to discuss the mean apogee motion, of
3° per lunar month, and the historical problem of accounting for this
motion by a gravity theory. They seldom acknowledge that the apse line
really does have this rather interesting secondary motion, discussing the
Horrocksian model as if it were merely a reformilation of the antique
concept of ‘evection’. Rather, this motion was a fine British discovery by
the young North—country clergyman Horrocks, and it formed the core of what
Newton recognised as the best lunar model available in the seventeenth
century. Corollary 7 to PNPM’s Proposition 46 of Book I (Motte translation
p-178) claims to deduce this oscillating motion from the theory of gravity,
and one would like to have an expert opinion upon the cogency of its
argument.

IV an Altering Eccentricity

Since Hipparchus, eccentricity had meant the Earth’s distance from the
centre of a circle, to which the lunar orbit approximated, as a fraction of
the radius of that circle. In all the diagrams in the Principia, in those
of Horrox and Flamsteed, in Whiston and Gregory in the eighteenth century,
the lunar orbit appears as a circle. Did eccentricity still mean Earth’s
displacement from such a centre? Historians assume that these writers were
dealing with an ellipse of varying eccentricity, as we nowadays define the
term.
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The modem value of lunar eccentricity is 0.05490, however it does not
alter in modem theories. Gaythorpe (1925) explained how the modem
evection terms were mathematically equivalent to Horrocks's varying
eccentricity. TMM's value ranged between 66782 and 43319 parts per million,
v~ch is a mean of #0.055050, varying by 21.31%. The earliest recognisably
modem definition of eccentricity that I have come across appears in a
glossary of astronomical terms by Leadoetter, \“erein it was defined as
follows:

'Eccentricity is the distance between the center of the ellipse and the

focus.' (1742, Vol.II)

The classical notion of eccentricity signified the Earth's
displacement from the centre of a circle. If A and P are then the apogee
and perigee distances, expressed as Rfx and R-x vhere R is the radius; then
the eccentricity will be x/R or (A-P)/2R. This is equivalent to the modem
ellipse-based definition if the circle in question has its diameter equal
to the long axis of the ellipse. Measuring A and P in Earth semidiameters,
R is 60.2. The corrputer was set to generate successive lunar distances at
mean apogee and perigee positions and thereby cttained this function at
monthly intervals. It is shown in Figure 2.2, with IMM's mean value
inserted for comparison. It varies by somevtot less than 20%, but may serve
to indicate how British astronomers of the Restoration viewed it as

fluctuating. Figure 11.1 diagrams this fluctuation.

LUNAR ECCENTRICITY VARIATION

ANOMALISTIC MONTHS AFTER DEC 31, 1680

CONJUNCT SQUARE
APSE APSE

SUN SQUARE
APSE

TMM'S MEAN

206 DAYS
MONTHS
Figure 2.2: discrete monthly values of a simulated eccentricity value, (A-P) /2R, where A and P are

mean apogee and perigee values in Farth simidiameters and R is 60.2, for the months of 1680 and
1681, Its mean value was 0.0543, fluctuating between 0.0639 and 0.0448.
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The long axis of the ellipse (A+P) was found to vary by. only 1% over
this period, indicating that the elliptical shape of the orbit hardly
altered. It is evident that William Whewell’s interpretation of the
Horrocksian model went somewhat astray:

'That the Inequality of the Eccentricity of the Lumar Orbit, which
is greatest when the Line of the Apsides falls in the Conjunction or
Opposition, and is then one and a half of what it is in the
Quadratures; which consequently renders the Ellipsis perpetually
mutable, sometimes coming nearer to a Circle, sometimes a great deal
more remote from it, so as not to be reduc’d to any certain Species,
and which is scarcely to be accurately defined...
(Astronomical Lectures, 1728, p.130)
While we have been able to discern something resembling his 50% alteration
in eccentricity, this does not imply a corresponding alteration in the
orbit shape, which would indeed be bewildering.

I could not generate values for the modern definition of ‘e’ in a like
manner, owing to the absence of an iterative procedure for locating the
minor axis of the ellipse: the 90° angle between Moon and mean apse is not
halfway in time between apogee and perigee positions.

While the fluctuation in eccentricity every 206 days has similar
periodicity to that of the apse line, of two cycles per Horrocksian year,
the two are 90° out of phase: eccentricity reaches its maximm as the Sun
aligns with the mean apse, wherease the perigee position is moving most
quickly then, its rate of change in ecliptic longitude being maximal.
Chapter Seven will cbserve how the model of Jeremiah Horrocks accounted for
these two interlinked motions.

A comparable function over the Horroxian year was assigned to the
Moon’s varying speed, phased to the apse line’s conjunction with the Sun.
It was again a second harmonic (ie, a 20 function), zero when the Sun was
conjunct the apse line or at quadrature to it, and maximal at the octant
positions. Newton also calls this equation ’semiannual’, giving it the
magnitude 3745" (TMM, p.15; PNPM, p.474).
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Likewise for the nodal axis, when the Sun is conjunct or in quadrature
to it, which he calls the ’‘second semestrial equation,’ again maximal at
octants, of amplitude 47". This will be slightly shorter than the Horroxian
year (TMM, p.17; PNPM, p.475). I have not looked at these.

The Anomalistic year is virtually the same as the Tropical year, as
Earth’s aphelion hardly moves. It appears in the annual equation (See next
chapter). PNPM claimed that the apogee and nodes moved faster at perihelion
than at aphelion (BKIII, Prop.35, Scholium) than at the aphelion. In other
words, these two axes revolved faster in January, slower in July. Three
motions were assigned to the apse line: the first being its rotation every
nine years, the second that of Horrocks, viz its oscillation every 205 days
with twelve degrees amplitude, and now a third of annual period and
amplitude 197 43" (PNPM, p.474).
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Ch.3 SOME PERSPECTIVES ON TMM

I From Minutes to Secondss

TM cited its longitudes to seconds of arc. Did astronomers of that
time really enjoy such accuracy? Curtis Wilson has ascertained that the
ephemeris of Thomas Streete was the most exact of any available in the
seventeenth-century (GHA, p.180). Flamsteed wrote in 1669 that ‘I esteem Mr
Streete’s numbers the exactest of any extant’ (GHA, p.179). To give some
idea of his data accuracy, let us consider a total solar eclipse which
Streete cited in his Astronomia Carolina of 1661. This was visible in
London, on May 22nd 1639. Streete gave the ‘Apparent Time’ of its end as 6
hours, 10 minutes, 27 seconds, from which he derived what he called its
’Equal time’ of six hours, zero minutes, 27 seconds. That is to say,
Streete’s ‘equation of time’ was ten minutes, by subtracting which he
converted to mean solar time. As the computer shows, his longitudes for
that moment were well within half a minute, if not justifying their
citation to the nearest second:

Streete’s positions actual differences
Sun: 10° 49’ 28" Gemini 10° 49’ 53" Gemini - 25"
Moon:11° 58’/ 26" Gemini 11° 58’ O" Gemini + 26"

For readings taken in 1639, they are quite impressive.

Moving on to the 1690s, research conducted by the present writer in
collaboration with Bernard Yallop at the RGO (unpublished), has indicated
that the stellar observations tabulated in Flamsteed’s Historia tended to
be within five seconds of arc or so accuracy. For example, on March 8th
1695, the star Aldebaran was cited as having a zenith distance of 15° 517
24", in the Historia Coelestis’ Volume II. Subtracting that from 51° 28/
10", which was Flamsteed’s value for the latitude of Greenwich, then
subtracting out the appropriate value for refraction corresponding to that
altitude as given by modern tables, gave 35° 36’ 18" declination. The
computer determines the correct declination for Aldebaran at that time as
having been 35° 36’/ 15", a difference of three seconds. Likewise for the
star Spica on 2pril 12th, 1698, the error was 5 seconds of arc. These
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vertical star readings are relatively simple to compare: there is no
parallax correction as is needed for the Moon, nor any equation of time as
is needed for right ascension, where acccuracy in timing to minutes or even
secords is vital.

Allan Chapman has conservatively estimated the accuracy of the original
Mural Arc at Greenwich at 12" (Chapman 1982 p.6), but as this historic
instrument was lost on Flamsteed’s death (Possibly a consequence of Halley
filing a lawsuit against Flamsteed’s widow, claiming the equipment as his
own, on the grounds that he was the new Astronomer Royal. He lost the case,
she lost the instruments), this estimate was an inference, merely based on
comparable instruments of the time.

Lunar readings on that Mural Arc could not aspire to quite such
exactitude as the stellar positions. Taking a vertical reading as the lunar
limb touched the central filament of the telescope’s eyepiece was a less
accurate affair. By the time the data had been tabulated and had certain
astronomical adjustments applied, the errors would be greater. We found
that, for a batch of 16 positions sent to Newton in Flamsteed’s letter of
February 7th,1695 (reproduced in Correspondence,IV, p.84) the mean error in
longitude was 0.4+1.2 minutes of arc. That was after Flamsteed had applied
various corrections and converted from equatorial co-ordinates
(declination, right ascension) to ecliptic (longitude, latitude). The issue
of how lunar data was reduced into a form suitable for theoretical use will
be reviewed later. Here we are merely concerned to make some preliminary
comments about data accuracy.

IraT Conditions of Composition

The conditions under which ™M was composed have a couple of rather
strange, indeed startling, features. The original manuscript (kept at
Cambridge University Library, Add. 3966), was composed on February 27,
1700. Its date of composition comes from David Gregory, a reliable source
because of the reverence with which he recorded matters Newtonian. His copy
is in the library of the Royal Society, with the composition date marked.
We have seen how the epochs of ™M are December 31st 1680 and 1700, the two
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limits over which various celestial positions were given. The positions for
the latter date were therefore predictions. They had not then been reached.
It appears that, when the reference date of December 31st was reached, the
positions there given were not checked or amended in any way prior to
publication in 1702. Perhaps they did not need any amendment.

In the very month of ™M’s composition, Newton was confirmed as the
Master of the Mint. On the third of February, a royal edict proclaimed:

’Know yee that wee for divers good causes...do give and grant unto Our
trusty and Well beloved Subject Isaac Newton Esqr. the office of
Master and Worker of all our Moneys both Gold and Silver within our
Mint in our Tower of London and elsewhere in our Kingdom of
England...And know yee that wee for the considerations aforesaid have
given and granted, and by these presents do give and grant unto the
said Isaac Newton all edifices, buildings, Gardens, and other fees,
allowances, profitts, privileges, franchises and immmities belonging
to the aforesaid Office...’

It camnot but strike us as rather extraordinary, that within weeks of
acquiring such a responsible position, one of the most demanding jobs in
the country, Newton should find time to ponder the niceties of lunar
motion, and compose a brief but obscure opus on the subject. Not long
after, Newton would have to ready himself to stand for the Trial of the
Pyx, whereby the quality of the gold of the nation’s currency was tested
and to which the Master of the Mint was personally answerable for
deficiencies. Not less than two thousand pounds was expected to be
submitted by the Master of the Mint in advance as a security for the
operation. His full attention was expected over the problems of
bimetallism, whereby the differing values of gold and silver defined the
relative weights of the currencies cast in them. In these years he still
retained his position - and income - as a Fellow and professor of Trinity
College, Cambridge.

The twenty-year period specified by the epochs of TMM was a multiple of
four, whereby the leap years would fit in and not disrupt the flow of
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computation, and was the smallest such multiple to embrace a Saros and
nodal cycle, each of eighteen years. But, in addition, these two decades
had a very personal significance for Newton. Without wishing to over-
generalise, they framed the main period of Newton’s creative life in
relation to astronomy. In 1680 there arrived the great comet which the
Trinity lecturer sat up observing, followed in 1682 by what was later
recognised as Halley’s comet. His composition of ™M in 1700 appears as the
grard finale of that output. There is no real evidence of his further
studies of the matter after this date (Baily, p.706). His vast ruminations
on the cosmic process were framed by these two decades.

TM’s date of camposition being controversial, there are three further
occasions when evidence relevant to this is treated: Chapter Four, Section
III comments on TMM mean motions found in a separate document; Chapter
Seven, Section III comments upon apse equation values and Chapter Nine,
Section VIII, evaluates an alleged early draft of TMM.

IXTXT Halley’s Hope
TMM was published by David Gregory, formerly professor of Mathematics

at BEdinburgh University, who in 1702 became Savilian Professor of Astronomy
at Oxford Univerity. The title of Gregory’s textbook, in which TMM was
included, was (in English translation): The Elements of Physical and
Geometrical Astronomy. The claim to have established a ‘physical’ astronomy
echoes that made earlier by Kepler, at the front of his Astromomia Nova.
Introducing ™M, Gregory dismissed previous endeavours in this area for
their lack of a physical basis:

’But as they made their Tables not from known Physical Causes and

their Periods, but only by attending to Observations, it is no wonder

if they did not rightly distinguish the Inequalities from one

another...’ (Gregory 1715, p.132)
This alludes to the large question of the extent to which T™M was based
upon ‘physical causes’, when nothing in its text indicated such. We will
not now return to this issue. But, what did Gregory mean by claiming that
his astronomy was also ‘geometrical’?
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In a sense, ’‘geometrical’ merely signified, ’‘perfect,’ alluding to the
exact nature of geometrical proofs, as free from approximations. It echoed
ancient Platonic notions about astronomy with which his readers would have
been familiar. Later in the century it would become evident that, for
matters involving time-dependent variables, geometry was not so suitable.
Fluxional and differential methods were then just beginning to be adopted
by mathematicans, and half a century later would become the new format for

A comment by Edmond Halley, made while discussing the Principia’s lunar
section in its first edition, is worth quoting in this context:
‘And tho’ by reason of the great Complication of the Problem, he has
not been able to make it purely Geometrical, tis to be hoped, that in
some further Essay, he may surmount the difficulty*.’

If it strikes us as curious today, it is because we view progress in this
area as having taken place through the discarding of geometrical methods,
and their replacement by algebraic functions. Our ability to believe that a
historical figure was applying a theory of gravitation to deduce or obtain
results, is likely to depend upon their having progressed in some degree
beyond a merely kinematic or geometrical mode of reasoning. However, TMM in
1702 developed a geometrical mode of reasoning, just as Halley had hoped.

Gregory extolled the accuracy of ™M highly in an introductory paragraph,
though it was a thing he had no means of assessing:

’By this theory, what by all Astronomers was thought most difficult and
almost impossible to be done, the Excellent Mr Newton hath now
effected, viz. to determine the Moon’s Place even in her quadratures,
and all other Parts of her Orbit, besides the Syzygies, so accurately
by calculation, that the Difference between that and her true Place in
the Heavens shall scarce be two Minutes, and is usually so small, that
it may well enough be reckoned only as a Defect in Observation.’

* ’A True Theory of the Tides’, Phil. Trans of 1695, (19, pp.445-457).
Allegedly this was destined for James II as part of Halley’s presentation
of the PNPM to the King.
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Gregory has here made the bold claim that the theory developed so far that
its predictions were only limited by the accuracy of the data on which it
was based. It was what would nowadays be called a sales blurb. Gregory was
a theoretical astronomer. Flamsteed referred scathingly to him as a ’‘closet
astronomer’ because he did no practical work (Baily, p.204). We will soon
see how Flamsteed’s opinion, at least over this specific issue, was quite
justified.

On the other hand, Gregory’s judgement was largely endorsed, years
later, by no less a person than the Astronomer Royal. Edmond Halley, when
after 1719 he assumed that post, did have the opportunity to check ™M
against accurate data. His opinion, which we have already in part quoted,
shows the strongly politicised nature of the discussion, which seems to
have continued ever since. Halley found that ’for whole months together’
™M was:

. ..rarely differing two minutes of Motion from the Observations

themselves; nor is it unlikely but good part of that Difference may

have ben the Fault of the Observer. Ard where the Errors were greater,
it was in those parts of the lunar orb where Mr Flamsteed had very
rarely given himslef the Trouble of cbserving: viz, in the 3rd and 4th
quarter of the Moon’s Age, where sometimes these differences would

amount to at least 5 minutes.’(Phil. Trans, 37, p.191)

My investigations have not confirmed either that errors of such magnitude
were present in the lunar observations of Flamsteed, or that the data came
mainly for the waxing half of the lunar orbit tending to omit the last two
quarters. A later section will assess the question of data accuracy and
reliability. It becomes a rather central issue, if both Whiston and Halley
are claiming that the performance of ™M was limited primarily by the data
on which it was based.

These days, the pendulum has swung in the opposite direction. Curtis
Wilson boldly described Newton’s great lunar endeavour as a ‘failure’
(1987, p.76), and the reference cited for that claim was the Whiteside
tercentenary essay. There is room for doubt as to whether Whiteside adopted
quite so extreme a position. It is worth quoting the conclusion of
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D.T.Whiteside’s tercentenary address, for this study has formed the

starting-point of modern discussions of the topic:
Tt is, unfortunately, one of the most tenacious myths of Newtonian
hagiography that this demi-god of our scientific past made his
dynamical explanation of the moon’s motion in all its irregulariy the
supreme proof of his monolithic principle of the universal inverse-
square law of gravitation which governs all celestial and terrestrial
movement, and this in a surpassingly rigorous geometrical manner which
he made inimitably his own. "Who", to quote Whewell’s eulogistic
phrase of a century and a half ago, "has presented in his beautiful
geometry, or deduced from his simple principles, any of the [lunar]
inequalities which he left untouched?" The truth, as I have tried to
sketch it here, is rather that his loosely approximate and but
shadowily justified way of deriving those inequalities which he did
deduce was a retrogressive step back to an earlier kinematic tradition
which he had once hoped to transcend, and to a limited Horrocksian
model which was not even his own invention’ (1976, p.324).

More recently, Wilson concluded a fine study of the matter by saying,
that the Newtonian lunar endeavour had come unstuck because:

'Newton’s effective adoption of Horrock’s lunar theory, by interfering

with ongoing insight into perturbations not actually embraced by that

theory, proved ultimately an insurmountable obstacle to him’ (GHA,

pP.267).
That is a novel interpretation of the failure, if indeed we should regard
it as such. A great British discovery, which formed the backbone of the
finest lunar theory available (that of Flamsteed, the Astronomer Royal), is
blamed for having prevented a mathematican from having been more
successful, by virtue of his adopting it. Perturbation theory is something
one thinks of as developing in the middle of the eighteenth century, and in
France. We are merely pointing out that a problem seems to exist, in
deciding whether or not an enterprise was a success or a failure, and if
the latter, on what that should be blamed.

In a sense such verdicts must be conjectural. Until we know how TMM
functions, as an integral whole, it must remain so. Until then, we can only
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quote the radically opposed views of Halley and Flamsteed (for example),
and perhaps side with one or other. Here we shall aspire to reach beyond
such an armchair approach, and resolve centuries-old controversies in a
practical manner. ™M is like a machine, a watch, which once wound up and
set in motion will generate positions for the luminaries. It will do this,
provided only that we can follow its instructions. We here aim to set its
antique wheels in motion, to see how they move one against the other,
thereby to gain insight into what has long been an obscure and neglected
area in the history of science.

IV Moving the Goalposts

After the cognoscenti had been nodding their heads over these matters
for three years, and rumours put about that such profound accuracy had now
been achieved that Flamsteed need not bother any more in gathering lunar
observations, for the job was done (Baily, p.176); Newton then submitted
some ‘Corrections’ applying to TMM, one of which shifted the position of
its ‘mean moon’ by ten minutes. He thereby displaced the values which ™M
would generate by five times more than its supposed maximum error, as
affirmed by Gregory. The concept of a 'mean moon’ and of this adjustment
will be elucidated further in a later chapter, but suffice to say that it
is the fundamental starting-point for a lunar theory. It is hardly adequate
to characterise such an alteration as an ’‘correction.’ (Cohen,p.87. The
Corrections appeared in Miscellanea Curiosa of 1705, published by the Royal
Society.)

The year before these ’‘corrections’ appeared, Flamsteed described how
the Royal Society’s President paid him a visit at Greerwich. He was shown
same early lunar positions of the 1670s and 80s, and their disagreements of
up to ten minutes with T™M:

’T showed him also my new lunar numbers, fitted to his corrections;
and how much they erred: at which he seemed surprised, and said "It
could not be." But, when he found that the errors of the tables were
in cbservations made in 1675, 1676, and 1677, he laid hold on the
time, and confessed he had not looked so far back: whereas, if his
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deductions from the laws of gravitation were just, they would agree

equally in all times.’ (Baily, p.217)
This was in a letter to Abraham Sharp. Sharp was a mathematics teacher with
whom Halley corresponded over a formula he developed for the convergence of
m, who built the Mural Arc in 1690 that was much admired, and who stuck the
stars onto Flamsteed’s maps of the constellations. He is thus a fairly
significant witness to the course of events. Flamsteed may have been by
this time (1704) rather embittered by certain aspects of Newton’s
behaviour, but that is not a reason for dismissing or marginalising his
opinions, as happens in some histories of these events. If perchance we are
able to make ™M function, we should be able to test his view, that it
works better for the 1690s than for the 1670s, as it was designed to fit
data over the former period.

We can only speculate. Perhaps the errors shown on this visit impressed
the President, and led him to decide that a slip-up had occurred. A
subsequent chapter will ascertain which of these mean positions was the.
more correct.

AY4 A Modern Approach

We aspire to follow the path of a new generation of historians of
astronomy, pioneered in America by Owen Gingerich and Curtis Wilson. They
have used computers to probe into the past to ascertain how accurate were
the endeavours of any astronomer in history. Thereby they have given a
greater emphasis on the practical side of astronomy in a historical
context, which was much needed. Centuries-old discussions are now
resolvable, and a precise new basis can be given to the history of
astronomy. Little has been done in Britain along these lines, to-date.

Owen Gingerich (at the Harvard-Smithsonian Center for Astrophysics)
studied ’‘error patterns’ in ephemerides, by comparing their predictions
against actual positions over the years. This showed the extent to which
the theories of astronomers were succeeding in practice. If we knew of a
lunar almanac which had used ™M, we could assess its accuracy simply by
following this approach. Curtis Wilson has probed into the specific
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caomponents of lunar theories of this period, comparing the diverging values
of solar and lunar constants.

In a sense these things all form part of the tercentenary process. In
Britain, the most accurate lunar and planetary programmes are those
developed by the Royal Greenwich Observatory, at the Nautical Almanac
Office. In the 1950s, the ’‘Improved ILunar Ephemeris’ was there developed,
and revised in the 1970s, to obtain something near to one second of arc
accuracy in historical time. It has around sixteen hundred terms for
longitude, as compared with the historical theory we are examining which
had seven. The I.L.E. programme is powerful enough to be able to determine
the accuracy of the work of the founder of the R.G.O., the Reverend John
Flamsteed. Three centuries after Flamsteed set up his great mmral arc in
1691 - characterised by Allan Chapman as ‘the finest and most exact
astronomical instrument constructed to-date’ (1990, p.57.) - computers can
finally match its accuracy in checking its positional data.
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Ch .4 A COMMENTARY ON TMM

Our approach here is complementary to that of Bernard Cohen’s
excellent 1975 treatise. Cohen there discussed the circumstances of TMM/
production, its various editions in Latin and English, the comments made
upon ™M by astronomers, and why science historians had largely ignored the
subject. We on the other hand are concerned with the argument of this
document. This has scarcely (we believe) hitherto been attempted. This
section will deal only with its first seven paragraphs. To each paragraph
of ™M we assign a roman numeral. The reader may wish to refer back to page
6, where some preliminary comments were made, and also to values of some
Newtonian constants in the Appendix.

I ’The Royal Observatory at Greenwich is to the West of the Meridian
of Paris 2° 19/. Of Uraniburgh 12° 51/ 30". And of Gedanum 18° 48‘‘.

The Paris meridian is 2° 20/ East. In those days there was no general
agreement on the ’‘Greenwich Meridian’, so the distances between
observatories in longitude was vital for comparing observations. For once-
glorious Uraniborg, then fallen into rack and ruin yet still important for
astronomers as the site where ‘The prince of astronomers’ as Flamsteed
called him, Tycho Brahe, had once worked, the true longitude is 12° 27’.0
East. ™M’s value for its distance in longitude erred by 24 minutes! This
would have introduced an error of 1% minutes of time into any data that was
being transcribed, from Uraniborg time to Greenwich time.

’Gedanum’ referred to the observatory of Danzig (now Gdansk), where
Hevelius worked. This would have grown into the most illustrious
observatory in Europe, had it not tragically barnt to the ground in 1679.
Flamsteed compared many of his observations with those of Hevelius, and was
startled to find them agree to within a fraction of a minute in many cases,
even though Hevelius used only his own eyesight unassisted by the new
telescope plus micrometer-gauge. With such close agreement, the correct
time-correction would have been a vital matter. Its correct longitude is
18° 24’.6, so TMM’s position was again in excess, by 23% minutes of arc.




-46-

II ’The mean Motions of the Sun and Moon, accounted from the Vernal
Equinox at the Meridian of Greerwich, I make to be as followeth. The
last Day of December 1680 at Noon (Old Stile) the mean motion of the
Sun was 9 Si9° 20° 34’/ 46". Of the Sun’s Apogaeum was 3 si9» 7° 23/
30lll.

'Motions’ signified ’positions’ at specified epoch times, measured in
ecliptic longitude, and cited for noon as the time of day for which an
ephemeris had to define positions. The zodiac begins from 0° Aries at the
Vernal Point, so ‘9 sign’ meant the nine zodiac signs on from that position
on the ecliptic, viz the sign of Capricorn (A modern astronomer would cite
such a longitude as 9x30 + 20° or 290°). In the next section we consider
how accurate was the Newtonian value for the Sun’s mean position. Gingerich
found that solar errors in ephemerides of this period were not more than
several minutes of arc (1983 p.xix). Solar positions were straightforward
to calculate, depending merely upon the eccentricity value used for the
Earth’s orbit.

The ‘Sun’s apogaeum’ referred to the Earth’s aphelion, its position of
furthest distance at midsummer from the Sun. This was a remnant in
terminology from the old geocentric terminology, whereby the Sun circled
the Earth. The more or less fixed position of the aphelion is here
specified to an accuracy of four minutes.

III ’The mean Motion of the Moon at that time was 6 =i9» 1° 357 45", and
of her Apogee 8 *i9» 4° 28’/ 5", Of the Ascending Node of the Moon’s
Orbit 5 si9» 24° 14’ 35"/,

'Motion’ refers to position in ecliptic longitude. The node position
has an accuracy of two mimutes (p.6). As regards the accuracy which Newton
hoped his mean moon position to have, we may quote from a letter of his to
Flamsteed of January 15, 1695 — the period of early optimism:

’In trying to compute the mean motion of the moon from the tempus
apparens in some of your observations, I find that the mean motion,
gathered by my computations, differs sometimes from that in your
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synopses 5" or 6", or above. Which makes me suspect that, in
determining the tempus apparens, your servant followed some tables
which are not sufficiently exact...’
Years later, some ’‘corrections’ were specified for ™M, (Cohen, p.87) one
of which was a ten minute displacement of the mean moon, from 1° 35’ 45",
to 1° 45’ 45", The new value was used in Whiston’s reprinting of ™M in
1707. It does better relate to the final lunar position given for 1700, in
terms of the mean tropical lunar period which links them together.

Five seconds or ten minutes? Years later Flamsteed concluded that 1/30"
should be added onto the Newtonian value for mean moon (August 31, 1714,
Baily p.698). Chapter Five will ascertain to what extent he was correct on
this matter.

Lunar apogee here refers to a notional mean apse line, ie one having
uniform motion in longitude, and not the actual position of apogee
(pp.11,12). This apse line position is cited as being 244° 28’ 5". Its true
position was about three minutes more than this, which was quite accurate
for the period. The mean apse line was the foundation for lunar theories.

v ’And on the last Day of December 1700 at Noon, the mean Motion of
the Sun was 9 sign 20° 43/ 50". Of the Sun’s Apogee 3 sign 7° 44/
30". The mean Motion of the Moon was 10 sign 15° 19/ 50". Of the
Moon’s Apogee 11 sign 8° 18/ 20". And of her ascending Node 4 sign
27° 24’ 20". For in 20 Julian Years or 7305 Days, the Sun’s Motion
is 20 revolut. O sign 0° 9/ 4", And the Motion of the Sun’s apogee
217 on,’

These positions are intended to be mechanically linked to the previous ones

of 20 Julian years earlier, through their mean periods. The Sun’s position

in longitude has moved on by 9 minutes, as the Julian year of 365.25 days

is not quite the same as the Tropical year and so it generates that much

* These dates are January 11th and 12th New Style. To derive mean motions,
the tropical year of 365.242 days and the tropical month of 27.321 days
were used.
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displacement in 20 years. Britain was at this time refusing to abandon the
old Julian calendar, as most of Europe had a century earlier, for religious

reasons.

Two months after ™M’s composition, in April of 1700, we find the Master
of the Mint again musing upon ‘Elementa motuum Solis et ILunae ab
Aequinoctio verno’. He gave some more mean positions to the nearest second,
for January 1 1701, Old Style (Corr. IV, p.328). The computer gives us
(after converting Old Style to New) the following comparison:

Mean Sun 21° 42’ 38" Capricorn true position 22° 12’ Capricorn
Mean Moon 28° 30’ 12" Aquarius true position 28° 53/ Aquarius.

This data clearly supports the date given by Gregory of early 1700 for
T™MM’s composition. Normally, one would not require confirmation of so
reliable a source; however, it was as we have seen a rather extraordinary
period in life to choose an attempt to fathom this highly inscrutable
issue, and we may be grateful for supporting evidence over its date of
composition.

A mean sun moves 59’/ 8" per day, every day, thereby going round the 360°
of the ecliptic in 365.24 days. For a mean sun, one adds on this amount to
move from the sun’s position at noon on December 31, 1700, to its position
the next day January 1st, 1701. Let us see whether this has been done*.

Solar motion, from noon December 31 1700- January 1lst 1701
as given by Newton: 58/ 48"
by mean sun: 59/ g

actual motion: 1° 2/

Lunar motion, from noon December 31 1700 - January 1lst 1701
as given by Newton: 13° 10/ 22"
by a mean Moon: 13° 10/ 34"

actual motion: 12° 54/
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This confirms unequivocally that mean solar and lunar motions were being
used. The discrepancies then become merely 20 and 14 seconds respectively,
far less than the divergences from actual positions of 3 and 16 minutes.

The figure given for the motion of the Earth’s apse line is of
interest, as the motion or ‘quiescence’ as PNPM put it of the planetary
apses was controversial. Vincent Wing in his Urania Practica (1649) gave it
a motion of 101" per annum, somewhat less than TMM’s value of 21/ in 20
years. Streete in his Astronomia Carolina said the motion of planetary
apses was immobile with respect to the stars, ie that their motion in the
tropical reference was identical with the precession value. Flamsteed in
the Preface to his Historia Coelestis suggested 1/ 3" as its annual motion
(p-147) which is identical to the T™MM value. Sidereally, the apse moves
11".8 per annum, and adding the Vernal Point’s motion of 50".2 gives its
tropical motion of 1/2" per annum.

William Whiston, in his astronomical lectures published in 1710,
expressed surprise at ™M’s putting the Earth’s apse in motion. The notion
that the planetary apses moved had been ’‘exploded’ out of astronomy, he
remarked (Cohen, p.149), and so why were they here brought back again?

v 'The Motion of the Moon in the same Time is 247 Rev. 4 sign 13° 34/
5". And the Motion of the Lunar Apogee is 2 Revol 3 sign 3° 50/ 15".
And the Motion of her Node 1 revol. O sign 26° 50/ 16".

The length of the tropical lunar month is here indicated. A figure of
247 revolutions was accidentally given, in this paragraph and the next,
which was corrected in 1705 (Cohen p.87) to read 267. A most exact value
then emerges. Dividing 20 Julian years by the number of revolutions here
specified gives a mean period of the tropical lunar month within a fraction
of a second*. It must have been the most accurately known physical constant

* Dividing 7305 days by 267.3710 gives 27¢, 7°, 43, 4=.9.
The correct value is 2749, 7%, 43, 4%-7,
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at that period. Though PNPM only cited the sidereal lunar month within the
nearest minute, ™M used its mean duration to a second.

VI ’All which Motions are accounted from the Vernal BEquinox: Wherefore if
from them there be subtracted the Recession of Motion of the
Equinoctial Point in antecedentia during that space, which is 16/ 0",
there will remain the Motions in reference to the Fixt Stars in 20
Julian Years; viz. the Sun’s 19 revol. 11 sign 29° 527 24". Of his
apogee 4’/ 20". And the Moon’s 247 revol 4 sign 13° 17/ 25". Of her
Apogee 2 revol 3 sign. 3° 33’ 35". And of the Node of the Moon 1 revol
0 sign 27° 6’ 55",

A conversion from tropical to sidereal space here occurs. The reference
framework becomes that of the fixed stars, no longer a moving zodiac system
anchored to the Vernal Point. This move has theological implications,
because sidereal space was the sensorium of the Deity for Newton, and the
ascent into that reference framework, where the centre of mass of the solar
system was immovable, away from the merely human perspective on things, was
for him a religious exercise, or so he declared at the start of the PNPM
(Cajori Edn. 1960, Vol.1, p.12). For now we merely note that the 30° signs
here referred to are Sidereal, that is pertaining to that zodiac system
invented by the Chaldeans and defined by fixed stars. ™M’s instructions
pertain to two different zodiac systems.

Against this immobile sidereal space, the monthly orbit of the Moon,
used with such remarkable succes in PNPM to show that gravity reached as
far as the lunar sphere, is here ascertained to a few parts in ten million.

Astronomers required the ability to make such a conversion, from
tropical to sidereal longitude, as the positional data could well be given
with respect to a fixed star. There was however no generally accepted
sidereal reference framework. An inaccurate value for precession is here
given, of 16’ 0" in 20 Julian years, corrected in 1705 to 16/ 40", which is
one degree in 72 years.
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VIiI According to this Computation the Tropical Year is 365 days 5 hours
48’ 57", And the sydereall Year is 365 days, 6 hours, 9/ 14".

This concludes the dualistic system introduced in the previous
paragraph, whereby two different reference frameworks are introduced,
enabling the reader to switch over to the sidereal, and back to Tropical.
The values are more accurate than those cited in Streete’s Astronomia
Carolina of 1661. The period of the sidereal year is given correct to five
seconds, and that of the tropical year to ten.
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cn.s
MEAN MOTITONS OF THE SUN AND MOON

To construct a lunar ephemeris, five different mean motions were
required: of the Sun, Moon, apogee, aphelion and lunar node. As the
aphelion was almost stationary, or only moved a degree or so per century,
there were to all intents and purposes four positions which had to be
located on the zodiac for any given time, as one’s starting-point. Their
accuracy could easily limit the accuracy that an ephemeris achieved: if a
mean moon was out by several minutes, its predicted positions would err by
that amount on average. How accurate were the mean motions of ™M, and were
they better or worse than others of the period? This chapter will attempt
to resolve these matters, with the aid of modern equations and a 16-
megahertz microchip.

A comparison of mean motions gives a good criterion for ascertaining to
what extent the tables used by ephemeris-makers were ’‘Newtonian’ or not.
Numerous tables in the first half of the eighteenth century claimed to be
s0, and ~  William Whewell averred in 1837 that TWM was:

r...for a long period the basis of new Tables of the Moon, which were

published by various persons; as by De L’Isle in 1715 or 1716,
Grammatici at Ingoldstadt in 1726, Wright in 1732, Angelo Capelli at
Venice in 1733, Dunthorne at Cambridge in 1739’ (History of the
Inductive Sciences, II, p.209).
The issue was discussed by Baily (1835, pp.701-705), and more recently by
Craig Waff (Cohen, 1975) and Curtis Wilson (GHA, pp.267-8). Newton gave
four successive versions of his mean motions, thrice modifying that given
in ™M of 1702, so it is vital to determine which of these a ’Newtonian’
ephemeris adopted.

Our concern is not with the ephemerides as such, which were daily
tables of positions of the heavenly bodies, but with the mean motion tables
employed to construct them. The French Connoissance des Temps which ran
from 1678 onwards was a fine example of the former, probably used by Halley
in his South-Atlantic voyages.
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. A Modern Definition

Mean motion refers to a concept of uniform angular velocity, without
periodic terms. As such it is an average path of motion through time,
measured in ecliptic longitude. It is nowadays computed in Julian time,
that is by the mmber of Julian days from a given epoch. It is a function
of T, which is time measured in Julian centuries from 1900. Its computation
requires three terms: a constant representing the starting point, plus a T
and a T? term (Higher terms vary by less than an arcsecond).

Initially, one had supposed that long-period periodic terms should be
incorporated, of amplitude around ten arcseconds. However, experts
consulted were of the view that a historical conception of mean motion
should not take account of any periodic terms. They are not used in the
mean motions of the modern theories of Meeus and Chapront-Touzé, but were
in the older theories of Brown and Newcomb. It would be an option to
include them here, and would displace the error-values estimated in this
chapter by the above amount.

It is remarkable that the computations here performed would hardly have
been valid if attempted any earlier than their time of composition, namely
1992. The new copy of Dr Meeus’ book, Astronomical Algorithms, (Willman-
Bell, 1991) incorporates the improved parameters of Michel Chapront-Touze
and Jean Chapront (1988), resulting from high-precision dynamical studies
of earth-rotation, and has thereby improved the secular variation terms for
the five variables that concern us.

In consequence, disagreements now exist between modern equations for
mean motion. A cross-channel divergence of opinion continues to exist,
where it seems likely that the French tables are to be preferred: the new
issue of the Explanatory Supplement for the Astronomical Ephemeris (1992)
is by the same US publisher as the Meeus book, Willman-Bell, but has
slightly diverging mean motions. Its tables have not been revised since the
earlier edition. The divergence is somewhat larger than the divergence of
the historical tables from the Meeus values, especially for the Sun (See
Appendix IT). The previous chapter used the U.K. equations for assessing
™M’s accuracy, and for historic interest it is left unchanged. However,
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thanks to the work of the Chapront-Touze’s, we are for the first time able
to go back into past history, with terms probably accurate enough to assess
the accuracy of astronomical mean tables for centuries gone by.

In the case of the Sun’s motion, an accuracy of an arc second or two is
required, while for the Moon the errors are usually measured in minutes.
Only for the latter is the conversion from UT (Universal time) into TDT
’terrestrial dynamical time’ (prior to 1984 this was ephemeris time, ET)
relevant, due to its larger daily motion. ET was the uniform measure of
time, derived ‘from the uniform motions of the planets’, while UT is
'defined by the rotational motion of the Earth’ (Meeus), having replaced
GMT in this context in the 1930s. The latter is subject to variations which
are ’‘unexpected and unpredictable.’ Here the equation was until recently
expressed as:

AT = ET - UTt
which for historical studies we express as:
ET = GMT + AT

Tables (in the Explanatory Supplement to the Astronomical Ephemeris 1992,
pp.K8-K9) give this variable AT from 1620 onwards, which may be a mere five
or ten seconds of time, but for the early seventeenth century was over a
ninute. This normally makes a difference of a few arcseconds in lunar
position. AT is added on to the time function before the computation. The
mean motion formulae give TDT (formerly Ephemeris Time), which for
historical investigation must be translated into UT. The difference may be
due to astronomical factors such as tidal friction from the Moon’s pull,
which affect the Earth’s rotation rate.

The modern convention is to measure Julian time from noon on December
31, 2000, and not 1900 as was earlier done. Thus, for an epoch value in
1700 New Style we would substitute T = -3.0 into the time—equations.
Normally, however, the camputations involve multiplying two ten-figure
numbers together, for example Newton’s epoch value of noon, December 31,

t For the development of TDT, Terrestrial Dynamical Time, out of Ephemeris
Time, giving AT = TDT - UT, see The Astronomical Almanac 1993 pp.B4-B7:.
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1680 Old Style has a value of

-3.189650924 Julian centuries*.
If only nine figures are used for this function, it may lead to erroneous
seconds of arc positionst. The constant term is related to the tropical
period in zodiac longitude, also specified to ten figures.

The ‘Lotus 1-2-3’/ computer programme facilitates such comparisons, as
it can reliably perform these ten-figure computations, giving the answer
within a fraction of an arcsecond. The large computations are done using
its ‘modulus’ function to give a longitude between zero and 360°, for
example ‘mod(730,360)/ gives 10°, as the remainder after division.

By way of indicating the improvement that has come about, Appendix II
shows the divergences in mean lunar motion estimates from several sources
for integer Julian centuries. Meeus’ 1986 textbook on positional astronomy
used older formulae from the E.Brown’s lunar theory and was considerably
less accurate than his new algorithms (1991).

IxT Newtonian Values
Ephemerides usually cited mean motions over twenty-year intervals.

When an ephemeris cited a mean position for a date, say for 1701, it
referred to the noon on the last day on the previous year, as remains the
practice to this day. To quote John Flamsteed,

’The Radices of the mean Motions are fitted to the Meridian

of London, and the Noon preceding the first of January.’

(DOS,1680, p.33)
* The conversion eguation is,
T = (JD - 2451545) /36525 J.cent.;

2451545 being the Julian date of AD 2000 epoch and 36525 the days in a
Julian century.
t+ Assistance in transforming the epoch dates into Julian centuries was
received from Mr Yallop at the Nautical Almanac Office. Further advice came
from Neville Goodman, the British Astronomical Association’s expert on
lunar tables, concerning the need to maintain ten-figure accuracy.
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For example, Whiston’s Lectures on Astronomy (1715, 1728) contained tables
with epoch values which for the year 1681 gave mean sun, moon, apse and
node positions for December 31, 1680. These were identical with those
specified in ™M, his being the first textbook to use them. TM cites its
positions as for noon, without specifying whether apparent or mean time is
intended, and we shall assume the latter as it is normal practice for mean
motions (the difference amounts to half a minute of arc). Comparing these
epoch values from DOS and ™M (as corrected in 1705) with the Meeus-
Chapront-Touze values:

The ‘Meridian of London’ we may take as five arcminutes due East of
Greenwich. In the seventeenth-century, London rather than Greenwich would
have been the prime meridian for British tables. The correction is small,
one-third of a minute in time, equivalent to about ten arcseconds in lunar
longitude.

1681 Mean Fpoch Positions:
Lunar Apogee Node
DOS (1681) 181° 42’/ 58" 244° 11’ s1v 174° 14’ 33"
™M (1705)t 457 45" 287 05" 14’ 35"
actual (for Greerwich) 45/ 46" 307 53" 17/ 6"
T™M errors: -01" -02/ 48" =02’ 31"
Solar Aphelion*
DOS (1681) 290° 347 48" 186° 517 40"
™M (1705) 347 46" 23/ 30"
actual (for Greerwich) 34/ 51" 277 24"
™M errors: -05" -037 54"

A substantial improvement is generally evident over the two decades
from DOS to T™MM. Newton’s 1680 mean happened to be within an arcsecond of
* GHA gives the DOS aphelion value as 96° 50’ O" for 1679, citing its then
correct value as 97° 25’ 25" (p.192). As the aphelion moves one minute per
year, our value is a minute in excess of this GHA value.
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the correct value, which was possibly fortituous. We may add that wWilliam
Whiston took the first version of the mean motions, as given in ™M of
1702, and did not use the modified means that appeared in the PNPM’s Second
Edition of 1713. Naturally, as a FRS he was aware of the corrections that
emerged with a 1705 edition of TMM. Others were not so fortunate: certain
lunar-ephemeris constructors failed as we shall see to note this edition of
Miscellanea Curiosa, thereby acquiring a ten minute error in mean lunar
motion.

The 1701 epoch mean motions, for noon on December 31, 1700, were also
modified in the Principia’s second and third edition (Scholium, Propn. 35,
Book IIT). Their values compared with TMM are as follows:

1701 means: Lunar Solar Apogee Node Perihelion
™M (1702) 15°19/50" 20°43/50" 8°18/20" 27°24’20" 7°44’30"
PNPM (1713) 15°20700" 20°43’/50" 8°18/20" 27°24’20" 7°44’30"
PNPM (1726) 15 21700" 20 43740" 8 20/00" 27 24/20" 7 44’30"
‘true’ means 15°20723" 20°44704" 8°19749" 27°27719"  7°48/04"

Each of them lags behind the modern value, at least prior to 1726. The node
and perihelion remain unaltered, being out by two and four minutes
respectively, and the apogee value is improved in the Third Edition,
whereas the Sun’s error has more than doubled. The Newtonian lunar mean
motions contained errors in the region of half an arcminute:

Error Values for Newtonian Mean Epoch Positions

Lunar Solar Apogee
Epoch: 1680 1700 1700 1700
™M 1702 -10’ -33" -14" -1/29"
TMM correction 1705 -1"
PNPM 2nd Edn. 1713 -23" -14" -1729"
PNPM 3rd Edn. 1726 +33" -24" +11"

The Third BEdition of the Principia concluded this section remarking, ‘the
mean motion of the moon and of its apogee are not yet obtained with
sufficient accuracy.’



- 58 -

From comparing these 1700 epoch means, we can observe that the 1705
value was adopted by Whiston in his Praelectiones of 1707, Dunthorne’s
Practical Astronomy of 1739 and Wright’s New and Correct Tables of 1732,
while the the improved 1713 value was adopted by Leadbetter’s Complete
System of Astronomy of 1742 and Halley’s Astronomical Tables of 1752. No-
one used Newton’s final 1726 value, as would have been préferable for them.

To construct an ephemeris one needed an estimate of the lunar
revolutions performed (in zodiac longitude) in twenty Julian years,
supposedly accurate to seconds, for one’s tables of mean motion. This
interval was crucial for the construction of ephemeris tables, as the error
in it was cumlative. Values from some major sources are as follows:

Mean lunar motion per 20 years:

Error
Wing (1669): 267 rev., 133° plus: 33/ 44" =57"
DOS (1681): 337 46" =55"
T™M & Halley (1749): " " 34’ 5" -36"
PNPM (1726): 35 15" +35"
Cassini (1740): " " 33’/ 58" —42"

Deviations from the then-correct value are given to the right, by comparing
with the Meeus-Chapront-Touze equations, which only altered by an arcsecond
or so over this period. T™M’s value was accurate to one part in 107, but
this error was enough that the seconds colum in tables of mean motion were
not meaningful; and, in the the 1730s and ’40s, it gave those using the ™M
values a two minutes error. Two minutes of arc was the accuracy required to
claim the longitude prize, enabling longitude to be determined within one
degree, so this was a significant error.

Those are the vital decades because, to quote the Victorian astronomer
Baily,
’,..it appears that a period of more than 30 years elapsed before
Gregory’s Newtonian rules [Baily’s somewhat perjorative term for TMM]
were thrown into the form of tables for public use;’ (p.702)



It was generally only in the 1730s and 1740s that lunar tables came to be
based upon TMM: it took three decades for ™M to be put into practice. This
may not fully accord with the statement by William Whewell quoted at the
beginning of the chapter, but I have not as yet seen the earlier tables to
which Whewell refered. Merely preparing tables of mean motion was an easier
matter, and William Whiston was the first to prepare these in accord with
TMM.

Was there indeed a school of lunar-position astronomers, in the early
decades of the eighteenth century, who based their work upon ™M, as Dr
Craig Waff has affirmed? If so, a simple criterion will detect them. Those
who may be called ‘the Newtonians’ took their twenty-year epoch values for
mean lunar motion as identical with that of ™M. This simple criterion
yields the following rather impressive list of published tables:*

Whiston 1707

Delisle 1716 Paris (unpublished)

Grammatici 1726 Ingolstadt

Wright 1732

Capello 1737 Venice

Dunthorne 1739

Brent 1741

Leadbetter 1742

Ie Monnier 1746 Paris

Halley 1749
These astronomers concurred to within a single second of arc per twenty
years, in the above-defined parameter. The values they toock for mean
positions varied somewhat, but in their twenty-year intervals they were
identical. As mentioned, Halley and Leadbetter added ten arcseconds to
their mean position tables, through adopting PNPM’s 1713 values. This by no

* Peter Horrebow’s Nova Theoria Iunae published in 1718 in Uppsala
described itself as Newtonian. Citing its mean motions as from Copenhagen,
it gave only one set for the epoch 1700 ‘which agree with Newton’s,’ and
contained no tables. Nicholas De Lisle’s tables in the archives of the
Paris Observatory, referred to at the start of this chapter by Sir William
Whewell, also satisfy the above criterion.



means establishes that such astronomers were using ™M’s method, but it is
a start. This list does indeed hint at a rather wide impact made by ™M, as
Dr waff has claimed.

ITxT A Century of Mean Motions

The mean lunar motion specified by ™M was somewhat more accurate than
any hitherto published. The trouble was, that it was mainly adopted several
decades later, as we have seen, by which time it had accumilated an error
of two minutes and so was no better than others. Cassini’s tables were
superior at the time when TMM began to be used. Figures 1-5 illustrate the
situation.

To prepare these Figures, three sets of 20-year epoch values were
selected from each table, centred around their time of publication. The
difference between these values and the Meeus/Chapront-Touze value of the
mean position were been plotted, with corrections added for local time
where necessary. The errors were thus {historical values - modern values}.

Each diagram contains the data from just six tables, but more are
included in Table 5.1. The French tables were in New Style, and so were
eleven days ahead of the British in their calendar, after February of 1700.
For the French tables of Le Monnier and Cassini, their epoch values for the
year 1700 were for 31 Dec 1699, not 31 Dec 1700 as for the English
ephemerides. By obtaining the Julian date (see Appendix III) I found that
there were 6929 days between the Newtonian epoch date of 31 Dec 1680, (ie,
11 Jan 1681 NS) and this French epoch date. Timezone adjustments were made
for Paris (Cassini and Le Monnier), Venice (Capello), Bologna (Ricciolo),
Belgium (Van Lansberge, Zelandiae, ie Middleburyg).

The tables were located from various sources: Gingerich and Welther
(1983), Curtis Wilson (GHA), and a collection sent by Dr Craig Waff, (Jet
Propulsion Laboratory, Pasadena). Dr Waff had intended to review these
ephemerides as regards the extent to which they had incorporated the TMM
principles (Cohen 1975, pp.77, 79). He did not get round to this, his final
doctorate treating instead problems with the mean apse line motion
(Waff,1975, John Hopkins) and not with its secondary motion of oscillation.
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Morinus (1650)
Wing (1651)
Shakerley (1653)
J.Newton (1657)
Street (1661)
Riccioli (1665)
Flamsteed (1681)
Ia Hire (1687)
Greerwood (1689)
whiston/TMM(1710)
Grammatici (1726)
Halley (1749)
Capello (1738)
Cassini (1740)

Leadbetter (1742)
Le Monnier (1746)

-33"
-1712"
—58"
+10m
-1 ’ 57“
-2 4 0"
—33"

_Sun _Apogee
-6" +27°
._8" -6 I 4

-21" -5¢
—42m -9’
- 167

-2 L4 8" -

_3" _19 ’
—40" —45¢
- -16
_14" _2 ’
-23n -07.1
-3 +27
—41m +17
-20" +5¢
_32" -3 ’
-22" +3¢

1650—1750

Node Aphelion
+6/ -21’
-3¢ -22¢

- _34[
- _33[
+8/ -

-15/ +1°34¢
-3’ -36*
_3' _1[
-8’ +537
_31 '8'
_4[ _3I
-4 -10’
_4[ _3l
-1’ -11¢
_5l _4!
_4’ _3[

Table 5.1: publication dates are cited, and mean motion errors computed (by subtracting the

Meeus/Chapront Touzé values) for the twenty-year epoch nearest to that date. Errors are cited in

arcminutes for the node, apse and aphelion positions, and to arcseconds for the luminaries. For

the British texts prior to 1700, London mean time was used. Missing values indicate that they were

not as such given, probably because the tables gave anomaly values (M-A, S-H).

An extensive collection of tables from this period is contained in the
Royal Astronomical Society’s library in Piccadilly, but is not indexed

according to subject.
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An extensive collection of tables from this period is contained in the
Royal Astronomical Society’s library in Piccadilly, ut is not indexed
according to subject.

Some tables did not give values for mean solar and lunar motions, but
rather gave mean anomaly values (see next chapter) plus the apogee, so that
ancmaly had to be added onto the mean apse position to obtain the mean
position. This generates sizeable positional errors, as the apse and
aphelion mean motions were an order of magnitude less well determined than
those of the luminaries. Our table has omitted such.

The table cites a roughly chronological order of publication, modified
somewhat by the range of usable mean epoch values. Error values for the 20-
year epoch were usually nearest the date of publication, eg Morinus’
'Tabulae Rudolfinae’ were published in 1650, and I have here taken his 1660
epoch, though I have only been able to locate these as republished in the
second edition of Streete’s opus of 1705. The mean tables of Shakerley and
John Newton only went up to 1660, so had to be centred on 1640. It is
evident that only tables published in the twenty years following TMM (that
I could find) were those by Whiston.

The Table has its first two colums for the luminaries in arcseconds
and the other three in arcminutes. It relates ancient and modern
definitions of mean motion. Averaging these errors irrespective of sign,
and comparing these means for the eighteenth and seventeenth centuries,
shows the general drift of improvement:

Sun Moon Node  Apogee Aphelion
mean exrror (arcminutes): 0.5 1.3 5 16 22
% improvement C.18/C.17: 20% 35% 45% 85% 85%

Gaps in the Table indicate that I was not able to locate (or interpret)
the relevant data. Van Lansberge’s tables did not seem to contain the
twenty-year epoch values. A more thorough search might locate more, perhaps
. necessary before definite conclusions can be reached. The ’Newtonians’
Wright, Dunthorne and Brent have not been included, having identical tables
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to those of Whiston. Halley compiled his tables, one gathers, around 1720,
though they were only published posthumously, so his mean motions have been
cited for 1720. That is why his errors appear different from Leadbetter’s,
though their tables were identical.

v The Missing Flamsteed tables

Shortly after ™M appeared in 1702, the Astronomer Royal Flamsteed
expressed his disapproval, and set about constructing tables of his own,
claiming that these would give better positions (Baily, p.211). The terms
of his employment drawn up by Charles ITI mandated him to this task. His new
tables were ‘40 quarto pages and upwards’ he told Abraham Sharp. His
letters to Sharp described them, explaining why they occupied ‘so many
pages’, adding that Sharp should feel free to tell the world that they had
been drawn up, for ‘I desire to have them published as soon as may be’
(Baily, p.212). Nothing further was heard of these documents ... until,
decades later, a Frenchman Lemonnier claimed to have them.

No trace of Flamsteed’s decades of work on lunar theory appeared in the
three bulky volumes of his Historia Coelestis Britannica which emerged
posthumously in 1725. However, Pierre Le Monnier’s Institutions
Astronomiques of 1746 included the claim that his tables were both new and
based upon those of the English astronomer Flamsteed. A letter by
Flamsteed’s co-worker Hodgson confirms this, discussed by Baily somewhat
inconclusively (Baily, p.704). More recently, Curtis Wilson (GHA, p.201)
averred that Halley had given Flamsteed’s tables prepared in 1702 to Le
Monnier. We can only wonder how Halley came to possess these vital
documents, not published in his ‘pirate’ edition of Flamsteed’s Historia of
1712. They would be most significant for evaluating Flamsteed’s achievment
as the Astronomer Royal. The Table shows that Le Monnier’s mean positions
were of a high standard.

For the Flamsteed tables to have migrated across the Channel in this
manner, from Greerwich to Paris, three steps of transformation would have
been required: a nine-minute difference for longitude, an eleven-day
calendar change to New Style, and finally a year’s difference for the mean
motions owing to a difference in a convention in presentation, in the way
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French tables cited their epoch years. We would have to assume Le Monnier
performed these adjustments, though the Paris Observatory archives have no
record of these manuscripts.

v Mean Motion Graphss

Table 5.1 cited figures from a variety of epoch dates, from 1620 to 1760.
Initially they were all compared over the 1700 epoch, but this was unfair
on those published at some distance from it, because tables are normally
more accurate around their time of publication. The present scheme normally
scored errors at the epoch date nearest publication plus one on either side
thereof. Yet, this hardly permits inferences as to who derived what from
whom, a major aim of collating these mean motions.

A graphical approach facilitates insight into who copied from whom,
necessary to evaluate the extent of T™M’s influence in this field. In the
following graphs ™M is represented by William Whiston’s opus of 1707,
since his tables were the first to embody TMM’s mean motions. Each line
spans a forty-year period, over three twenty-year epochs, the middle one
being that whose error was given in the Table. Source-data is given in an
Appendix. The plotting of three points in this manner also serves as a
check upon my arithmetic procedure.

The solar mean motions show a common downward slope, 18 arcseconds per
forty years in the case of Whiston. As Chapter Four noted (Section VIII),
Newton’s period for the tropical year was in excess by ten seconds, in
which time the Sun would move ahead by approximately 10/24 arcseconds, or
seventeen arcseconds in forty years. The downward slope thus represents
that tropical year error. LeMonnier’s means look scmewhat as if he were
using the ™M values, or trying to, while Cassini’s can be seen as an
improvement.

Fiqures 5.1 & 5.2: These graphs show ‘errors’ in tables of mean motions from six different
astronomers, for mean Sun and Moon positions. For three sets of twenty-year epoch values, the
values derived from the Meeus/Chapront-Touze equations (1993) were subtracted from the published
epoch values.



-10

-30

-40

-50

-3

MEAN SUN ERRORS

IN TABLES PUBLISHED 1650-1750

1620 1640 1660 1680 1700 1720 1740 1760
Shakerley (1653) Wing (1651) Flamsteed (1681)
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MEAN MOON ERRORS

IN TABLES PUBLISHED 1650-1750
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MEAN APSE ERRORS
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-25
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Wing (1651) Whiston (1708) Flamsteed (1681)
Hailey (1749) Cassini (1740) LeMonnier (1746)

Ficnires 5.3. 4 and 5; as before, for apse, lunar node and aphelion mean motions.

Chapter Four saw hew TMM cited the tropical lunar month correct to 0.2
of a second, and commented: 'It must have been the most accurately known
physical constant at that period.' Here, we see the cumulative effect of
that 0.2 of a second, Wiereby over four decades it generated an error of
about one arcminute. (As can be seen, the graphs are not necessarily
straight lines, thou” historical mean motions were linear, vMch is due to

non-linear terms in the modem equations.)

The twenty-minute apse error in Flamsteed's 1681 publicaticn is
remarkable. In the year 1673 he caused Jeremiah Horrocks's theory to be
published, \Khose equation of apse motion was its most remarkable feature.
Flamsteed wrote, in 1675, of how he discovered the truth of this theory:
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'when I had found by many curious and careful measurements of the
Moon’s diameter, that the heavens would never admit those
Hypotheses. .’ (Phil. Trans, 10, pp.368-372)
referring to the pre-Horrocksian theories. Locating apse position with a
micrometer screw-gauge can have been no easy matter. However, that same
year Flamsteed published a criticism of Thomas Streete’s textbook, for the
way it claimed to be based upon Horrocks, in which he said:
Mean time, when he hath done what he can (with his apse equation), it
will not shew the true place to half a Degree.’ (op. cit., p.220)
Apart from the apse equation, his own mean position was hardly better.

Conclusion

Whiston’s mean values, representing those of ™M, are as good as any in
the Table. Over the century a large improvement in the mean apogee and
aphelion values appears, plus a smaller one for the lunar nodes. The graph
shows Jacques Cassini’s lunar means as more accurate than the Newtonian
ones, reminding one of Owen Gingerich’s account of how Paris in this period
became the world centre for ephemeris contruction (Gingerich and Welther,
1983, p.xi), though Cassini was a generation later than Newton. The graphs
emphasise a major feature of the Table, whereby historic mean values mainly
lag behind what are nowadays regarded as their correct values. All five of
T™M’s means, for both of its epochs, fall behind the modern values; except
that, as the nodes are moving in the opposite direction, their historic
values could be regarded as in advance!

The mean motions here examined are one method of comparing the ‘flow of
expertise’ in constructing ephemeris tables. Another and equally important
would compare constants used in the various equations. For example, Le
Monnier observed concerning the Equation of Apogee:

’1a plus grande Equation du lieu de 1’Apogee avoit éte établie
autrefois par Flamsteed de 11° 47/22". Mais M. Newton 1’a augmenté &
s’est assuré qu’elle devenoit plus conformé aux Cbservations
lorsqu’on la suppose de 12° 187.7 (1746, p.191)
This shows a remarkable degree of interest in the English method of
computing the secondary apse motion, four decades after the theory was
developed. The French had not been using the Horrocksian method, and
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Cassini used a quite different approach to developing the ‘equation of the
centre’ (GHA, p.20l1). Thus Le Monnier becomes an important source for
evaluating eighteenth-century reception of T™M. Later we return to this
theme.

Textbooks consulted, 1650-1750

J.B.Morinus 1650 Tabulae Rudolfinae
Vincent Wing 1651 Harmonicon Coeleste
Jeremy Shakerly 1653 Tabulae Britannicae
John Newton 1657 Astronomia Britannica
Thomas Streete 1661 Astronomia Carolina
J.Baptista Riccioli 1665 Astronomia Reformata
John Flamsteed 1681  De Sphaera

Phillipo de la Hire 1687 Tabulae Astronomiae
Nicholas Greerwood 1689 Astronomia Anglicana
Isaac Newton 1702 ™M
" 1713 PNPM
Nicolas Delisle 1716 Tables du soleil & de la Iume
Nicas. Grammaticus 1726 Tabulae Lunares (Ingolstadii);

Robert Wright 1732 New & correct Tables of the lunar motions
Angelo Capello 1738 Astrosophiae Numericae
Jacques Cassini 1740 Tables Astronomiques

Charles Leadbetter 1742 Camplete Astronomy
Richard Dunthorne 1739 Practical Astronomy of the Moon

Charles Brent 1741 The compendious Astronomer
Pierre Le Monnier 1746 Institutions Astronomiques
Edmond Halley 1749 Tabulae Astronomicae

Tables not located:

a) J.Hecker, Motuum Coelestium Ephemerides 1662;

b) Kirchius, Ephemeridum Motuum Coelestum 1681 (Lipsia);

c) Bealieu Desforges, Ephemerides des mouvements celeste 1703;

Other tables had mean motions I could not fathom: in Phillipe Van
Lansberge’s Opera Omnia of 1663, Maria Cunita’s Urania Propitia of 1650,
and Comte de Pagan’s Les Tables Astronomiques of 1658.
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Local Time adjustments

Town Old name Long. East  Time Astronomers

Paris 02°20” 09.3 min La Hire, Cassini, Le Monnier
Bologna, Bononia 11°20’ 45.3 " Riccioli

Venice 12°20 49.3 " Capello

Ingolstadt 11°267 45,7 " Grammaticus

Copenhagen 11°07’ 4.5 » Horrebow

Zelandiae 03°36’ 14.4 " Van Lansberge

Bicini, Silenorum 18°10’ 72.7 " Cunitia

Ven, Uraniborg 12°45’ 51.0 " Morinus (Dermark)

Table 5.2 shows ’‘true’ epoch mean motions in ecliptic longitudes, both
- for Gregorian time (English) and Julian (Continental). Values along the top
" row are labile and the rest are fixed (The top row here shown is for the
epoch date of 1620). The G.M.T. value is fed in at the top left-hand
corner, under ‘J.DATE’, which generates these labile values. In order to
generate such, the time is required in Julian centuries, which the program
derives from the Julian date in the next column using the formila
(D-2451545) /36525), to ten decimal places of which five are shown. The
Meeus—-Chapront mean motion formulae are not here shown, being elsewhere on
the spreadsheet, the values they generate being fed into the top row.

The Julian date values were derived from the epoch dates to the left.
Two values are cited for each twenty-year epoch, French (N.S.) and English
(0.S.). For eg Venetian tables, whose longitude is 12°20’ East of
Greenwich, one subtracts 49.3 minutes from the given values, and the result
converted into a decimal of a day. For the Sun an arcseconds column was
computed as historical positions warranted that accuracy, while, for that
of the Moon, arcminutes to one decimal place were adequate. For the Moon
the conversion from Universal Time to Ephemeris Time was required, whereas
this difference was negligible for the other, slower-moving functions.



MEAN MOTIONS FOREPOCH DATES NOON DEC 31
G.M.T. Julian time plus Paris time Gregorian

Tallle €2

J. DATE J. CENTURY APHEL SUN
AD 2000: | 2313128 -—3.78965 deg mins deg mins sec
20 yrs: 7305 96 25.65 290 7.21 13
1620 | 2313128 -—3.78965 96 25.66 290 7.21 13
1640 | 2320433 -—3.58965 96 46.25 290 16.42 25
1660 | 2327738 —3.38965 97 6.84 290 25.63 38
French: 2327728 —3.38990 97 6.82 281 33 0
1680 | 2335043 —3.18965 97 27.44 290 34.85 51
Fr 2335033 —3.18992 97 27.41 280 43.07 4
1700 | 2342348 -—2.98965 97 48.04 290 44.06 4
Fr 2342338 —2.98992 97 48.01 280 5229 17
1720 | 2349653 —2.78965 98 8.64 290 53.28 17
Fr 2349277 —2.79995 98 7.58 280 16.69 41
1740 | 2356958 —2.58965 98 20.25 291 25 30
Fr 2356582 —2.59995 98 28.19 280 25.91 55
1760 | 2364263 —2.38965 98 49.85 291 11.72 43
Fr 2363887 -—2.39995 98 48.79 280 35.13 8
MOON NODE PERIGEE
deg mins mins,E.T. deg mins deg mins
141 1.57 254 46.52 143 3.8
1620 141 1.57 2.69 254 46.52 143 3.8
1640 274 36.26 36.82 227 56.7 236 52.88
1660 48 10.95 11.28 201 6.89 330 41.91
Fr 289 30.56 30.89 201 35.5 329 41.71
1680 181 4563 45.77 174 171 64 30.89
Fr 49 54.65 54.79 174 48.89 63 24.01
1700 315 20.31 20.39 147 27.31 158 19.82
Fr 183 29.33 16.48 147 59.1 157 12.94
1720 88 5497 55.07 120 37.53 252 8.7
Fr 174 30.36 30.46 140 32.19 210 15.36
1740 222 290.64 30.47 93 47.76 345 57.53
Fr 308 5.02 5.13 113 42.43 304 4.19
1760 356 4.29 443 66 58 79 46.31
Fr 81 39.68 39.82 86 52.67 37 52.98
French cor: 376.0065 days (1 yr + 11 days + 9.3min)
up to 1700:  10.0065 days (10 days + 9.3min)
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Ch.6 FINDING THE ANOMAL.Y

This chapter surveys how astronomers in Restoration England dealt with
the motion of a body obeying Kepler’s second law. It deals with the two
fundamental concepts, of ‘equation’, as in for example the ‘Equation of the
Centre’, and ‘anocmaly’. The astronomers would proceed from what they
called mean anomaly to the coequated (or, ’‘true’) anomaly, via the ’Kepler
equation’. ™M instructs the reader to use tables at these crucial stages
and that is all that we need to do. We are not obliged to go through the
difficult stages then required to construct the tables, though it is
appropriate that we should have some idea of their principles of

composition.

. The solar anomaly
Anomaly meant an angle, formed between two mean positions. As such it
was a computational tool that could not be observed or measured directly.
The mean anomaly was the angle between the apse line and a mean position in
the orbit, at any given time. Whether it was measured from apogee or
perigee was a matter of convention. To quote Curtis Wilson:
r...the aphelion was taken as the zero of anomaly in planetary tables,
and the apogee as the zero of anomaly in solar and lunar theory.’
(GHA, p.275)
That became the agreed convention in the eighteenth-century. If however we
go back to Flamsteed’s DOS of 1680, that was not the case. For finding the
Sun’s anomaly, DOS instructed:
’Subtract the Longitude of the Perihelion from the Mean Motion, the
Residue is the Mean Anomaly.’ (p.34)
It made sense to start from perihelion at least for the Sun, if that was
when the year began, in January. The tables gave their ‘Equation of the
Centre’ as a function of anomaly, over the range 0-180°. We have to be
clear as regards which convention is in use over the anomaly, as these
tables were not symmetrical: the ‘equation’ would tend to be maximal at
around 91° for the Sun and 94° for the Moon. The figure shows this, where M
is the mean anomaly (here measured from apogee) and © is the BEquation of
Centre. Table 6.1 is a reproduction of a page from DOS, pointing
out the maximm value reached at 94° anomaly.
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The Earth's orhit around the Sun
was an ellipse with 'the Sun's Apogeum'
as TMM called it at one end. The new terms
introduced by Kepler, of aphelion and perihelion,
had not yet cau”t on. The former was the point at vhich the Sun was
furthest away, and so appeared to move most slowly, Wiile the latter was

the point of closest approach. They are positioned in ecliptic longitude,

for vAiich reason we use the tropical year period in defining the mean sun,

of 365.24 days. The motion of the Earth was treated as the motion of the
Sun around the Earth.

Worked example; We seek the solar aronaly on the epoch date of December

31 1680. TMM referred to the positioi of aphelion as 3 sign, 7°,

designating a longitude of 97° measured from 0° Aries. This becomes

January 10th, 1681 in New Style (that is, the Gregorian calendar), as

there was a ten-day difference between the two systems in the

seventeenth century. January 10th (N.S.) was 13 days after perihelion
vAiich then fell in the morning of December 29th. At the present time

perihelion falls on January 3rd, at 12° Capricorn. In the 1680s it
fell on December 29th, in 7%° Capricorn, so it has moved four and a

half degrees in three centuries.

The mean Sun moves uniformly at 59' 8" per day. The angular
difference between TMM's mean Sun and perihelion position, for the
date given of December 31, 1680, comes to 13° 11' (subtracting the

epoch values given in Ch.4, Section II). Finding the mean ancmaly was

the first step in an arduous series of computations vhich the

astronomer had to perform.
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IraT Kepler Motion and the Equation of
Centre

An ’equation’ then signified, to quote Curtis Wilson:

’the angle to be added or subtracted from a mean motion in order to

‘correct’ it, that is, in order to obtain a theoretical position in

agreement with the position observed.’ (GHA,p.277)
T™M gave the Sun’s ’‘Equation of Centre’, or ’‘equation of orbit’ as it was
called a greatest magnitude of 1° 56/ 20". The terminology derived from the
old scheme of things, where the Sun had a circular orbit and Earth was not
quite at the centre of that orbit, and the magnitude of its displacement
from that point generated its ‘BEquation of Centre’. This equation was zero
at the apses, growing to a maximm near the quadratures. It was subtracted
while moving from aphelion to perihelion, and added during the other half
of the year, since Earth’s orbit is fastest at perihelion and slowest at
aphelion.

Estimates of the maximal value of this solar equation had been
shrinking ever since Tycho Brahe estimated it as two degrees. It is of
interest to look at values cited by Curtis Wilson (GHA, pp.168-191) as used
by astronomers, comparing these with actual values for the period (the
latter being derived from modern estimates of historic eccentricities):

Astronomer Egqn. centre true value Error
Brahe 1580s 2° 3/ 15" 1° 56’ 10" 77
Horrocks 1638 1° 597 18" 1° 55/ 54" 37 22"
Cassini I 1660 1° 567 53" 1° 557 50" 1’ 37"
Flamsteed 1675 1° 547 13" 1° 557 49" -1’ 36’

" 1679 1° 557 Q" 1° 557 48" -48"
" 1692 1° 567 20" 1° 55/ 45" +35"

The last value was used in ™M, and then in all the tables of ‘the
Newtonians’: Whiston (1715), Dunthorne (1739), Brent (1741), Leadbetter
(1742), 1e Monnier (1746) and Halley (1749). Indeed, I have only come
across one compiler of astronomical tables in the first half of the
eighteenth century in France or England who did not use that figure and
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that was Jacques Cassini (1740), sometimes called Cassini II. He used the
more accurate value of 1° 55/ 50".

The computations as then performed involved three stages:

1 > 2 > 3 > 4
mean eccentric coequated : apparent
anomaly anomaly anomaly position

There was no simple means of moving from the mean anomaly to the
’coequated’ anomaly, so—-called because an ’‘equation’ had been applied. It
was done by using ’‘Kepler’s equation’ to find what was called the eccentric
anomaly*. This was the angular position, as viewed from the centre of the
ellipse, of a body moving in a circle circumscribing that ellipse. Kepler’s
equation does not have an algebraic solution, so methods of approximate
solution had to be developed and used. Through some means of solving
’Kepler’s equation’ one obtained the eccentric anomaly from the mean, and
thence derived stage 3t. Then the ‘coequated’ anamaly had to be sought,
which could then be compared to the actual position (called, ‘apparent
position’) in the heavens. The goal of a theory was to minimise the
difference between 3 and 4. What Newton had to say about moving between
stages 1 and 2 appeared in the Principia and not in ™M, and need not
concern us.

What the layman would call the true or actual position in the heavens,
was and still is referred to by astronomers as the ’‘apparent’ position.
This is because the ‘coequated’ position used to be referred to as the
’true’ position. A lucid account of these terms has been given in GHA by
Curtis Wilson (GHA Appendix, Gi-Gvi).

* The Kepler equation is: M = E + esinE,
where M is mean anomaly, e is eccentricity and E is the eccentric qgomaly.

t  Gaythorpe, 1925,p.864; Newton used a geometrical equivalent of what is
called ‘Newton’s method of approximation’ to solve the Kepler equation in
PNPM 3rd Edn p.112-116, see Whiteside Math. Papers, IV, 1971, p.665.
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What is nowadays called the ’equation of the centre’ is not the angle
as we have understood it above, but a formula which generates that angle.
From values of eccentricity (e) and mean ancmaly (M), it gives that angle
(in radians) by the following series:

0 = (2e-e?®/4)sinM - 5/4e?sin2M + 13/12 e3sin3M + ...,

This is the modern expression for the difference between true and mean
anomaly, measured in radians. For the small eccentricity value of the
Earth’s orbit, two terms of the series are generally adequate, namely:

= 2esinM - 1.25e2sin2M

These first two terms give the Equation of Centre within about half a
mimute for the Moon. To avoid confusion, we shall refer to the old meaning
in upper case, as Equation of Centre. Surprisingly, this modern series
expansion concurred within one or two seconds of arc with the tables of
Flamsteed, indicating that by 1681 at least one astronomer had effectively
solved the problem of computing elliptic, Kepler motion.

TMM described an elliptic orbit in terms of two different parameters,
namely eccentricity and maximal Equation of Centre, and the the above
equation relates these together. In the case of the solar orbit, ™M
specifies eccentricity as 16 11/12 parts in 1000, and the maximm Equation
of Centre as 1° 56’ 20". The anomaly value which generates the maximal
Bguation of Centre is M=91°, ie solar tables will give the greatest
'equation’ at 91°. For the lunar tables the maximal value arises at or near
to 94°. Inserting 91° into the above equation for M links TMM’s two solar
eccentricity parameters together within one second of arc.

Worked example, continued: For the solar anomaly found of 13° 11/, at the
1680 epoch date, we consult tables for the Equation of Centre:
DOS(1681) Dunthorne (1739) Cassini (1740)
13° 257 21 257 38" 257 33"
14° 277 16" 277 34" 27" 29"

Max.Eqn.(91°) 1°55/ O" 1°567 19" 1°557 50"
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Dunthorne used Newton’s eccentricity value. Interpolating for an angle
of 13° 11/, Dunthorne’s tables give 25’ 59". The modern formula gives the
identical value (I have written a computer program for the function, which
makes comparison easier). The DOS tables would give a slightly smaller
value, as they were composed before Flamsteed had reached his final and
more exact value for the earth-orbit’s eccentricty.

This equation brings us to within half a minute of the Sun’s actual
position. Thus, the Sun’s centre (or rather, the Earth’s) was then
departing from Kepler-motion by that amount.

IXTI The Iunar Eguation of Centre

The lunar ’‘equation of centre’ was a more complicated affair, varying
not only with its mean position in orbit, but also with a half-yearly
cycle. The Horrocksian theory used the altering eccentricity of the lunar
orbit to modulate the amplitude of the ’‘equation of centre’. Here we merely
introduce the subject, prior to a full account in the next chapter.

A mean moon has uniform angular velocity in ecliptic longitude,
revolving once per tropical month. For the lunar anomaly one subtracted the
mean apogee position therefrom. We have seen how the lunar apogee was a
great deal more stable than perigee, which possibly accounted for such a
tradition. ™M does not comment on these matters, but merely says that
tables prepared in the usual way are to be consulted.

In defining mean anomaly as an angle measured from the mean apogee
position, we are treating the motion of the apse as a continuous function,
whereas in fact the apogee and perigee positions only exist at discrete
positions once a month. The concept is a mathematical abstraction, defined
as an angle between two points in uniform motion, in the same direction
arourd the ecliptic* (see next page). These intersect once per 27.554 days,
the period of the anomalistic or apogee-perigee cycle.
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The tables prepared by Flamsteed in 1679 for his De Sphaera were the
first British tables to be computed from fully Keplarian principles, as the
science historians Thoren and Gingerich pointed out in 1974. Gingerich and
Welther found that the errors in the lunar Equation of Centre tables were
up to 3" for minimm eccentricity and 10" for maximum eccentricity,
concluding "On the face of it...in at least one important case Kepler’s
second law was being used in England before the publication of Newton’s
* This definition differs from that given in GHA. We take the mean anomaly
between two angular positions at the same instant of time, while GHA
advocates taking the angle between a mean moon and its last point of
intersection with the apse line:

’an angle proportional to the time that has elapsed since the planet

was last at the upper apse of its orbit, and such that 360° corresponds

to a complete period.’ (GHA,p.278)
In the case of the Sun and planets, the apses are virtually immobile making
the two definitions equivalent. Were we to adopt this definition, we would
first have to locate the previous point of intersection of apse and mean
moon, by the method indicated above, which is 1° 56’/ of Sagittarius. This
would give a mean anomaly of 60° 20/, which differs by nearly three degrees
from that which we have taken.

This GHA definition of mean anomaly would introduce a discontinuity
each month, as the zero—point jumped 3° from one apse—intersection point to
that of the following month. It would cause T™M’s lunar position to jump
suddenly by three degrees each month at apogee. It is simpler and more
logical to measure an angle between two positions existing at the same
moment of time, rather than having a definition based on a conversion
between time and space measures. Also, we are soon to give the apse line a
to-and-fro motion of twelve degrees twice yearly; this model may only be
workable if we measure from where the apse is at any given moment. My
reading of the paragraph in TMM beginning ‘Having from these Principles
made a Table...’ (1702, p.20) indicates that the ‘mean Anomaly of the Moon
corresponding to any given Time’ means angular measure as here used.
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Principia"*. My calculations showed a rather higher level of accuracy, that
DOS’s lunar Equation of Centre tables concurred within one or two seconds
of arc with the modern formula. Flamsteed’s computation methods used, in a
very precise manner, the first and second laws of Kepler.t This is a
remarkable historical fact, as Newton himself had not then used Kepler’s
second law in any astronomical context (Cohen 1980, p.250). It also implies
that his concept of eccentricity was numerically identical with our modern
definition. The calculations showing this level of accuracy are summarised
at the end of the chapter. Table 6.1 shows the middle of the three tables
for the DOS Equation of Centre, for 60°- 120° anomaly.

v Finding the Prostaphaeceresis

The amplitude of the Bgquation of Centre varied in accordance with what
T™M called the ‘Annual Argument.’ This was the term employed by Horrocks,
who took it from Kepler (Curtis Wilson, 1987 p.81). Chapter Two described
how this has a 6% month period, between conjunctions of syzygy and apse: as
syzygy is the line joining Full and New Moon, the angle is formed between
the Sun and the mean apse line, in zodiac longitude, as they line up twice
per ‘Horroxian year’ of 411 days. Astronomers have no definite term for
this function, because it does not feature in modern theory, and so I have
proposed calling it the ‘Horrox angle’ ($). One may prefer not to use the
TMM term ‘Annual Argument’ of the apogee, as the period is not really
annual. Tt appears in Figure (3) as 46°.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

* V.Thoren, Repler’s Second Law in England BJHS, 1974,7, pp.243-256;
0.Gingerich and B.Welther, ’Note on Flamsteed’s Lunar Tables’, BJHS,
1974,7,p.258.

t Flamsteed’s assistant Mr Hodgson recalled: ‘Mr Flamsteed, under whom I
had the happiness of my education, was pleased to set me upon computing his
lunar tables, under his direction; when I computed the tables of central
equations of the moon after the Keplerian method, which had never been done
before.’ (Introduction to Hodgson’s Theory of Jupiter’s Satellites,1750,
quoted in Baily p.704)



TABLE, Q the Eciuations of the Moons™ Center

Subtradb.
Si'm 2. 3..:
Table 6.1 LeaftExc Middle. Greateft.  LeaftExc Middle. g, c.icr
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Over this period the lunar Equation of Centre varied between 7° 39/ 30"
and 4° 57’ 56" in its maximal value over a monthly orbit, according to TMM.
Newton composed a table to assist finding this for Flamsteed
(Correspondence, IV p.107, here reproduced as Table 7.1). This ‘Equation of
the Moon’s centre,’ was sometimes called the Prostaphaeresis, a function
still harder to find than it was to pronounce.

The first step in determining this ‘equation’ is to find the Horrox
angle, . Then, as a first approximation we may assume that the oscillation
of the ‘Equation of the orbit’ is a cosine function, maximal at zero
degrees when the Sun is conjunct the lunar apse and minimal when the two
axes are at right angles, ie a cosine of 2% with the function oscillating
twice per Horroxian year. Then, at any given moment, its magnitude will be

6° 187 43" + 1° 20/ 47" cos2%
giving a maximm value of 7° 39’/ 30", when ¢ is zero,
and a minimm of 4° 57’ 56" when &=90°,

as ™M requires. This merely indicates how the functions are linked. TMM
does not use such trigonometric functions, but develops a kinematic/
geometrical approach, which is a little more complex than the above.

The greatest ‘equation of the centre’ is half as much again as its least
value, whereby the second or ‘Kepler motion’ moon comes to differ by a
greater amount from the mean moon. Astronomers of the period would have
visualised this effect in terms of an unchanging circular orbit, where what
altered was its relation to the Earth as epicenter, whose position deviated
by varying amounts from the center of a circular orbit.

Worked Example, contd: On the epoch date of December 31st, the mean moon
was at 1° 46’ of Libra and the mean apogee at 4%° Sagittarius, giving a
mean anomaly of -63°. It was 6° ahead of its mean position, having
moved ahead, travelling faster while near perigee (See Figure (3)).

The ‘Horrox angle’ was 46° giving 6° 15’ for the maximal Equation of
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Center, and an eccentricity of 0.05460*. Inserting this into the
formula, together with the mean anomaly of M = -63° gives 5° 44’ as the
equation of centre. The difference between the mean and coequated
positions that we are looking for was 6° 17’ (Ch.1,V), so our
computation is half a degree short.

In this chapter we have performed some rudimentary computations,
cbtaining the Sun’s position within half a minute and the Moon’s within
half a degree. This may gives us some respect for the difficulties
involved, and a notion of how to apply an ‘equation.’

Note on Accuracy of Flamsteed’s Iunar Equation of Centre Tables
The Table below gives, for some selected mean anomaly angles, their DOS

Equation of Centre, then subtracts therefrom the correct or Keplerian value
as derived from the first three terms of the modern equation of centre
(Ch.6,II) to give their errors. The 75° and 90° ancomaly values are shown in
the DOS tables of Figure 2, and Flamsteed’s middle eccentricity value of
0.055237 was used in the formula. We regrettably lack details of how
Flamsteed (with his assistant Mr Hodgson) accomplished these remarkably
accurate computations.

o [ ° ° o

Anomaly 30 45 60 75 90
DOS 2°5974n 4°15747" 5°17727" 5°59744" 6°18/59"
Errors: -1.5" +0.5" +2n +2n -1.5"

®e o0 e0 09 00s0ss0s00ec00ee00s000c0 e 0000000000000 00000000CONOIOOOLOLOLLES

* When the Horrox angle & = 46.11, 0.05505 is the mean eccentricity and
0.01173 is half the difference between maximm and minimm eccentricity,
then: e = 0.05505 + 0.01173 cos 2% = 0.0546

This is discussed further in ¢h.7, Section II.
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Ch.7 THE HORROX—WHEEIL. TN MOTION

’Horrox had left no description of the theory itself, but Crabtree
was helped in his reconstruction by rough diagrams drawn on loose

papers...”
Forbes, 1975,p.63.

TMM embodies a developed version of Jeremiah Horrocks’ lunar theory,
what one might call Newton’s interpretation of Halley’s variation of
Flamsteed’s version of Crabtree’s account of Horrocks’s lunar theory. Had
Horrocks lived beyond the brief span of twenty-two years, he might have
described his theory more fully; and yet, even in the incomplete state in
which he left it, it was in Flamsteed’s view the greatest of his
achievements.

Curtis Wilson has described how the theory began to dawn on Horrocks in
January 1637 (JHA,1987, p.86), and had been formed by December 1638, when
he prepared ’the new calculus of the Moon’ and sent it to William Crabtree.
Figure 7.1 depicts Horrocks’s kinematic model, and Figure 7.2 is another
diagram, showing the process through a thirteen-month cycle*. This same
diagram was sent from Crabtree to William Gascoigne in June 1642. These
were the three north-countrymen who initiated the tradition of British
astronomy, whose work became known via Flamsteed, as he moved from Derby to
Iondon in the early 1670s.

Flamsteed became the chief exponent of the Horrocksian theory, such
that astronomers knew it largely as Flamsteed’s development thereof, as
presented in his epilogue to Jeremiae Horoccii,...Opera Posthuma published
by John Wallis in 1673. A succinct version thereof was given in a letter of
Flamsteed’s to Newton (Correspondence, Vol. IV, p.27).

* Figure 7.1 occurs in Horrocks’s Philosophical Exercises notebook, now in
the R.G.0. library (1.68B, section 19), Cambridge, and is reproduced in GHA
p.199. Figure 7.2 originally appeared in the letter from Horrocks to
Crabtree dated 20 December 1638, published in a lLatin translation in the
Opera Posthuma 1673 pp. 467-8.
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Whiston referred to it as ‘Mr Horrox’s ILunar Hypothesis, as cultivated and
explained by Mr Flamsteed’ (1726, p.104). Before Flamsteed published this,
Thomas Streete used what he called a Horrocksian scheme in his Astronomia

Carolina of 1661, as he had gleaned it from Horrocks’s notes, but I cannot
claim to understard it.

I A variable eccentxricity

In dealing with the Horrocks model, one is to a large extent dealing
with Hipparchus’ concept of eccentricity, with its image of circular motion
about an epicentre, where Earth’s displacement from that epicentre is the
eccentricity. Mathematically this is equivalent to the distance between a
focus and the centre of an ellipse, if the circumscribing circle is of unit
radius; one could suppose that this is what is really meant*, however no
seventeenth-century text states such a thing, nor does ™M contain any
reference to an ellipse.

It was a model in which the apse line and eccentricity co-varied, by a
similar amount and 180° out of phase, by a crank-wheel mechanism rotating
once per 6% months. To quote William Whiston, Newton’s successor at the
Iucasian chair at Cambridge, from a lecture of his given in 1703:

r..it is to be noted that the Eccentricity of the Lumar Orbit is

mutable; and that the same, in the Conjunction and Opposition of the

Apogee, is One and a Half of the Eccentricity, which is in the

quadratures. So that TE the Distance between the Focus and the Center

of the Ellipsis, in the position of her Orbit, marked [3] is One and a

Half of the same Distance in the Position marked [5]’.

(1726, p.104)

The figure to which Whiston was referring is Figure 7.2, Crabtree’s
illustration of the Horrocks model. In a section, ‘To Determine the Earth’s
Eccentricity’, Whiston explains how it is ‘to be reckoned from Focus to
Center.’ All diagrams of the Horrocks theory without exception displayed
* ’Kepler neglects the elliptical shape of the orbit in computing the
evection... The error could not be very large, since the moon’s orbit is
constricted by only about e? = .002 of its radius. ’/ (Stephenson,B., 1987,
p.182, 186).
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circular orbits - in Hbrrocks, in Crabtree, in Newton, in Flamsteed, and in

Whiston - with displaced centres.

The Crabtree diagram displays the twin features of apse line
oscillation and eccentricy variation, out of phase with each other. Hie
primary motion of the apse line has been subtracted out, so that the
diagram only depicts the secondary oscillation. It does not depict motion
in sidereal space, because after one revolution of its eight stages, taking
411 days, the apse line will have revolved 46°, v*ereas it is represented

by a vertical line in each phase.

Every 6% months the Sun meets the apse line, depicted by steps 3 and 7
of the figure, with Sun at perigee and apogee respectively. These are
supposed to depict maximum eccentricity, vtole steps 1 and 5 in contrast
shew minimum eccentricity. The octants of this diagram, when the Horrox-—
angle (our name for the Sun-apse angle) is 45° or 135°, correspond to the
greatest size of the apse line's secondary motion. This amopits to so&
twelve degrees, /XW1A

The model is strai<yitforward to follow, provided we use the old,
Hifparchus definition of eccentricity. A previous chapter, 'Finding the
Anomaly' discussed hew the first two laws of Kepler were encoded into the
'Equation of the Centre', which had indeed been used by Flamsteed in
constructing his tables. Things wbhuld became rather complex, if one tried

to picture Keplerian ellipses of varying eccentricity.

Whiteside in his tercentenary essay of 1976 affirmed that the young 22-
year old Horrocks had constructed the following cbscure edifice:

'The theory of the moon's motion thereby subsumed [ie, the Horrocks
theory], by which (on conflating the Ptolemaic equation of excentre -
essentially our modem elliptical inequality — and the evection from
this) the lunar orbit is taken to be basically a Keplerian ellipse of
periodically varying eccentricity with a corresponding fluctuation to
and fro in the mean secular advance of its line of apsides, and
further adjusted in fine by - in longitude - Brahe's twin inedqualities

of variation and the annual equation...' (p.318)
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TMM contains no word about elliptical orbits and we follow its example.
Figure 7.1 show the Horrocks diagram, as it appears in his unpublished
Philosophical Exercises (This notebook is stored together with Flamsteed
documents in the R.G.0. archives at Cambridge University Library, RGO
1.68B; Wilson, GHA p.197). Curtis Wilson’s researches showed that Horrocks
derived the diagram from van Lansberge’s Theoricae motuum coelestium, but
that he altered the theory involved, so that from the ’‘very inaccurate’
Lansberge model, he constructed what remained for almost a century the
finest available. I remained in the dark as to how the Horrocks model
functioned, until I started to follow carefully the instructions given in
TMM, its diagram being given in Figure 7.3. The two diagrams are basically
identical, though separated in time by six decades.

2

IrT ™M’ = Diagram

In the ™M diagram, there is an immobile Earth positioned at T, around
which the Sun S revolves yearly, and an immobile mean apse line TB, around
which we could picture the stars revolving every nine years. That is the
required frame of reference in space and time. TF is the apse line varying
by its second equation (its first equation, the annual, not being here
represented). In Horrocks’ version, Figure 7.1, a centre C to the lunar
orbit is defined, but TWM refrained from specifying such. We are not told,
for example, that C or F in Figure 3 represents the centre of a circle or
ellipse of the lunar orbit.

According to Newton and Halley, the eccentricity was represented by the
line TF in Figure 7.3, whereas according to Flamsteed it was represented by
the projection of that line onto TB. These have the same maximm and
minimm values, TB and TA respectively, but different mean values. The
experts agree that the former is the correct view (from the modern
equations for the evection inequality), but disagree over which was
employed by Horrocks.

The previous chapter discussed (p.41) how the ’‘Equation of Orbit’ could
be considered as varying according to the sinusoidal function
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_ 6°18743" + 1°20747"cos2%
In figure 7.3, STA is the Horrox-angle &, and FCB is defined as being of
double its magnitude, ie 2% - although ™M’s diagram does not show it very
well. The above formila thus gives us Flamsteed’s version of the varying
’Equation of Orbit’, if CF is equated to 1°207/47" (half the difference
between minimm and maximm eccentricities), and 6°18’43" the mean value is
equal to TC.

For the Newtonian version, we require the length of TF in terms of &.
TC represents the mean eccentricity namely 0.055050 and CF is half the
difference between maximm and minimm eccentricity, namely 0.011731.
Applying the cosine formula in triangle FIC gives:

TF?= TC? + FC? —2FC.TCcosFCT
TF = TC/(1+FC? /IC? +2FC/IC.CosFCT)
= 0.05505/(1 + 0.21312 + 2x0.2131cos2%)
or TF = 0.05505/(1.0454 + 0.4262c0S23) (1)

That is our equation representing the Newtonian instructions in TMM. The
important ratio CF/TC of 0.2131 represents the eccentricity fluctuation

(Ch. 2 Section IV)) of 21.3%. Using the same terms, Flamsteed’s version as
given above was simply:

Eccentricity = T = TC+CD (see Figure 4a)
= 0.05505 + 0.01173cos2¢ (2)
We shall see later how the two equations
differ considerably in their effect.

Figqure 7.3: THM’s diagram of the Horrox-
wheel, where angle FTB is the apse ’
equation §, STB the Sun-mean apse /
angle & and FCB is 2¢, though / T A
not well drawn to scale (ST

should be parallel to AF). TC

is mean eccentricity, while TA and .

TR are its minimum and maximum values respectively.



Ficnire 7.4a; Horrox-wheel

diagram showing TD as

Flamsteed's version of eccentricity
and TF as Newton's. TB is the mean apse

line and F is the centre of the lunar orbit.

Figure 7.4b: the condition for
maximum 5, where sin <5,=C/IC.

TF is a tangent to the circle.

Figure 7.4c: TMM's mean eccentricity
position: TF=TC, where TF is not tangential
to the circle, then cos FCT=CM/CT=FC/21C.
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To obtain ’Ye Equation of Ye Apogee’ as Flamsteed called it, or the
’second Equation of the Moon’s apogee’ as TMM called it, we require the
angle FTC. Following the example of Curtis Wilson in GHA we take this as §,
then applying the sine formula to the same triangle gives

siné= (0.011731 sin2$)/e,
= sin2$/85.25e (3)

In the next chapter, these procedures for obtaining the length TF and the
angle § will be referred to as the functions f and g respectively.

IrxrxT Offbeat Octants
These Newtonian functions are asymmetric about the octants of Figure
7.2. In Figure 4b, the angle § will be maximal when TF is a tangent to the
circle so TFC=90°. Then,
sin§. = FC/TC = 0.2131 (4)

so 5., =12°18715".

This maximal value arises when the Horrox angle is given by cos(180-2%) =
0.2131, or & = 51°. It seems doubtful whether this asymmetry has any
astronomical significance, but tables which follow the TMM instructions all
have the apse equation peaking at 51° of the ‘Annual Argument.’ Table 7.1
shows the table which Newton sent to Flamsteed in April of 1695, with

maximm value at 51°.

The three columns of this Table are each of 30, so that the middle
colum at 21° is equivalent to 51° of the ’‘annual Argument’, ie, the Sun-
mean apse angle. The apse equation which there appears of 12°10/25" is the
peak value given in the Table. It is larger than that given in DOS (11°477)
and smaller than TMM’s value of 12°15’, indicating that ™M was not
composed in this period. Adjacent to this column in the Table are the
eccentricity values, and the mean value (55050 parts in 10¢) appears as
just after 48° of the annual argument.

The eccentricity values in Figure 7.2 reach their mean values at the
octants, and indeed they did do in Flamsteed’s version, given by eguation
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(2). In Newton’s version however, when TF=TC (in Figure 4c) the
eccentricity TF has its mean value: then cos FCT = (180-2%) = CM/CT =

Table 7.1: Table sent by Newton to Flamsteed on 23 April 1695, with three columns 0-30, 30-60° and
60-90, for the Horrox angle (’Annual Arqument’); showing mean eccemtricity of 55050 genmerated by
such an angle of 48-49°, while maximal apogee equation (12°10725") falls at 51°.

The Equations of the Moons Apoge & the Excentricities of her Orbit
in such parts as the radius is 1000000.¢ ™

Add the Equations of the Apoge
> entri | &
a;q’ g;> Signg Excentr. Sign % Excentr Signg Excentri °§ '__3?
3 3 e
g E_ o ’ ” pa.rts o ’ » parts o ’ ” pam g E‘
00 0 O 66850 9 22.50 | 61855 -] 11.32.17 50406 | 30
11{0.20.54 66845 9.36.57 | 61537 11.22.59 | 50022 | 29
21 0.41.46 66827 9.50.31 61211 11.12.37 49645 28
3]1. 2.38 66798 10. 3.40 | 60878 11. 1.10 | 49274 | 27
4 1.23.27 66757 10.16.14 | 60438 10.48.39 | 48908 | 26
511.44.12 66705 10.28.17 | 60192 10.35. 2 | 48551 25
612 4.54 66638 10.39.47 | 59838 10.20.21 48201 24
712.25.31 66562 10.50.41 | 59479 10. 4.36 | 47859 | 23
812.46. 0 66475 11. 0.58 { 59113 9.47.47 47527 22| calculo proprio
91]3. 6.24 66375 11.10.40 | 58742 9.29.55 | 47204 | 21 |correcti sequentes
10 | 3 26.41 66265 11.19.42 { 58366 9.10.59 | 46891 20 | 46891 numeri
11 | 3.46.50 66146 11.28. 5| 57986 8.50.58 ﬁ45266 19 | 46588 JF
12 | 4. 6.48 66012 11 35.46 | 57600 8.29.57 45040 18 | 46298 Maij4 h
13 1 4.26.37 65870 11.42.44 57211 8. 7.57 44829 17 | 46019 1695
14 | 4.46.15 65716 11.48.58 | 56819 7.44.58 | 44633 16 | 45753
15| 5. 5.41 65549 11.54.27 56422 7.21. 1] 44452 15 | 45500
16 | 5.24.55 65373 11.59.11 56023 6.56. 8 | 44287 14 | 45260
17 | 5.43.53 65185 12. 3. 6 | 55622 6.30.23 | 44138 13 | 45034
18| 6. 2.38 64988 12. 6.12 ‘*55218$ 6. 3.49 | 44824 12 | 448231
19 | 6.21. 9 64779 12. 8.28 | "54814 5.36.28 | 44628 11| e—no
20 | 6.39.22 | 64562 12. 9.53 | 54408 5. 8.22 { 44447 10
mean value
21 | 6.57.20 64343 12.10.25 | 54001 4.39.34 | 44283 9
22 17.14.55 64094 12.10.71 53595 4.10. 8 44134 8 55050
23 1 7.32.14 | 63847 12. 8.43 { 53190 3.40.10 | 44003 7
24 1 7.49.11 63590 12. 6.28 ¢ 52784 3. 9.41 43888 6
25 | 8. 5.47 63323 12. 3.16 | 52381 2.38.45 | 43789 5
26 1' 8.22. 0| 63046 11.59. 6 | 51980 2. 7.27 43709 4
27 1 8.37 51 62761 11.53.58 51581 1.35.51 43647 3
28 | 8.53.17 62467 11.47.45 51185 1. 4. 2 43602 2
29 | 9. 8.17 62165 11.42.14 | 50794 0.32. 3| 43375 1
301 9.22.56 i 61835 11.32.17 i 50406 0. 0. 0 43566 0
5 4 3
I Sign Sign Sign
; 11 10 9
' Substract the Equations of the Apoge
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0.2131/2, giving &48°. The ‘Newtonian’ tables for eccentricity therefore
reach their mean value at 48°. Again, I am not clear as to whether this has
an astronomical meaning. It would give one pair of octants (moving from
conjunction to square) a different form of motion from the other two (from
square to conjunction).

Thus, the ’Horrocksian’ table of lunar eccentricity which Flamsteed
published in 1673 (lunares Numeri Ad Novam Lunae Theoriam, p.480) resembles
the equivalent table in DOS in having a mean value at 45° of the Horrox
angle, and so being symmetrical about the octants. This difference offers
us a simple and distinctive fingerprint whereby we should be able to
recognise who in the eighteenth-century was using Newton’s version of the
Horrocksian mechanism.

AV Hallevy’’ s Contrilbmation
’Halley afterwards made a slight alteration; but hardly, I think,
enough to justify Newton’s assertion.’
(William Whewell, History of the Inductive Sciences, Vol.l, p.466)

An adjustment to the Horrocksian model was recommended by Halley to
Newton, which the latter regarded as quite valuable. Confusion has arisen
over this matter, for the resolution of which we need to review the
development of what was regarded as Horrocks’s lunar theory. It took place
in four stages:

I IT ITT v
Horrocks (1638) Crabtree (1642) Flamsteed (1673) Flamsteed (1681)
notes 7 letters 7 Opera Omnia > DOS

T T~

Streete (1661) Whiston (1707-26)

The first coherent account of Britain’s first lunar theory emerged from
Salford, now a suburb of Manchester, in June of 1642, as penned by William
Crabtree to Gascoigne from notes left by Horrocks. They had both been his
colleagues. Crabtree cast the new theory into seven steps, the third of
which is here of interest to us. In the 1673 publication of Horrocks’s
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Works, Flamsteed ‘polished’ Horrocks’s method, to use his expression,
chiefly by inserting his own Equation of Time in place of the imaginary
Keplerian ‘equation of physical parts’ in which Earth’s rotation rate
altered through the year. In 1681, Flamsteed adjusted some of the mean
motions as compared with his earlier 1673 statement, but otherwise left his
method unchanged. Whiston merely repeated the DOS procedure, presenting it
to his students in the early decades of the new century as the best lunar
theory available.

Crabtree’s letter was reprinted in the collection assembled by Flamsteed
in 1673 as the posthumous works of Horrocks. His third step specified the
manner in which eccentricity varied in the new theory:

3., Duplicetur Argumentum annum, & duplicati Co—simui addatur
3,065206 (Logar. numeri 1162, semi-differentiae inter mediam & extreitam
Excentricitatem) prodibit Logarithmus numeri addendi Excentricitatem
mediae 5524, si duplum Arg. annui fit in 4° vel 1° quadrantibus, alias
subtrahendi, & habetur Lunae excentricitatis vera.’

(Horrox, 1673, p.469%)

This text describes the addition of mean eccentricity (the line TC in
Figure 4a), here given the value of 5524, and what in the previous chapter
we described as FCcos2®. FC as the radius of the Horrox-wheel here has
magnitude 1162, being the amplitude of the sine function - described by
Crabtree as half the difference between maximum and minimum eccentricity -
and the cosine is of twice the ‘annual argument’ as it was called. Terms

* Horrocks’s own words on the subject are to be found in his notebocok,
Philosophical Exercises (RGO 1.68 B, Second Part, section 19), entitled, ‘A
New Theory of the Moon’: ’...to the sine of the remainder adde 306446 (the
logarithme of 1160, or halfe the difference of the greatest and least
eccentricity of the Moon) so have you the logarithm of a mumber to be added
to 5493 (the middle eccentricity)...so have you the moons eccentricity’
What Horrocks meant by ‘the remainder’ pertained to double the ‘Sun’s
distance from ye moon’s apogaeum or perigaum’. These notes have never been
published.
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are converted to logarithms and instructions given as to whether the
FCcos2¢ term is added or subtracted by quadrant - done automatically by our
cosine function. Horrocks’s method projected the rotating radius vector FC
onto the mean apse line TC to define the altering eccentricity.

Flamsteed adopted this account, whereby eccentricity was represented by
the projection of the line TF (see Figure 3) onto TB. In the early 1690s,
Halley came to disagree with this, averring that the eccentricity should
rather be represented by the line TF itself. We lack any statement by
Halley on this matter, which is regrettable. Flamsteed reported it to
Newton, evidently puzzled, and the latter’s reply a week later was,

’By your observations I find it to be a very good correction. I
reckoned it a secret which he [Halley] had entrusted with me; and
therefore never spake of it till now.’

(Correspondence, IV, p.34, letter of 24 October, 1694)

In the Principia of 1713, Newton gave this curious account thereof:
’Our countryman Horrox, was the first who advanced the theory of the
moon’s moving in an ellipse, about the earth placed at one focus. Dr
Halley improved the notion, by putting the centre of the ellipse in an
epicycle whose centre is uniformly revolved about the earth; and from
the motion of the epicycle the mentioned inequalities in the progress
and regress of the apogee, and in the quantity of eccentricity, do
arise.’ (PNPM, p.475)
The first sentence describes the achievement of Johann Kepler, attributing
it to Jeremiah Horrocks, and the second describes the achievement of
Jeremiah Horrocks, attributing it to Halley. We may add that the uniform
revolution alluded to has a nine-year period: if Earth forms one focus of
an ellipse, then the ’‘centre of the ellipse’ will revolve round it as the
apse line moves once round the zodiac.

This is all that PNPM has to say about Halley’s contribution, though it
bears little relation to the letters of October, 1694. Flamsteed presented
the Horrocksian method to Newton in his letter of 11 October, and then
added, referring to a diagram: ‘But he [Halley] affirms that not Cx but CI
is the excentricity in this & all other cases’. His letter then goes on to
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describe how Thomas Streete (in his Astronomia Carolina) made a slight
adjustment to the Horrocksian model, and for what purpose this was done.

It was fairly well known that Kepler had applied his laws to the lunar
orbit but had not thereby made much progress (Wilson, 1987,p.80). An
article by S.B.Gaythorpe, F.R.A.S. in 1957 on Jeremiah Horrocks and his
’New Theory of the Moon commented upon the Principia’s text, that it

’...does not indeed seem a particularly striking claim to fame, but the

sentence implies more than it immediately conveys. Before Horrox no one

had attempted to take an ellipse as the basis, so to speak, of the

Moon’s path, on account of the number, size, and rapid variation of the

periodic inequalities involved, and the difficulty of combining them

with other than circular motion.’ (p.134)

As well as endorsing the Principia’s version of Horrocks originality, in a
manner that is questionable, Gaythorpe concluded that Horrocks had omitted
a certain factor (sec 6§) in the eccentricity formula, and thereby ’...he
lost the honour which Newton gave instead to Halley...’ (p.137) Sec §, or
cos 6, is the factor by which the two recipies disagree (see Figure 4a).

A different viewpoint appeared in Whiteside’s essay on the subject
(1975, p.325, note 10) affirming that Halley had not made any innovation,
but had merely adopted Horrocks’s method:

7,.it was Flamsteed’s understanding (founded on a passage in Horrocks
where he himself uses this simplification for ease of calculation) that
the eccentricity of the lunar ellipse in not - as Horrocks himself
indubitably took it to be in his basic precepts - TF [in Figure 3a] but
the projection of this on to the mean apsis-line.’
Whiteside gave as his authority Gaythorpe (1956, p.137). As we have seen,
however, this was not Gaythorpe’s view.

Curtis Wilson in the GHA endorsed the Whiteside view:
’On one point of interpretation Flamsteed went astray, thereby deeply
changing the structure of Horrock’s theory: in place of the varying
eccentricities intended by Horrocks, he used their projections onto
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the mean line of apsides, so diminishing their values by the factor
cos §. The mistake was later perceived and corrected by Halley.’
(GHA, p.199)
What Halley imparted to Newton as a secret, and to Flamsteed as his own
idea, is viewed as merely a reversion to the earlier model. (See also
Correspordence, vol. IV, p.32, note 6, discussing the above-mentioned
letter of 11 October).

This Whiteside - GHA viewpoint detracts from Halley’s originality and
Flamsteed’s competence. We cannot readily appreciate what people then meant
by ‘Horrocksian’ if we adopt it. For example, in 1710 a Mr Cressner
published in the Philosophical Transactions a comparison of two different
longitude computations, one which he called Newtonian and the other
Horroxian (P.T., 27, pp.16-19). The latter tierned out to be William
Whiston’s Praelectiones astronomicae (1707) version of Flamsteed’s 1681 DOS
procedure.

We rather adopt the more traditional Forbes-Gaythorpe view, whereby
Flamsteed’s eccentricity procedure was simply that of Horrocks; whereby
Halley’s proposal was indeed an innovation; implying that Whiteside erred
in believing Flamsteed failed to comprehend the nature of the theory which
he brought from the North Country and ushered into the light of day. A
later chapter will lock at the question of how much difference was made by
this adjustment, whether it was a ’‘very good correction’ (Newton) or but a
’slight alteration’ (Whewell).

Forbes affirmed that a geometrical construction for the altering
eccentricity was supplied ‘for the first time’ by Flamsteed in his epilogue
to the Horrox Opera Posthuma of 1673 (Forbes, 1975, pp.63-67). One could
query such a claim on the grounds that the above Figure 7.1, showing his
eccentricity equation and deferent-wheel, are from the Horrocks’s
’Philosophical Excercises’ adjacent to the passage above-quoted. The area
has been little investigated by science historians.
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AY4 Linkage of e and &

How well do the apse and eccentricity equations tie up together?
According to ™M, the maximal value of the Equation of the Apogee is a
simple function of the varying eccentricity, as in the above equation (4).
However, T™MM’s figures are not quite consistent with this relationship:

Eccentricity Eqn of Apogee Theor.Egn.
Horrocks 0.05524 * 0.01162 11°4722"+ 12°8/35"
Flamsteed 11°47722%
Newton (1695) 12°10725"
(1702) 0.055050 *+ 0.011731 12°15/ 4" 12°18/15"
" (1713) " " 12°18’. "

What has here been called the theoretical greatest apse equation was
derived from equation 4 in Section III, inserting the given eccentricity
value. Not prior to the Principia’s second edition were the values
interlinked in accord with TMM’s geometrical model. It thus apppears that
the form of the Horrocks model, above described, was originated by Newton.
One camnot say which of these equations of apogee has the ’correct’ value,
as the concept is not used in modern lunar theory.

As was remarked earlier, Dunthorne in his Practical Astronomy of the
Moon had faithfully reproduced the instructions of ™M in drawing up
tables, etc, but gave an Equation of the Apogee as 12°18‘15", and it now
becomes clear that Dunthorne has simply calculated its value from the
model, as it should be. In fact, this difference of three arcminutes is
quite immaterial.

©© 00 0 0000000000000 00000600000000000000600060000000060000000s00CESIBSGIOGIEOLOGEOIES

t In his letter of June 21 1642 to Gascoigne, William Crabtree cited the
value above—quoted, in turn cited by Gaythorpe, (1956, p.137) as Horrocks’
value. However, Horrocks’ Philosophical Exercises notebook states ‘The
greatest aequatio apogai is 12°30’/ (RGO 1.68B,17). In 1675, Flamsteed in a
letter to the Philosophical Transactions averred that: ’'I find by Mr
Horrockses papers, that he used at first 12° precise, but upon farther
experience diminished it to 11°48.7 (Phil. Trans. 1675, Vol.X10 pp.369-70.)
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Godfray’s ILunar Theory of 1871 discussed the interlinkage between these
two functions, and his treatment was recommended by Whiteside (1976, p328,
note 47). Turning to the page recommended by Whiteside (Godfray p.70), we
find equations given for the two above-defined functions in error
by fifty percent:

oy
I

15m/8 sin2(a’-®)

and e{l + 15m/8cos2(a’-®)

where § is the second equation of apogee, E is the varying eccentricity, e
is mean eccentricity, m is the ratio of lunar tropical month/solar tropical
year, and (a’-®) is the Horrox angle between apse and Sun. This gives
maximal values for § of 8°, and an eccentricity fluctuation of a mere 12%,
whereas it has to vary by 21% according to T™MM. This may serve to remind us
how difficult a matter is our subject, and how easy it is to err therein.

A more reliable maximal value for § was derived by Gaythorpe (1925,
p-859, 1957, p.136) as arcsin(e/2e), where € is the coefficient of the
evection term (1:274, see below). This is equal to 11°39/, using the T™™M
value of eccentricity. The ’correct’ value of this vitally important
constant thereby appears as closer to Horrocks’s final value, than to the
considerably higher value which Newton, following Halley’s advice, gave to
it. Gaythorpe derived this value by showing how the modern evection and
equation of centre terms were equivalent to a single equation of centre
term using an oscillating apse line, § being its maximal oscillation.

VI Not the Evection
’By thus coupling the libratory motion of the apse line AP with a
variable eccentricity, Horrox (and subsequently Flamsteed) united the
two principal lunar inequalities: namely, the equation of the centre
and the evection.’ (Forbes, 1975, Ch.4, p.65.)

The first three of the modern equations of the lunar orbit are,
6.288 sin M’ or in our symbols: sin (M-3)
+1.274 sin (2D-M’) sin [(2(M-S) - (M-A)]
+0.658 sin 2D sin 2(M=S)
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vtiare the first tem is the elliptic inequality, the second is the evection
and the third is the variation. M' represents the Moon's mean anomaly, ie
distance from its mean apse in longitude, D its mean elongation ie distance
from the mean Sun, and M, S and A the mean positions of Moon, Sun and
apogee. The Horrocks model conflates the first two of the above equations.
Hew its performance conpares with these, is something we may hope to

apprehend in due course.

The evection has the characteristic that one cannot picture it, as
varying with the sine of twice the elongation minus the anomaly. In this it
contrasts with the kinematic model we are considering, vhich is vholly
visual. The evection was named by Ishmael Boullieau in 1645, however its
meaning varied rather (@GR, p.195). As the 'second inequality’', it was
discovered by Ptolemy, vho fixed its maximum value at 1" 19', described by
Dreyer as 'very near the true value' (|TS3 1 y < C

, P-195). Its modem meaning, as having a period of 31" days,

developed in the later eighteenth-century.
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Ch.8 THE SEVEN MOONS OF T™MM

’...and the Moon’s Place will be equated a seventh
time, and this is her Place in her proper Orbit.’
™M

Newton originated the concept of seven steps of equation as his
distinctive approach to lunar theory, in his ™M of 1702. As he discerned
just seven colours in a rainbow in 1675, and as his Optics of 1704 found
seven steps of colouration in his ’Newton’s Rings’*, so in like manner he
found seven steps appropriate for his lunar endeavours. We have seen how
William Crabtree’s formulation of the Horrocksian theory in 1642 described
seven steps, which may also have influenced him.

This sevenfold structure became a distinctive hallmark of the various
’Newtonian’ ephemerides that utilised ™M. To quote Dr Waff, RS
"...nearly all new lunar tables constructed during the first half of
the eighteenth century utilised in some fashion his [Newton’s] tabular
theory."
(Cohen,1975, p.79) That is a strong and bold claim by Dr Waff, but
regrettably it has never been substantiated. It will here be investigated
in due course. By ‘tabular theory’ Dr Waff was presumably referring to
Newton’s seven steps of computation. Leadbetter’s Uranoscopia of 1735
contained the seven steps, Le Monnier’s Institutions of 1746 in Paris
contained them, as (mainly) did Halley’s Astronomical Tables of 1752. Thus,
its shadow stretched over half a century, greatly ignored by science
historians.

The first summary of TMM’s seven steps in trigonometric form was given
by Francis Baily, President of the newly-formed Royal Astronomical Society
* P.Gouk, ‘The Harmonic Roots of Newtonian Science’, in Let Newton be! Ed4
Fauvel et. al., 1988. For the sevenfold pattern of ’Newton’s rings’ see
D.Castillejo, The Expanding Force in Newton’s Cosmos, Madrid 1986, p.97.
Castillejo also noted that Optics was composed in seven sections.
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(1835, p.742), as follows:

Table 8.1: Baily’s account of the ‘Newtonian Rules’:

I) 117 49" the annual egquation
I1) 3¢ 45" sin 2(D-A)

III) 47" sin 2(0-0)

v) Equation of centre, including evection
V) 357 15" sin 2D the Variation

VI) 2’ 10" sin (2D+a-3)

VII) 2’ 20" sin D

Baily gave no details beyond this bare outline. He pointed out that
four of the equations were entirely new, namely numbers two, three, six and
seven. The magnitudes of the sine functions in Baily’s summary were mostly
mean values, and as we shall see they are made to vary, in relation to
several different cycles. (His symbols are different from those used here:
he took D as the Sun—-moon angle, 2 as node, O as Sun, and a, A as solar and
lunar ancmalies).

The instructions of ™M have here been translated into a sequence of
machine-readable functions. I accomplished this in the winter of 1991/2,
and then with the aid of a computer expert, Mr Jonathan Loretto, it was
written onto a ‘Lotus 1-2-3/ program. As input this program takes the time
in days after noon GMT on December 31, 1680 0ld Style, and as output it
gives lunar longitude. Its latitude function is described later (Ch.9, V).
Figure 8.1 is a diagram of TMM’s sequence of operations. I was startled to
discover that the program based on ™M did rather accurately accord with
the heavens, at least around the time of its composition.

The seven ‘steps of equation’ are here presented as a sequence of
additive functions, and are given without explanation. The reason for this,
is that it seemed preferable to start with the complete sequence, showing
its structure, and then in the next chapter to justify each step. The
program starts with a given time, which defines five different mean motions
(Chapter Five), and these mean motions become modified by sucessive
’equations’. A sequence of interactions takes place, ending with a seventh-
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time equated moon. later in the chapter some equivalent algebraic terms are
given, for each step.

The sequence here presented contains no twentieth-century astronomical
constants, using only those given in ™M; and, with only one exception, it
contains no modern equation: it does include the ’‘equation of centre’
fornula as discussed in Chapter Six, since TMM merely states that tables
for the equation of centre were to be compiled, implying that a standard
procedure was to be followed, and merely gives maximm and minimm values
for it. ™M’s instructions on how to accomplish the ‘reduction’, ie
conversion to the plane of the ecliptic, are also rather brief, this being
a quite standard operation. Thus, with only one exception, what is here
presented is merely:

"a translation from the hieroglyphics of geometry into what is now

the vernacular language of science [ie, algebra],"
- as was claimed by Stevenson’s 1834 opus, Newton’s ILunar Theory Exhibited
Analytically (1934, Preface). However, as was indicated earlier (Ch.1,
VII), what Mr Stevenson presented was not in fact the Newtonian procedure,
but an idealised version thereof, resembling the mid-eighteenth century
French theories and quite lacking the Horrocksian mechanism (Cchen, 1975,
p.79). Such a translation of ™M into ‘the vernacular language of science’
is here accomplished for the very first time.

Checks that were used to test the program have been included as shown
below, together with a complete worked example in the form of the case—
study by Richard Dunthorne, a Cambridge student who prepared tables which
adhered closely to TMM. He published this in 1739 as Practical Astronomy of
the Moon: or, New Tables of the Moon’s Motions, the purpose of which was to
see how well ™M actually worked. Dunthorne put his maximum equation of
apogee at 12° 18’ 15", as given in the third edition of PNPM, whereas TMM
had given it as 12° 15’ 4", that being the sole difference.

While the equations below were all bar one derived from the
instructions of ™M, I was at times uncertain about the signs, especially
for the nodal eguations. A worked example given in Dunthorne was here
useful for checking that the addition and subtraction of the trigonometric
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functions was proceeding correctly, for the varying angles. Dunthorne’s
1739 opus appears to me as the one work which has embodied 100% the T™M
rules in its lists of tables and instructions on how to use them. A
convention has here been adopted that the faster orb was always subtracted
from the slower, for example the solar ‘anomaly’ is represented by (H-S):;
bearing in mind that sin(A-B) = -sin(B-A) and cos(A-B) = cos(B-A). The
discussion of the four new Newtonian equations given in GHA (p.267) was
also of assistance in rightly applying their signs.

The treatment of the ’‘equation of the centre’ using the Horrocksian
model is far larger than any other of ™TMM’s ‘equations’, and is positioned
in the centre of the seven steps, so that there are three antecedent stages
and three following. The fifth stage comprises the well-known inequality
discovered by Tycho Brahe called ‘Variation’.

r ™M in Machine—Readable Form
The five variables, measured in degrees of zodiac longitude from zero

Aries, are: Moon M, Sun S, apogee A, aphelion H and node N. These have
motion in degrees/day, and values from zero to 360°. They depend on time
t, measured in days from noon G.M.T. Dec. 31, 1680 0ld Style. The five
variables have these starting positions at time zero and speeds of motion:

M = 181.763 +13.17639535 x t

S = 290:580 + 0.98564697 X t

A = 2447468 + 0.1114083 x t

H= 97.392 + 0.0000479 x t

N = 174:243 - 0.0529551 x t
These are the mean motions. These linear functions can be checked by
putting t equal to 7305, the number of days in twenty Julian years. This
will give the following positions for ™TM’s second epoch date (Ch.4, IV).
Test One:

for t=7305, M = 315:331
= 290:731

A = 338:306

H= 97.742

N = 147.406
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These five longitude values are those specified by ™M for noon on December
31, 1700, confirming that the mean motions tie up with those specified. A

‘modulo’ function is employed to retain the value of each function within
0-360°.

The following flow-chart outlines the sequence of interaction of these
five variables through the seven steps, with angles measured in degrees.

Figure 8.1 The Steps of Bquation in TMM
H s A M ET
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I
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THE FOUR FUNCTIONS f,g,h and j:

TMM-PC utilises four functions, whose operation may be outlined as
follows:

f: A +S, >E

g: A - A
h: E+ A, +M - M,
I N. - N

1 2
Function ‘h’ applies the equation of centre, which gives radian measure
(Ch.6,II) and so has a 180/7 conversion factor to bring it into degrees.
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The next chapter will explain the derivation of these functions while here
we merely describe them. They are as follows:

Eccentricity from Horrox angle (A-S):
£(A-S) —> 0.05505 x /{1.0454+ 0.4262cos2(A-S)}

Second Apse Equation from the Horrox angle:
g(A-S) —y arcsin (sin2(A-S)}
{85.24 - x £(a-S)}

Equation of Centre from lunar anomaly and eccentricity:
h(E,A-M)-[2E x sin(A-M) - 1.25 x E? x sin2(A-M)]x180/7

The Node Equation:
j(N-S)—arctan { __sin2(N-S) }
{38.33 + cos2(N-S)}
The following Test Two will check whether the functions are working.

For f, put A-S = 48° ——> 0.05507,
g, put A-S = 48° 12,13
h, put A-M = 30° and E= 0.05  2.74
j, pat N-S =120° -1.31%
The Seven Steps

The steps of equation are inserted in accord with the above flow-
diagram. Thus, the apogee first-equated (A ) feeds into functions f and g,
then adding g to A gives the apogee second-equated, which in turn feeds
into function h, the equation of centre, to give M,. The node on the other
hand only receives its second equation after the seventh step.

STEP ONE - the annual egquation

=8 + 1.939 x sin(H-S) - 0.0205 x sin 2(H-S)

=M - 0.197 x sin(H-S)

= A + 0.333 x sin(H-S)

= N - 0.158 x sin(H-S)

This step begins from the ‘mean motions’, linearly time-dependent functions
with modulo 360°, as given earlier.

Sl
Ml
Al
Nl
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STEP TWO M, =M + [6.25 - 0.31 X cos(H-S,)] x sin 2(A,-S,) + 100
STEP THREE M, = M, + 0.0131 x sin 2(N,-S,)

STEP FOUR Put E = £(S,A))
and A, =A -g(S ,A)
then M, =M, + h(EM, ,A)),

STEP FIVE - the Variation
M, =M, + [0.5923 - 0.0312 x cos(H-S,)] x sin 2(M,-S,)

STEP SIX M, =M, + 0.0361 sin(S,-M +H3,)
STEP SEVEN M, =M, + [0.0389 + 0.015 x cos(H-A,)] sin (S,-M,)

REDUCTION Put N, = N, - j(S ,N,)
then M(end) = M, + 0.1160 x sin2(N,-M_)[1+0.0586cos2(N,-S )]

The following Test Three checks the entire sequence of equations,
utilising Dunthorne’s worked example (1739, pp. 50-59; Table 8.2), which
took the instant of 3.40 pm on January 2nd 1737. Conversion to a ™M t-
value as defined gives 20456.1528 days. This position has been used as a
standard test for setting up the program. The ™M Lotus spreadsheet for
this instant is given in Appendix V, which is comparable to Table 8.2. The
following positions are generated by ™M-PC for this instant:

M= 80.119 M,= 80.069
S= 293.124 M = 80.112
A= 3.453 M,= 80.124
H=  98.372 E = 0.04670 M,= 74.815
N=  170.985 M= 74.207
M = 74.186
S,= 293.628 M = 74.163
A= 3.538 M, = 74.142 = 74°8/31"
;= 354.212
N,= 170.945

N = 169.572
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For this date and time, the t-value fed into the TMM-PC program was
20456.1528 days. One can be a day out in computing these t-values owing to
leap~-years, and so the solar values are first checked to see if they
concur. A Lotus 1-2-3 spreadsheet has the form of a flow diagram, where
from the t-value inserted at the top, all the other values are defined. It
shows merely the figures generated at each stage, but not the functions

that produced them. A page is reproduced in Appendix V.

The mean motions concur with those of Dunthorne within an arcsecond,
confirming what was said in Chapter Five that ’the Newtonians’ in this
period based their mean motion tables firmly upon T™M. The programme has
T™M’s value for lunar tropical motion defined to ten figures as

13:17639535/day.
That level of accuracy is vital if results are to be quoted to arceconds.
It differs from the then ‘true’ value, that is to say as interpolated into
historical time using Meeus’s modern values (Ch.5,II), of

13.1763967/day.
The difference only appears in the sixth place of decimals, but without
this accuracy our mean values would never concur so well with those of
amateur astronomer Richard Dunthorne. For the slower, solar mean motion,
eight figures appear as sufficient, for arcsecond accuracy. For comparison,
the equations for locating correct lunar mean motions in historical time
(Appendix II) require an eleven-figure term.

The final results differ in ecliptic longitude by eighteen arcseconds,
which is tolerable. Richard Dunthorne was an eminent astronomer in his own
right: it was he who first established Edmond Halley’s conjecture of the
secular acceleration of the Moon. Halley had proposed in 1696 that such an
effect was causing eclipses in antiquity to be displaced by an hour or so
from their expected times, but he never showed any computations on the
matter. Dunthorne did this, and Brewster’s Memoirs of Isaac Newton referred
to Dunthorne in this context.

We can inspect the ’equations’ for each of the seven stages, comparing
Dunthorne’s with T™M-PC (see over). The largest discrepancy is ten
arcseconds, in the sixth equation. A ’‘correct’ answer is given from a
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modern program, showing how final values err by nearly seven minutes of
arc, which is rather shocking considering that it is thrice the maximm
error claimed by Gregory for ™M in 1702. Later on, we may hope to discover
how often ™M would generate an error of such magnitude.

Dunthorne T™MM-PC Dunthorne TMM-PC
Egn (1) =37 2v =37 o" 1st node eqn: =2127" -2/24"
(2) +2733" +2732n 2nd node egqn: -1°22/23" -1°22723"
(3) +43" +42"
(4) -5°18729" -5°18/30" 1st apse egn: 579" 575m
(5) -36728" -3628" 2nd apse eqn:  9°19727" 9°19734"
(6) -1727" -1717"
(7) -1728" -1720" eccy. (x10¢): 46703 46705
Reduction 1717 -1’16"

Final ans. 74° 8713" 74° 8/27"
Correct value: 74°15’3"

The above ’‘correct’ value was obtained using a copy of the I.L.E.
program kindly supplied by Dr. Bernard Yallop at the Royal Greemwich
Observatory, said to be accurate to within a second or two of arc in
historical time, which contains sixteen hundred terms.

Omitting the mean motions, we can cast the central chain of equations
into a more algebraic format, as follows. The constants utilised have been
listed at the end of the chapter. Concerning the signs of the functions,
suppose for example one were doubtful about that present in "1-3Ecos(H-S)",
a term which appears in the second and fifth stages and represents an
annual fluctuation about a mean value. TMM states that this ‘equation’ has
to be maximal at perihelion (ie midwinter) and minimum at aphelion. (The
’3E’ term derives from Newton’s claim that the function varies as the cube
of distance from the Sun, later linked with a theory of gravity, however
this need not here concern us). To check the correctness of the expression,
one inserts a date when the Sun is near aphelion giving S and H similar
values, when the expression (in the Lotus program layout) should reach its
minimm value, while conversely it should rise to a maximm value when 180°
or thereabouts separates S and H. This was found to be the case.
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II The Seven Steps as trigonometric functions
STEP ONE: the solar equation of centre
S, = S + 180/7[2Esin(H-S) - 1.25xE’sin 2(H-S)]
E is solar eccentricity
180/m converts radians to degrees

M, =M - 11/49"sin(H-S) M is mean lunar longitude
STEP TWO M, = M, + 3’45"[1 - 3Ecos(H-S)]sin 2%
STEP THREE M, = M, + 47"sin 2(N-S) E
. S
STEP FOUR: the lunar equation of centre €
In the figure, TC is unity, §
and radius CF has length €, where T c

€= half the difference between

maximum and minimm eccentricites

divided by the mean value (=0.2131).

Then TF represents the varying eccentricity e, FIC is 6 the
equation of apogee, and FCB is 2%, twice the Sun-apse argle.

e = 0.05505/(1 + €2 + 2ecos2d) cosine formula on FIC
siné = sin2¢ x 0.01173 sine formula on FIC
e
0.011732°is half the difference between
maximum and minimm eccentricity,
0.055050 is the mean.
A=A -§

and M, = M, + 180/m[2esin(A-M) - 5/4e?sin2(a-M)]

STEP FIVE: the Variation
M, =M, + 35732"[1 - 3Ecos(H-S) ]Jsin2(M-S)

STEP SIX M, =M, + 2/10"sin(S-MHi-A)

STEP SEVEN M7 = MG <+ [2'20" + 54"ws(H-A)]Sirl(S—M).
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The sign of the seventh equation is confusing, since one version of T™MM
(Cohen, 1975, p.113) specified that it be additive for the waxing Moon and
subtractive for the waning, while another version a few pages later (Ibid,
PP.138-9) specifies the converse. The latter version has been used by GHA,
and is indeed the correct way round in accord with modern equations. Both
these versions were published in 1702, but no-one, not even Flamsteed or
Baily, has remarked upon this divergence. The sign of the sixth equation
was later reversed, as Flamsteed pointed out (Cohen, p.59), but not the
seventh. Its sign as above is negative for the waxing Moon.

IXTT A Comparison with Flamsteed

Table 8.2 shows Dunthorne’s mode of summarising his computation. By
contrast, the customary format for these matters, prior to ™M, is shown by
a computation example as given in DOS (p.38), Table 8.3. More than half a
century separates these two case-studies, indeed the arrival of the
Principia separates them. How do they compare?

DOS presented ten steps for finding lunar longitude. It began with the
equation of time, converting solar into mean time - a stage strangely
omitted by T™M. The proud claim was made that:

'For he [the author, Flamsteed] will not dissemble it, that tho he
esteems these [principles] far better than any yet published; he is
sensible that the solar may be some little faulty, but scarce more
than a Minute; the lunar he finds often to Err 5 or 6 Minutes, and
sometimes (tho rarely, and at most) 10 or 11 minutes; which yet he can
the easier bear, whilst he sees the Numbers of other more famous and
celebrated Men to err 15 or 16 mimutes, at the same time when his
agree nearly with the Heavens’ (p.34).
As ill-luck would have it, this declared maximm possible error turned up
in the sole example to illustrate Flamsteed’s theory! Its true place of the
Moon was eleven minutes in advance of what it should have been: at 6.35 pm
GMT', on December 22 1680 0Old Style, its longitude was 4° 59’ of Gemini,
compared with the computed value of 5° 10/ found in DOS. DOS’s mean Moon
positions were two minutes behind their proper values (Chapter 5), so it
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would appear as if his ten steps had introduced no less than thirteen
minutes of error. '

The accuracy of this example accords with the pessimistic view that
Flamsteed expressed in the Philosophical Transactions of 1683, after he had
been the Astronomer Royal for seven years:

’the best tables of the Moon’s Motions do err 12 minutes or more, in

her Apparent Place’ (PT, Vol.13, p.405).

In his view the moons of Jupiter offered the best means of finding
longitude, as using the lunar method ’the calculations will be so perplexed
and tedious.’ This view expressed by Britain’s Astronomer Royal was quoted
in John Harris’ Lexicon Technicum of 1704, so may well have expressed a
general view. The research of Owen Gingerich (Ch.1l, p.4) entirely confirmed
this assessment, finding indeed that larger errors were common in
ephemerides of the period.

Iet us compare the accuracy of these two worked examples half a century
apart, taking the three variables of solar, lunar and node positions.

Source Moon posn Sun posn node posn
1) DOS 5° 09/ 52" Gemini 12° 09/ 35" Capricorn 23° 44’ 30" Virgo
True posns: 4 59/ 18" 12° 08’ oQ" 24° 01’ 16"
Errors: +107 32" +01’/ 35" -16/ 45"

-]

2)Dunthorne 14 8/ 13" Gemini 23° 37/ 22" Capricorn 19° 35/ 13" Virgo
True posns: 14° 15’ 00 23° 37’ 27" 19° 49’
Errors: -67 47" -05" =14’

1) 22 December, 1680 at 6.35pm GMI', London.
2) 2 January, 1737, 3hr 40’ p.m., ‘Time equated.’

Frrors are measured here and throughout as {historic-true} values (We ask
the computer for true node not mean node positions). Only for solar
longitude is the position to seconds of arc really relevant.
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Dunthorne’s ‘to the Reader’ does not extol TMM’s accuracy, but rather
admits ‘that the Newtonian Numbers are a little deficient...’ The above
figures suggest a mild improvement over half a century. The DOS solar error
of one and a half arcminutes is surprisingly large, considering that as we
saw in Chapter Five his mean motion was within arcseconds at this period.
Flamsteed’s solar numbers were improved several times after DOS’s
composition.

A summary of the constant terms given for the equations of ™M appears
in Table 8.4.

Irv A Test of Acocuracy

The accuracy of T™MM was investigated using the above computer program
(hereinafter referred to as ™M-PC), by comparing its results against a
modern ephemeris program accurate to seconds of arc. Noon values of
longitude on successive days of December 31st (0Old Style) were taken,
sampling at two year intervals over a period of six decades, 1680 - 1740.
T™M-PC measures time from December 31st 1680, which means that the initial
reading was at time zero, then the next was for 730.5 days, and so forth.
Both solar and lunar longitude values were read off from the program, the
former being necessary to check that the number of days inserted was
correct, since an extra day from a leap year shows up as a degree
displacement in longitude. The program to obtain the longitudes was checked
against standard values obtained from the R.G.O. The results obtained are
given in Table 8.5 (at end of Chapter) for six decades, depicted

graphically in Figure 8.2.

There is a slight drift in the baseline of ™M through the decades,
as cumulative error of its mean motion. The overall error-values in
arcminutes were -1.6 * 3.8 for the moon and 0.2 * 0.3 for the Sun. A long-
term pattern appears as present in the data, of period fifty years or so,
which is a consequence of the sampling interval used being a multiple of a
major TMM period, viz the year. Chapter eleven will treat this issue more
thoroughly.
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ACCURACY TEST OF TMM

SAMPLING TWO-YEARLY

AQO

YEAR OF E%MPLIN(T
LUNAR ERRORS

Figure 8.2; Sampling from Dec.3lst noon @M, Old Style, two-yearly (every 730.5 days)

showing errors in arcminutes over six decades.

\Y MaZlLZLey-"s CTuKageoment:

Hailey's mature and final opinion on the subject was given in 1731,
wvdien he was Britain's foremost astronomer and both Newton and Flamsteed
were mere memories for him. Then, after consulting both his cwn lunar
tables (as Astronomer Royal) and those of his predecessor, his view of TMM

three decades after its composition was that:

'.. .the Faults of the Computus formed therefrom rarely exceed a
quarter Part of vhat is found in the best Lunar Tables before that
time extant.

.. .By this it was evident that Sir Isaac had spared no Part of that
Sagacity and Industry peculiar to himself, in settling the Epoches,
and other Elements of the Lunar Astroncany, the Result many times, for
vhole Months together, rarely differing two Minutes of Motion from the
Cbservations themselves..'

(Hailey, 'A Proposal of a Method for Finding Longitude at Sea within a
Degree, or TWenty Ieagues', Phil, Trans, 1731/2, Vol.37, p.191)
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This comment was made a propos of the 1713 version given in PNPM, which
Halley viewed as an improvement upon T™MM. These remarks of his echo what he
had written years earlier in 1710, in a Foreword to Streete’s Astronomia
Carolina that he re-issued.

Considering the above-discussed verdict of Britain’s first Astronomer
Royal, that even the best lunar ephemerides were liable to err by twelve
minutes ‘or more’, it seems likely that TM was capable of delivering a
slight enhancement of predictive power. Plainly, however, it achieved
nothing remotely resembling that which Halley has here claimed for it. It
may be, however, that an improvement was accomplished in the Principia’s
second edition, which could somewhat justify Halley’s remarks. The views of
astrommersusing'meillbeaddressedinduecourse. Dunthorne was not as
we saw over-impressed by its accuracy.

Of marginal relevance here is the note in Edmond Halley’s diary for
when he landed on the coast of Brazil in 1692 (Ch.l1, III), and determined
his longitude from an ‘appulse’ of Aldebaran (ie, time of nearest approach
to a fixed star). This turned out to have an error of only 1°8/, which
would imply a lunar position accurate to two or three minutes. It seems
likely, either that this was a lucky chance, or that the inhabitants of
Paraiba near to where Halley landed did indeed have some cognisance of
their longitude.

Later, we will study the various Newtonian ephemerides which modelled
themselves upon TMM, and try to determine whether or not they achieved a
superior predictive accuracy to others such as that by Jacgues Cassini in
Paris, who did not use it.
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Table 8.4: Thhe Constants of TW™IM

The annmual equation (I)

Moon 117 49"
apogee 20/
node -9/ 30"
Equation (II)

maximm (in winter) 3’/ 56"
minimm (in sumer) 37 34"
Equation (III) 47"

The equations of the center

Sun 1° 56/ 20"
Moon 7° 39/ 30"
Equation of apogee (IV) 12° 157 4"
Eccentricity

maximm (apse conjunct Sun) 0.066782
minimm 0.043319

Variation (V)

maximm (in winter) 377 25"
minimm (in summer) 337 40"
Equation (VI) 27 10"
Equation (VII) 27 20"

Angle to ecliptic
maximm (nodes conjunct Sun) 5° 17/ 20"
minimm (quadrature) 4° 597/ 35"
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Table 8.5: Solar and Iunar Iongitude Accuracies from TMM
Data for Fiqure 8.2 was obtained by sampling at intervals of two Julian years, ie 730.5 Julian

days, and subtracting the ILE values from those of TMM. Solar TMM errors are shown for comparison.

I.L.E. TMM arcminutes of error
a b b-a solar
1680 188.043 187.924 -7.2 0.65
82 81.359 81.311 -2.9 0.58
84 357.762 357.704 -3.5 0.37
86 251.588 251.633 2.7 0.42
88 167.651 167.658 0.4 0.68
90 62.325 62.341 0.9 0.35
92 337.129 337.12 -0.5 -0.03
94 233.537 233.593 3.4 0.08
96 147.035 147.119 5.1 0.13
98 44.748 44,837 5.4 0.02
1700 316.977 317.021 2.6 0.42
2 216.95 217.003 3.2 0.78
4 126.913 126.944 1.9 0.65
6 29.056 29.107 3.1 -0.33
8 297.311 297.34 1.7 -0.02
10 201.522 201.542 1.2 -0.12
12 107.423 107.391 -1.9 0.05
14 14.165 14.102 -3.8 0.03
16 277.675 277.613 -3.7 0.12
18 186.392 186.329 -3.8 0.33
1720 87.903 87.838 -3.9 0.28
22 358.499 358.409 -5.4 0.23
24 257.715 257.612 -6.2 0.43
26 170.328 170.203 -7.5 0.3
28 67.681 67.56 -7.3 -0.02
30 341.298 341.216 -4.9 -0.13
32 237.361 237.319 -2.5 -0.25
34 152.425 152.346 -4.8 -0.13
36 46.896 46.827 -4.1 0.22
38 322.811 322.738 -4.4 0.42
-1.6 0.22 means

3.8 0.29 S.Ds
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Ch .9 COMMENTARY ON TMM,
CONTINUED

This chapter continues the Commentary from Chapter 4, and indicates how
the equations just described were obtained from TMM. This involves
summarising the content of previous chapters, while avoiding repetition
wherever possible.

i an English Pamphlet

The quotations from ™M, here as in previous chapters, come from the
first English edition, published in 1702. This edition had no editor or
translator specified, but a Preface attached to it contained remarks
indicating that it appeared shortly after Gregory’s Astromomiae Physicae,
containing a latin version of ™M, which appeared in that same year.
Bernard Cohen endorsed the idea that Halley was the author of its Preface
(1975, p.32), originally proposed by Augustus De Morgan in the nineteenth-
century. While there is no definite evidence on the matter, by way of
correspondence, it is plausible from considerations of Halley’s style, and
familiar manner towards the persons concerned, Newton and Gregory. Its
brief Preface praised Gregory’s book and added that, since many would not
be able to afford it, the pamphlet would be convenient. It is not
necessarily a translation from Gregory’s latin, since, as Cohen argued, the
original version of ™M was probably in English. The manuscript is
identical in content with that published by Gregory, except for a
divergence in the seventh equation discussed below, unnoticed by Cohen.

I The armnmrmmuaal Eguations
™M conferred annual inequalities upon four of its ecliptic variables,
the node, perigee, Sun and Moon, the first two being innovative:
’These mean Motions of the Luminaries are affected with various
inequalities: Of which,
1. There are the 2nnual Equations of the aforesaid mean Motions of the
Sun and Moon, and of the Apogee and Node of the Moon.
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’The annual Equation of the mean Motion of the Sun depends on the
Eccentricity of the Earth’s Orbit round the Sun, which is 16 11/12 of
such parts, as that the Earth’s mean Distance from the Sun shall be
1000: Whence ‘tis called the Eguation of the Centre; and is when
greatest 1.567.20".

'The greatest Annual Equation of the Moon’s mean Motion is 117.49".
of her Apogee 20/. and of her Node 9/.30"/.

The Equation of Center derived from Flamsteed’s value of 1692. There is
an exact equivalence between it and T™M’s eccentricity values, though the
method by which this computation was then performed in unclear. Chapter Six
looked at how the modern equation of center links the two together, viz

6= (2e—e?/4)sinM - 5/4e?sin2M + 13/12e3sin3M ...
In the case of the Earth’s orbit, the function reaches a maximm value at
an anomaly M of 91°. Inserting it in the equation together with an
eccentricity value of 16 11/12 parts in 1000 (ie 0.016917) gave, using a
ILotus 1-2-3 program for computing this Equation of Center, an agreement
within one second of arc! This Equation differs from what was then the true
value by 45 arcseconds, while the value given for eccentricity differs from
the modern value by 0.5%, taking the latter as 0.01683%.

™M comments further about the interlinking of these annual equations,
of interest as showing how tricky such things were before trigonometrical
formulae became available:

’And these four Annual Equations are always mutually proportional one
to another: wherefore when any of them is at the greatest, the other
three will be greatest; and when any one lessens, the other three will
also be diminished in the same Ratio.

‘The Annual Equation of the Sun’s Centre being given, the three other
corresponding Annual Equations will be also given; and therefore a
Table of That will serve for all. For if the Annual Equation of the
Sun’s Centre be taken from thence, for any time, and be called P, and

* Using the secular-variation term for the eccentricity of Earth’s orbit,
according to the Explanatory Supplement of the Astronomical Ephemeris,p.98.
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let P/10 = Q, Q+Q/60 = R, P/6 = D, D+D/30 = E, and D-D/60 = 2F; then
shall the Anmual Equation of the Moon’s mean Motion for that time be R,
that of the apogee of the moon will be E, and that of the Node F.

’Only observe here, that if the Eguation of the Sun’s Centre be
required to be added; then the Equation of the Moon’s mean Motion must
be subtracted, that of her apogee must be added, and that of the node
subtracted. And on the contrary, if the Equation of the Sun’s Centre
were to be subducted, the Moon’s Bquation must be added, the Equation
of her Apogee subducted, and that of her node added.’

These four functions vary as the sine of solar anomaly, so are maximal
near the equinoxes and zero near the solstices. The four equations we
extracted from these instructions were:

S, =S + 1.939 sin(H-S) - 0.0205 sin2(H-S)

M, = M - 0.197 sin(H-S)

A = A + 0.333 sin(H-S)

N, = N - 0.158 sin(H-S)
The solar annual equation is the only one large enocugh to merit a second
term of the eguation of centre in the ™M program. It is evident that these
constant terms are linked through the ratios specified by ™M, eg:
R=61/60.P/10 (since O=P/10 and R=61Q/60) where P is the maximal solar
equation of 1.939, giving R = 0.197. These ratios nowadays appear as
superfluous, as the amplitudes of the four annual equations have already
been given.

Such are the positions ’first equated’ in ™M’s terminology, meaning
fluctuations of yearly periods around the mean motions. The Sun has only
this one equation, whereas the node and apogee receive second equations at
later stages.

IxTT Two New Ecuaations
The first of ™TM’s new equations now appears:
'There is also an Equation of the Moon’s mean Motion depending on
the Situation of her Apogee in respect of the Sun; which is greatest
when the Moon’s apogee is in an Octant with the Sun, and is nothing at
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all when it is in the Quadratures or Syzygies. This Equation, when
greatest, and the Sun in Perigeo is 3/.56". But if the Sun be in
Apogeo, it will never be above 37.34". At other distances of the Sun
from the Earth, this equation, when greatest, is reciprocally as the
Cube of such Distance. But when the Moon’s Apogee is any where but in
the Octants, this Equation grows less, and is mostly at the same
distance between the Earth and the Sun, as the Sine of the double
Distance of the Moon’s Apogee from the next Quadrature or Syzygy, to
the Radius.

'This is to be added to the Moon’s Motion, while her Apogee passes
from a Quadrature with the Sun to a Syzygy; but is to be subtracted
from it, while the Apogee moves from the Syzygy to the Quadrature.’

The function is given as varying with the Horroxian year, which we have
designated as the (A-S) function, marking solar conjunctions with the apse,
of period 411 days. The function evidently varies as sin2(A-S), peaking at
the octants, ie at the 45° angles, since it passes through two maxima and
minima per revolution. The phrase, ‘nothing at all when it is the
Quadratures or Syzygies’ implies a sine function crossing its baseline four
times per cycle.

While the annual equations had constant coefficients, here the
amplitude itself varies during the course of the year, being maximal at
perihelion i.e. midwinter. Multiplying by

1 - 0.0489cos(H-S)
will accomplish this. As a cosine function it has maxima and minima at the
solstices, giving the required range of + 11" about a mean value of 3/45"
as specified. We express this mean amplitude as 0.0625°. The overall
expression is thus:
M, =M, + 0.0625[1 ~ 0.0489cos(H-5,)] x sin2(a -S)

The terms as first equated are fed into this expression, to generate
T™M’s second ’Equation’ of the Moon. This second eguation was called by
Halley aequatio prima semestris. Baily’s comment was, ‘We have nothing
equal to it in amount (depending on the same argumant) in the tables of
Mayer, Burgh, or Burckhart’ (p.742). On the other hand, Curtis Wilson
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expressed the view that, of the four new equations, it was the only correct
one (GHA, p.267). The next chapter will resolve this matter.

The phrase ’‘reciprocally as the cube of distance’ contains an echo of
gravity theory, the sole trace in ™M, which was to be much developed in
the second edition of PNPM. The Earth’s distance from the Sun varies by +
1.70% in the course of a year, so an inverse-cube relation would give
thrice this, which is * 5.10%. The second and sixth equations have their
amplitudes modified, supposedly varying inversely as the cube of the
Earth’s distance form the Sun. Wilson in GHA (p.267) gave the second
equation as:

- 3745"[1-3Ecos(S-H) ]sin2(Sl-A1)
where (S-H) is the Earth’s ’‘true ancmaly’/. Our T™M program uses the term
cos(H-S), which gives identical values.

Inserting the earth’s eccentricity into Professor Wilson’s term gives
an amplitude modification of 5.1% as his ’‘3e’ term, for both the second and
sixth equations. Wilson has derived his term from the instruction,
’inversely as the cube of the difference*’, while we have simply taken the
amplitude variations specified, the results being similar. For equation 2,
the given amplitude fluctuation is *+ 4.9%, while for equation 6 it is *
5.3%, which is tolerably close to the inverse—cube relationship. Our ™M
program has used these latter values. These fluctuations are small changes
in a three arcminutes function, so the differences are immaterial.

The third equation introduces the nodes:

’There is moreover another Equation of the Moon’s Motion, which
dependsontheAspectoftheNodesbfthel‘bon'sOrbitwiththesxm:
and this is greatest when her Nodes are in Octants to the Sun, and
vanishes quite, when they come to their Quadratures or Syzygies. This
Equation is proportional to the sine of the double Distance of the Node

* Wilson in GHA (p.267) has also assigned an inverse-cube amplitude
modulation to the third equation, in which we do not follow him: it is
nmerely the second and sixth equations which have this adjustment.
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from the next Syzygy or Quadrature; and at greatest is but 47". This
must be added to the Moon’s mean Motion, while the Nodes are passing
from their Syzygies with the Sun to their quadratures with him; but
subtracted while they pass from the Quadratures to the Sygies.’

This is again a sin26 function passing through two cycles per solar
revolution against the nodes. Its amplitude is fixed, and we readily
ascertain its formila to be

M, = M, + 0.0131sin2(N, -S)

To ascertain the signs of these functions, we recall that sin(A-B) = -
sin(B-A), whereas cos(A-B) = cos(B~A). Interpretations of whether a sign
should be added or subtracted have been checked against the worked example
of Richard Dunthorne. The instruction that a function is additive ’‘while
the Nodes are passing from their Syzygies with the Sun to their Quadratures
with him’, and subtractive for the converse, is interpreted as -sin2(S-N),
or sin2(N-S), as used in the function.

v The Horrox—uwheel Mechanism

The fourth equation is by far the largest of the seven steps. The
deferent-wheel invented by the young Horrocks in 1638 is here made to
generate both the eccentricity fluctuation and the apse-line motion, as it
revolves once per 6% months. We have just seen how ™M’s value for solar
eccentricity agreed exactly with that used in the modern eguation of centre
within an arcsecond or so. That implies a definition identical with the
modern one of b? = a?(1-e?), where a and b are the major and minor axes of
an ellipse. The eccentricity ‘e’ thereby defined is the square root of a
ratio function, but it can more relevantly be viewed as the distance
between focus and centre divided by ‘a,’ the radius of a circumscribing
circle (Ch.2, IV).

’From the Sun’s true Place take the eguated mean Motion of the Lunar

Apogee, as was above shewed, the Remainder will be the Annual Argument
of the said Apogee. From whence the Eccentricity of the Moon, and the
secord Equation of her Apogee may be compar’d after the manner
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following (which takes place also in the Computations of any other
intermediate Equations.)’

Referring to the diagram, the
S first sentence defines (S,-A)),
represented by the angle STA. What
is here called the Annual Argument
must not be confused with the
Annmual Equation, discussed
earlier. The explanation given in
Chapter 7 avoided the term Annual
Argument, as liable to confuse,
instead calling it the Horrox
angle. After all, the cycle is only quasi-annual. I have not grasped the
‘meaning of the final phrase in brackets.

We now come to TMM’s operating instructions, using the familiar Horrox-
wheel diagram. We should note that angle FCB is supposed to be twice the
size of STA.

’Let T represent the Earth, TS a Right Line joining the Earth and Sun,
TACB a Right Line drawn from the Earth to the middle or methn place of
the Moon’s Apogee, equated, as above: Let the Angle STA be the Annual
Argument of the aforesaid Apogee, TA the least Eccentricity of the
Moon’s Orbit, TB the greatest. Bisect AB in C; and on the Centre C with
the Distance AC describe a Circle AFB, and make the angle BCF=to the
double of the Annual Argument. Draw the Right Line TF, that shall be the
Eccentricity of the Moon’s Orbit; and the angle BIF is the second
Equation of the Moon’s apogee required.’

The revolution of F around the circle twice a Horrox-year defines two
functions, which are thereby mathematically linked: the second eguation of
the apse line, FI'A, with a maximm of twelve degrees, and the eccentricity
of the lunar orbit as the length FT. The dimensions of the Horrox-wheel are
then specified as follows:



-125-

'Tn order to whose Determination let the mean Distance of the Earth
from the Moon, or the Semidiameter of the Moon’s Orbit, be 1000000;
then shall its greatest Eccentricity TB be 66782 such Parts; and the
least TA, 43319. So that the greatest Equation of the Orbit, viz. when
the Apogee is in the Syzygies, will be 7°.39/.30". or perhaps 7°.40’.
(for I suspect there will be some Alteration according to the position
of the apogee in Car or Capricorn.) But when it is in Quadrature to
the sun, the greatest Equation aforesaid will be 4°.57/.56". and the
greatest Equation of the Apogee 12°.157.4".
This is innovative, being the first time that these two functions had been
so defined, as derived from the same geometry. The modern equation of
centre enables us to check what ™M calls the Eguation of Orbit, which is
the amount whereby the Moon’s position diverged from the mean motion,
maximal at seven and a half degrees.

The magnitude of the apse equation here specified is considerably larger
than that specified by DOS, about four percent more in fact. In Newton’s
letter of April 23rd 1695 a table for what was called the ‘Annual Argument’
gave an eccentricity function virtually unchanged from Flamsteed’s, while
the apse equation’s maximum value has increased from 11°47’ to 12°10’. It
is here increased further, and will reach Newton’s maximm value of 12°18’
in the PNPM of 1713. Gaythorpe showed how this Newtonian value was more
than half a degree larger than was warranted by its modern equivalent, the
evection term (Ch.7,V).

Our three functions f,g and h accomplish these steps. The first of
these obtains the eccentricity, as the length FT, given the angle FCB as
2(S-A) and the lengths FC and TC as 1173 and 55050 as parts per million.
From applying the cosine rule to triangle FIC:

f(A-S) = 0.05505 x /{1.0454 + 0.4262cos2(A-S)}
As a cosine function it will make eccentricity peak at zero and 180° Horrox
angles, the solar conjunctions to the apse. Then, applying the sine rule to
the triangle FIC, angle FIC which is the second equation of apogee is found
by the function g(A-S), whose maximm value is 12°15’.
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The suggestion here appears, that the apse position in relation to the
aphelion line has some effect. In the winter of 1694, Newton urged
Flamsteed to take lunar observations because of the great importance of
’apogee in ye summer signs’, during ’‘ye sun’s opposition in midwinter’
(letter of November 17th). From the ™M program we discern that, when the
Sun reached zero Capricorn in that midwinter, the mean apogee stood within
a degree or so of zero Cancer, ie they were in close opposition. Newton’s
next letter reiterated the urgency of the matter:

’For the position of the apogee in the Sun’s opposition in midwinter is
a case of great moment and will not return for many years. The
observation in the full and both the quadratures are of greatest
moment... (Letter of December 4th, 1694,Baily, p.143)’
Flamsteed was well able to locate apogee, using the micrometer screw gauge
on his telescope eyepiece to measure lunar diameter, a method he did much
to pioneer*, so would have appreciated this event. But, as for what
equation Newton was then searching for, we remain in the dark. Evidently,
by the time T™M was composed, he had reached no conclusion as to the
relevance of the nine-year apse cycle (except for a very minor role in
modulating the sixth equation, see below).

’Having from these Principles made a Table of the Equation of the
Moon’s Apogee, and of the Eccentricities of her Orbit to each degree of
the Annual Argument, from whence the Eccentricity TF, and the Angle BTF
(viz. the second and principal Equation of the Apogee) may easily be
had for any Time required; let the Equation thus found be added, to the
first Equated Place of the Moon’s Apogee, if the annual Argument be
less than 90°, or greater than 180°, and less than 270°; otherwise it
must be subducted from it: and the sum or Difference shall be the Place
of the Iunar Apogee secondarily equated; which being taken from the
Moon’s Place equated a third time, shall leave the mean Anomaly of the
Moon corresponding to any given Time. Moreover, from this mean Anomaly

* For a practical account of the development of this new technology in the
North of England, chiefly by Yorkshireman William Gascoigne, while
Flamsteed was living in Derby, see Chapman’s Three North Country
Astronomers (1982 p.21), and his Dividing the Circle (1990).
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of the Moon, and the before-found Eccentricity of her Orbit, may be
found (by means of a Table of Equations of the Moon’s Centre made to
every degree of the mean ancmaly, and some Eccentricitys, viz 45000.
50000. 55000, 60000 and 65000) the Prostaphaeresis or Equation of the
Moon’s Centre, as in the common way: and this being taken from the
former Semicircle of the middle anomaly, and added in the latter to the
Moon’s Place thus thrice equated, will produce the Place of the moon a
fourth time equated.’

The lunar Equation of Centre was required for preparing tables, and
here the instructions are to prepare them with anomaly angle against
eccentricity values, using five columns of differing eccentricities as
compared with DOS’s three colums. Some astronomers of the first half of
the eighteenth-century did follow this advice, eg Le Monnier in Paris.
Interpolating between, say, anomaly values at one degree intervals and
several eccentricity values was not in itself easy. In Chapter Eight, we
saw how the main error in Dunthorne’s worked example came from this fourth
step of equation, creeping in during his interpolations over the Equation
of Centre table.

Our function h is the modern formula for equation of centre, inserting
the eccentricity and. equated apse position as derived from the Horrox-
wheel. Our method uses the modern equation rather than a function defined
by TMM. As explained, this was felt to be justifiable because Flamsteed’s
method of deriving the Equation of Centre from elliptic orbits agreed
within arcseconds of the modern formuila (Ch.6, III). Our computer-model
could be criticised for not properly modelling errors likely to arise at
this step, from interpolating an Equation of Centre table, eg in Streete’s
Astronomia Carolina, as reprinted by Halley in 1710.

vV amplitude of the Variation

The Variation was one of the three known lunar inequalities. Its cause
was the Moon’s swifter motion in the syzygies than in its quadratures,
whereby it reached its maximm equation in the octants. In Proposition 66
of Book One of PNPM Newton undertook to give a derivation of it, as
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resulting frcm the Sun's pull on the lunar orbit. Tycho Brahe announced its
discovery in 1598, giving it an aiiplitude of 40'.5, vhich was quite close
to its true value of 39'.5. Horrocks in his first exposition in the 1630s
had settled on a smaller value of 36'45", which he later reduced to 36'27"
(Opera, 1673, p.483). Despite being a keen disciple of Brahe's colleague
Kepler, Horrocks adopted a much smaller value for his Variation term. In
IMM Newton made it 35'32". His letter to Flamsteed of November 1lst, 1694,

discussed this matter.

This divergence mystified commentators for a vhile, with the nineteenth-
century astronomer Gaythorpe declaring that the British astroncamers had
been simply mistaken (1956, p.40). More recently it was discovered by
Jorgensen (1974, p.317) that the Horrocksian mechanism itself incorporated
a sizeable fraction of the Variation, in fact "some 5'.25 of the variation"
(G, p.265), making the correct amplitude of Variation in the Horrocksian
theory a mere 34'15". The term used by Newton and Hailey was thus more or

less correct.

The GHA averred that Flamsteed took a value for the Variation of 36'45"
'obtained on the basis of observation' (p.264). Flamsteed's value for the
maximum Variation was given in DOS's table for Variation, and this goes up
to 38', the same value as was adopted by William Whi”~1” in his 1707 opus.

IMM makes the tern vary with the seasons:

'The greatest Variation of the Moon (viz, that vEiich happens vhen the
Moon is in an Octant with the Sun) is, nearly, reciprocally as the cube
of the Distance of the Sun from the Earth. Let that be taken as
37'.25". vihen the Sun is in Perigeo, and 33'.40". vhen he is in Apogeo:
and let the Differences of this Variation in the Octants be made
reciprocally as the Cube of the Distances of the Sun from the Earth;
and so let a Table be made of the aforesaid Variation of the Moon in
her Octants (or its Logarithms) to every Tenth, Sixth, or Fifth Degree
of the mean Ancmaly: And for the Variation out of the Octants, make, as
Radius to the Sine of the double Distance of the Moon from the next

Syzygy or Quadrature : : [sic] so let the aforefound Variation
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in the Octant be to the Variation congruocus to any other Aspect; and
this added to the Moon’s place before found in the first and third
Quadrant (accounting from the Sun) or subducted from it in the second
and fourth, will give the Moon’s Place equated a fifth time.’
TMM here specifies a sine 2(M-S) function, with two cycles per lunar month,
zero at the four quarters. It has an amplitude of 35%/, or 0.591 (The ™M
computer program requires conversion of arcminutes into decimals of a
degree). This is then made to vary with the seasons, being maximal at
perihelion (what ™M calls the Sun in Perigeo) and minimm at aphelion. It
is therefore a cosine function.

As once before, an inverse cube relation to the solar distance is
affirmed (which can be viewed as implying an inverse-square gravity
principle, discussed in the Second Edition of PNFM), implying a ten percent
fluctuation in the course of the year. Thereby our fifth equation becomes:

M, =M, + [0.591 - 0.03cos(H-S,)] x sin2(M,-S,)
The small value of Variation gives a convenient means of checking whether
astronomers were using a Horrocks-based system.

Next we come to the sixth equation, which marred ™M in its initial
version, as it was given the wrong way round. In the next chapter we see
how Newton’s additional equations for T™MM’s seven steps were all valid,
except that this one operated in reverse, adding where it should be
subtracted, as he later realised. Having a correct equation the wrong way
round is much worse than having an irrelevant or mistaken equation: it
contimually creates an error of twice its amplitude. Here are the
directions for the sixth and seventh:

’Again, as Radius to the Sine of the Sum of the Distances of the Moon
from the Sun, and of her Apogee from the Sun’s Apogee (or the sine of
the Excess of that sum above 360°.) : : so is 27.10". to a sixth
Equation of the Moon’s Place, which must be subtracted, if the
aforesaid Sum or Excess be less than a Semicircle, but added, if it be
greater. Let it be made also, as Radius to the Sine of the Moon’s
Distance from the Sun : : so 2’/. 20" to a seventh Equation: which, when
the Moon’s light is encreasing, add, but when decreasing,subtract; and
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the Moon’s place will be equated a seventh time, and this is her place
in her proper Orbit.’
The expression ‘::’ meant ’in proportion to’, used for comparing or
equating (in the modern sense) ratios. Effectively, we are instructed to
sum (S-M) and (H~A) in a sine function having an amplitude of 2/10", which
gives:
M, = M_ + 0.0361sin(S-M+i-3)
William Whiston’s comment upon the sixth, made in his Lucasian lectures to
students of Cambridge University in 1703, is often quoted:
’How it should come to pass that this sixth Equation of the Moon should
arise from Causes which are so unlike join’d together amongst
themselves, as are the motion of the Moon from the Sun, and the Motion
of the Apogee of the Moon from the Apogee of the Sun; I must
acknowledge myself altogether ignorant; nor is there Opportunity for
enquiring in these Matters merely Astronomical. In the mean while, I
suspect that this Equation was rather deduced from Mr Flamsteed’s
observations, than from Sir Isaac Newton’s own Argumentation.’
(Cohen,1975, p.361)
We will shortly cbserve how the modern equations of lunar longitude, at
this amplitude range of 2-3/, contain much stranger-looking combinations of
terms than the above, as puzzled Mr Whiston.

Finding the Moon’s place ’‘in her proper Orbit’ reminds the reader that
all the above computations have not been in the plane of the ecliptic, but
rather in an orbit tilted at five degrees thereto. TMM does not give
instructions over the ‘reduction’, for converting to ecliptic longitude,
this being a standard procedure.

The seventh equation varies with lunar phase, additive in the waxing
period and subtractive in the waning, ie as sin(S-M). Its amplitude is
modulated by a nine-year period:

’Note here, the Bquation thus produced by the mean Quantity 27.20". is
not always of the same Magnitude, but is encreased and diminished
according to the Position of the Iiumar Apogee. For if the Moon’s Apogee
be in conjunction with the sun’s, the aforesaid Equation is about 54".
greater: but when the Apogees are in opposition, ’‘tis about as much
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less; and it librates between its greatest Quantity 3’/.14". and its
least 1/.26". And this is when the Lunar Apogee is in Conjunction or
Opposition with the Sun’s: But in the Quadratures the aforesaid
BEquation is to be lessened about 50". or one minute, when the Apogees
of the Sun and Moon are in Conjunction; but if they are in Opposition,
for want of a sufficient muber of Cbservations, I cammot determine
whether it is to be lessen’d or increas’d. And even as to the Argument
or Decrement of the Equation 2/.20". above mentioned, I dare determine
nothing certain, for the same reason, viz the want of Observation
accurately made.’
This is a cosine function because it reaches a maximum when the apse line
conjuncts perihelion, so we represent it as cos (H-A,). The apse-position
twice—-equated is used:
M, =M_ + 0.0389[1 + 0.3857cos(H-A,)] x sin(S,-M,)

At waxing Moon, lunar longitude must be larger than solar longitude, so
the function sin(S-M) must be negative, contrary to the above—quoted
instructions. Professor Wilson however in GHA quoted the seventh equation
in the above form. Corresponding with him over this dilemma, he pointed out
that the latin text of Gregory’s opus, published in 1702, has the converse
instruction, namely ‘Hanc auser quando Lunae Lumen augetur, & (e contra)
adde cum illud minuitur’ (Cohen, 1975, p.127). Likewise an English
translation of Gregory’s text, published later in 1715, also reproduced in
the Cohen opus, gives that version, which we should presumably take as
authentic. In addition, this is the correct sense in the modern equation.
It remains hard to imagine Edmond Halley, if indeed he was the producer of
the ™M version we have been using, and possibly its translator,
introducing such an error. The matter remains conjectural.

There is the hint of a second modulation to the seventh, in the
reference to Conjunction and Opposition, which we have ignored. A further
modulation of both sixth and seventh equations follows, which can also be
ignored as well below the limit of detectability, adjusting by a mere few
percent the anomalistic cycle:

’If the sixth and seventh Equations are augmented or diminished in a

reciprocal Ratio of the Distance of the Moon from the Earth, i.e., in a
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direct Ratio of the Moon’s Horizontal Parallax; they will become more
accurate: And this may readily be done, if Tables are first made to
each Minute of the said Parallax, and to every sixth or fifth Degree of
the Argument of the sixth Equation for the Sixth, as of the Distance of
the Moon from the Sun, for the Seventh Equation.’

VI A Second Horrox—wheel
A second Horrox-wheel now appears, for an ‘Annual Argument’ of the
nodes. This varies with the 6% month period, and it is all rather similar.
A second diagram appears, identical with that here reproduced on p.}10(v"
’Iet T as before represent the Earth, TS a right line conjoining the
Earth and Sun: lLet also the Line TACB be drawn to the Place of the
Ascending Node of the moon, as above equated; and let STA be the Annual
Argunent of the Node. Take TA from a Scale, and let it be to AB : : as
56 to 3, or as 18 2/3 to 1, Then bisect BA in C, and on C as a Centre,
with the distance CA, describe a Circle as AFB, and make the Angle BCF
equal to double the Annual Argument of the Node before found: So shall
the Angle BTF be the second Equation of the Ascending Node: which must
be added when the Node is passing from a Quadrature to a Syzygy with
the Sun, and subducted when the Node moves from a Syzygy towards a
Quadrature. By which means the true Place of the node of the ILunar
Orbit will be gained : whence from Tables made after the common way,
the Moon’s latitude, and the reduction of her orbit to the Ecliptick,
may be computed, supposing the Inclination of the Moon’s Orbit to the
Ecliptic to be 4.59/.35". when the Nodes are in quadrature with the
Sun; and 5:17/.20". when they are in Syzygys.’
The ratio of TA to AB is 18 2/3 to 1, echoing the period of the rotation of
the nodes of 18.6 years. Our function j finds the angle FTA, the second
nodal Equation, by dropping a perpendicular from F onto TB and taking the
tangent of FIC.

The angle STA is (N-S), so the angle FCB being double its magnitude is
2(N-S). The ratio of TC:CB is, by the ratio given above, 38.3:1. If the
perpendicular is FD, then the tangent of FIC is FD/(CD+IC), whence the
function j is obtained. The maximm value of this angle is arcsin 1/38.3 or
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1°29744" (See fig 7.4b). This second nodal equation appears after the seven
steps of equation, being used solely for finding the reduction and
celestial latitude.

Flamsteed’s tables had a similar but larger node equation, of 1°39/46"
at 45° anomaly; which equation came from Kepler (Tabulae Rudolphinae 1627
p.87) as Gaythorpe pointed out (1956 p.142), and these node tables were
used by Whiston. This Keplarian value is more accurate, ie nearer the
modern value*, than that of T™M. On the other hand, the amplitude of TMM’s
newly-invented first nodal equation was within a remarkable 2% of the
modern value. Summarising, we may compare the maximal values of the two
node equations as follows:

Function Modern value TMM Flamsteed/Kepler
First node equation: sin (S-H) 9743" 9/30" -
Second node equation: sin2(S-N) 1°36/11" 1°29/44" 1°39746"

The amplitude of TMM’s second node equation is unspecified in the
text, and had to be found by those constructing T™M-based tables. Persons
composing such independently would be unlikely to arrive at the same
magnitude to an arcesecond. This provides a ’‘fingerprint’ technique for
ascertaining who was working independently and who copied, that a later
chapter will pursue.

The reduction as the final step for our ™M program was modelled on the
reduction tables of DOS, but using the parameters given by T™M. The
correction is zero at the two nodes, and also at their quadratures, i.e.
it is a sin26 function. The angle of the lunar orbit to the ecliptic
varies, TMM tells us, as the Sun’s angle to the nodal axis, being maximal
at conjunction and minimal at quadrature. Consulting a standard table of
reductions, for which we select Flamsteed’s in DOS as was reprinted without
alteration by LeMomnier in Paris in 1746, we observe that the reduction’s
* These two amplitudes were kindly found by Bernard Yallop, with the aid of
Brower and Clemence’s Methods of Celestial Mechanics (1961, p.312).
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maximal value varies between 6/33" and 7/22", depending on the orbit’s
angle of inclination. ™M instructs us to follow the tables prepared ’‘after
the common way’. DOS’‘s maximal reduction varies by 12%, while the angle of
inclination of the orbit to the ecliptic is given by ™M as varying by
merely 6%, so the reduction is changing by twice as much as does the orbit
angle each year. We require a modulating term with an amplitude of six
percent, and the reduction term is therefore

M, , =M, +0.116 x sin2(N,-M,)[1+0.059cos2(N =S )],
the cosine term giving maximal values for solar conjunctions with the nodal
axis and smallest at quadratures.

VIXI ILatitude

Celestial latitude varies as sin(N-M), going throuch one cycle per
month. Nodal longitude is measured from the North Node, so that its
latitude function starts off with increasing values. lLatitude is maximal at
the quadrature position midway between the two nodes, and this maximm
value is * 5°17/20" when the nodes are conjunct the Sun and *+ 4°59735" when
in quadrature; thus there is a modulating function varying as 26 function,
as for the reduction but with half the amplitude. The mean value is 5° 8/
31" or 5.142°. Latitude becomes positive as the Moon passes the North
node, when (M-N) has a positive value. Putting the slower-moving position
first, a sin(N-M) function will require a minus sign in front. Thus, TMM’s
instructions give us a celestial latitude formula of:

Latitude = -5.142 x sin(N_-M,)[1+ 0.0288cos2(N -S )1’

Later on we will ascertain how well this latitude function performs.
Flamsteed found it to be TMM’s weakest point when commenting on it in 1703:
’The errors in latitude are frequently 2,3, or 4 minutes, which is
intolerable’ (to Caswell, 23 March 1703, Baily p.213). Newton’s mean value
for the inclination of the lunar orbit is 16 arcseconds less than the
modern value.

™M concludes with some remarks about parallax and refraction which do
not concern us. Overall, as far as monthly cycles are concerned, TWM
appears as largely based on the tropical and anomalistic cycles, with the
phase and nodal cycles only playing minor, ancillary roles.
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Vi Aan Early Draft of T™™M?

A manuscript of Newton’s published in the Correspondence (pp.3-5, Volume
IV) is entitled A Theory of the Moon. The commentary there stated that
while there was ‘no clue’ as to the date of its composition, it was
probably written ’‘some time prior to’ ™M, adding that its text was
published ‘almost verbatim’ in PNPM of 1713.

Westfall referred to this manuscript in his view that:
’...a paper called ‘A Theory of the Moon’ listed rules for computing
seven corrections without discussing their theoretical foundation ...
Several years later, Newton allowed David Gregory to take a copy of it
and to publish it...’ (1980, p.547)
adding that the version published in Correspordence was ‘probably from
1695./ In Chapter Three a composition date of ™M was suggested as 1700,
i.e., shortly before Gregory saw it. Westfall’s view, in contrast, is that
Newton had virtually composed it some years earlier, and merely reproduced
it in 1700. Of relevance here is an irate letter from Newton to Flamsteed
of January 6th, 1699, when the latter had planned to mention, in a
forthcoming opus of John Wallis, his contribution to Newton’s endeavours
over lunar theory. People were wondering what Flamsteed had been doing all
these years as the ’King’s Observator’, as he had published little, so he
wanted to state his contribution towards the advance of theoretical
astronomy, as having supplied the observations. After all, several years
earlier he had heard stories, put about by Halley, that Newton had so far
perfected the lunar theory that further cbservations by him were hardly
necessary (Baily, p.162). Newton forbade this act, on the grounds that:
’...with respect to the theory of the moon, I was concerned to be
publicly brought upon the stage about what, perhaps, will never be
fitted for the public, and thereby the world put into an expectation of
what, perhaps, they are never likely to have.’

That must surely be read as an admission of failure, as a statement to
his colleague that his endeavours had not been such as to warrant any
proclamation to the learned world. Are we to believe that TMM had then been
substantially composed, implying that the above-quoted words to Flamsteed
were mere deception? Much depends here on whether ™M is viewed as having
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been a success, or a failure. The leading British theoretical astronomers,
Halley, Whiston and Gregory, were as we have seen in no doubt upon this
issue, once they saw it. That is why it has here been affirmed, that ™M
was composed after the above—-quoted remark and not before.

Westfall has claimed that ™M was composed in the 1690s, and therefore
by implication viewing it as a failure, since, as he rightly observed of
this period, ’‘Newton himself regarded the effort as a failure’ (Ibid
p.547). Science historians, as was pointed out in Chapter One in
discussing Bernard Cohen’s view, have never viewed TMM as a working
mechanism, that defined five positions in ecliptic longitude and one in
latitude for a given time.

A letter from Newton to Halley of March 14, 1695 requested that the
latter would deny prevalent reports that he was ‘about the longitude at
sea.’ As this goal was the stated purpose of ™M when it was published, we
must assume that no such composition had been formulated at the end of his
main period of endeavour over lunar theory in the 1690s; to do so would
imply a level of duplicity that we should not readily contemplate.

The view here taken, is that Newton did indeed regard his endeavours of
the 1690s as a failure, but that he was then attempting to accomplish a
derivation of the lunar inequalities from a gravity theory. Only after that
had ended in failure, was ™M composed, effectively lacking reference to a
gravity theory and merely improving Horrox’s kinematic model.

Against the Westfall thesis, let us note that the brief ‘earlier’
manuscript has no seven rules or stages as does ™M, has no Horroxian
mechanism, is far from being a complete procedure for locating longitude
positions, and is rather a fragmentary discussion of gravity theory as was
attempted for the second edition of PNPM. I query the whole notion that it
is an earlier draft. It refers merely to the first three equations of T™M,
and none of the subsequent ones. Later on we address the manner in which
gravity theory was related to the instructions of TMM, a matter of the
utmost importance to subsequent astronomers, where a discussion of this
manuscript’s gravity arguments will be appropriate.
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Comparing the two new annual equations introduced by ™M, viz. 20/ for
the apse line and 9/30" for the nodes, with those given in the unpublished
'Theory’, the latter are seen to be more exact. Its figures are, 20/9" for
apse and 9/34" for the nodes. An additional order of magnitude accuracy has
appeared. There is no more distinctive difference between the first and
second editions of the Principia than the increase in numerical accuracy.
Often, the accuracy of the Second Edition went beyond what was warranted by
the data, as if endeavouring to convey credibility by an increase in the
number of decimal places (as Westfall described in his ’‘Newton and the
Fudge Factor’ of 1970). This strongly indicates I suggest the arrow of
time, demonstrating that the undated manuscript was composed long after
™M, and not earlier as Westfall has assumed.

The manuscript has an interesting remark about the ‘annual equation’:
'Moreover in deducing celestial motions from the laws of gravity we
also discovered that the anmual equation of the Moon’s mean motion
which Kepler and Horrocks coupled with the equation of time, but
Flamsteed published separately, arises from the varying expansion of
the Moon’s orbit by the force of the sun, in accordance with Corollary
6 to Proposition 66 in Book 1.’

Its value of 11’/ 49" derives from Flamsteed’s discovery that Earth’s
rotation rate was constant, which he established from daily transits of
Sirius. This was the major theoretical issue on which Flamsteed disagreed
with Kepler, who had acounted for the annual equation by supposing that
Earth’s rotation rate varied over the course of the year. Subsegquent
astronomers credited Flamsteed with having discovered the Equation of Time,
linking mean and apparent solar time, as the seasonal variation in day-
length. In the Principia’s second Edition this passage appears with the
reference to Flamsteed deleted, for reasons into which we need not enter.
The value of 11/49" is in excess by about 37".

The last paragraph of this manuscript speculates about a nine-year cycle
varying with the apse rotation (which would be, sin[A-H]). ™M has no
period of this length - though Newton speculated upon one for the fourth
equation as we saw, while the apse position passed through Cancer-
Capricorn. It has no terms longer than a Horroxian year of 411 days. That
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is a quite surprising feature about it from a modern viewpoint. Newton only
grappled with the subject for just over half a year, from September 1694
until June 1695, and his most reliable positional data was after 1690, when
Flamsteed’s mural arc was working. In contrast with this emphasis upon
short-term cycles, Halley was convinced that the 18-year Saros cycle was of
vital relevance. After their discussions on this topic, Newton may have
considered incorporating a longer cycle into his theory:
’T have learned furthermore from the same theory of gravity that the
Sun acts upon the Moon more strongly in the individual years when the
Moon’s apogee and the Sun’s perigee are in conjunction than when they
are in opposition. From this there arise two periodic equations, one
for the Moon’s mean motion, the other for the motion of her apogee.
These equations are nil when the Moon’s apogee is either in conjunction
with the Sun’s perigee, or in opposition to it, and in other positions
of the apogee they have a given proportion to each other. The sum of
these equations, when they are at their maximum, is about 19 or 20
minutes...’
This is a further basis for believing that it was composed years after TVM,
perhaps a decade or so later.

While having to disagree with both Westfall and the Correspondence
commentator, our conclusion happily accords with Whiteside’s view: he
characterised this published manuscript as an ’initial version’ of the
opening paragraphs of the revised scholium of Proposition 35 of Book Three
of the 1713 Second Edition of PNPM (Whiteside 1975, p.327, Note 46).
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Ch.10
TESTING THE SEVENFOLD CHAITN

Having formulated a model in accord with Newton’s instructions, we now
test its validity. There are three ways we will do this, the first being a
comparison with historic computations by astronomers who adopted the T™MM
procedures. Such a comparison may help to establish confidence in the
validity of the ™M-PC model; and further, to ascertain the extent to which
historical authors used ™M, a question not yet well resolved by
historians.

The other two approaches to be developed in this chapter are
analytical, and they test the individual steps of ™M. This is first done
theoretically, by comparing modern equations of lunar longitude with those
of TMM. Thereby we may evaluate statements made by Baily, Whiteside and
Wilson on the subject. Complementing this is a practical approach, whereby
any step of TMM can be tested, by altering ™M-PC in some respect, and
noting whether, on average, it thereby becomes more or less accurate.

The latter method should be able to give a definite answer as to the
validity of any component of TMM, as may not be readily discerned from
theoretical considerations. After all, none of the modern equations have
their amplitudes modulated, in the way of ™M, by long-period functions.
If, for example, we should be curious as to how much of an improvement was
accomplished by Halley’s modification of the Horroxian model for
eccentricity, as compared with Flamsteed’s model, then such a testing on
TMM-PC should resolve the matter.

I Five Historic Case—Studies

Astronomy textbooks of the period always carried examples of longitude
computation. TMM~-PC will model these worked examples, provided their method
was Newtonian. If possible we should avoid worked examples involving
eclipses, since exact longitude would then be known, as solar longitude
could be determined with great accuracy. These would provide a tempting
opportunity for the astronomer to claim a greater accuracy. By the time
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that the worked examples appear in the 1730s and 1740s a systematic error
had accrued of nearly two arcminutes in the mean motion.

If, as with Halley and Leadbetter, the method involved logarithms, the
steps may not be easy to follow. The present approach overcomes this
difficulty, by viewing merely the beginning and end of the operational
sequence. For the selection of our case-studies, we are guided by the most
recent claim as regards who adopted TMM’s procedures, made by Professor
Wilson in GHA:

’Newton’s rules for calculating the place of the Moon were
incorporated into the tables of Charles Leadbeater’s Uranoscopia (1735):
in the tables that Flamsteed constructed about 1702 and which, having
been given by Halley to P.C.Lemonnier, were published by the latter in
his Institutions astromomiques of 1746; and in Halley’s Tabulae
astronomicae (1749).7 (p.267)

William Whewell gave, in the nineteenth century, a more extensive list of
such persons, which a later chapter will consider. Our historical
comparison will use the works above-cited by Wilson, plus the Dunthorne
example treated earlier.

Table 10.1 gives the ‘mean moon’ position for the local mean time in the
left hand colum, with final ecliptic longitude below that, as given in the
worked examples cited. To the right of these historic computations are
those of TMM-PC for these times, showing a ‘correct’ value for that moment
in time. Subtraction gives the difference between the two methods, in the
’a~b’ column.

The table has utilised three different computer programmes for going
back into past time. A high-precision lunar ephemeris gives the longitudes
shown in italics. Subtraction of these values gives the error-values, both
of the historic textbooks and of our T™MM-PC program, cited in arcminutes.
All longitudes have been converted to degrees, thus 6s 27° 59’/ 18" is given
as 207.988. In the first example, Leadbetter can be seen to agree with the
TM-PC mean value within ten arcseconds, an acceptable error for him to
make in reading his tables.
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Table 10.1: TMM COMPUTATIONS, HISTORIC VS COMPUTER, OF IUNAR LONGITUDE

Historic TMM-PC
degrees degrees
a b
Leadbetter (1735)
May 7th 1731, 10hrs mean 207.988 207.991
answer: 202,337 202.337
actual posn. 202.407
errors: -47.2 -4’.2
Leadbetter (1735)
Sept 16 1734 noon mean: 183.112 183.111
answer: 188.426 188.424
actual 188.459
error (answer-true posn.): =2’.0 =27.1
Dunthorne (1739)
Jan 2nd 1737,3h 40m mean: 80.119 80.119
answer: 74.137 74.136
actual position 74.251
errors: -6’.8 -6’.9
IeMonnier (1746)
Aug 4 1739,5h 55m 25s mean: 134.869 134.862
answer: 132.642 132.639
actual 132.622
errors: +1’.2 +1’/.0
Halley (1749)
Dec 5th 1725, %h 8m 5s mean: 51.428 51.431
answer: 45.709 45.701
actual 45.713
errors: -07.2 -0’.7

a-b

_10"
+ o"

+ 30
+ 6"

+4ll

+25"
+ om

-9"
+25"

Difference
arcseconds

- 6th
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We have seen how Dunthorne is the case-study which exactly mirrors TMM-
PC, and his answer differs from TM-PC by a mere 0.001 = 4". The cthers
have genérally made slight adjustments, chiefly to the sixth and seventh
equations, either omitting them or reversing its sign. A later chapter will
examine the methods used by the eighteenth-century astronomers who claimed
to be using TMM.

All the others -Dunthorne, Leadbetter, Halley and LeMonnier - reversed
the . .- sign of the 6th equation as in the 1713 version. As it has up to
two and a half minutes amplitude, this is of considerable significance. The
TMM-PC program is modified accordingly.

Of the above worked examples, only Halley’s had the node position
conjunct the Moon and described an eclipse. It was the only worked example
in his posthumously published opus, so we had no choice. The accuracy of
his worked example could be ascribed either to some improvement of the
method, or to his selection of the eclipse. We refrain from more definite
comments until Chapter 14.

The agreement in the right-hand column is generally within arcseconds,
which conclusively endorses the GHA’s claim, that the above persons were
using ™M, albeit modified somewhat in the last two equations. It may tend
to support Baily’s view that: ‘It was not until the year 1735, when
Leadbetter published his Uranoscopia, that we find a more perfect adoption
of Gregory’s Newtonian rules reduced to a tabular form’ (p.702).

The modern longitude program given in italics runs on Julian time, and
so is suitable for all five dates except for LeMonnier in Paris. For
LeMonnier’s date and time, the procedure was: subtract eleven days, add
twelve hours to the given time, then subtract nine minutes and twenty
seconds to convert from Paris local time to G.M.T. This gave July 24th 1739
0.S., at 17 hours 46 minutes 5 seconds G.M.T., which was inserted into the

program*.

We saw in Five that Momnier’s mean > was more ccurate
than ™TMM’s over tthis peripd. Using\Le Monnier’s tables; for the ep dite
|

| |

v v
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We saw in chapter Five that Le Monnier’s mean moon was more accurate
than ™M'’s over this period. Using Le Monnier’s tables, for the epoch date
1720, differences were compared from true values as in Chapter five,
showing that it was then out by a mere 7 arcseconds. The same was done for
the ™M program, whence we find that Lemonnier’s mean moon was displaced
1712" or 0°.02 from that of ™M, so that amount was added to the first step
of ™M’s procedure solely for the LeMonnier example. Summarising, we
modelled Le Monnier’s operation sequences by using TMM-PC with the sixth
equation reversed, and with just over one arcminute added to its mean
motion.

After that adjustment to LeMonnier’s mean moon, his method still
diverged from ™M-PC by forty arcseconds, which divergence arose in his
fourth step, the Equation of Centre. A later chapter will consider
characteristics of the different astronomers, here we merely compare the
program with their worked examples in a general manner.

In the case of the two worked examples by Charles Leadbetter, their
first three equations echo ™M, then what seems to be ™M’s sixth equation
came next as the fourth, followed by the Equation of Centre. He used
Halley’s mean motions (Appendix III) but differed in keeping the seventh
equation. These two worked examples of Leadbetter’s ‘Uranoscopia’ of 1735
had values for the ’Sun’s true place’ agreeing with ™M within one or two
arcseconds.

The above Table does not show the error in mean positions. As was
earlier explained, this amounted to nearly two arcminutes for this period,
and the error values can be seen to cluster around this value.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

* The time-values fed into the ™M program (days after noon, December 31st
1680, GMT, 0ld Style) were, respectively: 20456.153 (Dunthorne), 18389.417
(Leadbetter 1), 19617.000 (Leadbetter 2), 21389.240 (LeMonnier) and
16410.381 (Halley).
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IT The Erronouss Sixth
In the year 1713, Flamsteed wrote to a friend:
’T told you that the heavens rejected that equation of Sir I.Newton,
which Gregory and Whiston called his sixth. I had then compared but 72
of my observations with the tables: now, I have examined above 100
more. I find them all firm in the same, and in the seventh too. And
whereas Sir I.Newton has in his new book (pages 424 and 425) thrown
off his sixth, and introduced one of near the same bigness but always
of a contrary denomination, and a bigger in the room of the seventh,
if I reject them both, the numbers will agree something better with
the heavens than if I retain them: so that I have determined to lay
these crotchets of Sir I.Newton’s wholly aside.’
This view of Flamsteed’s appeared in response to the new edition of PNPM
(Baily, p.698). Earlier he had commented in general terms about discarding
some of TMM’s ancillary equations, but this would appear to be his first
definite statement upon the matter. He has plainly noticed the reversal of
sign for the sixth and enlargement of amplitude of both sixth and seventh,
but was not impressed. His unfortunate conclusion was, that both the sixth
and seventh equations were best omitted, and that ‘the heavens rejected’
the sixth even with its sign reversed.

Flamsteed was probably the first to discern the erronecus nature of the
sixth equation, but otherwise his view is mistaken. For, as we shall now
show, all four of the Newtonian ancillary equations turn up in the modern
formulae. It is ironic that the person who supplied the data from which the
theory was wrought, should end up sceptical about what had been attained.
Before making such a comparison, our versions of the formilae are compared
with those of others.

ITT Newton’s New Ecuationss

Four new equations appeared as the second, third, sixth and seventh
stages of ™M. The present work is the fourth to propose an algebraic
format for them. Versions given previously by Baily (1835), Whiteside
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(1975) and Wilson (1989) are here compared with ocurs, though omitting the
amplitude-modulating terms. Symbols used in the present text are employed
for the comparisons.

The second Fquation:

Baily 3745" sin2(A-S) given as sin2[ (M-S) - (M-3)]
Whiteside 3745" sin2(S-A)

Wilson (G.H.A.) 3745" sin2(A-S) given as -sin2(S-a)

TMM-PC 3745" sin2(A-S)

Whiteside’s term is reversed in sign as compared with the other three.

Third equation:

Baily 47" sin2(S-N)
Whiteside 47" sin2(S-N)
Wilson 47" sin2(N-S) given as -sin2(S-N)
TMM-PC 47" sin2(N-S)

Both Baily and Whiteside have the functions in reverse mode, ie 180° out of
phase as compared with Wilson. I ascertained the plus and minus signs
largely empirically, by writing the equation into the computer then
observing whether the plus/minus values changed in accord with TMM’s
instructions for varying time-values.

Sixth eguation:

Baily 2/10" sin(M-S+A~H) given as sin[2(M-S)+(S-H)-(M-3)]
Whiteside 2710" sin(M-S+A-H)

Wilson 2’10" sin(S-M+H-2A) given as -sin(M-S+A-H)

™M-PC 2710" sin(S-MHH-2)

The first two have the signs reversed as compared with the others.

Seventh Equation:

Baily 220" sin(M-S)
Whiteside 220" sin(M-S)
Wilson 2720" sin(S-M) given as -sin(M-S)

T™M-PC 2720" sin(S-M)
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To avoid confusion over signs, we quote GHA, that ‘M-S is the angular
distance of the Moon from the Sun’ (p.267): envisaging the luminaries as
revolving anticlockwise around Earth, angles measured anticlockwise are
positive. In a sense, Baily and Whiteside were unconcerned with the signs
of these terms, which only have meaning within an operating system.

IV Comparison with modern terms

The new equations of ™M appeared, as Baily complained, without
justification:

’Newton has not explained, in the document under review, how he deduced

these new equations, nor whether any of them are derived from his own

theory of gravitation, or from Horrox’ theory of the libratory motion of

the lunar apogee...’ (Baily, p.694)
While this is true, it will here be argued, in contrast with the views of
others on this matter, that the new equations showed the profound intuition
of their author. Not only did Newton originate the concept of ancillary
equations in this context, an unheard-of thing prior to about 1695/6, but
all four of them were substantially valid, and even had near to their
optimal amplitudes. TMM was marred by having its sixth equation the wrong
way round, however this was corrected in 1713, well prior to the period
when astronomers commenced using it. We have already seen how several
astronomers who took up the Newtonian theory accomplished this vital
reversal of sign in the sixth equation.

The modern equations for lunar longitude are normally cast in terms of
solar ancmaly (M), lunar anomaly (M’), lunar elongation (D) (angular
distance from the Sun) and mean lunar distance from ascending node (F).
These are used because they turn up most often in the hundreds of terms
comprising the theory. We may add an asterisk to the modern solar anomaly
term, as M*, to avoid confusion with the T™M symbol.To compare these with
the ™M program, we must recall that the modern definitions of anomaly are
with respect to perigee and perihelion, and so are 180° out of phase with
the old. We may then transform them using the symbols M (Moon), S (Sun), N
(node), A (Apogee), and H (Aphelion); thus, D=M-S, F=M-N, M*=S-H+180" and
M’/=M-A+180°. The modern term

+0.041sin(M’-M*)
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becomes 2/28" sin [(M~A) - (S-H)] = 2/28" sin(M-S+H~A), which we can
recognise as the sixth equation. The first fourteen modern equations are
presented in order of diminishing amplitude.

MODERN EQUIVALENT NEWTONIAN
1) +6.2888sinM’ 6°17724" sin(M-3) ellipse function
2) +1.274sin(2D-M’) 1°16/26" sin(M+A-25-180) evection
3) +0.658sin2D 39729" sin2(M-S) 35/32" sin2(M-S) 5th eqn.
4) +0.213sin2M’ 12749" sin2(M-A) Horrocks theory
5) -0.185sinM* =11’ 8" sin(S-H) 11/49" sin(H-S) i1st egn.
6) —0.114sin2F -6/51" sin2(M~N) 6’57" sin2(N-M) reduction
7) +0.058sin(2D-2M) 3732" sin2(A-S) 3745" sin2(A-S) 2nd eqn.
8) +0.057sin(2D-M*-M’)  3726" sin(M-3S+A+H) -
9) +0.053sin(2D+M’) -3712" sin(3M-A-2S) -
10) +0.046sin(2D-Mx) -2744" sin(2M-3S+H) -
11) +0.041sin(M’-M+*) 2728" sin(M-S+H-A) -2/25" sin(S-M+A-H) 6th,1713
12) -0.034sinD -2/ 5" gin(M-S) 2/20" sin(S-M) 7th eqgn.
13) -0.030sin(M*+M’) -1/49" sin(M-A+S-H)
14) +0.015sin(2D-2F) 55" sin2(N-S) 47" sin2(N-S) 3rd eqn.

Table 10.2: The first fourteen modern terms for lunar longitude are given on the left, then
restated in the adjacent column using THM-PC symbols. The TMM equations are given in the third
column, where the first equation refers to the annual equation and the fifth to the Variation.

The first four terms indicate the fundamentally different basis of
modern lunar theory from that of Newton. With the annual equation, the
fifth in the modern sequence, the first of TMM’s steps appears. Three or
four of the modern terms do not correspond with anything in the old theory.
If omitted, their amplitudes are such that they would generate errors well
beyond the 6 arcminutes or so maximum of T™MM. Only to a limited extent can
we compare these sets of terms, as their mode of use differs: the modern
procedure uses the same mean values at every stage, whereas the Newtonian
procedure changes these at each step by ‘equating’ them.

Baily acknowledged the validity of three of the four new equations,
though appearing very doubtful about their amplitude. Of the second, he
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wrote rather sceptically that: ‘This equation, depending on twice the
annual argument, or 2(D-A) according to Delambre’s system of notation, does
not amount to so much as 1/ in the tables of Mayer, Burgh or

Burckhardt’ (p.737). That is curious, since in the modern scheme it amounts
to 3% arcminutes, ie it should have been larger.

On the small third equation, Baily commented that it was ’‘somewhat
greater in the tables of Mayer, Burgh, and Burckhardt.’ One hopes it was
not much greater, since in the modern scheme its amplitude is a mere 55",
Of the sixth, Baily observed that its coefficient and sign as given in the
1713 Principia were adopted by Halley.

Whiteside in his 1976 essay did not commit himself to affirming that any
of the new, Newtonian equations were valid, but merely concluded: ’‘Pity
those - notably Halley - who in the early decades of the eighteenth century
tried to found solidly accurate tables of the moon’s motion upon such a
flimsy, rickety basis.’ That was far from being Halley’s view. We are not
able to support the GHA view that, of the four new equations, only the
second ‘has the correct form and, very nearly, the correct coefficient’
(p.267).

v rAPpOgee in yvye Sumnerr Signss“‘

In the winter of 1694/5, as was mentioned in the previous chapter, the
lunar and solar apses drew into alignment as the Sun crossed over them both
at midwinter. In November of that year Newton sent an urgent request for
lunar data when ‘apogee is in ye summer signs’ (Corr. IV p.47). Newton
sought in vain for any (A-H) perturbation term linked to this nine-year
cycle, absent from his T™M. On July 27th 1695 he wrote to Flamsteed,

’T had rather you would send me those [oObservations] from Aug. 24th,
1685, to July 5th, 1686, when the aphelium was in the same position as
in the year 1677.’
At the Full Moon of December 21 1694, mean apogee was at 5° Cancer (a
'sunmer sign’), merely 5° away from the syzygy axis. It would appear from
the above equations that there are no simple terms involving the (A-H)
function that could have been discovered.
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Would it have been possible for Newton to discern any further lunar
equations? One answer is, that no further equations were discernible at
that time, as they were too complex; that he found all there was to find,
then left Cambridge for London. His sustained work on the lunar theory
occupied half a year, from September /94 to June ’95. In September, Halley
discovered the cyclic return of the comet that bears his name, which may
have tended to move Newton’s attention away from the subject. In the autumn
‘of 1695 TMM’s author accepted a job as Master of the Mint: on November 26,
1695, Wallis wrote to Halley, ’We are told here [Oxford] that he [Newton]
is made Master of the Mint, which if so, I do congratulate him’ (More,
1934, p.435).

Terms such as ’‘sin(3M-A-S)’ are not intelligible as the seventeenth and
first half of the eighteenth—century understood the notion: merely, they
come out of the mathematics after complex differential equations have been
applied, and as such belong to an entirely different epoch.

VI Testing the new eguations

To investigate TMM’s four new equations, a sampling period of 160 days
was chosen. This was selected as avoiding multiples and fractions of TMM’s
main cycles, namely 365, 205, 29.5 or 27.5 days. Forty such positions
following the epoch date of 1680 were generated on TMM-PC, together with
equivalent longitudes generated on a modern program, then the two values
were subtracted, and the mean and standard deviations of the differences
obtained. Lotus readily performs these operations for columns of figures,
obviating human error. The means of these samples ocught to be close to the
error value of mean lunar motion used by TMM, or not significantly
different from it, if our sample is indeed random with respect to the
rhythms of the mechanisxp we are investigating.

The second, third and seventh equations were omitted, one at a time.
This was done using TMM-2, ie with Newton’s 1713 value of the sixth
equation. As this version is more accurate, it will plainly be more
sensitive to other factors. The third equation is of very small amplitude,
SO as can be seen its sign had to be reversed for appreciable effect.
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lLastly, the Flamsteed-Horrocks method of varying the eccentricity was used
in place of the Halley-Newton method. Here are the results, citing the
percentage increases of standard error.

Table 10.3: Accuracies of TMM-2 Modifications

Percent error increases in right-hand column compare standard
deviations cited against that of TMM-PC-2. Eg, on removal of the second
equation in (b), the S.D. of errors appeared as +3.08 arcminutes, this
being 64% more than 1.88, its optimal value.

a) T™M-PC-2: -0.38 + 1.887

b) no second: -0.43 * 3.08’ 64% more
c) no third: -0.40 + 2.03’ 8% more
d) reversal of third: -0.42 + 2.30/ 22% more
e) no seventh: ~-0.40 *+ 2.75/ 46% more
£f) TMM-PC -0.50 * 3.77’ 200% more
g) DOS eccentricity: -0.53 * 4.34’ 230% more.

The results for b-e confirm what was inferred from thecretical
considerations above, that all four of the ’‘new’ Newtonian equations
contribute to predictive accuracy. Both their removal and their sign
reversal impaired ™M’s function - contrary to Flamsteed’s opinion.

Line ‘f’ gives our second estimate of the error in the original ™M-1,
the first being at the end of Chapter Eight, using a two-year sampling
period, when a comparable result was obtained.

Flamsteed’s Horrocksian method for finding eccentricity left it reduced
by a factor cos§ as Gaythorpe pointed ocut (Ch. 7,IV), where § is the second
equation of apogee. To estimate its accuracy, the function ’f’ in T™MM-PC
was adjusted to give the simpler Horrocksian movement. Sir William Whewell
took a derogatory view of Halley’s adjustment in this regard, as being a
mere ’‘slight alteration’ (Ch.7,IV), and similarly Whiteside expressed the
view that ’Newton himself (not that it matters a great deal from a
computational viewpoint) was in fact to adopt Halley’s variant on this...
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(Whiteside 1975 p.327 note 35)./ In contrast, our quantitative approach has
revealed that Halley’s contribution was the greatest single improvement
whereby the Newtonian approach differed from the Horrocksian. Two-thirds of
the error was removed by that one adjustment (line ‘g’ above), thereby
confirming Newton’s own view that it was a ‘very good’ improvement (Corr.
IV p.34).

A statistical ‘confidence limit’ is normally taken as double the
standard deviation, being the range containing 95% of the data. On this
basis, T™M-2 had a confidence limit of 3.6 arcminutes.

An attempt was next made to optimise the program, by giving the four new
equations the amplitudes of their corresponding above-quoted modern
functions. Those of the second and third were reduced slightly, while for
the sixth and seventh they were increased. This increased the standard
deviation by one percent. Next, the lunar eccentricity value was decreased,
from the 0.055050 value of TMM, to 0.05490 as the modern value for this
constant (equivalent to using the modern equation’s amplitude, as in the
above-cited Table, of 6° 17/ 24", in place of ™M’s 6° 18’ 3"). Again, a
slight increase in standard deviation for the forty data-points was
observed. I could not find any case where adjustment of the TMM parameters
improved accuracy.

VIXI Comparison with DOS

Reconstructing the DOS procedure will help us to appreciate the
relation between Flamsteed and Newton, as well as what was meant by
’Horrocksian.’ Such a model ought to generate the same errors as Newton and
Gregory were shown three centuries ago on their visit to Greemwich.

The idea of tackling lunar theory seems to have come to Newton in
September of 1694 when with David Gregory he paid a visit to Flamsteed at
Greernwich, and was shown a table of lunar latitudes and longitudes as
observed, together with their discrepancies from what Flamsteed calculated
ought to be their positions (both Gregory and Flamsteed have left notes of
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this event). The challenge was for Newton to construct something better
than the DOS method.

Flamsteed’s De Sphaera gave the furthest development of the Horrocksian
method of finding lunar longitude. It is the proper point of comparison for
assessing ™M, being its immediate ancestor. William Whiston, in his
astronaomy lectures to the Cambridge University mathematics students, in the
year 1703, advised them:

'Take, therefore, Mr Horrox’s Lunar Hypothesis, as cultivated and
explained by Mr Flamsteed.’ (Astronomical Lectures, 1716, p.104)
It had three stages: the annual equation, equation of centre, and
Variation. They are similarly described in the procedure given by
Flamsteed in Horrox’s Opera Omnia of 1673 (Horrox, 1673, p.494), except for
minor alterations in constants and mean motions.

We shall call the program simulating the DOS procedure DOS-PC.
Flamsteed’s De Sphaera dealt with many other issues, but ’/DOS-PC’
designates solely its method of finding lunar longitude. The T™MM program
was deconstructed to reach this more primitive procedure, as follows:
remove equations 2,3,6 and 7; remove anmual equations from node and apse;
diminish solar eccentricity to the Horroxian value; remove the modulating
factor from equation 5 (the Variation) and increase its amplitude to 38
arcminutes; insert DOS epoch values in place of TMM’s* and DOS parameters
for lunar eccentricity; measuring the latter along mean apse by the
function:

E = 0.05524 + 0.01162c0s2%
in place of the Newtonian

E = 0.05505/(1.0454 + 0.4262cos 28) (Ch.7,II);
add in a proportionality factor to make the eqguation of apogee, as produced
by the Horrox-wheel, slightly smaller, of maximal amplitude 11° 47’ 22" in

* Ch. 5, II, also Appendix III. The daily mean lunar motion was also
adjusted, the difference between DOS and ™M being one arcsecond a year.
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place of TMM’s 12° 15’ 4"*; and simplify the equation of the node, so that
it becomes a simple sine function of 2(S -N), and no longer has a Horrox-
wheel mechanism as ™M gave it.

Flamsteed’s DOS gave ten steps to the method; The first comprised his
’BEquation of Days’ of which he was regarded as the pioneer (See, eg,
Thomas Streete in his introduction to the second edition of his Astronomia
Carolina of 1705); whereby the uniform rotation of the Earth in sidereal
space became the basis for the definition of time, mean time as opposed to
clock time, later standardised as Greemwich Mean Time. This was discovered
by Flamsteed using an immobile telescope on his balcony, timing Sirius’s
transit each day.

His steps two and three obtained the mean motions from tables. Step four
subtracted out the annual equation for the two luminaries. Step five used
what was called the ‘Annual Argument’ and which we have called the Horrox-
angle, to ’‘equate’ the apogee and eccentricity. The sixth used the mean
anomaly (ie, M, - A ) to give the true equation of orbit; which we may
represent by

M, =M+ h{M-A}
where h is the equation of centre function. Then the seventh stage adds the
Variation. As our ™M-PC used the DOS reduction procedure, no adjustments
are here required. The node had to be once equated before it could be used
for finding the reduction and latitude, using tables based on the (S -N)
angle. The overall latitude angle, ie the tilt of the Moon’s orbit,
likewise varied with that angle. The node’s maximal equation was 1° 40/,

* From Figure 7.4a, DOS’s equation of apogee 6§ is given by tané§ = FD/DT =
0.011286sin2¢/E, where E is the varying eccentricity. Figure 7.4b depicts
the maximal value of § which DOS gave as 11.789, where CF/CT = siné§ =
0.2043; taking the mean eccentricity line TC as equal to 0.055237, the
radius FC is 0.011286. Effectively, DOS has two deferent wheels concentric
upon C, the centre of Earth’s orbit, the one for the apse equation being
2.9% smaller than that for the eccentricity function, as was also the case
for Horrocks’ theory (see ‘linkage of e and 6/ section in Chapter 7). Not
prior to ™M did their magnitudes coincide.
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such amplitudes being ascertained as the maximal values given in the DOS
tables. Thereby a Lotus 1-2-3 program was constructed, here described
firstly by a flow diagram of its steps of equation, and secondly by the
trigonometric functions involved:

The Steps of tion in DOS-PC

H S A M N
S, M,
E
Al Hz
M:/ N,
Hend
MEAN MOTIONS M = 181.7328 + 13.1763946t S = 290:580 + 0.9856469t
A = 244.1975 + 0.1114083t H= 96.861 + 0.0000479t
N = 174.2430 - 0.0529550t, J

where t is the time in Julian days from noon of December 31st, 1680.

ANNUAL BQUATION M, =M - 0.197 sin(H-S)
S, = S + 1.9368 sin(H-S) - 0.0202 sin2(H-S)

4
|
!
!
/
|
|

EQUATTION OF CENTRE E = 0.055237 + 0.01162 cos2(A-S,) (eccentricity) /

A =A-arctan ___ sin2(A-S5)
4.8943 + cos2(A-S,)
M, =M + h{(E,(A M)}

2

where h is the equation of centre function (Ch.6,II and Ch.8,I).
VARTATION M, = M, + 0.633sin2(M,-S,)

REDUCTION N, =N - 1.663 sin2(N-S)

1

M__, =M, + 0.116 sin2(N,-M,)[1 + 0.059 cos2(N,-S,)]
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There are only two worked examples whereby we can check the working of
this program. There was the worked example given in DOS, discussed in
Chapter Eight; later in 1694 Flamsteed sent a table of computed positions
to Newton, which we analyse in the next chapter. We may surmise that he had
not by then altered his procedure, but his letter to Newton did not
explicitly affirm such. Regrettably, William Whiston in 1703 used the same
example as given in DOS; ancther was given by Cressner, discussed below.
That is all, and it is not very much.

The DOS example had as we saw (Ch. 8, III, Table 8.3) an error of
eleven arcminutes. London is five arcminutes due East of Greernwich, and we
subtract one-third of a minute from its local mean time to obtain GMT. The
Table below compares the magnitudes of its three equations: the annual
equation, the Equation of Centre and the Variation, for the moment given in
this example of 6.35p.m. London mean time, 22 December 1680 (t = -8.72596
for the Lotus program).

DOS-PC Dos

Eccentricity: 57681 57678 parts per million
Apse eqguation: 10°50/32" 10°50732"

1) Annual eq.: -1/03" 1/03"

2) Eg. of centre: =54727" -54722"

3) Variation: -36715" -36’16"

Reduction: =3/59" =4/00"

Long. in ecliptic: 65°9/51" 65° 9752"

Five arcseconds is here the largest discrepancy in the steps of equation.
Next, the accuracy of DOS-PC was tested using the method described earlier.
Forty positions at 160-day intervals were generated, giving a mean error
of:
-2.4 + 6.5 arcminutes,

or a confidence limit of thirteen arcminutes. This well accords with
Newton’s remark made in a letter to Flamsteed of July 20, 1695, that ’The
Horrocksian theory..never errs above 10 or 12 minutes’ (to Flamsteed, Baily
p.158); although, on January 15th, 1681, DOS-PC erred by 15 arcminutes. It
also echoes the conclusion that Flamsteed expressed in the Philosophical
Transactions of 1683, that ‘even the best’ lunar tables erred by at least
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12 minutes. (Phil. Trans. 154, Vol.13, p.405); suggesting he had then made
little progress with the problen.

Flamsteed gave a worked example in his collation of the posthumous works
of Horrox (Horrox, 1673, p.494) which had, I found, an error of 13
arcminutes, which is similar to that in the above DOS example.

VIIT The First Computation

The first ever ™M-based calculation on record was published in the
Philosophical Transactions of 1710, by ’‘the Reverend Mr H. Cressner, M.A.,
Fellow of the Royal Society.’ He also gave a computation based on DOS, as
published by William wWhiston. The occasion was a lunar eclipse observed at
Streatham in South London. Thus, at the dawn of the Age of Enlighterment,
there existed two rival British lunar theories. Mr Cressner made the claim
that he was the first to do this:

’There being therefore no Examples of any Calculation (that I know
of) according to that Theory, nor of the Theory’s Agreement with
Observations yet made Public; I thought it proper to offer this one to
this learned Society’s perusal...I have added the Calculation from the
famous Mr Flamsteed’s Tables, according to Horrox’s Theory, as I find
them published in the Ingeniocus Mr Whiston’s Astronomical Lectures,
with the Radix’s of the Mean Motions, corrected according to their
first Author’s later Observations, which are the same as Sir Isaac
Newton’s Theory.

'By comparing these two Calculations we may observe, that tho’ most
of the additional Equations in Sir Isaac Newton’s Theory be very small
in this situation of the Moon, yet they all conspire so as to make its
Place considerable more agreeable to Observation, than those of
Horrox’s System.’

There is the curious assertion that ™M’s mean motions represented
Flamsteed’s later views on the matter. The passage could be taken to imply
that Flamsteed had not developed his lunar theory beyond what he published
in 1681, even three decades later, except for slight modification of his
mean motions.
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We are told that both computations start from the same mean motions.
The T™TMM-PC and DOS-PC programs were here used , the latter with T™MM’s mean
motions, for the time given. The two calculations as shown by Cressner
purport to ascertain the beginning and end of the eclipse. To my knowledge,
™M cannot be used for such, but only for the moment of exactitude. We take
what Cressner called ‘The Mean Time of the True Opposition’ for the Julian
date of 2nd February 1710 10 hrs (ie, 10pm), 54min, 48 sec at Streatham
(t = 10625.4547 for TMM-PC).

The steps of equation agreed tolerably well, and show that Cressner
adopted the correct sign for the sixth equation. His finally-equated value
(M,) differed from TMM-PC by 48 arcseconds, while for the DOS program it
differed by a mere 25 arcseconds. The latter ought to be smaller, since
tables then existed for the DOS procedure, while none then did for TMWM'’s
procedure. We cite the final values for M :

Iongitudes for Feb. 2nd 1710, 10hrs 54 mins 48 sec GMT:

TMM-PC 145° 1/ 12"
TMM (Cressner) 145° 00’ 24"
DOS-PC 144° 55 51"
DOS (Cressner) 144° 55¢ 23"
Actual 145° 27 o9

Eclipse midpoint 144° 45‘ (at 10.45 p.m.)

The errors for TMM-PC and DOS-PC respectively amount to %/ and 5’. Cressner
concluded, with regard to the ending of the eclipse:
'The Error therefore of Sir Isaac Newton’s Theory is by this
Observation but half a Minute, or none; of Horrox’s System, Nine
Minutes and a half,’
For the time specified, a few minutes after eclipse exactitude, for which
Cressner presented his computaion, Flamsteed’s method erred by five
arcminutes.
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I Some Conclusionss

We can now resolve certain issues that have remained conjectural for
almost three centuries.
1) Newton’s 1702 lunar theory had an error of -0.5 * 3.8 arcminutes in the
1680s, taking mean motion values as corrected in 1705. Its mean error
gradually increased with time.
2) This was almost twice as accurate as the lunar theory published by
Britain’s expert on the Horrox theory, Flamsteed, two decades earlier.
3) Halley’s adjustment of the Horrocksian eccentricity function was the
most important single improvement in Newton’s construction of ™M,
decreasing its mean error by nearly sixty percent.
4) T™M’s four new equations were all sound, except that the sixth had its
sign the wrong way round, and their coefficients were close to optimal, in
giving agreement of the method of computation with observation.
5) Newton went as far as anyone then could have done in discerning such
ancillary equations as were capable of improving the Horrocks theory.
6) With the sixth equation adjusted as specified by the 1713 Principa,
T™™M’s standard deviation was no more than a mere 1.9 arcminutes (or, a
confidence limit of +3.8 arcminutes).
7) The next chapter will show that TMM’s accuracy increased at syzygy
positions, traditionally the most important.

Historically, Flamsteed’s assessment of TMM’s longitude accuracy in the
years prior to 1713 was sound while Halley’s was, over that period,
mistaken. It was not remotely within the bounds claimed by Gregory or
Halley. Furthermore, Newton himself misjudged the matter, as evidenced by
the several public statements of his on the subject discussed in Chapter
One; we may also note an ascerbic recollection by Flamsteed, of a meeting
at Greerwich on 2April 12th, 1704. At first he and Newton disagreed on
optical matters (relations being less than cordial), after which:

’T showed him also my new lunar numbers, fitted to his corrections;
and how much they erred: at which he seemed surprised, and said "It
could not be." But, when he found that the errors of the tables were in
observations made in 1675, 1676, and 1677, he laid hold on the time,
and confessed he had not looked so far back: whereas, if his deductions
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from the laws of gravitation were just, they would apply equally in all

times.” (Letter to Abraham Sharp, Baily p.217)
In fairness, however, Newton had avoided making any claims about
gravitation in the context of ™M, though David Gregory had averred that
such a link existed in its Foreword. This report therefore appears as an
early expression of what became a widespread viewpoint, albeit made with
some scepticism. One can only regret the disappearance of the papers which
Flamsteed showed to Newton on this occasion.

2222222222222 % 2
A verification of the computer-generated longitude positions of Table
10.1 was kindly performed by Dr David Harper, the astronomer and computer
expert of St Mary and Westfield College, London. He composed a TM program
according to the specifications of Ch.8, using different software, and
obtained close agreements.
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ERJROR —r> ATTERISTsS

IE Erxroir—Envelope
To construct graphs using ™M, one needs to be able to run the program

repetitively for given time-increments. The first step involves creating a
table of sequential, TM-PC-derived lunar longitudes. A 'macro' was written
to accomplish this, vAich fonns a loop in the program moving the time-value
on by a fixed increment after printing out the corresponding longitude

value.

Using this procedure, the program was first set to subtract mean lunar
motion from the finally-equated position, at daily intervals. This gave the
ellipse function, the lunar equation of center, thereby 'true anomaly' can

Figure 11.1: Mean lunar longitude subtracted from T™MM's 'true' values, for 365 days.

THE ELLIPSE FUNCTION
SAMPLING AT DAILY INTERVALS FROM NOON, DEC 31,1680
10

30 60 90 120 150 180 210 240 270 300 330 360

DAYS
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inove nearly seven degrees away from the mean position. It oscillates to the
anmalistic month periocd. Figure One shews this, samping over a year. Its
envelope has an amplitude varying with the 'Horroxian year' cycle, twice
per thirteen months.

To construct the error-envelope of IM, a lunar longitude program
accurate to seconds of arc in historical time was used, able to generate
columns of positions at any specified time-interval. Those columns had to
be imported into the Lotus program. Ihe program was set for the identical
times as employed in the IMM-iteration procedure. Its columns of longitude
data were then placed adjacent to those generated by IMM within the Lotus
1-2-3 spreadsheet, vhereicon the error values {IMM - modem) could be found

by subtraction.

Figure 11.2a; Comparison of daily error-values of original 1702 version of TMM (thin line) with

that obtained after reversing the sixth equation (dotted line).

ERROR PATTERN OF TMM

daily noon values GMT
10

-10
0 10 20 30 40 50 60 70 80 9 100 110 120
DAYS AFTER DEC 31,1680
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Figure 11.2a shews the graph of the two versions of IMM that were
discussed in the previous chapter: the original of 1702, and that same
program adjusted by reversing the sixth equation and sli”tly increasing
its airplitude, as specified in 1713. A lunar-monthly rhythm is a{¢ccarent,
here peaking at the first lunar quarter, though this is not a permanent
feature. A 50% decrease in mean error has appeared from reversing the sixth
equation. Figure 11.2b shews the pattern continued somevhat longer, over
ei”t lunar months.

ERROR PATTERN OF TMM

daily noon values GMT
10

-10
0 30 60 90 120
DAYS AFTER DEC 31,1680

6TH EQUATION REVERSED
Figure 11.2b: As before, but sampling over 240 days.

H Errnrozr
What error-pattem is generated by sairpling periodically at apogee
positions? TMM has several terms of the form (It#) and (S-4), so one should

expect rhythms to be discernible at these periodicities. The patterns
generated are shewn in Figures 3a and 3o.
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We start by locating an apogee time as the zero position. Mean
positions are used, as they are required to stay in position over a period
of time. Steps of 27.66 days were added, proceeding throu” a conplete apse
revolution of nine years. A large-amplitude rhythm of about six arcminute
anmplitude appears, going through seven cycles per apse revolution, of
period 460 days. The astronomical motion generating such a cycle, TMM's
strongest periodicity, is obscure.

TMM’S APOGEE ERROR

OVER A 9 -YEAR APSE CYCLE

AQc

ANOMALISTIC MONTHS, FROM DEC 31 1680

Figure 11.3a: Monthly TMM errors sampled at each mean lunar apogee, over a nine-year apse cycle.

Sampling instead at conjunctions of the mean Sun and mean apse, that is
every 6% months or 206 days - another period strongly encoded into the TMM
program - then the rhythm shewn in Figure 3b ap™ears. The graph shown
presents a six-yearly rhythm. A three-point moving average has been put

Figure 11.3b; TMM errors on successive Sun/apse apse conjunctions every 6.5 months over a thirty-
year period. A three-point moving average has been added.

TMM’S SUN-APSE ERROR

SAMPLING EVERY 206 DAYS
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through the data to smooth it. The effect is weaker than the previous
monthly-iteration cycle, shown by its smaller amplitude of merely three

arcminutes.

If instead sampling is done at each Full Moon, a fairly random pattern
emerges. The syzygy errors are smaller than usual, as shown in Figure 3c,
being mostly within two or three minutes of arc: Hailey's claim made about
the accuracy of TMM in his afterword to the third edition of Streete's
Astronomia Carolina here af™jears as valid. And yet, the Full Moons do have
an error-rhythm, albeit quite a weak ocne. Sampling was here done on
alternate Full Moons, over a nine-year period, and a five-point moving
average put throu” the data. This time (with some relief) we are able to

identify the error-rhythm, as that of the nine-year apse cycle.

TMM’S FULL MOON ERROR

SAMPLNG EVERY 59.06 DAYS

MONTHS AFTER DEC 31,1680

Fiqure 11.3c; TMM errors on alternate Full Moons over nine years, plus five-point moving average.

TMM is primarily linked to the anomalistic cycle, via its functions
involving (M-A), and contains little by way of synodic terms involving M-
S), reflected in the differing amplitudes of these error-rhythms. The first
has an amplitude of up to seven arcminutes, vhich is two or three times the
claimed maximal error of the system. Furthermore, it is a coherent rhythm,
in contrast with the other two vhich required smoothing with moving

averages to discern them.
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ITX The ‘Hidden Terms“’ of Longitude

In the previous chapter, it was observed that the modern equations for
lunar longitude had four terms in the 2-3 arcminutes range, not included in
™M, ie modern longitude terms within T™M’s amplitude range, not evidently
incorporated into it. Were these related to its error-pattern? To ascertain
this, the following sum was plotted over a three-month period:

3.4sin(2D-M*-M’) +3.2sin(2D+M’) +2.7sin(2D-M*) -1.8sin(M*+M’)

(For these symbols, as used in the RGO formulae, M* and M’ represent
anomaly values.) The sum of these functions gave nothing resembling TMM’s
error pattern, either in the shape of their envelope or in amplitude. They
generate a function having a standard deviation of 4.0’, far larger than
T™M’s error. The terms all have different periods, and so align now and
then, giving an amplitude of up to ten arcminutes, while the ™M-2 function
has only half such a maximal error. A puzzle thereby arises.

The ™M equations contain amplitude-modulating functions. Those for
equations two and five vary through the course of a year, while that of the
seventh varies through one apse cycle. As the modern equations do not have
such, would the comparison be improved by their removal? To find out, TMM-
PC2 had its modulating functions removed. This meant that, in the case of
the second equation for example, in place of

6.25-0.31cos(H-S )
merely 6.25 remained. Their removal did not increase the resemblance: the
programme’s standard deviation remained at +1.8 arc minutes over a period

of daily sampling.

Did that result mean that ™M’s modulating functions served no useful
purpose, that their author had merely imagined their efficacy? After all,
the modern equations have nothing like them. Forty values were generated at
160-day intervals as in the previous chapter, with these modulating terms
removed, and compared with correct longitudes. The mean error thereby
generated was 0.412.1 arcminutes. This is a larger value than TMM-PC2 gives
otherwise. From this we conclude, that the three modulating functions
within T™M’s equations did serve a useful purpose.
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If we compare the modern and traditional longitude equations, the
former apply the mean motions at every stage, without any ’‘steps of
equation’ concept whereby each stage took ‘equated’ values from the
previous level. They use four variables in their terms: using our symbols,
these are given by (M-A+180°) and (S-H+180°) as the anomalies, (M-S) as
elongation and (M-N) as the Moon’s distance from its node. The terms add
onto the mean lunar longitude L.

To ascertain how many of the modern terms give a comparable accuracy to
™M, the first dozen or so of them (see p.134) was written onto the Lotus
spreadsheet. We here recall that their anomaly terms differ by 180° from
those used in ™M, see p.63. These modern terms are quite standard, and
used in lunar longitude computer programs. TMM’s mean motion equations were
used, with the four variables as above defined constructed from them. The
error-estimation procedure was used as in the previous chapter, with a 160-
day period. Thirty such times were taken, from the epoch date of December
31, 1680, showing a diminishing error as successive terms were added:

The first twelve terms only gave a mean error of -0.44 +2.1 arcminutes

" thirteen " -0.48 +1.60 "
" fourteen " =0.46 +1.56 "
™M-PC2 " -0.38 +1.88 " (p.137)

It is evident that ™M had an accuracy almost equivalent to the first
thirteen of the modern equations.

I am not able to account for this phenomenon, beyond cbserving that
T™MM’s construction was quite different from the modern set of functions and
so there may be a limit to which we can compare them. In the previous
chapter’s list, the modern terms without any evident equivalence are
numbers 8,9,10 and 13. It is accepted that the Horrox function incorporates
equations 1 and 2 (elliptic function and evection), and presumably also 4.
I believe that T™MM cannot be improved by adding on these equations as
extras, though admittedly, eguations 8, 9, 10 and 13 have only been so
checked altogether and not individually. Around the summer of 1695, when
Flamsteed was puzzled that his letters were no longer being answered,
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Newton had discerned all of the ancillary equations that could have then
been found, to the level of accuracy at Wiich he was working.

A major criticism of TMM by Flamsteed was that it lacked accuracy in
latitude:
'The errors in latitude are frequently 2,3 or 4 minutes, vAiich is
intolerable. They result not only frcm ray cwn observations, but from
those of others at the same time. '
(Letter to Caswell, March 1703, Baily p.213)

TMM LATITUDE ERROR

DAILY NOON VALUES

U20L

DAYS'XFTER'BEC 37680
LUNAR LATITUDE RHYTHM

Figure 11.4: Daily errors in ™M latitude formula, in arcseconds, with lunar latitude shown for

comparison.,

In Chapter Nine a latitude formula was given, derived from the TMM
instructions. The graph (Figure 11.4) depicts the error of this function,
for the opening months of 1681. The error here remains largely within an
arcminute. To check this, forty latitude values were derived from TMM at
160-day intervals, and subtracted from latitude values generated by the RGO
program for those tirces. These forty values gave a mean of:

latitude error = -2£36 arcseconds,

indicating a confidence limit of within an arcminute. This appears as the
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second major issue where Flamsteed’s judgement over TMM has turned out to
be erroneous: he was as we have seen also mistaken in his dismissal of the
new equations.

v Flamsteed’s View of DOS Errors

We may compare Flamsteed’s comments upon supposed TMM latitude errors
with those of his own latitude predictions, as he sent them to Newton in
his letter of February 7th, 1695 (Table 11.1). The last colum gives
latitude errors of his own DOS procedure, and their mean error amounts to
1.4 £ 1’.0. It is odd that he should have regarded errors in someone
else’s theory of two to three arcminutes as ’intolerable’ when his own were

Annus - Tempus DARect | DdistaP Longitud Latitudo diff:a:Tab Flam
Mendie | Appar Longit | Latit
d h ’ o ’ ~ (-] ’ » s [} ’ L4 (-] 4 - LA 4 ’? &
1692 Maij 16 8.59.11 | 199.39.20 | 103.22.50 { = 23.10.58 | 4.41.40 A | +0.56 | —2.50
17 9.52.05 | 213.56.50 | 108.55.50 | M 8.01.45 | 4.59.22 A | +2.13 | —-2.16
19 | 11.46.15 | 244.36.00 | 116.04.40 { ? 7.15.47 | 4.34.50 A | +2.07 | —1.24
Junij 13 7.41.09 | 208.56.00 | 107.17.40 | M 2.58.28 [ 5.04.58 A | +2.06 | —2.20
15 9.30.42 | 238.28.30 | 115.15.15 | + 1.40.05 | 4.49.25 A | +8.18 | -2.18
16 | 10.28.37 | 254.00.00 | 116.56.20 | # 15.44.06 | 4.14.45 A | +7.50 | —2.04
1694 Dec 28 | 17.30.36 | 192.18.40 | 100.34.55 | = 15.26.18 | 4.52.15 A | —4.31 | —2.24
30 | 19.12.57 | 220.08.30 | 109.14.30 | M 14.31.38 { 3.25.25 A | —3.40 | —=1.19 .
31 | 20.10.47 | 235.42.40 | 112.05.05 | M 28.29.53 | 2.16.48 A | —6.02 | —2.09 {:: ob diei
lucem
1695 Jan. 9 3.44.49 | 358.43.00 84.53.50 [ v 0.51.43 | 5.11.25 B | +2.11 | +1.46
11 5.18.09 24.12.40 75.13.30 | v 27.49.40 | 4.21.13 B | +7.13 | +1.01
12 6.05.04 37.02.40 71.31.00 | ¥ 10.40.02 | 3.37.03 B | +8.02 | +1.21
13| 6.52.55| 50.04.50 | 68.47.20 | ¥ 23.12.33 | 2.41.23 B | +8.31 | —0.17
14 7.41.26 63.18.00 67.04.30 | IT 5.32.35 | 1-41-03 B | +8.13 | +0.08
18 | 10.54.32 | 115.51.00 71.17.00 | o5 24.25.25 | 2.85.583 B | +7.17 | +0.42
omissa inter- _
ponatur
1695 Jan. 8| 2.57.07 | 345.42.00 | 90.31.50 | » 16.38.05 | 5.09.34 B | —0.03 | +0.44

differentiz ostendunt
quantum lunz longitudines
et latitudines observatz
supputatas ¢ meis tabulis
excedunt vel ab iis defi-
ciunt

Altitudo Poli Grenovici 51°.29°.09 - J.F:

Table 11.1: 16 of Flamsteed’s lunar positions, with dates in 0ld Style and ’Apparent time’
measured from noon, i.e. from solar meridian transit; lunar right ascension to the nearest sixth
of an arcminute, North polar distance (90°-dec.) converted to longitude (measured 0-30°, together
with zodiac sign) and latitude marked A or B to distinguish north or south of the ecliptic: plus
errors from using his DOS tables; as sent to Newton (February 1695, Corr. IV p. 85). A
transcription error is present: for Dec 30, 1694 longitude should read 13°41 instead of 14°31’.
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of the much the same magnitude.

On September 1st 1694, Newton and David Gregory visited the Greenwich
Observatory. Gregory’s diary recalled how they were shown ‘about fifty
positions of the Moon reduced to a synopsis... Flamsteed is about to show
him another hundred,’ while Flamsteed recalled that the data included ‘the
places of ye Moon derived to ye same times & the differences or errors in 3
large sheets of paper in order to correct the Theorys of her motions’
(’Memorancum by David Gregory’, Corr. IV pp.7,8). Table 11.1 was presumably
a part of that set of data. Sadly, it is all that survives of the lunar
meridian readings which Flamsteed sent to Newton during their collaboration
from September 1694 to June 1696.

The Table gives clock-time measurements (’/Tempus Apparent’) of meridian
lunar transits, ie transit times for when the lunar limb first reached the
meridian position. An Equation of Time was first applied to give mean time,
then using the notion of the sidereal day, the column of Right Ascension
was obtained. ’Distance from Vertex’ ie (90°-Declination) as measured was
converted into ’Distance from Pole’ using a value for the latitude of
Greerwich taken as 51° 29’.

The data was converted from topocentric into geocentric form by
applying parallax (and refraction) corrections to the vertical ’Distance
from Pole’ reading. Then, using a value for the obliquity of the ecliptic
(taken as 29°30’), he derived longitude and latitude. The table gives
longitudes for lunar centre, requiring a further correction based on lunar
distance.

Thus, the data had to be considerably processed before it was usable to
check a lunar theory. Newton once complained to Flamsteed, ‘I want not your
computations but your observations only (June 29, 1685, Corr. IV p.133).’
There is no raw data in this Table. Flamsteed’s observed data for a
meridian transit would consist of: inaccurate clock times, up to half an
hour out, a solar noon transit for estimating clock error, vertical mural
arc angle, plus instrument correction(s) for that vertical reading.
Flamsteed preferred not to reset his Tompion pendulum clocks each day,
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giving his actual clock times in the Historia Coelestis Volume II,
sometimes with the corrected clock times adjacent.

The longitude error column in the Table has a mean value of
3.1 + 4.8 arcminutes,

notably less than the value ascertained in the previous chapter for the DOS
model, of + 6.5 arcminutes. This leaves open the possibility that positions
generating larger errors on his theory had been removed. This colum
indicated how well his version of Horrocks’s theory could work. The error
colum displays a large systematic error, as inherent in his mean motion.
(The Table shows a contrast between the three early-morning observation,
December 28-31, 1694, and the rest, but that is a mere coincidence, as the
program has no diurnal component). These are the very error-values which
Newton and David Gregory gazed upon in their September 1694 visit to the
Greerwich Observatory.

Chapter Five showed that the DOS mean lunar motion was almost three
arcninutes less in value that the ‘true’ mean. This we expressed using a
negative sign. Flamsteed has here adopted a different sign convention,
whereby the ‘difference from Flamsteed’s Tables’ columns represent {actual
longitude - theoretical longitude}. For example, for June 15th, the
longitude was given as 1° 40’ in the sign Sagittarius, while our DOS-PC
model gives 1° 32/ of Sagittarius (ie, 241° measured from zero Aries). This
deficiency of eight minutes is expressed as +8 arcminutes in Flamsteed’s
table. Thereby the systematic error of plus three arcminutes in his
longitude error column accords with the error in mean motion which in
Chapter Five we expressed as almost -3/ for DOS in the 1690s.

From the clock times as given, GMT' was reconstructed using a modern
program for the equation. of time (Hughes, Yallop & Hohenkerk, 1989). From
those times, the actual longitudes were computed, shown in Table 11.2. Four
things are here compared: Flamsteed’s longitudes derived from observation
F(obs), his computed longitudes F(DOS), the modern ILE estimate, and our
reconstruction of DOS, PC(DOS), described in Chapter Ten.
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2)
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9)
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The first colums give the dates plus estimated GMT values, in hours,
minutes and seconds. These are followed by two longitude colums, firstly
as generated using the ILE program, and secondly a reconstruction of
Flamsteed’s DOS longitudes (minutes and seconds only) for those times. The
latter was obtained from Table 11.1, subtracting his longitude error
estimates from his observed longitudes. These two colums are derived from
theories: one using three equations and the other, sixteen hundred.

Table 11.2: Analysis of the Flamsteed Longitude Data (Feb 1695). Columns show: dates, /GHT’ in
hours, minutes and seconds reconstructed from Flamsteed’s LAT column in Table 11.1, longitudes from

ILE program and by Flamsteed from his tables, and difference columns showing: accuracy of

observational data, historic estimate of theoretical errors, and reconstructed errors in the theory.

Date
May 16,1692
May 17,1692
May 19,1692
Jun 13,1692
Jun 15,1692
Jun 16,1692
Dec 29,1694
Dec 31,1694
1,1695
8,1695
9,1695

Jan

12)Jan 11,1695
13)Jan 12,1695
14)Jan 13,1695
15)Jan 14,1695
16)Jan 18,1695

AF(obs)
AF(DOS)

AF(D0S-PC)= ILE

IIE Long. FE®@MOB) AF(cbs)

G.M.T.
20/55/45 203°11’10"
21/48/46  218° 1/19"
23/43/12 247°15742"
19/42/54 212°58/23"
21/32/53  241°40’39"
22/31/01 255°44749"
5/38/07 195°28/03"
7/21/19 223°42712"
8/19/34  238°31/35"
15/08/27 346°36’ 9
15/56/28 0°50/21"
17/30/22 27°48715"
18/17/33 40°39/25"
19/05/40 53°12728"
19/54/25 65°32/50"
23/08/29  114°23729"
=ILE - F(obs)
= F(obs) - F(D0S)

- PC(DOS)

10702"
597321
13740"
5622"
31747"
36716"
30749"
518"
35755"
38702"
49732"
42727"
32760"

402"
24722"
1808"

0’.2
-0’.4
-0’.1
-0’.1

0’.6

0’.7

1’.7

0’.6

17.7
-1’.9
=1’.4

1244

-0’.6
-0’.1

0.3
-1’.9

-07.1+1.1 3’.1%4.8

Our reconstruction of data accuracy

AF(DOS)

0’.9
27.2
27.1
2’.1
8’.3
7’.8
-4’.5
=37.7
-6’.0
-0/.1
27.2
77.2
8’.0
8’.5
87.2
7’.3

Historic errors seen by Newton & Gregory
Modern reconstruction of theoretical errors.

A(DOS-PC)
1’.9
27.3
17.2
6’.6
8’.3
8’.0

-1’.3
-37.2
=3’.9
=1’.3
0’.7
5.3
7.1
8’.4
8’.9
br.1
37.4%4.2
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The AF(obs.) column has the difference between ILE longitudes and
those in the above Flamsteed table. This gives the only estimate that
exists of the accuracy of the raw data from which Newton derived his
theory, a standard deviation of one arcminute. We may consider to what
extent this was good enough, as TMM’s third equation had an amplitude of
less than an arcminute. Curiously, there was virtually no systematic error
in the longitudes derived from observation (8 arcseconds). The above Table
is regrettibly our sole record of Flamsteed performing such computations,
putting his data into a form needed by a theoretician, and as such is of
especial interest.

The next column AF(theor.) merely repeats that given in the previous
table, having as was found an unduly low error values of 3’/%4’.8. We may
say that the longitude data was some five times more accurate than
predictions from the best theory available, clearly leaving scope for
improvement.

Next, a PC(DOS) longitude value was obtained for each of these dates.
Noon times were used for simplicity, as the error-pattern of such a lunar
theory does not vary greatly with time of day. The last column shows the
errors it generated, as {PC(DOS) - ILE} values, these being slightly
smaller than those ascertained by Flamsteed from his computations.
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Ch.12 T™M IN THE PRINCIPITA

The seven steps of T™TMM became embodied in the Second Edition of
Newton’s Principia, in the Scholium to Proposition 35 of Book III. This
Scholium appears midway through the lunar arguments of Book III, following
a summary of lunar inequalities in Proposition 22, and three sections
deriving the Variation from gravity theory (Propositions 26, 28 and 29),
and before the treatment of the Moon’s influence upon the tides. The aim of
its text was subtly altered, such that the prediction of longitude was no
longer its primary goal.

The Scholium began with the affirmation:

’By these computations of the lunar motions I was desirous of showing

that by the theory of gravity the motions of the moon could be

calculated from their physical causes.’
The word ‘theory’ has here a different meaning from that used by Gregory in
his title of 1702, Theory of the Moon’s Motion. Whereas the text of 1702
had been prefaced by Gregory’s claim that ’‘Physical Causes’ had been
reached at last, here that claim was made by its Author.

However, the Scholium apparently retained ™M’s function of finding the
longitude. The 1713 text served two different but hopefully concurrent
purposes. After describing the seven steps, it averred:

’Sic habebitur locus verus Lunae in Orbe, & per reductionem loci hujus
ad Eclipticam habebitur Longitudino ILunae.’
(’Thus you have the true place of the Moon in her orbit, and by reduction
to its place in the ecliptic will be found its longitude.’) There was no
mention of latitude, and indeed the paragraph making this affirmation
vanished from the Third Edition.

The 1713 Scholium omitted what had previously been all-important,
namely the numbered steps of equation. It lacked instructions for the
sequence in which the various ’‘equations’ were to be performed on the five
zodiacal variables; although it did present the seven steps of equation in
a sequence, almost identical with that of 1702. The Variation, treated
earlier, was briefly recapitulated in the Scholium. The second node
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equation of ™M was omitted. Was it the case that the 1713 text could only
be ’worked’, ie made to give longitude values, by presupposing the ™M

operation sequence?

If ™M resembled a watch, then what appeared in 1713 was more an account
of its gears, with a new gear added, rather than their assembly.
Conceptually, the Variation is independent of eccentricity, being a
deformation suffered by a circular orbit from the Sun’s pull, and as such
was presented in the Principia as a successful application of the three-
body problem to ‘explain’ the inequality discovered by Tycho Brahe. It was
therefore treated prior to the other ™M stages. A summary of where ™M’s
seven steps reappeared in the final Third Edition of 1726 may help:

1726 1702 Equivalents

Book III, Propn. 29 BEqn.5 (the Variation)

Propn. 35, Scholium Para 1: Egn.l (lunar anmual egn.)

Para 2: Egn.1l (other annual egns.)
Para 3: Eqn.2
Para 4: BEqn.3
Para 5: BEqn.4 (Eqn. of Centre)
Para 6: Egn.4 (Egn. Centre epicycle)
Para 7: Eon.6

There remain seven stages! All but the last of the above seven
paragraphs in the Scholium began with a phrase like /By the same theory of
gravity...’ or ‘because of the Sun’s force...’ The kinematics of ™M was
transformed into a new dynamics, with the cause of the equations given, in
terms of forces. We can to some extent retrace the steps of the new
approach.

- Cotes’ Contr—ibation

The Scholium into which ™M metamorphosed in PNPM in 1713 comprised ten
paragraphs. It had been changed considerably as a result of comments from
Roger Cotes, astronomy professor at Trinity College, Cambridge, who
assisted Newton in preparing his Second Edition. The correspondence of
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Newton and Cotes was published by John Edleston in 1850, Edleston
contributing some evaluations of Newton’s modifications to the theory which
remain of interest.

A ’New Scholium to Prop. XXXV’ (reprinted in Corr. V pp. 291-5) was
sent to Cotes, probably in the first week in July 1712 in the view of
Edleston (1850, p.109). It comprised twelve paragraphs, of which the first
seven opened with the repetitive phrases we have noted, ‘by the theory of
gravity’, etc. These presented the first four steps of equation of ™M, and
added two extra epicycles to the fourth: one was a yearly-period epicycle,
to be discussed below, while the other was a nine-yearly one (in its
seventh paragraph), varying the rate of motion of the apse line in relation
to the Earth’s aphelion. It omitted any discussion of the last three ™M
equations.

There is an undated manuscript entitled Theoria ILuna, published in the
Correspondence (IV pp.1-5) probably belonging to this same period (see
Chapter 9, section VIII). It discussed only the first three steps of
equation of ™M, and also a nine-year inequality to the apse motion. Its
logic is comparable to that of the ’New Scholium,’ partly because both
showed Newton contemplating a long-period epicycle.

Newton and Cotes discussed the yearly epicycle which was being added
onto the Horrox-wheel. A letter of 20th July 1712 found Cotes apprehensive
as to when the new emendations to the lunar theory would arrive. Finally, a
'revised draft’ arrived, undated, inserted into the Correspondence’s mid-
August 1712 period (V, pp.328-9). This draft curtailed the fifth paragraph,
re-cast the sixth, and added a new seventh, containing the sixth equation.
The seventh paragraph now began, /Computatio motus hujus difficilis
est...’, (‘Computation of this motion is difficult..’) instead of referring
to the theory of gravity.

Sometime after that, an eighth paragraph must have been sent, starting
’Si computatio accurator desideratur...’. It alluded to the Variation,
which maximised in the octants, and then proposed an adjusted seventh
equation, which it called the ’Variationem Secundum’, which maximised at
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the quadrants. We may conjecture that Newton found it harder to justify his
sixth and seventh equations by reference to his gravity theory, which is
why they were missing from the original ‘New Scholium’ draft. Thereby the
Variation became the sixth equation, preceded by what had been ™M’s sixth
equation, now the fifth. We summarise this as follows:

The 1713 seguence The Principia names the ™M steps
3rd para Aequatio semestris 2nd sin2(A-S)
4th para Aequatio semestris secunda 3rd sin2(N-S)
5th & 6th paras Aequatio centri 4th
7th para Aequatio centri secunda 6th sin(S-M+H-2)
8th para Variatione Prima 5th sin2(S-M)
8th para Variationem Secundam 7th sin(S-M)

T AN Improvement on T™MM?

From Edmond Halley onwards, commentators have inclined to the view
that the theme of ™M was more fully developed in PNPM of 1713. In 1732
Halley as the Astronomer Royal wrote:

’.. the great Sir Isaac Newton had formed his curious Theory of the

Moon, a first Sketch of which was inserted by Dr David Gregory in his

Astronomia Physicae & Geometria Elementa, published at Oxford 1702;

and again, in the second Edition of Sir Isaac’s Principia, which came

out in 1713, we have the same revised and amended by himself...’

(P.T., 37, p.190-1)

In 1977 Craig Waff wrote:
’... a revised and much expanded version of the ’‘Theory of the Moon’
was published as the new Scholium to Proposition XXXV... I might
further point out (from my own study in progress of the lunar tables
based on Newton’s ’‘Theory of the Moon’) that many table-makers in the
early eighteenth century considered the Principia version to be more
up-to-date (as indeed it was) than the version which Cohen reprints,
and consequently used it as a basic foundation for some of the lunar
tables which they constructed.’ (p.71)
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Waff was criticising Bernard Cohen for supposedly not having appreciated
that the Scholium of 1713 was a ‘revised and much expanded’ version of the
1702 opus.

On the other hand, William Whewell was a science historian who
appreciated the practical significance of ™M, and he affirmed that ’‘These
calculations were for a long period the basis of new Tables of the moon,’
referring to ™M (1857, I, p.162). His review of these matters did not
suggest that the 1713 Principia was an improvement, or that it was ever
utilised as such by astronomers.

Table 12.1 shows the constants of TMM as modified in 1713. The lunar
BEquation of Centre maximal values were omitted from the Principia’s
Scholium. These would have had to be generated using the Kepler equation
from the eccentricities, no simple task. Thereby the Principia text
provided less of a practical guide to finding longitude than did TMM.

We may note that ™M introduced a tropical reference into the Second
Edition of PNPM, whereas the First of 1687 was primarily sidereal. PNPM’s
quest for ’‘physical causes’ was within sidereal space, this being the
inertial reference framework - the immobile sensorium of the Deity, in
Newton’s language. TMM in contrast functioned within the tropical framework
ie the zodiac, as being what astronomers used. Thus, the yearly motion of
the nodes is given as 19°20/31" sidereally in the Scholium to proposition
33 (Motte, p.467) while also a tropical-year period is cited for
comparison.

IITxT Aan Ecuation of Eccentr-icity

When Flamsteed originally explained the Horrox model to Newton in a
letter of October 11th 1694, he added: ’To make the aequations bigger in
winter yn Sumer it will be requisite to make the diameter of this
libratory Circle bigger in Winter yn Summer’ (Corr. IV p.27). There was a
hint that this modulation was Halley’s idea, as being mooted between the
three of them.
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Table 12.1: The Constants of ™M, from 1702 to 1725
These constants represent the maximum values of ‘equations’, ie the peak values found

in tables. When these values vary, eg seasonally, maximum and minimum values are given.

™M PNPM 1713 PNPM 1725
Annual Egns.: Moon 11749" 11/52" 11’51/
Sun 1°56720" 1°56726" same
Apogee 20 19752 19743"
Node -9/30" =9727"% -9724"
Egn. 2 3756"/3734" same same
Egqn. 3 47" 49" /45" same

Lunar Eqn. Centre 7°39730"/4°57/56" -
Eqn. of Apogee 12°15704" 12°18/ same
EccY  in 10°¢ 66782/43319 66777/43323 same

Horrox-wheel size

in 10¢ 55050 + 11732 55050 *+ 11727 same
2nd Epicycle - + 352 same
Eqn. 5 Variation 37725"/33740" 37/11%/33714" same
Egn. 6 2710" -2/25" same
Eqn. 7 2720" 1-2 omitted
Mean Motions
Aphelion in 100 yrs 21/40" 18/36"
Moon 1700 epoch 315°19/50" 315°2000" 15°21/00"
Apogee 1700 epoch 338°18’20" 338°20/00" same

Sun 1700 epoch 290°43/50" 290°43740" same
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In his letter of November 1st, 1694 (Corr. IV, p.42), Newton agreed:
'The excentricity & equation of ye Moons Orbit is sensibly greater in
winter then (sic) in summer & seems to be sometimes as great as Mr
Halley makes it, but ye law of its increase I am not yet master of,
nor can be till I have seen ye course of the Moon as well when her
apogee is in ye summer signes as in ye winter ones’

implying that several years of continuocus data would be required to
ascertain Halley’s equation. That inequality was omitted from ™M, however
it appeared in PNPM of 1713, as its chief innovation (For a discussion of
Halley’ theory here, which must remain conjectural as he published nothing
on the matter, see Correspomdence V, pp.296-8, note 3).

A new epicycle was added to the ™M mechanism, of yearly period, which,
placed on the Horrox-wheel, generated a twice—-equated eccentricity and apse
motion. Cotes drew a helpful diagram, here shown (Figure 12.1), together
with the Principia’s diagram for comparison. The centre of the lunar orbit
is now positioned at F instead of D as formerly.

This yearly expansion and contraction should not be confused with a
supposed overall expansion and contraction of the lunar orbit through the
seasons, whereby Newton was perceived as successfully having linked the
’annual equation’ to a ‘physical cause’ ie gravity. Rather, it is a
perturbation of the orbit that increases in the winter season, at

Principia figure (p.424) Cotes’ version (Corr.V p.285)

Fiqure 12.1: The New Epicycle of 1713. The first diagram is from the Principia, where ’F’ represents
the twice-equated position of the lunar orbit centre; the other is Professor Cotes’ version, showing
more clearly TF as the equated eccentricity value.
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perihelion, with greater eccentricity and oscillation of the apse, from the
Horrox-wheel’s dilation.

In the diagram, TC represent the mean eccentricity. TD the eccentricity
once equated and TE that twice equated. The apse equation now becomes FIC,
instead of DIC. The wheels have magnitudes specified by: TC=5505, CD=1172.7
and DF=35.2. These dimensions signify that the lunar eccentricity
fluctuates by +21% semiannually, while this fluctuation itself varies
seasonally by +3%. Two paragraphs, the sixth and seventh, of PNPM explain
this new epicycle, its period being given as follows:

’...and set off the angle EDF equal to the excess of the aforesaid
annual argument above the distance of the moon’s apogee from the sun’s
perigee forwards; or, which comes to the same thing, take the angle
CDF equal to the complement of the sun’s true anomaly to 360°.7

These two sets of instruction are equivalent. The first we may phrase
as:
EDF = (S-A) - (A-H+180)
=180+S+H-2A

(S-A) is the ‘annual argument’, viz. the ‘Horrox angle’, while (A-H+180)
gives the ’‘distance’ in zodiac longitude ’‘of the moon’s apogee from the
sun’s perigee.’ 180° is added, as the T™M symbols A and H are measured from
apogee and aphelion respectively. The second is given by:

CDF = [360~(S,-H)] - (1)
where S is the ‘first-equated’ solar longitude. However, we know the angle
EDC, since DCB = 2(S-3),

SO EDC = DCT = 180-2(S-3),
and EDF=[360-(S,-H)] - [180-2(S-3)]
= 2(S-A) - (S,-H) + 180 - (2)
=180+S+H-2A,
as above.

The Principia’s two accounts are identical only if we ignore the
difference between S, and S. PNPM was not primarily concerned with the
steps of equation. Its phrase ‘true anomaly’ was written as (S,-H) in
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equation 2 above. In ™M the difference between true and mean anomaly was
crucial, here it is not.

This new epicycle responded to the varying distance of the Earth from
the Sun, given in the sixth paragraph; no commentators have remarked upon
its function. It amends the equation of centre, so should use a once-
equated solar longitude.

Cotes was puzzled by this epicycle, and wrote (17 August, 1712, Corr. V

p.325):
’It is evident that in the Earth’s Aphelium DF will coincide with

DG, & in ye Earth’s Perihelium DF will coincide with DH, so revolving

about the centre D, that the angle GDF may always be equal to the Suns

mean Anomaly. Hence the angle EDF... will be equal to the excess of ye

doubled Annual Argument above the Suns mean anomaly as I observ’d in

my last. This is the only way according to which I can apprehend the

motion of the point F in ye Secondary Epicycle.’
Cotes’ phrase ’‘the excess of ye doubled annual argument above the Suns mean
anomaly’ is equivalent to equation (2) above - provided we overlook the
difference between the sines of mean and true anomaly. At perihelion in
midwinter, the Horrox-wheel is required to dilate and be larger than in
sumer, when F is furthest from C and reaches the point H as Cotes
observed: in equation (1), CDF is then 180°.

In the original text of twelve paragraphs another epicycle was added of
period nine years, to give eccentricity equated a third time and an apse
equated a fourth time. This was subsequently omitted, so we have something
to thank Cotes for.

Irv Constructing the New Epicycle
The editor of the Corresporndence commented as follows upon the new
epicycle:
’Though Newton’s description does not make this clear, the point F is
now the empty focus (later centre) of the Moon’s ellipse; it rotates
semiannually about the point D.’(Corr.V p.298 note 3)
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There are two errors here: the point F cannot be a focus of the ellipse,
because the Earth’s centre at T is such, and eccentricity was the distance
between Earth’s centre and the orbit centre; nor was the rotation period
semiannual, but was seasonal, conferring a yearly expansion and contraction
upon the Horrox-
wheel. To avoid such
Fiqure 12.2: Orbit Centres for THM-1713 confusion, a further
diagram is here
presented, in which

S, g s A  represents apogee
'§ and S, the sun’s
position, both once-
| equated, and the
T L8) 2] A, thr 1’ orbi
- C ee lunar it

centres, zero,once
and twice equated,
are shown as C, C,
and C,.

Pigure 12.3: Reconstructing the 1713 epicycle, in which
@ =CID, B = CIF, 2¢ = DCB and a = EDF

The seventh paragraph of the Scholium described how to prepare tables
that would give the angle FID, to add onto the second apse equation. We
shall not proceed in this manner, but will instead determine the horizontal
(ie parallel to TC) and vertical co-ordinates of F with respect to T,
(Figure 12.3). Putting TC equal to unity, CD becomes 0.2130 and DF 0.00639.
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If y=yty, andx =1+ x ¥

then y = CDsiné + DFsinq

where a = EDF = 180+S+H-2A (eguation (2) above) and ¢ is the Horrox angle;
and X =1 + CDcos® + DFcosa.

The eccentricity twice equated is given by
TF = 0.05505/(x> + y?)

while two steps of equation for the apse line are conjointly given by

B = arctan y/x
For the ™M program, we write this as

A, =2 -8,

replacing the § function, the angle CID, by B which is CTF; likewise the
new term for TF simply replaces that for TD. The point D in Figure 1 was
represented by F in T™M’s diagram, so the point F has acquired a different
position, though it retains the same meaning, viz the centre of the lunar
orbit.

The eccentricity function has now its own steps of eguation, as
follows:

E, = 0.055050 =TC
E, = E (1 + 0.2131sin23) = T
E, =EJ/(x, +VY,) = TF

v The Sixth Ecuation

The seventh paragraph of the Scholium contains the sixth equation, its
sign now reversed: ‘addendam si summa illa fit minor semicirculo,
subducendam si major’ (’add if their sum comes to a minor semicircle (ie,
<180°), subtract if it is more’) the converse of the 1702 instructions. The
great error of ™M was at last corrected.

On October 31st, 1713, three months after the publication of PNPM’s
Second Edition, Flamsteed complained to Sharp:
’...(Newton’s) sixth equation is not allowed by the heavens. He has
lately published his Principa anew, wherein he makes this equation
ablative where it was formerly to be added, and to be added where it
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was subductive; and has altered his seventh, so as in part to destroy

it’ (Baily p.304).
Flamsteed here erred, as the sixth equation is indeed ‘allowed by the
heavens’ once its sign is reversed, as we saw earlier. He returned to this
theme in another letter to Sharp of March 20th, 1714, averring that ’if I
reject them both (ie, the sixth and seventh equations), the numbers will
agree something better with the heavens than if I retain them’ (Baily
p.309).

Baily endorsed Flamsteed’s general view as to how modified sixth and
seventh equations appeared in PNPM of 1713 (1835, p.697), as did Whiteside
(1975,pp.323-4) and Cohen (1975, p.61-2). In 1989 however GHA stated
categorically that: ’no mention is made of them (ie, the sixth and seventh
equations) in any edition of the Principia’ (p.267). We cannot endorse the
GHA view. The sixth equation is clearly specified as having its argument
(ie, angle) formed:

’by adding the distance of the moon from the sun to the distance of
the moon’s apogee from the apogee of the sun,’ (Motte p.477)
which is the same (S-M+H-A) function about which Whiston had complained in
1703. Its amplitude has increased slightly, by 12% to 2/25", yet it remains
unequivocally the same function.

Admittedly it was not referred to as the sixth equation, but as the
’Aequatiomum centri Secundam’, and described cryptically as :’the angle
which the line DF contains with the line drawn from the point F to the
moon...’ Newton remarked, in a letter to Cotes of 12 August 1712
(Correspondence, V, p.320) that:

'The BEquation described in this Paragraph I had first from
observations of Lunar Eclipses, & afterwards found that it answered
the Theory of gravity in the manner here described. Its quantity when
greatest came to about 2/10" by eclipses. By ye theory tis 2/25".
The suggestion here (whether or not Cotes believed it) is that the 1702
amplitude was derived empirically, whereas the new amplitude was computed
from theory. Iumar eclipses would have given accurate times at which the
(L-S) component was 180°, presumably enabling the apse terms to be
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Cohen published two statements upon this matter, before and after Dr
Waff’s comments, the latter appearing in a book review of Cohen’s 1975
publication of ™M. In this 1975 opus, Cohen averred, concerning the
modification of the sixth equation:

‘But after 1713, when Newton had published the above-mentioned
correction in ed. 2 of the Principia, there was no longer any excuse
for continuing to reprint Newton’s essay without alteration, as was
done in both English editions of Gregory’s textbook (and the second
Iatin edition), and the two English editions of Whiston’s Astronomical
Lectures, even though all declare in their second editions that the
text has been ‘corrected’. Nor was the correction introduced into the
later reprintings of the Miscellanea Curiosa or of Harris’s Lexicon
Technicum; and it is not even mentioned as an annotation in Horsley’s
version in his edition of Newton’s Opera.’ (p.62)
Thus, astronomers were castigated by a historian for not having introduced
a ’correction’. We concur with the importance of reversing the sign of the
sixth equation, without which the function of ™M is greatly impaired, and
shall in the next chapter survey these eighteenth-century publications in
this context.

In 1980, Cohen merely made the cautious statement that:
’These results [ie, TMM of 1702] were then corrected and revised and
in large measure introduced into the second edition of the Principia
(1713)...7 (p.276)
with which one can hardly disagree.

VI The Seventh Eguation
The eighth paragraph of the 1713 Scholium contains a restatement of
the seventh equation, as the ‘Variationem Secundam.’ The Variation is a
sin2(I~S) function, while the seventh equation has the form sin(L-S).
The 1713 text is:
Ut radius ad sinum versum distantiae Apogaei Iumae a Perigaeo Solis
in consequentia, ita angulus quidam P ad quartum proportionalem. Et ut
radius ad sinum distantiae Iunae a Sole, ita summa hujus gquarti
proportionalis & anguli cujusdam alterius Q ad Variationem Secundam,
subducendam si Iunae lumen augetur, addendam si diminuitur’ (p.425).
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where P and Q were assigned magnitudes of 2/ and 1’ respectively*.

While PNPM’s language describing the seventh equation is obscure,

Edleston interpreted its meaning as:
-[2’{1-cos(A-H+180) }+1/ ]sin(M-S)
Three sets of brackets within brackets may strain credulity, however
Whiteside in 1975 (p.325) gave a comparable formula for the seventh
equation. Its coefficient (ie, of sin(M-S)) he found to be:
1’42’ {1-cos(A-H)}
There is a 180° shift in the cosine function between the two, equivalent to
a reversal of sign. our ™M function was, approximately:
M, =M, + [2’ + 1’cos(H-A) ]sin(5-M).

We adjust the two modern interpretations for comparison:
Edleston: [1/ + 2/{1 + cos(H-A)}]sin(S-M)
Whiteside: -[1/ + 2/{1 - cos(H-A)}]sin(S-M)
T™M 1702 [27 + 1’cos(H-A) ]sin(S-M)
From Edleston’s formula, sin(M-S) has been changed to -sin(S-M), and
-cos(A-H+180) to +cos(H-A).

Edleston’s version of the function had the same signs as TMM’s 1702
expression. We adopt his version of the ™M seventh equation in the
Principia, this being the sole instance where we accept an equation on the
authority of another. We thereby differ from Cohen’s statement concerning
the 1713 version that:

’this equation (the seventh) is, to all intents and purposes, no

longer a part of Newton’s system’ (1975, p.62).
However, the language is obscure, and as we have already noted that some
astronomers dropped the seventh equation, let us not wholly dismiss Cohen’s
* ’As the radius is to the versed sine of the distance in consequentia of
the apogee of the Moon from the perigee of the Sun, so is the angle P to a
fourth proportional. And as the radius is to the sine of the distance of
the Moon from the Sun, so is the sum of this fourth proportional and of a
certain angle Q to the second variation, to be subtracted if the light of
the Moon is waxing, and to be added if it is waning.’
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view. The paragraph containing the seventh equation disappeared from the
Third Edition.

The seven steps finally reappeared in 1713, with amplitudes slightly
adjusted, with the sixth and seventh reversed in sequence, with latitude
omitted and omitting the second nodal equation. The last two steps were
truncated from the Third Edition without explanation, in a paragraph which
contained the statement, surely rather vital, that lunar longitude and
latitude were discernible by these egquations. Three components of TMM were
thus omitted in the 1713 Scholium: the magnitude of the lunar equation of
centre, the second nodal equation, which had its own epicycle, as would
have affected the ’‘reduction,’ and any latitude procedure. An extra

epicycle was added to the Horrox-wheel, supposedly required by gravity
theory.

While absent from the Scholium, a qualitative reference to the node

equation was present in the earlier Proposition 22:

'But the nodes, on the contrary (by Cor. XI, Prop.LXVI, Book I), are

quiescent in their syzygies, and go fastest back in their

quadratures.’
That represents the ™M node equation, with syzygy meeting the nodal axis
twice-yearly. Thus the syntax of ™M suffered a dismemberment, serving to
support the theory of gravitation.

VII The Truncated 1726 Version

The Third Edition of PNPM contained no explicit affirmation that the
Scholium to Proposition 35 of Book III was of practical value. The
paragraph containing such, the eighth as we saw in the 1713 edition, was
omitted, along with T™M’s fifth and seventh equations. We refrain from
conjecture as to why that concluding paragraph was deleted. One would not
a{pectastronoxnersmousedﬂmtohavetakentheirdiréctions from the
Third Edition.

The Third Edition, the only edition to have been translated into
English, concluded its account of the ™M equations with the cryptic words:
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’And from the moon’s place in its orbit thus corrected, its longitude

may be found in the syzygies of the luminaries.’
This was followed by some considerations of refraction and mean motion. The
literal meaning of the sentence is that longitude may be found at
fortnightly intervals. The opacity of its meaning may have encouraged a
tendency amongst posterity not to see a working mechanism, viz. ™M, buried
under its gravity theory. It can however be understood by reference to the
earlier 1713 edition, as follows.

The above statement concerning syzygies meant, in the Second Edition,
that the theory thus far (ie up'to the sixth equation) was acccurate in
those positions only, whereas, once the last two ‘variation’ equations were
added, as was done in the following paragraph, it would become accurate
over the whole month. Its omission thus damaged the meaning as originally
intended.

VIIXT No Baricentre Correction
If linkage with gravity theory was the goal, an equation could have
been derived from the Earth’s monthly path around the Earth-Moon centre of
gravity. Such a displacement would affect the Sun’s longitude by something
resembling the solar parallax each month. Newton had written to Flamsteed
in November of 1694 explaining how motion around a common Earth-Moon centre
of gravity would lead to a monthly solar equation, maximm in the quarters:
’The quantity of this angle I do not yet know certainly. Tis not so
great as I thought when I was in London. If you assume it to be 16" or
20" & find that by such an assumption ye greatest errors of ye suns
place are diminished you may retain yt quantity, till it shall be
determined more exactly.’ (Corr. IV p.43)
Flamsteed missed the point of the argument, replying that:
’The parallactic equation of ye Sun is so small it will scarce be
sensible by observation a single vibration of ye pendulum is equall to
it...” (November 3rd, 1694, Corr. IV p.46)
- confounding diurnal motion with that around the zodiac: the 20" proposed
by Newton, as motion in the Sun’s longitude, takes eight minutes in time.
It was far from Newton’s view that such a magnitude could be ignored, but
for whatever reason no such solar equation appeared in any version of TMM.
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However, T™M in its concluding remarks did specify the value of the ’‘Sun’s
Horizontal Parallax’ as 10", but made no use of it. Later in the century,
D’Alembert argued that this baricentre equation would affect the Sun’s
position by 11"-13" (1754, p.xvii).

The equation is smaller, some 8" (Corr. IV p.44, note 11). Newton had
initially overestimated the lunar relative mass by two hundred percent in
PNPM of 1687 (Kollerstrom, 1991). In 1713 a baricentre computation appeared
in PNPM with the lunar mass error reduced to an excess of merely 100%
(Wilson 1980 p.60, Kollerstrom, 1985). Inclusion of such a term would have
introduced an error as large as the equation, so its omission was just as
well. D’Alembert greatly improved upon this mass ratio value.

IX aAadding the Epicycle

A century after Kepler had banished epicycles from the heavens with a
new, physical astronomy, the second edition of the Principia employed two.
We reconstruct them on the ILotus 1-2-3 spreadsheet, translating their
revolutions into simple trigonometric terms. Regrettably, no improvement in
accuracy thereby results. We use the interpretation given by Roger Cotes,
as a check that our construction is sound.

What has here been called ™M-2 had but one modification, namely the
sign-reversal of its sixth equation. Here we create two further steps of
the 1713 version: the adding of an epicycle, designated as TMM-2E; and the
insertion of the various adjusted constants given in Table 1, plus
Edleston’s version of the seventh equation*. This final step was found to
increase the accuracy of the end result by 1-2%, however this is a
negligible amount. Astronomers of the eighteenth century would have noticed
no improvement from so doing.

* Four Lotus spreadsheets were thereby used. The values they gave for lunar
longitude at t=0, ie the T™M epoch of noon GMT on December 31st 1680 0Old
Style, are: TMM 187:933, TMM-2 187.:993, TMM-2E 187:979, TMM-1713 187:979
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The working of the two combined epicycles in "IMM-2E' was checked
using the positions of the 1679 perihelion (midwinter) for wvdiich t*13.3
days and the next aphelion at t=169.2 days. These positions, for H-S=180°
and 0° respectively, give simple triangles (see below. Figure 12.3) vhereby
the equations of apse and eccentricity can be found: to four figures (ie,
as parts in 10®), the lengths of OC" are 1208 and 1138 respectively, ie
1173135 units (of eccentricity, with repect to its mean value CT of 5505).

Cotes, in his comments to Newton icon the new epicycle, wrote more
than once: 'As I apprehend it, the words additur and sabducitur should
change places' (Corr.p.285, Cotes to Newton, 3 May 1712). If even the
Author ejperienced confusion on this matter, we should not expect to avoid
this ourselves. We start with the relevant celestial longitudes, measuring
angles anticlockwise as for the TMM diagrams.

Figure 12.4; Rphelion/Perihelion Positions for the epicycle, showing greatest and least radius of
the 1713 Horrox-wheel, with the varying values for eccentricity and apse equation, at the
perihelion (1679) and aphelion (1680) positions.

Perihelion:
(S-n)=34'

Aphelion:
(S-A)=194"

S,

From simple trigonometry, at these dates of 1679 and 1680:

Horrox—anale giA Eccy. TC . (parts in 10®) Apse egn.. ATC
Perihelion: 34° 6045 10.7°
aphelion: 194° 6531 4.7°
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Tiie functions f and g in the Lotus program were readjusted, using the above
construction, to give the and values. The IMV-2E program took A-S as
the Horrox-angle by convention, vhereas we have here taken it as S-4,
making its apse equations negative. Apart fiami this sign convention, it
agreed with the above values. Thus, our function is working as Cotes

specified it should.

The graph shewn in Figure 12.5 conpares error patterns of IMM-2 and
IMV-2E, sampling daily over a four month period. It indicates that the
latter was less precise. (&s before, the program subtracts lunar longitude
as given by an accurate modem program in arcminutes from that given by our
reconstruction of a historical model ). Both versions manifest a synodic
error-pattem: adjusting the duration to give four repetitions of the
pattern as shewn, spanned 118 days of daily sampling, and dividing this
period by four gives 29.5 days.

Figure 12.5; Diminished accuracy of the 1713 version (dotted line), compared with
that of THH-2, over daily sampling January-April 1681.

DAYS AFTER UEC 311680
TMM (-6th) TMM (-6th) + EPICYCLE

Error-values were sampled every 160 days, taking this period for the
reason given earlier, that it was not near to multiples of the main periods
of M. This gave, for groups of forty:

V-2 -0'.441.9
IMV-2E -0'.3+2.2
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The new epicycle was given a reverse direction such that it still aligned
with CC, at aphelion/perihelion, which gave:

T™M-2(-E) -0’.5%2.1
We thereby conclude, that the notion of a seasonal expansion and
contraction of the Horrox-wheel, Edmond Halley’s second contribution to
™M, was erronecus. What we have called TMM-2 was the best version for
astronomers, who had nothing to gain from the greater complexities
propounded in the Principia.

The notion discussed by the three astronomers back in 1694 was an
expansion and contraction of the Horrox-wheel. One could merely put the
radius of that wheel equal to

1173-35cos(S-H) parts in 10°
to give the required maximum value in winter, and the minimm in summer
when S-H=0°. Testing as before every 160 days, still gave no improvement to
™M-2.

At his house in Jermyn Street, behind St James’ church in London, the
seventy-year old Master of the Mint re-cast his earlier ’‘theory’, so that
it would more resemble the result of forces interacting between three
bodies. Far from being a ‘much expanded version of the "Theory of the
Moon"’ as Craig Waff claimed (1977,p.71), what appeared in 1713 was a
rather abbreviated version. After toying with a nine-year periodicity based
upon apse rotation, as two documents probably belonging to this period
indicate, he finally decided against it, probably because his reliable data
did not extend over a long enough period.

He did however introduce an epicycle, deriving from discussions of
the 1690s. Having introduced four valid new equations, and linking up two
of the zodiac variables to annual equations, he conferred an annual
equation upon the Horrox-wheel itself, in a manner that simply did not
work. Thus, what we have earlier called TMM-2 was the optimal format for
Newton’s lunar theory. We now ascertain to what extent eighteenth-century
astronomers, and Edmond Halley in particular, applied these modifications.
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Ch.13
HAT.IT.EY AND THE SAROS SYNCHRONY

Once he became established as the new Astronomer Royal, Edmond Halley
commenced a systematic study of the error-patterns generated by T™M. Table
13.1 shows his manner of making the comparison, a page from his 18-year
Saros Cycle of observations plus error-estimates, published posthumously.
Greernwich mean time is specified on the left, together with lunar
longitude, plus longitude as predicted by ™M for that time, and then the
difference between these two in arcminutes*. His procedure was thus rather
comparable to that employed here.

It is normally averred that Halley’s data from his two decades spent as
Astronomer Royal was unpublished and inaccurate. It will here be argued
that this data was (a) published and (b) rather accurate. Even more
surprisingly, we shall conclude that Halley may have been justified in
claiming that his method was accurate enough to win the longitude prize,
being the most accurate method for determining longitude proposed anywhere
in Europe in the first half of the eighteenth century, though largely
ignored by posterity. The fate of his proposals lies outside the scope of

The approach here developed will indicate the benefits of a quantitative

* The first line of data here tabulated is for June 21st 1732. On the left
is GMT time for a lunar limb transit; adding the time that a lunar
semidiameter takes to cross the meridian, 1.08 minutes, gives the time for
lunar centre transit. The true lunar longitude then was 218°3/50" (ie, 8°
Scorpio, as Halley wrote it), so Halley’s observation was within 14." Our
TMM-2 program gives for this time 218°2/52", thus having an error of one
arcminute. This is somewhat more accurate than Halley supposed, however it
is in the other direction. What Halley called ‘Argument. Anmum’ is the
Horrox angle, ie (S -A,), which the program gives as 282°, within two
mimites of Halley’s value. The Sun-Moon distance, ie (M,-S,), is 118°4’.s,
which is one minute more than Halley’s value.
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Table 13.1: a page of Haileyerror estimates for longitude of lunar centre, for June-September

1732, with QM given for lunar limb transits, from his Tabulae Astronomicae.
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study of historic positional astronomy computations, permitting conclusions
not drawn from mere opinions handed down. It first estimates the accuracy
of Halley’s method in general terms, without evaluating the last colum of
his tables which shows his estimate of ™TMM’s error over the years. Halley’s
method of applying ™M will need to be examined in more detail before
attempting that. We here review his application of that cycle to which he
gave the name: Saros.

What Halley began, upon becoming Astronomer Royal, comprised the first
TMM-based computations of a systematic nature. Once he had finalised his
procedure, and the tables which it utilised, he was as we shall see not at
liberty to adjust it for the following eighteen years. The Second Edition
of the Principia made some ajustments to the TMM protocol, beyond the mere
reversal of the sixth equation, some of which Halley adopted.

The Saros cycle as was known to antiquity was given its name
unintentionally by Halley, during his historical researches. He named it in
1691, by mistake (Armitage, Edmond Halley 1966, p.126; Phil. Trans. 1691,
Vol.16, Emerndationes ac Notae p.537; Gingerich, The Saros Cycle in
Babylonia, JHA,1992, 23, p.229). When in 1682 the 26-year old Halley turned
his telescope towards the Moon from his Highbury residence, it was his
ambition to follow a complete 18-year Saros cycle, but turbulent events
took him to London instead, involving the funding of the Principia from his
wedding-dowry, which was probably just as well for posterity; however, once
established as the Astronomer Royal in 1720 at the age of 64 he recommenced
this scheme, that he had first aspired to 38 years earlier.

Halley set forth his notion of tackling the longitude problem in that
same article of 1691 (P.T., Vol 16, p.536) in which he referred to the
Saros. Years later, in 1716, he brought out a third, posthumous edition of
Thomas Streete’s Astronomia Carolina. After printing three years’ of his
sextant observations at the end of the book, he explained his view
concerning the Saros cycle (without using that word), whereby it enables
error-pattern in ™MM-based tables to be accurately predicted. His
reputation for the accurate prediction of eclipses derived, he explained,
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from this cycle. He was now applying his insight into the Saros in a more
general manner:

’...s0 that whatever Error you found in a former Period, the same is
again repeated in a second, under the like Circumstances of the same
Distance of the Moon from the Sun and Apogaeon...Being thus assured
from the Certainty of these Revolutions, that all the intermediate
Errors of our Tables were not uncertain Wanderings, but regular faults
of the Theories; I next thought how I might best be inform’d of the
Quantity and Places of these Defects... Nor was there any other way,
but from the Heavens themselves, to derive this Correction; by a
sedulous and continued series of Observations, to be collated with the
Calculus, and the Errors noted in an Abacus: from whence, at all times
under the like situation of the Sun and Moon, I might take out the
Correction to be allow’d.’

T The President’‘s Proposal

That was the method. We next hear about it within the pages of the
Journal Book of the Royal Society, in May, 1720. Halley had become the new
Astronomer Royal, having taken residence in the Observatory two months
earlier, and was explaining to the Royal Society the new terms of his
employment, for the improvement of the art of finding longitude. Having
sailed a ship across the South Atlantic as well as holding the Savilian
Geometry chair at Oxford, he was indeed competent to hold an opinion on the
matter. His advice as recorded made no allusion to the Saros concept! His
concern was merely for the accurate positioning of zodiacal stars, whereby
lunar ‘appulses’ thereto could be used to find longitude.

It was not Halley’s view that lunar right ascension and declination
could be accurately measured on board a tossing ship: his proposal was that
a telescope of up to five feet in length could be used to give accurate
measurement of such stellar transits, on a ship. His predecessor had left
many gaps in the band of zodiac stars that were necessary for such, he
complained, and he proposed to f£ill these in. Newton’s lunar theory (ie,
™M) should be used together with such tables of stellar positions for
finding the longitude. He added the fairly evident comment that lunar
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quarters were optimal for observations because Full Moons were too bright
for the timing of stellar appulses. That was all he said.

Sir Isaac Newton, occupying the presidential chair, was moved to comment
- and proposed Halley’s Saros method! This is a rather curious role
reversal. Had we not got Halley’s 1716 proposal of his method, it would
appear from this altercation as if the whole idea came from the President:
’Upon mention made in the above Discussion that it was proposed to use
the President’s Theory of the Moon’s motion for putting the method for
the finding of longitude into practice, the President was pleased to
observe that he founded his Theory chiefly upon observations of the
Moon’s place in the conjunctions and oppositions to the Sun, but it
would be necessary for the further correction of the Theory, to collect
first of all the errors of it in the quadrants, and afterwards what
errors there are in the Octants, for which end he proposed it an useful
work to frame an Ephemeris of the Moon’s motion from the Theory for
eighteen years in which period the errors return & this would be a ready
means to Examine how much the Theory may Err from the Observations, made
at any other time.’
(Journal Book of the Royal Society, XII, 1720-26, pp.11-12)

Halley did this. He commenced the vast labour of creating an almost
daily ephemeris of lunar positions. After following half of a Saros cycle
or one revolution of the lunar apse over nine years, he reported on his
conclusions. In the year 1732 when aged 76 he submitted to the Royal
Society’s journal ‘A Proposal of a Method for finding Longitude at Sea
within a degree, or twenty leagues’ (P.T. 1731/2, 37, pp.185-195). He
concluded that his study of the Saros pattern enabled him to improve upon
™M, because its errors recurred over the Saros period. He did not suggest
that this approach had derived from the Society’s President in 1720.

The second Astronomer Royal completed a whole Saros cycle of
cbservations in the year 1739. His posthumously published Tabulae contained
a section ’Precepts for using the Tables’ which gave instructions for using
his complete Saros of error-computations, by which means, he explained,
errors may ‘in great measure’ be corrected. One merely had to find a
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comparable position in his 18 years, 11 days of observations (or 223
synodic months) as published before or after the date required. Preferably
the exact day should be used, however one could manage with estimating the
day before or after.

Halley then went on to claim that alternatively, 111 lunations could be
used, as the period of one apse revolution, roughly half the Saros period,
though he admitted this was not so exact. I believe that this method does
not in fact work, because no such synchrony then occurs as for the Saros,
which may well have undermined the credibility of his high-precision Saros
proposal.

No—one could investigate Halley’s proposal during his lifetime, since
he never published his data! Applying his method depended on having almost
daily readings such as he was amassing, but no-one else had them. He turned
out to have a rather similar attitude towards the publishing of his data as
his predecessor, though for a different motive. When a stern rebuke was
delivered for the neglect of his public duty by Newton from the
Presidential chair, at a meeting of March 2nd, 1727, warning Halley that it
might be ‘of ill consequence to continue in the neglect of it’, ie the
presenting of his observations (Baily, 1835, p.188), Halley explained by
way of reply:

’he had hitherto kept his observations in his own custody, that he
might have time to finish the theory he designs to build upon them,
before others might take the advantage of reaping the benefit of his
labours.’

Having an eye on the longitude prize, he explained, he wished to keep his
data until he had perfected the method. His persistence in this attitude
for the rest of his life surely goes far towards accounting for the
ignoring of his 1731 proposal by posterity as seems to have happened. His
observations were not published until 1749, by which time ™M had ceased to
exercise a formative effect upon astronomers.

The challenge of finding longitude at sea within a degree implied a
two-mimute prediction of lunar longitude (Ch.1, III). Halley had by 1731
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taken fifteen hundred lunar cbservations over a nine-year period, which is

one every two days:
’And that these might be duly applied to rectify the Defects of our
Computations, I have myself compared with the aforementioned Tables,
made according to Sir Isaac’s Principles, not only my own
Observations, but also above eight hundred of Mr Flamsteed’s....

’Comparing likewise many of the most accurate of Mr Flamsteed,

made eighteen or thirty-six Years before (that is one or two Periods
before mine) with those of mine which tallied with them, I had the
satisfaction to find that what I had proposed in 1710 was fully
verified; and that the Errors of the Calculus in 1690 and 1708, for
example, differed insensibly from what I found in the like Situation
of the Sun and apogee, in the Year 1726. The great Agreement of the
Theory with the Heavens compensating for the Differences that might
otherwise arise from the Incommensurability and Excentricity of the
Motions of the Sun, moon and Apogee.’

Halley nowhere here names the Saros, as neither indeed did Sir Isaac Newton
in his 1720 comments, only referring to it as the ’‘Period,’ and ™M is
referred to familiarly as ’the Theory.’

In 1735 Charles Leadbetter published the two volumes of his Compleat
System of Astronomy, then in 1742 his Uranoscopia. Halley is mentioned
respectfully as the Astronomer Royal, and the virtues of TMM are extolled,
and the question as to whether anyone has as yet rightly applied it for the
preparing of tables is aired, without any mention of Halley’s method, and
its glossary of terms gave under ‘Saros’ merely a method of predicting
eclipses.

IT The Accuracy of Halley ‘s Method

We shall now evaluate the degree of validity of Halley’s claim, using
the ™M program. The Saros is a period of 223 lunations, or 18 years and
ten or eleven days, depending on how many leap-years are involved, plus an
extra one-third of a day. It expresses three fundamental synchronies, by



-200-

what can only be described as a remarkable coincidence, causing the
patterns of lunar motion to recur over this cycle:

synodic 223 x 29.5306 = 6585.32 days
nodal 242 x 27.2122 = 6585.35 days
anomalistic 239 x 27.5545 = 6585.52 days.

The sidereal cycle also coincides moderately well, within ten degrees or so
(though that is here without relevance), the annual cycle does also as it
is a mere ten days into the new year, and the apse cycle of just under nine
years also coincides fairly well. Halley regarded the latter as quite
important, though it has only a very minor function in TMM.

A new Moon fell on December 31, 1689, Old Style. We may conveniently
start at twelve noon on that date. One Saros cycle takes us to January 11,
1708, 20 hours, and another to January 22nd, 1726, 4a.m.* Precision in the
timeofdayisnothérerequired, since ™M has no diurnal component to it,
however it is required in the tie-up between the Julian days on which TMM-
PC runs, and the Julian date used for the longitude program. The dates were
checked against the program in the usual manner, using solar longitude to
ascertain them correctly.

We thereby model Halley’s own investigation, since the above—quoted text
cited the years 1690, 1708 and 1726. 1690 was the date when Flamsteed, with
the help of Abraham Sharpe, erected the Greenwich mural arc, recently
described by Allan Chapman as being for its time, ’the finest and most
exact astronomical instrument constructed to-date’ (Chapman, 1990, p.57),
presumably why Halley chose to start from this date.

Three sets each containing a hundred TMM error-values were generated,
sampling at two-day intervals, giving just over six lunar months, separated
by 18-year intervals. Modern values of longitude were subtracted from TMM-
PC2 longitudes at each of those 100 times, generating three columns of

* The t-values for TMM-PC come out to 3287.000, 9872.333 and 16457.666 for
these three dates of Saros-period intervals.
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errors in arcaninutes. These had average values of:

-0.6 1.7, -1.3 1.6, -2.0 + 1.6 arcaninutes.
These standard deviations are conparable to those given for TMV-2 in the
previous chapter, vhile the mean values follow the increasing error in

TMM's mean motion over the decades (Figure 13.1).

The graph shews these three plotted, greatly suj”rting Hailey's
approach. It shews hew, over a half-year period, the errors recur exactly
according to their position in the Saros cycle. The synchrony of the Saros
does indeed provide a key to predicting perturbations, but was it good
enou” for the longitude prize? To answer that, we next subtract the three
error columns one from the other. This was after all Hailey's method. This
gives three sets of error-differences, vhich came to:

Sarosl - Saros2 Sarosl - Saros3 Saros2 - Saros3
O'.7 £ 0.32 1'.4 £ 0.64 0'.8 £ 0.32.

TMM AND THESAROS

errors in TM M -2 over 18year,ll-day intervals

80 100 120
sampling at 2-day intervals

SAROS 1_~ SAROS 2___ SAROS 3

Figure 13.1: Hailey's Saros Synchrony depicting three sets of TMM error-patterns, over half-year

periods, in identical phases of successive Saros cycles, for the years 1690, 1708 and 1726.

The first of these figures shews a drift of 0.7 arcminutes in mean motion

per ei”teen years. ")art fram this, our use of Hailey's method, using one
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error to estimate another one Saros later, has given a standard deviation
of less than one arcminute.

This was by far the most accurate technique of lunar prediction proposed
anywhere in Furope in the first half of the eighteenth century. It was a
subtle new approach, depending upon periodic return of error-patterns.
Whether it was sufficient to claim the longitude prize would depend upon
the errors in two sets of observations: one in the present time, and
another one Saros earlier. Regrettably, Halley undermined his own case by
belittling his predecessor. ‘A good part’ of the merely two minutes of arc
error which Halley viewed as TMM’s error may have been he felt ‘the Fault
of the Observer.’ This occurs in the same 1731 report from which we have
just quoted. If Flamsteed’s cbservations were so bad, how could readers
trust his argument over Saros, which entirely depended on his predecessor’s
observations? Unpublished studies by Yallop and the present writer,
indicate that Flamsteed’s lunar-limb transit observations were within
twenty arcseconds or so.

Part of the error in Halley’s method comes from the drift of mean
motions, losing about 41" per twenty years, or 0.00009 arcminutes per day*.
Subtracting this amount out from Halley’s error patterns gives the
’corrected’ graph, showing the marvellous synchrony of the Saros, within a
fraction of an arcmimute in its deviation from the ™M mechanism (Figure
13.2)! Subtracting these drift-corrected error colums from each other gave

0+0’.46, 02 0’.39 and O + 07.86
or 29,23 and 51 arcseconds as standard deviations of their differences.

How accurate were his observations? Halley’s lunar meridian transit
observations, published in 1749, began in January 1722 and ended in
December 1739. He cited G.M.T. values on the left, together with right
ascension values for limb transits, over the first five years of

* The mean motion error was found to be 41 arcseconds per twenty Julian
years, egquivalent to a 0.000082 arcminutes per day error (Chapter 5);
however, adding that amount still left in a small systematic error over the
three Saros cycles we are here investigating.
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TMM AND THESAROS

using corrected mean motion

o

80 100 120 140 160 180
sampling at 2-day intervals

saros 1 * saros 2 A saros 3

Figure 13.2: Hailey's Saros Synchrony, as before but after subtracting out

the error in mean motion over the three successive Saros cycles.

observation. Hailey then corpjted right ascension values from IMM's
latitude and longitude values for the given times, then took the

difference, ie the error-value in right ascension.

From December 1725 he changed to a method more convenient for
evaluation, giving positions of lunar centre in longitude instead of R.A.
His predecessor Flamsteed's observations were all recorded merely as clock
or apparent time and not as observed G.M.T., and were for limb transits as
cteerved. Hailey omitted declination values, v"iich are not easy to take
simultaneously with R.A. for a lunar transit. A cepy of his notebook exists
at the Royal Astronomical Society's library. His data post-1725 is in the
form most convenient for comparison with IMVY, v”cii was the aim of the

exercise.

The longitude accuracy of twenty of Hailey's conputed longitude
positions for the year 1732 I found to be 14”7 + 20". Considering that
conversions from apparent to mean time and from limb to lunar centre had
been applied, these are plainly the most exact observations recorded up
till then within Britain. One is perplexed by the customary comments about
inaccuracy and carelessness that historians bestow upon this series of over

twD thousand lunar transits, with times acxurately given in G.M.T. for the
first time ever.
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As regards the accuracy of his published RA values, Bernard Yallop of
the R.G.0. kindly analysed the first 35 which Halley published for January
1722, and found their errors to average -10"+ 33". They were commonly cited
to the nearest arcminute, which may account for their being less accurate
than his longitude readings, which began five years later.

Let us summarise Halley’s proposed method. It involved two sets of ™M
computations, and could be used on a day which had a reliable lunar
longitude observation of one Saros earlier (or later). The deviation of the
old measurement from the ™M-computed longitude at that earlier time,
conveniently tabulated by Halley, was added on to the TMM-computed position
for the new position. The method had three sources of error: that in mean
motion drift over eighteen years, that in the observations, and that
between successive Saros periods in relation to T™M. Inherently, the method
is accurate to about half of an arcminute, in terms of the third of these
errors. This is probably more accurate than Halley himself suspected. For
persons taking the view that Halley’s data was more reliable than his
predecessor’s, 1740 would have been the first year on which his method
could be tried, since Halley’s observations started in 1722.

In principle, Halley’s method could be used with any lunar theory. If,
for example, one removed the four auxiliary equations from ™M, then one
would merely obtain a larger error-pattern repeating through the Saros
cycle, to be subtracted. It was Halley’s opinion, however, that ™M was the
best theory to use for applying his Saros—-error correction procedure.

ITTI The Misunderstanding of Halley’s
Method

We have argued that science historians have hardly ever recognised the
existence of TMM as a working mechanism. The problem becomes acute when we
seek evaluations of what Halley was doing as Astronomer Royal, as the
above-mentioned project then formed his principal occupation. We now quote
Francis Baily, who was President of the Royal Astronomical Society in the
year 1835, the year in which his Account of Flamsteed was published, which
did so much to rescue the latter’s reputation. The sarcasm of tone is
urmistakeable:
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’In the year 1731, Dr Halley recalled the attention of the public to
an opinion which he had promilgated, about twenty years previocusly,
relative to a proposal for finding the longitude at sea, by means of
the motions of the moon: and in a paper inserted in the Philosophical
Transactions of that year, took occasion to advert to the mumber of
cbservations of the moon that he had made at the Royal Observatory:
which amounted, according to his statement (the accuracy of which I
have no reason to suspect), to nearly fifteen hundred. The major part
of these observations, however, were made with the transit instrument
only: so that declinations remained still to be satisfactorily
adjusted. But, it may be amusing to us to know, and may also in some
measure lead us to judge of the state of practical astronomy at that
day to be informed, that he considered it a subject of boast and
congratulation that, by means of those cbservations the lunar tables
were then rendered so exact that he was "able to compute the true
place of the moon with certainty, within the compass of two minutes of
her motion, during the present year 1731; and so for the future:" and
therefore that this exactness was a motive for suggesting it as a
means for determining the longitude. The idea, however, was an
excellent one: and the method of lunar distances, then in embryo, is
now become one of the most important and valuable means of determining
the longitude at sea’. (F.Baily, Account of the Astronomical
Observations of Dr Halley, 1835, p.189.)

I suggest that Baily had not apprehended the method that Halley was then
proposing. Halley was not claiming that any lunar tables had attained such
exactitude, but rather that a method of predicting the errors of those
tables could reach such, based on the 18-year Saros cycle of which Baily
made no mention.

To suggest that the Astronomer Royal was merely taking right ascension
readings, while the ‘major part’ of his declination measurements remained
useless because his telescope was not adjusted, implies some degree of
incompetence. We merely note that, to compute longitudes as Halley
published after 1726 requires both RA and declination readings.
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To quote from a popular account, ‘Perhaps because of his age, or
because of the equipment used, Halley did not take the great care needed in
making the proper adjustments to his equipment.’ (B.Heckart, Edmond Halley
1984 p.78). In the Armitage biography, Baily’s comments are alluded to:

’Baily concluded that no useful purpose could be served by publishing

Halley’s cbservations... Thus the great bulk of Halley’s Greerwich
cbservations remain unpublished.’ (Armitage, 1960, p.205)

What Francis Baily said in 1834, in his Presidential Address to the RAS,
was that /The astronomical observations, which he [Halley] made in that
situation, have never yet been published.’ (Baily, 1835, p.169) In this he
erred: rather, none were unpublished. How did such an idea develop,
concerning the over two thousand meridian transit observations of Halley
published in 1749, an unprecedented number of unprecedented accuracy?

To substantiate our claim, which may strain credulity, we specify the
following. If the clock times as recorded in Halley’s notebook, of which a
copy exists at the R.A.S. library, are adjusted by applying the Equation of
Time (see Howse, Greerwich Time 1980 p.38), they will equal the mean times
as given in Halley’s Tabulae Astronomicae of 1749. The ’Distance a vertice’
readings in his notebook (fromabmrt1725 omwards) are two or three degrees
from the correct declination readings, implying an instrument correction,
possibly specified somewhere in his notes (Zenith distance = 90° -
declination). How Baily could have made so awesome an error of judgement,
and why successive science historians should have followed him, is not our
concern.

The source from which one would expect an authoritative account is Eric
Forbes in the Greemwich tercentenary volume (1975). Forbes struck a note of
scepticism over Halley’s method, proposed in 1731:

’This proposal is a repetition of that published in the appendix to the
second and third editions of Streete’s Astronomia Carolina. He [Halley]
claims optimistically that the differences between the predictions of
the revised lunar theory published in the second edition of Newton’s
Principia (1713) and Flamsteed’s lunar observations seldom exceeded

1—2'00"
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(The proposal appeared only in the third edition of Streete’s opus) The
phrase, ’‘the revised lunar theory’ as published in PNPM of 1713 customarily
refers to the inferring of lunar motions from gravity theory. That is the
sense in which science historians understand it. The previous chapter
evaluated to what extent PNPM gave certain modifications to ™M, by way of
adjusting its parameters, and to what extent it repeated the chain of
equations.

Forbes’ account gave no hint that eighteen years of observations had
been published as the basis for Halley’s accurate method of finding
longitude:

’Seven years after Halley’s death, his Tabulae Astromomicae was
published in Iondon by John Bevis. These tables, with precepts in both
English and Latin, had been submitted to the press by their author as
early as 1717 and printed off two years later -before he became
Astronomer Royal. In fact, it had been as a result of this appointment
that Halley decided to defer their publication so that the lunar tables
could be compared with the results of his intended corrections.’

(1975, p.89)

Forbes’ account implied that Halley’s tables (as required for computing
Halley’s version of TMM) were printed in 1719, then held back for three
decades to allow for their improvement using his new data acquired as
Astronomer Royal. The rather important issues here raised will be treated
in due course, when we come to the transmission of ™M-based lunar theories
to France; beginning with Halley handing over certain documents to Delisle
on a visit the latter made to ILondon in 1724. Had it been Halley’s aim to
corr