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Abstract— Asthma is a treatable but incurable chronic 

inflammatory disease affecting more than 14% of the UAE 

population. Asthma is still a clinical dilemma as there is no proper 

clinical definition of asthma, unknown definitive underlying 

mechanisms, no objective prognostic tool nor bedside noninvasive 

diagnostic test to predict complication or exacerbation. Big Data 

in the form of publicly available transcriptomics can be a valuable 

source to decipher complex diseases like asthma. Such an 

approach is hindered by technical variations between different 

studies that may mask the real biological variations and 

meaningful, robust findings. A large number of datasets of gene 

expression microarray images need a powerful tool to properly 

translate the image intensities into truly differential expressed 

genes between conditioned examined from the noise. Here we used 

a novel bioinformatic method based on the coefficient of variance 

to filter nonvariant probes with stringent image analysis 

processing between asthmatic and healthy to increase the power 

of identifying accurate signals hidden within the heterogeneous 

nature of asthma. Our analysis identified important signaling 

pathways members, namely NFKB and TGFB pathways, to be 

differentially expressed between severe asthma and healthy 

controls. Those vital pathways represent potential targets for 

future asthma treatment and can serve as reliable biomarkers for 

asthma severity. Proper image analysis for the publicly available 

microarray transcriptomics data increased its usefulness to 

decipher asthma and identify genuine differentially expressed 

genes that can be validated across different datasets. 
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I. INTRODUCTION  

Asthma is one of the most common chronic inflammatory 

disease, usually characterized by being a lifelong condition 

with high disease burden [1]. Bronchial hyperresponsiveness, 

inflammation, and airway obstruction episodes are the main 

characteristic features of this disease [2]. The prevalence of 

asthma was shown to be increased in the last years, reaching 

alarming levels [3]. Many theories on the factors that made 

people at risk of developing asthma were suggested; however, 

most of these theories had no conclusive results [3].  

 

 

 

Many reasons might play a role in hindering the reach for a 

proper understanding of what makes people develop asthma,  or 

what convert entirely controlled asthmatic cases into severe or 

fatal ones. [4].  The fact that different regions of the asthmatic 

lung can react differently to the same provoking factor makes 

the patients clinical features and response to therapy differ 

giving rise to the asthma heterogeneity.   

The use of Omics technologies, including genomics, 

transcriptomics, proteomics, and metabolomics, provided 

extraordinarily details and enriched our knowledge about the 

asthma heterogeneity and molecular basis of asthma [5].  

Moreover, these techniques helped in the discovery of new 

markers essential for precise classification of asthma as well as 

the development of new therapeutic targets [6].  However, the 

use of these techniques gives no conclusive and even 

contradictory results [7]. The entire biological complexity of 

asthma cannot be captured using an isolated output from these 

sophisticated technologies if taken separately [8].  

Among Omics, transcriptomic profiling of bronchial biopsies 

as well as epithelial brushing cells showed the potential to 

discover gene expression profiles that are characteristic in 

asthma [9] and can identify different molecular mechanisms 

that separate asthmatic phenotypes [10]. Moreover, this 

approach is believed to have the power to identify novel clinical 

biomarkers to help physicians in making more precise 

therapeutic strategies in treating individual patients [11]. 

However, such an approach in a broader range of patients has 

not yet been performed [12]. This costly approach can be more 

informative if a large number of samples are combined to 

extract meaningful information by using a large number of 

datasets available in public databases [13]. Such motivation is 

faced by the fact that microarrays studies showed an extreme 

method to method variations in the results of the significant 

differentially expressed genes (DEG). The main reason behind 

this is the variability in experimental processes that can mask 

the investigated biological effect [14].  

 

Most of the huge publicly available transcriptomics datasets 

were made by arrays that can detect thousands of genes 

simultaneously.  Microarray technology presents the expression 

level of a gene as pixel intensity. Translating pixel intensities 
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into transcript expression requires a series of computations 

[15], and each of these steps carries its noise and errors.  The 

scanned signal consists of true spot intensity and noise referred 

to as background, so even a small error in the estimate of true 

or noise signal can influence the results and shift an upregulated 

gene to be referred as downregulated genes or not affected by 

the condition examined[16]. 

 

Ideally, identifying truly DEG among thousands of genes needs 

to reduce the number of genes that are equally expressed 

between disease and control by a filtration step [17].   For that 

reason, here, we used a novel in-house bioinformatic pipeline 

that showed previously a remarkable performance in clustering 

otherwise un-clusterable complex disease to filter the publicly 

available data generated by transcriptomics approach. We 

aimed to identify novel pathways that can help in selecting 

potential biomarkers and explain the susceptibility to disease, 

predict prognosis, and response to treatment in a personalized 

medicine approach. 

 

II. HYPOTHESIS 

Proper image analysis of gene expression microarray can 
improve the identification of genuine differential expressed 
genes between severe asthma and healthy controls.  

A.  Aim  

Use the publicly available gene expression data of patients 
with clinically distinct asthmatic phenotypes to identify a novel 
subset of genes correlated with disease severity (Healthy and 
Severe asthma) that can provide biological information on 
disease mechanisms and the pathways in which they are 
significantly enriched.  

B. Objectives  

1. Collect the raw image data from publicly available gene 
expression data of asthma patients. 

2. Cluster patients with clinically distinct asthmatic 
phenotypes and identify confounding factors (age, sex, 
and sample type).  

3. Use the method described by Hamoudi et al. [18] to 
identify a novel subset of genes correlated with disease 
severity. 

4. Reveal how multiple mechanisms interact in asthma.  

5. Construct a practical and efficient short-listed gene 
signature for different asthma phenotypes biomarkers. 

 

III. METHODOLOGY AND RESULTS 

110 records on Asthma with 7390 samples were searched in 

the publicly available transcriptomic dataset from Gene 

Expression Omnibus (GEO) 

(https://www.ncbi.nlm.nih.gov/geo/). The datasets were 

filtered to search for a dataset that includes asthmatic patients 

with defined clinical classifications of participants, and 

bronchial epithelium gene expression using microarray 

Affymetrix Human Genome U133 Plus 2.0 Array. Human 

Genome U133 Set plus have the advantages of complete 

coverage of over 47,000 transcripts plus the 6,500 additional 

genes for analysis. For initial identification of gene signature 

that differentiates healthy from severe asthma bronchial 

epithelium, the gene dataset GSE64913 [Healthy (n=37) and 

Severe Asthma (n=22)] was used to generate the signature. The 

general flowchart used in processing this dataset is detailed in 

Figure (1). 

 
Figure (1): General Flowchart used in identifying patterns of Asthma 

signatures using Image Filtering Algorithms from Gene Expression 

Microarray.  

 

A. Preprocessing Quality Control  

Before submitting the datasets for differential expression 

analysis, the quality of the chips used for the study was assessed 

as per the manufacturer instructions, and only chips that passed 

the QC were used for further processing. Quality Control 

workflow is shown in Figure (2). 
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Figure (2): QC report to identify technical and biological errors that 

affect further processing generated by Transcriptome Analysis Console 

(TAC) 4.0 for microarray analysis and R Bioconductor package 

(affyQCReport). The report confirms that the 59 sample chips are 

appropriate for further analysis.(A) The PCA analysis showing the 

asthmatic samples in red and healthy samples in blue and there is no 

observed effect that can affect further interpretation (B) Array to array 

analysis for the 59 chips used in this study, showing dataset 

homogeneity (C-F) Set of probes spiked at the beginning of the chip 

processing to assess the overall success of the target preparation steps 

(G) RNA degradation plot to assess overall RNA quality control and 

whether RNA is too degraded or not (H) Density histogram of log-

intensities for comparison between arrays and for an identification of 

arrays with weird distribution (I) Boxplot of the probe-wise centered 

values.  

B. Pipeline for normalization  

In total (n=59) with Affymetrix Human Genome U133 Plus 2.0 

Array were extracted then underwent preprocessing and 

normalization separately using in-house pipeline using R 

Bioconductor to precise cluster otherwise unclusterable cases 

of one of the most biologically complex human disease using 

transcriptomic data as per the flowchart below. The pipeline 

uses affy package, Robust Multi-array Average (RMA), 

GCRMA, MAS5, and Li–Wong “dChip” of Bioconductor, R 

statistical software version 3.6.1.  After testing the 4 methods, 

Hamoudi et al. [9] found that the best strategy for generating 

variant probes that are differentially expressed between the 

groups was found to be gcRMA and MAS5 and cross-reference 

the probes that passed through non-specific filtering based on 

the coefficient of variation and absolute value thresholding. 

Flow chart of normalization and results are shown in figure (3).  

 

 
Figure (3): Different Normalization steps of removing sources of 

variation (backgrounds noise) which affect the measured gene 

expression levels using four commonly used normalization procedures 

RMA, GCRMA, MAS5, and Li–Wong “dChip”.  Signal box plot for 

and density histogram of log intensities of each method are shown. 

 

C. Pipeline for Filtration  

To filter out non-variant genes between severe asthmatics and 

healthy controls, a combination of noise and variance filtering 

was applied. Only probes with a value of 100 or higher in the 

MAS5 dataset in all 59 samples were selected. The probes that 

passed the first filter than are subjected to the coefficient of 

variation (CV) filter using their gcRMA expression intensities.  

Probes with CV value of 10-50% across all samples were 

considered to be variant and thus selected. CV was calculated 

as the mean / standard deviation of each gene across all 

samples. Since many genes are different between males and 

females and should be identified, only genes that do not show 

significant variance between males and females samples were 

passed. Finally, the genes that passed the above three filtering 

methods were intersected to obtain a common set of variant 

genes. Such an approach will give us a clear list of genes that 

participate in the pathogenesis of severe asthma. Out of the 

54675 probes present in the chip, only 3098 probes passed the 

filtration. These filtered probes were annotated to its 
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corresponding genes using (biomaRt) R package and then 

collapsed using the GSEA tool by choosing probes with the 

maximum expression for each gene. Initial 2474 protein-

coding, 290 long RNA coding, and 9 microRNA coding genes 

were collapsed into 2116 corresponding genes. The flow chart 

of filtration is shown in figure (4). 

 
Figure (4): Hamoudi Pipeline used to filter out non-variant genes 

between severe asthmatics and healthy controls, a combination of noise 

and variance filtering was applied. 

D. Limma Package to identify DEG 

To identify differentially expressed genes between severe 

asthma and healthy controls, the R Bioconductor Limma 

package was used. Out of the 2116 filtered genes, 169 genes 

with an adjusted p-value of less than 0.05 were identified to be 

differentially expressed between severe asthma and healthy 

controls. The flow chart of filtration is shown in figure (5). 

 

Out of these, 16 genes (FKBP5, KRT23, HEG1, S100A10, 

SLAMF7, TFCP2L1, KLRC4-KLRK1, TRIM7, SLC13A2, 

SCGB3A1, C3, TM4SF1, PIP, NELL2, HLA-DPA1, and HLA-

DQA2) showed >1 or <-1-fold change between the two groups 

as shown in table (1).  These genes are important in the innate 

and adaptive immune response against microbial infections and 

regulating the cytokine production in health and autoimmune 

diseases.  

 

 
Figure (5): Bioinformatics Pipeline used to filter out non-variant genes 

between severe asthmatics and healthy controls, a combination of noise 

and variance filtering was applied  

 
Table (1): Top differentially expressed Genes between Severe asthmatic 

and healthy controls bronchial epithelium.  
Gene Description logFC P.Value adj.P.Val 

FKBP5 FKBP prolyl isomerase 5 1.868512 3.94E-12 1.22E-08 

KRT23 keratin 23 1.304043 8.06E-11 1.25E-07 

S100A10 S100 calcium binding protein 

A10 

1.301535 8.39E-08 4.33E-05 

TRIM7 tripartite motif containing 7 1.121105 5.52E-06 0.001069 

TFCP2L1 transcription factor CP2 like 1 1.105197 9.77E-07 0.000275 

TM4SF1 transmembrane 4 L six family 

member 1 

1.074957 0.000135 0.007411 

HEG1 heart development protein 

with EGF like domains 1 

-1.00061 5.22E-08 3.24E-05 

HLA-DQA2 major histocompatibility 

complex, class II, DQ alpha 2 

-1.03517 0.002303 0.038986 

C3 complement C3 -1.04853 0.000104 0.006081 

HLA-DPA1 major histocompatibility 

complex, class II, DP alpha 1 

-1.05467 0.002118 0.037974 

PIP prolactin induced protein -1.12388 0.00017 0.008474 

NELL2 neural EGFL like 2 -1.18135 0.000255 0.010809 

SLAMF7 SLAM family member 7 -1.19804 5.36E-07 0.000198 

SLC13A2 solute carrier family 13 

member 2 

-1.22238 6.56E-06 0.001195 

KLRC4-

KLRK1 

KLRC4-KLRK1 readthrough -1.33116 2.02E-06 0.000523 

SCGB3A1 secretoglobin family 3A 

member 1 

-1.33309 8.96E-05 0.005854 

 

E. Gene Set Enrichment Analysis 

Gene set enrichment analysis was done as previously described 

[18] to identify top pathways in which the identified DEG are 

highly enriched to shed light on the molecular pathogenesis of 

asthma by deconvoluting the expression profiling signals 

generated from the same gene (datapoint) having different 

levels of expression based on the degree of Asthma severity. 

The flow chart of GSEA and details of enriched pathways are 

shown in figure (6). 3447 out of 6879 from C2, C5, and C7 gene 

set modules were upregulated in Severe asthma phenotype (22 

samples) compared to healthy controls (57 samples). The Genes 
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that were upregulated or downregulated in severe asthma were 

uploaded separately to metascape (http://metascape.org) A 

Gene Annotation & Analysis Resource online resource to 

generate a graphical representation of top enriched pathways. 

  

 
Figure (6): Gene Set Enrichment Analysis using GSEA and metascape 

tools.  (A) Heatmap image generated from the top 100 DEG genes 

between severe asthma and healthy controls. 3447 out of 6879 from C2, 

C5, and C7 gene set modules were upregulated in Severe asthma 

phenotype (22 samples) compared to healthy controls (57 samples). (B) 

moreover, (C) is the top enriched pathways upregulated or 

downregulated in severe asthma compared to healthy using metascape 

(http://metascape.org) A Gene Annotation & Analysis Resource online 

resource to generate a graphical representation 

F. Members of Interesting Pathways (TGFβ and NFkB) were 

identified to be preferentially expressed in the asthmatic 

epithelium 

Gene members of two interesting pathways were identified by 

our pipeline, namely Transforming growth factor β (TGFβ) and 

nuclear factor kappa-light-chain-enhancer of activated B cells 

(NFkB) to be preferentially expressed in the asthmatic 

epithelium. We used PathVisio open-source biological pathway 

analysis software to draw and analyze biological pathways by 

uploading the DEG with their log fold change between asthma 

and healthy controls.  

 

 

TGFβ 

TGFβ is a critical regulator of pro-inflammatory responses and 

fibrotic tissue remodeling within the asthmatic lung [19]. Our 

analysis identified that among the upregulated TGFβ pathway 

members are ITGB6 and THBS1 genes which regulate TGFβ 

release from regulatory Latency-associated peptide (LAP), 

thereby playing a pivotal role in TGFβ activation. Furthermore, 

two important cofactors for SMADs DNA binding to exert the 

TGFB1 effect (JUN and RUNX2) were upregulated. On the 

other hand, TGFβ signaling repressors (SKIL and Ski) were 

downregulated in severe asthma compared to the healthy 

epithelium, confirming an activated TGFβ signaling. Figure (7) 

shows the details of the TGFβ signaling pathway genes 

upregulated or downregulated in asthma compared to healthy 

generated by Pathvisio tool. 

 

 
Figure (7): Details of the TGFβ signaling pathway genes upregulated or 

downregulated in asthma compared to healthy generated by Pathvisio 

tool. The red box indicates upregulation in asthma compared to healthy 

controls, while blue color indicates downregulation.  

 

NFkB 

NFkB is a critical transcription factor activated in the airway 

epithelium of human asthmatics and mice after allergic 

stimulation and control production of many inflammatory 

cytokines [20]. Our results showed that MYD88 (Myeloid 

differentiation primary response 88 genes) was upregulated in 

severe asthma compared to healthy controls. MYD88 is a 

universal adapter protein used by Toll-like receptors (TLRs) 

which are a class of proteins that play a vital role in the innate 

immune system by activating NF-κB. Downstream of MYD88, 

MAPK13, and JUN are upregulated in asthma to stimulate 

IL12B and CCL5. IL12 is a cytokine that acts on T and natural 
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killer cells and was linked to asthma in children. On the other 

hand, CCL5 is chemotactic for T cells, eosinophils, and 

basophils into inflammatory sites. Figure (8) shows the details 

of the NFKB signaling pathway genes upregulated or 

downregulated in asthma compared to healthy generated by 

Pathvisio tool. 

 
Figure (8): Details of the NFKB signaling pathway genes upregulated 

or downregulated in asthma compared to healthy generated by 

Pathvisio tool. The red box indicates upregulation in asthma compared 

to healthy controls, while blue color indicates downregulation.  

IV. CONCLUSIONS  

Our analysis identified important signaling pathways members 

to be differentially expressed between severe asthma and 

healthy controls, namely NFKB and TGFB pathways. Those 

vital members represent potential targets for future asthma 

treatment and can serve as a reliable biomarker for asthma 

severity. Also, this study showed that using image analysis 

methodology outlined in the study on publicly available 

microarray transcriptomics data can be used to decipher the 

molecular mechanism of complex diseases such as asthma by 

deconvoluting the similar signals generated from the gene 

expression profiles. 
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