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Abstract

We present an accurate machine learning (ML) model for atomistic simulations of carbon, constructed using the
Gaussian approximation potential (GAP) methodology. The potential, named GAP-20, describes the properties of
the bulk crystalline and amorphous phases, crystal surfaces and defect structures with an accuracy approaching
that of direct ab initio simulation, but at a significantly reduced cost. We combine structural databases for
amorphous carbon and graphene, which we extend substantially by adding suitable configurations, for example,
for defects in graphene and other nanostructures. The final potential is fitted to reference data computed using the
optB88-vdW density functional theory (DFT) functional. Dispersion interactions, which are crucial to describe
multilayer carbonaceous materials, are therefore implicitly included. We additionally account for long-range
dispersion interactions using a semianalytical two-body term and show that an improved model can be obtained
through an optimisation of the many-body smooth overlap of atomic positions (SOAP) descriptor. We rigorously
test the potential on lattice parameters, bond lengths, formation energies and phonon dispersions of numerous
carbon allotropes. We compare the formation energies of an extensive set of defect structures, surfaces and surface
reconstructions to DFT reference calculations. The present work demonstrates the ability to combine, in the same
ML model, the previously attained flexibility required for amorphous carbon [Phys. Rev. B, 95, 094203, (2017)]
with the high numerical accuracy necessary for crystalline graphene [Phys. Rev. B, 97, 054303, (2018)], thereby
providing an interatomic potential that will be applicable to a wide range of applications concerning diverse forms
of bulk and nanostructured carbon.
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1 Introduction

The same characteristics which make carbon a fascinat-
ing element for study also make it challenging to model
computationally. It exhibits some of the greatest struc-
tural diversity - and associated diversity of properties - of
any of the elements [1–7]. Its allotropes range from zero
to three-dimensional, have metallic, semiconducting and
insulating phases and boast mechanical properties includ-
ing some of the highest tensile strengths, hardnesses and
bulk moduli measured [8, 9]. It is unsurprising, there-
fore, that carbon is considered to be not just an element
of prime technological importance, but also remains the
subject of continued fundamental scientific study [10–16].

Current applications of elemental carbon are numer-
ous, they include lightweight and strong structural mate-
rials, anodes of batteries and components in advanced op-
tical technologies [9, 13, 16–19]. The usefulness of elemen-
tal carbon has also clearly not yet been exhausted; future
applications propose to make use of graphene’s unique
electronic properties for advanced electronics [11, 20], car-
bon nanotubes’ structural and optical characteristics for
performance materials [18, 21] and the thermal and op-
tical properties of diamonds for laser optics [9, 22, 23],
amongst innumerable other examples.

Atomistic simulations have played a major role in de-
veloping our understanding of carbon materials. Among
the many scientific problems that have been addressed
with carbon potentials, we may mention the wear pro-
cess of diamond [24] or the compression behaviour of
glassy carbon [25]. The first many-body interatomic po-
tential for modelling carbon was published in 1988 by
Tersoff. This potential was used to investigate the prop-
erties of carbon’s crystalline and amorphous allotropes
[26]. The reactive empirical bond order (REBO, REBO-
II) potentials built on the original Tersoff formulation to
include a wider range of parameters and data in the fit,
as well as adding additional conjugation and torsional
terms, and modifying the bond order expression for small
angles [27, 28]. However, the Tersoff and REBO-II poten-
tials only considered nearest neighbour interactions and
did not account for the effects of dispersion. The adaptive
intermolecular REBO (AIREBO) potential [29] sought to
correct this by adding an additional long-range Lennard-
Jones term between atoms with larger separations, while
making no modifications to the short-range part of the
potential. The long-range carbon bond order potential
(LCBOP) not only increased the range of the potential
to account for longer-range interactions but also consti-
tuted a complete reparameterisation of the bond order
potential to improve the accuracy and transferability of
the model, though long-range dispersion interactions are
still omitted [30].

Further developments, beyond the scope of detailed
discussion here, include the LCBOP-II potential which
expanded the application range of the model to include
the liquid phase [31, 32], the environment dependant in-

teratomic potential (EDIP) for carbon [33] which em-
ployed properties calculated from ab initio simulation in
its parameterisation, the introduction of a dynamic cut-
off to bond-order potentials [34] and a recent reparameter-
isation of a carbon ReaxFF potential [35]. Notwithstand-
ing the long-standing success of these potential models,
there are inherent limitations to even the most advanced
of them. Such issues are particularly relevant when one
departs from the idealised structures (diamond, graphite,
etc.), as shown in two detailed benchmark studies by de
Tomas et al. [36, 37].

Machine learning (ML) has recently arisen as a way of
addressing some of these limitations. A number of prac-
tical approaches for modelling the potential energy sur-
face (PES) using ML have been developed in recent years,
employing algorithms including artificial neural networks,
Gaussian process regression, and compressed sensing [38–
45]. The demonstrated ability of ML algorithms to fit
arbitrary functions with an extremely high accuracy [46],
combined with recent developments in high-dimensional
descriptors for atomic systems makes ML approaches for
the development of interatomic potentials an increasingly
popular approach [42, 47–50]. Indeed, the use of machine
learning methodologies to model carbon has a significant
precedent. Some of the first examples of ML potentials,
using both Gaussian process regression and artificial neu-
ral networks, were fitted for graphite and diamond, these
were tested with regards to properties off the crystalline
phases and the graphite-diamond phase coexistence line
[38, 39, 51]. One of the first neural-network potentials
was used for large-scale simulations of the diamond nucle-
ation mechanism [52]. We recently introduced a machine
learning potential for pristine graphene constructed us-
ing the Gaussian approximation potential (GAP) frame-
work, which achieved excellent accuracy when bench-
marked against DFT and experiment for a wide range of
lattice and dynamical properties, including the phonon
dispersion relations, thermal expansion and Raman spec-
tra at different temperatures [53].

While achieving good accuracy in a specific region
of configuration space is not trivial, the problem of the
transferability of a potential is much more challenging to
solve from a ML perspective. In 2017, some of us reported
a highly transferable GAP model trained primarily on
the amorphous and liquid phases of carbon (henceforth
termed GAP-17), based on DFT-LDA reference data.
The focus, there, was somewhat complementary—to be
able to describe very diverse structural environments, al-
beit accepting a degree of numerical error. As an exam-
ple, the in-plane force errors for a pristine graphene sheet
are 0.03 eV Å−1 with the graphene-only GAP mentioned
above, as compared to 0.27 eV Å−1 with GAP-17. For
comparison, these errors for a range of commonly used
empirically fitted potentials range from 0.6 to 3.1 eV Å−1

(more details are in Ref. [53]). In return, owing to the
flexibility and transferability ensuing from its choice of
reference database, GAP-17 enabled the study of a num-
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ber of scientific problems which involve diverse structural
environments, including understanding the mechanism of
growth of sp3 hybridised amorphous carbon by ion de-
position [54], extensive studies of the surface properties
(and chemical reactivity) of tetrahedral amorphous car-
bon [54–56], the structure of “porous” carbonaceous ma-
terials which are relevant to applications in batteries and
supercapacitors [57, 58], and crystal-structure prediction
[5].

The model we present here, GAP-20, builds on all of
the previous work applying the GAP machine learning
methodology to the development of carbon potentials, to
achieve the accuracy required for capturing subtle differ-
ences in formation energies of nanostructures or in defect
formation energies, and for describing phonon dispersions
to within meV accuracy - while maintaining the flexibil-
ity and transferability of GAP-17. Importantly, all data
are generated using a dispersion-corrected DFT method
which properly accounts for longer-range interactions in
low-dimensional carbon structures, and the fitting archi-
tecture is adapted to account for those. Our tests suggest
GAP-20 to be suitable as a “general-purpose” carbon ML
potential for diverse areas of study.

While detailed discussions of the construction and
testing of the potential will be given in subsequent sec-
tions, we take a moment to highlight the main points
here. The composition of the training data set and perfor-
mance of this potential is summarised in figure 1. GAP-
20 correctly predicts the formation energies of diamond,
graphite, fullerenes and nanotubes, to an accuracy of a
few meV, and achieves comparable accuracy for a number
of crystalline and amorphous surfaces. The computed for-
mation energies of defects are also accurate, with overall
errors significantly lower than those obtained from com-
parable empirical models. At the same time, GAP-20
can accurately predict the behaviour of high temperature
liquid carbon over a wide range of temperatures and den-
sities, which will be shown below. We believe that these
features make GAP-20 a useful tool for the accurate mod-
elling of nanostructured carbons; nanotubes, graphitised
carbon and materials with varying degrees of defects and
disorder.

The rest of the paper will be organised as follows.
We first describe our process for the construction of a
training set suitable for developing such a potential. We
then give details on the construction and training of the
model itself, with discussion of particular aspects which
required special attention or optimisation. Subsequently,
we present an extensive and rigorous testing of our model,
for a wide range of properties. We also compare the re-
sults of our model to a selection of commonly used em-
pirical potentials which model the interatomic interac-
tions in carbon with differing degrees of simplification.
Specifically we choose the Tersoff, REBO-II, AIREBO
and LCBOP models. The selection of potentials consid-
ered here is by no means exhaustive and is only intended
to give some basis for comparison between previous work

and the model we introduce, as well as illustrating how
the inclusion or exclusion of different interactions (e.g.
dispersion interactions) may affect the performance of a
model. A more detailed benchmarking across a wider
range of potentials, complementing the existing detailed
tests for amorphous and “graphitised” carbons [36], may
be the subject of future work.

2 Generation and Selection of
Training Data

One of the challenges inherent in constructing a gener-
alised potential for carbon is the enormous variety of
structures which must be considered. In addition to its
more commonly encountered crystalline phases; diamond
and graphite, carbon may be found in forms of differing
dimensionality, from zero dimensional fullerenes, to one
dimensional nanotubes, two dimensional graphene and
three dimensional amorphous forms [6].

Specifically in the case of ML, one is drawn to the
problem of the composition of the large database of ex-
ample configurations, known as the training data set. For
a potential to be both accurate and transferable, its train-
ing data set ought to include representative configurations
from all of the thermally accessible chemical space. One
might initially suggest that the problem is therefore in-
tractable, if in order to produce a potential which is ca-
pable of accurately modelling all of the relevant phases
of carbon, we must explore the entirety of the vast 3N-
dimensional chemical space. It is an empirical observa-
tion, however, that the thermally accessible and physi-
cally relevant regions of this chemical space constitute a
vastly reduced subset of all of the available configurations
[59–61]. Further, rather than an exploration of the 3N di-
mensional space, in fitting the parameters of a ML algo-
rithm we are primarily concerned with an exploration of
the reduced dimensionality descriptor space [59, 62–64].
In the case of atom centred descriptors such as the smooth
overlap of atomic positions (SOAP), this represents the
local environment around a particular atom rather than
the global structure [63]. While the structural variability
of carbon is globally almost infinite, many of these struc-
tures are constructed from similar local motifs, for exam-
ple the tetrahedral building blocks of diamond [65, 66].
Similar logic may be applied to more complex structures.

The reference configurations which comprise our
structural database are drawn from a wide variety of
sources. Regardless of the origin of the configuration
itself (e.g., from the GAP-17 database), its properties,
those being the total energy, atomic forces and virial
stresses, which comprise the actual training data, are
always computed using the same level of tightly con-
verged plane-wave DFT including dispersion corrections.
We use the VASP plane-wave DFT code, we perform
spin-polarised calculations with the optB88-vdW disper-
sion inclusive exchange-correlation functional [67–70], a

3



Figure 1: Overview of some of the key structures included in the training shown through a sketch-map representation
(top) as well as selected information on the performance of the potential for a variety of properties. (a) Sketch-map
representation of the total data set for carbon generated as part of this work. Select structures are identified
for graphite, diamond, hexagonal diamond (Lonsdaleite), amorphous carbon and fullerenes. Points are coloured
according to their energy, while contours indicate the density of the database population in a particular region.
Bottom, is a summary of (b) the predicted crystalline formation energies, (c) defect formation energies and (d)
surface energies, comparing the DFT (optB88-vdW) reference (black circles) GAP-20 (red crosses) and all other
models (blue crosses).
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plane-wave cut-off of 600 eV and a projector augmented
wave pseudopotential [71–73]. A Gaussian smearing of
0.1 eV is applied to the energy levels and dense recip-
rocal space Monkhorst-Pack grids are used [74]. In the
case of the reduced dimensionality allotropes; graphene
and nanotube structures, the reciprocal space sampling
is only performed in the directions in which the allotrope
is periodic. The properties of fullerene structures are
calculated at the gamma point. For this potential, we
choose the optB88-vdW functional as it has already been
demonstrated to provide an excellent description of car-
bonaceous materials, in particular graphitic carbon – for
which its prediction of the binding energy and interlayer
spacing is in good agreement with experimental values
[75].

The database of configurations presented here uses as
its foundation a combination of the training data sets for
the two carbon potentials previously published primar-
ily for liquid and amorphous carbon (GAP-17), and for
pristine graphene, respectively [53, 62]. A large number
of new configurations are considered in addition to these
existing ML data sets [5, 6, 76]. We endeavour to com-
prehensively cover all the possible crystalline phases of
carbon found at moderate temperatures and pressures,
including more exotic allotropes. To that end, DFT opti-
mised structures for graphite, graphene, cubic and hexag-
onal diamond are included, as well as the structures of a li-
brary of fullerenes comprised of fewer than 240 atoms and
all nanotube structures with chiral indices, 3 ≤ n, m ≤ 10
with fewer than 240 atoms in their unit cell. Optimised
structures are also included for the SACADA database of
exotic carbon allotropes [76] and the results of a GAP-17
driven random structure search [5]. In addition to bulk or
pristine phases, the structures of relevant low Miller-index
faces of the crystalline phases are included, along with a
large number of important defect structures [77–84].

For all of these structures, we have performed some ab
initio and some iteratively improved GAP driven molecu-
lar dynamics simulations at a number of temperatures so
as to also sample the region of phase space close to these
local minima [53, 62]. The resulting database is com-
prised of ca. 17000 configurations each containing from 1
to 240 atoms per cell.

The choice of which structures might be important
for training a potential requires for the most part chem-
ical or physical intuition on the part of the researcher
[42, 59, 85]. Some of these choices may be clear, for ex-
ample the need to include configurations representing the
bulk structures of diamond and graphite. Others, how-
ever, such as the inclusion or exclusion of particular defect
or surface structures, will depend on the desired applica-
tion of the potential (and, to some extent, on personal
choice). To maximise the transferability of our model,
we have produced as comprehensive a database as pos-
sible – too large to train on with current computational
facilities. Rather than using the full database for sparsi-
fication, as commonly done in GAP fitting (including in

the development of GAP-17), we instead allow the bulk
of our training configurations to be chosen from the to-
tal dataset using a sampling method known as farthest
point sampling (FPS) [42, 86]. Within this set, we then
carefully check the data saturation of our training with
respect to the number of sparse points, which is discussed
in section 3.

This method allows us to start with a much more com-
prehensive database than previously, while still keeping
the computational effort at the fitting stage tractable. We
wish for our training dataset to have the widest possible
sampling of descriptors and forces – leaving no physically
relevant configurations unsampled, while avoiding over-
representation of particular regions of phase space. FPS
facilitates this, by allowing a selection of frames to be
made based on a measure of the global similarity (in de-
scriptor space) between possible configurations [42, 86].
Given a set of n descriptors of type d for a number of
frames, Q = {qd,avg

i=1...n}, which are themselves the average
of the individual descriptors of the atoms in a particu-
lar frame qd

i , the FPS algorithm selects configurations so
that at each step, the kernel distance between previously
selected configurations Qselected = {qd,avg

1 . . .qd,avg
m } and

the new configuration qd,avg
m+1 is maximised. That is,

qd,avg
m+1 = argmaxqd,avg [D(Qselected,q

d,avg)], (1)

where D is the kernel distance between the selected de-
scriptors (and associated frames) Qselected and the candi-
ate descriptor qd,avg. In our case, we use the SOAP de-
scriptor as a structural fingerprint of a configuration and
the dot product between two SOAP descriptors as our
kernel similarity measure [63]. As has previously been
shown for molecular systems, we find that this method of
selection enables the training of a potential which demon-
strates good transferability [59]. However, due to the
nature of the sampling, it lacks the dense population
of configurations around particular local minima which
we find are important for achieving very high accuracy
on particular crystalline properties. We therefore choose
to augment the training dataset selected through FPS
with a number of mandatory configurations chosen using
chemical intuition, focused on the bulk crystalline phases
and certain defect and surface structures. Specifically,
we note that optimised geometries for structures used in
the validation sections of this paper are included in the
training. The final database is comprised of the union
of the 4000 FPS-selected points and the existing GAP-
17 dataset, while a further ca. 1000 configurations are
manually added to target specific properties.

The selected configurations, as well as a representation
of their position in phase space, can be seen illustrated in
figure (Fig. 1). This sketch-map [86, 87] representation
of the total training dataset uses the same measure of
kernel similarity as discussed above to position points in a
reduced dimensionality such that points which are similar
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in the full high-dimensional descriptor space are closer
together, and those which are dissimilar are further apart.

This sketch-map representation also serves as a qual-
itative overview of the type of structures to which we fit
our model. Structures with carbon atoms of highly varied
coordination environments, from sp1 to sp2 and sp3 can
be seen. Those allotropes which are sp2 hybridised, such
as graphene, graphite and carbon nanotubes are clus-
tered together towards the right of the map. Amorphous
structures can be seen as a large region in the centre,
with low density (sp1 and sp2 rich) amorphous carbon
at the far right, high density sp3 rich amorphous car-
bon towards the left, eventually approaching crystalline
diamond at the very far left of the map. The more ex-
otic, sometimes hypothetical structures collected from the
SACADA database are often found separated from bulk
crystalline or amorphous configurations. In the far top
right of the map, isolated gas phase dimer configurations
are found.

3 Training of the Potential

We choose to construct GAP-20 to represent the PES as
the combination of contributions from a two body (2b),
a three body (3b) and a high dimensional many-body
(MB) component. It is an empirical observation that a
large proportion of the interaction in an atomistic system
may be satisfactorily captured by considering 2b interac-
tions. In particular this is the case for the exchange re-
pulsion experienced as interatomic distances become very
small. Representing this exchange repulsion in its full
high-dimensional form would be costly from the perspec-
tive of both training data generation, potential genera-
tion and the ultimate evaluation of the potential. The
nature of bonding interactions for carbon may also be
captured in an approximate way, being generally attrac-
tive between 1.2 - 1.6 Å, with an attractive tail at long
distances. We design the 2b part of our model as a GAP
fitted 2b component (Vshort) r < 4.0 Å. For larger sep-
arations (10 ≥ r > 4.0 Å), this smoothly transitions to
an analytical spline potential (Vlong) which decays as r−6.
This long range component is fitted to correctly reproduce
(albeit without many-body contributions) the long-range
attraction due to van der Waals interactions of graphitic
layers. A smooth transition is achieved by first fitting the
analytical form of Vlong to the graphene bilayer interac-
tion curve from 3.0 to 10.0 Å. Vshort is then trained by
first subtracting Vlong from the total energy and fitting to
the difference. The resultant 2b potential (Fig. 2) simply
has the final form Vshort + Vlong

The true subtleties of interatomic bonding are inher-
ently many-body in character, however. We represent
these higher-order contributions to the potential energy
using a combination of a 3b descriptor and the aforemen-
tioned SOAP descriptor. The full details of the construc-
tion of the 3b and SOAP descriptors is given in detail

elsewhere [53, 62, 63, 88–91].

Figure 2: Construction of the long-range 2b component of
the GAP model. An analytical spline is fitted to a func-
tion which decays as r−6, designed to recover the long-
range attraction between graphene layers. (a) Shows the
predicted energies for each component for the interaction
of two graphene layers at different distances. The long
range attraction is well characterised by the r−6 compo-
nent of the r−6 potential, which is in turn well recovered
by the analytical spline. The GAP fit using a 2b, (Vshort),
3b and SOAP descriptor provides the appropriate repul-
sive potential at short distances but is too short ranged to
describe the attractive tail. GAP-20 reproduces the whole
curve with good accuracy across a range of distances. (b)
Shows the same decomposition for the gas phase dimer.
In this case, the strong bonding interactions are domi-
nated by the GAP 2b (Vshort), 3b and SOAP descriptor
components. The energy of the r−6 component becomes
large and negative for short distances. (b, inset) Provides
a closer view of panel B, and shows how the 2b spline
fit to the r−6 component is brought smoothly to 0 at a
distance of 3 Å.

In short, the 3b term is a symmetrized transforma-
tion of the Cartesian coordinates of triplets of atoms,
which is designed to be permutationally invariant to the
swapping the atomic indices [53, 62]. In the construction
of the SOAP descriptor, the local environment around
a target atom is represented by a ‘local neighbour den-
sity’, constructed by placing a Gaussian basis function
on each neighbouring atom within a certain cutoff, which
we choose to be 4.5 Å. The Gaussian basis functions are
scaled by a factor of 1/r0.5 to reflect the greater contri-
bution to material properties of atoms which are closer
together [92–94]. Other functional forms for the radial
scaling exist and the introduction of this scaling was per-
formed independently of the optimisation of the SOAP
descriptor cutoff, the choice of which is motivated below.
As a result, there may still be scope for further optimi-
sation of these parameter sets beyond what is performed
here. The local neighbour density is expanded in a ba-
sis set of spherical harmonics, the coefficients of which
form a ‘SOAP vector’. In our case we use a basis set up
to order l = 4 and n = 12, our motivation for which is
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discussed in the following paragraph. This SOAP vector
constitutes a unique representation of the local environ-
ment, which satisfies the requirements of being transla-
tionally, rotationally and permutationally invariant. The
SOAP kernel, used for regression, is constructed as the
scalar product of individual SOAP vectors. Such a kernel
is physically interpretable, as it corresponds directly to
the integral of two neighbour densities for all possible 3D
rotations. Details for the specific choices for a number of
associated hyper-parameters are given in the supplemen-
tary material, while further details on their significance
is given elsewhere [39, 53, 62, 63, 88–91].

Figure 3: Mean absolute force errors calculated for an
independent test set of configurations for different SOAP
descriptors. (a) Force error behaviour and cost of evalua-
tion (relative to the fastest GAP) of the resultant model
as a function of the SOAP descriptor cutoff, the selected
value of 4.5 Å is indicated by the dashed red line. (b)
Force error convergence and relative cost as a function
of the number of sparse points included in the training.
(c) Dependence of the force error and model evaluation
cost on the order of the SOAP neighbour density basis set
expansion. Force errors are indicated by the colour bar,
while relative costs are shown by contour lines, our choice
lmax = 4, nmax = 12 is highlighted by the red square.

We now provide the details of select convergence tests
for the optimisation of our GAP model. These tests con-
sider the independent optimisation of the SOAP descrip-
tor cutoff, number of sparse points and the order of the ra-

dial basis set expansion. In general we begin with a SOAP
descriptor with an expansion of the neighbour density up
to lmax = 8, nmax = 8, a cutoff of 4.2 Å, σforce = 0.01
eV Å−1 and σenergy = 0.001 eV and ζ = 4. We modify
one parameter at a time in isolation, while keeping the
remainder fixed. We calculate the force error for the re-
sulting models on a randomly selected independent set of
test configurations which is not included in the training.

Figure 3(a) shows the behaviour of the force errors as
a function of the SOAP descriptor cutoff. The force error
has a minimum for a cutoff of 2.9 Å, after which it begins
to rise again as the increased size of the descriptor space
expands beyond what can be populated with the number
of available training configurations. A näıve optimisa-
tion of these parameters based purely on the force errors
would therefore select a cutoff radius of 2.9 Å. However,
selection of these parameters cannot be performed in iso-
lation from the intended application of the potential, but
must also be motivated by knowledge of the behaviour
of the material of interest. In this regard, the force (or
energy) error alone may be regarded as an imperfect or
incomplete target property for optimisation. Specifically,
we find that although the minimum in the force error is
found at much shorter distances, a longer cutoff of 4.5
Å must be used in order to correctly describe graphitic
structures, a feature which we consider to be mandatory
for this potential. The inter-layer spacing of graphitic
structures is typically large (approx. 3.3 Å) and a po-
tential must incorporate enough of the structure of both
layers to correctly model properties such as the binding
curve of graphene layers or the energy difference between
AA and AB stacked graphite. The effect of these short
cutoffs can be seen in the unsatisfactory behaviour of the
Tersoff and REBO-II models when modelling the inter-
layer spacing of graphite (Table 1), or graphene bilayers
(Supplementary fig. 6). However, the problem of pro-
ducing a single analytical metric for optimisation, which
satisfactorily includes properties such as the lattice pa-
rameters, defect formation energies or phonon errors as
well as the force errors themselves is a challenging one. In
this instance, the design choice of selecting an appropriate
descriptor cutoff remains partly qualitative in nature.

Figure 3(b) shows the convergence of the mean ab-
solute force errors as a function of the number of sparse
points used in the training, this may be considered as a
measure of the data saturation of GAP-20. The force er-
rors decrease rapidly up to approx. 1500 sparse points,
at which point they begin to level off, although we note
that a further increase in the number of sparse points has
a negligible impact on the cost of evaluating the model.
Our choice of 9000 sparse points is therefore very tightly
converged.

In figure 3(c) we show how the force error for our
model converges as a function of the order of the basis set
of radial functions used to expand the SOAP neighbour
density. The relative computational cost of each basis set
is indicated on the same plot by labelled contour lines.
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We find that the radial (n) component of the expansion,
typically has a greater impact on the rate of convergence
than the angular (l) component. While previously in the
construction of GAP models, band limits nmax = lmax,
were used for the SOAP descriptor, we find that surpris-
ingly, an improvement in accuracy can be achieved with
essentially no additional cost by making a selection for
the basis set expansion which is strongly biased to the
radial (nmax) component. Of course the cost must also
be taken into account, the use of a larger radial compo-
nent is more expensive than an identical increase in the
angular component, due to the greater number of basis
functions introduced. Our selection of lmax = 4, nmax =
12 is chosen as a compromise between accuracy and effi-
ciency. Although a small improvement in the force errors
can be achieved by selecting nmax = 12, lmax > 4, the re-
sultant increase in the cost of training restricts both the
size of the training data set which can be used and the
size and length scales to which the resultant potential can
be applied.

4 Crystalline Carbon

Among the most important material properties for any
potential to predict accurately are those of the bulk crys-
talline phases. Table 1 compares the lattice parameters
and bond lengths as predicted by GAP-20 to those from
the reference DFT method, in addition to a number of
empirical models. In figure 4, we also provide both the
atomisation energies, and the formation energies of the
crystalline phases relative to the thermodynamically sta-
ble state of carbon (at standard temperature and pres-
sure), i.e. graphite. We define the atomisation energy of
a phase relative to the isolated gas phase carbon atom
Eat as,

Ef = Ebulk − nEat, (2)

where Ebulk is the energy of the bulk phase and n is the
number of atoms in the bulk. Lattice parameters are cal-
culated by independently optimising the cell vectors for
each allotrope, until the total energy is converged to less
than 10−4 eV. GAP-20 accurately predicts the lattice pa-
rameters and bond lengths of all of the tested crystalline
allotropes with an average error of 0.2%, and their for-
mation energy to within 0.5%.

Accurately modelling the graphite c lattice parame-
ter, corresponding to the spacing between graphitic layers
proved particularly challenging for candidate GAP mod-
els, as did the formation energy. This is in large part due
to the shallow nature of the energetic minimum charac-
terising the graphite inter-layer interactions and the long
range of the atomic descriptor required to capture it. As
discussed above, the choice of SOAP cut-off was specifi-
cally informed by a desire to capture this property cor-
rectly. We consider this in particular to be a mandatory

characteristic of a general carbon potential which would
be absent for any model with a shorter cut-off.

It is useful here to make a brief comparison to selected
empirical potentials. While we do include DFT reference
data for all properties, in subsequent sections these ref-
erence values are only computed using the same level of
DFT used to train GAP-20. For benchmarking GAP-20,
which is our primary purpose, this is not problematic,
however we do not fully account for the potential im-
pact of functional dependence, or the errors of DFT with
respect to experiment, when making comparisons to em-
pirical models. Many of the empirical models considered
are fitted to experimental data, or contain values from
other DFT functionals, typically LDA, which should be
taken into account when comparing different model pre-
dictions to our optB88-vdW reference values. To give
some indication of the functional dependence, reference
values for the formation energies in figure 4 are given us-
ing both the optB88-vdW and LDA functionals. We also
re-iterate that the GAP-17 model was fitted to LDA data,
so it would be expected to accurately reproduce DFT val-
ues at this level only.

On average, GAP-20 predicts the lattice parameters of
the tested crystalline phases with an error of 0.2%, while
the Tersoff, LCBOP, REBO-II, AIREBO potentials have
errors averaging 5%, 0.3%, 4% and 1% respectively (Ta-
ble 1. What the Tersoff and REBO-II potentials gain in
efficiency by using short cutoffs, they lose in accuracy,
notably by predicting dramatically incorrect inter-layer
spacings (c lattice parameters) for graphite. This error
is fixed by the inclusion of medium and long-range terms
to account for van der Waals interactions in the LCBOP
and AIREBO models, however. Despite its inaccuracy for
graphene, the REBO-II potential does achieve good accu-
racy on the remaining lattice parameters; the additional
terms included in the bond-order potential constitute a
dramatic improvement over the Tersoff potential. Due
in part to its complete reparameterisation to account for
the effects of long-range interactions in the bond-order
part of the potential, LCBOP does outperform the other
empirical potentials tested here in most cases.
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Figure 4: Formation energies of the crystalline phases of
carbon, comparing results from DFT (optB88-vdW and
LDA) to those from GAP-20 and the other models tested.
(a) Atomisation energies using the isolated gas phase car-
bon atom as a reference, differences are dominated by
overstabilisation of the gas phase atom by empirical mod-
els. (b) Formation energies given relative to the graphite
formation energy of each particular model.

In absolute terms, the atomisation energies (fig. 4(a))
from the tested empirical potentials differ significantly
from those predicted by both reference DFT methods,
due to the very different energies of the isolated gas phase
atom. In the case of GAP-17, the small offset between
the LDA reference and the model prediction is the result
of the isolated atom not being included in the training
dataset. When using the formation energy of graphite
as a reference state however, (fig. 4(b)) this offset is re-
moved and the agreement between the empirical models
and DFT improves considerably. When using both the
gas phase atom and graphite as a reference, there is an
excellent agreement between GAP-20 and the optB88-
vdW DFT reference for all of the phases considered here.

GAP-20 uniformly predicts the atomisation energies of
the tested allotropes to within an error of 1%, including
the relatively subtle difference in energetics between nor-
mal cubic and hexagonal diamond and the energetics of
nanotubes and fullerenes. The inclusion of the gas-phase
atom in the training is vital to accurately predict these
atomisation energies. There is surprisingly little differ-
ence between the formation energies predicted by the dif-
ferent many-body potentials tested here, though there are
a few points of note. Firstly, due to their short cutoffs,
the Tersoff and REBO-II potentials do not distinguish be-
tween graphite and graphene as the thermodynamically
stable phase and as such their formation energies are pre-
dicted to be equal. Similarly, only the GAP-20, LCBOP
and AIREBO models correctly favour cubic over hexago-
nal diamond, although the AIREBO model overestimates
the difference in energy by a factor of 5, while the other
models considered do not distinguish between the two di-
amond phases. A more complete evaluation of the forma-
tion energies for different chiralities of nanotubes is given
in the supplemental material, for GAP-20, the energy er-
rors for a significantly wider range of structure types are
also given.

In addition to the static properties of the crystalline
allotropes, it is an important characteristic of any poten-
tial that it accurately model the lattice dynamics of bulk
crystals, i.e. their behaviour at finite temperature. The
phonon spectrum of a material is a direct probe of this
which is experimentally measurable. In addition, a num-
ber of thermodynamically relevant properties, including
the thermal expansion coefficient and the constant vol-
ume heat capacity of a material may be calculated di-
rectly from the phonon dispersion relation by calculation
of the free energy. It is clear therefore, why a correct
prediction of the phonon dispersion relation is a highly
desirable feature of an interatomic potential.
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Table 1: Lattice parameters and bond lengths of the crystalline carbon phases. In the case of fullerenes, bond lengths
are given in lieu of lattice parameters. Absolute values for the lattice parameters are given, with percentage errors
relative to DFT in brackets. The Tersoff and REBO-II potentials have no interaction between graphite layers for
any physically reasonable lattice parameters and as such these values are omitted.

Lattice Parameter(s) [Å] (% Error)

DFT GAP-20 Tersoff LCBOP REBO-II AIREBO

Graphite (a) 2.46 2.47 (0.4) 2.53 (2.4) 2.46 (0.4) 2.46 (0.4) 2.42 (2.0)
Graphite (c) 6.65 6.71 (0.9) - 6.36 (4.4) - 6.72 (1.1)
Graphene 2.46 2.46 (0.0) 2.53 (2.8) 2.46 (0.0) 2.46 (0.0) 2.42 (1.6)
Diamond 3.58 3.59 (0.3) 3.57 (0.3) 3.57 (0.3) 3.57 (0.3) 3.56 (0.6)
Hexagonal Diamond 2.52 2.53 (0.4) 2.52 (0.0) 2.52 (0.0) 2.52 (0.0) 2.52 (0.0)
Nanotube-(9, 9) 4.26 4.25 (0.2) 4.35 (2.1) 4.24 (0.5) 4.26 (0.0) 4.18 (1.9)
Nanotube-(9, 0) 2.41 2.39 (0.8) 2.53 (5.0) 2.47 (2.5) 2.47 (2.5) 2.43 (0.8)
C60 Fullerene 1.40 1.40 (0.0) 1.46 (4.5) 1.41 (0.7) 1.42 (1.4) 1.40 (0.0)
C100 Fullerene 1.39 1.39 (0.0) 1.39 (0.0) 1.39 (0.0) 1.39 (0.0) 1.39 (0.0)

Figure 5: A. Phonon dispersion relation for diamond as
predicted by GAP-20 (black) with comparison to DFT
(optB88-vdW) reference data (red). B. Graphene phonon
dispersion relation comparing GAP-20 and DFT (optB88-
vdW) reference data. The dashed blue line shows the
predicted phonon dispersion curve for the graphene-
only model previously published [53] C. (9,0)-Nanotube
phonon dispersion and vibrational density of states. D.
(9, 9)-Nanotube phonon dispersion relation and vibra-
tional density of states. Equivalent comparisons for the
other models tested are given in the supplementary ma-
terial.

Figure 5 shows the comparison between the phonon
dispersion curves calculated using the reference DFT
method and those calculated using the carbon GAP
model for graphene, diamond, a zig-zag (9, 9) and an arm-
chair (9, 0) carbon nanotube. Phonon dispersion curves
were computed using the finite displacement method as
implemented in the Phonopy Python package [95]. Equiv-
alent curves for the other models tested are provided in
the supplementary material.

We have previously reported results comparing the
phonon dispersion relation for a purely graphene GAP

model, to those from experimental x-ray scattering data
and a number of reference DFT methods [53]. It is useful
to make a comparison between the highly targeted model
previously published and the much more general GAP-20
introduced here. A particular concern might be that sig-
nificantly expanding the configurational space on which
we wish to train, as we have done here, would necessarily
damage the quality of the predictions for graphene com-
pared to the previous model – particularly for a property
as sensitive as the phonon dispersion curves. It is demon-
strated in figure 5(b) that this is not the case; the dis-
persion relation of the phonon curves for graphene from
GAP-20 are comparable to those of the previously pub-
lished graphene GAP model [53]. The energies of the
phonon bands are correctly predicted across all of the
high symmetry directions plotted, while the frequencies
(in particular at the high symmetry points) are found to
be correct to within 4 meV, which may be compared to a
value of 1 meV for the pristine graphene model [53]. The
quality of the GAP-20 model prediction is comparable
for diamond (which cannot be modelled at all with the
pristine graphene model), though with marginally larger
errors for the prediction of the energies of certain bands,
up to 7 meV for the higher frequency modes. GAP-20
also captures the difference in vibrational behaviour be-
tween armchair and zig-zag nanotubes remarkably well.
There are some differences in the energy of certain split-
tings for some bands, but the magnitude of these errors is
small, typically on the order of a 2-3 meV. In particular,
it can be seen from fig. 5 that the vibrational density of
states for the two nanotube systems agrees well with the
DFT reference.

5 Surfaces of Carbon

From the point of view of atomistic simulation, surfaces
present a major challenge, as their correct description re-
quires a treatment of a number of competing physical
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Table 2: Surface energies of low Miller index surfaces for common carbon allotropes. Reference energies are calculated
using DFT, absolute values from each model are given, with their percentage error in brackets. Note that for the
amorphous surfaces, the surface energy is averaged over a large number of different surfaces. In the amorphous case,
the error provided is the average of the individual point-wise errors, rather than the error between the average surface
energies.

Surface Energy [eV Å−2] (% Error)

DFT GAP-20 Tersoff LCBOP REBO-II AIREBO

Diamond (100) (As cut) 0.56 0.60 (7) 0.47 (16) 0.61 (9) 0.69 (23) 0.73 (30)
Diamond (100) (Relaxed) 0.54 0.56 (4) 0.42 (22) 0.59 (9) 0.69 (28) 0.72 (33)

Diamond (111) (As cut) 0.64 0.73 (14) 0.88 (38) 1.07 (67) 1.00 (56) 1.03 (61)
Diamond (111) (Relaxed) 0.62 0.66 (6) 0.88 (42) 1.07 (73) 1.00 (61) 1.03 (66)

Diamond (110) (As cut) 0.68 0.70 (3) 0.70 (3) 0.89 (31) 0.74 (9) 0.74 (9)
Diamond (110) (Relaxed) 0.68 0.67 (1) 0.63 (7) 0.83 (22) 0.69 (1) 0.69 (1)

Graphite (0001) (As Cut) 0.015 0.013 (13) 0 (100) 0.005 (67) 0 (100) 0.011 (27)
Graphite (0001) (Relaxed) 0.015 0.012 (20) 0 (100) 0.005 (67) 0 (100) 0.011 (27)

Amorphous Surfaces (As Cut) 0.26 0.27 (4) 0.25 (4) 0.25 (4) 0.25 (4) 0.25 (4)

interactions [81–84, 96].
We compute the surface energy for each model by first

optimising the bulk structure for the parent crystal until
the total energy is converged to 10−3 eV. We then cut
the surface along the desired direction and compute the
specific surface energy γs at T = 0 K as,

γs = (En − nEbulk)/2A, (3)

where En is the energy of the n slab layer containing two
surfaces, which may be as-cut (unrelaxed) or allowed to
relax and Ebulk is the energy of a single atom in the bulk
structure and A is the area of the surface structure. In
the case of the amorphous surfaces, due to the extent of
the surface relaxation observed, we report only the as-cut
surface energies.

Graphite may be readily cleaved to expose its (0001)
surface, which is remarkably stable and is by far the pre-
dominant face of graphite, while in diamond, the (100),
(111) and (110) surfaces are of particular interest [97]. We
also compute the as-cut surface energies for an ensemble
of amorphous structures, by cutting bulk amorphous sys-
tems along different directions.

The energies of several important surface cuts and
their reconstructions are given in Table 2. GAP-20 typ-
ically predicts the diamond surface energies correctly to
within 7 %, the exception being the case of the relaxed
diamond (111) surface, where the error is slightly larger
at 15 %. The structures of the relaxed surfaces were also
found to be in excellent agreement, with the average error
in the positions of individual surface atoms being 10−3 Å.
The graphite (0001) surface energy is extremely small and
it thus proved challenging to produce a model which could
correctly characterise this, however, GAP-20 predicts the
unrelaxed and relaxed surface energies correctly to within
an error of 3 meV Å−2 (20 %). With the inclusion of vdW

interactions considered in their construction, the LCBOP
and AIREBO potentials both predict the graphite (0001)
surface energy rather well, with errors of 67 and 27 %
respectively.

While GAP-20 achieves low errors for the surface en-
ergies of all the diamond surfaces considered, the other
models generally perform well for at least one diamond
surface, though none exhibit uniformly low errors. The
Tersoff, REBO-II and AIREBO models predict the en-
ergies of the diamond (110) surfaces to within 10 % of
the reference value. Conversely, of the empirical models
only the LCBOP potential correctly predicts the energy of
the diamond (100) surface; errors for the Tersoff, REBO-
II and AIREBO potentials were 22, 28 and 33% respec-
tively. None of the empirical potentials performed well for
the (111) surface of diamond. The Tersoff and REBO-II
models do not show any binding between graphitic lay-
ers for any reasonable initial geometry. This would lead
to the spontaneous exfoliation of graphite layers and the
eventual disintegration of graphite crystals in simulations
employing these models.

6 Defective Carbon

A certain concentration of defects is a guarantee in any
experimental material sample. Such imperfections may
have a strong impact on the structural, optical and ther-
mal properties of a material and may be introduced into a
crystal structure to induce or modify properties. The en-
gineering of defects is of great technological importance
and consequently their accurate modelling by an inter-
atomic potential is highly desirable. The possibility of re-
hybridisation, which allows carbon atoms to reconstruct
with differing numbers of bonds to stabilise particular
structures allows carbon to have a wider variety of de-

11



fects than most other elements.
To the best of our knowledge, there is not a set of de-

fect formation energies for a wide range of carbon defects
computed at precisely the same level of theory. There-
fore, we here assemble such a reference set, for which we
compute defect formation energies in large supercells to
avoid defect self-interaction in the computation of ener-
gies. For graphite, a (6× 6× 2) supercell with 288 atoms
and four graphite layers was used [77, 98]. In the case
of graphene, a (10 × 10) supercell with 200 atoms was
employed and for diamond a (3 × 3 × 3) supercell with
216 atoms was used [53, 78]. Defect formation energies
are calculated for the representative (9, 9) and (9, 0) in-
dex carbon nanotubes, which had 174 and 180 atoms in
the supercells used respectively [79]. For each structure,
the lattice parameters and ionic positions of the pristine
structures were optimised as discussed previously. The
ionic positions of the defective structures were then opti-
mised until the energy was converged to within 10−5 eV,
while keeping the lattice parameters fixed. We compute
the formation energy Ef of a vacancy defect relative to
the energy of an atom in an ideal parent structure:

Ef = Ed − (nEat + Ebulk) (4)

Where Ed is the energy of the defective supercell struc-
ture, Ebulk is the energy of the undefective bulk struc-
ture and Eat is the energy of a single atom in the bulk
structure, while n is the number of carbon atoms added
(positive n) or removed (negative n) to form the defect.

The simplest of defects involves the absence of one or
two atoms from their regular position in the lattice, form-
ing monovacancy and divacancy defects. Monovacancy
defects often result in unsaturated bonds at the defect
site, while divacancy structures, particularly in sp2 hy-
bridised systems, can reconstruct to produce saturated
configurations. In graphene, graphite and carbon nan-
otubes, the 14-membered ring formed by the removal of
two adjacent atoms from the structure reconstructs to
form a saturated sp2 structure with two 5-membered and
one 8-membered ring - a more stable structure known as
a 5-8-5 divacancy. In graphene, this defect may further
reconstruct to remove the unfavourable 8-membered ring
to form a 555-777 or 5555-6-7777 divacancy reconstruc-
tion. Monovacancy coalescence is also observed in dia-
mond, whereupon annealing at high temperature, mono-
vacancies migrate to form divacancy defects, with fewer
unsaturated bonds per absent carbon atom.

Figure 6: Images of selected carbon defect structures,
with atoms in the immediate vicinity of the defect
highlighted in red. (a) graphene divacancy defect (b)
graphene Stone-Wales defect (c) graphene monovacancy
(d) (9, 9)-nanotube Stone-Wales defect (transverse orien-
tation) (e) (9, 9)-nanotube Stone-Wales defect (parallel
orientation) (f) diamond split interstitial defect

Graphite is the only allotrope of carbon in which true
interstitial defects are known, wherein interstitial atoms
may be found between graphite layers [77]. The most
stable arrangement of this is in a ‘dumbbell’ configura-
tion, where the adatom displaces an atom in the graphite
structure to form a symmetric arrangement of trigonally
bonded carbon atoms above and below the sheet. Isolated
interstitial atoms are not known either experimentally or
from theory to be stable in diamond, rather a split in-
terstitial is found, where a lattice site is shared by two
carbon atoms which are displaced along the [100] and
[1̄00] directions [99].

In sp2 bonded allotropes of carbon, the rotation of a
single C-C bond transforms four 6-membered rings into
a cluster of two 7-membered and two 5-membered rings,
forming a Stone-Wales type defect [100, 101, 101, 102].

Table 3 compares the energies of a number of defects
as computed with DFT, GAP-20 and the other models
considered. In most cases, GAP-20 correctly predicts the
defect formation energy to within an error of 10%. Typ-
ically, the prediction of the formation energies of Stone-
Wales type defects was found to be extremely accurate,
with no error (to within the precision of the values given)
in either the graphite or graphene cases and only small
errors for nanotubes. The errors for the formation ener-
gies of diamond defects tend to be larger, ranging from
25-35%, while those for defective nanotubes range from
0-11%. Anecdotally, we note that although relevant train-
ing data for the defects considered are represented in
the training data, it proved challenging to achieve de-
fect formation energies which were universally accurate.
In particular this is due to the sensitivity of the formation
energies to aspects such as the SOAP descriptor cutoff,
specific training data included and the number of sparse
points used in the training.
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Table 3: Formation energies of common defects in carbon structures for GAP-20 and the other models considered,
with DFT (optB88-vdW) values given as reference. Data are given in eV, with percentage errors relative to DFT
given in brackets. In each case, the value given is for the optimal geometry of the defect found with that particular
model.

Formation Energy [eV] (% Error)

DFT GAP-20 Tersoff LCBOP REBO-II AIREBO

Graphene Stone-Wales 4.9 4.8 (2) 1.9 (61) 4.5 (8) 5.3 (8) 5.4 (10)
Graphene Monovacancy 7.7 7.0 (8) 2.5 (68) 6.9 (10) 7.5 (3) 7.2 (6)
Graphene Divacancy (5-8-5) 7.4 7.9 (7) 5.1 (31) 7.5 (1) 7.5 (1) 9.2 (24)
Graphene Divacancy (555-777) 6.6 6.9 (5) 5.2 (21) 6.6 (0) 6.8 (3) 8.7 (32)
Graphene Divacancy (5555-6-7777) 6.9 7.4 (7) 7.9 (14) 7.2 (4) 7.6 (10) 9.5 (38)
Graphene Adatom 6.4 5.9 (8) 6.7 (5) 6.8 (6) 7.4 (16) 7.8 (22)

Graphite Monovacancy 7.8 7.3 (6) 7.1 (9) 7.8 (0) 7.9 (1) 7.6 (3)
Graphite Divacancy (5-8-5) 9.6 9.2 (4) 12.6 (31) 8.2 (15) 8.0 (17) 9.7 (1)
Graphite Stone-Wales 5.4 5.6 (4) 12.8 (137) 5.7 (6) 6.0 (11) 6.0 (11)
Graphite Interstitial 7.4 7.9 (7) 9.7 (31) 7.2 (3) 7.1 (4) 6.8 (8)

Diamond Monovacancy 6.6 4.3 (35) 5.2 (36) 7.2 (11) 7.1 (4) 6.8 (8)
Diamond Divacancy 9.1 6.6 (27) 5.1 (44) 10.6 (16) 10.7 (18) 10.1 (16)
Diamond Split Interstitial 11.4 8.3 (27) 12.4 (9) 9.8 (14) 11.0 (4) 11.4 (0)

Nanotube-(9, 9) Monovacancy 6.4 5.8 (9) -5.1 (180) 3.8 (41) -1.6 (125) -2.5 (139)
Nanotube-(9, 9) Divacancy 4.7 4.8 (2) -5.5 (217) 2.9 (38) -0.9 (119) -2.3 (149)
Nanotube-(9, 9) Stone-Wales (Parallel) 4.4 4.5 (2) -4.5 (202) 2.1 (52) -2.1 (148) -3.9 (189)
Nanotube-(9, 9) Stone-Wales (Transverse) 3.5 3.5 (0) -5.8 (261) 2.0 (44) -3.3 (192) -2.00 (156)

Nanotube-(9, 0) Monovacancy 5.3 4.9 (8) -0.9 (117) 4.4 (17) 4.7 (11) 3.4 (36)
Nanotube-(9, 0) Divacancy 3.6 3.5 (3) -1.0 (128) 3.0 (17) 4.1 (14) 2.8 (22)
Nanotube-(9, 0) Stone-Wales (Parallel) 2.7 3.1 (15) -1.3 (148) 3.2 (19) 3.4 (26) 3.6 (33)
Nanotube-(9, 0) Stone-Wales (Transverse) 3.5 3.2 (9) -1.1 (131) 3.1 (11) 4.2 (20) 2.6 (26)

Considering the empirical potentials, we find that the
modifications to the Tersoff potential included in the
REBO-II model dramatically improve the quality of the
predicted defect formation energies; percentage errors are
often decreased by an order of magnitude or more when
comparing these two potentials. Surprisingly, these re-
sults show that the inclusion of the long-range Lennard-
Jones term in the AIREBO model often has a nega-
tive impact on the accuracy of its predicted defect for-
mation energies, indicating that the addition of a long-
range term without reparameterisation of the short-range
components has adversely impacted the energetics of the
model. Indeed, in the case of LCBOP, where this repa-
rameterisation of the short range bond-order potential
has been performed, we find that the errors are signifi-
cantly reduced, and are in many cases comparable with
the performance of GAP-20. The exception to this be-
ing the case of defective nanotubes, where LCBOP ex-
hibits errors ranging from 11-52%. In fact, the prediction
of nanotube defect formation energies proved challenging
for all of the empirical models considered. In a number
of cases, defect formation was found to be an energeti-
cally favourable process and was associated with a strong
relaxation of the nanotube structure after defects were

induced.
As well as accurately predicting the energetic cost of

inducing defects in carbon structures, GAP-20 was also
found to accurately predict the structures of these defects.
We quantify this accuracy by calculating the structural
similarity between the defect structures optimised with
our GAP model and those from DFT, in the form of the
root mean squared error (RMSE) between the two opti-
mally overlapped structures. In all but a handful of cases,
the RMSE for these defects is vanishingly small, with
atoms having an error in their position of less than 10−2

Å, when comparing identical atoms from GAP-20 and
DFT structures. In particular, the presence and height
of the characteristic buckling of the Stone-Wales defect in
graphene was well described, as was the structural distor-
tion resulting from the presence of defects in both (9,9)
and (9,0) index carbon nanotubes. Similarly, the rehy-
bridisation and reconstruction of (5-8-5), (555-777) and
(5555-6-7777) graphene divacancy defects was accurately
reproduced, as were the geometries of all of the diamond
defects considered. Situations in which GAP-20 showed
structural inaccuracies were the nanotube monovacancy
structures and the parallel Stone-Wales defect in the (9,9)
index nanotube, for which the GAP model predicted a
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larger distortion of the bulk nanotube structure due to
the presence of the defects. We also find, that as with all
the models considered here, GAP-20 does not correctly
describe the asymmetry introduced through a Jahn-Teller
distortion of the graphene monovacancy defect – instead
predicting the monovacancy to have a symmetric geom-
etry. This is perhaps unsurprising as the energy differ-
ence between the symmetric and asymmetric geometries
is typically small (ca 350 meV). However, even in the
cases illustrated here the typical error in the position of
any atom was found to be only 0.1 Å. That GAP-20 is
capable of accurately modelling both the energetics and
structural characteristics of a wide range of carbon de-
fects indicates its potential usefulness in a wide range of
simulations in which defective structures may be relevant,
including fracture, atom bombardment and simulations of
membrane characteristics.

7 Liquid Carbon

As discussed previously, the requirements of a potential
for the satisfactory modelling of crystalline and liquid
or amorphous phases are significantly different. In the
case of crystalline materials, a highly accurate descrip-
tion close to a local minimum for a system is required
[53]. Conversely, in a liquid simulation, a vastly greater
number of local configurations are explored, requiring a
high degree of flexibility and transferability [62]. As in the
case of GAP-17, we therefore use the liquid as a bench-
mark for the flexibility of our potential [62], scanning over
a wide range of densities and (here) temperatures. The
aim is to diagnose any possible issues which might be ex-
posed by visiting a very diverse set of configurations dur-
ing the simulations. There is a strong precedent for the
study of high temperature liquids, including carbon, using
DFT [103, 104]. A good agreement with DFT-MD data is
therefore strong evidence for the usefulness of the poten-
tial for further studies of liquid carbon, which is present
only under extreme conditions, but is nonetheless vitally
important, e.g. for understanding the nucleation and for-
mation of diamond and graphite under a wide range of
circumstances [105–108].

The radial distribution function (RDF) of a liquid rep-
resents a convenient measure of its local structuring, as
does its angular distribution function (ADF). Here, we
compare the results of constant volume ab initio molecu-
lar dynamics simulations to those of GAP-20. We perform
two sets of simulations, one for a range of densities be-
tween 1.5−3.5 g cm−3 at 5000 K and the other for a range
of temperatures between 5000 - 9500 K at a fixed density
of 2.5 g cm−3. These simulations were performed for 216
atom systems using a chain of 5 Nosé-Hoover thermostats.
Ab initio trajectories were generated using VASP, simula-
tions were performed at the gamma point and data were
collected for 5 ps at each temperature and pressure [71–
73]. We find that there is a very good agreement between

the ab initio data and the GAP-20 predictions for both
the RDF and ADF across the wide range of tempera-
tures studied (see figure 7). GAP-20 correctly models
the increased structuring of the liquid carbon as the tem-
perature is reduced from 9500-4500 K. At temperatures
below approximately 3500 K, the GAP model predicts the
liquid to form an amorphous glass which slowly graphi-
tises (which is entirely expected because the temperature
is now below the melting line). While a full discussion
on the mechanism of formation and resulting morphol-
ogy of graphitised amorphous carbons generated using
GAP-20 is beyond the scope of the current work, this pro-
cess has previously been shown to be an excellent method
of differentiation between the numerous available carbon
potentials [36, 37]. Figure 8 shows the RDF and ADF
computed with both GAP-20 and optB88-vdW across a
wide range of densities, from 1.5 to 3.5 g cm−3 at 5000
K. This test is particularly important as it represents dy-
namical simulations of structures from highly sp1 and sp2

hybridised (low density) through to a predominantly sp3

hybridised liquid at higher density. GAP-20 captures this
change in the bonding characteristics of liquid carbon, in
particular the increase in the sp1 hybridised fraction of
the liquid at very low densities (reflected in bond angles
close to 180 degrees), qualitatively similar to GAP-17 [62].

Figure 7: Angular and radial distribution functions for
liquid carbon at a fixed density of 2.5 g cm−3 for temper-
atures between 5000 - 9500 K. GAP-20 results are shown
in black, while reference DFT (optB88-vdW) data are
given in red.
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That GAP-20 can model the atomistic structure of
liquid carbon at a wide variety of temperatures and den-
sities, while maintaining the ability to accurately predict
properties such as the phonon relation and defect for-
mation energies is a reflection of the flexibility of the
GAP methodology. Such wildly different systems explore
a range of characteristic energies, where important fluc-
tuations cover many orders of magnitude; in carbon, this
can be anywhere from the meV range in the case of dif-
ferences between graphite defect energies to fluctuations
on the order of tens of electron volts as encountered in
the liquid. Despite these very different energy ranges, it
is not unlikely that a potential may encounter all of them
over the course of a single simulation (for example during
the crystallisation of a solid phase directly from the liq-
uid) and it is therefore important that they be handled
correctly.

Figure 8: Angular and radial distribution functions for
liquid carbon at 5000 K for a range of densities from 1.5
to 3.5 g cm−3. GAP-20 results are shown in black, while
reference DFT (optB88-vdW) data are given in red.

8 Transferability of the Potential

Ultimately, the purpose of any interatomic potential is
that it may be used for the discovery of new and interest-
ing phenomena. Consequently,in its application it may
encounter structures which were not explicitly considered
in its construction, in this case meaning that it must

model structures which were not included in the training
data base. It has therefore been a criticism of ML poten-
tials that their poor performance in extrapolation might
inhibit their use for scientific discovery. As discussed ear-
lier, the problem of extrapolation is circumvented by the
fact that we consider only the local environment around a
particular atom to be important for predicting its atomic
energy and the forces acting upon it. While the problem
of exploring the entirety of the 3N dimensional chemical
space is indeed intractable, sufficiently sampling all of the
physically relevant local environments is not [59].

We demonstrate this here by performing a diagnostic
GAP driven random structure search (GAP-RSS), simi-
lar in spirit to Refs. [109] and [5], and demonstrate that
the predicted energies of these structures agree well with
those from DFT [5, 60, 85]. We then calculate a number
of high energy pathways for specific transformations not
included in the training and compare these to DFT. Both
of these tests serve the purpose of exploring the high en-
ergy regions of the potential energy surface which may be
explored during molecular dynamics simulations or geom-
etry optimisation and which must be well described for
an ML model to be transferable. Importantly, they are
both explicitly designed to include configurations which
are not present in the training data set of GAP-20.

To perform the first test, we generate a cubic unit
cell with lattice parameter a = 3 Å. In this cell, we ran-
domly place 8 carbon atoms, avoiding any overlaps such
that the distance between any two carbon atoms is not
less than 2 Å. This process is performed to generate 1000
initial randomised geometries. The LAMMPS package is
then used to optimise lattice vectors of the cell indepen-
dently using conjugate gradient descent, while maintain-
ing their orthogonality, until the total energy is converged
to within 10−8 eV [110]. Following this, the positions of
the atoms in the unit cell are optimised using a FIRE al-
gorithm [111], until the total energy is again converged to
within 10−8 eV. This cycle is repeated twice more before
performing a final conjugate gradient optimisation of the
atomic positions and cell vectors until the total energy is
converged to 10−10 eV.
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Figure 9: (a) A comparison of the histograms of ener-
gies of structures identified by GAP-RSS, given in eV /
atom, showing good agreement for the prediction of the
energy of structures between GAP-20 (shown in black)
and DFT (optB88-vdW) (shown in red). A number of
examples of structures identified in GAP-20 driven ran-
dom structure search are shown. The position of each
of the example structures on the histogram is indicated
by their numbering, 1) AB stacked graphite, AA stacked
graphite. 2) cubic and hexagonal diamond. 3) Haekelite
4) crosslinked graphitic structure. 5) Novel carbon struc-
ture with high proportion of sp1 hybridised carbon atoms
(b) The structures resulting from the GAP-RSS projected
into the sketch-map representation from Fig 1. The den-
sity of the structures present in the training data are indi-
cated by the contour lines, while the structures identified
from the GAP-RSS are shown as individual points.

To validate the results of our GAP-RSS, we recom-
pute the energies of the structures found using the ref-

erence DFT method used to train the model. We note
that for across all 1000 structures, the predicted energy
agrees well with the energy predicted from DFT. It has
previously been shown that correctly identifying low en-
ergy structures from a RSS is an extremely challenging
task for empirical models, which often predict qualita-
tively incorrect behaviour and fail to find physically rele-
vant configurations due to their having many more local
minima than the DFT PES [112, 113].

Our GAP-RSS correctly identifies a range of impor-
tant low-energy carbon allotropes, as well as numerous
more exotic species. In particular, AB-stacked graphite
was found as the lowest energy allotrope of carbon. AA-
and ABC- stacked graphite allotropes are also identified
in the search, their energy is correctly predicted to be
higher than that of the AB stacked graphite structure.
Furthermore, both diamond and lonsdaleite are both cor-
rectly identified. We also identify a number of more exotic
carbon allotropes, some of which are known either from
experiment or theory but were not included in the train-
ing dataseset, including crosslinked graphite structures,
porous carbon cages and a variety of haekelite structures.
For the vast majority of structures found during the GAP-
20 driven random structure search, the predicted energies
from both DFT and GAP-20 agree well (figure 9).

We also return at this stage to the sketch-map rep-
resentation of the training dataset given in figure 1. In
figure 9(b) we provide a projection of the GAP-RSS struc-
tures onto this sketch-map representation. GAP-RSS
points are coloured according to the GAP-20 energy error.
The density of structures present in the original training
dataset is indicated by black contour lines. It is clear that
most structures found are clustered in the region repre-
senting the bulk amorphous and crystalline polymorphs,
with very few structures representative of fullerenes or
nanotubes identified. This is a reflection of the fact that
only 8 atoms are included in the unit cell used for the
RSS. Additionally, the RSS procedure employed begins
with simulation cells which are fully periodic and with no
symmetry constraints imposed on the initial atomic posi-
tions. In the lower left of the sketch-map is a cluster which
is structurally distinct from those present in the train-
ing data, as indicated by its large separation from other
points in the sketch-map. These structures are charac-
terised by their highly sp1 rich character. Although a sig-
nificant number of amorphous structures which are rich in
sp1 hybridised carbon atoms are included in the training
data, there are indeed very few crystalline sp1 rich struc-
tures. Despite being structurally distinct from anything
included in the training dataset, the error in the GAP-
20 prediction for the energy of these structures remains
low. This indicates excellent performance for GAP-20
in applications where transferability to potentially novel
structures is important.
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Figure 10: Energies for rigid transformations of a C-C
bond in graphene (a) and in a C60 fullerene (b). Re-
sults from GAP-20, DFT (optB88-vdW) and a selection
of empirical potentials are shown.

We also test GAP-20 on a number of specific struc-
tural transformations. Although our GAP model is not
trained explicitly on reaction barriers, it is useful to test
how well the model performs for the prediction of the
types of barriers which might be encountered in studies
of the reactivity of carbon nanostructures. To this end,
we compare the predictions of our GAP model to those of
DFT for two approximate transformations; a rigid bond
rotation in graphene and a C60 fullerene. Since these cal-
culations are performed on rigid structures, rather than
for example using nudged elastic band calculations, the
barriers calculated here will not be true defect forma-
tion barriers. They are, however, still representations of
physically reasonable points on the potential energy sur-
face which are not included in the training dataset and
so form a useful test of the potential compared to other
models [66, 114].

Figure 10 (a) shows the barrier to rigid rotation of a
C-C bond within a graphene sheet as predicted by GAP-
20, and the tested empirical potentials. The performance
of GAP-20 on this test is reassuring for its wider applica-
tion, it achieves excellent accuracy with respect to both
the height of the local minimum in the rotation and the
height of the barrier. The AIREBO and REBO potentials
capture the general shape and height of the barrier, but
predict jagged curves for the rotation, as compared to the
smooth variation from DFT. The LCBOP and Tersoff po-

tentials perform poorly, overestimating the energy of the
rotation by more than 30 eV, and erroneously situating
a maximum in the potential energy where a minimum is
found from DFT. In the case of the Tersoff potential, two
additional spurious minima are located close to where the
DFT maxima are located.

A similar situation is observed for the behaviour of
the C60 rotational barrier in figure 10 (b). Here, it is
again seen that GAP-20 performs well, providing a good
estimation of the barrier height and shape with respect
to DFT. The REBO, AIREBO and Tersoff potentials all
situate spurious minima in the potential energy close to
where the maxima in the reference DFT curve are located,
although they do also predict a minimum at the correct
rotation. LCBOP again overestimates the energy of the
barrier by 20 eV, and situates a maximum in the potential
energy surface where a minimum ought to be located.

9 Conclusion

The advantages conferred by the flexibility of the Gaus-
sian approximation potential framework are made clear
by the wide variety of structures which are accurately
treated by GAP-20. The variable hybridisation of carbon
makes it an extremely challenging element to model us-
ing empirical potentials; its structurally diverse allotropes
are energetically similar and the properties of these de-
pend on an broad range of physical interactions, from
the weak van der Waals forces binding graphite to the
stiff covalent bonds of diamond. We have demonstrated
here a model which is equally suited to modelling not
just these two bulk structures, but defects, surfaces and
liquid carbon as well. Wherever possible, we have vali-
dated the performance of GAP-20 against the reference
DFT method and shown it to perform well for a num-
ber of physical properties across the different phases. In-
cluded in these are a number of processes involving bond
breaking and formation, some of which have been chal-
lenging for cheaper empirical potentials by construction.
Tests for transferability, specifically by diagnostic GAP-
RSS runs and the study of transformations not included
in the training, suggest that GAP-20 could readily be ap-
plied to more thorough explorations of the carbon poten-
tial energy landscape, for example, in the search for larger
fullerenes [61, 115] or in crystal-structure prediction by
expanding on Refs. [5] and [109]. Further applications
may include the more detailed study of non-graphitising
or “hard” carbons [116–119], following on from earlier
GAP-17 based studies in Ref. [57] and [58].

Despite the many potential applications of GAP-20,
the model is not without its shortcomings. While it re-
mains significantly more computationally affordable than
direct ab initio simulation (in particular for large systems)
the cost of its evaluation is much greater than that of em-
pirical potentials (Supplementary Fig. 12), and therefore
the latter will still give access to even larger-scale systems
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[36]. We also note that ‘real’ carbon is rarely found in
isolation – hydrogenation and oxidation of carbon struc-
tures is not considered here. The expansion of the scope of
the potential to treat hydrogenated or oxidised structures
would complicate the process of training both by requir-
ing a larger training dataset and by requiring the inclusion
of a number of interactions not considered here. In ad-
dition to long ranged van der Waals interactions (which
are only considered approximately in the current work),
the introduction of other elements introduces the associ-
ated complexities of substantial charge rearrangements:
polar bonds and partial charges. Long ranged Coulomb
interactions, dipole-dipole and higher order multipole in-
teractions remain a challenge for ML potentials. We note
that the combination of pure carbon simulations (using
GAP-17) and subsequent density-functional analyses of
hydrogenation and oxidation [36] or metal intercalation
[58] has proven fruitful, and we expect that further stud-
ies of this type will be facilitated by GAP-20, particu-
larly when low-density, dispersion-dominated nanostruc-
tures are concerned.

We believe that we have achieved an excellent com-
promise for our potential, in that it accurately models
the wide range of structures required to make it broadly
applicable. We do not claim perfect accuracy for all prop-
erties, however; we accept that fitting to such a wide
range of structures will necessarily impact the accuracy in
some areas. Notably, a large number of structures which
were generated as part of the total training dataset are
excluded from the final training. Conversely, many have
been included which might be irrelevant for a researcher’s
intended purpose. With this in mind, we have made freely
available the total training dataset (structures, energies,
forces and virial coefficients) produced as part of this
work. While we do not believe that this will typically
be necessary, it is a further virtue of the GAP framework
that a potential may be readily retrained to suit a partic-
ular purpose simply by modifying the composition of the
training configurations used, we believe it is beneficial to
offer the opportunity for users to tune the model to target
higher accuracy in a particular region of interest.

In addition to the training dataset, the potential in-
troduced here is provided in the form of an XML file
and has been made freely available, along with the GAP
code at http://www.libatoms.org, it has the unique
identifier GAP 2020 4 27 60 2 50 5 436 and may be used
within the QUIP software package which can be found
at https://github.com/libAtoms/QUIP. GAP-20 may
be used for simulations directly in LAMMPS, using the
QUIP for LAMMPS plugin [110].

10 Supplementary Material

See [Supplementary Material] for full details of computed
formation energies and phonon dispersion curves for all
models, further information on GAP hyper-parameter se-

lection and command line argument used, graphene bi-
layer separation curves and force errors for various con-
figurations. More information on the optimisation and
computational cost of GAP-20 compared to DFT is also
given.
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chip diamond Raman laser,” Optica, vol. 2, no. 11,
p. 924, 2015.

19



[24] L. Pastewka, S. Moser, P. Gumbsch, and
M. Moseler, “Anisotropic mechanical amorphiza-
tion drives wear in diamond,” Nature Materials,
vol. 10, no. 1, pp. 34–38, 2011.

[25] T. B. Shiell, D. G. McCulloch, D. R. McKenzie,
M. R. Field, B. Haberl, R. Boehler, B. A. Cook,
C. De Tomas, I. Suarez-Martinez, N. A. Marks, and
J. E. Bradby, “Graphitization of Glassy Carbon af-
ter Compression at Room Temperature,” Physical
Review Letters, vol. 120, no. 21, p. 215701, 2018.

[26] J. Tersoff, “Empirical interatomic potential for
carbon, with applications to amorphous carbon,”
Physical Review Letters, vol. 61, no. 25, pp. 2879–
2882, 1988.

[27] D. W. Brenner, “Empirical potential for hydrocar-
bons for use in simulating the chemical vapor depo-
sition of diamond films,” Physical Review B, vol. 42,
no. 15, pp. 9458–9471, 1990.

[28] T. C. O’Connor, J. Andzelm, and M. O. Robbins,
“AIREBO-M: A reactive model for hydrocarbons at
extreme pressures,” Journal of Chemical Physics,
vol. 142, no. 2, p. 024903, 2015.

[29] S. J. Stuart, A. B. Tutein, and J. A. Harrison, “A re-
active potential for hydrocarbons with intermolecu-
lar interactions,” The Journal of Chemical Physics,
vol. 112, no. 2000, pp. 6472–6486, 2000.

[30] J. H. Los and a. Fasolino, “Intrinsic long-range
bond-order potential for carbon: Performance in
Monte Carlo simulations of graphitization,” Physi-
cal Review B, vol. 68, no. 2, p. 24107, 2003.

[31] L. M. Ghiringhelli, J. H. Los, A. Fasolino, and E. J.
Meijer, “Improved long-range reactive bond-order
potential for carbon. II. Molecular simulation of liq-
uid carbon,” Physical Review B, vol. 72, no. 21,
p. 214103, 2005.

[32] J. H. Los, L. M. Ghiringhelli, E. J. Meijer, and
A. Fasolino, “Improved long-range reactive bond-
order potential for carbon. I. Construction (Phys-
ical Review B. Condensed Matter and Materials
Physics (2005) 72 (214102)),” Physical Review B,
vol. 73, no. 22, p. 229901, 2006.

[33] N. A. Marks, “Generalizing the environment-
dependent interaction potential for carbon,” Phys-
ical Review B, vol. 63, no. December 2000, pp. 1–7,
2006.

[34] L. Pastewka, P. Pou, R. Pérez, P. Gumbsch,
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[59] A. P. Bartók, J. Kermode, and N. Bernstein, “Ma-
chine Learning a General-Purpose Interatomic Po-
tential for Silicon,” Physical Review X, vol. 8, no. 4,
p. 41048, 2018.

[60] C. J. Pickard and R. J. Needs, “Ab initio ran-
dom structure searching,” Journal of Physics: Con-
densed Matter, vol. 23, p. 053201, 2011.

[61] D. Wales, Energy Landscapes: Applications to Clus-
ters, Biomolecules and Glasses. Cambridge: Cam-
bridge University Press, 1 ed., 2004.

[62] V. L. Deringer and G. Csányi, “Machine learning
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