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ABSTRACT
We propose a principled Bayesian method for quantifying tension between correlated data sets with wide uninformative parameter
priors. This is achieved by extending the Suspiciousness statistic, which is insensitive to priors. Our method uses global summary
statistics, and as such it can be used as a diagnostic for internal consistency. We show how our approach can be combined with
methods that use parameter space and data space to identify the existing internal discrepancies. As an example, we use it to test
the internal consistency of the KiDS-450 data in four photometric redshift bins, and to recover controlled internal discrepancies
in simulated KiDS data. We propose this as a diagnostic of internal consistency for present and future cosmological surveys, and
as a tension metric for data sets that have non-negligible correlation, such as Large Synoptic Spectroscopic Survey and Euclid.

Key words: gravitational lensing: weak – methods: data analysis – methods: statistical – cosmological parameters – cosmology:
observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

Quantifying consistency between different data sets has become one
of the main challenges in modern cosmology. With the increasing
number of methods and surveys measuring different properties of
the Universe, it is crucial to develop appropriate statistical tools to
compare and combine these data sets. This is important for two
reasons. First, differences in cosmological constraints from different
data sets, i.e. ‘tensions’, could indicate unaccounted-for systematic
errors in one or both data sets, or could indicate that the underlying
theoretical model (for example lambda cold dark matter, �CDM)
is not sufficient to explain both data sets. Secondly, because the
combination of different data sets can provide powerful cosmological
constraints by breaking degeneracies existing in single data sets, but
data sets can only be combined meaningfully if they are in agreement.

Cosmological tensions and their correct quantification are now
particularly important, given that while all existing data sets match
the �CDM model of cosmology individually, there are two main
disagreements between data sets that could be a hint of beyond
�CDM physics. This belief is reinforced by the fact the tensions
are between high-redshift measurements of the cosmic microwave
background by the Planck satellite (Planck Collaboration XIII 2015,
2018), and low-redshift measurements of the Hubble constant (Riess
et al. 2018, 2019) and of the growth of structure measured by galaxy
clustering and weak gravitational lensing by several surveys such
as the Canada–France–Hawaii Telescope Lensing Survey (Heymans
et al. 2012, 2013; Joudaki et al. 2017), the Kilo-Degree Survey

� E-mail: pablo.lemos.18@ucl.ac.uk

(KiDS; Hildebrandt et al. 2017; Köhlinger et al. 2017), and the Dark
Energy Survey (DES; Abbott et al. 2018; Troxel et al. 2018a).

There is a recent and extensive literature on quantifying tension
in the context of cosmology (for a review of some methods, see
Charnock, Battye & Moss 2017). Perhaps the most frequently used
is the Bayes ratio R introduced in Marshall, Rajguru & Slosar (2006),
which has the advantages of using exclusively Bayesian quantities
and of being parametrization independent. However, this method
has the disadvantage of being proportional to the prior volume
(which can hide existing tensions when broad priors are chosen
with the goal of being uninformative). Other approaches based on
differences in the best-fitting parameters were introduced by Lin &
Ishak (2017a, b), Raveri & Hu (2019), and Adhikari & Huterer
(2019). Kunz, Trotta & Parkinson (2006), Seehars et al. (2014),
Grandis et al. (2016a, b), and Nicola, Amara & Refregier (2019)
used methods based on the Bayesian information measured by the
Kullback–Leibler (KL) divergence (Kullback & Leibler 1951). One
of the latest methods suggested was the Bayesian ‘Suspiciousness’
introduced in Handley & Lemos (2019b, henceforth H19 ). The
Suspiciousness acts as an extension of the R statistic of Marshall et al.
(2006) to the case of uninformative priors, preserving many of the
desired properties of R without having dependence on prior volume.
It is important to point out that both R and S rely on quantities,
such as the Bayesian evidence, that are noisy statistics. This was
already discussed by Jenkins & Peacock (2011), and will be further
investigated in Joachimi (2019, in preparation).

However, all the methods above assume that the data sets are
uncorrelated. In this work, we focus on methods to quantify con-
sistency between correlated data sets [i.e. data sets for which P(A,
B) �= P(A)P(B)]. The measurement of tension in correlated data sets
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Figure 1. An example of different priors for a Gaussian distribution. The
‘wide prior’ in red contains all the posterior volume but extends far into the
tails. The ‘middle prior’ in blue, is an approximation that also contains the
posterior volume but not the tails. The ‘narrow prior’ significantly changes the
shape of the posterior distribution, as it ‘chops’ it where it is non-negligible.
The Suspiciousness statistic would not differentiate between ‘middle’ and
‘wide’ priors, unlike the Bayes ratio. However, both statistics would obtain
different results for the ‘narrow’ prior, which is the desired behaviour as this
prior alters the shape of the posterior.

has numerous applications: it can be used to quantify consistency
between different ‘splits’ or parts of a given data set, as a measure of
internal consistency. It is also relevant when combining different data
sets with non-trivial correlations. For example, this will be necessary
to obtain combined constraints from Euclid (Laureijs et al. 2011)
and the Large Synoptic Spectroscopic Survey (LSST; Ivezić et al.
2019), which as showcased by Rhodes et al. (2017) and Schuhmann,
Heymans & Zuntz (2019) would be very well motivated.

The problem of assessing consistency between correlated data
sets was tackled by Köhlinger et al. (2019, henceforth K19), in the
context of the KiDS-450 data. They use three ‘tiers’ of consistency
tests: Bayesian evidence ratios, parameter differences, and posterior
predictive distributions (PPD). They conclude that Bayesian evi-
dence ratios are not appropriate for this problem because of their
dependence on prior volume. As already mentioned, there are several
important advantages to the use of Bayesian evidence ratios with
respect to the other two tiers of consistency test introduced in K19.
Therefore, in this paper, we extend the work of H19 and apply the
Suspiciousness statistic to the case of correlated data sets with broad
non-informative priors. This provides a Bayesian, parametrization-
independent measure of consistency between correlated data sets.

In Section 2, we describe how the Suspiciousness can be extended
to correlated data sets. Section 3 applies this method to a toy model
consisting of Gaussian data sets that we ‘split’ in two. We discuss how
this method is related to the other two tiers of internal consistency
introduced in K19 in Section 4. The method is applied to the KiDS-
450 data in Section 5. We present our conclusions in Section 6.

2 TENSION IN CORRELATED DATA SETS

The goal of this section is to extend the tension metrics and
Bayesian model dimensionality (BMD) introduced in Handley &
Lemos (2019a, b) to the case of quantifying tension in parameters
from posteriors that come from correlated data sets. To derive the R
statistic, Marshall et al. (2006) propose comparing two hypotheses:

(i) H0: There exists one common set of parameters that describes
both data sets.

(ii) H1: There exist two sets of parameters, one for each data set.

Bayes’ theorem is then used to calculate the ratio of degrees of belief
in each hypothesis in light of the data D:

P (H0|D)

P (H1|D)
= P (D|H0)

P (D|H1)
· P (H0)

P (H1)
∝ Z0

Z1
= R, (1)

where R is the Bayes ratio and Z is the Bayesian evidence

Zi ≡ P (D|Hi) =
∫

dθL(θ )�(θ ), (2)

with θ the parameters of the model, L(θ ) ≡ P (D|θ,H ) the like-
lihood, and �(θ ) ≡ P(θ |H) the prior. If our prior belief in both
hypotheses is the same P(H0) = P(H1), the proportionality constant
in equation (1) becomes unity. Under this formulation, we may view
tension quantification as a model comparison problem with R as a
figure of merit. Finally, the posterior from Bayes theorem and the
KL divergence (Kullback & Leibler 1951) are defined via

P (θ |D,H ) ≡ P(θ ) = L(θ )�(θ )

Z , (3)

D =
∫

dθ P log

(P
�

)
. (4)

The Bayes ratio approach using R to quantify tension for correlated
data sets was used in K19, but, as they show, R depends on the prior
volume. This is the same prior volume dependence that is extensively
discussed in H19 for uncorrelated data sets. While this would not be
a problem for well-motivated priors, it means that we cannot rely on
Bayesian evidence ratios obtained with priors that are purposefully
chosen to be broad (with the intention of being uninformative).

To address these concerns about prior volume, we can instead use
the Suspiciousness S introduced in H19, which can be understood as
the value of R that corresponds to the narrowest possible priors that
do not significantly alter the shape of the posteriors, i.e. that contain
nearly the entire volume of the posterior distribution, which would
approximately correspond to the ‘middle prior’ in Fig. 1. The natural
logarithm of the Suspiciousness is given by

log S = log R − log I . (5)

The information I quantifies the a priori probability that the data
sets would match given the prior range. The larger the prior range
relative to the posterior constraints, the lower the probability that the
constraints will be consistent. For correlated data sets, the natural
logarithm of the information is given by

log I = D1 − D0. (6)

In the uncorrelated case, the additivity of the KL divergence implies
that D1 = D(A) + D(B) and D0 = D(A, B), which recovers the
methodology of H19.

3 G AU SSIAN EXAMPLE

To illustrate the formalism, we consider the example of multivariate
Gaussian posterior distributions (Fig. 2). Let A and B be two data
sets that can constrain the same set θ of d parameters. Each data set
A or B individually constrains one set of parameters θA or θB giving
a posterior with parameter mean and covariance of (μA, �A) or (μB,
�B), respectively.

Assume now that the two data sets are correlated. If we combine
the two data sets and use hypothesis H1, then the mean and covariance
of the marginal distribution of each individual set of parameters will
be unchanged; however, the data correlation will induce a correlation
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Figure 2. Graphical illustration of the Gaussian example, in the case of a
single parameter. The plot shows the two posteriors, and their combination
in the uncorrelated and correlated case, for σ 2

A = σ 2
B = 0.1, and Vπ = 10.

between parameter sets so that the likelihood will be

logL1 = logLmax
1 − 1

2

[
θA − μA

θB − μB

]T [
�A �X

�T
X �B

]−1

×
[
θA − μA

θB − μB

]
, (7)

where the cross matrix �X will be zero in the uncorrelated case.
The likelihood for hypothesis H0 can be found by setting θA = θB =

θ in equation (7). Notationally, it is helpful to define the precision
matrix � in block form via

�1 =
[
�A �X

�T
X �B

]
, �−1

1 = � =
[
�A �X

�T
X �B

]
, (8)

where the different blocks in � are related to those in �1 by
Schur’s complement (Woodbury 1950; Zhang 2005). After some
effort manipulating matrix expressions (see Appendix), we find

logL0 = logLmax
0 − 1

2
(θ − μ0)T�−1

0 (θ − μ0), (9)

logLmax
0 = logLmax

1 − 1

2
(μA − μB )T�−1

	μ(μA − μB ), (10)

�	μ = �A − �X − �T
X + �B, (11)

μ0 = �0

[(
�A + �T

X

)
μA + (�X + �B )μB

]
, (12)

�0 = (
�A + �X + �T

X + �B

)−1
. (13)

As discussed in H19, the evidence and KL divergence for a mul-
tivariate Gaussian with a flat prior of volume V� that essentially
completely encloses the posterior (Fig. 1) are

logZ = logLmax + 1

2
log |2π�| − log V�, (14)

D = log V� − 1

2
(d + log |2π�|). (15)

Combining equations (1),(6),(5),(7),(9),(10),(15), and (14) yield

log R = log V� + logLmax
0 − logLmax

1 + 1

2
log

|2π�0|
|2π�1| , (16)

log I = log V� − d

2
+ 1

2
log

|2π�0|
|2π�1| , (17)

log S = d

2
− 1

2
(μA − μB )T�−1

	μ(μA − μB ). (18)

Note that a factor V� emerges in R since H1 has twice as many
parameters as H0, but that this dependence on prior volume is
mirrored in I which therefore cancels in log S. It can easily be verified
that if the data are uncorrelated (�X = �X = 0) then these results
agree with those of H19.

Now under hypothesis H0, μA − μB will be distributed with mean
zero and covariance �	μ, and thus (μA − μB )T�−1

	μ(μA − μB ) will
have a χ2

d distribution (as can be shown by Cholesky decomposing
the covariance matrix). Thus d − 2log S must follow a χ2

d distribution
as well (as was the case in H19). The probability pt of the data sets
being discordant by chance is

pt =
∞∫

d−2 log S

χ2
d (x) dx =

∞∫
d−2 log S

xd/2−1e−x/2

2d/2�(d/2)
dx. (19)

The effective number of dimensions constrained by both data sets
d is given by the BMD introduced in Handley & Lemos (2019a).
In particular, Handley & Lemos (2019a) show that d is exactly the
same as the number of dimensions for a Gaussian likelihood. For
correlated data sets, d is given by

d = d1 − d0, (20)

where the number of parameters constrained simultaneously by both
data sets is given by subtracting the number of parameters constrained
by the combination of both from the number of parameters con-
strained by each data set separately, in a similar manner to Handley &
Lemos (2019a) for uncorrelated data sets.

As demonstrated by H19, while the results of this section have
been obtained for Gaussian likelihoods, they can be applied to more
general posteriors. This is because the Suspiciousness is invariant
under coordinate transformations, such as Box–Cox transformations
(Box & Cox 1964; Joachimi & Taylor 2011; Schuhmann, Joachimi &
Peiris 2016), which ‘Gaussianize’ the posterior. Furthermore, H19
showed that the Suspiciousness recovers the intuitively correct
answers for cosmological examples, which are somewhat non-
Gaussian, particularly in the nuisance parameters.

4 C O N N E C T I O N TO OT H E R I N T E R NA L
CONSI STENCY TESTS

K19 proposed three tiers of internal consistency between data sets.
We have previously discussed how the Bayesian Suspiciousness
serves as an alternative to tier 1 (the Bayes ratio). In this section,
we discuss the connection between Suspiciousness and tiers 2
and 3. We argue that, while these three methods are different in
their implementation, the underlying quantities being calculated are
surprisingly similar.

Tier 2 of K19 are differences of parameter duplicates: after
calculating the posterior distributions under hypothesis H1 (the data
sets are described by different sets of parameters), we can derive
the posterior distribution for the differences between the parameters
describing each data set. K19 then proposes finding the fraction
of samples with a value of the posterior smaller than the value in
the origin (which is the point of perfect agreement). This can be
seen as an extension of tension metrics based on parameter shifts,
such as those introduced in Raveri & Hu (2019) and Adhikari &
Huterer (2019), to the case of correlated data sets. From the result
of Section 3, it is easy to see how our method is connected to this.
For Gaussian posterior distributions, we show that d − 2log S is
χ2 distributed, from which we can calculate the tension probability.
While the methodology is different, the quantity being calculated
is the same in the case of this Gaussian toy model. In fact, one
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Figure 3. Comparison of tiers 1 and 2 of statistical consistency for the toy
model of Fig. 2. The top panel shows the Suspiciousness, and the bottom panel
shows the p value obtained from tier 2 of K19 (parameter differences). The x-
axis shows 	μ ≡ |μA − μB|, where μA and μB are the means of the Gaussian
distributions in the toy model in Section 3. The solid curves correspond
to uncorrelated Gaussians, while the dash–dotted curve corresponds to the
correlated case. The dashed horizontal and vertical lines show the 2σ , 3σ ,
and 4σ values for the uncorrelated cases, which agree exactly in this case.

Figure 4. The evidence ratio (R, in blue) and the two factors into which
it can be split, according to H19: the information (I, in yellow) and the
Suspiciousness (S, in red). The y-axis on the left is the value of each function,
which in the case of R corresponds to a ratio of probabilities. The y-axis on
the right is the number of sigma corresponding to different values of S (note
that the positions of the lines depend on the effective number of constrained
directions). The x-axis is different values of dz3 (i.e. shifts in the source
redshift distribution of bin 3) in the sensitivity analysis. The blue line is
similar to the left-hand panel in fig. A1 of K19.

could argue that the ‘mσ ’ interpretation presented in K19 should be
dependent on dimensionality, which could be calculated using the
BMD (Handley & Lemos 2019a), and then the calculation of ‘mσ ’
would become similar to equation (19). This is shown in Fig. 3, where
we compare the results of our method and parameter differences for
different 1D Gaussian distributions, and confirm that the results are
the same.

Tier 3 of K19 consists of using the PPD. This technique was
introduced in Gelman, li Meng & Stern (1996), and has been applied
to cosmology in recent problems (e.g. Abbott et al. 2019; Feeney

et al. 2019). When using the PPD, we calculate the probability of
data DA conditional on data DB and the underlying model M in the
following way:

P (DA|DB, M) =
∫

dθ P (DA|θ, M)P (θ |DB, M). (21)

In practice, this means that from samples of the posterior for DB, we
calculate realizations of the likelihood for DA. The most challenging
part of using the PPD is calibrating the distribution. P(DA|DB, M) is
a probability density that is challenging to normalize. The authors
of K19, for example, built a ‘Translated Probability Distribution’
from a predicted data vector, with the goal of calibrating the PPD.
However, there is an alternative way of interpreting this number,
which is by taking the ratio P(DA|DB, M)/P(DA|M). This quantity is
unitless, and can therefore be interpreted as a probability ratio. More
importantly, as discussed in Handley & Lemos (2019b), this ratio is
equal to the Bayes ratio R. In this way, we can see tiers 1 and 3 of
K19 as being elements of the same calculation, but using different
calibrations of the PPD. If both methods are correct, then they should
produce similar results.

5 K I DS-4 5 0 DATA

In this section, we test the methods introduced in Section 2 on
the KiDS-450 data (Hildebrandt et al. 2017).1 KiDS uses the
correlations in the shapes of galaxy images to measure weak
gravitational lensing caused by large-scale structure (for reviews, see
Bartelmann & Schneider 2001; Kilbinger 2015). Their measurements
span a redshift range z = [0.1, 0.9]; this range is divided into four
redshift bins each of width 	z = 0.2. The estimators used are the
correlation functions ξ+(i, j), ξ−(i, j), with seven and six angular
bins, respectively, and where i, j = 1, .., 4 refer to the redshift bins.
The data therefore consist of 130 data points [note that ξ±(i, j) =
ξ±(j, i)].

We have chosen to examine the KiDS data because Efstathiou &
Lemos (2018, henceforth E18) found possible inconsistencies be-
tween different splits of the data using two simple statistical tests.
In particular, bins 3 and 4 were found to be inconsistent with the
rest of the data with significances 2.60σ and 3.52σ . Following this
work, K19 performed their three-tier consistency tests on the same
data. Using these statistics, K19 found that the significance of these
inconsistencies is reduced, and concluded that the results of E18
are sensitive to the overall goodness of fit of the data. Following
E18, Troxel et al. (2018b) improved the shot noise model of the
analytically derived covariance matrix by including a model for
the survey-boundary effects. This correction increased the size of
the error bars at large angular scales, reducing the discrepancies
found in E18 to below significant levels. Asgari et al. (2019) also
quantified the errors associated with each of the definitions of the
angular tomographic bins centre used in Troxel et al. (2018b) and
Hildebrandt et al. (2017), proposing an accurate new approach
adopted in Hildebrandt et al. (2020). In the remainder of this work,
however, we will use the data from Hildebrandt et al. (2017) as
analysed by both E18 and K19. These corrections increased the size
of the error bars at large angular scales, reducing the discrepancies
found in E18 to below significant levels. However, in the remainder
of this work, we will use the data from Hildebrandt et al. (2017) used
by both E18 and K19.

1See http://kids.strw. leidenuniv.nl/sciencedata.php.
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Table 1. Comparison of evidence log R (interpreted with the Jeffreys scale used in K19) and Suspiciousness log S for some redshift shifts in
the sensitivity analysis. The last three columns show the BMD d, the tension probability pt and the corresponding number of sigma, calculated
as Nσ ≡ √

2Erf−1(1 − pt).

dz3 log R Interpretation log S d pt Nσ

0 7.69 ± 0.15 Decisive Agreement 1.488 ± 0.049 2.68 ± 0.17 0.99995 ± 0.00053 0
0.15 − 0.04 ± 0.14 Neutral − 5.735 ± 0.052 2.75 ± 0.18 0.00203 ± 0.00028 3.089 ± 0.041
0.20 − 6.18 ± 0.14 Decisive Tension − 11.383 ± 0.051 2.60 ± 0.17 7.6 · 10− 6 ± 1.4 · 10−6 4.478 ± 0.039

For our analysis, we compare the KiDS data vectors that involve
redshift bin 3 to all others, since bin 3 was one of the discrepant bins
in E18. We use the code 2cosmos2 to sample the KiDS likelihood.
2cosmos is an extension of the public code montepython3

(Audren et al. 2013). We compute evidence ratios, information,
and Suspiciousness using the public code anesthetic4 (Handley
2019). We first reproduce the results from table 2 of K195 (log R =
4.21 ± 0.15), and then apply our method to the same split of the
data. We get a log Suspiciousness log S = −1.992 ± 0.064. Under
the Gaussian approximation, we can assign a tension probability pt

to this value: we get the number of constrained dimensions nd =
2.75 ± 0.18, and the corresponding tension probability of the data
sets being consistent is p = 0.0674 ± 0.0062, corresponding to a
significance 1.83σ .

As expected, in this case the Suspiciousness provides a far more
accurate assessment of tension than does R, which obtains ‘very
strong’ evidence for agreement according to the Jeffreys scale used
in K19. However, the significance is also lower than in E18, which
is a reflection on the dependence on the overall goodness of fit of
the statistic used in that paper. In other words, our method quantifies
the internal consistency of the data, but is ‘blind’ to the goodness
of fit, while the method used in E18 was sensitive to both. This is a
very desirable quality in an internal consistency test, as it allows us
to detect the origin of a potential problem in the data. For the KiDS-
450 data, the Suspiciousness says that bin 3 is on the edge between
consistent and moderately inconsistent, because it measures only the
degree of agreement between the predictions of this bin and the rest
of the data. However, we stress the need to combine a Suspiciousness
internal consistency test with a reliable test of the overall goodness of
fit: the Suspiciousness alone would have been insufficient to identify
the suboptimal KiDS-450 covariance matrix, while the E18 tests did
so precisely because of their sensitivity to the overall goodness of fit.

As a final test of our statistical method, we repeat the sensitivity
analysis of appendix A1 in K19: instead of using the real KiDS-
450 data, we use mock data vectors, in which the source redshift
distribution is shifted by dz3 = 0, 0.15, 0.20. Our results are shown
in Fig. 4 and Table 1. Again, we see how the Bayes ratio R can hide
tensions because of the width of the priors, while the Suspiciousness
shows clear tension for both shifts of the redshift distribution. For
example, dz3 = 0.15 corresponds to ‘No Evidence’ in R, while for
the same shift S yields a more than 3σ discrepancy, indicating a
strong tension. This highlights the value of the Suspiciousness for
internal consistency tests in large data sets. The table also shows
how the number of sigma is zero for dz3 = 0. This is because in this
case we are comparing data sets whose posteriors overlap perfectly.
We should generally also be suspicious of cases where the tension

2https://github.com/fkoehlin/montepython 2cosmos public
3 https://github.com/baudren/montepython public
4https://github.com/williamjameshandley/anesthetic
5We use natural logarithms, while K19 use base 10 logarithms.

probability is very close to one (such as this one), as they indicate
that the agreement is ‘too good’.

6 C O N C L U S I O N S

Correlations between data sets affect tension measurements, and
require specific tension metrics to take into account the full error
model, as failing to do so will lead to wrong statements about
consistency between data sets. In this paper, we extended the novel
tension metric introduced in Handley & Lemos (2019b) to the case
of quantifying tension in parameters from posteriors that derive from
correlated data sets. This takes the role of ‘tier 1’ consistency tests
introduced in Köhlinger et al. (2019), and provides a measure of
consistency for correlated data sets that uses Bayesian quantities, is
parametrization independent, and can be used for the case of wide,
uninformative priors since it does not depend on the prior volume (in
contrast to the Bayes ratio for data set comparison R introduced in
Marshall et al. 2006).

We applied this formalism to a Gaussian toy model, and used this
to compare it with tiers 2 and 3 of K19, showing that we obtain the
same results for Gaussian posteriors. We propose our method as a
diagnostic tool of consistency between correlated data sets, that can
be complemented by best-fitting calculations (tier 2), and PPD (tier
3) to identify the origin of existing internal tension.

We applied this formalism to the case of KiDS-450 data from
Hildebrandt et al. (2017), focusing on tests of tomographic redshift
bin 3 versus the rest of the data (bins 1, 2, and 4). We find that
the 2.60σ tension detected in Efstathiou & Lemos (2018) reduces
to 1.83σ . We interpret this as a difference in the tension metric
used: the methods used in Efstathiou & Lemos (2018) depend on
the overall goodness of fit, while those used in this work do not.
This is a desirable quality, as it allows us to identify the origin of
potential problems in the data, but it stresses the need to combine the
Suspiciousness with a goodness of fit test.

This method can generally be used for correlated data sets where
uninformative priors are used. In particular, it can be used for internal
consistency tests of cosmological surveys (such as DES and KiDS),
and also to quantify tension between data sets with a non-negligible
covariance (such as Euclid and LSST). We conclude that due to its
Bayesian nature and intuitive interpretation, this method serves as a
perfect diagnostic of internal consistency, and we encourage present
and future cosmological surveys to use it.
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APPENDI X

We use equation (7) to derive equation (9) [with the associated
definitions in equation (10) through equation (13)] using the general
‘complete the square’ formula

(Qθ − K)T�−1(Qθ − K) = (θ − C)T(QT�−1Q)(θ − C)

+KT�−1(K − QC), (A1)

where C = (QT�−1Q)−1QT�−1K . In equation (A1) set

Q =
[
I

I

]
,K =

[
μA

μB

]
and � = �1 (so �−1 = �). (A2)

Also define P = [
I −I

]
(so, PK = μA − μB) and set

M−1 = �A − �X − �T
X + �B = P�P T (A3)

and

L−1 = �A + �X + �T
X + �B = QT�Q. (A4)

The covariance matrix in the RHS of equation (A1) is

QT�−1
1 Q = QT�Q = L−1; (A5)

this will be �−1
0 in equation (9). For the constant term on the RHS

of equation (A1), begin with

0 = PQ = (P�)(�Q) = (
�A − �T

X

)
(�A + �X)

+ (�X − �B )
(
�T

X + �B

)
, so(

�B + �T
X

)
(�A + �X)−1 = (�B − �X)−1

(
�A − �T

X

)
L−1(�A + �X)−1 − I = (�B − �X)−1M−1 − I

(�A + �X)L = M(�B − �X). (A6)

This establishes the upper-right block of the identity �QLQT +
P TMP�1 = I and the other blocks can be established similarly.
Thus

KT�−1
1 (K − QC) =KT(I − �QLQT)�K

= (PK)TMPK = (μA − μB )T�−1
	μ(μA − μB );

(A7)

this will contribute to logLmax
0 in equation (9). Finally, the mean used

in the RHS of equation (A1) is

C = (QT�−1Q)−1QT�−1K = LQT�−1
1 K = �0Q

T�K

= �0

((
�A + �T

X

)
μA + (�X + �B )μB

)
; (A8)

this will be μ0 in equation (9).
See Fig. A1 for a diagram illustrating the behaviour of the

likelihood function under the two hypotheses.
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Figure A1. Inference of mean(s) from two correlated data observations dA

and dB. The blue contours show (under hypothesis H1, i.e. separate means)
the likelihood (assumed Gaussian with covariance �) of the mean values (μA,
μB); the maximum likelihood (and with flat priors the mode of the posterior)
for these means is the black circle at (dA, dB). Under hypothesis H0 (i.e. one
common mean) the likelihood is restricted to the red dashed line μA = μB

where it will be Gaussian with covariance �0; here the maximum likelihood
(and hence posterior mode) is at the red diamond (μ0, μ0).
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