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Abstract

The Rapid Characterisation of Natural Products and Herbal Medicines by 

Near-Infrared Spectroscopy

Although the use o f herbal medicines has increased in popularity, there is very 

little quality control carried out on them. Thus, in the industry, potentially lethal 

problems such as misidentification and adulteration can occur. Traditional 

methods of analysis, including chromatography and microscopy, can be 

destructive and time-consuming. Near-infrared spectroscopy (NIRS), however, 

would be advantageous in that it is rapid, easy, and requires little or no sample 

preparation.

The potential for NIRS to analyse natural products was explored. Results showed 

that the technique could be used to successfully identify different samples within a 

family (e.g. Umbelliferae) as well as within a genus (e.g. Digitalis). It was also 

possible to identify various parts of the same plant, as well as detect adulteration 

of a sample with a different plant part. NIRS could also be used to successfully 

discriminate between samples of the same species of different geographical 

origins, such as Cannabis sativa. The use of NIRS in the food industry was also 

briefly examined, and it was found that it could be used to discriminate between 

various tea blends.

NIRS was also effective in measuring the moisture content of samples. This is 

advantageous over other techniques in that being rapid and non-destructive, it 

could easily be used on-line in the production process.

Various statistical and chemometric methods were investigated to allow for 

optimum power of identification and sample discrimination. The Maximum 

Distance in Wavelength Space method was the most successful one, although 

others, such as Correlation in Wavelength Space and correlation coefficients also 

had limited success. Manual techniques, such as the two-wavelength method and 

the Polar Qualification method were also investigated.

Overall, it could be said that NIRS could be a powerful tool for the analysis of 

natural products, with its speed and non-destructiveness being a major advantage.
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1,1, Background

The use of herbal medicines is becoming increasingly popular in recent times. 

However, there are as yet very few quality control procedures carried out on them. 

Thus, in industry, potentially lethal problems such as misidentification and 

adulteration can occur. Also, traditional methods of analysis, including 

chromatography and microscopy, can be destructive and time-consuming. Near- 

inffared spectroscopy (NIRS), on the other hand, would be advantageous in that it 

is rapid, easy, and requires little or no sample preparation. The use o f NIRS for the 

analysis of natural products has so far been little documented or attempted. This 

may be partly due to the fact that vegetable materials can vary unpredictably in 

response to a number of factors, including temperature, rainfall and age, making 

the setting up of references difficult. Some early studies included the 

discrimination of ginseng and grape seeds (Corti et al 1990), the assignation of 

herbal medicines such as Cassia, Ganoderma, Smilacis Rhizoma and Astragali 

Radix according to geographical origins (Woo et al 1998, Woo et al 1999) and the 

determination of the essential oil content of certain herbal materials (Fehrmann et 

al 1996).

Light absorption in the NIR is primarily due to overtones and combinations of 

fundamental vibration bands occurring in the mid-infrared region (Blanco et al 

1998). As a result, peaks appear neither well defined nor shaip, and absorbances in 

the NIR region are much smaller than those in the mid-infrared by as much as a 

factor of 1000 (Khan et al 1997). As a result, unlike mid-infrared spectroscopy, it 

is virtually impossible to characterise samples by mere visual inspection o f spectra
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(Blanco et al 1998). As a result, complex, computer based statistical analysis 

(chemometrics) is necessary in order to analyse the resulting spectra. With the 

development of modem NIR instmmentation and sophisticated software packages, 

however, NIRS has been more important in later years. The low absorptivities of 

absorption bands in the NIR are compatible with moderately concentrated samples 

and longer path lengths compared to the mid-infrared region (US Pharmacopeoia 

1998). These longer path lengths enable spectra to be measured even through 

intact materials, and thus NIRS is advantageous in that it is rapid, non-destructive, 

and requires little or no sample preparation (Blanco et al 1998). Thus, most 

samples, including herbal materials, can theoretically be analysed as they are. In 

addition, NIRS can provide simultaneous information about the chemical 

composition of materials as well as their physical state including moisture and 

particle size (Moffat et al 1997).

This thesis explores the potential of NIRS for the identification and 

characterisation of plant materials, mainly of pharmaceutical interest. The main 

identification methods investigated were Maximum Distance in Wavelength 

Space, Correlation in Wavelength Space, a two-wavelength analysis, and the Polar 

Qualification System. These were used due to their wide use and also to their 

mathematical simplicity. It is hoped that any techniques established could be 

applied to the analysis of herbal medicines.

1.1.1 Theory of NIRS

The NIR region lies between the visible and mid-infrared regions o f the 

electromagnetic spectrum and is defined by the American Society for Testing and
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Materials (ASTM) as the spectral region spanning the wavelength range 780- 

2526nm (Blanco et al 1998). William Herschel recorded the first NIR spectrum in 

1800 when he continued his measurements of the heat energy of solar emission 

beyond the red portion of the visible spectrum. In recognition of this discovery, it 

has been proposed that the NIR region between 780 and llOOnm should be named 

the Herschel infrared (Davies 1990, Osborne et al 1993a).

At the basic level, spectroscopy is a technique based on the vibrations of the atoms 

of a molecule. A spectrum is obtained by passing radiation through a sample and 

determining what fraction of the incident radiation is absorbed at a particular 

energy. The energy at which any peak in an absorption spectrum appears 

corresponds with the frequency of a vibration of a part of a sample molecule 

(Stuart et al 1996).

Electromagnetic radiation can be thought of as a stream of particles or quanta for 

which the energy, E, is given by the Bohr equation, below:

E = hv
( 1.1)

where h is Planck’s constant (6.626 x ICf̂  ̂ Js'*) and v is the frequency o f the 

absorbed radiation.

Processes of electronic change can be shown in terms of quantised discrete energy 

levels Eo, El, E% etc (Figure 1.1)
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Fig. 1.1. Energy levels

In a large assembly of molecules, all atoms or molecules will be distributed among 

these various energy levels. Whenever a molecule interacts with radiation, a 

quantum of energy (photon) is either absorbed or emitted. In each case, the energy 

of the radiation quantum equals the energy gap, i.e. Ei -  Eq, E2- Ei, etc. That is.

A E  =  hv =  E l -  Eo
( 1.2)

Therefore, the frequency of emission or absorption of radiation for a transition 

between the energy levels Ei and Eo can be given by the following:

V =
E l — Eo

h
(1.3)

Associated with the uptake o f energy (absorption) is a deactivation mechanism in 

which the atom or molecule returns to its original state. Associated with loss of
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energy is some prior exitation mechanism. These mechanisms are shown by the 

dotted lines in Figure 1.1 (Stuart et al 1996).

For the absorption of radiation to occur the lower energy level must be populated, 

with the greater population leading to a more intense absorption. The absorption of 

NIR radiation is associated with changes in the vibrational and rotational energy of 

molecules. Thus in order for the molecule to interact with the radiation, there must 

be a change in the electric dipole moment when the atoms are displaced. 

Vibrations in which there is no dipole moment change will be NIR inactive 

(Banwell, 1996).

1.1.2 Vibrations o f Molecules

A molecule can be thought of as a system of masses joined by bonds with spring­

like properties. Diatomic molecules have three degrees o f translational freedom 

and two degrees of rotational freedom. In addition, atoms can move relative to 

each other. That is, bond lengths can vary or one atom can move out of its present 

plane. These stretching and bending movements are collectively knovm as 

vibrations. There is only one vibration possible for a diatomic molecule, which 

corresponds to the stretching and compression of the bond. This means that there 

is one degree o f vibrational freedom. In polyatomic molecules containing N  atoms, 

several degrees o f vibrational freedom exist as bonds may stretch and angles may 

bend. These are 37V-5 for any linear molecule and 3V-6 for any non-linear 

molecule (Stuart et al 1996).
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The stiffness of the bond and the masses of the atoms at each end of the bond are 

also used to explain the frequency of vibrational modes. The bond stiffness can be 

characterised by a proportionality constant called the force constant, k. k  is 

derived from Hooke’s law that assumes that for the vibration of a diatomic 

molecule, the potential energy curve may be approximated to a parabola. The 

reduced mass, p, provides a useful way of simplifying calculations by combining 

the individual atomic masses, and may be represented as follows:

1 1 1
p m\ mi

(1.3)

The equation relating force constant, reduced mass and the frequency of 

absorption is as follows:

271 V

(1.4)

This can be modified so that direct use of the wavenumber values for bond 

vibrational frequencies can be made:

v= J l  i  
2nc y p

where c is the speed of light in a vacuum (2.997925 x 10  ̂ms'^). 

The vibrational energies are given by the following:

= ( v  +

(1 .5 )

(1.6)
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The vibrational quantum number, v, can take the values 1,2,3 This represents

a series o f evenly spaced energy levels in the molecule, with the selection rule 

being Av = ± 1. Thus, the absorption transition for Ei<_o, for example, would be:

£ , ^ 0  = (* + “ K ^
(1.7)

and so on (Banwell 1996).

It is only possible for a molecule to absorb radiation when the incoming infrared 

radiation is of the same frequency as one of the fundamental modes of vibration of 

the molecule. This means that the vibrational motion of a small part of the 

molecule is increased while the rest is left unaffected The complexity of an 

infrared spectrum arises from the coupling of vibrations over a large part, or over, 

the whole molecule. Bands associated with these vibrations are likely to conform 

to a pattern or fingerprint of the molecule as a whole, rather than a specific group 

within the molecule (Stuart et al 1996).

In practice, the vibrations of polyatomic molecules tend to be non-harmonic. That 

is, vibrations about the equilibrium position are not symmetric, with the potential 

energy curve for actual bonds being only roughly parabolic (Blanco et al 1998). 

This is because although real bonds are elastic, repulsion between atoms causes 

the potential energy to rise more rapidly than predicted by the harmonic 

approximation, resulting in bond breakage (Osborne et al 1993a). To rectify this, 

one can include additional terms of higher order than those used in Hooke’s law. 

Therefore, the energy for each level can be given by:
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E , =  f . ( v -[■{)-f ,x,(v + \ )  + h

( 1.8)

Here, v is the vibrational quantum number, Xg is the anharmonicity constant (i.e. 

the deviation o f the potential function from the parabola), is the uniform spacing 

between levels corresponding to a parabola with its centre at the equilibrium 

distance and the same curvature as the real potential energy function, and /z is a 

higher order term (Blanco et al 1998).

One consequence of this is that the selection rule becomes Av = ±1, ± 2 ,....etc. As a 

result, transitions such as V2<_o and V3^o are now possible, and in addition to the 

fundamental band (+1), other, higher frequencies known as overtones appear as 

multiples of the fundamental frequency. For many molecules, the energies o f these 

overtones lie in the NIR region (Khan et al 1997). The energy required for the first 

overtone is twice the fundamental, assuming that energy levels are equally spaced. 

Since the energy is proportional to the frequency absorbed and this is proportional 

to the wavenumber, the first overtone will appear in the spectrum at twice the 

wavenumber of the fundamental (Stuart 1996). As the first overtone is 

approximately 1/10^ and the second overtone 1/100^ the intensity of the 

fundamental absorption, NIR spectra can be recorded directly on undiluted 

samples.

Polyatomic molecules may display simultaneous changes in the energies o f two or 

more vibrational modes, leading to combination and subtraction bands. 

Combination bands arise when two fundamental bands absorbing at vi +V2 absorb
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energy simultaneously. The resulting weak band will appear at (vi +V2) 

wavenumbers (Stuart et al 1996). Combination bands are of very low probability 

unless they arise from no more than two vibrations involving bonds that are either 

connected through a common atom or multiple bonds. Subtraction bands, which 

are caused by absorption by molecules residing in excited vibrational states, are of 

very low probability at room temperature (Osborne et al 1993a).

1.2 NIR diffuse reflectance spectroscopy

Random reflections, refractions, and scatter at various interfaces inside the sample 

diffuse NIR light that penetrates a powder’s surface before it emerges back 

through the surface (Osborne 1993a). This is known as diffuse reflectance (Figure 

1.2). The low molar absorptivity of solids in the NIR region significantly restricts 

sensitivity. However, it allows operation in diffuse reflectance mode and therefore 

the recording of spectra for solid samples (Blanco et al 1998).

Figure 1.2 Diffuse reflectance
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Reflectance spectroscopy measures the light reflected by the sample surface, 

which contains a specular component (Figure 1.3) and a diffuse component. Little 

information about composition is contained in specular reflectance, and thus its 

contribution to measurements is minimised by adjusting the detector’s position 

relative to the sample (Blanco et al 1998). Specular reflectance is a mirror 

reflection, and is described by the Fresnel equation (Kortum, 1969):

D _  ^rejl _  («-1)^ +n^k^
^spec -  j “  , 1 1 1Iq {n + \ ) + n k '

(1.90

where 7o is the intensity o f the incident radiation, Ireji is the intensity o f the 

reflected radiation, k is the absorption coefficient and n is the refractive index.

Smooth sxuface

Matt surface

Figure 1.3 Specular reflectance

If the surface of a sample is matt, the boundary between the sample and the 

surrounding medium may be said to comprise of a series of small interfaces
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orientated at all possible angles to the normal. Thus, although reflection at each 

interface follows the Fresnel equation, the effect is to diffuse the specular 

component of reflectance. For most materials excluding metals, about 4 percent of 

the incident radiation undergoes specular reflectance. As a result, there is a level of 

superimposition on diffuse reflectance arising from internal effects (Osborne et al 

1993a). The interference caused by specular reflection can be eliminated partly by 

using powders with small particle size and by diluting the absorbing species with 

suitable diluents (Kortum 1969).

However, diffuse reflectance and tranmission are the basis of measurements by 

NIRS. There are no rigorous rules for diffuse reflectance, but a number of theories 

have been proposed. The most popular one is the Kubelka-Munk theory, which 

proposes that the power of reflected radiation could be described by two constants 

s and k, or the scattering and absorption constants, respectively. A layer o f infinite 

thickness which is completely opaque may be described thus (Osborne et al 

1993a):

2Roo s
( 1.10)

where Rao is the reflectance of the infinitely thick layer. In practice, relative 

reflectance (R), or the ratio of the intensity of the light reflected by the material to 

that by a standard, is preferred to absolute reflectance. Typically, a standard is a 

stable material with a high and constant absolute reflectance. These include 

Teflon, barium sulphate, magnesium oxide, and high-purity alumina ceramics. In 

these standards, k is assumed to be zero and absolute reflectance to be one. That is.

33



the perfect standard is a material that absorbs no light at any wavelength and 

reflects light at an identical angle with the angle of incidence. As no single 

material meets these requirements, the standards used in this context are stable, 

homogeneous, non-transparent, non-fluorescent substances of high, fairly constant 

relative reflectance (Blanco et al 1998).

The Kubelka-Munk equation can be rewritten in terms of the relative reflectance 

and the absorbing analyte concentration (c):

(1 -  R f  8cln,Q _ c_
2R s s a

( 1.11)

where s  is the molar absorptivity and a = 5/2.303e. As with Beer’s law, the 

Kubelka-Munk theory is only applicable to weak absorption bands, or when the 

product of absorptivity times concentration is small, as is so in the NIR region. 

However, deviations from the above equation result (Blanco et al 1998). If the 

absorption of the matrix is high, the effective depth of penetration is too small for 

the beam to be able to interrogate enough particles for the Kubelka-Munk 

assumptions to be valid. This is often the case in many cereal products, which are 

highly absorbing materials (Ollinger and Griffiths 1993).

A practical approach for this is to use NIR data either as raw data (relative 

reflectance, R\ relative transmission T) or as apparent absorbance, A (Osborne et al 

1993):

( 1.12)

^ = 10glO- = «'C
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where c equals concentration and a ' is a proportionality constant. With 

transmission measurements, transformation to A is given by:

^ = log,oy = a'c

(1.13)

While this transformation has no theoretical basis on the Kubelka-Munk equation, 

it provides very adequate results when used under the particular conditions used in 

many diffuse reflectance spectroscopic applications (Blanco et al 1998).

1,3 NIR instrumentation

The basic instrument configurations for transmittance and reflectance 

measurements are shown in Figure 1.4.
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Figure 1.4 Basic dispersive instrument configurations for (a) transmittance and (b) 

reflectance NIR measurements

All NIR instruments are performed by passing light radiation through a sample and 

measuring the emerging (either transmitted or reflected) light intensity. There are 

numerous spectrometers that are based in different operating principles. Instrument 

design has been greatly influenced by modem technology, such as 

microprocessors, lasers, solid state modulators and optical fibres have had a 

massive impact on instrument design. Long-established techniques, such as 

Michelson interferometry have been utilised practically, while new dispersing
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elements, such as acousto-optically tuneable filters (AOTFs) are being 

increasingly used as alternatives to diffraction gratings and interference filters. 

Data analysis has also constantly been made easier by powerful software and 

chemometric techniques (Osborne et al 1993).

1.3.1 Instrument requirements

While NIR instruments may vary according to manufacturer, they are all alike in 

that they aim to adhere to the following basic requirements (Osborne et al 1993):

1) The instrument must work over the whole or part of, the wavelength range 

780-2500 nm.

2) It must be able to resolve a small wavelength interval compared with an 

absorption feature. A typical interval is about 0.1-2 percent of the measuring 

wavelength.

3) Diffusely scattered radiation is desirable for solid samples, while transmission 

is ideal for liquids.

4) If small or weak concentrations or absorption changes are under investigation, 

a wide dynamic range of 10"̂ -10  ̂will be needed.

5) Measurements must be made in a reasonably rapid time. In order to achieve 

this, the instrument must be able to sufficiently illuminate the sample.

6) The instrument must be compact, robust, and stable, and be useable for process 

control both in situ and in the laboratory.
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In addition, the European Pharmacopoeia states that an NIR instrument must have 

a means of collecting and measuring the intensity of the transmitted or reflected 

radiation, such as an integration sphere or a fibre optic probe coupled to an 

appropriate detector, and a means of mathematical treatment of the spectral data 

obtained (European Pharmacopoeia 1997).

1.3.2 Sources

NIR instruments fall into one of three groups. These are dispersive, 

interferometric, and non-thermal. Dispersive and interferometric instruments 

typically use broad band, thermal radiation produced by an incandescent filament. 

Often, quartz halogen lamps are used.

Non-thermal or ‘cold’ sources emit radiation from a much narrower range of 

wavelengths down to individual emission lines. The main advantage of the non- 

thermal source is its efficiency, as most of the energy used appears as emitted 

radiation over a narrow range of wavelengths. As power consumption is much 

reduced, compact, even battery-powered portable instruments are possible. Non- 

thermal sources include laser diodes, light-emitting diodes, and lasers (Osborne et 

al 1993).

1.3.3 Detectors

The most widely utilised detectors in the NIR regions are compound lead-salt 

semiconductors. These include lead sulphide (PbS) and lead selenide (PbSe). Lead 

sulphide is used over the wavelength range 1000-2500nm and lead selenide can be
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used from 2500-3500nm, and is much less sensitive than lead sulphide. These 

detectors can be used at room temperature or cooled. Cooling increases sensitivity 

of the cell to longer wavelengths and increases the signal to noise ratio (Osborne et 

al 1993).

A relatively new detector is the indium gallium arsenide, or InGAs detector. This 

operates over 1-1.8pm, is generally smaller and is a few times more sensitive than 

lead sulphide, size for size.

1.3,4 Wavelength selection

Most laboratory NIR instruments depend on the dispersion-type monochromator 

for wavelength selection. The use of a grating monochromator provides for a high 

resolving power instrument. However, the efficiency of the radiation is not always 

high, as scanning is achieved by rotating the grating and therefore traversing an 

image past the exit slit. The measurement time is comparatively long for a 

monochromator system, and they have moving parts. To overcome this, multi­

channel detectors have been used recently with dispersive systems 

(Chalmers 1999). The old mechanically grooved and replicated gratings are now 

replaced by holograpic gratings, which are produced by a photoetching technique. 

As well as being easier to manufacture, the newer gratings cost less than their 

predecessors (Morisseau and Rhodes, 1995).

Interference filter-based instruments are advantageous in that they are light, 

compact and robust. In some cases where analysers work on-line, they may need 

as few as four or five dedicated wavelengths. In these cases, a filter system may be
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a relatively inexpensive option. However, a disadvantage may be that it is 

restricted for measurements at pre-determined wavelengths. For this reason, filter 

instruments are used in relatively simple on-line applications (Chalmers 1999). 

Acousto-optically tuneable filters (AOTFs) are an alternative technology and are 

becoming increasingly popular. The required wavelengths are produced by the 

interaction o f ultrasonic waves and white light in a biréfringent crystal such as 

tellurium dioxide crystal (Chalmers 1999). They are highly efficient and small and 

have the ability to change quickly between wavelengths or to scan the spectrum 

with no moving parts and all under digital control. They also have good luminous 

efficiency and are compact and robust (Osborne et al 1993).

In recent years, Fourier-transform NIR (FT-NIR) spectroscopy has also been 

finding increasing favour. This method is based on the interference o f  radiation 

between two beams to yield an interferogram. An interferogram is a signal 

produced as a function o f the change o f pathlength between the two beams. The 

two domains o f  distance and frequency are interconvertible by the mathematical 

method o f Fourier Transformation. In a FT-IR spectrometer, the radiation 

emerging from the source is passed to the sample through an interferometer before 

reaching a detector. Upon amplification o f the signal, in which high-frequency 

contributions have been eliminated by a filter, the data are converted to a digital 

form and transferred to the computer for Fourier transform to be carried out. The 

m ost common type o f interferometer is the Michelson interferometer, although 

quartz wedge types are also used (Stuart et al 1996, Chalmers 1999). The latter 

type is more compact and has stronger vibration resistance, whereas the former has
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higher spectral resolution (Chalmers 1999). The main advantage of FT-NIR 

spectroscopy is its speed- it is possible to obtain spectra at a millisecond time-scale 

(Stuart et al 1996).

1.3,5 Operational procedures

The methods employed in NIRS are extremely similar to those used for liquids in 

the UV and visible regions, and much less labour-intensive than those for the mid- 

infrared region (Blanco et al 1998). Both quartz and glass are transparent in the 

NIR, and hence the optical components of NIR instrumentation do not have to be 

made of fragile materials. This lack of absorption by glass and quartz also enables 

these materials to be used as transparent containers (Morisseau and Rhodes 1995). 

For a liquid or solution, the absorbance can be easily measured by using quartz 

cuvettes or fibre optic probes. As the absorption of NIR radiation follows the Beer 

Lambert principle, no special precautions need to be taken. Solvents containing N- 

H and C-H groups are the most ideal ones, as they show little or no absorption in 

the NIR region (Blanco et al 1998).

For solids such as powders and grains, NIR spectra can be measured by using 

cuvettes with a transparent window material such as quartz, which are rugged and 

inexpensive (Stark and Luchter, 1986). However, as glass vials are cheaper and 

disposable, they are often used instead. The other advantage of using glass vials is 

that they eliminate the possibility o f sample j contamination (Simard and Buijs 

1996). Another way of obtaining spectra of powders and grains is by using a fibre
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optic probe. Although this makes recording spectra significantly easier, light losses 

resulting from transport along the fibre can cause increased signal noise.

1.4 Data pre-treatment

In NIRS, after acquiring a spectrum, quantitative or qualitative analysis can be 

carried out using specific algorithms. This is a simple task if an accurate 

classification method is already established, but to develop such a model takes 

effort, time and experience. It is necessary to define the classification goal o f the 

application, and to select an appropriate classification method. When using NIRS, 

it is important to decide whether a data pre-treatment method is necessary. Thus, 

the selection of a suitable pre-treatment method is another important step in 

method development (Candolfi et al 1999). NIR spectra are subject to large 

baseline shifts due to variations such as particle size, shape and compaction. 

Mathematical treatments are usually carried out on sample spectra to minimise the 

contribution of physical effects in the NIR. In addition, data pre-treatment can help 

to provide clear separation between peaks that overlapped substantially in the 

original spectra.

Adams (1995) states that there are three main aims of data pre-treatment in 

spectral analysis:

1) to reduce the amount of data and eliminate data that are not relevant to the 

study being undertaken,

2) to preserve or enhance sufficient information within the data in order to 

achieve the desired goal.
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3) to extract the information in, or transform the data to, a form suitable for 

further analysis

The most commonly used data pre-treatment methods are the calculating of 

derivatives, standard normal variate (SNV), and de-trending (DT) (Figure 1.5).

One way to sharpen the resolution of broad or overlapping bands is to take 

derivative spectra. Derivative spectra are usually generated by differentiating the 

recorded signal with respect to wavelength. Whereas early applications relied on 

hard-wired units for electronic differentiation, modem derivative spectroscopy is 

normally carried out digitally using mathematical functions. The simplest way to 

produce the first derivative spectmm is by difference (Adams 1995):

dX AA

or,

dy _  y,., -X -,

(1.14)

dX 2AX

where y  represents the original signal at wavelength (X) i.

(1.15)

43



A

0.4

0.35 J

0.30)0 c
1

0.25
o
(A

0.15

0.1

0.05

0.0
1300 1500 1900 23001100 1700 2100 2500

B

Wavelength/nm

0.05 1

0.04 -

0.03 -

m0 c
1

0.02 -

I  0.01 -

0.0

- 0.01 -

- 0.02
1700 1900 2100 2300 25001300 15001100
Wavelength/nm

Figure 1.5 A spectrum of belladonna leaf before and after various data pre-treatments. A 

= raw spectrum (no pre-treatment), B =1®* derivative

44



0.02

0.015

0.01

X 0.005

-0.005

- 0.01 -

-0.015

- 0.02
1300 1500 1700 1900 2100 2300 25001100

D

Wavelength/nm

2.5

2.0

0)

gô 0.5

3  00

-0.5

- 1.0

-1.5
1100 1300 1500 1700 1900 2100 2300 2500

Wavelength/nm

Figure 1.5 A spectrum of belladonna leaf before and after various data pre-treatments. C 

= 2"  ̂derivative, D = SNV

45



0.08

0.04

0.02 -0)oc

s  -0.02 :

-0.04 -

-0.06 ^

-0.08 '

- 0.1
2100 2300 25001300 1500 1700 19001100

Wavelength/nm

0.2

0.15

n 0.05

^  -0.05 -

-0.15

2300 25001900 21001500 170013001100
Wavelength/nm

Figure 1.5 A spectrum of belladonna leaf before and after various data pre-treatments. E 

= de-trend, F = SNV, 2"  ̂derivative

46



A first derivative spectrum has a peak where the upward slope in the original 

spectrum reaches a maximum, a trough where the downward slope reaches a 

minimum, and zero at any peak maximum or trough minimum in the original.

A second derivative spectrum is obtained by differentiating a second time with 

respect to wavelength, and therefore has peaks and valleys corresponding to each 

peak in the original. In particular, it has valleys corresponding to each peak in the 

zero order spectrum. As a result, it provides clear separation between peaks that 

overlap substantially in the original. A second derivative spectrum can be 

calculated by the following (Adams 1995):

d 'y  _  y u , - 2 y „ - y ,_ ,

AX'
(1.16)

Second derivatives eliminate baseline curvature and spectral offset which are the 

result of multiplicative scatter. Third and fourth derivative spectra may also be 

obtained by differentiating a third and fourth time. Derivatives can also be 

calculated using a Savitzky-Golay smoothing filter. Here, convolution filters based 

on polynomial functions are used, in which coefficients are derived from a least 

squares fit. This method is useful in preserving peak heights more efficiently than 

the original method (Bromba and Ziegler 1981, 1983, Savitzky and Golay 1964). 

One common correction performed on NIR spectra prior to other pretreatments is 

the use of SNV. This treatment effectively removes the multiplicative 

interferences of scatter and particle size. (Barnes et al 1989).

This can be performed using the following equation:
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y ,  _

(1.17)

In this equation, x,- represents the ordinate values at wavelength z, s is the standard 

deviation of the ordinate values over the wavelength range being standardised, and 

Xmean is the mean ordinate value of the wavelength range being standardised.

DT is a technique which accounts for the variation in baseline shift, which is 

normally the case in the reflectance spectra of powdered or densely packed 

samples. This may use a second degree polynomial regression (Barnes et al 1989):

=^ + bjxj+cJxj +^x

(1.18)

Here, y  is the spectral response in the original spectrum at wavelength X p j= \....j 

wavelengths, h and c are the coefficients of the quadratic least squares equation, e 

is the residual signal at wavelength Ay, and a is the spectral offset. The first three 

terms on the right hand side of equation 1.19 give an estimate o f the spectral 

baseline:

h ,  +
(1.19)

The difference between the original spectrum and the estimated baseline is 

calculated to produce the residual or de-trend spectrum. Both curvature and 

spectral offset are removed from the original spectrum using this correction.

The influence in data pre-treatment depends on the data and the pattern recognition 

method employed. Transforming NIR spectra mostly decreases within-class 

variance, so that possible errors may be eliminated. However, in the case o f using
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derivatives this transformation can sometimes emphasise small spectral differences 

within a class. Thus, this method should be applied with care and if feasible, in 

conjunction with another method such as SNV (Candolfi et al 1999). Both SNV 

and DT spectra achieve correlation statistics superior to those obtained from 

untreated spectra, and are equal to or better than those for the first or second- 

derivative transformations. Derivatisation of SNV and DT produces statistics 

which are better than those of untreated spectra.

1.5 Chemometric Techniques used in NIR qualitative analysis

There is a wide range of chemometric techniques available for the qualitative 

analysis of NIR data. These include Correlation in Wavelength Space, correlation 

coefficients. Maximum Distance in Wavelength Space, Residual Variance in 

Principal Components Space, Mahalanobis Distance in Principal Components 

Space, two wavelength plot. Polar Qualification System, and ^-Nearest Neighbour 

analysis.

1.5.1 Correlation in Wavelength Space

This method calculates the product moment correlation coefficient for the sample 

spectrum and the average spectrum for each product included in the library 

(Blanco 1998):

y

pjk
i = I

( 1.20)

4 9



where p  represents the number of wavelengths, k and j  denote the sample and 

reference product respectively, and x, is the measured value at wavelength i. Xj is

the average spectrum for the reference product j  and equals the average 

spectrum for the sample. The sample is qualified as the product when the resulting 

value is higher than a pre-set threshold. A frequently used threshold is 0.85 (FOSS 

1998). In theory, if  two spectra are taken from the same product (i.e. a perfect 

match), the correlation coefficient should be exactly 1. However, random noise 

associated with any type of spectral measurement usually precludes this (Blanco et 

al 1998).

The calculation of Correlation in Wavelength Space is relatively easy and can be 

useful for discriminating between closely related compounds. For instance, it has 

been used successfully for the identification of different types of cellulose (Van 

der Vlies et al 1993) and for the identification of a pharmaceutical preparation by 

using a library of 163 substances including active compounds, excipients, amino 

acids and vitamins (Blanco et al 1994). It has also been successful in non- 

invasively assessing the contamination o f injections by yeast, mould and bacteria 

(Galante et al 1990).

This method, particularly when using second derivative spectra, is less sensitive to 

shifts or the slight differences and changes in spectral values that reflect 

differences in the physical properties and the presence of impurities. On this 

ground, it can often be less suitable for qualification purposes (Mark 1992).
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1.5.2 Correlation Coefficients

This method correlates the absorbance value at each wavelength. The correlation 

coefficient, r, is denoted by the following (Graham 1999):

( . 2 .)

where x represents values for one species, and y  represents those for another 

species. Sxy is the covariance, given by equation 1.22:

^xy  -  ^mea„ymea,, ( 1.22)

where N  equals number of variables and Xmean and ymean are mean values for x  and 

T-

Sx is the standard deviation of x, given in equation 1.23:

and Sy is the standard deviation ofy, given in equation 1.24:

= (1.24)

This method can be used to identify unknowns by calculating the correlation 

coefficient between unknowns and reference products, and classifying the
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unknowns as the species which gave rise to the highest r values. This method 

produces results that are highly comparable to the Correlation in Wavelength 

Space method, and thus, it is often sufficient to use either one or the other.

1.5.3 M axim um  Distance in Wavelength Space

This method assumes that at each wavelength, measurements are distributed 

according to the normal law. Data from a library of spectra that define the 

accepted variability for a product is used to calculate a mean product spectrum and 

a standard deviation spectrum. During analysis, the distance between the unknown 

sample and the average spectrum for the reference product is calculated at each 

wavelength. The most ‘unfavourable’ situation, i.e., the maximum distance, is 

determined using the following equation:

\ X k p  X  j p \

d  kj ~ tnax
>jp

(125)

Here, subscripts k and j  denote sample and reference product, respectively; Xkp is 

the measured sample value at wavelength p\ xjp is the average spectrum of

reference product j  at wavelength p; and Sjp is the standard deviation of the 

measured values for reference product j  at wavelength p  (Blanco et al 2000).

If the sample under investigation belongs to the same population (e.g. species) as 

the reference product, then there will be a probability of 99.7% that the distance 

will be less than three times the standard deviation. If the maximum distance is 

larger than this, then the sample must belong to a different population, and
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therefore will fail the identification procedure. Although the qualification criterion 

Dmax < 3 is often thought to be a typical match value, it is usually more practical

for users to identify and decide on the most suitable limit based on their own 

problems and methods. In general, however, this method has been found to be 

more successful than the use of correlations (Blanco et al 1998).

Correct usage of this method requires extensive control of the instrument in order 

to ensure that noise remains fairly constant, as this method can be sensitive to 

noise, water peaks and wavelength shifts (Gonzalez and Pous 1995).

One problem which is often encountered when using this method, is the risk of 

obtaining so-called false negatives at those wavelengths coinciding with x- 

intercepts in derivative spectra. If there is a very small standard deviation for the 

average spectrum at a given wavelength, then the resulting distance will be very 

large and an identification failure will result. This can be the case when the values 

observed in second derivative spectra are very close to zero. One way to 

circumvent this problem is to use a wavelength library stabilisation method 

(Blanco et al 2000).

This method has been successful in various applications. These include the 

discrimination of various strengths of tablets still in their blister packaging 

(Dempster et al 1993) and the identification o f ten pharmaceutical excipients 

(Candolfi et al 1999). Another study involved the identification of cellulose, 

methyl cellulose, cellulose acetate phthalate and corn starch (Gemperline and 

Boyer 1995) in training sets of 8-10 spectra per library, using a probability 

threshold of 95% instead of a distance threshold.
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1.5.4 Residual Variance in Principal Components Space

The American Society for Testing and Materials defined Principal Components 

Analysis (PCA) as:

“A mathematical procedure fo r  resolving sets o f  data into orthogonal components 

whose linear combinations approximate the original data to any desired level o f  

accuracy. As successive components are calculated, each component accounts fo r  

the maximum possible amount o f  residual variance in the set o f  data. In 

spectroscopy, the data are usually spectra, and the number o f  components is 

smaller than or equal to the number o f  variables or the number o f  spectra, 

whichever is less. ” (ASTM)

PCA effectively reduces the data to a small number o f variables, or principal 

components. These are linear combinations of the original variables. More than 

90% of the variation is modelled in the first principal component. In NIRS, this 

usually represents information relating to either water content or particle size. 

These factors can often overwhelm the spectrum and cause co-linearity, where the 

same information is revealed in measurements at different wavelengths. PCA 

helps to reveal the inherent structure of the data that correlates to the analyte in 

question.

Residual Variance in Principal Components Space is a method that calculates the 

local PC model for each product in the library. Each product PC model is used to 

reconstruct the unknown spectrum. The difference between the original and 

reconstructed spectrum is then used to calculate the residual variance. The residual 

variance for a spectrum k to be identified (% ) that is assumed to belong to class j
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(defined by the spectra for reference product j )  is divided into the total variance for 

the samples belonging to class j  {S^o) in order to obtain the following variance 

relation (Equation 1.26) (Blanco et al 2000):

n
s i  n — a — 1

(1.26)

where n is the number of spectra for the reference product and a the number of 

Principal Components used to construct the class model (Blanco et al 1998). From 

the resulting F  function, one can calculate the probability that a given sample 

belongs to the distribution represented by the training set (Blanco et al 2000). The 

unknown is identified as a product when the residual variance for this product’s 

Principal Component model is within the threshold value. The default threshold in 

FOSS Vision® software is 0.95 for match value and 0.84 for probability level 

(FOSS 1998).

7.5.5 Mahalanobis Distance in Principal Components Space

In this method, the local PC model is calculated for each product in the library. 

During the analysis, the unknown spectrum PC scores are calculated for each 

product in the library. During the analysis, the unknown spectrum PC scores are 

calculated for each product model and Mahalanobis distance is calculated (FOSS 

1998). The Mahalanobis distance is a useful tool for cluster analysis, and can be 

calculated for multi-dimensional spaces. The distance (D) between the sample and 

the centre of the cluster formed by the spectra of the reference product is defined 

in equation 1.27:
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-(:>cy -  xi)^C{xj  -  Xk)

(1.27)

Xj is the vector describing the spectrum of sample j \  Xk is the vector for the average 

spectrum of reference k, C is the matrix that describes the distance measurements 

in the multidimensional space studied and superscript T  denotes a transpose matrix 

(Blanco 1998). The unknown is identified as a product when the Mahalanobis 

distance for this product is within the threshold value. Usually, the threshold is set 

at three times the Mahalanobis distance (Mark 1992), but as in Maximum Distance 

in Wavelength, thresholds can vary depending on the users own problems and 

working methods. In FOSS Vision® software, the default threshold is 4 for match

value and 0.84 for probability level (FOSS 1998).

1.5.6 Two-wavelength analysis

In optical spectroscopy, the most common method of classifying an unknown is to 

visually examine the spectrum under investigation. Samples can often be classified 

or identified by matching the location and strength of absorbance peaks to those of 

known substances. It is possible to generalise this procedure by noting that, if  the 

absorbance is measured with sufficient accuracy, then any wavelength where there 

are absorbance differences between the substances to be distinguished can serve to 

classify them (Mark 1992).

This concept can be used to generate a visual representation o f differences 

observed. For instance, if the spectra of two or more materials are seen to vary at
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two wavelengths, it should be possible to dispense with all other spectral data 

except the absorbances at these particular wavelengths, and still be able to classify 

the samples.

Thus, data corresponding to absorbances at two wavelengths can be plotted against 

each other to provide groups of points. If the spectra of the materials studied are 

sufficiently different at two wavelengths, these wavelengths alone can be used to 

characterise the product. Analysis of unknowns can thus be performed by plotting 

their data corresponding to the absorbances of the same wavelengths and carrying 

out a comparison. Various data pre-treatments and wavelengths can be tried in 

order to find the most successful combination(s). The most ideal pre-treatment and 

wavelength combinations will vary according to the type materials under 

investigation.

In general, when only a few materials are to be distinguished, the differences 

between the spectra can be detected visually and the wavelengths to use for 

discrimination selected manually. However, if some of the spectra are extremely 

similar, or there are so many different materials involved that visual inspection 

becomes impossible, then manual selection would not be possible. If there is no 

prior knowledge as to which are the suitable wavelengths, then a method for 

detecting the optimum set of wavelengths is necessary. One common way in 

which this is done is to compute the distances Dy between all pairs of groups i and 

j .  Using these results, the sum of the inverse squared distance, i.e., (l/Dy)^ is 

formed. The groups that are most similar (closest together) will contribute most 

heavily to this sum. As a result, selecting those wavelengths that cause this sum to
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be the smallest results in the selection of the wavelengths that best separate the 

closest groups. This approach is advantageous in that it will optimise among all 

groups that are comparably closely spaced, rather than concentrating on only the 

single closest pair (Mark 1992) However, in many cases, as will be revealed in 

later chapters, simple visual inspection and trial and error can serve as sufficient 

means in selecting suitable wavelengths.

1.5.7 Polar Qualification System

The consistency of starting materials for the quality o f end products in the 

pharmaceutical industry is of utmost importance. Traditional testing of these raw 

materials usually look for compliance with the pharmacopoeial criteria for 

identity, purity, and strength (Van der Vlies et al, 1995). These are mainly 

chemical parameters, and unfortunately, monographs seldom include tests to 

measure physical parameters, which may be just as important for the production of 

drugs o f consistent quality (Van der Vlies et al, 1995). Deficiencies in raw 

material testing can lead to batch-to batch variation in the end products (Brittain et 

al 1991).

Common methods employed for the qualitative analysis of materials such as 

Maximum Distance in Wavelength and the use of Mahalanobis Distance often 

assume the availability of a reference and learning set necessary to determine the 

criteria for compliance with the confidence limits of these methods (Van der Vlies 

et al, 1995). Frequently, reference and learning sets may be unavailable, and in
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addition, certain methods may need the use o f sophisticated chemometric 

techniques which are not easily nor quickly mastered (Van der Vlies et al, 1995).

In comparison, the Polar Qualification System (PQS) has its advantages in that by 

using relatively simple mathematics, the information present in an NIR spectrum 

can be reduced to one single “quality point” in a two-dimensional plane (Kaffka 

and Gyarmati, 1990). This is achieved by plotting the second derivatives of the 

NIR reflectance spectra of materials in a polar coordinate system, and calculating 

the “centre of gravity” of the plot obtained (Kaffka and Gyarmati, 1990). This 

method can be used to test the acceptability of certain products, as the position of 

the quality point is sensitive to changes in the composition of the product being 

analysed. Thus, a deviation in the quality point can serve to indicate that the 

sample does not meet the required quality level (Van der Vlies et al 1995). Van der 

Vlies reported that PQS could effectively differentiate between two different 

batches of amoxycillin trihydrate originating from two different sources, which 

only differed in terms of their particle size.

The calculation of polar coordinates is reasonably easy. Firstly, the selected part of 

the spectrum is transformed into polar coordinates Xi and T, by using Equations 

1.28 and 1.29, where n+\ is the number of datapoints (wavelengths) and Ao...A„ 

the second derivative absorbances at datapoints /-O .. .n (van der Vlies et al, 1995).
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X. = \A. I cos(2ni/n)
( 1.28)

Y. =  |4|sin(27r//j^2)

(1 2 9 )

It should be noted that in the above equations, the absolute values o f the' 

absorbances were used. This is because in the second derivative, a negative peak 

has, in most cases, two adjacent positive peaks. As a result, by taking the absolute 

values, three adjacent positive peaks are obtained. This is important, as in the next 

step, the centre o f gravity o f the polar plot is calculated. If  the absolute values are 

not used, the peaks would be situated in opposite quadrants, reducing the 

sensitivity o f the method (Van der Vlies et al, 1995).

The next step is to calculate the coordinates o f the centre o f gravity (“quality 

point”) o f each plot using Equations 1.30 and 1.31 (Van der Vlies et al, 1995):

1 "
Z x  =  —n + \ 1=0

1z, = — - I r ,  « + ]'=<»

(1.30)

(1.31)

This method can be carried out along the whole spectrum from 1100-2500n, or on 

sections o f the spectrum, for example at lOOnm increments. With its simplicity and 

effective discriminating power, PQS has great potential for qualification purposes.
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Figure 1.6 shows a section of the second derivative spectra of five plant resins 

from 1700-1800nm. Figure 1.7 shows the same spectra after they have been 

transformed into polar coordinates Xj and Y,. All spectra show a “flower”-shaped 

pattern which is characteristic of PQS analysis.

Figure 1.8 shows the final plot of the “quality points” after calculation using 

Equations 1.30 and 1.31. It is clear from this resulting plot that the PQS method 

allows a good separation and clustering of all the materials according to their 

identity. Even though each sample within each group was different, all clustered at 

specific regions depending on what they were.
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Figure 1.6 Representative second derivative spectra o f  five resin samples in the 

wavelength range 1700-1800nm
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Figure 1.8. Centres o f  gravity (“quality points”) o f  five types o f resins in the wavelength 

range 1700-1800nm

1.5.8 k-Nearest Neighbour

Both the two-wavelength and PQS method can be used to identify unknown 

substances. One way in which this can be done is by the A:-Nearest Neighbour {k- 

NN) method. This is a very simple mathematical classification procedure where
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the distance between the datapoint of an unknown and those of a training set are 

calculated. Usually, the Euclidean distance is used. If the training set is made up of 

a total of n samples, then n distances are calculated. The k  nearest samples to the 

unknown are then selected which classifies the unknown to the group that 

produced the group to which the majority of the k samples belong. The choice of k 

can be determined by optimisation, although it is usually found that small values 

o f k (3 or 5) are to be preferred. This method works best where there is little 

overlap between the groups (Massart et al 1988).

The Euclidean distance, D, between the datapoint of the ‘unknown’ and every 

remaining point, which can be used for k-NN, is calculated by the following {U = 

‘Unknown’, K  = ‘Known’, x and y  are x and y coordinates, respectively):

D  =  ^ i a - K . y  + {Uy -  K , y

(1.32)

If the training set is of a sufficient size, the mathematical simplicity o f this method 

does not prevent it from producing classification results as good as or better than 

other more complex methods. It also has the advantage o f being a multi-category 

method (Massart et al 1988). Figure 1.9 shows a PQS plot of plant resins with 

datapoints for samples treated as unknowns. From this, it can be seen that the 

datapoints of the “unknown” samples lie closest to the group they theoretically 

belong to.
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incorporating “unknown” samples.

1.6 Applications of NIRS in food and beverage analysis

Although NIRS is used extensively as an important analytical tool in the 

pharmaceutical industry, it first found its use in the food and agricultural industries 

for the determination of moisture, protein, and starch in grains (Morisseau and 

Rhodes 1995). Its success in these industries, which often involve plant-based 

substances (e.g. food grains), suggests that NIRS could also have potential in the 

herbal medicine industry, where similar methods could be applied.

L6.1 Moisture

The NIR absorption spectrum of pure water includes 5 bands with maxima at 

1940, 1450, 1190, 970 and 760nm at room temperature. These are subject to shifts, 

as results of variations in temperature and hydrogen bonding when water is in a 

solvent or food matrix. The determination of moisture in liquids (such as fuming
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nitric acid, glycerol and methanol) was one of the earliest analytical applications 

of NIRS (Osborne 1993a). It was realised that the same principle could be applied 

to foodstuffs, and now the determination o f water is still probably the most widely 

used application of NIRS in food analysis. It is based on measurements o f well- 

defined absorption bands, but background correction is complex and empirical as a 

result of the limitations of diffuse reflectance when the background is absorbing, 

and due to varying absorbance from sample to sample (Osborne et al 1993). 

Moisture analysis by NIRS is commonly used to measure the moisture content and 

other characteristics of wheat and other commercially important small grains 

(Delwiche et al 1992). In fact, it can be said that it is not often in the history of 

science that an instrumental technique and a particular industry become so closely 

interlinked as is the case for NIRS and the grain trade (Downey 1994). High 

accuracy, minimal sample preparation and rapidity of analysis are the main 

reasons, giving it the potential to be used for on-line analysis and control. With the 

development of whole grain instrumentation and single-kemel sample holders, 

non-destructive analysis of many grains on an individual kernel basis is feasible 

(Downey 1994). Water content is directly related to the occurrence of biological 

reactions which is the cause of degradation o f carbohydrates. Therefore, 

investigating water activity and moisture content have great implications in the 

storability of grains (Delwiche et al 1992). In addition, moisture content can affect 

the suitability of certain raw materials, for example soybeans, for their use in food 

processing (Takahashi et al 1996). As well as grains, NIRS is used to measure
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moisture content in other foodstuffs, one example being cheese (Wehling and 

Pierce 1988).

1.6.2 Other applications

NIRS is also used in the analysis of fats, such as shortenings in foods, 

carbohydrates (e.g. the cellulose content of flour) and sugars, such as the 

determination of glucose, fructose, and sucrose in fruit juices, wine, chocolate and 

baked products (Osborne et al 1993a). The application of NIRS in food analysis is 

important for various commercial reasons. For instance, it is vital in determining 

the baking quality of wheat. In yeast leavened bread, for instance, flour of a 

minimum of 11 percent protein is preferred. Therefore, NIRS is regularly used to 

verify that the wheat used has a protein content of approximately 12 percent. NIRS 

can also be used to check for starch damage and assess the dough visco-elastic 

behaviour and to indicate when the milling process has been out of specification 

(Downey 1994). It can also be used to detect the presence of inorganic additives in 

flour (Sirieix and Downey 1993). In addition, NIRS can be used for such novel 

purposes as determining the geographical origins o f chocolate (Osborne et al 

1993a) Other instances where NIRS has been used in the analysis o f foodstuffs is 

briefly described below.

1.6.2.1 Coffee

Commercial coffee is either made up of Arabica or Robusta varieties or blends of 

the two types. As Arabica is of better quality, it is more expensive, and as a result, 

there exists the high potential for fraud (Downey et al 1994). In the coffee trade, 

most of the business is between the producers and processors. The processors use
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trained personnel to identify and confirm bean variety using sensory methods that 

are hard to replicate. When coffee is sold, it is in the form of roasted beans or as 

instant coffee, and these are hard to assess, even by trained sensory panelists 

(Downey et al 1994).

Studies were performed by Downey et al (1994) to investigate the potential of NIR 

reflectance spectroscopy for discriminating between pure Arabica and Robusta 

coffees and blends o f the two. Investigations were carried out on whole and 

ground beans, and it was found that success rates for identification using principal 

components analysis ranged from 82.9% to 96.2%, with pure samples yielding 

more successful results than blended ones. A high degree of success was also 

achieved when using lyophilised (freeze-dried) coffee (Downey and Boussion 

1996).

1.6.2.2 Orange juice

With the increase in interest in healthy eating, fruit juices have become 

commercially important commodities (Evans et al 1993). In the EU, most orange 

juice is prepared from imported frozen concentrate which is reconstituted by 

adding water. In the UK market, most o f the frozen orange concentrate originates 

from Brazil and Israel. Adulteration of fruit juices has long been practised, 

including the over-dilution of the concentrate with water, further extraction with 

water of the residual products of juice extraction (pulp), addition of sugars, acids 

and water to swell the volume while maintaining sweetness, and the addition of 

metal ions and amino acids (Evans et al 1993). As the methods for detecting 

adulteration have become more advanced, the methods of adulteration have
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progressed as well. Detection of adulteration is made harder due to the fact that 

authentic fruit juice can vary naturally, thanks to species, maturity, growing 

location, climate, season, planting system and processing techniques (Evans et al 

1993). Testing the potential of NIRS to discriminate between three sources of 

orange juice (Brazilian, Israeli unadulterated, Israeli adulterated) showed that a 

100 percent success rate could be achieved when using 25 principal components 

on raw spectra (Evans et al 1993). The determination of various components in 

orange juice which are of importance in quality control procedures (e.g. glucose, 

fructose, sucrose, citric acid, malic acid) using NIRS and Partial Least Squares has 

also been investigated, showing that NIRS is a promising technique in this aspect 

(Li et al 1996).

1,6.2.3 Rice

Long grain rice accounts for over half of the total UK rice market, with a retail 

value of £200 million per year. Basmati, a class of rice grown in the Punjab region 

of India and Pakistan, is recognised as a market sector in its own right, with about 

20 percent of total rice sales (Osborne et al 1993b, Osborne et al 1994). As 

Basmati can only be grown once a year with a yield about half that o f other rices, 

it commands a high price, especially due to its popularity in the UK, and thus there 

is a high incentive for adulteration. The potential of NIRS to discriminate Basmati 

from cheaper, inferior rice types was investigated as a quick and non-destructive 

method that would protect both the consumer and the honest trader (Osborne et al 

1993b). Results were encouraging, and were further supported by Krzanowski 

(1995).
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1.6.2.4 Other food ingredients

In addition to the examples shown above, the potential o f NIRS for the 

authentication of food and food ingredients has been tested for a wide range of 

other products. These include the geographic origin of so-called Italian olive oil, 

the vegetable origin of vegetable oil, and vanilla (Downey 1996). Clearly, as food 

authenticity is an issue of concern to food processors, retailers, regulatory 

authorities and consumers, a rapid technique for testing this is desirable, and thus 

NIRS has many advantages in that it is fast, non-destructive and does not require 

highly skilled staff or chemical reagents. Ready transfer o f NIR models to the 

factory as either on- or near-line methods is already possible (Downey 1996).

NIRS has also shown its potential in the brewing industry. For instance, it has been 

used in conjunction with a fibre optic probe to measure the alcohol content in beer, 

with an accuracy o f ± 0.04% alcohol (Benson, 1996).

In addition to food for human consumption, NIRS has also been used for the 

analysis of animal feed, such as feed barley (Edney et al 1994). This is of 

importance, as feed manufacturers need to get maximum value out of their 

ingredients. In order to achieve this, they need the exact information on the 

nutritive value of their feed ingredients. Traditionally, feed formulators relied on 

book values for nutrient composition, but this was not always economical, and 

thus NIRS possesses advantages in that it is quick, accurate and relatively 

inexpensive (Edney et al 1994).
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1.6.2.5 Parasites

NIRS has also been investigated as a method for detecting parasites in crops. For 

instance, it has been used to detect grain weevil larvae and pupae inside single 

wheat kernels. Although modem control measures mostly prevent infestations 

reaching levels where significant loss of commodity occurs, consumers are 

increasingly demanding food to be of the highest quality, and as a result, cereal 

buyers now operate a zero-tolerance to insects (Ridgway and Chambers 1999). As 

many producers apply pesticides as an insurance against insects, this can lead to 

unnecessary levels of residues in the final product. Thus, the efficient detection o f 

insects would allow better food quality, as well as the application of pesticides to 

be more efficiently targeted. Although there are established, rapid methods to 

detect insects external to the grain, no method exists which can detect insects 

hidden inside the kernel. Using NIRS on weevil-infested and uninfested grains, 

Ridgway and Chambers showed that it could be used to correctly classify over 

96% of samples. Spectral differences appeared to arise from the actions of the 

developing insect, rather than from any feature specific to kernels selected by adult 

females for egg-laying (Ridgway and Chambers 1999). It was possible to detect 

infestation by measurements at just two wavelengths, 1194nm and 1304nm. 

Detection o f larvae inside grains was also possible using NIR imaging, where 

physical images were recorded at carefully chosen wavelengths in the NIR region 

(Ridgway and Chambers 1998).
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1.6.2.6 Animal proteins

Although NIRS in food analysis is usually confined to agricultural crops, it can 

also be used to analyse animal protein (Rannou and Downey 1997, McElhinney et 

al 1999). This is of particular importance as there has been a tendency of later 

years to the increased consumption of pre-processed foods. As a result, there have 

been concerns voiced over the authenticity of meat products. Often, there are cases 

where meat from high-value species is substituted by meat from a lower value 

species. Often, there are cases where meat products are extended with fat, rind, or 

non-meat proteins or water (Rannou and Downey 1997). In addition, consumers 

may desire to avoid certain meat species for religious (e.g. pork) or health (e.g. 

beef) reasons. Species identification is not a problem when the meat is in whole 

cuts, but when they have been chopped or minced, it becomes virtually impossible 

(McElhinney et al 1999).

Traditional methods for analysis of animal proteins include capillary gas 

chromatography, electrophoresis, immunoassays and DNA-based procedures. 

However, these methods can be time-consuming, and all require sophisticated 

facilities and highly trained staff (Rannou and Downey 1997).

Investigations carried out on NIR spectra of raw pork, turkey, chicken, beef and 

lamb showed that there is a great potential for NIRS to address the issue of raw 

meat spéciation (Rannou and Downey 1997, McElhinney et al 1999). Overall, 

NIRS appeared to be more accurate than mid-infrared spectroscopy (Rannou and 

Downey 1997), although success rates appeared to be higher in smaller group
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classifications (McElhinney et al 1999) and the molecular phenomenon for this is 

as yet unclear (Rannou and Downey 1997).

1,7 NIRS o f natural products

In the qualitative analysis of materials using NIRS, it is always necessary to build 

a qualitative library incorporating the training set data for each material grouping, 

any subsequent transformation and discriminatory analysis. These will depend on 

the intended use of the particular library. A typical qualitative library development 

will most likely involve the following stages (PASG NIR Sub Group 1998):

1. Define the purpose of the library

2. Selection of samples/spectra for the training set

3. Data pre-treatment

4. Library construction

5. Determination of thresholds (e.g. for Maximum Distance in Wavelength Space 

In defining the purpose of the library, it is important to define its scope in terms of 

its intended use prior to starting development, that is, identification and/or 

qualification. Consideration should be given to the chemical similarity and 

numbers o f material groups to be discriminated in both their chemical similarity 

and number. In constructing the library, a full or reduced wavelength range may be 

used. Wavelength segments can be useful to remove unwanted effects or to 

enhance small differences (PASG NIR Sub Group 1998).

In terms o f selecting spectra for the training set, sample variability due to factors 

such as moisture, particle size and other chemical/physical properties may be built
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into the library. This is especially important for qualification libraries. It may also 

be desirable to select representative samples from a large population. Library 

thresholds can be determined following internal validation o f the library, and 

assessment of external sample performance and a consideration o f the next best 

match (PASG NIR Sub Group 1998).

Thus, in the qualitative analysis of all materials, including natural products and 

drugs derived from plants by NIRS, the process involves working logistically with 

libraries of samples to bring about statistical identification as well as 

discrimination.

Previously, very little work has been carried out on herbal materials, due to the 

fact that most interest has been on the analysis of materials o f agricultural and 

commercial importance. In addition, plant materials are extremely difficult to 

characterise by NIRS, as it is often the case that there is no clear-cut reason as to 

why spectral differences may occur. That is, even in samples of the same species, 

the presence or efficacy of active components may vary for numerous reasons, 

such as season, climate, temperature, and geographical origin. Perhaps the closest 

application of NIRS of natural products, which is currently used in a commercially 

important setting, is its use in the tobacco industry. Commercial tobacco blends are 

a complex mixture of different tobaccos and additives that are typically formulated 

to meet a specific composition. These can vary substantially and therefore the 

characterisation and quantitative analysis of their properties is difficult. Thus, in 

the tobacco industry, there is the challenge of assessing the intake quality o f the 

raw materials and the analysis of tobacco blends for process verification. It is in
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the interest of the manufacturers that the tobacco blends that have been mixed and 

their quantities can be estimated as rapidly as possible with minimal sample 

preparation (Lo, 1996). Dominguez and Seymour (1992) proposed the use of 

NIRS and discriminant analysis for the differentiation of various tobacco types and 

for the prediction and verification of blend identity. Another study by Lo (1996) 

discussed the use of PCA, artificial neural networks (ANN) and A:-NN for the 

differentiation of individual types of tobacco blends on 127 samples of pulverised 

tobacco leaves containing six different leaf types. ANN is a robust and flexible 

method of modelling data that has primarily been focused on the classification of 

single categories rather than on the identification of separate components from 

spectra of mixtures. Results showed that ANN provided good discriminant power 

and generalisation in the identification of individual components from mixtures, 

and that the tobacco blending ratio could be estimated within 2.5% (w/w) error. 

Although useful, the success of the k~NN method in this scenario was limited, as it 

was not possible to use the technique to detect whether a sample was a pure 

component or a mixture (Lo, 1996). Thus, to some extent, NIRS has been shown 

to be successful for the characterisation of herbal materials, although the transition 

from the tobacco to phyto-pharmaceutical industry has been approached with 

caution.

In one early study, however, NIRS was applied to the identification o f plant drugs, 

namely ginseng and grape seeds (Corti et al 1990). Qualitative analysis was 

carried out using a type of discriminant analysis to identify the various substances 

by their absorption spectra. Results showed that the distinction o f grape seeds
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according to their geographical origin was successful. In the case o f ginseng, two 

important aspects were tested. Firstly, the possibility of identifying adulterated or 

false specimens was considered, and secondly the distinction of young and old 

roots was considered. Results showed that when using samples o f ginseng with 

and without added starch, the normalised distances between different samples 

increased with increased percentage starch. In the case o f age having an effect, it 

was successfully shown that old and young roots were distinguishable. In addition, 

it was also possible to semi-quantify ginsenosides. Analysis in all cases was 

possible with minimal sample preparation. Thus, in this study, four important 

aspects in the herbal industry were approached: the identification of country of 

origin, the assessment o f adulteration, the age of the sample and the quantification 

of the active component(s).

In a more recent study, herbal medicines such as Cassia, Ganoderma, and Smilacis 

Rhizoma were shown to be discriminated accurately according to geographical 

origins by NIRS and by using the PLS regression method (Woo et al 1998).

The concept o f discriminating herbal materials according to geographical origin 

was followed up in a further investigation on samples o f Astragali Radix, 

Ganoderma, and Smilacis Rhizoma. It was shown in this study that second 

derivative NIR reflectance spectra of representative samples did show slight 

differences according to the places of origin. It was then shown that samples from 

the two different places of origin (in this case, China and Korea) could be 

differentiated using PGA. In addition, the techniques o f using Mahalanobis 

distance and discriminant analysis with PLS were used to successfully
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discriminate the various samples (Woo et al 1999). Another study, by Kwon and 

Cho (1996) on the identification of the geographical origins of ginseng and sesame 

seeds using PLS showed that NIRS could be used to allocate the country o f origin 

with a 99% accuracy rate for sesame seeds and about 95% for ginseng. The 

identification of the geographical origin of natural products is of importance not 

only for quality control measures, but also for the prevention of unlawful trading 

and illegal smuggling. For instance, in Korea, the Ministry o f Finance strictly 

controls the monopoly of red ginseng trading, as red ginseng produced elsewhere 

is considered to be cheaper and inferior (Kwon and Cho 1996). In addition, it has 

been known that although samples of a certain herbal medicine may come from 

the same species, the quality and content of active can vary according to where 

they were cultivated and also according to the growing conditions of the different 

regions (Woo et al 1999). Thus, the development o f an ultra-fast, simple and non­

destructive inspection technique for identifying the country of origin and for 

determining the quality of herbal commodities would be of great importance.

NIRS has also been used to determine the essential oil content of certain herbal 

materials. For instance, in the case of fennel and caraway, the content o f the 

monoterpene substances carvone, trans-anethole, fenchone, and estragole is 

influenced by breeding (Fehrmann et al 1997). It was found that the levels of these 

could be determined using NIRS. Ideally, rapid, non-destructive methods are 

desired for the evaluation of fruits during the selection process, and as traditional 

methods such as gas chromatography and steam distillation are time-consuming, 

NIRS has been found to be useful.
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NIRS has also been found to be a successful method for the quality control of 

various commercial essential oils. As essential oils used in complementary 

medicine are subject to very few quality control procedures, it is difficult to tell 

whether an oil which is labelled as pure is free from adulterants and contaminants. 

For instance, rosemary oil is often diluted with the cheaper eucalyptus oil (Wilson 

et al 2000). A study by Wilson et al (2000) on rosemary essential oil, using 

Correlation in Wavelength Space and Maximum Distance in Wavelength Space 

showed that it was possible to discriminate between rosemary and eucalyptus oils. 

A forward search multiple linear regression method (MLR) was also used which 

chose the wavelength at which the absorbance values correlated the most with the 

reference data. Results showed that in the prediction of eucalyptus oil content in 

rosemary oil, less than 5% could be detected over the 0 to 100% range and less 

than 0.2% in the 0 to 10% range (Wilson et al 2000). The determination of Cineole 

(Eucalyptol) content in Eucalyptus oils, which, according to the British 

Pharmacopoeia, is present in amounts not less than 70% w/w, has also been 

investigated (Wilson et al 2001a), as was the determination of constituents present 

at much lower levels. For example, lemon oil generally contains between 2-4% 

citral. Using the BP assay method as a reference, it was found that the use of NIRS 

and MLR produced a correlation of 0.962 and a Standard Error o f 0.19% m/m 

citral, thus suggesting that NIRS may be a suitable method for assessing the 

quantities of small amounts o f constituents in essential oils (Wilson et al 2001b), 

as well as determining their identity.
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If successful, the use of NIRS for the characterisation of natural products is of 

potential importance, as although the use of herbal medicines in the treatment of 

various conditions is becoming increasingly popular, there are as yet very few 

quality control procedures carried out on them. This can be a cause for concern, as 

herbal materials can vary in the presence and levels of their active constituents in 

response to a variety of factors. Thus, stringent quality control procedures would 

be useful in verifying that all herbal materials adhere to certain safety regulations. 

A rapid and non-destructive method that can also be used on site in the production 

environment would be advantageous in making quality control of these materials 

quicker, easier and possibly cheaper. The ease of operation of NIR instruments 

would mean that staff need not be extensively trained to carry out the procedures, 

thus making analysis of natural products by NIRS even more attractive.

In addition to the pharmaceutical industry, due to its rapidity and non-destructive 

nature, NIRS could also provide an attractive method for the identification and 

characterisation of forensic samples, such as unidentified and suspect plant 

materials seized at customs or crime scenes. Traditional chemical methods of plant 

drug analysis such as High Performance Liquid Chromatography (HPLC), Thin 

Layer Chromatography (TLC) and Gas Chromatography (GC) are destructive and 

require the use of harmful reagents, while physical ones like microscopy require 

extensive knowledge of plant morphology and also contain a margin for human 

error. In addition, some methods are unsuitable for certain types of plant drugs. 

For instance, cannabis deteriorates at high temperatures, and thus GC is not a 

suitable method for its analysis (White 1998). The determination of geographic
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origin as well as identity of such samples would potentially be a crucial step in 

deducing important factors such as drug-trafficking routes, main exporters of 

drugs, and also to determine whether certain street seizures lead to a common 

supplier. Thus, if successful, the use of NIRS for the rapid characterisation of 

natural products has great potential, both in the pharmaceutical industry and in 

forensic science.

1.8 Aim s and objectives

In this investigation, an attempt will be made to use NIRS to characterise natural 

products, in the hope that any techniques established could be applied to the 

analysis of herbal medicines. This would be of particular importance in that 

normally employed traditional techniques such as HPLC and TLC are time 

consuming, destructive and require extensive sample preparation. NIRS on the 

other hand, is rapid and requires little or no sample preparation. The aim therefore 

of this project is to first establish a database of various natural products and 

consequently, through analysing the spectra obtained, attempt to establish a 

method for the rapid characterisation and identification of herbal medicines. 

Sample presentation, and the effect of various external factors, such as temperature 

and moisture, as well as geographical origin, will also be taken into account. It is 

hoped that any techniques developed could also be used for quality control as well 

as forensic purposes. The aims and objectives of this project therefore were:
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1. To establish a database of NIR spectra o f natural products of 

pharmaceutical interest.

2. To establish a routine analysis identification method for natural 

products using NIRS, taking into account factors such as sample 

presentation, geographical origin, and age.

3. To develop further chemometric techniques for the analysis of herbal 

products using NIRS.

4. To explore the potential of NIRS for forensic and quality control 

purposes.
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Chapter 2: Materials and Methods
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2.1 Introduction

Qualitative analysis in spectroscopy depends in one way or another on comparing 

spectra of products under investigation with spectra of reference materials (i.e. the 

‘knowns’). Many methods of making such comparisons has been devised, many of 

which depend on powerful computer hardware. These apply powerful algorithms 

that allow accurate identifications to be made by distinguishing what are often 

very small absorbance differences. The high signal-to-noise ratios that modem 

NIR instmments provide are of importance, but even then, a computer is needed to 

separate information that cannot be always detected visually by the analyst (Mark, 

1992).

In this entire study, unless otherwise stated, the following instrument and 

mathematical procedures were used.

2.2 Instrumentation

NIRS measurements were made using a FOSS NIRSystems (Silver Spring, MD. 

USA) 6500 Rapid Content Analyser™ (RCA)(Figure 2.1) in diffuse reflectance 

mode over the wavelength range 1100-2500nm.

The RCA connects onto the monochromator (fitted with a tungsten halogen lamp 

as a radiation source) and the source radiation is transmitted via fibre optics. The 

detectors are of lead sulphide and silicon and are arranged around the source. 

Samples are placed on the sampling stage and centred using an iris diaphragm. A 

reference measurement for diffuse reflectance is made using a ceramic plate 

positioned over the sampling stage.
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In this study, samples were typically obtained dried and placed in 10mm diameter 

glass vials (Waters) (Figure 2.2). All seed samples were analysed in both their 

natural and powdered states, all leaf, root, stem and bark samples were either 

shredded or powdered, and all resins were powdered. All powdered samples were 

prepared using a mortar and pestle to an approximate particle diameter of 500|Lim. 

These were then placed in the sampling platform of the NIR instrument. A 

spectrum, being a total of 32 scans, was obtained for each sample. To verify 

reproducibility, this was done 12 times for each sample, shaking and tapping 

between each sampling. A typical sampling time was 40 seconds.

X a

Figure 2.1. FOSS NIRSystems Rapid Content Analyser

I
Figure 2.2. Typical sample presentation. Vial is approx. 5cm x I cm.
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2.3 Materials

Most samples of pharmaceutically important natural products were obtained in the 

dried state from the pharmacognosy archives at the School o f Pharmacy, 

University o f London. Twelve different samples of each natural product were 

obtained in most cases, dating from 1991-1998. Other samples were also obtained 

from various health food stores and supermarkets. Again, twelve different samples 

of each product were obtained where possible. Any fresh samples that were 

obtained were dried in an oven at 35°C until a constant weight was achieved. The

relatively low temperature o f 35°C was used to avoid the possibility of any volatile

oils being lost in the drying process. Table 2.1 shows a list of the samples 

analysed.

2.4 Mathematical procedures

2.4.1 Data Pre-treatment

In the first instance, spectral data were imported into FOSS Vision® software. To 

remove the effects of scatter and differences in particle size, and therefore to get 

reproducible spectra, several spectral pretreatments were used. These included V \  

2"^, 3"̂  ̂and 4^ derivatives (Osborne et al 1993), DT (Barnes et al 1989), and the 

use of standard normal variâtes (SNV) (Barnes et al 1989).
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Table 2.1. Natural product samples analysed in the study

Seed L eaf Bark Stem Root Flower Resin Other
Alfalfa Belladonna Cascara Belladonna Alkanna Belladonna Aloe;

Curaçao
Capsicum

Angelica Buchu (long) Cassia Hyoscyamus Belladonna
(English)

Camomile Aloe:
Socotrine

Ephedra

Anise Buchu (oval) Cinchona
langsifolia

D igitalis
purpurea

Belladonna
(Indian)

Elderflower Aloe:
Zanzibar

Ergot

Blue poppy Buchu (round) Cinchona
officianalis

Burdock Henbane Cannabis
(Indian)

Mace

Halle poppy Cannabis -  South 
Africa

Cinnamon Gelsemium Lime Cannabis
(Lebanon)

Hop

Cannabis Cannabis -  India Frangula Gentian Linden Cannabis
(Pakistan)

Ipecac

Caraway Cannabis -  
Thailand

Liquorice Ginger Psyllium Colophony Juniper

Cardamon Cannabis - Turkey Quassia Horseradish Pyrethrum Cutch Lemon peel
Coriander Coltsfoot Slippery

elm
Liquorice Rose Myrrh Clove

Cumin D igita lis ambigua Witch hazel Orris D igitalis
mertonensis

Sterculia Orange peel

Dill D igita lis lanata Wild cherry Podophyllum Tragacanth Quillaia
Hemlock D igita lis

m ertonensis
Sarsaparilla Saffron

Henbane D igita lis
orientalis

Valerian
(English)

Senna pod: 
Indian

Laserpitium D igita lis
purpurea

Valerian
(Indian)

Senna pod: 
Alexandrian

Mustard Eucalyptus Rhubarb Senna pod: 
Tinnivelly

Oenanthe Eyebright Rauwolfia Squill
Star anise Henbane
Fennel Hop
Ligusticum Hyoscyam us 

Lemon verbena 
Maté
Peppermint 
Raspberry 
Senna - 
Alexandrian 
Stramonium  
Earl Grey tea 
English Breakfast 
tea
Assam  tea 
Ceylon tea 
Traditional 
Afternoon tea
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2.4.2 Sample Identification

Identification of samples was attempted using several identification methods. 

These included Maximum Distance in Wavelength Space, Correlation in 

Wavelength Space, and to some degree, Mahalanobis Distance in Principal 

Components Space and Residual Variance in Principal Components Space. 

Correlation Coefficient, two-wavelength analysis, PQS and A:NN were also used. 

The first four methods were performed using FOSS Vision software® using the

wavelength range 1100-2500nm and a 2"  ̂ derivative gap size of lOnm. The other 

four were performed using spreadsheets written by the author in Microsoft Excel 

1997.
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Chapter 3: The Use of Near-Infrared Spectroscopy 

for the Analysis of Herbal Materials - Preliminary

Studies
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3.1 Introduction

This chapter describes preliminary investigations into the potential o f near-infrared 

spectroscopy for the characterisation of herbal natural products, and in particular, 

identification of samples. For much of this study, members of the Umbelliferae 

family were used, due to the fact that large numbers of samples were readily 

available. In addition, as a number of members of the family are in common use, 

and as the fruits can appear superficially similar, problems may arise due to 

misidentification and adulteration. This can be of particular concern as toxins, 

such as coniine in hemlock (Conium maculatum) can be present in some members 

o f the family and potentially adulterate other fruits, particuarly those o f aniseed. 

Later on, NIR techniques were also applied to various other natural products to 

investigate how successful they were in general.Samples included various roots, 

barks, flowers, leaves, stems, and seeds of pharmaceutical interest. The overall aim 

of the study was to compile a reasonable database and set up a routine analysis 

procedure that would enable the user to successfully identify unknown samples.

3.2 The Umbelliferae family

The Umbelliferae family (order Umbelliflorae) contains about 275 genera and 

2850 species. Most members o f the family are herbs with furrowed stems and 

hollow intemodes. Some members are annuals (e.g. coriander), some biennials 

(e.g. hemlock) and some perennials (e.g. Ferula) (Evans, 1989a). The three 

subfamilies are Hydrocotyloideae, Saniculoideae and Apioideae (Evans, 1989a). 

The third subfamily is the largest one, and also the source of all the Umbelliferae



fruits investigated in this study. These included fennel {Foeniculum vulgare), 

aniseed (Fimpinella anisum), dill {Anethum graveolens), coriander {Coriandrum 

sativum), hemlock {Conium maculatum), angelica {Angelica archangelica), 

Laserpitium {Laserpitium ajacis), Ligusticum {Ligusticum scoticum) and hemlock 

waterdropwort {Oenanthe crocata). Among these, the poisonsous plants are 

hemlock and hemlock waterdropwort, the former containing the toxic alkaloid 

coniine, and the latter containing oenanthotoxin (Evans 1989a). Some of the fruits 

investigated in this chapter are discussed briefly below.

3.2.1 Fennel (Foeniculum vulgare)

Fennel consists of the dried ripe fruits of Foeniculum vulgare. Although native to 

southern Europe, it is now naturalised all over the world and is widely cultivated 

for both flavouring and medicinal use (Polunin and Robbins 1999a). The fruits 

contain 1-4% volatile oil (Evans 1989b) containing anethole, fenchone, limonene 

and apiole, as well as flavonoids including rutin, kaempferol, and quertin, and 

coumarins including bergapten (Polunin and Robbins 1999a). It is mainly used as 

an aromatic and carminative (Evans 1989b).

3.2.2 Coriander (Coriandrum sativum)

Coriander is the dried, nearly ripe spherical fruit o f Coriandrum sativum (Evans 

1989c), indigenous to Italy but now cultivated world-wide (Polunin and Robbins 

1999b). An annual, it has leaves comprising many leaflets and small white 

flowers in the summer, followed by spherical, brittle fruit (Polunin and Robbins
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1999b). The fruits contain up to 1% essential oil, with the distilled product 

containing 60-70% linalol, 20% monoterpene hydrocarbons (limonene, terpinene, 

cymene, etc), camphor, geraniol and geranyl acetate (Bisset and Wichtl 2001a). In 

addition, it contains various flavonoids, coumarins and phenolic acids (Polunin 

and Robbins, 1999b). Very large quantities o f coriander are produced for domestic 

use as a spice, and for pharmaceutical use as a flavouring agent and carminative 

(Evans 1989c).

3.2.3 Dill (Anethum graveolens)

Dill consists o f the dried, ripe fruits o f Anethum graveolens, a small annual 

indegenous to southern Europe, cultivated in Central and Eastern Europe and 

Egypt and used as a carminative and flavouring agent (Evans 1989d). The volatile 

oil contains carvone and limone, with the European fruit yielding about 3-4% 

volatile oil, which should contain from 43-63% of carvone (Evans 1989d).

3.2.4 Aniseed (Pimpinella anisum)

Aniseed consists o f the dried, ripe fruits o f Pimpinella anisum, presumed to be 

native in the eastern Mediterranean region and western Asia (Bisset and Wichtl 

2001b). Aniseed fruits yield 1.5-5% essential oil, with trans-anethol (80-90% of 

the oil) chiefly responsible for the taste and smell (Bisset and Wichtl 2001b). The 

oil’s major components also include estragole, anise ketone, and p-caryophyllene 

(Newall et al 1996a). Other constituents include coumarins and flavonoids (Newall 

et al 1996a).
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Occasionally, the highly toxic coniine-containing fruit of Conium maculatum 

(hemlock) are encountered in individual lots of aniseed (Bisset and Wichtl 2001b). 

In addition, currently, aniseed may be contaminated with up to 1% coriander fruit 

(Bisset and Wichtl 2001b). Aniseed is used as an expectorant and carminative, as 

well as a flavouring (Newall et al 1996a).

3.2.5 Angelica (Angelica archangelica)

Angelica is native to northern Europe and is biennial with a thick fleshy root, 

hollow stems, toothed leaves, and clusters o f greenish flowers in late summer 

(Polunin and Robbins 1999c). Its fruit, leaves, root and rhizome are used, both in 

the food industry as a flavouring and in the pharmaceutical industry as a 

carminative, antispasmodic, diuretic, anti-inflammatory and expectorant (Newall 

et al 1996b). The major constituents o f the fruits include 0.3-1% volatile oil 

containing pinene and limonene, coumarins, Archangelenone (a flavonoid) and 

sugars (Newall et al 1996b).

3.2.6 Hemlock (Conium maculatum)

Hemlock as a drug consists of the dried unripe fruits o f the spotted hemlock, 

which is a poisonous biennial plant indigenous to Britain and Europe. Used 

historically to put criminals to death, it is the commonest of British indigenous 

poisonous plants (Evans 1989e). The fruit is a broad oval shape and about 3mm 

long. It has five prominent primary ridges that give them a beaded appearance. 

The endosperm is deeply groved and is surrounded by well-marked alkaloid-
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containing layers. When treated with potassium hydroxide, hemlock develops a 

strong mousy odour caused by the liberation of the toxic alkaloid coniine. This is 

volatile and may be steam-distilled. It is present to the level o f 1-2.5% together 

with N-methyl coniine, conhydrine, pseudoconhydrine, conhydrinone and y- 

coniceine (Evans 1989e)

3.3 Plant structures

3.3.1 Fruit structure

The types o f fruits encountered in pharmacognosy include simple, aggregate and 

collective fruits. Simple fruits are formed from a gynaecium with one pistil, 

aggregate fruits are formed from more than one pistil and collective fruits are 

formed from not one flower but from an inflorescence (Evans 19891).

In the Umbelliferae^ the fruit is a bicarpellary fruit that splits into two mericarps. 

The pericarp is thin and bounded by an inner and upper epidermis that resemble 

those o f leaves. The outer epidermis may have stomata and hairs. The internal 

tissue in dry fruits are in the form of fibres, while secretory tissue (e.g. oil ducts) 

are commonly present in the pericarps of medicinal fruits. This is the case with the 

fruits o f caraway and dill (Evans 19891). Figures 3.1 and 3.2 shows typical fruit 

structures o f some Umbelliferae.

3.3.2 Seed structure

In the analysis of seeds, care must be taken to distinguish seeds from fruits or parts 

of fruits containing a single seed (e.g. mericarps of Umbelliferae and cereals). 

Generally, a seed consists of a kernel surrounded by one, two or three seed coats.
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with most having two. The kernel may consist o f  an embryo plant only or and 

embryo surrounded by tissues containing food reserves (Evans 1989g).

Seed anatomy can vary in terms o f  numbers o f  cell layers, structure, arrangement, 

colour and cell contents depending on species. The epidermis o f  the outer seed  

coat is often comprised o f  highly characteristic thick-celled walls that may have 

hairs. The storage tissues are com posed o f  uniform cells containing characteristic 

cell contents such as starch, calcium oxalate, fixed oil and volatile oil (Evans 

I989g).

.515

F igu re  3 .1 . D ill fruit. A =  dorsal v iew  o f  a single mericarp. B =  com m issural surface o f  

mericarp (both x 8). C =  transverse section o f  fruit (x  25). c.m  =  carcophore m eristele; c.s  

=  com m issural surfaces; c.v  =  com m issural vitta; en =  endosperm ; f .l .f  =  flattened lateral 

ridges; m =  m eristele; me =  mesocarp; p =  outer and inner epiderm is o f  pericarp; r =  

ridges; ra =  raphe, r.p =  reticulate parenchyma, s = stylopod, t =  testa, v =  vitta. (Evans 

1989f)
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F igu re 3 .2 . Caraway fruit. A = mericarps show ing attachm ents to carpophore. A | =  

mericarp sectioned  longitudinally to show position o f  em bryo; A] =  mericarp side v iew  (x  

8); B =  transverse section o f  mericarp (x 50); em = embryo; en =  endosperm ; end = 

endocarp; me =  mesocarp; r =  three o f  five primary ridges; ra =  position o f  raphe; s = 

stydopod; s.c =  secretory canal; t = testa; v =  vitta; v.b = vascular bundle with associated  

finely  pitted sclerenchym a (Evans 1989g).

The variation in structure between different fruits and seed is considerable. In 

seeds, carbohydrate reserves and vascular tissue are constantly present. Fruits have 

similar characteristics but differ in that the amount o f  vascular tissue is greater and 

lignified elem ents o f  the pericarp are often present (Evans 1989g).

3.3.3 Root structure

The primary root consists o f  a layer com posed o f  a single layer o f  thin-walled cells  

devoid o f  cuticle and bearing root hairs formed as lateral outgrowths o f  the cells.
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The innermost layer of the parenchymatous cortex is differentiated into an 

endodermis with a vascular system.

Increase in root diameter is accomplished by secondary thickening, initiated in the 

zone of ‘fundamental parenchyma’. The cylinder of secondary tissues composed 

of xylem and phloem elements first tend to be arranged in regular radial rows, but 

often becomes less regular owing to irregular growth o f the individual elements 

(Evans 1989h).

3.4 Aims/Objectives

The main aim of this study was to test the suitability o f near-infrared spectroscopy 

for the characterisation of natural products, using the Umbelliferae fruits as a 

major example. Particular emphasis was placed on species identification within the 

family and on the importance o f sample preparation. It was hoped that any 

successful techniques could be used on other natural products of various types 

such as roots and barks. If successful, NIRS could prove to be a useful tool for 

distinguishing between samples that may often appear very similar.

3.5 Samples

18 fennel, 5 hemlock, 3 aniseed, 3 coriander, 3 dill, 2 angelica, 2 Ligusticum, 2 

Laserpitium, and 2 Oenanthe (hemlock waterdropwort) fruit samples were 

obtained from the pharmacognosy archives at the School of Pharmacy, University 

of London as well as from the school’s botanical gardens at Myddleton House, 

Middlesex. In addition, some fennel, aniseed, coriander and dill samples were
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obtained from various supermarkets and health-food stores. The samples were of 

various ages dating from 1992-1998.

In addition to the Umbelliferae samples, other natural products were also analysed. 

These included ground samples of roots such as alkanna, belladonna, burdock, 

gelsemium, gentian, ginger, horseradish, orris, podophyllum and sarsaparilla, as 

well as bark samples such as cascara, cassia, cinchona, cinnamon, frangula, 

liquorice, willow (Salix), witch hazel and wild cherry. In addition, various plant 

parts of some natural products were also analysed to investigate if the technique 

could be used for their identification. These included belladonna flowers, roots, 

stems, and leaves, henbane flowers, leaves, and seeds, hops and hop leaves, 

hyoscyamus stems and leaves, and senna leaves and pods. All were obtained from 

the pharmacognosy archives at the School o f Pharmacy.

3.6 Results and discussion

3.6.1 Spectral characteristics

Figure 3.3 shows sample spectra of all the Umbelliferae fruit samples prior to any 

data pretreatment, while Figure 3.4 shows the same set of spectra after they have 

been SNV-corrected, 2"  ̂derivative transformed. It is clear from these figures that 

all the spectra for the fruits of the various species are extremely alike, holding the 

same general shape and peaks, with just a few variations in baseline levels. 

Looking at just two spectra, such as those o f fennel and hemlock, for example, 

shows that although some slight differences can be detected, it is still difficult to 

attribute specific spectral characteristics to a species. (Figure 3.5). It is therefore
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clear that in the case of herbal materials, identification of samples merely by visual 

inspection of the spectra can be difficult.
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Figure 3.6 shows the SNV-corrected, 2™̂ derivative spectra of the same samples in 

their prepared (ground) state. As in the case of crude samples, spectral similarities 

are still seen, making identification by visual methods virtually impossible unless 

one were to use a modem NIR instrument constructed with a microscope 

attachment. However, testing this type of instrument on herbal materials was 

beyond the scope and time frame of this project.
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Figure 3.7A-3.7I shows sample spectra of each of the nine Umbelliferae species in 

both their ground and unground states. It can be seen from this that for all cases, 

the spectra for both sample states are extremely similar, with just a small 

difference in baseline levels, with the ground spectra having a lower baseline. This 

is most likely explained by the smaller particle size (approximately 500|Lim 

compared to an unground particle size of approximately 3-5mm) o f the ground 

samples. Figure 3.8A-3.81 shows the same spectra after they have been SNV- 

corrected, 2"^ derivative transformed. In these, slight differences between samples 

are made more visible due to the sharper and more well-defined peaks.
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3.6.2 Data analysis

3.6.2.1 Identification method development- Maximum Distance in Wavelength 

Space

As the SNV-second derivative spectra resulted in sharper, more well defined peaks 

and some degree of differentiation between samples, this was used as the data 

pretreatment of choice. Figures 3.9-3.14 shows spectra of representative fennel 

and hemlock seeds in their untreated forms and after various data pre-treatments. 

Among the various data analysis algorithms available in the FOSS Vision® 

software, the Maximum Distance in Wavelength Space method appeared to be the 

most successful, and so was used as the predominant method here. Parameters 

used included a wavelength range of 1100-2500nm and a second derivative gap 

size of 1 Onm. The default threshold match value in the software is 4, and this was 

used initially.

3.6.2.2 Umbelliferae samples

Table 3.1 shows resulting match values for unground Umbelliferae samples after 

using Maximum Distance in Wavelength Space on SNV-corrected, 2"  ̂ derivative- 

transformed spectra. It can be seen from this that the method allowed the correct 

identification of each type o f sample. Match values for correctly matched samples 

ranged from 1.30 for Ligusticum to 3.77 for hemlock. For mismatched samples, 

values ranged from 10.2 for anise against hemlock to 117 for dill against 

Oenanthe. As there is a substantial gap of 6.43 between the highest correctly 

matched value and the lowest mismatched match value, it can be said that this 

method is quite effective in identification o f samples. The largest correct match 

value was rather high, being 3.77. However, as it was below 4.0, the default still
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applies. For ground samples, again, the method was able to correctly discriminate 

the fruits, with correctly matched values ranging from 1.47 for hemlock to 3.84 for 

fennel (Table 3.2). For incorrectly matched ground samples, values ranged from 

7.35 for coriander against hemlock to 90.5 for coriander against Oenanthe. Again, 

although the highest correct match value (3.84) was higher than the ideal, the 

default threshold value appears to be sufficient.

However, 100% identification was not achieved. That is, in fennel, 3 out of 216 

spectra gave rise to failed match values of 4.21, 4.97 and 4.39 for un ground 

samples and 4.28, 4.34 and 4.03 for ground samples. These were all in sample 18, 

and the reason for the failures occurring in this batch will be investigated and 

discussed later in the chapter. For the sake of clarity, these failed values were not 

included in Tables 3.1 and 3.2.
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Figure 3.9. Sample spectra of unground fennel and hemlock fruits
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3.6.2.3 Sample preparation

Table 3.3 shows match values using the Maximum Distance in Wavelength Space 

method for the Umbelliferae samples when both ground and unground samples 

were combined in each category, excluding any ‘failures’ and ‘ambiguous’ results. 

The majority of the samples were correctly identified using this method, with 

correct match values ranging from 1.20 for Oenanthe to 3.99 for fennel and 

mismatched values ranging from 4.45 for fennel against anise to 57.0 for angelica 

against Ligusticum. However, some failures and ambiguous results resulted in the 

cases of fennel and hemlock. In fennel, 12 identification failures were observed, 

ranging from 4.20 to 5.69. In addition, out of the 216 spectra, 18 ‘ambiguous’ 

results were also obtained, where the program identified the fennel samples as 

both fennel and hemlock, giving two match values. For example, in one fennel
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spectrum, a match value of 2.37 was produced for that sample against fennel, as 

well as a value of 3.88 against hemlock. However, in all cases, the lower match 

value gave the correct identity, with the higher value being the incorrect match 

with hemlock. Lower match values ranged from 1.53 to 2.57 and higher match 

values ranged from 3.44 to 3.95.

‘Ambiguous’ results were also observed in 6 hemlock cases, with the program 

identifying those samples as both hemlock and fennel. Lower match value in these 

ranged from 1.69 to 2.58 and higher ones ranged from 3.58 to 3.94. As in the 

fennel samples, all the lower match values were for correct matches (hemlock) and 

the higher ones for incorrect matches (fennel).

Because o f the 7.1% failure rate in fennel and the 5% failure rate in hemlock, it 

may be concluded that it is not a feasible practice to combine two sample 

preparations together when attempting identification. Therefore, keeping a sample 

preparation method consistent is of importance, and this may suggest that a 

recommended technique would be to grind all samples prior to analysis to an 

approximate particle size of 500pm, if they are obtained in the crude state. It 

appears that as well as chemical characteristics, physical ones also play a key part 

in identification.

Table 3.4 shows match values for ground and unground Umbelliferae samples 

using the Maximum Distance in Wavelength Space method. From this, it can be 

said that the method can correctly distinguish between ground and unground forms 

of the same sample, with match values ranging from 5.50 for fennel to 47.8 for 

Oenanthe.
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Table 3.1 Match values for unground Umbelliferae samples using Maximum Distance in
Wavelength Space

Fennel Anise Dill Coriander Hemlock Angelica Laserpitium Ligusticum Oenanthe

Fennel 1.55 - 2^ - 3.56

Anise 67 .2 - 77 .0 - 84.1 1.74-2 .00- 2.19

Dill 23 .5 - 2^ - 25.8 24 .0 -25 .6 - 26.8 1.51 - 1.81-2.24

Coriander 41 .2 - 49 .8-58.2 17. 1- 19.5 -20.7 29 .8- 31 . 1- 36.0 1.50- 2 . 11-2.87

Hemlock 10.9 - 11.3 - 11.6 10.2 - 10.7- 17.2 21 .6 -22 .9 - 23.7 28 .0 -30 .4 - 31.9 1.53- 2 .21 - 3.77

Angelica 25 .9 - 29 .8 - 31.8 39 .4 -41 .5-44.8 27 .8-31 .7-35.1 36 .2-40 .7 -43.1 25 .2 - 30 .5- 38.0 1.43 -2 .04- 2.41

Laserpitium 29 .8 - 31 . 1- 32.3 36 .3-43 . 1- 47.5 32 .4 - 33 .8- 35.2 77 .5- 83 .7 -88.5 32 .8- 35 .2 - 69.1 48 .7 -5 1 .4 -58.3 1.34 -2 .06 -2.36

Ligusticum 32 .6 - 36 .4 - 38.2 29 .3 - 31 .9 - 34.0 38 .6-4 1 .3 -46.7 19.5- 21 .8- 25.2 20 .0 - 25 .6 -39.0 39 .0 -4 1 .7 -48.3 3 1 .8-33 .6 - 36.4 1.30 - 2 .04 - 2.27

Oenanthe 66 .3 - 75 .3 - 80.9 72 . 1- 80 .8- 91.7 102- 111-117 5 0 .6 - 52 .2 - 56.4 59 . 1- 86 . 1- 86.7 22 .2- 2 3 . 1- 24.9 33 .5- 34 .5 - 38.1 9 7 .3 - 109-134 1.77- 2 .07 - 2.22

Left-hand number =  sm allest value; right-hand number = largest value; underlined number =  median value

Table 3.2 Match values for ground Umbelliferae samples using Maximum Distance in 
Wavelength Space

Fennel Anise Dill Coriander Hemlock Angelica Laserpitium Ligusticum Oenanthe

Fennel 1. 19- 2 .26 - 3.84

Anise 4 3 .4 - 4 5 .4 - 47.8 1.68 - 1.87- 2.49

Dill 30 .5 - 32 .2 - 41.3 30 .4 -34 .9 - 36.2 1.56 - 1.93 - 2.43

Coriander 14.3- 15.0 - 25.2 4 1 .5 -53 .6 - 58.4 19.9 -38 .9 -47.3 1.55- 1.95 - 3.02

Hemlock 8 . 19- 8 .22 - 8.49 9 .76- 11.8 - 12.4 11.9 - 15.5-37.8 7 .35 - 8 .87 - 10.9 1.47 - 2 . 16- 3.11

Angelica 47 .5 - 48 .8 - 49.5 31 .6 -32 . 7 -33.7 25 . 8-28 .2 -32.2 33 .7 -40 . 5- 57.1 23 .4 - 32 .5-45.3 1.51 - 1.70- 2.37

Laserpitium 56 .9 - 59 .6 - 63.6 44 . 1-46 .8-47.7 28 .3 - 31 .3- 34.3 29 .9 - 37 .4 -48.6 28 .3 - 32 .9 - 54.7 55 .4 -6 3 .2 - 73.7 1.67 - 1.62 -2.21

Ligusticum 4 6 .4 - 47 .0 - 71.0 64 . 1-67 .7 -68.3 33 .0 -37 .9 -40.9 43 .3- 54 . 8- 73.2 33 .9 - 39 .7- 59.1 39 .0 -4 4 .4 - 51.9 25 .4 - 26 .5- 28.5 1.58- 1. 87- 2.50

Oenanthe 4 9 . 1- 51 .7- 63.8 4 9 .5- 51 .9 -52.4 37 .3 -4 0 .5 -45.3 56 .5 -66 .7 -90.5 39 .4 - 57 .5- 61.1 49 .4 -5 2 .8 -62.0 6 6 .7- 71 .8-90.2 52 . 1- 5 3 .4 - 61.7 1.65 - 1.88- 2.45

Left-hand number = sm allest value; right-hand number =  largest value; underlined number = median value
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Table 3.3 Match values for Umbelliferae samples using Maximum Distance in Wavelength
Space, combining both ground and unground samples

Fennel Anise Dill Coriander Hem lock A ngelica Laserpitium Ligusticum Oenanthe

Fennel ] . 42 - 2 .33- 3.99

Anise 4 .45 - 5 .44 - 5.81 1.41 - 1.72-2.88

Dill 5 . 16-6 .42- 10.3 10.2 - 10.4 - 13.1 1.71 -1 3 6 - 2.72

Coriander 4 .98 - 6 .66 - 8.13 25 .6 - 42 .8- 53.6 11.7- 17.7 - 30.9 1.41-2 .56-3.41

Hemlock 4 .68 -5 .32 -6.42 8 .02 - 8 .96 - 11.0 10.8- 14.0 - 27.1 6 .59-9 .24 - 13.3 1.31 -2 .67 - 3.63

Angelica 16.4 - 16.4 - 18.0 19.9 - 21 .2 - 24.8 15.2 - 17.4 - 22.7 21 .8-24 .2 -38.0 13.6 - 17.6 -24.4 1.51-2 .30- 3.19

Laserpitium 5 .62 - 7 .30- 8.05 25 .4 - 26 .8- 32.1 14. 1- 18.3 - 34.9 16.7-22 .9 -33.4 17.8-20 .2 - 35.0 33 .2 -35 .4 -42.2 1.36 - 2 .30 - 2.89

Ligusticum 6 .56 - 7 .66 - 10.9 16. 1- 20 .0 - 27.4 14.3- 15.9 - 19.3 19.4 -24 .3 -45.3 11.9- 17.4 - 35.6 37 .8 -4 6 .0 - 57.0 13.3 - 16.6 -23.3 1.25 - 2 . 15-2.97

Oenanthe 10.0 - 12.6 - 14.0 28 .4 - 29 .5-41.5 19.0 - 23 .2- 46.0 25 .4 -34 .9 -51.9 18.9 -28 .5 -44.5 19.3-2 3 .4 - 26.1 14. 1- 19 .0 - 33.0 28 .6 - 34 .7-40.9 1.20- 1.77- 2.63

Left-hand number =  sm allest value; right-hand number =  largest value; underlined number =  m edian value

Table 3.4 Match values for ground and unground Umbelliferae samples using Maximum Distance 
in Wavelength Space

Unground Fennel Anise Dill Coriander Hemlock Angelica Laserpitium Ligusticum Oenanthe

5 .50 - 6 .42 - 7.95 33 .9 - 37 .9 - 46.2 13.7 - 16.4 - 18.0 23 .9-26 .5-27.9 9 .28 - 10.3 - 11.4 10.3 - 13 .7 - 22.0 10. 1- 11 .0 - 15.4 15 .2 - 20 . 1- 28.9 39 .3 -43 .0 -47.8

Ground Fennel Anise Dill Coriander Hemlock Angelica Laserpitium Ligusticum Oenanthe

Left-hand number =  sm allest value; right-hand number =  largest value; underlined num ber =  m edian value
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3.6.2.4 Failedfennel spectra

As mentioned earlier, initial analysis of the Umbelliferae samples yielded three 

failures in the fennel samples in both the ground and unground states. These were 

all produced by the same sample (sample number 18), and thus this sample was 

examined more closely. It was found that this specimen was considerably newer 

than the other 17 fennel seed batches by over a year. Thus, it was suspected that 

due to the relative freshness of this sample, a larger amount o f moisture was 

present, causing it to produce some failures when compared to the other older 

seeds. To test this theory, the sample was taken and dried in an oven at 70°C, 

taking spectra and weights every half-hour until a consistent weight was reached. 

At the end of this process, the original set of spectra for fennel number 18 was 

replaced by the new set of spectra of the drier sample and identification was again 

attempted.

Figure 3.15 shows the spectra obtained from unground fennel number 18 as it 

dried in the oven. From this, it can be seen that the peaks appear to decrease with 

each time interval, suggesting that excess moisture is being driven away. A close- 

up of the vicinity near the peak for water (approximately 193Onm) (Figure 3.16) 

shows this more clearly.

When the spectra for the dried fennel number 18 was used instead o f the original 

one, it was possible to achieve 100% identification of all samples, in both the 

coarse and ground states. Match values were all below 4 for correctly matched 

samples. Thus, it can be said that the reason for the initial failure was due to 

different amounts of moisture in the samples. This may suggest that in order for
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the method to work efficiently, samples need to be relatively similar in terms of 

dryness. Indeed, initially, fennel number 18 looked considerable greener in 

appearance.

Thus, a useful approach would be to dry all new or fresh samples prior to analysis 

in order to reduce failures caused by different amounts of moisture.
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Figure 3.15. SNV-2"*  ̂derivative spectra o f fennel number 18 (unground) dried over time
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J. 6.2.5 Other samples

Similar techniques were used on other natural product samples in order to check 

their range of applicability. Twelve different samples of each natural product were 

examined in their ground state, which had been prepared to an approximate 

particle size of 500pm.

3.6.2.5.1 Roots

Table 3.5 shows match values obtained when using the Maximum Distance in 

Wavelength Space method on various root samples. It is clear from this that the 

method is effective in correctly identifying all of the roots, with correct match
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values ranging from 1.87 for alkanna to 2.47 for burdock. Successful 

discrimination values ranged from 25.2 for alkanna against horseradish to 163.9 

for gelsemium against orris. In this case, the threshold match value o f 4 appears to 

be a reasonable one.

3.6.2.5.2 Barks

Table 3.6 shows match values for various bark samples when using the Maximum 

Distance in Wavelength Space algorithm. Again, the method appears to be 

effective in discriminating all the samples, with correctly matched values ranging 

from 2.15 for Salix to 2.62 for cassia. For samples that were correctly 

distinguished, values were from 9.57 for cascara against cassia to 161.1 for 

cinnamon against liquorice. Again, as there is a substantial gap o f 6.95 between 

the largest correctly matched value and the smallest mismatched value, the 

threshold o f 4.0 is a reasonable one for identification.

3.6.2.5.3 P lant parts

Table 3.7 shows match values obtained for various plants and their plant parts. 

From this, it can be seen that although samples may come from the same plant, 

their different parts can be successfully identified using the Maximum Distance in 

Wavelength Space method. Correctly matched values ranged from 2.12 for 

belladonna flowers to 2.40 for henbane seeds and hyoscyamus pods. Mismatches 

ranged from 22.2 for hyoscyamus pods against leaves to 134.5 for hops and hop 

leaves. The very high lower limit for successful mismatch values suggests that as 

in all the other cases, the threshold can be kept at 4.0.
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It was also possible to demonstrate that the method can work in a general way as 

well. Table 3.8 shows match values obtained when all the plant parts from Table

3.7 were combined for each plant. That is, for example, belladonna flowers, roots, 

stems, and leaves were combined and treated as belladonna in general, while senna 

leaves and pods were combined and treated as senna in general. Surprisingly, the 

method was able to correctly identify all the plants even when they were a 

combination of various parts. Correctly matched values ranged from 1.98 for 

henbane to 2.32 for hop and mismatched values ranged from 17.6 for henbane 

against hyoscyamus to 76.8 for hop against senna. Thus the method can be used in 

both a specific and general way.

Table 3.5. Match values for various root samples using Maximum Distance in Wavelength Space

Alkanna Belladonna Burdock Gelsemium Gentian _ Ginger Horseradish Orris Podophyllum Sarsaparilla
Alkanna 1.87

Belladonna 48.3 1.92

Burdock 108.8 78.9 2.47

Gelsemium 50.9 91.3 91.2 2.29

Gentian 101.2 61.0 63.6 91.6 2.42

Ginger 128.7 103.1 116.6 154.4 132.6 2.30

Horseradish 25.2 28.5 30.3 50.4 28.2 27.7 2.28

Orris 127.1 69.7 72.5 163.9 136.4 53.6 113.8 2.51

Podophyllum 43.6 36.7 48.4 80.6 66.5 41.3 39.8 27.1 2.23

Sarsaparilla 50.6 31.4 58.4 28.3 83.5 50.5 75.8 39.3 44.8 2.07

Numbers are average values, n = 144 spectra for each sample
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Table 3.6. Match values for various bark samples using Maximum Distance in Wavelength

Cascara Cassia Cinchona 
langsifolia

Cinchona
officianalis

Cinnamon Frangula Liquorice Salix Witch
Hazel

Wild
Cherry

Cascara 2.24

Cassia 9.57 2.62

Cinchona 57.8 
langsifolia 
Cinchona 58.9 
officianalis 
Cinnamon 63.3

40.1 2.19 

96.0 45.3 

99.7 38.5

2.36

51.3 227

Frangula 18.5 22.7 37.7 48.0 33.7 2.29

Liquorice 45.5 116.4 88.9 62.8 161.1 102.6 2.36

Salix 22.0 30.9 70.6 58.0 34.4 23.8 61.8 2.15

Witch 14.8 
Hazel
Wild 20.0 
Cherry

22.3 30.2 

25.8 30.8

32.4

29.0

17.5

17.8

15.5

20.5

17.2

30.4

16.7

18.1

2.25

41.0 2.36

Numbers are average values, n = 144 spectra for each sample

Table 3.7. Match values o f various plants and their parts using Maximum Distance 
Wavelength Space

in

Belladonna flower Belladonna root Belladonna stem Belladonna leaf
Belladonna flower 
Belladonna root 
Belladonna stem 
Belladonna leaf

2.12
121.4
34.4  
48.0

2.29
23.5
61.6

2.35
90.6 2.19

Henbane flower Henbane leaf Henbane seed
Henbane flower 
Henbane leaf 
Henbane seed

2.29
45.1
50.0

2.24
51.1 2.4

H yoscyamus pod Hyoscyamus stem H yoscyam us leaf
H yoscyamus pod 
H yoscyamus stem 
H yoscyam us leaf

2.4
26.1
22.2

2.36
30.7 2.37

Hop Hop leaf
Hop
Hop leaf

2.23
134.5 2.34
Senna leaf Senna pod

Senna leaf 
Senna pod

2.38
26.6 2.28

Numbers are average values, n = 12 for each plant part
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Table 3.8. Match values o f combined plant parts for various plants using Maximum Distance in 
Wavelength Space

Belladonna Henbane Hop H yoscyamus Senna

Belladonna 2.07

Henbane 22.5 1.98

Hop 22.8 27.2 2.32

H yoscyamus 2 1 .\ 17.6 40.9 2.15

Senna 39.8 50.4 76.8 70.7 2.12

Numbers are average values, n = 12 for each plant part

3.7 Conclusion

This preliminary study has shown that near-infrared spectroscopy in combination 

with the Maximum Distance in Wavelength Space method can be used as a 

successful tool in the characterisation of herbal materials. In the case o f the 

Umbelliferae samples, successful identification of samples was achieved in both 

crude and prepared (ground) states, although the libraries contained samples o f 

various ages and conditions. Combining ground and unground samples was also 

successful to some extent, although the few failures and ambiguous results suggest 

that when analysing samples, they should all be consistent in the way they were 

prepared. Thus, a useful suggestion may be to grind all future samples to a similar 

particle size (500 pm) prior to analysis. It was also found that moisture may affect 

the successful discrimination of samples, as was the case of fennel number 18. 

Thus, it may be advisable in the future to dry all relatively new or fresh materials. 

Driving off any excess moisture appeared to be successful in solving the observed 

problem in initial identification.
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In the case of other plant materials, the method was equally successful, suggesting 

that NIRS would be a powerful technique in the identification o f any unknown 

sample of vegetable origin. It also appeared successful in specifically 

discriminating various parts of the same plant. On a more general level, it was also 

able to categorise various plant libraries made up of different plant parts 

combined. This may be of particular use in forensic science, when often the main 

aim is to identify the plant type of an unknown substance that may contain a 

mixture o f two or more plant parts.
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Chapter 4: The Identification of Digitalis purpurea 

Using Near-Infrared Spectroscopy
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4,1 Introduction

A large number of plants throughout the plant kingdom contain C23 or C24 

steroidal glycosides that exert a slowing and strengthening effect on the failing 

heart (Evans 1989). Digitalis purpurea, more commonly known as the foxglove, 

has been used to treat cardiac patients since 1785, when the Birmingham physician 

and botanist William Withering introduced it for the treatment o f dropsy, which is 

now known to be the result of a heart condition (Evans 1989e). Indeed, two o f its 

components, the glycosides digoxin and digitoxin are the most popular treatments 

for rapid atrial fibrillation (Cox & Balick 1994).

Digitalis consists of the dried leaves of Digitalis purpurea, and is required to 

contain not less than 0.3% of total cardenolides calculated as digitoxin (British 

Pharmacopoeia 2001a). The prepared form of the drug is a standardised powder, in 

which the leaf may be diluted to the required strength by the addition of weaker 

powdered digitalis or powdered grass (Evans 1989e). Present methods for 

analysing Digitalis, which include chromatographic techniques and microscopy 

(Evans 1989e, British Pharmacopoeia 1999), are time consuming and, in the 

former case, destructive. In the latter case, the procedure involves meticulous 

observations including the presence and appearance of stomata and hairs on both 

leaf surfaces, the shapes o f the various cells, and the absence of calcium oxalate 

crystals. (Evans 1989e) As a result, NIRS may have its advantages as a method for 

its analysis, as it is rapid, non-destructive, and can provide simultaneous 

information about the chemical composition and physical state, including moisture 

content and particle size data (Moffat et al 1997).
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This investigation aims to use NIRS for the characterisation of Digitalis purpurea, 

the most widely used species of Digitalis, using relatively simple procedures. It is 

hoped that NIRS in this case can be used to achieve rapid identification and to 

confirm purity of this medicinally important natural product. Digitalis purpurea 

was chosen as the subject of interest in this study, as it can often be confused with 

other species of Digitalis, such as ambigua, mertonensis, orientalis and lanata, 

which may appear morphologically similar, but can differ in the amount and 

presence o f glycosides. In addition, adulteration by non-digitalis plants has also 

been recorded. Examples include comffey {Symphytum officinale), primrose 

{Primula vulgaris), elecampane {Inula helenium), ploughman’s spikenard {Inula 

conyza) and nettle {Urtica dioica) (Evans 1989e). Adulteration by these can cause 

unwanted toxic side effects. For example, the pyrrolizidine alkaloid constituents of 

comfrey are known to have hepatotoxic properties (Newall et al, 1996).

4.2. Aims

In this investigation, the use of NIRS as a technique for the rapid identification of 

Digitalis pwrpwreawasexamined. If successful, this would be advantageous, as 

traditional methods are destructive and time-consuming.

4.3 Materials

4.3.1 Digitalis samples

Twelve samples each o f 5 species of Digitalis leaf {Digitalis purpurea, Digitalis 

lanata. Digitalis mertonensis. Digitalis ambigua. Digitalis orientalis), all in the
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dried state, were obtained from the pharmacognosy archives at the School of 

Pharmacy, University of London, as were stem samples o f Digitalis purpurea. 

Leaf samples of some other pharmaceutically important natural products (twelve 

of each) were also obtained from the archives. These included belladonna, 

hyoscyamus, stramonium, buchu, eyebright, senna, peppermint, hop and coltsfoot.

4,3,2 Data analysis

The data analysis methods used are described and explained in Chapter 2.

4,4 Results and discussion

4,4,1 Spectral characteristics

Figure 4.1 shows sample spectra from the five species o f Digitalis. Figure 4.2 

shows the same set of spectra after they have been SNV-corrected, second 

derivative-transformed. A preliminary investigation on the various data 

pretreatments showed that the SNV-2"^ derivative combination provided most 

successful results, as well as sharper, more well-defined peaks and the removal of 

scatter effects and particle size dependency.
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Figure 4.1. Typical spectra of 5 D ig i ta l i s  species. A =  p u r p u r e a ,  B= la n a ta ,  C =  
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Figure 4.2. SNV-corrected, 2"̂  ̂derivative transformed spectra o f 5 D ig i ta l i s  

species.
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4.4,2 Identification - Maximum Distance in Wavelength Space

4.4.2.1 Different species

By using the Maximum Distance in Wavelength Space method on SNV-corrected, 

second derivative-transformed spectra in FOSS Vision software, it was possible to 

completely categorise Digitalis as being distinct from the other leaf samples 

investigated. Table 4.1 shows resulting match values between the 5 Digitalis 

species and other leaf samples of pharmaceutical interest. Values ranged from 12.1 

to 59.5, which is well above a reasonable value expected if classification to a 

sample had occurred. Between the five species of Digitalis, the lowest value 

observed for matched samples was 1.32 for Digitalis orientalis and the highest 

was 2.37 for Digitalis amhigua (Table 4.2.). Figure 4.3 shows the range of match 

values observed in both matched and mismatched samples. It is clear from this that 

there is a substantial gap of 5.03 between even the highest correctly matched value 

and the lowest mismatched number, and so 4.0 appears to be a generous threshold 

limit. Based on this value, it can be said that the method was successfully able to 

achieve complete identification between the five Digitalis species as well as 

between Digitalis and other genuses. It was also possible to say that based on the 

results among the different species of Digitalis, Digitalis purpurea appears to be 

most similar to Digitalis lanata, then to Digitalis amhigua, then to Digitalis 

orientalis, and finally to Digitalis mertonensis. One reason for its similarity to 

Digitalis lanata could be the fact that their primary glycosides closely resemble 

each other (Evans 1989e).
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To verify reproducibility, the same procedure was carried out on two different 

batches of the same samples. For the five species of Digitalis, results ranged from 

1.25 to 2.26 for the first batch and 1.36 to 2.57 for the second batch for correctly 

matched samples. For mismatched Digitalis samples, match values ranged from 

7.22 {purpurea against lanata) to 75.3 {orientalis against ambigua) for the first 

batch and 7.67 (purpurea against lanata) to 80.2 {orientalis against amhigua) for 

the second. When comparing Digitalis with other leaves, results were also 

consistent with the initial findings. Values ranged from 11.5 to 57.9 for the first 

batch and 13.2 to 62.1 for the second.

Table 4.1. Maximum Distance in Wavelength Space match values between leaves o f 5 

D i g i t a l i s  species and some other leaf samples for SNV-transformed, 2"  ̂derivative spectra.

L eaf sample D. purpurea D. lanata D. m ertonensis D. orientalis D. ambigua
Belladonna 34.0 15.7 41.3 19.0 15.5

Hyoscyamus 46.5 19.0 52.5 21.9 30.3

Stramonium 41.9 17.9 46.0 26.7 27.5

Buchu 56.5 48.0 27.1 25.9 59.5

Eyebright 27.0 26.6 31.2 32.3 31.2

Senna 32.7 27.3 33.6 17.7 17.6

Peppermint 39.2 16.6 52.5 21.2 19.7

Hop 24.3 12.1 35.7 16.8 12.2

Coltsfoot 55.8 35.2 47.0 40.0 35.3

Numbers are average values
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T ab le  4.2. Maximum Distance in Wavelength Space match values between leaf samples 

o f 5 D i g i t a l i s  species for SNV-corrected, 2"  ̂derivative spectra.

L eaf sample D. purpurea D. lanata D. m ertonensis D. orientalis D. ambigua
D. purpurea 1.65-1.90-2.26

D. lanata 7.41-9.04-10.97 1.57-1.96-2.20

D. mertonensis 27.92-31.36-34.22 12.37-14.41-16.05 1.52-1.91-2.25

D. orientalis 14.75-15.23-16.63 14.24-16.71-18.25 16.74-19.68-21.19 1.32-1.91-2.31

D. am bigua 10.03-11.28-12.74 10.64-19.02-21.73 14.11-18.46-20.95 60.71-72.40-78.43 1.62-2.03-2.37

Left hand number = smallest value, underlined number = median value, and right hand number = largest value

1.32  1----- 2 .37  
-----1

7.4
|-—

PA SS FAIL
----- ^

78 .43

10

F igu re 4.3 Match value ranges for correct identification (pass) and incorrect 

identification (fail) for five species of D i g i ta l i s
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4.4.2.2 Plant parts for Digitalis purpurea

Table 4.3 shows match values between leaf and stem samples of Digitalis 

purpurea. Values between the same plant parts ranged from 1.52 to 2.26, and 

those between different plant parts were from 29.04 to 67.41. As a result, it can be 

said that the method was successfully able to distinguish between these different 

plant parts of the same species. Figure 4.4 shows the sensitivity of the technique 

for the discrimination of plant parts. Here, identification using Maximum Distance 

in Wavelength Space was attempted on Digitalis purpurea leaf samples that had 

been successively diluted with Digitalis purpurea stem. This was carried out on 

100% leaf, 75 % leaf, 50% leaf, 25% leaf and 0% leaf (100% stem). From Figure 

4.4, it is clear that a sample with even small amounts o f stem (2%) can be detected 

and identified as distinct from a leaf-only sample.
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Table 4.3. Match values between SNV-corrected, 2"  ̂derivative spectra o f D i g i ta l i s  

p u r p u r e a  leaves and stems using Maximum Distance in Wavelength in FOSS Vision 
software.

Plant part leaves stems
leaves 1.65-1.90-2.26 48.82-56.28-67.41
stems 29.04-34.29-40.80 1.52-1.77-2.16
Left hand number = smallest value, underlined number = median value, right hand number 
largest value.

a

- C
B

4.0

40 20 080 60100

Percentage leaf

F igure 4.4. Maximum Distance in Wavelength Space match values obtained from 
attempted identification (as leaf) of successive dilutions o f D . p u r p u r e a  leaf (100% leaf 
100% stem). Error bars indicate ± 1 standard deviation.
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4.4.3 Correlation in Wavelength Space

Table 4.4 shows Correlation in Wavelength Space values between the five species 

o f D i g i t a l i s  leaf. Values ranged from virtually complete correlation (0.999) to 

0.953. Relatively high values were observed when the same procedure was applied 

between the five D i g i t a l i s  species and other natural products, with the lowest 

observed value being 0.890 for D i g i t a l i s  m e r t o n e n s i s  against Stramonium and the 

highest being 0.991 for D i g i t a l i s  a m b i g u a  against hop leaves (Table 4.5). As 

resulting values were so high, setting a threshold limit appears rather problematic, 

with 0.995 being probably the lowest reasonable value. However, when using that 

threshold value, it can be said that the Correlation in Wavelength Space method 

can successfully identify D i g i t a l i s  as being distinct from samples from other 

genuses, and also the five species as being unlike from each other. It can also be 

seen from Table4.4that D i g i t a l i s  p u r p u r e a  appears to be most like D i g i t a l i s  l a n a t a  

and least like D i g i t a l i s  m e r t o n e n s i s  among the 5 species, with D i g i t a l i s  a m b i g u a  

and D i g i t a l i s  o r i e n t a l i s  in between the two. It was also possible to utilise the 

method for the correct identification of D i g i t a l i s  p u r p u r e a  leaves and stems (Table 

4.6).

To verify reproducibility, the same procedure was carried out on two more batches 

of the same samples. For the five species of D i g i ta l i s ^  results ranged from 0.999 to 

0.950 for the first batch and 0.999 to 0.952 for the second batch. When comparing 

D i g i t a l i s  with other leaves, results were also consistent with the initial findings. 

For both batches, the highest results were observed for D i g i t a l i s  a m b i g u a  and hop
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leaves (0.98 and 0.98) and the lowest were observed for Digitalis mertonensis and 

Stramonium (0.882 and 0.887).

Table 4.4. Correlation values between 5 species of D i g i ta l i s  leaves using the Correlation in 
Wavelength Space method in FOSS Vision software on SNV-corrected, 2"  ̂derivative spectra.

Species D. purpurea D. lanata D. mertonensis D. orientalis D. am bigua
D. purpurea 0.9995
D. lanata 0.9940 0.9977
D. m ertonensis 0.9644 0.9648 0.9995
D. orientalis 0.9682 0.9720 0.9356 0.9995
D. ambigua 0.9873 0.9812 0.9624 0.9524 0.9990

Table 4.5. Correlation values between 5 species of D i g i ta l i s  leaves and other leaf samples using 
the Correlation in Wavelength Space method in FOSS Vision software, on SNV-corrected, 2"  ̂
derivative spectra.

Species D. purpurea D. lanata D. mertonensis D. orientalis D. ambigua
Stramonium 0.964 0.955 0.890 0.922 0.952
Coltsfoot 0.951 0.960 0.931 0.952 0.948
Eyebright 0.964 0.973 0.954 0.977 0.943
Hyoscyamus 0.978 0.973 0.914 0.956 0.971
Buchu 0.936 0.935 0.914 0.932 0.940
Belladonna 0.982 0.976 0.920 0.939 0.978
Senna 0.984 0.985 0.953 0.965 0.970
Hop 0.987 0.979 0.945 0.940 0.991
Peppermint 0.990 0.986 0.943 0.964 0.982

Table 4.6. Correlation values between D i g i ta l i s  p u r p u r e a  leaves and stems using the Correlation 
in Wavelength Space method in FOSS Vision software on SNV 2"  ̂derivative spectra.

Plant part Leaves Stems

Leaves 0.9995 0.9018
Stems 0.9009 0.9985
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4.4.4 Correlation coefficients

When looking at r  values between D i g i t a l i s  and other natural products (Table 4.7) 

it is clear that values are rather high, ranging from 0.891 to 0.990. Results between 

the 5 species are also quite variable, with the lowest being 0.936 and the highest 

being 0.996 (Table 4.8) for mismatched samples. The r  value between D i g i t a l i s  

p u r p u r e a  leaves and stems was a fairly low 0.903. Again, however, it is clear that 

in order of similarity to D i g i t a l i s  p u r p u r e a  among the five species, the same order 

applies to that found in the previous two investigations. It was also possible to use 

r  values to correctly identify an ‘unknown’ sample of D i g i t a l i s  p u r p u r e a .  When r  

values were calculated between the ‘unknown’ and the 5 species, the highest value 

was observed between the ‘unknown’ and D i g i t a l i s  p u r p u r e a  in the library (Table 

4.9).

When comparing this method to Correlation in Wavelength Space, it can be seen 

that results are extremely similar, both being characterised by high values that 

make the setting of thresholds difficult.
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Table 4.7. Table o f correlation coefficients, r , between SNV-corrected, 2"  ̂derivative spectra o f 
leaf samples of 5 D i g i ta l i s  species and other leaf samples.

Species D. purpurea D. lanata D. mertonensis D. orientalis D. am bigua
Belladonna 0.983 0.979 0.922 0.940 0.980
Hyoscyamus 0 .979 0.975 0.916 0.957 0.972
Senna 0.984 0.988 0.954 0.971 0.965
Stramonium 0.964 0.957 0.891 0.923 0.951
Hop 0.987 0.980 0.946 0.939 0.992
Peppermint 0.990 0.989 0.945 0.965 0.983
Coltsfoot 0.952 0.962 0.933 0.952 0.949
Eyebright 0.965 0.976 0.955 0.977 0.945
Buchu 0.937 0.938 0.915 0.941 0.933

T able 4.8. Table o f correlation coefficients. r , between SNV-corrected, second derivative
transformed spectra o f leaf samples of 5 D ig i ta l i s  species.

Species D. purpurea D. lanata D. mertonensis D. orientalis D. am bigua
D. purpurea 1.0
D. lanata 0.996 1.0
D. mertonensis 0.965 0.968 1.0
D. orientalis 0.969 0.973 0.936 1.0
D. a m b i^ a 0.987 0.983 0.963 0.952 1.0

T able 4.9. Table o f r  values between SNV-2 derivative spectra o f 5  D i g i ta l i s  species and an
‘unknown’ sample o f D . p u r p u r e a .

D. purpurea D. lanata D. mertonensis D. orientalis D. ambigua

‘unknown’ 0.9985 0.9953 0.9685 0.9735 0.9889
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4,4.5 Two wavelength plot

The NIR absorption spectrum of water includes five bands with maxima at 1940, 

1450, 1190, 970, and 760 at room temperature (Osborne et al 1993). As these 

peaks could be used to quantify water content of materials, they were avoided as 

various wavelength combinations and different data pretreatments were tested on 

leaves of the five Digitalis species. Pre-treatments attempted were: 1̂  ̂ to 4^ 

derivative, SNV-1®  ̂to 4̂  ̂ derivative, de-trend, SNV-de-trend, de-trend-SNV. The 

final combination used was the two wavelengths 1150 and 2160nm, on baseline- 

corrected (de-trend), SNV-transformed spectra. These wavelengths were chosen 

empirically, as the resulting plot (Figure 4.5) showed the best visual separation of 

the five species of Digitalis compared to other combinations attempted. Using this 

method on two new batches of the same samples yielded results (plots) that were 

highly comparable to the first batch both times.

4.4.6.1 Identification using * nearest neighbours*

Samples o f Digitalis leaf that were not used previously were treated as 

“unknowns” and their absorbances were plotted in the resulting two-wavelength 

plot. When the “nearest neighbours” method o f analysis was then carried out, it 

was clear that each “unknown” species of Digitalis leaf could be identified 

correctly. That is, it was possible to correctly assign all the species that were 

treated as unknowns to the groups that gave rise to the smallest Euclidean 

distances (i.e. nearest neighbours). It is clear from Table 4.10 that the closest 

neighbours for each unknown group came from the species that it really belonged 

to. For example the average Euclidean distance between the Digitalis purpurea
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“unknown” and the D i g i t a l i s  p u r p u r e a  reference datapoints was 0.071 compared 

to 0.213, 0.443 and 0.686 for the same unknown against D i g i t a l i s  l a n a t a .  D i g i t a l i s  

m e r t o n e n s i s  and D i g i t a l i s  o r i e n t a l i s ,  respectively. Figure 4.6 shows the 4 

“unknown” D i g i t a l i s  species incorporated into the plot represented in Figure 4.5.

In terms of reproducibility, results were consistent when this method was 

attempted on two new batches of the same samples. Euclidean distances for 

correctly matched samples were 0.082, 0.122, 0.187 and 0.057 for the first batch 

and 0.068, 0.115, 0.162 and 0.050 for the second batch, for D i g i t a l i s  p u r p u r e a .  

D i g i t a l i s  l a n a t a .  D i g i t a l i s  m e r t o n e n s i s  and D i g i t a l i s  o r i e n t a l i s ,  respectively. For 

mismatched samples, distances ranged from 0.210 { D i g i t a l i s  p u r p u r e a  unknown 

against D i g i t a l i s  l a n a t a )  t o  1 .181 { D i g i t a l i s  m e r t o n e n s i s  unknown against D i g i t a l i s  

o r i e n t a l i s )  for the first batch and 0.225 { D i g i t a l i s  p u r p u r e a  unknown against 

D i g i t a l i s  l a n a t a )  to 1.132 { D i g i t a l i s  m e r t o n e n s i s  unknown against D i g i t a l i s  

o r i e n t a l i s )  for the second. A possible threshold for this method therefore would be 

0.19. That is, for D i g i t a l i s ,  a sample can be identified as a species if  its distance 

from the reference datapoints is no more than 0.19.
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Table 4.10. Average Euclidean distances between 5 Digitalis species and 4 ‘unknown’ samples 

between points on a 2-wavelength plot for de-trended SNV spectra, wavelengths 1150-2160nm.

D. purpurea D. lanata D. mertonensis D. orientalis D. am bigua

D. purpurea  

(unknown)

0.071 0.182 0.416 0.667 0.163

D. lanata  

(unknown)

0.213 0.119 0.203 0.884 0.336

D. m ertonensis 

(unknown)

0.443 0.265 0.184 1.104 0.567

D. orientalis 

(unknown)

0.686 0.853 1.077 0.052 0.580

Smallest values are underlined
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4.5 Polar Qualification System

The suitability for the PQS method for the discrimination of the five species of 

Digitalis was tested using various wavelength increments. Figure 4.7 shows the 

best-separated plot that was achieved, using the range 1290 -  1390 nm. It can be 

seen from this that PQS is successful in separating the samples according to 

species. However, unlike the two-wavelength method, separation is not as distinct. 

That is, the datapoints of Digitalis lanata and Digitalis orientalis appear to drift 

slightly in a horizontal manner, rather than being formed into a tight cluster.
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Figure 4.7. A PQS plot for five species o f Digitalis using the wavelength range 1290- 
1390 nm
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4.6 Conclusion

In the first instance, it was possible to completely identify Digitalis purpurea as 

being distinct from other samples, using a Maximum Distance in Wavelength 

Space statistical comparison method on Standard Normal Variate corrected, 

second derivative spectra. Match values ranged from 1.65 to 2.26 for correct 

identification. It was also possible to discriminate between different plant parts of 

Digitalis purpurea, with match values ranging from 1.52 to 2.26. Although less 

conclusive, it was also possible to use the Correlation in Wavelength Space 

method on Standard Normal Variate corrected, second derivative spectra to 

identify Digitalis purpurea, with a resulting value of 0.9995. Again, it was also 

possible to distinguish between different plant parts. The use o f correlation 

coefficients {r values) for the correct identification of an unknown sample o f D. 

purpurea was also possible, with a resulting r value of 0.9953. The two- 

wavelength, nearest neighbours analysis carried out for baseline-treated (de­

trended), standard normal variate corrected spectra at 1150 and 2160nm resulted in 

the successful identification of unknown samples.

Table 4.11 shows a summary of various results for Digitalis purpurea. Based on 

these results, it appears that Maximum Distance in Wavelength Space is the most 

successful method for the identification of Digitalis from other plants as well as 

identifying a single Digitalis species, with very distinctly low or high match values 

being observed depending on matched or mismatched samples. It was also 

sensitive enough to successfully distinguish between different plant parts. The use 

o f correlation values is also successful to some extent, but setting thresholds is
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troublesome, as most of the resulting values are quite high. Therefore, more work 

is needed in order to make the methods more robust. Although used commonly in 

the pharmaceutical industry, PCA was not used in this instance, as preliminary 

results proved inconclusive. The use of two wavelength plots is useful in pattern 

recognition and giving a good visual idea o f the differences between the species. 

However, this method is still in its preliminary stages, and it is necessary to devise 

a method to select the most ideal wavelength combinations and data pre-treatments 

to use, as there may exist other combinations that are potentially more successful 

than the ones used here.

Like the two-wavelength method, the PQS method provided a good visual 

separation o f the five species as being distinct from each other. However, 

separation in this instance was not as well defined as that achieved by the two- 

wavelength method. This may be due to the fact that PQS uses a range of 

wavelengths, rather than the two-wavelength method, which uses two distinct 

wavelengths where separation is best observed. A possible extension to this study 

(which was beyond the time frame of this project) would be to examine the 

constituents of the various plant leaves and different parts of the plant, and then 

target specific wavelengths to get the most discrimination.

Therefore, it can be said that NIRS does possess the potential for the rapid 

characterisation and identification of natural products, in this case. Digitalis 

purpurea. This is o f significant importance, as NIRS is faster than the commonly 

used traditional techniques. While current methods may take hours, analysis by 

NIRS can be performed in a matter of minutes. However, this study is still a
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preliminary one, and the development of new chemometric techniques in the 

future is aimed, as well as the improvement of any techniques mentioned above. It 

is also hoped that the effect of various parameters, such as moisture content and 

particle size, can be investigated.

Table 4.11. Table of various values between Digitalis purpurea leaves and other leaf samples 

including those of other Digitalis species.

Species A. Match value B. Correlation C. Correlation coefficient r D. Euclidean Distance

D. purpurea 1.90 1.0 1.0 0.024

D. lanata 9.04 0.994 0.996 0.205

D. m ertonensis 31.4 0.964 0.965 0.392

D. orientalis 15.2 0.968 0.969 0.673

D. am bigua 11.3 0.987 0.987 0.127

Belladonna 34.0 0.982 0.983 0.524

Hyoscyam us 46.5 0.978 0.979 0.177

Stramonium 41.9 0.964 0.964 0.277

Buchu 56.5 0.936 0.937 0.352

Eyebright 27.0 0.964 0.965 0.398

Senna 32.7 0.984 0.984 0.149

Peppermint 39.2 0.990 0.990 0.145

Hop 24.3 0.987 0.987 0.222

Coltsfoot 55.8 0.951 0.952 0.323

Column A  = average match values for SNV-2"‘‘ derivative spectra using Maximum Distance in Wavelength Space in 

FOSS Vision software, Column B = average correlation values using Correlation in Wavelength Space in FOSS Vision  

software on SNV-2"'' derivative spectra, Column C = average correlation coefficient, r, for SNV-2"'' derivative spectra, 

and Column D =  average Euclidean distances between points on a 2-wavelength plot for de-trended SN V spectra, 

wavelengths 1150 and 2160nm.
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Chapter 5: The Determination of the Geographical 

Origins of Cannabis sativa and other Natural 

Products by Near-Infrared Spectroscopy
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5.1 Introduction

There are several factors that determine the commercial geographical sources of a 

natural product; two of them are the suitability o f the plant to a particular 

environment and the economic factors associated with the production of a drug in 

a particular area (Evans, 1989f). Many plants are capable of growing well in 

numerous localities that have similar climates, but it must always be remembered 

that although a plant may thrive in different conditions, it may fail to produce the 

same constituents (Evans, 19891). That is, even though herbal medicines come 

from the same species, the quality and efficacy are somewhat different according 

to growing conditions based on geographical origin (Woo et al, 1999). For 

instance, cinchonas growing at high altitude are considerably different to those 

growing in the plains, and pharmacopoeial ginger, which once came exclusively 

from Jamaica, has now been replaced by that grown in Africa and China due to the 

improved quality of these two areas as sources (Evans, 19891).

Because of the differences that may exist among natural products grown in 

different geographical origins, a rapid and accurate analytical method to determine 

the origin would be useful for the correct value estimation of a drug in question, 

and for the prevention of illegal distribution (Woo et al, 1999). In addition, a rapid 

technique would be usefiil in forensic science for identifying the contents and 

geographical origin of, for example, suspect packages. However, it is not easy to 

identify the geographical origin of natural products using current existing 

analytical techniques or through visual inspection. Because there are tens of major 

components which differ slightly depending on growing conditions such as
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geographical origin, it is impossible to select only a few specific components as 

essential criteria (Woo et al, 1999). Although NIRS has been used successfully to 

discriminate between natural products of different species as with Digitalis, 

studies that apply it to the classification of samples of the same species but of 

different geographical origin are relatively rare.

One previously recorded study involved the differentiation of Korean and Chinese 

samples of Astragali Radix (a root of Astragalus membranaceus, clinically used in 

Korea and China to improve a reduced immune response), Ganoderma (an oriental 

fungus, Ganoderma lucidum), and Smilacis Rhizoma (a rhizome of Smilax glabra, 

used in the Orient for chronic skin disease and syphilis) (Woo et al 1999). Results 

showed that NIRS does have the potential of discriminating these herbal medicines 

according to their geographic origin, although in this case, the origins were 

confined to just two countries (Woo et al 1999).

The determination of geographical origins is also of importance in the tobacco 

industry. Tobacco types include Virginia, Burley, Maryland, and fire-cured 

tobaccos. Under certain conditions, tobacco types may visually appear to be the 

same, when, in fact, they can be chemically different. One problem in the industry 

is the possible substitution o f one type for another at the point of sale (Hana et al, 

1997). One study involved the analysis of native Burley tobacco (USA), and non­

native Burley tobacco (Korea, Thailand, Mexico, Ecuador, Argentina, Brazil, 

Chile, Costa Rica, Italy and Malawi). Results showed some potential, although 

there was a relatively high percentage o f misclassified non-native tobaccos 

possibly due to variations in the spectra caused by soil, weather, irrigation and
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fertilisation (Hana et al, 1997). Although promising, no attempt was made in that 

study to actually identify the country of origin of a sample - it merely sought to 

distinguish US samples from non US ones.

The determination of local origins can also be of importance in the food industry. 

For instance, Basmati, a rice grown in the Punjab region of India and Pakistan, 

accounts for about 20 percent of all rice sales in the UK. Basmati can only be 

grown once a year with a yield half of that of other rices. As a consequence o f its 

scarcity and its popularity in the UK, Basmati is more expensive compared to 

other rice varieties. As the eating quality o f this particular rice cannot be 

duplicated by growing the same seed in other regions, the ability to discriminate 

authentic Basmati from cheaper, inferior ones would be advantageous to the trader 

(Osborne et al, 1993).

In this investigation, NIRS was used to determine the geographical origins of 

samples of Cannabis sativa flowering heads (Figure 5.1). Cannabis was chosen 

here, as it is grown in a variety of different countries, and, as a controlled drug, its 

determination of origin would have massive potential in forensic science. In 

addition, although it has been used by man for at least 3500 years (Notcutt et al 

1997), there has been increased interest in the plant recently due to its possible 

effectiveness in treating pain, tremor, and muscle spasticity, especially those 

associated with multiple sclerosis (Pertwee, 1997). Furthermore, the use of 

cannabis as a possible application in treating epilepsy, glaucoma, and bronchial 

asthma have been suggested (House of Lords Select Committee on Science and 

Technology, November 1998). The principal chemical components o f cannabis are
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the cannabinoids: tetrahydrocannabinol (THC) (which is the most abundant and 

responsible for its intoxicating properties), cannabidiol (CBD), and cannabinol 

(CBN) (Holdcroft et al 1997).

This study aims to use NIRS to determine the geographical origins of cannabis 

flowering heads from four distinct localities, namely India, South Africa, Thailand, 

and Turkey. The same concept was also applied to cannabis resins from the three 

countries of origin of India, Pakistan, and Lebanon. In addition, to further test the 

technique, samples of Belladonna root. Valerian root, and aloe resins were also 

examined. There were chosen as they were the most readily available natural 

products on hand, which were grown in a variety of different countries. If 

successful, NIRS would be beneficial over traditional methods due to its speed, 

non-destructiveness, and reliability.

Figure 5.1. A Cannabis sativa leaf (A) and flowering heads (B)
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5.2 Materials and methods

5.2.1 Instrumentation 

See chapter 2

5.2.2 Cannabis samples

Twelve samples each of Cannabis sativa flowering heads from India, South 

Africa, Thailand, and Turkey were obtained from the phamacognosy archives at 

The School of Pharmacy, University of London. In addition, ten cannabis resin 

samples from Lebanon, eight from India, and eight from Pakistan, were also 

obtained from the same archives.

Other natural products were also examined. These included twelve samples each 

of English and Indian Valerian and Belladonna root, and twelve samples each of 

Cape, Socotrine, and Curaçao aloe resins. Again, these were obtained from the

pharmacognosy archives at The School of Pharmacy.

All samples were powdered to an approximate particle size o f 500pm using a 

mortar and pestle and placed in 10mm diameter glass vials (Waters).

5.2.3 Data analysis

In FOSS Vision® software, three different identification procedures were used on 

all the samples. These were Maximum Distance in Wavelength Space, Correlation 

in Wavelength Space, and Residual Variance in Principal Components Space. All 

used the wavelength range 1100-2500nm and a second derivative gap size of 

lOnm. Correlation coefficients, two-wavelength plot, A:NN and PQS were also 

used.
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5.3 Results and discussion

5.3.1 Spectral characteristics -  Cannabis

Figure 5.2 shows sample spectra of Cannabis flowering heads and resins from 

various geographical origins. Figure 5.3 shows the same set o f spectra after they 

have been SNV-corrected, 2"  ̂ derivative transformed. It can be seen from these 

that the sample spectra for each category are extremely similar in shape, with their 

main differences being in their in baselines. Using SNV-corrected 2"  ̂ derivative 

spectra removes these baseline effects and produces sharper, more well-defined 

peaks. However, the spectra are still difficult to distinguish from each other by 

mere visual examination. It is also worth noting here that while the untreated 

spectra for flowering heads and resin are reasonably similar to each other (Figure 

5.2), the SNV-2"^ derivative spectra show some major differences between 

flowering heads and resin (Figure 5.3). For example the spectra for the resins show 

a peak in the vicinity of 1650nm which is not seen in the spectra for flowering 

heads.

5.3.2 Identification

For the Maximum Distance in Wavelength identification method, the Correlation 

in Wavelength Space Method, the Residual Variance in Principal Components 

Space Method, and the correlation coefficient method, SNV-corrected, second 

derivative spectra were used. An initial look at the various data pretreatments 

showed that this combination provided most successful results, as well as sharper, 

more well-defined peaks and the removal of scatter effects and particle size 

dependency. Using other data pretreatments (first derivative, SNV-first derivative.
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second derivative, third derivative, SNV-third derivative fourth derivative, SNV-

fourth derivative, de-trend, SNV-de-trend) all produced at least three failures in

the data analysis process, 
a
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5.3,3 Maximum Distance in Wavelength Space

5.3.3.1 Cannabis flowering heads

It was possible to correctly allocate each sample o f cannabis flowering heads to its 

place of origin using the Maximum Distance in Wavelength Space method on 

SNV-corrected, second derivative-transformed spectra in FOSS Vision software. 

Table 5.1 shows that the resulting match values between samples o f the same 

geographical origin are well below the Vision® threshold limit o f 4.0. Values

ranged from 0.23 to 2.42 for correctly matched samples and 8.21 to 46.1 for 

unmatched samples. The latter two values are well above the value of 4.0 (the 

threshold limit in the software) which would be expected if  correct classification 

had occurred. The generous gap of 5.79 between correctly and incorrectly matched 

samples thus suggests that 4.0 is a reasonable threshold value.

5.4.3.2 Cannabis resins

Results were similar in the case of cannabis resins from three countries of origin. 

Table 5.2 shows the match values obtained when using Maximum Distance in 

Wavelength Space on samples of resin from India, Pakistan, and Lebanon. Here, 

values ranged from 1.40 to 2.47 between samples from the same geographical 

origin, and 46.7 to 67.5 for samples from different countries. In this case, the very 

large gap o f 44.23 between the largest ‘correct’ match value and the smallest 

‘incorrect’ match value suggests that the threshold is more than efficient, and that

152



this particular method is a powerful technique for the correct allocation of samples 

to the country in which they were grown.

Table 5.1. Maximum Distance in Wavelength Space match values for cannabis flowering 

heads from 4 different geographical origins

________________________ India_________________ South Africa___________ Thailand_______________ Turkey________
India 0.43-0.83-1.97

South Africa 8.21-8.74-11.68 0.23-0.46-2.23

Thailand 36.4-37.1-46.1 13.1-16.0-21.9 1.25-0.91-1.47

Turkey 14.3-16.0-23.0 20.6-23.7-25.8 22.2-24.5-26.2 1.57-1.92-2.42

Left hand number =  smallest value, underlined number =  median value, and right hand number = largest value

Table 5.2. Maximum Distance in Wavelength Space match values for cannabis resin from 

3 different geographical origins

India Pakistan Lebanon
India 1.40-1.94-2.39

Pakistan 46.7-52.5-57.7 1.68-1.91-2.29

Lebanon 55.9-62.7-67.5 52.6-61.5-64.7 1.41-2.06-2.47

Left hand number =  smallest value, underlined number =  median value, and right hand number = largest value
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5.3.4 Correlation in Wavelength Space - Cannabis flowering heads and resins

Table 5.3 shows correlation values between cannabis flowering heads from four 

geographical origins using Correlation in Wavelength Space. In correctly matched 

samples, values ranged from 0.998 to 0.999, and in incorrectly matched samples, 

from 0.980 to 0.988. Values were also high in the case of cannabis resins, ranging 

from 0.997 to 0.999 in correctly matched samples and 0.863 to 0.965 in samples 

from differing countries (Table 5.4). As the resulting correlation values are so 

high in both cases, setting a feasible threshold value appears problematic, with 

perhaps the lowest reasonable value being 0.995 for flowering heads and 0.990 for 

resins. Although the method will work to correctly identify the country o f origin of 

samples if these thresholds are used, the fact that they have to be so high suggests 

that the Correlation in Wavelength Space method has only limited success 

compared to the Maximum Distance in Wavelength Space method.

Table 5.3. Correlation in Wavelength Space values for cannabis flowering heads

India South Africa Thailand Turkey
India 0.999

South Africa 0.987 0.999

Thailand 0.981 0.983 0.999

Turkey 0.982 0.980 0.988 0.998

Values are mean results

Table 5.4. Correlation in Wavelength Space values for cannabis resin

India Pakistan Lebanon
India 0.999
Pakistan 0.863 0.999
Lebanon 0.965 0.959 0.997
Values are mean results
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5.3.5 Residual Variance in Principal Components Space - Cannabis flowering 

heads and resins

When using the Residual Variance in Principal Components Space identification 

method on cannabis flowering heads and resins, it was possible to allocate each 

sample to its correct country of origin. In the case of correctly identified flowering 

heads, resulting values ranged from 0.473 for Thai samples to 0.654 for Turkish 

samples. That is, the variance was within the threshold o f 0.84. For mismatched 

samples, values ranged from 0.995 for Thailand vs. India and 1.0 for India vs. 

South Africa, India vs. Turkey, and South Africa vs. Turkey. As a result, it can be 

said that when using the default software threshold o f 0.84 residual variance, this 

method is also a successful one for the correct identification of the geographical 

origin of the samples. Tables 5.5 and 5.6 show resulting values for flowering 

heads, and resins, respectively.

Table 5.5. Residual Variance in Principal Components Space values for cannabis 

flowering heads from 4 different countries of origin

India South Africa Thailand Turkey
India 0.585

South Africa 1.0 0.610

Thailand 0.995 0.994 0.473

Turkey 1.0 1.0 0.999 0.654

V alues are largest observed results

Table 5.6. Residual Variance in Principal Components Space values for cannabis resin

from 3 different countries o f origin

India Pakistan Lebanon
India 0.549

Pakistan I.O 0.680

Lebanon 1.0 1.0 0.547

Values are largest observed results
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5.3.6 Correlation Coefficients -  Cannabis flowering heads and resin 

Tables 5.7 and 5.8 show the resulting r-values obtained when calculating 

correlation coefficients for cannabis flowering heads and resins. Results between 

different geographical origins were very high for the flowering heads, ranging 

from r-values of 0.980 for South Africa vs. Turkey to 0.988 for Thailand vs. 

Turkey. In the case o f cannabis resins, results were still high between different 

geographical origins, although slightly lower compared to those o f flowering 

heads, r-values ranged from 0.943 for Pakistan vs. Lebanon to 0.966 for Lebanon 

vs. India.

As resulting r  values are so high, even for mismatched samples, it may be 

suggested in this case that although correlation coefficients may be used for 

correctly identifying the geographical origins of cannabis flowering heads and 

resin, it is not altogether the safest method to use, as the setting o f thresholds 

would be problematic.

Table 5.7. Correlation coefficients for cannabis flowering heads from 4 geographical 

origins

India South Africa Thailand Turkey
India 1.0

South Africa 0.986 1.0

Thailand 0.981 0.984 1.0

Turkey 0.983 0.980 0.988 1.0

Values are mean results
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Table 5.8. Correlation coefficients for cannabis resin from 3 geographical origins

India Pakistan Lebanon
India 1.0

Pakistan 0.961 1.0

Lebanon 0.966 0.943 1.0

Values are mean results

5.3.7 Two-wavelength plots

5.3.7.1 Two-wavelength plot - Cannabis flowering heads

Various data pretreatments and wavelength combinations were attempted on the 

spectra of cannabis flowering heads before the absorbances at the wavelengths 

1624 nm and 2326 nm were used on de-trended (baseline corrected) spectra 

(Figure 5.4). This was because the resulting plot (Figure 5.5) showed the best 

visual separation o f the four geographical origins compared to other combinations 

attempted. In addition, a visual inspection of de-trended spectra showed some 

separation between the four countries under investigation.

5.3.7.2 Two-wavelength plot - Cannabis resin

In the case of cannabis resin, de-trended spectra were again used (Figure 5.6). 

However, in this case, when the previous wavelength combination used on the 

flowering heads was applied, although there was some separation of the different 

geographical origins (Figure 5.7), it was found that some improvement was 

possible by using a different combination. For instance, using the combination of 

2380 nm and 1120 nm results in a tighter set of plots (Figure 5.8) and thus this was 

used in the end.
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Again, in this case, applying the same technique to different batches of the same 

samples produced highly comparable results with similar degrees of separation.

0 .0 8

0 .0 6

0 .0 4  -

0.02

^  -0.02

V -0 .0 4

-0 .0 6

-0 .0 8

1 1 0 0  1 3 0 0  1 5 0 0  1 7 0 0  1 9 0 0  2 1 0 0  2 3 0 0  2 5 0 0

India

• South  A fr ica  

■Thailand 

Turkey

W avelength /nm

Figure 5.4. Baseline conected (de-trended) spectra of cannabis flowering heads from 4 

geographical locations

0.03

^  0,025 - 
R
c3

0.02 -

I
«  0.015 -

Ii  0 , 0 1 -  
Û

0.005

-0.042 -0.04 -0.038 -0.036 -0.034 -0.032 -0.03 -0.028

® India

■ South Africa 

A Thailand 

O Turkey

De-trended absorbance at 1624nm

Figure 5.5. A two-wavelength plot of cannabis flowering heads from four geographical 

locations

158



0.07

0  0 5

g  0 .0 3

II 0.01

3  - 0.01 (U1=
&  -0 .0 3

-0 .0 5

-0 .0 7

1 1 0 0  1 3 0 0  1 5 0 0  1 7 0 0  1 9 0 0  2 1 0 0  2 3 0 0  2 5 0 0

India
Pakistan

L ebanon

W avelength /nm

Figure 5.6 . B aseline corrected (de-trended) spectra o f  cannabis resin from 3 geographical 

origins

0.0385

0.0365 

0.0345 

0.0325 - 

0.0305 - 

0.0285 - 

0.0265 -

0.0245

Â
Â

-0.036

«

-0.034 -0.032 -0.03

De-trended absorbance at 1624nm

\>o
o

-0.028

O Pakistan 

® Lebanon 

A India

Figure 5.7 . Absorbance values at 1624nm  against absorbance values at 2326  for cannabis 

resin from  3 geographical origins

159



0.02

0.019

I  0.018

^  0.017 - "S
I  0.016 - 

I  0.015 

«  0.014 

I  0.013 

^ 0.012 - 

0.011 

0.01

A
A  M

o ^  a a
A

•
•

#  o

O Pakistan 

- Lebanon 

A India

0.03 0.035 0.04 0.045

De-trended absorbance at 1120nm

0.05

Figure 5.8. Absorbance values at 2380nm against absorbance values at 1120nm for 

cannabis resin from 3 geographical origins

5.3.7.3 Identification using 'nearest neighbours' (kNN) -  Cannabis flowering 

heads and resin

The resulting plots from the two-wavelength method could be used to carry out a 

kNN or ‘nearest neighbour’ analysis on ‘unknown’ samples. Here, different 

samples of cannabis of known provenance were treated as if their origins were 

unknown. Incorporating the datapoints of these ‘unknowns’ into the plots showed 

that in both cases, visually, all the unknowns appeared to be closest to the cluster 

of points belonging to the group it theoretically belonged to (Figures 5.9 and 5.10). 

When Euclidean distance calculations were carried out on the resulting plots, it 

was clear that each ‘unknown’ species could be identified correctly. That is, it was 

possible to correctly assign all the samples that were treated as unknowns to the
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countries that gave rise to the smallest Euclidean distances (i.e. ‘nearest 

neighbours’) (Tables 5.9 and 5.10). In the case of flowering heads, the differences 

between the smallest Euclidean distance and the next smallest was 0.0073, 0.0046, 

0.0052 and 0.0052 for India, South Africa, Thailand, and Turkey, respectively. For 

the resin samples, they were 0.0033, 0.0026, and 0.0102 for Pakistan, Lebanon, 

and India, respectively. Thus, it could be said that the ‘unknowns’ without 

question were from the countries they were theoretically from. In all cases, the 12 

smallest Euclidean distances were produced by the countries the ‘unknowns’ 

supposedly originated from.
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Figure 5.9. A two-wavelength plot o f cannabis flowering heads incorporating ‘unknown’ 

samples
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Table 5.9. Euclidean distances between ‘unknown’ and ‘known’ cannabis flowering 

heads

‘unknown’ India 

‘unknown’ South Africa 

‘unknown’ Thailand 

‘unknown’ Turkey

India
0.0028

0.0158

0.0206

0.0101

South Africa 
0.0132 "

0.0011

0.0082

0.0057

Thailand Turkey
0.0168

0.0071

0.0019

0.0095

0.0069

0.0073

0.0118

0.0017

Values are averages. Smallest values in each column are underlined

Table 5.10. Euclidean distances between ‘unknown’ and ‘known’ cannabis resin

‘unknown’ India 

‘unknown’ Pakistan 

‘unknown’ Lebanon

India
.0030

Pakistan
0.01290

0.0132 0.0028

0.0132 0.0061

Values are averages. Smallest values in each column are underlined

Lebanon
0.0066

0.0067

0.0040
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5.3.8 Polar Qualification System

The PQS system was used on the samples of Cannabis flowering heads and resins 

to test its suitability for the discrimination of their geographical origins. Figures 

5.11 to 5.12 show the plots obtained from second derivative spectra using the most 

successful wavelength ranges (in 100 nm increments) for each of these products. It 

can be seen from the clustering pattern observed from these that PQS is successful 

in separating the samples according to their geographical origins. However, while 

the clusters resulting from PQS analysis of resins were relatively tight, those 

resulting from analysis of flowering tops showed a tendency to spread 

horizontally. This may indicate that the suitability of this method depends on the 

type of material analysed. That is, while flowering tops are a complicated mixture 

of parts botanically and chemically, resin is an exudate and morphologically much 

simpler and consistent in character.
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Figure 5.11 A PQS plot for cannabis flowering heads from four geographical origins 

using the wavelength range 1600-1700nm
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5.3.9 Other natural products

5.3.9.1 Identification- Maximum Distance in Wavelength Space 

Tables 5.11 and 5.12 show resulting match values obtained when using the 

Maximum Distance in Wavelength Space method on 12 samples each of 

belladonna root and valerian root grown in England and India, and 12 samples 

each of aloes from 4 localities. These samples were chosen as they are grown in a 

variety of countries and were readily available from the archives at The School of 

Pharmacy. It is clear from the results that, as in the identification of the 

geographical origins of cannabis flowering heads and resin, this method is a 

successful one for these samples as well. In the valerian samples, the largest 

observed correct match value was 2.47, and the smallest was 1.40. Match values of
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mismatched samples ranged from 23.05 to 34.91. For belladonna, the largest 

match value for correctly matched roots was 2.32, and the smallest 1.46. 

Mismatched samples produced match values ranging from 5.35 to 7.27. Thus, for 

these two samples, it can be said that the software default threshold match value of 

4.0 enables the correct identification of the origins of these roots.

Results were just as successftil in the case of the aloe resins. The largest match 

value observed in the correctly identified samples was 2.51, and the smallest was 

1.43. In mismatched samples, match values were very high, ranging from 37.25 to 

97.79. Thus, in this case as well, the threshold match value o f 4.0 was found to be 

more than sufficient. However, it must be noted in the case of aloes that although 

they are named according to geographic localities, they can, in fact, often come 

from different species. The Cape aloes are from South Africa and Kenya, and are 

usually obtained from Aloe ferox and its hybrids; the Curaçao ones are from the

West Indian Islands of Curaçao and are mainly taken from Aloe barbadensis; and

Socotrine and Zanzibar varieties from Aloe perryi (Evans 1989g). However, 

adulteration and substitution among these types can occur (Evans 1989g) and thus 

it is important to be able to identify each type and its origin.
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Table 5.11. Maximum Distance in Wavelength Space Match Values for samples of 

English and Indian belladonna and valerian root

B elladonna root English Indian

English I.46-I.92-2.30

Indian 5.35-6.41-7.27 I.54-I.95-2.32

V alerian root English Indian

English 1.66-1.95-2.47

Indian 23.05-29.91-34.91 1.40-1.98-2.20

Left hand number = smallest value. Right hand number = largest value. Underlined number = median value 
n = 12 for each sample

Table 5.12. Maximum Distance in Wavelength Space Match Values for samples of aloe

resins

Cape Curacao Socotrine Zanzibar
Cape I.55-I.94-2.42

Curacao 74.02-88.69-96.99 1.54-1.99-2.41

Socotrine 37.25-52.41-61.03 80.28-84.44-86.95 I.43-I.95-2.5I

Zanzibar 81.11-93.74-97.79 51.83-62.35-71.95 75.24-89.69-91.33 I.49-I.8I-2.38

Left hand number = smallest value, Right hand number = largest value, Underlined number = median value 
n = 12 for each sample
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5.3.9.2 Correlation in Wavelength Space

As in the case o f cannabis flowering heads and resins, the values obtained when 

carrying out the Correlation in Wavelength Space method were very high. Table 

5.13 shows resulting values for valerian root. It can be seen from this that even 

between mismatched samples, the correlation value was as high as 0.97, which is 

well above the software default threshold value o f 0.85. Correctly matched 

samples produced the value of 0.998 in both cases. To be able to correctly identify 

the origin o f the samples, therefore, a high threshold value of 0.99 would need to 

be applied.

In the case o f belladonna root and aloe resins, it was found when applying the 

method that the threshold value would need to be above 0.999 and 0.995, 

respectively. As these values are so high, it can be said that the Correlation in 

Wavelength Space method is not a feasible one for these products.

Overall, the Correlation in Wavelength Space method was not an incredibly 

successful one, as setting threshold values proved to be so problematic.

Table 5.13. Correlation in Wavelength Space results for valerian root from India and 

England

English Indian

English 0.998

Indian 0.970 0.998

Values are mean results
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5.3.9,3 Correlation Coefficients

Table 5.14 shows r-values obtained when calculating correlation coefficients for 

spectra of belladonna and valerian, and Table 5.15 shows those from the aloe 

resins. For the roots, values were high, being 0.995 and 0.970 for mismatched 

belladonna and valerian samples, respectively. For the aloe resins, values were 

also high, although slightly lower than those observed for belladonna and valerian. 

The high r-values, especially in the cases of belladonna and valerian, show how 

alike the samples are and therefore how sensitive a technique must be in order to 

correctly assign them to their country of origin.

Table 5.14. r-values for belladonna and valerian root from Indian and England

B elladonn a root English Indian

English 1.0

Indian 0.995 1.0

V alerian root English Indian

English 1.000

Indian 0.970 1.000

Values are mean results

Table 5.15. r-values for aloe resins

Cape Curacao Socotrine Zanzibar

Cape 1.000

Curacao 0.938 1.000

Socotrine 0.897 0.963 1.000

Zanzibar 0.890 0.936 0.896 1.000

V alues are mean results
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53,9.4 Residual Variance in Principal Components Space 

The results obtained when using the Residual Variance in Principal Components 

Space method on belladonna and valerian root samples are shown in Table 5.16. 

Those resulting from the aloe resin samples are summarised in Table 5.17. It can 

be seen from these results that this method can be used for the assignation of each 

sample to their correct group. Variance from correctly matched belladonna and 

valerian samples did not exceed 0.7, with the lowest being 0.519 for Indian 

belladonna and 0.687 for Indian valerian. In the case of the aloes, values for 

correctly matched samples ranged from 0.65 for Socotrine and 0.71 for Zanzibar. 

Thus, in all cases, the software default threshold probability level of 0.84 appears 

to be a  reasonable one, enabling correct identification of the geographical origins 

of the samples.

Table 5.16. Residual Variance in Principal Components Space results for belladonna and 

valerian

B elladonna root English Indian

English 0.655

Indian 0.999 0.519

V alerian root English Indian

English 0.604

Indian 1.000 0.687

V alues are largest observed results

Table 5.17. Residual Variance in Principal Components Space results for aloe resins

Cape Curacao Socotrine Zanzibar

Cape 0.70

Curacao 1.0 0.69

Socotrine 1.0 1.0 0.65

Zanzibar 1.0 1.0 1.0 0.71

Values are largest observed results
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5.3.9.5 Two-wavelength plot

As in the cases o f cannabis flowering heads and resin, the two-wavelength plots 

for belladonna, valerian, and aloes were attempted on de-trended spectra. Trying 

various combinations showed that although the absorbances at the wavelengths 

2380 and 1120 separated the valerian samples well (Figure 5.13), results were not 

so successful for belladonna (Figure 5.14) nor for the aloes (Figure 5.15). In fact, it 

appeared to be impossible to produce successful separation between the groups for 

the belladonna roots and aloes. For belladonna, although there is some linear 

pattern discernible in the two-wavelength plot, there is no clear separation between 

the two groups as seen in valerian. For the aloes, only the Socotrine variety 

showed clustering behaviour.

As the valerian samples produced a reasonable two-wavelength plot, a ANN 

nearest neighbours analysis was carried out on an ‘unknown’ sample. Figure 5.16 

shows the datapoints of the ‘unknowns’ incorporated into the plot. It can be seen 

that the ‘unknowns’ are comfortably nearest the groups which they theoretically 

belong to. Table 5.18 shows average Euclidean distances between the ‘unknowns’ 

and the ‘knowns’, and it is clear from this that the smallest values were observed 

for the group that each unknown was expected to belong to. Thus, with a 

successful two-wavelength plot, it is possible to use the ANN method for the 

correct identification of country of origin of a sample, in this case, valerian.
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Table 5.18. AKN Euclidean distances for valerian root samples

English Indian

English ‘unknown’ 0.0047 0.0353

Indian ‘unknown’ 0.0370 0.0025

Values are mean results. Smallest values in each column are underlined

53.9 .6  Polar Qualification System

When using the PQS method on the samples of valerian, belladonna and aloe, it 

was possible to achieve a greater degree of separation among the various 

geographical origins compared to the two-wavelength method. Figures 5.17 to 

5.19 show the plots obtained from second derivative spectra using the best 

wavelength ranges (in 100 nm increments) for each of these products. It is clear 

from these that PQS is successful in separating the samples according to their 

origin, and in the cases of aloes and belladonna, more successfully than the two- 

wavelength method. All samples show a distinct clustering behaviour. The 

different wavelength ranges may represent differences in active constituents or 

other components. However, examination of these was beyond the time frame of 

this project.
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5.4 Conclusion

Tables 5.19 and 5.20 show a summary of results obtained from the various 

identification techniques used for cannabis flowering heads and resins, 

respectively. From these data, it can be concluded that overall, the Maximum 

Distance in Wavelength Space method appears to be the most successful method 

for allocating each sample to its place of origin. The match values that were 

calculated were very distinctly low or high depending on whether samples were 

matched or mismatched. The use of the Correlation in Wavelength Space method 

and also of r-values for identification was also possible, although results were not 

as clear-cut as in Maximum Distance in Wavelength Space. That is, the values 

were often very high, and the setting of thresholds was somewhat problematic. The 

high values, however, reflect on how similar the samples are, and therefore to 

some extent how sensitive a method Maximum Distance in Wavelength Space is. 

The Residual Variance in Principal Components Space method was also 

successful, with all correctly matched samples falling within the threshold. With 

the successful plotting o f a two-wavelength plot, it was also possible to carry out 

correct identification of unknown samples by using the A-Nearest Neighbours 

method.

In the case o f other natural products, the conclusions reached after the cannabis 

investigations were partly confirmed. Again, Maximum Distance in Wavelength 

Space appeared to produce distinctly high or low match values depending on 

whether samples were correctly matched or not. Correlation in Wavelength Space 

proved problematic, and in the cases of belladonna and aloes, a reasonable
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threshold could not be reached, as values were so high. This appears to confirm the 

observation that perhaps this is not the most ideal method overall for 

identification. Correlation coefficients were also rather high, as was also observed 

in the cannabis samples. The use of Residual Variance in Principal Components 

Space was, as in the cannabis study, also successful, although results did not 

appear as clear-cut as in Maximum Distance in Wavelength Space. The use of 

two-wavelength plots and ^NN met with very limited success here, as although 

successful in valerian, it was not possible to successfully produce clear two- 

wavelength plots for belladonna and aloes. This therefore illustrates how the Â:NN 

method using the two-wavelength plot can only be carried out if a plot can be 

produced in the first place, and thus its high success rate is dependent upon groups 

being able to separate distinctly between two axes.

The PQS method showed mixed results in that while plots were comparable to 

those produced by the two-wavelength method for cannabis samples, those 

obtained for other natural products (and in particular belladonna and aloe) showed 

a significant improvement. That is, unlike the two-wavelength method, it was 

possible to produce a plot showing clear clustering o f points for both belladonna 

and aloe. This suggests that both the two-wavelength method and the PQS method 

have varying degrees of success, often depending on the type o f material analysed. 

Overall, by looking at the results from cannabis and other natural products, it can 

be concluded that NIRS can be used for the successful determination of their 

geographical origins and probably those o f numerous other plant materials. This 

would be advantageous in that it is significantly more rapid than traditional
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methods, and as the plants are of identical species (except in the case o f aloe 

resins), it would be difficult for traditional techniques to pick out the minute 

differences that may occur between plants grown in varying locations. The factors 

that contribute to the differences, which may be aspects such as climate, soil, 

rainfall and fertiliser, would be an interesting continuation o f this study.

Table 5.19. Summary of results for cannabis flowering heads

India A. M atch value B. Correlation C. r value D. Res. variance E. km

India 1.08 0.999 1 0 0.585 0.0028

South Africa 11.68 0.987 0.986 1.000 0.0158

Thailand 39.9 0.981 0.981 0.995 0.0206
Turkey 17.8 0.982 0 983 1.000 0.0101

South Africa A. M atch value B. Correlation C. r value D. Res. variance E. &NN

India 11.68 0.987 0.986 1.000 0.0132

South Africa 0.97 0.999 1 0 0.610 0.0011

Thailand 17.0 0.983 0.984 0.994 0.0082

Turkey 23.4 0.980 0.980 1.000 0.0057

T hailand A. M atch value B. Correlation C. r value D. Res. variance E. km

India 39.9 0.981 0.981 0.995 0.0168

South Africa 17.0 0.983 0.984 0.994 0.0071

Thailand 3.63 0.999 1 0 0.473 0.0019

Turkey 24.3 0.988 0.988 0.999 0.0095

T urkey A. M atch value B. Correlation C. r value D. Res. variance E. km

India 17.8 0.982 0.983 1.000 0.0069

South Africa 23.4 0.980 0.980 1.000 0.0073

Thailand 24.3 0.988 0.988 0.999 0.0118

Turkey JL97 0.998 1 0 0.654 0.0017

A  = Average match value when using Maximum Distance in Wavelength Space, B =  Average correlation 
value when using Correlation in Wavelength Space, C = Average r-value resulting from the correlation 
coefficient method, D  = Highest probability level when using Residual Variance in Principal Components 
Space, and E = Average Euclidean distance when using the A:NN method. Correctly matched results are 
underlined.
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Table 5.20. Summary of results for cannabis resin

India A. M atch value B. Correlation C. r value D. Res. variance E. km

India M i 0.999 1.000 0.549 0.0030

Pakistan 52.3 0.863 0.943 1.000 0.0132

Lebanon 62.0 0.965 0.961 1.000 0.0132

Pakistan A. M atch value B. Correlation C. r v a lu e D. Res. variance E.& NN

India 52.3 0.863 0.943 1.000 0.0129

Pakistan L96 0.999 1.000 0.680 0.0028

Lebanon 59.6 0.959 0.966 1.000 0.0061

Lebanon A. M atch value B. C orrelation C. r value D. Res. variance E. km

India 62.0 0.965 0.961 1.000 0.0066

Pakistan 59.6 0.959 0.966 1.000 0.0067

Lebanon 1.98 0.997 1.000 0.680 0.0040

A = Average match value when using Maximum Distance in W avelengthSpace, B =  Average correlation 
value when using Correlation in Wavelength Space, C =  Average r-value resulting from the correlation 
coefficient method, D = Highest probability level when using Residual Variance in Principal Components 
Space, and E =  Average Euclidean distance when using the A:NN method. Correctly matched results are 
underlined.
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Chapter 6: Controlling the Drying Process of 

Peppermint Leaves Using Near-Infrared 

Spectroscopy
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6.1 Introduction

The British Pharmacopoeia places moisture limits on twelve leaf materials ranging 

from 6 % for Digitalis (British Pharmacopoeia 2000a) to 12% for Senna (British 

Pharmacopoeia 2000b). Because these limits exist, it is clear that the quantification 

of water in plants of pharmaceutical interest is of utmost importance. In 

conjunction with a suitable temperature, moisture will lead to the chemical 

decomposition of active ingredients, activation o f enzymes leading to degradation, 

and to the proliferation of living organisms. As most vegetable drugs contain all 

the essential food requirements for moulds, insects, and mites, deterioration can be 

rapid once infestation has taken place (Evans 1989h). Thus it is uneconomical to 

purchase drugs that contain excess moisture. Living plant material has a high 

moisture content: leaves can contain 60-90%, roots and rhizomes 70-85%, and 

wood 40-50%. The lowest percentage (5-10%) is found in seeds (Samuelsson, 

1999).

A large number of methods are available for the determination of moisture in 

natural products. These include distillation, microwave drying, oven-drying 

techniques, and Karl Fischer titration (Bums and Ciurczak, 1992). The most 

commonly used techniques, however, are determination by loss on drying and Karl 

Fischer titration (Evans 1989a).

Loss on drying is a method described in the British Pharmacopoeia (British 

Pharmacopoeia 2000c). This method assumes that the loss in weight in the sample 

during the procedure is mainly due to water. However, small amounts o f other 

volatile materials can contribute to the weight loss. In fact, differences in moisture
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values between results obtained by the oven-drying technique and those from non- 

thermal procedures have been observed (Bums and Ciurczak, 1992). This method 

is suitable where large numbers of samples are handled and where a continuous 

record o f loss o f weight with time is required (Evans 1989h).

The Karl Fischer procedure is also specified in the British Pharmacopoeia (British 

Pharmacopoeia 2000d) and is an extensively used and accurate method for 

moisture determination. It is ideal to use on expensive dmgs and chemicals 

containing small quantities of moisture. The process involves a titration using a 

reagent (a solution of sulphur dioxide, iodine and pyridine in dry methanol) 

against a sample containing water. This causes a loss of the dark brown colour. At 

the end point, when there is no more water, the colour o f the reagent persists. 

More modem Karl Fischer instruments, such as the one used in this investigation, 

operate using a potentiometric method. Although accurate, the main drawbacks of 

the method are the instability of the reagent and the possibility of substances in the 

sample, other than water, which may react with the reagent (Evans 1989h). In 

addition, long extraction times are often necessary in order to confirm complete 

removal of the contained water from the sample matrix.

NIRS is a novel method for the quantification o f water in materials. The NIR 

absorption spectmm of water at room temperature includes 5 bands with maxima 

at 1940, 1450, 1190, 970, and 760nm (Osbome et al 1993). These peaks can 

therefore be used to determine the moisture content of materials. It is possible to 

design NIR instruments which are capable of accurately measuring changes in 

reflected intensity from the product and comparing intensities o f the absorption
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wavelengths with the intensities of reference wavelengths. In many cases, the 

resulting ratio will provide an output proportional to the concentration of moisture, 

or other constituent under investigation. Mathematical algorithms can then be 

applied to convert the computed information into the measurement of interest, 

such as percentage of moisture, fat, or protein (MM710 User’s Manual 2000a).

It is important that the drying process for natural products be performed under 

optimum conditions. Although fairly rapid drying helps aromatic drugs to retain 

their aroma and leaves and flowers their colour, the temperature used in the drying 

process must be governed by the constituents and physical nature o f the drug 

(Evans 19891). This is particularly true of materials such as peppermint leaves, 

which contain volatile oils. In general, leaves, flowers, and herbs may be dried 

between 20 and 40°C, and barks and roots between 30 and 65°C. The drying

process therefore must be a balancing act between the necessity for quick drying 

and the sensitivity to heat of the constituents (Samuelsson, 1999).

In the herbal industry, there is generally a moisture loss of 80 to 90 % from freshly 

harvested materials during the drying process. Material is usually considered dry 

once the moisture level has fallen to 8  to 10 %. At this stage, leaves will crumble 

and stems will snap (Evans 19891).

The evaluation o f moisture content in natural products is not only confined to the 

pharmaceutical industry, however. In the food industry, moisture analysis is also 

important in that it can affect the storage quality and even the value of natural 

foodstuffs. For example, the ideal moisture content for rice is near but below 22%. 

As the optimal moisture content for harvesting rice is too high for safe storage.
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rice must be dried. If drying occurs too rapidly, the rice will crack, as a result of 

the internal stresses exceeding the tensile strength o f the kernel. As cracked 

kernels are more susceptible to breakage during the milling process, this results in 

a reduced yield and hence reduced profits. In fact, broken white rice is worth only 

about half as much as whole grain rice in world markets. If rice is delivered with a 

moisture content above 2 2 %, extra costs are incurred for separate handling and 

drying, and can result in farmers being penalised (Blakeney et al, 1994).

In addition to the pharmaceutical and food industries, the measuring o f water 

content in natural products is also of importance in the textile industries. In the US 

cotton industry, fibre strength has been included in a grading system of the 

product. Small changes in moisture content can produce large changes in strength, 

and so measurement accuracy depends on the moisture level at the moment of 

testing. Although there are elaborate humidity controls and extensive sample 

conditioning, moisture among test cottons can differ greatly. Moisture history, 

chemical composition, and structural differences all contribute to these 

differences. In addition, contaminants that may be produced during harvest (i.e. 

leaf, grass, bark, etc) make moisture measurements difficult, but necessary 

(Taylor, 1994).

In the tobacco industry, it is of utmost importance that the water content be 

measured at all stages of processing, as moisture can influence various 

characteristics of the product. For instance it can affect the ageing o f tobacco, the 

use o f stemming equipment and quality o f the leaf, the efficiency o f the cigarette 

making machines and the uniformity o f the finished cigarette. In addition, it can
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influence the filling capacity of the tobacco, the shelf life and the smoking 

characteristics of the finished cigarette (Bums and Ciurczak, 1992).

The use o f NIRS for the determination o f moisture in natural products has been 

well documented. For example. Bums and Ciurczak (1992) describe an NIR 

calibration that was developed for moisture on 13 tobacco blends over the 

concentration range 9-15%. An oven-volatile method was used as the laboratory 

analysis procedure. Results showed that values were acceptable for all validation 

sets (Bums and Ciurczak). In the food industry, the on-line monitoring o f moisture 

during the flour milling process using an NIR instrument has also been 

documented (Chalmers 2000), and Martens and Naes (1989) mention the potential 

of NIRS over traditional methods for the determination of major wheat 

constituents, including moisture. Another investigation involving dried Korean 

ginseng {Panax ginseng) showed that NIRS measurements for moisture were 

highly comparable to the traditional oven drying method, with correlation values 

being 0.899 and 0.996 for white ginseng powder and extract, respectively (Cho 

and Lee, 1994).

However, studies that document in detail the use of NIRS constantly over a 

production process are very rare, especially those that describe the continuous 

measurement of moisture levels during the drying process o f a product. In order to 

minimise the loss o f important volatile materials, it is necessary to dry a sample to 

a specific required moisture percentage and not any further. Therefore, a process 

that could be used to continuously monitor the drying procedure would be of 

considerable value in the pharmaceutical and herbal industries.
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This study compared the most commonly used methods o f moisture analysis (loss 

on drying and Karl Fischer) to NIRS to determine how it could potentially be used 

to control the drying process o f peppermint {Mentha piperata) leaves down to the 

British Pharmacopoeia limit of 11% (British Pharmacopoeia 2000e). Although the 

BP reference method for water content in peppermint is distillation, this was not 

used in this investigation due to time constraints. In addition, it was not thought 

necessary, as the NIR instrument used had initially been calibrated using the Karl 

Fischer technique. Although the instrument was a prototype calibrated to industry 

standards for tea, it was considered suitable for other leaf materials including 

peppermint. Other leaves {Digitalis lanata. Digitalis ambigua. Digitalis 

mertonensis. Digitalis lutea, coriander, coltsfoot, eyebright, tarragon, thyme) were 

also analysed by both NIRS and Karl Fischer titration to show the general 

applicability of the method. If successful, NIRS would be an advantageous 

technique, as it is rapid and non-destructive (Moffat et al 1997).

6.2 Materials and Methods

6.2.1 Instrumentation

NIR spectra were measured using a FOSS NIRSystems (Silver Spring, MD, USA) 

6500 Rapid Content Analyser (RCA) in diffuse reflectance mode over the 

wavelength range 1100-25OOnm. NIR measurements for water were also made 

using an MM710 NIR backscatter gauge (NDC Infrared Engineering, Maldon, 

Essex, UK) pre-calibrated using SpeedCal® (MM710 User’s Manual 2000b)

(Figure 6.1). Karl Fischer measurements were made using a 701 KF Titrino titrator 

(Metrohm, Buckingham, UK).
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6.2.2 Materials

Fresh whole peppermint {Mentha piperata) leaves were purchased from a local 

supermarket, as were fresh samples of coriander, tarragon and thyme leaves. Dried 

samples of coriander, coltsfoot and eyebright leaves were puchased from a health 

food store, and dried specimens of Digitalis lanata. Digitalis ambigua. Digitalis 

mertonensis and Digitalis lutea leaves were obtained from the pharmacognosy 

archives at The School o f Pharmacy, University o f London. Only four Digitalis 

species were used in this study as these were the ones that were available in a large 

enough supply to make measurements by the MM710 feasible.

The Karl Fischer analysis used Karl Fischer reagent (Merck, Dorset, UK) and 

200mg sodium tartrate (Fluka Chemicals, Dorset, UK) as a standard.

6.2.3 Method

Fresh peppermint leaves were placed in a circular 10cm glass dish under the beam 

of the MM710 NIR gauge and readings for percentage moisture were taken. Karl 

Fischer titration was also used to determine percentage moisture. Three different 

preparations o f the leaves (whole, coarsely chopped, and finely chopped) were 

used to determine which sample preparation produced the best correlation between 

the two methods. The samples were then dried in an oven at 35°C and further

analysed for water by NIRS, by Karl Fischer titration, and by weight loss every 20 

minutes until readings indicated that they had reached below the moisture 

percentage specified in the British Pharmacopoeia (11%). In the Karl Fischer 

procedure, an extraction time of 1 0  minutes was allowed to verify complete
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extraction of water from the sample. NIR spectra were also taken during the drying 

process, using the FOSS NIRSystems Rapid Content Analyser, with samples 

placed in 10 mm diameter glass vials. Each spectrum was an average of 32 scans. 

Resulting data were processed and plotted in Microsoft Excel 97.

The other leaf samples {Digitalis lanata. Digitalis ambigua. Digitalis mertonensis. 

Digitalis lutea, coriander, coltsfoot, eyebright, tarragon, thyme) were left whole 

and tested for water content using the MM710 gauge and Karl Fischer titration.
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A
B

Figure 6.1. The MM710 NIR gauge. Figure 6.1 A shows the whole instrument set-up; 

Figure 6. IB shows the part o f  the instrument housing the NIR spectrometer and Figure 

6.1C shows the gauge displaying a resulting moisture percentage. Note the glass dish 

containing peppermint leaves under the beam path o f the instrument in 6.1 A and 6. IB.
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63  Results and discussion

6.3.1 Sample preparation

The NIR gauge irradiated a relatively small area (60 mm diameter), and as a result, 

it was suspected that the samples might appear to be non-homogeneous and 

therefore give imprecise values. Different forms o f sample preparation were 

therefore tested to determine which produced the most accurate measurements. 

Figure 6.2 compares the moisture percentages obtained using Karl Fischer titration 

and the NIR gauge for three different sample preparations of fresh peppermint 

leaves. It can be seen that the best correlation between the two methods was 

obtained when the leaves were chopped coarsely and the worst when they were 

chopped finely. The finely chopped leaves appeared visually to be considerably 

moister compared to the other sample preparations. This suggests that chopping 

the leaves very finely caused the release of large amounts of water to the surfaces, 

allowing the water to be detected more readily by the NIR gauge, resulting in 

larger values for the MM710 compared to Karl Fischer titration. Coarsely chopped 

leaves may have produced the best results due to the fact that the sample was made 

more uniform throughout. As NIR gauge readings were most representative o f the 

area within the beam patch of the instrument (60 mm diameter) and of the top 

layers of the sample as a whole, slightly varying results were seen when using 

whole leaves. Indeed, NIR gauge readings were seen to range from 68.7% to 

73.9% water content for fresh whole leaves. However, as Karl Fischer and NIR 

values were within a reasonable range (69.3%-75.0%), all further experiments 

were carried out on whole leaves. This was done in consideration o f the fact that in
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practice, in the production process, peppermint leaves are dried whole and intact. 

The British Pharmacopoeia states that whole peppermint leaves should have no 

less than 12 ml/kg volatile oil and cut leaves no less than 9 ml/kg (British 

Pharmacopoeia 2000e). This suggests that cutting the leaves ultimately results in 

loss o f volatile oil, which was another reason to leave the leaves whole.

6.3.2 Spectral characteristics

Figure 6.3 shows the spectra of whole peppermint leaves at various stages in the 

drying process taken using the FOSS NIRSystems Rapid Content Analyser. From 

these spectra, it can be seen that the spectral peaks, particularly those peaks 

representing water, decrease in height as the percentage of moisture decreases. For 

instance, the peak in the vicinity of 1934nm can be seen to decrease in height, as 

the sample becomes drier. Thus, taking spectra during the process can show how 

spectral characteristics change as moisture is driven away from the sample.

191



100 n

90

80

70

60

1 50

40

30

20

10

0 us

0MM71O 
□ Karl Fischer

whole chopped (coarse) chopped (fine)

Figure 6.2. Percentage water using Karl Fischer and MM710 for three different sample 
preparations o f fresh peppermint leaves. Error bars indicate ± 1 standard deviation (n=6).
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Figure 6.3. Sample spectra o f whole peppermint leaves dried in an oven at 35°C. Water 
content: A=72.0%, B=61.5%, C=56.3%, D=14.2%, and £=3.53% according to Karl 
Fischer titrations.
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6.3.3Drying of whole leaves

Water measurements for the whole leaves from the previous investigation were 

taken by NIRS, Karl Fischer titration, and loss on drying every 20 minutes as they 

were dried in an oven at 35°C. Figure 6.4 shows a comparison of moisture

percentages obtained from loss on drying and NIRS, while Figure 6.5 shows one 

from Karl Fischer titrations and NIRS for whole leaves. Although results appear 

linear in both cases, a higher correlation (R^= 0.992) was observed when NIRS 

results were compared to Karl Fischer titration results compared to loss on drying 

(R^=0.986). R^ values using the 6500 RCA data for absorbance values at 1934 nm 

against Karl Fischer, MM710, and loss on drying data were slightly lower, being 

0.946, 0.943, and 0.963, respectively. These lower R^ values from the 6500 RCA 

data may be due to the fact that measurements were made from an area of 1 0  mm 

diameter, as opposed to 60 mm for the MM710.

In the case o f coarsely chopped leaves, results were similar, although a slightly 

higher correlation was observed compared to that obtained with whole leaves. 

Again, there was a better correlation between NIRS and Karl Fischer titration 

values (R^=0.995) (Figure 6 .6 ) than between NIRS and loss on drying values 

(R^=0.986)(Figure 6.7). Differences between readings were observed to be as 

small as 1.23% for NIRS and loss on drying values and 0.32% for NIRS and Karl 

Fischer titrations. The smallest differences in the whole leaves, were higher, with 

values between NIRS and Karl Fischer and between NIRS and loss on drying 

being 0.61% and 5.34%, respectively, but still practically useable (Table 6.1).
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Thus, the small percentage differences quoted above suggest that the accuracy of 

the procedure is quite high. Precision of the method was also shown to be high, by 

the small values for the standard deviations of measurement for Karl Fischer 

titration and NIRS, as displayed in Figure 6.2.
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Figure 6.4. Percentage water using MM710 and Loss on Drying for whole peppermint 
leaves dried at 35°C and sampled every 20 minutes
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Figure 6.5. Percentage water using Karl Fischer and MM710 for whole peppermint leaves 
dried at 35°C and sampled every 20 minutes
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Figure 6.6. Percentage water using Karl Fischer and MM710 for coarsely chopped peppermint 
leaves dried at 35°C and sampled every 20 minutes
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Figure 6.7. Percentage water using MM710 and Loss on Drying for coarsely chopped 
peppermint leaves dried at 35°C and sampled every 20 minutes
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Table 6.1. Differences observed between NIR and Karl Fischer and between NIR and loss 
on drying for whole and coarsely chopped leaves

Smallest difference (%) Largest difference (%)

Whole (KF and NIR) 0.33 5.34

Coarsely chopped (KF and NIR) 0.32 3.8

Whole (Loss on drying and NIR) 3.12 12.04

Coarsely chopped (Loss on drying and NIR) 1.23 16.01

6.3,4 Drying curve

Figure 6 . 8  shows the drying curve for whole peppermint leaves for the three 

methods (NIRS, Karl Fischer titration, and loss on drying). These were obtained 

by plotting water content against time as the sample dried in the oven. Although 

the curves obtained for NIR gauge readings and Karl Fischer results were similar 

and overlapping, water percentages obtained from loss on drying data were 

significantly higher. Differences between loss on drying and NIRS readings and 

between loss on drying and Karl Fischer results were 10.9% and 10.3%, 

respectively. In the case of chopped leaves, differences were observed to be as 

high as 16.01% and 17.7%. Figure 6.9 shows the drying curve of coarsely chopped 

peppermint leaves for the three methods. Because of the large differences 

observed, it can be suggested that loss on drying is not an ideal method for the 

analysis o f water content alone. Other materials present in the leaves (e.g. volatile 

oils and sugars), which may also be lost in the drying process could account for the
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apparently larger values. Chopped leaves may have produced higher values in loss 

on drying due to peppermint oil being lost more readily.
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Figure 6.8. Drying curve for whole peppermint leaves in an oven at 35°C over time
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6.4 General application

Table 6.2 shows values obtained using the MM710 gauge and Karl Fischer 

titration for ten other leaf samples. It can be seen that results between the two 

methods are highly comparable, suggesting that they are applicable to most types 

o f leaves.

The transferability o f the method to a wide variety o f leaf samples can possibly be 

explained by the fact that the water peak in an NIR spectrum of a leaf is very 

strong in comparison with the absorption of other components. Thus, when 

looking at absorbances of samples ranging from 80% to 1 1 % water, the water 

peaks are still by far the strongest ones.

Table 6.2. Moisture contents for ten different leaf samples using the MM710 NIR gauge 

and Karl Fischer titration

Sample % water MM710 % water Karl Fischer titration

Digitalis lanata (dried) 2.68 3.05
Digitalis ambigua (dried) 2.10 1.97
Digitalis mertonensis (dried) 1.06 1.46
Digitalis lutea (dried) 1.25 1.42
Coltsfoot (dried) 6.07 5.62
Eyebright (dried) 4.31 4.66
Coriander (dried) 1.28 1.36
Coriander (fresh) 79.4 78.7
Tarragon (fresh) 87.6 86.4
Thyme (fresh) 75.2 74.8
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6.5 Rapid Content Analyser Vs MM7 10

When comparing the NIR spectrometers, it must be remembered that while the 

6500 RCA is a laboratory instrument, the MM710 is a process instrument. For 

precise values, the 6500 RCA may have its advantages in that laboratory 

procedures can be designed for specific purposes. In addition, it produces whole 

spectra that can be analysed, and may potentially be used to simultaneously 

measure various components (e.g. water, sugar, and starch). However, the MM710 

has its advantages in that it has been designed for use in situ, and could be used in 

the production process to monitor moisture levels until the desired moisture level 

is reached.

6.9 Conclusion

It can be concluded that NIRS can be used for the real-time monitoring of the 

drying process of peppermint leaves and therefore probably of most other leaf 

materials. Although the MM710 gauge was initially pre-calibrated for water 

content in tea leaves (MM710 Users guide), it appeared to be successful in a 

variety of leaf samples, suggesting that the instrument has a wide applicability. 

NIR gauge results were highly comparable to Karl Fischer and loss on drying 

results, producing good linearity for data ranging from 70% to 0% water. 

Specificity o f the method for water was shown by the NIR spectra and by the 

correlation between Karl Fischer and NIR data. Using NIRS to control the drying 

procedure has the added advantage in that it can be done in a matter o f seconds
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and, unlike Karl Fischer titrations, is non-destructive. It is also easy to run and, 

due to the robustness and portability of the gauge instrument, it can be carried out 

on-line, allowing the moisture content of a sample to be measured continuously at 

regular intervals while a production process (e.g. drying) is being carried out. Due 

to the relatively straightforward operation o f the instrument, the MM710 gauge 

also has its advantages in that it is easy to train staff to carry out measurements in 

the production environment.
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Chapter 7: An Investigation into Some Leaf 

Components Using Near-Infrared Spectroscopy
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7.1 Introduction

The study o f leaf anatomy shows that a basic structural pattern exists which allows 

the presence o f a leaf to be detected in a powdered sample. Detailed anatomical 

characteristics will ultimately allow the identification o f the genus and species o f a 

leaf under investigation. Knowledge of the diagnostic characteristics o f any leaf 

permits the detection of contaminants and substitutes (Evans 1989j).

A leaf (Figure 7.1) is built up of a protective epidermis, a paranchymous 

mesophyll, and a vascular system. Factors such as the shape, wall structure and 

size of the epidermal cells, and the form, distribution and abundance o f epidermal 

trichomes are all of diagnostic importance (Evans 1989j).

In addition to the basic leaf structure, however, leaves also contain a variety of 

substances including cellulose, lignin, chlorophyll, mucilage, tannin, cutin, volatile 

oil, calcium oxalate and calcium carbonate (Evans 1989j). These may also vary 

due to differences in leaf chemistry between plants, and may thus also be used for 

diagnostic purposes.

In this study, four o f the above leaf components, which were readily available, 

were investigated in relation to NIR spectra of selected leaf materials. The aim was 

to see if any o f these components could in fact be detected in any o f the plant 

samples used, and therefore account for differences observed between species in 

earlier studies (e.g. chapter 4). The components studied were cellulose, tannic acid 

(tannin), calcium oxalate and calcium carbonate. These will be discussed briefly 

below:
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s.m

F igu re  7.1. Morphology o f a typical leaf, c = collenchyma; or = calcium oxalate crystals; 

cr.s = crystal sheath; I.e = lower epidermis; l.p = lower palisade; m = mucilage cell; ph = 

phloem; p.f = pericyelic fibre; s = stomata; s.m = spongy mesophyll; t = trichome; t.s = 

trichome scar; u.e = upper epidermis; u.p = upper palisade; v.b = vascular bundle; xy = 

xylem vessels. Taken from Evans 1989.
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7.1.1 Cellulose

Carbohydrates are among the first products to arise as a result o f photosynthesis, 

and constitute a large proportion of the plant biomass. As cellulose, they make up 

a large percentage of the rigid cellular framework (Evans 1989k). In the cell wall, 

the cellulose is deposited in the form of fibrils that are visible through a 

microscope. The fibrils are composed of smaller microfibrils, which are 

themselves bundles of cellulose molecules held together by weak bonds (Evans 

19891). Cellulose molecules consist of long chains o f glucose units and their 

structure is reflected in the macro form of the fibril (Evans 19891) (Figure 7.2). 

The weight of a dry plant leaf would be expected to contain about 40% cellulose. 

(Kokaly and Clark, 1999).
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Figure 7.2. Chemical structure of cellulose

7.1.2 Tannins

Tannins (tannic acid) ( C 14H 10O9) are widely distributed in plants and occur in 

solution in the cell sap, often in distinct vacuoles. As tannins are soluble in water 

and alcohol, samples must be cut dry if one desires to study the distribution of 

tannins in a plant material (Evans 1989m). Tannins are usually found in greatest 

quantity in dead or dying cells, and come from two major groups - the 

hydrolysable tannins (which may be hydrolysed by acids or enzymes such as
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tannase) and the condensed tannins (which are more resistant to breakage than 

hydrolysable tannins (Evans 1989n). Some plants, for example, tea {Camellia 

sinensis), can contain both hydrolysable and condensed tannins (Evans 1989n). In 

general, tea can be expected to contain 10-24% tannin (Evans, 1989o).

7.1.3 Calcium oxalate

Oxalic acid occurs very rarely in the free state in plants, but is extremely common 

as its calcium salt (CaC2 0 4 ) in the form of crystals. The most common crystalline 

forms include prisms, rosettes, single acicular crystals, bundles of acicular crystals 

and microspheroidal or sandy crystals. The cells that contain calcium oxalate may 

differ from those surrounding them in size, form, or contents, and are referred to as 

idioblasts. Calcium oxalate may be of considerable diagnostic importance. For 

example, belladonna can be distinguished by its sandy crystals, stramonium and 

senna by its cluster crystals, and henbane by its single and twin prisms. Calcium 

oxalate is usually present to the extent of 1% in plants (Evans 1989m).

7.1.4 Calcium carbonate

Calcium carbonate (CaCOs) may be found embedded in, or incrusted in, the cell 

walls, and concretions of calcium carbonate formed on outgrowths o f the cell wall 

are termed cystoliths (Evans 1989m). Well-formed cystoliths are seen in the 

enlarged upper epidermal cells and in the clothing hairs o f the lower epidermis o f 

the leaf of Cannabis sativa and related plants (Evans 1989m). The amount of 

calcium carbonate found in plant leaves was not available in the literature.
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7.2 Materials and methods

7.2.1 Leaf components

Tannic acid, calcium carbonate and calcium oxalate were obtained from Fluka 

(Dorset, U.K), while cellulose was obtained from Merck (Dorset, UK). All 

materials were placed in 10 mm glass vials and placed in the Rapid Content 

Analyser™ and scanned. 12 sample spectra were obtained for every sample, and to 

verify reproducibility, the vial was shaken and tapped between each measurement.

7.2.2 Leaf samples

Samples of tea (Traditional Afternoon) were obtained from a local supermarket. 

Dried samples of belladonna, stramonium, senna, henbane and cannabis leaf were 

obtained from the pharmacognosy archives at The School o f Pharmacy, University 

o f London.

All samples were powdered using a mortar and pestle and placed in 10 mm 

diameter glass vials (Waters). They were then scanned in the same way as for the 

leaf components.

7.2.3 Data analysis

All spectra were transported into FOSS Vision® software. Here, the appearance of 

the plant spectra in relation to those of the chemicals were noted, in both their 

sample spectra form and as SNV-transformed, second derivatives. In addition, 

similarities between the plant materials and each o f the chemicals were 

investigated using the identification methods of Maximum Distance in
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Wavelength Space and Correlation in Wavelength Space. Particular interest was 

focused on tannic acid and tea, to calcium oxalate and belladonna, stramonium, 

henbane and senna, and to calcium carbonate and cannabis. This was due to the 

fact that these plant materials are characterised by the presence o f these particular 

components. That is, the solanaceous leaves (belladonna, stramonium, henbane) 

may be diagnosed by the different shapes of calcium oxalate crystals present 

(sandy, cluster and prism) and senna is characterised by rosette-shaped crystals. 

Cannabis is characterised by well-formed cystoliths (concretions of calcium 

carbonate) in the epidermal cells and the clothing hairs o f the lower leaf epidermis 

(Evans 1989m). All used the wavelength range 1100-2500nm and a second 

derivative gap size of lOnm.

7.5 Results and discussion

7,3.1 Spectral characteristics

Figure 7.3 shows sample spectra o f the four leaf components, while Figure 7.4 

shows the same set of spectra after they have been SNV-corrected, 2"^ derivative 

transformed. Although SNV-2"^ derivative spectra showed the greatest differences 

between the leaf components, sample spectra were used for most o f the spectral 

observations. This was because similarities in general shapes between the four leaf 

chemicals and actual leaves could be more easily pointed out in sample spectra. 

When looking at Figure 7.3, it is clear that while the spectra for tannic acid and 

cellulose share a similar general shape, the spectra of calcium oxalate and calcium 

carbonate are rather different, although they do share some similarity in the area
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1100-1850nm. Figure 7.5 shows sample spectra of belladonna, henbane, senna and 

stramonium leaf in relation to the original spectrum o f calcium oxalate. From this, 

it can be seen these plant materials share a similar spectral shape to calcium 

oxalate from the wavelength llOOnm up to the vicinity of 1900. It can therefore be 

suggested that the small amount of calcium oxalate in these leaves (about 1%) can 

possibly be detected to some extent in the NIR spectra. Figure 7.6 shows the 

sample spectrum of cannabis leaf in relation to that of calcium carbonate. Again, 

although these spectra appear quite different, they do share some degree of 

similarity in shape in the area of 1100-1560nm. This pattern was also observed 

when calcium carbonate was compared to belladonna, henbane, senna, and 

stramonium leaf (Figure 7.7). In particular, it could be suspected that the peak 

observed in all these samples in the vicinity of 1520nm could be to some extent 

due to this material, as they both peaked in that area in the same way as the leaves. 

Figure 7.8 shows the sample spectrum of tannic acid in relation to that of tea. 

From this, it can be seen that these spectra also show some similarity up to the 

vicinity o f 2200nm, suggesting that tannic acid does contribute to some extent to 

the appearance of the spectrum of tea, which is known to be rich in tannins (10- 

24%).

Figure 7.9 shows the sample spectrum o f cellulose with those o f all the leaf 

materials investigated. It is clear from this that the spectrum of cellulose is very 

similar to those of the other leaf materials, excepting a few peaks in the area of 

2100 and 2280nm that were undetected in the leaves. This observation is not
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entirely surprising, as a significant amount (40%) of plant material is made up of 

cellulose (Kokaly and Clark, 1999).

In a final investigation in the NIR spectra, a combined NIR spectrum of the four 

leaf components was obtained by averaging all the spectra together. When 

comparing this resulting spectrum with the leaf materials, it can be seen that the 

combined spectrum is very much like the spectra of the plants, showing peaks and 

troughs in a very similar manner to the leaves (Figure 7.10). This might suggest 

that indeed, spectra of plant materials are contributed to some extent by all these 

leaf components.
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Figure 7.3. Spectra o f four leaf components
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7.3.2 Vision^ analysis

7.3.2.1 Maximum Distance in Wavelength Space

Table 7.1 shows match values obtained when using the Maximum Distance in 

Wavelength Space method on SNV-corrected, 2""̂  derivative transformed spectra 

between the leaf chemicals and the leaf samples. From this, it can be seen that all 

results were extremely high, showing no successful identification of any of the 

materials in the leaves. However, a general pattern can be seen even in these 

results. The best (i.e. lowest) results were obtained when the leaves were tested 

against calcium carbonate, with values ranging from 174 for henbane leaves to 266 

for stramonium leaves. The next best results were seen in the test against calcium 

oxalate, ranging from 292 for cannabis to 393 for belladonna. With the exception
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of tea, cellulose produced results ranging from 548 for henbane to 648 for 

cannabis. Again with the exception o f tea, tannic acid proved to be so unsuccessful 

in this method, that it produced only an error message when a comparison was 

attempted with it and the leaf samples. In tea, it did work and produced a high 

value of 846 that was in fact lower than that produced between tea and cellulose. 

This may be explained due to the fact that tea is known to be rich in tannins (20% 

in black tea), and thus tannic acid was detectable in the sample o f tea. As was seen 

in Figure 7.8, the spectrum of tea and tannic acid did produce some similarities. 

However, although a pattern was observed in the values, results were not 

conclusive. For instance, when looking at calcium oxalate, calcium carbonate, and 

cellulose, it was seen that cellulose, which is abundant in all leaf materials, 

produced the worst results in all the samples when it would have been expected to 

produce the best match values. In addition, those plants that were known to be 

abundant in calcium oxalate (belladonna, henbane, senna and stramonium) 

produced worse results than those that were known to be not as abundant. In the 

same way, cannabis did not produce the expected lowest result when compared 

with calcium carbonate, although it was the second lowest. The “combined” 

spectrum could not be used in this method, as Vision® software does not allow the 

combination of individual spectra in analysis.

73.2.2 Correlation in Wavelength Space

Again, a basic pattern was observed when using the Correlation in Wavelength 

Space method (Table 7.2). Calcium oxalate produced the worst correlation values 

overall, ranging from 0.035 in tea to 0.188 in stramonium. The next lowest results
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were observed in the case of calcium carbonate, ranging from 0.209 in cannabis to 

0.319 in henbane. However, tea produced the value 0.116 that was in fact lower 

than that between stramonium and calcium oxalate. The second highest results 

were obtained in cellulose, ranging from 0.485 in tea to 0.530 in senna leaf. 

Surprisingly, tannic acid, which proved so difficult in Maximum Distance in 

Wavelength Space, produced the best results, ranging from 0.614 in belladonna 

leaf to 0.791 in tea. Again, tea, which is rich in tannins, gave the highest results in 

this category. However, as in the previous method, although a basic pattern was 

observed, results were inconclusive. Although the four leaves that are rich in 

calcium oxalate did produce the four best results in that category, the same was not 

the case in calcium carbonate and cannabis. Tannic acid, which produced a high 

number of errors in Maximum Distance in Wavelength Space, produced the best 

results overall in this method. The fairly similar results between cellulose and 

tannic acid in this case might also be supported by the fact that the spectra of these 

two were quite alike (Figure 7.3).

Table 7.1. Maximum Distance in Wavelength Space match values for four leaf 
components and 6 leaf materials

Calcium oxalate Calcium Carbonate Cellulose Tannic acid
Belladonna 392.9 219.5 641.4 Error
Henbane 399.0 174.0 548.2 Error
Senna 329.9 237.5 624.8 Error
Stramonium 325.1 266.1 561.1 Error
Cannabis 291.6 205.0 648.5 Error
Tea 304.9 248.8 873.2 845.5

Figures are average values
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Table 7.2. Correlation in Wavelength Space values for four leaf components and 6 leaf 
materials

Calcium oxalate Calcium Carbonate Cellulose Tannic acid
Belladonna 0.073 0.254 0.523 0.614
Henbane 0.065 0.319 0.507 0.642
Senna 0.068 0.222 0.530 0.673
Stramonium 0.188 0.278 0.492 0.632
Cannabis 0.057 0.209 0.519 0.642
Tea 0.035 0.116 0.485 0.791
Figures are average values

7.4 Cellulose

I'aking into account that much of the plant cell (40%) consists of cellulose 

(Kokaly and Clark, 1999), further investigations were carried out to ascertain it 

could be more successfully detected in NIR spectra using other means.

In one investigation, the spectrum for cellulose was converted to a de-trended 

SNV spectrum along with spectra for other plant materials of pharmaceutical 

interest. De-trended SNV absorbances at 1698 nm and 2336 nm were then plotted 

against each other. The resulting plot showed that the datapoint for cellulose was 

located within the cluster formed by the datapoints for leaf materials (Figure 7.11). 

Points that were not located in or near the cluster were those for non-leaf 

materials, including the 3 other chemicals (tannic acid, calcium carbonate and 

calcium oxalate) and some resins which would be expected to be significantly 

different to leaves in their chemical composition.

In another investigation, spectra for the same materials were SNV-corrected, 2"  ̂

derivative transformed. The average distance of the spectra of these materials to 

the cellulose spectrum was calculated and used as data for the first axis. Data for 

the second axis was provided by the average value provided by the absorbances of
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each of the materials. That is, the absorbances for each of the materials were added 

together and divided by 700 (number of values for each spectrum). The resulting 

plot showed that the datapoints for leaf materials were arranged in a cluster 

(Figure 7.12) while the datapoints for the other materials were arranged further 

away from this cluster.

Both these investigations show that cellulose, which forms the bulk component of 

leaf materials, can be detected to some extent in leaf spectra.
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7.5 Quantification o f cellulose and tannic acid

Figure 7.13 shows SNV-corrected, 2""̂  derivative spectra of cellulose and some 

leaf materials, while Figure 7.14 shows SNV-2"^ derivative spectra of tannic acid 

and tea. These spectra were used to attempt quantification of cellulose in the leaf 

materials and of tannic acid in tea. For cellulose, its absorbance at 2406 nm was 

used and compared against respective absorbances of the leaf materials. That is, 

the strength of absorbance of the leaf materials at that wavelength in relation to the
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strength of absorbance for cellulose (treated as 100%) was investigated. The 

wavelength 2406 nm was used in this case as all spectra showed a peak in that area 

(Figure 7.15). The same procedure was used for tannic acid and tea, but in this 

case, the wavelength 2372nm was used (Figure 7.16). Results are shown in Table 

7.3. It is clear from these that the percentage values obtained are highly 

comparable to expected values (40% for cellulose and 24% for tannic acid, see 

earlier). However, although some degree of quantification is possible, results 

obtained from this type of analysis should be approached with caution, as it is 

quite likely that other materials present in the leaf samples may absorb at the same 

wavelengths as well. Calcium oxalate was not quantified using this method, as the 

percentage of expected calcium oxalate is small (1%), making this type of analysis 

difficult. Calciurrcarbonatevas also not quantified using this technique, as the exact 

expected percentages were not known.
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Figure 7.13. SNV-2"̂  ̂derivative spectra of cellulose and 6 leaf materials
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Table 7.3. Percentages obtained for cellulose and tannic acid using spectr al peaks 

____________________________ Cellulose (%)________________ Tannic acid (%1
B elladonna
H enbane
Senna
Cannabis
Stram onium
T ea

45 
39
46  
44  
35 
38 23
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7.6 Conclusion

When looking at the spectra of the leaf components with those o f leaf samples, it is 

clear that these chemicals do, to some extent, contribute to the spectral 

characteristics of plant materials. Some clear similarities were observed between 

the plant spectra and the spectra of the chemical components, in particular between 

certain chemicals and those plants that were known to contain these in abundance. 

In addition, combining the spectra of the chemicals produced a spectrum that was 

very similar to those produced by real leaves. This would suggest that leaf spectra 

are made up of a combination of all sorts of chemicals, including the four under 

investigation. This would also suggest that variations observed between spectra of 

different natural products are to some extent due to different amounts and 

proportions of these leaf chemicals.

Using data analysis proved inconclusive, although some patterns were observed, 

with groups producing characteristic results. However, not all samples that were 

rich in a particular component produced the best results in that category, although 

it did appear to work to some extent, for example with tea and tannic acid. The two 

methods (Maximum Distance in Wavelength Space and Correlation in Wavelength 

Space) did not support each other in that some categories performed less well in 

one method as compared to the other. For example, tannic acid produced errors in 

the majority of samples in Maximum Distance in Wavelength Space, but produced 

the best results in Correlation in Wavelength Space. A similar pattern was seen in 

cellulose. Thus, results from data analysis were unconvincing, but it is possible to 

say that these chemicals do play some part in contributing to the spectra of plant
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materials. That is, the methods did at least produce some results (with the 

exception of tannic acid and five of the leaf materials), with a pattern, indicating 

that a degree, however small, of similarity does exist.

Focusing on cellulose and carrying out a graphical analysis did produce some 

results, with leaves producing datapoints similar to that of cellulose (Figure 7.9). 

In addition, leaf spectra were seen to be closer to the spectrum for cellulose than 

spectra for non-leaf materials (Figure 7.10). This indicates that NIR can, to some 

extent be used to search for chemical components in leaves.

Quantification was attempted using absorbance data for cellulose and tannic acid. 

Results obtained were highly comparable to expected percentages. However, this 

method should not be interpreted as a completely accurate one, as other leaf 

components may also absorb at the chosen wavelengths.

A possible extension of this investigation would be to investigate further the 

quantification of various leaf chemicals using spectral data calibrations. In 

addition, it would be of interest to look at some other leaf components, such as 

chlorophyll and sugars.
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Chapter 8: The Discrimination of Commercial Teas 

Using Near-Infrared Reflectance Spectroscopy

226



8,1 Introduction

For many years, tea factories have been producing tea that almost always finds a 

market, and thus monitoring for optimum quality has not necessarily been built 

into the production process (Melican, 2000). However, packing companies are 

increasingly buying tea directly from the manufacturers and specifying exactly the 

type of teas they require, and thus it is becoming more important for the 

manufacturers to be able to meet these specifications. In addition, there are 

international regulations controlling acceptable levels of pesticides, residues and 

hygiene, and thus measuring and monitoring are an important part o f factory 

operations (Melican, 2000). For example, monitoring the temperature o f the tea 

leaves after picking is an important part of the production process, as above 43 °C, 

cell walls begin to break down» resulting in the release o f enzymes and the 

oxidation of the catechins in the leaf (Melican, 2000).

Withering is a 16 to 20 hour process carried out after the leaves have been picked 

and transported. It involves the biochemical process in which the starch in the leaf 

is converted to sugar and the proteins into amino acids. During the withering 

process, water is also removed, reducing the moisture to about 50% to 75% 

(Melican, 2000). This can vary among different tea types; for example, Assams are 

traditionally “soft-withered” (65-75% moisture) and Ceylons are “hard withered” 

(50-60% moisture) (Melican, 2000). One problem encountered in the withering 

process is that variations in the moisture content after the process are often greater 

than those found in the fresh leaf coming into the factory from the fields. NIRS has 

been recommended as the best way to tackle the problem, as measurements can be
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obtained instantaneously and on-line (Melican, 2000). It also has an advantage in 

that during the drying process, NIR moisture monitoring allows dryer feed rate to 

be automatically varied to ensure that there is a constant moisture level entering 

the dryer. This is important because a dryer will perform more efficiently if the tea 

to be dried enters the dryer at a fixed rate with a fixed moisture content (Melican, 

2000).

In the tea industry, the quality o f the finished tea is graded upon several criteria, 

including the appearance of the dry product as well as various characteristics of 

the final brew. This grading is done by professional tea tasters, and can be slow, 

labour intensive and subjective (Osborne et al 1993). Thus, in this aspect, the use 

o f NIRS is also ideal as a more rapid and objective test for tea (Osborne et al 

1993). Earlier studies compared various teas against sensory profiles and 

theaflavine content (Hall et al 1988). For sensory profiles, a standard deviation of 

7.8 over a range of 25-74 was obtained, which was favourably comparable to a 

taster, and theaflavine was estimated with a standard deviation o f 3.3pmoles per

gram in the range 1.5-26.5 pmoles per gram (Osborne et al 1993). However,

commercial blended teas would represent a much narrower range in sensory 

profile and theaflavin content, yet an experienced taster and the consumer can 

detect the presence of imbalances in the blends (Osborne et al 1993).

In this investigation, NIRS was used as a potential technique for the discrimination 

o f five of the popular commercial blends of tea. In addition, these teas were 

compared to a well-known component of tea, tannic acid.
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8.2 Materials and methods

8.2.1 Samples

12 brands each of the most popular blends o f tea were obtained from various shops 

and supermarkets. The blends were Assam, Earl Grey, Traditional Afternoon, 

English Breakfast, and Ceylon. A sample o f tannic acid was also obtained from 

Fluka (Dorset, UK). All samples were powdered and placed in 10 mm diameter 

glass vials. To verify reproducibility, each sample was scanned 12 times and 

shaken and tapped between scans, before the spectra were averaged.

8.2.2 Data analysis

Spectral data were transferred into FOSS Vision® software and transformed into

SNV-corrected, second derivative spectra. SNV-second derivative spectra were 

chosen as they produced the best results for various algorithms compared to other 

data pretreatments (first derivative, SNY -  first derivative, second derivative, third 

derivative, SNV-third derivative, fourth derivative, SNV-fourth derivative, de- 

trend, de-trend-SNV). Discrimination was then attempted using the Maximum 

Distance in Wavelength Space and Correlation in Wavelength Space methods. 

Data were also transferred to Microsoft Excel 1997 and correlation coefficients 

between the blends were calculated. Also in Excel 1997, two-wavelength analysis 

was carried out on various pretreatments and wavelength combinations. In 

addition, PQS was attempted on second derivative spectra. Finally, FOSS Vision®

software was again used to compare the five types of tea to tannic acid using
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Maximum Distance in Wavelength Space on SNV-corrected, second derivative 

spectra.

8.3 Results and discussion

8.3.1 Spectral characteristics

Figure 8.1 shows average sample spectra of the types of tea (average of twelve 

brands), while Figure 8.2 shows the same set of spectra after they have been SNV- 

corrected, second derivative transformed. It is clear from these spectra that 

although the teas are of differently named blends, their NIR spectra are extremely 

similar. Hence, discrimination of these blends through mere visual inspection of 

the spectra is an impossibility. Thus, statistical methods are needed to carry out 

identification.

8.3.2 Vision® Analysis

8.3.2.1 Maximum Distance in Wavelength Space

Table 8.1 shows match values obtained when using the Maximum Distance in 

Wavelength Space method on SNV-corrected, 2"  ̂ derivative transformed spectra 

between the various tea blends. Results showed that between the correctly matched 

blends, match values ranged from 1.65 for Assam to 2.45 for English Breakfast, 

while between mismatched samples, the lowest value was 9.36 for English 

Breakfast and Ceylon and the highest 89.5 for Earl Grey and Traditional 

Afternoon. The match values for the correctly matched samples were well within 

the range that would be expected for accurate identification of the sample using
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the method. As there is a substantial gap of 6.91 between the highest match value 

for correctly matched samples and the lowest match value for mismatched 

samples, the threshold valued of 4.0 appears to be a more than generous threshold 

limit. Thus, it can be said that the Maximum Distance in Wavelength Space 

method is a successful one for the correct discrimination of the five blends of tea. 

Results were also reproducible -  using different batches taken from the same blend 

produced match values that were comparable to the ones shown on Table 8.1. That 

is, match values for correctly matched samples ranged from 1.52 - 1.73 for Assam 

and 2.33 - 2.61 for English Breakfast. For mismatched samples, values ranged 

from 9.23 -  9.41 for English Breakfast and Ceylon to 72.4 -  90.1 for Earl Grey 

and Traditional Afternoon.
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Table 8.1. Maximum Distance in Wavelength Match Values for five types of tea

Assam Earl Grey Traditional Afternoon English Breakfast Ceylon
Assam 1.65-2.01-2.15

Earl Grey 18.4-20.4-23.7 1.70-1.99-2.41

Traditional Afternoon 18.7-20.7-24.0 73.9-78.9-89.5 1.77-2.15-2.39

English Breakfast 18.3-20.8-23.2 43.8-46.8-53.8 12.4-14.5-15.3 1.72-2.03-2.45

Ceylon 17.7-18.8-19.1 28.2-30.1-34.0 10.5-11.4-16.7 9.36-10.3-12.25 1.86-2.10-2.3

Left hand number = smallest value, right hand number = largest value, underlined number =  median value

8.3.2.2 Correlation in Wavelength Space

Although the Correlation in Wavelength Space method was attempted on various 

data pretreatments of the five tea blends, in all cases, resulting values were 

extremely high, with all correlation values being above 0.99. Thus, it can be said 

that this method is not a successful one for the discrimination of the teas. The high 

values reflect how similar the tea blends are.

8.3.2.3 Correlation Coefficients

Table 8.2 shows correlation coefficients between the various tea blends for SNV- 

corrected, 2"  ̂ derivative transformed spectra. As in the Correlation in Wavelength 

Space method, results showed extremely high correlations between the blends, 

with 0.988 being the lowest and 0.999 the highest values for mismatched samples. 

Thus, as the samples appear so similar, it does not appear practical or feasible to 

use correlation coefficients for confident discrimination of the samples in question. 

The two correlation methods may not be as successful compared to Maximum 

Distance in Wavelength Space, as while they look for similarities (correlations)
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between samples, the Maximum Distance in Wavelength Space method works by

looking for often minute differences between samples.

Table 8.2. Correlation coefficients between Five types of tea
Assam Earl Grey Traditional Afternoon English Breakfast Ceylon

Assam 1.0

Earl Grey 0.988 1.0

Traditional Afternoon 0.998 0.993 1.0

English Breakfast 0.995 0.998 0.998 1.0

Ceylon 0.994 0.995 0.999 0.999 1.0

Numbers are average values

8.3.2.4 Two-wavelength analysis

Figure 8.3 shows a two-wavelength plot for the five blends o f tea using SNV- 

corrected, 2"^ derivative transformed spectra and the wavelengths 1130nm and 

2252. The plot shows the different teas clustering in specific areas according to 

their blend. However, more closely occurring clusters and an improved separation 

were obtained when using the wavelengths 1160nm and 2268nm on SNV- 

corrected, de-trended spectra (Figure 8.4). These were more easily selected by 

visual inspection of the spectra that showed more separation between samples in 

the latter data pretreatment. Although the two-wavelength method requires some 

degree of manual selection of the wavelengths and a trial and error method of 

determining ideal data pretreatments, it can be said that it is a good method for the 

visual separation of the different blends.
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8.3.2.5 Polar Qualification System

When attempting PQS on 2"  ̂derivative spectra using lOOnm increments, the most 

successful separation was obtained when using the wavelength range 2050-2150 

(Figure 8.5). Assam, Earl Grey, and English Breakfast appeared to show good 

separation on the resulting plot. However, although a clustering behaviour was 

observed to some extent, separation was less clear for Traditional Afternoon and 

Ceylon teas. Figure 8.6 shows the resulting plot obtained when carrying out the 

PQS method on just Traditional Afternoon and Ceylon teas. Here, when using the 

wavelength range 1200-1300, a clear separation was achieved between these two 

blends. Thus, it can be said that the PQS system is relatively successful in 

discriminating between the five tea blends. Using a two-step process, further 

separation of less well-separated groups can be achieved. This shows an advantage 

o f the PQS method in that data can be reworked (or simultaneously worked) to 

give improved results.

8.3.3 Tannic acid comparison

Table 8.3 shows resulting average match values obtained when comparing the 

twelve different brands of five tea blends with one chemical component, tannic 

acid. In all cases, results were extremely high, with the lowest value being 278 for 

English Breakfast and the highest being 791 for Assam. Although the match 

values were so high, they provided interesting information in that patterns were 

seen according to tea type. That is, for Assam, all values, regardless o f brand, were 

between 786 to 791, while for Earl Grey, values ranged from 278 to 293. For
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Traditional Afternoon, they ranged from 572 to 605, for English Breakfast, they 

were from 332 to 343, and for Ceylon, they ranged from 450 to 475. Thus, these 

distinct patterns may suggest that tannic acid content may play some part in 

accounting for the differences between blends.
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Figure 8.5. A PQS plot o f five tea types using the wavelength range 2050-2150nm
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Figure 8.6. A PQS plot o f Traditional Afternoon and Ceylon tea using the wavelength 

range 1200-1300nm

Table 8.3. Maximum Distance in Wavelength Space match values between tannic acid 
and five types o f tea

Assam Earl Grey Traditional Afternoon English Breakfast Ceylon
789 285 587 339 463
789 278 572 343 450
788 282 582 339 458
787 281 580 338 456
788 282 580 342 457
786 287 592 339 466
791 280 578 340 454
788 284 585 335 461
787 280 579 339 455
788 291 603 333 473
789 293 605 332 475
786 288 594 337 467

Tannic Acid

Numbers are average values obtained from 12 spectra. Each row in the table denotes a different tea brand.
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8,4 Conclusion

Overall, in the analysis of popular commercial tea blends, NIRS used in 

combination with Maximum Distance in Wavelength Space is a successful method 

for their discrimination. All blends could be identified as distinct from each other 

using this method, regardless of the brand and batch. That is, match values fell 

comfortably into the threshold limit for correctly matched blends. The two- 

wavelength method and PQS were useful in providing a visual representation of 

the differences between the tea types. The PQS has further advantages in that the 

method can be performed on spectra more than once to refine the separation of 

particular samples or areas of spectra.

One limitation o f NIRS in the discrimination of teas is that although Maximum 

Distance in Wavelength Space is a successful method, other statistical comparison 

methods such as Correlation in Wavelength Space and Correlation Coefficients 

were not effective. This may be due to the fact that as the samples are so 

fundamentally similar, using a method which uses similarities (correlation) as a 

discrimination criteria is not the most suitable one. Maximum Distance in 

Wavelength Space, on the other hand, works by using what are often small 

differences between spectra.

The analysis of tannic acid in the various tea blends proved difficult, although it 

did appear to play some role in causing the slight differences between the samples. 

That is, certain trends in the Maximum Distance in Wavelength Space match 

values were seen depending on certain tea types.
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Results were reproducible, with tests producing highly comparable values when 

Maximum Distance in Wavelength Space was performed on different batches of 

the tea blends.

Using NIRS to discriminate between various teas has its advantages in that it can 

reduce or eliminate the need to use professional tasters to carry out evaluation, and 

thus rule out human error for any discrepancies observed. In addition, it will be far 

more rapid than the traditional methods. In addition, as it is already used to some 

extent to assess moisture during the manufacturing process, it would be ideal if  the 

same instrument(s) could be used to assess blend quality.
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Chapter 9: General Conclusion
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This project has shown that overall, the technique o f NIRS has powerful potential 

in the rapid analysis of natural products and therefore of herbal medicines. This 

included the identification of samples down to their species, as well as 

identification of the part of the plant a sample came from. That is, all samples 

could be identified correctly to their species whether they were leaves, roots, 

barks, flowers, seeds or resins. Samples of different plant parts (e.g. leaves, stems, 

roots) could first be identified down to the species and then to the particular plant 

part, if required. While the NIR method was sensitive enough to detect even a 

minute (2% in the case of Digitalis) amount of a different plant part in a sample, it 

was also capable of identifying a sample correctly as a species even when it 

consisted of a mixture of different plant parts. This would in some ways be a 

useful approach, since where identification is the issue, it is not always the main 

concern as to what specific plant part an unknown sample originated from, as long 

as its identification is confirmed. Identification of samples was successful within a 

family (e.g. Umbelliferae) as well as within a genus (e.g. Digitalis).

In addition to the identification of samples, it was also found that NIRS could be 

used to successfully categorise samples of the same plant species according to 

their geographical origin. This was particularly successful in the case o f Cannabis 

sativa. This aspect of identification is of major importance especially in forensic 

science, where the country of origin of a suspect material is often required quickly 

and accurately.

NIRS was also successful as a tool for measuring the moisture content o f a sample. 

When used against traditional techniques (e.g. Karl Fischer, loss on drying), it
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produced highly comparable results with the added advantage of being quick, 

easy, and non-destructive.

While the chemical basis for the differentiation of samples by NIRS is still rather 

ambiguous, it was possible to see that various plant chemicals do, to some extent, 

contribute to the NIR spectra of plant materials. Data analysis in thisjinstance 

proved difficult, but certain patterns were observed, with groups producing 

characteristic results. While NIR spectra do not give clear-cut peaks representing 

specific components, it was useful to see that the minute differences between 

natural products could be due to variations in their chemical composition. Some 

clear clustering patterns were observed when leaf materials were compared with 

cellulose.

The most successful data analysis method for this project was the Maximum 

Distance in Wavelength Space method on SNV-corrected, 2"  ̂ derivative 

transformed spectra using a threshold match value of 4. Most samples could be 

characterised correctly using this procedure, and it was possible to set up routine 

analysis procedures to identify samples. Results were reproducible, with highly 

comparable results being obtained when experiments were repeated. Other 

techniques (such as Correlation in Wavelength Space, correlation coefficients. 

Residual Variance in Principal Components Space) were successful to some 

extent, although there were limitations. For example, in analyses using 

correlations, there was the problem in that often, samples, even o f varying species, 

were so similar that thresholds set had to be unfeasibly high.
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Visual methods of differentiation were also explored. It was found that one simple 

method to visually separate samples was to plot absorbances at two wavelengths 

against each other. Although effective, this method had the disadvantage in that 

the most ideal data pre-treatment methods and wavelengths varied according to 

plant type and thus there were no clear-cut parameters to follow. Another similar 

technique that was explored was the use of the Polar Qualification System. By 

using relatively simple mathematics, it was possible to separate samples according 

to type without the need for randomly selecting two wavelengths, as was the case 

in the previous procedure. Both methods are effective visual techniques that could 

also be used for identification procedures, using the A:-NN method. To some extent, 

PQS has its advantages over the 2-wavelength technique in that there is no need to 

have to search for two suitable wavelengths or to establish the best data 

pretreatment methods. Using small sets o f spectra, it is possible to draw 

preliminary conclusions as neither reference spectra or large libraries are required 

(van der Vlies 1995). In addition, it is also possible to rework data to get optimum 

results.

A suitable identification procedure for natural products would potentially involve 

the following:

1) Obtain spectra and pre-treat to SNV-2"^ derivative.

2) Use Maximum Distance in Wavelength Space against library spectra.

3) Select the natural product(s) that produced match values less than 4.

4) Allocate possible identities for the unknown sample.

5) Confirm using a visual technique (2-wavelength plot) or PQS.
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Overall, NIRS for the analysis of natural products has its advantages over 

traditional techniques in that it is relatively easy to use, rapid, and requires little or 

no sample preparation or harmful reagents. While traditional techniques can be 

time-consuming, NIR measurements can be made in a matter of seconds. With the 

development o f efficient computer programs, NIRS could be a powerful tool for 

analysis. In particular, it would be of great forensic use, where often, time is of 

importance when it comes to the identification of suspect samples seized at 

customs or crime scenes. In addition, although the use o f herbal medicines is 

becoming increasingly popular, there are as yet very few quality control 

procedures carried out on them, and often, they may be contaminated. In this 

aspect, NIRS would be useful as a rapid and non-destructive method that would 

identify a sample as well as test for adulteration.
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