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Abstract
We present benchmark integrated and differential cross-sections for electron collisions with
H2 using two different theoretical approaches, namely, the R-matrix and molecular convergent
close-coupling. This is similar to comparative studies conducted on electron–atom collisions
for H, He and Mg. Electron impact excitation to the b 3Σ+

u , a 3Σ+
g , B 1Σ+

u , c 3Πu, EF 1Σ+
g ,

C 1Πu, e 3Σ+
u , h 3Σ+

g , B′1Σ+
u and d 3Πu excited electronic states are considered. Calculations

are presented in both the fixed nuclei and adiabatic nuclei approximations, where the latter is
shown only for the b 3Σ+

u state. Good agreement is found for all transitions presented. Where
available, we compare with existing experimental and recommended data.

Keywords: electron molecule collisions, electronic excitation, R-matrix, convergent close
coupling, differential cross sections
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1. Introduction

Molecular hydrogen is one of the simplest, most abundant
molecules in the Universe. Understanding of how it interacts
with its surroundings is of vital importance for a large variety
of physical systems, both naturally occurring and man-made
e.g. fusion plasmas, planetary atmospheres and interstellar
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Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

medium. In these environments, H2 molecules are subject to
frequent collisions with low to high-energy electrons.

The equations that govern electron–molecule collisions are
well understood; however, accurate and reliable cross-sections
for the different processes that can occur are few and far
between. Several recommended cross-section datasets for H2

have been assembled and published (Pitchford et al 2017,
Tawara et al 1990, Yoon et al 2008), and yet, in their most
recent review, Anzai et al (2012) note that benchmark cross-
sections are still not available for a variety of cases. Thus far
the vast majority of recommended H2 data are based on exper-
imental results. However, due to practical reasons these data
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cannot always be obtained via experiment. For example, the
required target may be unstable (short-lived), or hazardous, or
both e.g. T2.

Furthermore, it is often difficult to obtain complete sets of
data that contain all the cross-sections of interest across the
required energy ranges. Therefore we must often rely on theory
to provide this information. In addition, if cross-sections are
required from an initial state other than the ground state then
theory is presently the only realistic option.

In this work we use molecular convergent close-coupling
(MCCC) theory and R-matrix theory to produce a set of
high-accuracy, benchmark cross-sections for electron impact
electronic excitation. This is similar in spirit to the conver-
gent close-coupling (CCC) and R-matrix comparisons for
one and two (active) electron atomic systems namely H
(Bartschat et al 1996), He (Lange et al 2006) and Mg
(Bartschat et al 2010). A similar theoretical benchmark for
total cross-sections for excitation to the b 3Σ+

u state was per-
formed using the Schwinger variational (Lima et al 1985),
linear algebraic approach (Schneider and Collins 1985) and R-
matrix (Baluja et al 1985) approaches. It is important to note
that this benchmark was a theoretical benchmark of a two-state
close-coupling calculation, and was not intended to produce
convergent cross-sections. The previous R-matrix calculation
was extended by Branchett et al (1990) to include the first six
excited electronic states, giving an improved integrated cross-
section and subsequently differential cross-sections (Branchett
et al 1991).

Both the MCCC and R-matrix methods are well estab-
lished and tested. Therefore, below we only summarise the
relevant features of each theory rather than providing a thor-
ough derivation. For a complete description of the MCCC and
R-matrix theories, the reader is directed to previous work;
Zammit et al (2017a) and Tennyson (2010) respectively.

Where data are available we compare with experiment. For
example there are integrated and differential cross-sections
available for some of the lower-lying excited states at inter-
mediate (14 eV to 17.5 eV) (Hargreaves et al 2017) and
higher energies (17.5 eV to 30 eV) (Wrkich et al 2002). As well
as work carried out by Muse et al (2008) which provides elastic
cross-sections from 1 eV up to 30 eV. Also, in a recent com-
parison between theory and experiment, Zawadzki et al (2018)
provides cross-sections for the X 1Σ+

g → b 3Σ+
u transition.

2. Method

2.1. R-matrix

For the calculations we utilise the UKRMol+ suite of codes
(Mašín et al 2020). This new and improved version of the for-
mer UKRMol code has been successfully used for a variety
of molecular targets such as BeH (Darby-Lewis et al 2017),
CO (Zawadzki et al 2020) and pyrimidine (Regeta et al 2016).
The most notable difference between UKRMol+ and UKR-
Mol is the implementation of B-spline type orbital (BTO)
basis functions allowing the user to select a Gaussian type
orbital (GTO) only, mixed BTO/GTO or BTO only representa-
tion of the continuum. Use of BTOs greatly extends the range

Table 1. Absolute target energies, E (a.u.), at the equilibrium bond
length Re = 1.40 a0 compared to accurate electronic structure
calculations.

E (a.u.)

State Ref RMf MCCCg

X 1Σ+
g −1.174a −1.173 −1.162

b 3Σ+
u −0.784b −0.784 −0.770

a3Σ+
g −0.714b −0.713 −0.710

B 1Σ+
u −0.706c −0.705 −0.697

c 3Πu −0.707b −0.706 −0.701
EF 1Σ+

g −0.692d −0.691 −0.687
C 1Πu −0.689e −0.688 −0.683
e3Σ+

u −0.644b −0.643 −0.640
h 3Σ+

g −0.630b −0.630 −0.628
d 3Πu −0.629b −0.628 −0.626
B′ 1Σ+

u −0.629c −0.628 −0.625

aKolos and Szalewicz (1986).
bStaszewska and Wolniewicz (1999).
cStaszewska and Wolniewicz (2002).
dWolniewicz and Dressler (1994).
eWolniewicz and Staszewska (2003).
fThis work.
gZammit et al (2017).

of the possible R-matrix radius. Here we use a BTO-only
continuum, a large molecular R-matrix radius of a = 100 a0

and a triply-augmented target basis set especially designed for
Rydberg-like orbitals.

2.1.1. Target model. The R-matrix method relies on a bal-
anced description of the target and scattering wavefunctions,
N and N + 1 respectively (Tennyson 1996b). Where N is the
number of electrons in the target. Molecular hydrogen is a
two electron system. Therefore we have aimed to use the most
comprehensive models available in each case. Full-CI is the
hallmark of accuracy in electronic structure methods and it
provides an exact solution to the Schrödinger equation within
a given finite-sized one-electron basis set. This method is used
with an augmented Dunning basis set, especially designed
to describe Rydberg-type excitations in molecules, x-aug-cc-
pVXZ (Dunning 1989, Woon and Dunning 1994). x-aug sig-
nifies that the basis set is doubly, triply, quadruply-augmented
where x = d, t, q, etc. Triply augmented means that three
additional, even-tempered basis functions are added for each
angular symmetry available in the original cc-pVXZ set. Tra-
ditional Dunning basis sets, cc-pVXZ, are correlation con-
sistent and hence provide a systematic way of approaching
the complete basis set limit as the number X of zeta func-
tions is increased. Preliminary work found that moving from
a singly augmented basis set to a triply augmented basis set
had a more profound effect on the target description than
increasing the number of zeta functions i.e. pVXZ for X =
D, T, Q, etc. For the R-matrix calculations, presented in this
work, we found that t-aug-cc-pVTZ was the optimal choice
(tAVTZ hereafter).

As mentioned previously, we are using Full-CI and the
tAVTZ basis set. Therefore, our target model (in D2h sym-
metry) can be expressed as (19, 9, 9, 4, 19, 9, 9, 4)2. Using
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Figure 1. Potential energy curves for the ground state and the
lower-lying excited states, relative to the ground state equilibrium
energy. Data from Kolos and Szalewicz (1986), Staszewska and
Wolniewicz (1999), Staszewska and Wolniewicz (2002), Wolniewicz
and Dressler (1994) and Wolniewicz and Staszewska (2003).

this model we can solve the N-electron problem and calculate
target state energies (on average, 400 configuration state func-
tions are generated per molecular spin–space symmetry). Tar-
get state energies were calculated at the equilibrium geometry
Re = 1.40 a0 to compare with accurate structure calculations
of Kolos and Szalewicz (1986), Staszewska and Wolniewicz
(1999), Staszewska and Wolniewicz (2002), Wolniewicz and
Dressler (1994), Wolniewicz and Staszewska (2003) and the
MCCC calculations of Zammit et al (2017) (see table 1).
Potential energy curves from the aforementioned references
are also provided in figure 1.

For the ground and low-lying excited states considered in
this work, the R-matrix method produces more accurate tar-
get states than the spherical MCCC method. This is due to the
difference in how the target is expanded in the two methods.
MCCC uses single centre expansion, which performs worse
for lower target states, however it quickly improves for the
higher lying, Rydberg-like states. The R-matrix method how-
ever uses a linear combination of atom-centered GTOs. This
generally performs better for the ground and low-lying excited
states and in this work it performs well for all the states listed
in table 1.

2.1.2. Scattering model. In the R-matrix method the elec-
tronic density of the target must be contained within the
R-matrix sphere, which is of radius a. Due to the extremely
diffuse nature of our basis set we used a radius of a = 100 a0.
Usually an R-matrix sphere of this size would be impossible,
as the continuum basis set required to fill the space would
suffer from severe linear dependence. However, as mentioned
previously, the new UKRMol+ codes allow the use of BTOs
which are numerically stable regardless of the size of the
R-matrix sphere. We found that, for molecular hydrogen,
using a BTO only continuum basis not only removed linear

Table 2. Continuum basis parameters for the continuum basis.

Property Value

Number of B-splines (per l ) 75
B-spline order 9
lmax 6

dependence issues but it also gave a better description of the
continuum. Details of the continuum basis can be found in
table 2.

To solve the scattering problem we are using a close-
coupling expansion. This is necessary for describing exchange
and polarisation effects in addition to modelling electronic
excitation. To ensure balance between the N + 1 and N-
electron contributions in the close-coupling expansion we
use a similar treatment in the N + 1 electron system as we
did for the target. We adopt two types of configuration state
function (CSF) in the N + 1 system. There are those where one
electron occupies a continuum orbital, and those where all of
the N + 1 electrons occupy the target molecular orbitals. This
amounts to;

(target)2(continuum)1,

(target)3,

where target stands for the complete set of target molecular
orbitals. Note that in the first configuration step it is necessary
to couple the target electrons to the appropriate symmetry, in
order to facilitate the identification of the correct target states
(Tennyson 1996a). However, there are no such constraints on
the ‘L2’ configurations generated in the second step. Using this
model we retain all the target states below 30 eV vertical exci-
tation energy, which is 98 states. This generates an average of
65 000 CSFs per molecular symmetry.

Up to now differential cross-sections (DCS) obtained
from R-matrix calculations were generated using the pro-
gram POLYDCS (Sanna and Gianturco 1998) which includes
rotational excitation of the molecule but is limited to elec-
tronically elastic transitions. Therefore we have developed
a new program for the calculation of DCS which includes
only orientational averaging of the molecule but is appli-
cable to electronically inelastic transitions and optionally
employs the standard top-up procedure based on the first Born
approximation for inelastic dipolar scattering. For details see
appendix A.

2.2. Molecular convergent close-coupling

The MCCC method is a momentum-space formulation of the
close-coupling theory. The target spectrum is represented by
a set of (pseudo)states generated by diagonalising the tar-
get electronic Hamiltonian in a basis of Sturmian (Laguerre)
functions. For a suitable choice of basis the resulting states
provide a sufficiently accurate representation of the low-lying
discrete spectrum and a discretisation of the continuous spec-
trum, which allows the effects of coupling to ionisation chan-
nels to be modelled. Expanding the total scattering wave
function in terms of the target pseudostates and performing a
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Table 3. Absolute target energies, E (a.u.), and vertical excitation
energies, ΔE (eV), at the mean vibrational bond length
R0 = 1.448 a0. RM data are from UKRMol+ (this work) and
MCCC from Zammit et al (2017b).

E (a.u.) ΔE (eV)

State RM MCCC RM MCCC

X 1Σ+
g −1.172 −1.161 — —

b 3Σ+
u −0.796 −0.782 10.23 10.31

a 3Σ+
g −0.718 −0.715 12.35 12.14

B 1Σ+
u −0.712 −0.704 12.52 12.44

c 3Πu −0.712 −0.707 12.52 12.35
EF 1Σ+

g −0.697 −0.693 12.93 12.73
C 1Πu −0.694 −0.693 13.02 12.73
e 3Σ+

u −0.650 −0.647 14.21 13.99
h 3Σ+

g −0.636 −0.634 14.60 14.34
B′ 1Σ+

u −0.635 −0.631 14.63 14.42
d 3Πu −0.634 −0.632 14.65 14.39

partial-wave expansion of the projectile wave function leads
to a set of linear integral equations for the partial-wave T-
matrix elements, which are solved using standard techniques.
The strength of the MCCC method is the ability to per-
form calculations with very large close-coupling expansions,
allowing for the explicit demonstration of convergence in the
scattering quantities of interest with respect to the number of
target states included in the calculations and the size of the
projectile partial-wave expansion.

The MCCC method has been implemented for electron and
positron scattering on diatomic molecules in both spherical
and spheroidal coordinates. The spherical implementation is
simpler and provides an adequate description of the molec-
ular structure at the mean internuclear separation of the H2

ground state. We have utilised the spherical MCCC method
for detailed convergence studies and the calculation of elas-
tic, excitation, ionisation, and grand-total cross-sections over
a wide range of incident energies. Spheroidal coordinates are
a more natural system for describing the electronic structure
at larger R, where the target wave functions become more
diffuse. We have utilised the spheroidal MCCC method to
calculate vibrationally-resolved cross-sections for excitation
of a number of low-lying states of H2, including scattering
on all bound vibrational levels of the ground electronic state
(Scarlett et al 2020a, submitted). This has allowed detailed
studies to be performed for dissociation of H2 in the ground
and vibrationally-excited states (Scarlett et al 2019a, Tapley et
al 2018a, Tapley et al 2018b, Scarlett et al 2018), and vibra-
tional excitation of the X 1Σ+

g state via electronic excitation
and radiative decay (Scarlett et al 2020c). For clarity of pre-
sentation, in the present paper we present only the spherical
MCCC results. For details of the spheroidal MCCC method
and comparisons of the spherical and spheroidal MCCC cross
sections see Scarlett et al (2020b).

2.2.1. Target model. The MCCC target structure is obtained
using a CI calculation. The basis for the CI expansion consists
of two-electron configurations formed by products (n�, n′�′) of

Figure 2. ICS for elastic collisions. Comparison of the UKRMol+
and MCCC calculations with the measurements of Muse et al
(2008) and recommended data of Yoon et al (2008).

Figure 3. DCS for elastic collisions. Comparison of the UKRMol+
and MCCC calculations with the measurements of Muse et al
(2008).

one-electron Laguerre-based orbitals. To reduce the number
of two-electron states generated, we allow one of the target
electrons to occupy any one-electron orbital, while the other
is restricted to the 1s, 2s, and 2p orbitals. The largest target
structure calculation we have performed utilises a Laguerre
basis of N� = 17 − � functions with � � 3, which generates
a total of 491 states. To improve the accuracy of the X1Σ+

g

and b 3Σ+
u states, where the multicentre effects are strongest,

we replace the 1s Laguerre function with an accurate H+
2 1sσg

state obtained via diagonalisation of the H+
2 Hamiltonian in a

basis with N� = 60 − � functions for � � 8.

2.2.2. Scattering models. Fixed-nuclei (FN) MCCC calcu-
lations were performed at R = 1.448 a0 using a number of
scattering models, ranging from 9–491 states included in the
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Figure 4. ICS for the X 1Σ+
g → b 3Σ+

u transition. Comparison of the
UKRMol+ and MCCC calculations with the measurements of
Zawadzki et al (2018) and recommended data of Yoon et al (2008).

Figure 5. DCS for the X 1Σ+
g → b 3Σ+

u transition. Comparison of
the UKRMol+ and MCCC calculations with the measurements of
Zawadzki et al (2018).

close-coupling expansion. This allowed for a detailed inves-
tigation of convergence and the effects of including various
reaction channels (see Zammit et al (2017b) for details). The
MCCC results presented here were obtained from the 491-
state model, which yielded convergent cross-sections for each
of the transitions of interest. With regards to the partial-wave
expansion of the projectile wave function, we have included
angular momenta up to Lmax = 8, and all total angular
momentum projections up to Mmax = Lmax. To account for the
contributions from higher partial waves we utilise an
analytical Born subtraction (ABS) technique, which is
equivalent to replacing the L > Lmax cross-sections with
their respective partial-wave Born cross-sections. We
have found that the partial-wave expansion with Lmax = 8
produces convergent integrated cross sections (ICS) for all

Figure 6. ICS for the X 1Σ+
g → a 3Σ+

g transition. Comparison of the
UKRMol+ and MCCC calculations with the recommended data of
Yoon et al (2008).

transitions considered here when used in conjunction
with the ABS technique. For dipole-allowed transitions,
the partial-wave convergence of the DCS can be con-
siderably slower than it is for the ICS. The method we
have adopted to resolve this issue is discussed in Zammit
et al (2017b). For the X 1Σ+

g → b 3Σ+
u transition, adiabatic-

nuclei calculations have been performed at low incident
energies using a model consisting of 12 target states which
yields convergent cross-sections for the b 3Σ+

u state below
approximately 15 eV. These calculations are described in
Scarlett et al (2017).

2.3. Adiabatic-nuclei approximation

So far we have discussed FN calculations. However, in real-
ity, the molecular geometry is not fixed and experiment effec-
tively samples from a range of initial and final states. This
will have an impact on both the integrated and differential
cross-sections. This behaviour is most notable near threshold
(Stibbe and Tennyson 1998). At higher scattering energies,
away from the threshold, the two approximations converge
as nuclear motion effects become less significant. We use
the Adiabatic-nuclei (AN) approach detailed in Lane (1980)
which has been recently demonstrated by Scarlett et al (2017)
on molecular hydrogen. In this work we use the ground vibra-
tional wavefunction to vibrationally average multiple FN cal-
culations, carried out at a range of different nuclear geometries.
Although, in general, this method can also be used to produce
vibrationally resolved cross-sections.

3. Results

In this section, we present FN ICS and DCS for elas-
tic and inelastic processes. For inelastic processes we con-
sider the first ten electronic excited states. In the second
section we use the adiabatic-nuclei approximation to intro-
duce nuclear motion effects which are particularly important
close to threshold. The FN R-matrix ICS and DCS data are
provided as supplementary data, which can be found online at
https://stacks.iop.org/JPB/53/145204/mmedia.

The scattering calculations that follow were carried out
at the mean vibrational bond length, R0 = 1.448 a0, to
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Figure 7. ICS for the X 1Σ+
g → c 3Πu transition. Comparison of the

UKRMol+ and MCCC calculations with the recommended data of
Yoon et al (2008).

Figure 8. ICS for the X 1Σ+
g → e 3Σ+

u transition. Comparison of the
UKRMol+ and MCCC calculations with the recommended data of
Yoon et al (2008).

provide the best comparison to experiment, within the FN
approximation. Table 3 lists the target states and the vertical
excitation energies obtained for both methods. Similarly, com-
pared to table 1, the R-matrix target energies are more accurate
than the MCCC method, as they are lower in energy (note that
both methods are variational). However, it should be noted
that the absolute energy is of less significance for this work,
and that the vertical excitation energies (relative to the ground
state) are in good agreement.

3.1. Fixed-nuclei cross-sections

We present ICS and DCS for the first ten target states (see
table 3); X 1Σ+

g , b 3Σ+
u , a 3Σ+

g , B 1Σ+
u , c 3Πu, EF 1Σ+

g , C 1Πu,
e 3Σ+

u , h 3Σ+
g , B′ 1Σ+

u and d 3Πu. Where available, recom-
mended cross-sections and experimental results are plotted
against the two theoretical calculations.

3.1.1. Elastic cross-sections. The elastic ICS (figure 2)
demonstrates good agreement between MCCC and R-matrix
theory. The calculated data lie within the error bars of the
experiment conducted by Muse et al (2008). For the DCS
(figure 3) at scattering angles exceeding 15◦ the two theories
essentially overlap. At energies greater than 15 eV the R-
matrix calculations have a diminished forward peak and this
is due to a lack of convergence of the partial wave expansion.
Due to computational constraints Lmax = 6 for the R-matrix

Figure 9. DCS for the X 1Σ+
g → a 3Σ+

g transition. Comparison of
the UKRMol+ and MCCC calculations with the measurements of
Wrkich et al (2002).

calculations. This compares to Lmax = 8 for the MCCC
calculation, which also employs the ABS technique.
Nevertheless, scattering angles close to θ = 0 or θ = 180
do not contribute as much to the ICS due to a sin θ term in the
integrand. Therefore, despite the differences in the DCSs the
resulting ICSs are similar.

The recommended data of Yoon et al (2008) for the ICS
are noticeably lower than those obtained from the R-matrix
and MCCC calculations (figure 2). Whilst they are within
their specified margin of error (±20%) we believe that, due
to the excellent agreement between both theories and experi-
ment for the DCS (figure 3), the recommended data should be
revised.

3.1.2. Triplet states. The first excited electronic state is b 3Σ+
u .

For this state we have used a fine energy grid for both the
MCCC and UKRMol+ calculations. This allows an accurate
comparison of the two ICSs. In figure 4 prominent resonance
structures are observed near 12 eV. Across the energy range
considered the two calculations agree.

The recommended cross-sections (Yoon 2008) are too large
compared to the MCCC and UKRMol+ results above 12 eV.
The newer experiment from Zawadzki et al (2018) is much
closer to the two theories. The DCSs (figure 5) also agree
closely with these experimental data. The R-matrix calcu-
lations are a little higher than the MCCC calculations for
angles exceeding 135◦ but, again, the effect on the ICS is
insignificant.

For higher excited states i.e. those energetically above
b 3Σ+

u , MCCC results are presented on a coarser energy
grid. Therefore, we can no longer compare the narrow reso-
nant structures. The ICSs for states a 3Σ+

g , c 3Πu and e 3Σ+
u

6
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Figure 10. DCS for the X 1Σ+
g → c 3Πu transition. Comparison of

the UKRMol+ and MCCC calculations with the measurements of
Wrkich et al (2002).

(figures 6–8, respectively) have good agreement between the
MCCC and R-matrix theories.

The recommended data points are based on the EELS (elec-
tron energy loss spectroscopy) experiment of Wrkich et al
(2002). The data points are sparse so it is hard to quantitatively
compare against the two theory calculations. However, given
agreement between the two theoretical calculations and more
recent experiments, we believe that the recommended cross-
sections should be revised for all of the triplet states considered
so far.

The DCSs shed more light on the comparison. Figure 9
shows the a 3Σ+

g state. Agreement is best for 17.5 eV and
30 eV. The general shape is present at all three energies.
That is, the cross-section dips around 60◦ and 120◦. However,
for intermediate angles the magnitude of the DCS is higher
(especially for 20 eV) than the theoretical calculations. EELS
experiments are hard to conduct for excited states of H2

because the states overlap in the spectra and the individual
components have to be deconvoluted.Based on the difficulty of
these type of experiments for highly-excited states we suggest
that the calculations are more reliable.

For the c 3Πu state (figure 10) the situation is similar to the
a 3Σ+

g state. There is a slight downward slope towards higher
scattering angles that is present in both the calculation and
the experiment. However, the experimental DCS at 20 eV is
approximately an order of magnitude higher.

For the e 3Σ+
u state there is no qualitative agreement

between theory and experiment. At all three energies (shown
in figure 11) we have large discrepancies for low angle
scattering i.e. below 30◦. This is not too surprizing though
as low and high angle scattering is difficult to measure

Figure 11. DCS for the X 1Σ+
g → e 3Σ+

u transition. Comparison of
the UKRMol+ and MCCC calculations with the measurements of
Wrkich et al (2002).

Figure 12. ICS for the X 1Σ+
g → h 3Σ+

g transition. Comparison of
the UKRMol+ and MCCC calculations.

due to the physical constraints of the experimental setup.
Therefore, we suspect that the low angle cross-sections mea-
sured by Wrkich et al (2002), at 20 eV and 30 eV, are too
high.

The ICSs for states h 3Σ+
g and d 3Πu (figures 12 and

13) show reasonable agreement between the two theories.
However, the R-matrix calculation exhibits pronounced fea-
tures around 16 eV and 19 eV. In the standard R-matrix
approach used in this work, ionisation effects are not included.
We include states above the ionisation threshold but we
do not explicitly include pseudostates. To model ionisa-
tion pseudostates are required as implemented in the R-
matrix with pseudostates (RMPS) method (Gorfinkiel and
Tennyson 2005). As a result, the cross-section is overestimated
above ionisation threshold. This behaviour was demonstrated
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Figure 13. ICS for the X 1Σ+
g → d 3Πu transition. Comparison of

the UKRMol+ and MCCC calculations.

Figure 14. DCS for the X 1Σ+
g → h 3Σ+

g transition. Comparison of
the UKRMol+ and MCCC calculations.

previously in MCCC calculations when only the bound states
were used (Zammit et al 2017b). In addition, weak transi-
tions can also suffer from small oscillations, but the impact is
reduced as the size of the close-coupling expansion increases.
Therefore, the enhanced R-matrix cross-section is likely due
to missing ionisation channels.

The R-matrix DCSs for state h 3Σ+
g (figure 14) show

broad agreement with the MCCC data. There are no recom-
mended data for either the h 3Σ+

g or d 3Πu states. For the
d 3Πu state (figure 15) there are more significant differences
between the two theories. As the target excitation increases, we
typically expect less agreement between the two theories.
Higher excited states tend to be less accurately described
by the electronic structure calculations used in the R-matrix
method.

3.1.3. Singlet states. Next we consider the singlet states.
ICSs for three dipole-allowed states, B 1Σ+

u , C 1Πu and B′ 1Σ+
u ,

Figure 15. DCS for the X 1Σ+
g → d 3Πu transition. Comparison of

the UKRMol+ and MCCC calculations.

Figure 16. ICS for the X 1Σ+
g → B 1Σ+

u transition. Comparison of
the UKRMol+ and MCCC calculations with the recommended data
of Yoon et al (2008).

are shown in figures 16–18 respectively. All three ICSs show
excellent agreement between MCCC and R-matrix theory. Fur-
thermore, agreement with the recommended data, which is
available for the B 1Σ+

u and C 1Πu states, is extremely good at
the energies considered here. Contrary to the previous EELS
experimental data, these recommended data were measured
from the optical emission of the electron impact electronically
excited B and C states (Liu et al 1998).

DCSs could not be determined in the emission experiments
of Liu et al (1998). However, Wrkich et al (2002) produced
a set of EELS DCS which have been plotted in figures 19
and 20. For the B 1Σ+

u state the agreement with experiment
is good. At 30 eV however the R-matrix calculation displays
oscillations that are not present in the MCCC calculation. This
is due to a lack of convergence in the partial-wave expan-
sion. Typically a Born correction would be applied to dipole
allowed transitions. However, in the present work this has

8
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Figure 17. ICS for the X 1Σ+
g → C 1Πu transition. Comparison of

the UKRMol+ and MCCC calculations with the recommended data
of Yoon et al (2008).

Figure 18. ICS for the X 1Σ+
g → B′ 1Σ+

u transition. Comparison of
the UKRMol+ and MCCC calculations.

not been possible. The Born top-up requires a sufficiently
converged cross-section, up to some intermediate number of
partial waves, L̄max. For MCCC this is found to be L̄max = 25,
or more, depending on the scattering energy (Zammit et al
2017b). A similar approach was attempted for the R-
matrix calculation, although this was not tractable given
currently available software and computational power (see
appendix A).

Similarly, the oscillations observed for the B 1Σ+
u state at

higher energies are also observed in states C 1Πu and B′ 1Σ+
u

(figures 20 and 21). Furthermore, in all of the singlet state
DCSs, figures 19–22, the R-matrix calculation has a lower
forward peak. This is attributed, as in the elastic scattering
case, to a lack of convergence in the number of partial waves
used. Regardless, forward and backward scattering only make
a small contribution to the total ICS. Therefore the differences
caused by the oscillatory behaviour and lower forward peak are
lost upon integration. This highlights the importance of using
DCSs as a stringent test of theories. Two theories may produce
the same ICS but have different angular profiles.

In contrast to the dipole-allowed singlet states, the forbid-
den EF 1Σ+

g state DCS (figure 22) is not as sensitive to higher
partial-waves. Agreement between the two theories is good.
The agreement between theory and experiment is acceptable,
except for the scattering angles from 60◦ to 100◦ at 20 eV
where the experiment gives a larger cross-section, which could
be due to the analysis of the measured EELS.

Figure 19. DCS for the X 1Σ+
g → B 1Σ+

u transition. Comparison of
the UKRMol+ and MCCC calculations with the measurements of
Wrkich et al (2002).

Comparing the ICS (figure 23) between the two theories,
the R-matrix calculation is consistently above the MCCC data.
Again, this is likely due to the absence of ionisation chan-
nels in the R-matrix close-coupling expansion that leads to an
overestimated cross-section.

The recommended data are based on an emission experi-
ment carried out by Liu et al (2003). Whilst the EF 1Σ+

g state
is dipole-forbidden, the cross-section can be inferred using a
combination of theoretical and experimental considerations.
There is a difference in threshold for experiment, which occurs
near 15 eV as opposed to 13 eV for the FN MCCC and R-
matrix calculations. However the magnitude and qualitative
shape agree with theory.

3.2. Adiabatic-nuclei cross-sections

In this section we make use of the AN approximation described
previously. In figure 24 both FN (dot-dashed line) and AN
calculations (solid line) are shown side-by-side for electronic
excitation to the first excited state (X 1Σ+

g → b 3Σ+
u ). For both

the MCCC (red) and UKRMol+ (black) calculations we can
see two main differences. The first is that resonant structures
are washed-out and the second is that the sharp turn-on near
the vertical excitation threshold (10 eV) is smoothed into a
ramp. This is due to the vibrational averaging over differ-
ent molecular geometries. The threshold for the X 1Σ+

g →
b 3Σ+

u transition is essentially the vertical excitation energy.
For some geometries this will be lower than 10 eV and for oth-
ers will be greater. The average is weighted by the square of
the ground vibrational wavefunction, which means the largest
contributions occur at the maximum of the wavefunction i.e.
about R0. This is why the FN calculation at R = R0 and the AN

9
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Figure 20. DCS for the X 1Σ+
g → C 1Πu transition. Comparison of

the UKRMol+ and MCCC calculations with the measurements of
Wrkich et al (2002).

Figure 21. DCS for the X 1Σ+
g → B′ 1Σ+

u transition. Comparison of
the UKRMol+ and MCCC calculations.

calculation are broadly similar. Adiabatic effects have conse-
quences for near-threshold electron impact dissociation of H2

(Stibbe and Tennyson 1998).
The AN approximation requires FN calculations to be

performed across a grid of different internuclear bond

Figure 22. DCS for the X 1Σ+
g → EF 1Σ+

g transition. Comparison
of the UKRMol+ and MCCC calculations with the measurements
of Wrkich et al (2002).

Figure 23. ICS for the X 1Σ+
g → EF 1Σ+

g transition. Comparison of
the UKRMol+ and MCCC calculations with the recommended data
of Yoon et al (2008).

separations. For the R-matrix calculations, a grid size ofΔR =
0.05 a.u. was used for 0.95 < R < 1.95 a.u. with a finer grid
of ΔR = 0.01 a.u. used in the region closer to the mean vibra-
tional bond length, 1.35 < R < 1.55 a.u. Due to the large
number of FN calculations required it was not possible to
use the full model described previously. Therefore a smaller
model was used which featured a singly augmented aug-cc-
pVTZ basis set and an R-matrix radius a = 25 a.u. The smaller
radius allowed the continuum representation to be simplified
to 22 BTOs per angular momentum symmetry with Lmax = 4
without sacrificing completeness. As before, all of the tar-
get states below 30 eV were included which led to a 59-state
model. This model works well for the first excited state but
due to the simplified target description it cannot represent
higher-excited states.
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Figure 24. Integrated cross-section for the X 1Σ+
g → b 3Σ+

u
transition using the AN approximation. (Black) UKRMol+, (red)
MCCC, (green dots) experiment from Zawadzki et al (2018).

4. Conclusion

In this paper we demonstrate good agreement with recent
experimental data (Muse et al 2008, Zawadzki et al 2018), val-
idated by two independent theories. The agreement with the
recommended ICS data (Yoon et al 2008) and older exper-
imental data (Wrkich et al 2002) is worse, predominantly
for the triplet states but we believe this is due to the diffi-
culties associated with the underlying experiments. That is,
it is difficult for experiments to separate the overlapping contri-
butions coming from different triplet excited states and there-
fore the error margin is larger for these types of experiment.
Any other significant differences between the two theories and
experiments are well understood.

This is the first time the CCC and R-matrix theories
have been verified for a molecular target. This work presents
one of the largest molecular R-matrix calculations to date.
Many novel features have been exploited for the first time:
a triply-augmented target basis set, a box size of 100 a.u.
and the first B-spline only continuum for a molecular tar-
get. This shows that both MCCC and R-matrix method can
be used to perform large-scale, high-accuracy close-coupling
calculations.

We have compared both fixed-nuclei and adiabatic-nuclei
cross-sections obtained using the R-matrix and MCCC meth-
ods. For FN calculations, dipole-forbidden states generally
show better agreement in the DCSs. Dipole-forbidden states do
not require a born top-up and generally converge quicker for
the same number of partial waves, compared to dipole allowed
transitions (Zammit et al 2017b). For the dipole-allowed
states the R-matrix calculations show oscillatory behaviour but
this could be eliminated by using a higher cutoff in the number
of partial-waves. However, this is currently not tractable given
currently available hardware and software.

All of the ICSs show good agreement between the two the-
ories with the exclusion of weak transitions that are more sen-
sitive to the absence of ionisation channels in the R-matrix
calculations, leading to slightly enhanced cross-sections. The

AN ICS for the first excited state shows excellent agreement
between the two theories and the recent experimental data.

There are several directions for future work. Firstly, it
would be interesting to compare the effect of target model used
in the MCCC calculations i.e. spherical versus spheroidal. Pre-
liminary results for the EF 1Σ+

g state suggest that the use of a
spheroidal model could improve the agreement between both
theories.

Secondly, in order to accurately describe ionisation effects
in the R-matrix method we would need to employ the
RMPS method. Whilst the RMPS method is implemented in
UKRMol+ the calculations for this system are currently too
expensive.

Additionally, for the R-matrix calculations presented in this
work we have not been able to carry out systematic, quantita-
tive analysis of the uncertainties. This is a common problem
across the field for theoretical calculations (Chung et al 2016).
For future work, we seek a tractable approach that is capable
of providing uncertainties for our calculated data.

Finally, a general approach for handling Born top-ups, sim-
ilar to the ABS method used in MCCC calculations would be
desirable for the UKRMol+ calculations in order to reach con-
vergence where larger numbers of partial-waves are required
(as discussed in appendix A).
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Appendix A. Including higher partial waves

To include higher partial waves, specifically for dipole-
allowed transitions, we require a top-up procedure. In R-matrix
calculations this is done using an approach suggested by Nor-
cross and Padial (1982). The MCCC uses an equivalent method
described in (Zammit et al 2017b). For a DCS the top up
procedure is given by

dσ
dΩ

=

(
dσ
dΩ

)
Born

+

λmax∑
λ=0

(Aλ−ABorn
λ )Pλ(cosθ), (A.1)
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where the first term on the right-hand side is the DCS calcu-
lated for inelastic dipolar scattering in the first Born approx-
imation and the second term includes the contribution of the
lower partial waves Aλ calculated with close-coupling and sub-
traction of the corresponding Born partial waves ABorn

λ . Only
orientational averaging of the molecule is taken into account.
This approach was used in previous R-matrix calculations
for inelastic collisions, but only for ICSs (Baluja et al 2000,
Kaur et al 2008, Mašín et al 2012), which tend to converge
quicker than DCSs. Recently, Zawadzki et al (2020) employed
the Born correction described above for the electronically
inelastic DCS of CO. This method, however, requires a suf-
ficiently high partial wave cutoff, Lmax. At lower partial waves
the analytic Born method is less accurate and tends to overes-
timate the cross-section, leading to unphysical negative cross-
sections.

Born corrections have been successfully applied to DCSs
for elastic collisions, see e.g. Zhang et al (2009) and Mašín et
al (2012). However, these cross-sections are usually an order
of magnitude larger than those for dipole-allowed inelastic
transitions. Hence, they are less susceptible to the oscillatory
behaviour seen in inelastic DCSs.

Figure A1 shows the DCS for the dipole-allowed B 1Σ+
u

state. In solid black we have the original R-matrix calculation
without the Born correction. If we apply the Born correction
to the DCS we obtain the dotted line. At 17.5 eV, the Born cor-
rected DCS displays unphysical behaviour around 150◦ where
it becomes negative. The situation worsens for higher energies.
This is due to an incomplete convergence of the partial-wave
Born contribution

∑
λ ABorn

λ Pλ(cosθ).
To resolve this issue, the MCCC approach (Zammit et al

2017b) has been to run a smaller-sized calculation but with
a higher cutoff e.g. L̄max = 25. The results of this calculation
are then used to augment the T-matrices of the more expensive
calculation. This allows the DCS contributions from higher
partial waves to be calculated with the more accurate MCCC
theory before including the additional contributions from the
Born procedure.

A similar approach has been adopted in the R-matrix cal-
culations, however L̄max = 25 is currently not computation-
ally feasible with the UKRMol+ codes. Calculations using
a smaller model, but with L̄max = 10, have been computed
and these were used to augment the T-matrices of the accu-
rate R-matrix calculation with Lmax = 6. When augmenting
the T-matrix elements, care must be taken to phase-match the
two calculations. This can be achieved by comparing the tran-
sition dipole moments of the target states involved in each
transition.

The result of augmenting the T-matrices and applying the
Born correction is shown as the dashed line in figure A1. For
the lowest scattering energy shown, 17.5 eV, the oscillatory
behaviour is greatly reduced and the Born correction improves
the quality of agreement between the MCCC and R-matrix
calculations. At 20 eV Born-corrected DCS is improved but
it still shows oscillatory behaviour that is characteristic of a
lack of convergence. At 30 eV, even with the augmented T-
matrix elements the DCS remains oscillatory when the Born
correction is applied.

Figure A1. DCS for the B 1Σ+
u state calculated using the R-matrix

method, with Lmax = 6 (black) and the MCCC method (red). The
Born top-up was applied to the original calculation before (dotted)
and after (dashed) the T-matrix elements were augmented with a
cheaper Lmax = 10 calculation.

In theory, an approach similar to the MCCC method can
be developed for the R-matrix calculations but there are two
factors that currently inhibit further improvement. The first
is that the target states from cheaper calculations need to be
shifted to the more accurate values from the expensive calcu-
lation. For the R-matrix calculations, presented in this work,
the energies were shifted in the outer-region. This is not ideal
and instead we need to implement the energy shift in the N + 1
scattering calculation, similar to the approach used by Stibbe
and Tennyson (1997). Secondly, the outer-region quickly dom-
inates the computational resources required, both physical
RAM and CPU-time, as a large number of channels are gen-
erated for higher partial waves. Furthermore a sophisticated
approach would need to be implemented in the outer-region to
reduce the number of states included in the calculation.

As an alternative approach, we also attempted to top-up
the DCS using a more basic method (not shown). We ran two
cheaper calculations with small basis sets using Lmax = 6 and
Lmax = 10. We took the difference between the two DCSs and
used this to top-up the expensive calculation. This approach
does help to capture the forward peak scattering but it was
too susceptible to unphysical negative cross-sections when the
differences between the cheap calculations became negative.
This method behaved particularly poorly in regions where the
cross-section was small.

In summary, we believe the MCCC approach to the Born
top-up is the most sensible way forward, however there is still
work to be done before it can be implemented in R-matrix
calculations.
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