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1 Introduction

Along with the four known types of interaction in nature — the electromagnetic, strong,

weak and gravitational — it is possible that there exist additional forces. The exchange

of a new spin-zero or spin-1 boson between two fermions may give rise to some exotic

new force, e.g., an axion (spin-zero), a dark photon (spin-1) or a light Z ′ are among the

potential candidates for such a scenario which might lead to an exotic fifth force, which

are being actively searched for at several experiments [1–40]. Some such forces between

elementary particles scale, at large distances, with an inverse power of the distance between

the particles; they are often referred to as long-range forces. They may arise from the
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exchange of a massless mediator between two particles — the inverse-square Coulomb

interaction between charged particles being the most common example, arising due to an

exchange of a single photon. The prospects of discovering a new long-range force coupling

to ordinary matter is highly intriguing from both the theoretical and experimental points

of view. In electroweak (EW) theory, the neutrinos are the lightest particles and can be

considered as nearly massless on the scale of atoms. The exchange of a single neutrino (and

in general any fermion) will change the angular momentum of the exchanging particles

involved and therefore cannot give rise to a force between stable matter. However, the

exchange of two neutrinos can keep the quantum numbers of the exchanging particles

unchanged, and can potentially lead to a long-range force. Historically, the idea of a

long-range force mediated by the exchange of two neutrinos has been conceived a long

time ago [41–45]. The first explicit computation of the two-neutrino exchange force using

the four-Fermi approximation was performed at the leading order in ref. [42] to obtain a

potential of the form V (r) = G2
F /(4π

3r5), where GF is the Fermi constant. The neutral-

current effects were included in ref. [43] and the velocity dependence up to first order

was included in ref. [44]. However, in all these calculations neutrinos were assumed to be

massless and of a single flavour.

An interesting series of discussions in the literature resulted also from ref. [45], where

it was reported that if neutrinos were massless, the two-neutrino exchange force between

neutrons can lead to a large self-energy in a neutron star system through many-body

interactions, which far exceeds the order of magnitude of the rest mass of the system itself.

It was noted that such a situation can be avoided if the neutrinos are massive, shortening

the range of the relevant interaction. In ref. [46], however, it was argued that the creation

and subsequent capture of low-energy neutrinos in the star will fill a degenerate Fermi

neutrino sea that can block the free propagation of the neutrinos that are responsible for

the neutrino force. In ref. [47], a calculation of the self-energy using a different technique

was reported to obtain a negligible contribution. In ref. [48] it was stated that the two-

neutrino exchange force can be repulsive leading to repulsion among neutrinos instead of

filling up the Fermi sea in the neutron star. In ref. [49], on the other hand, it was argued

that the neutrino self-energy does not threaten the stability of the neutron star, to which

ref. [50] differs.1

In ref. [51] the two-neutrino exchange potential was calculated for massive Majorana

neutrinos, which was further improved in ref. [52] to include the effects of flavour mixing

for the spin-independent part of the force. In a recent work [53], one can also find a

detailed inclusion of flavour mixing effects for the spin-independent part of the neutrino

exchange force. In ref. [54], the second order EW effects have been discussed which is

usually ignored in the effective (Fermi theory) approach and the relevant EW second-order

shifts are calculated for muonium energy levels. While the first-order EW contribution

to the hyperfine splitting in 1S muonium is found to be of order 65 Hz, the second-order

corrections are found suppressed by two orders of magnitude, therefore making any new

1This issue is not the subject of investigation of this work and is only included to provide a comprehensive

historical overview.
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physics corrections of the first-order EW contribution more relevant than higher-order

effects in the EW theory.

Recently, atomic and nuclear systems have attracted substantial attention as probes

of SM physics and beyond [55–59], with excellent improvements in the experimental preci-

sion and a promising future prospect for further improvements on experimental measure-

ments [60]. In particular, in ref. [56], it was explored how the long-range neutrino exchange

force can be probed using atomic and nuclear spectroscopy. In ref. [59], the possibility of

distinguishing between the Dirac versus Majorana nature of neutrinos was discussed in the

context of a violation of the weak equivalence principle, while the same has been explored

using the Casimir-like force induced by neutrinos between two plates or a point particle

and a plate in ref. [61]. Given the significant amount of progress already made in the

literature, it seems desirable to have a robust and systematic analysis of all the possi-

ble operator realisations for the long-range neutrino exchange force with equal emphasis

on spin-independent and spin-dependent parts. The latter part is particularly relevant

given the atomic and nuclear spectroscopy provides sensitivity to both types of long-range

neutrino exchange forces, as discussed in ref. [56]. Furthermore, a clear distinction and

comparison of the Dirac versus Majorana neutrino cases and possible connection of the

relevant short-range operators with other relevant observables are also expedient.

In the present work, we consider an effective field theory (EFT) approach to analyse

the long-range potential induced by the exchange of two neutrinos in a systematic way,

including all the possibilities for the relevant four-fermion contact interactions including

the usual SM vector and axial-vector interactions, the scalar and pseudo-scalar interactions

and tensor interactions. The effects of flavour mixing are kept completely general and

the possibility of having a right-handed current for the neutrinos are also considered in

view of many SM extensions pointing towards such a possibility, see e.g., refs. [62–75].

We present both spin-independent and spin-dependent results for the long-range potential

induced by the exchange of two neutrinos and also analyse the effects for a considerable

neutrino magnetic moment. We also discuss the possibility of probing spin-independent and

spin-dependent components of the long-range potential using state-of-the-art atomic and

nuclear spectroscopy experiments. In particular, the muonium atom currently provides the

most precise probe providing access to physics at the scale of tens of GeV and is sensitive

to the spin-dependent components of the long-range potential, which has prospects of

further improvement at J-PARC Muon Science Facility (MUSE) with new high-intensity

muon beam [60]. In view of the relevant effective operators also inducing charged lepton

flavour violating (cLFV) observables, subject to very tight constraints from ongoing and

upcoming experiments, we also compare the relevant constraints and comment on their

possible complementarity in view of an EFT approach. We also comment on other particle

physics probes of these operators, e.g. electron-ν and nucleon-ν scattering, beta decays and

ee→ ννγ at LEP.

This paper is organised as follows. In section 2 we introduce the low-energy EFT

formalism and its connection to the SM gauge-invariant EFT. We also discuss the current

bounds on the relevant Wilson coefficients from probes such as cLFV processes, electron-

neutrino scattering, nucleon-neutrino scattering, beta decays and LEP data. In section 3
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we outline the derivation of a potential associated with the exchange of a virtual particle

between two fermions, taking into account their spins. In section 4 we derive potentials

induced by the exchange of two neutrinos between SM charged- and neutral-current in-

teractions in addition to other non-standard vector, scalar and tensor interactions. We

conclude this section by discussing and comparing the potentials in these scenarios. In sec-

tion 5 we discuss the prospect of probing beyond the SM effective operators using atomic

spectroscopy measurements. We summarise the current experimental measurements and

use them to derive limits on the various Wilson coefficients for the Dirac and Majorana

neutrino scenarios. In section 6, we discuss the effects of non-vanishing electromagnetic

properties of neutrinos and derive the relevant long-range potentials. We also derive the

relevant limits on the neutrino electric and magnetic dipole moments using the currently

available experimental data. Finally, in section 7, we make our concluding remarks.

2 Effective general neutrino interactions

2.1 Low energy EFT

In order to study the effects of new physics interactions of neutrinos in the context of

neutrino-mediated long-range potentials, we first need to specify the relevant effective field

theory (EFT) framework. If the non-standard interactions are the result of some new

physics at a high energy scale ΛNP, the general impact of such interactions is to induce

operators containing all possible permutations of SM fields respecting the global and gauge

symmetries present at a lower scale µ� ΛNP, where ΛNP is the cut-off scale of validity for

the EFT. This can be written as a series of higher dimension (d ≥ 5) non-renormalisable

operators,

Leff = LSM +
∑
i

∑
d≥5

C
(d)
i

Λd−4
NP

O(d)
i , (2.1)

where LSM is the SM Lagrangian, O(d)
i are dimension-d combinations of SM fields, C

(d)
i

are the associated dimensionless Wilson coefficients and the index i sums over all invariant

combinations of fields. It can be seen that higher-dimension operators are suppressed by

the factor Λ4−d
NP . For O(1) coefficients C

(d)
i , the scale ΛNP corresponds to the mass of new

physics mediators.

At energies below the EW scale — relevant for the long-range exchange of two neu-

trinos — the SM gauge group is broken and the operators O(d)
i must be invariant under

SU(3)c ×U(1)em. This is the so-called low energy effective field theory (LEFT) which has

been studied in detail, for example, in refs. [76–78]. In those works a complete basis of

operators up to dimension-six is given along with their associated anomalous dimensions,

needed to compute the running of the operators from the scale µ up to ΛNP via the renor-

malisation group (RG) equations. Also given are the matching conditions between the

LEFT operators and the EFT respecting the SM gauge group (SMEFT) valid at the scale

ΛNP. A complete basis and set of anomalous dimensions has also been computed in the

SMEFT up to dimension-six [79–83]. However, in general the operators considered in the
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LEFT can be lepton number violating and all such LEFT operators with d ≥ 6 require

SMEFT operators with odd dimension higher than six. The only SMEFT operator at

dimension-five is the well-known LNV Weinberg operator [84]

L(5)
eff =

C
(5)
ρσ

ΛNP
(l̄cρH̃

∗)(H̃†lσ) + h.c. , (2.2)

where lρ (ρ = e, µ, τ) and H are the leptonic and Higgs SU(2)L doublets, respectively,

lcρ = Cl̄Tρ with the charge-conjugation matrix C and H̃ = iσ2H
∗, where σ2 is the second

Pauli matrix.

Because the LEFT and SMEFT are both constructed out of the SM field content they

contain only the left-handed neutrino field νL, either explicitly for the former and contained

in the lepton doublet l for the latter. Technically no assumption is made about the nature of

massive neutrinos — whether they are Dirac fermions and have a right-handed component

νR or are self-conjugate Majorana fermions, νR = νcL = Cν̄TL . After the EW symmetry

breaking the Weinberg operator in eq. (2.2) generates a Majorana neutrino mass term —

however, if neutrinos are Dirac and lepton number is strictly conserved then the coefficient

C(5) must vanish.2

The non-standard neutrino interactions relevant to long-range neutrino exchange are

those that contain a neutral-current (NC) for the neutrinos (ν̄Γν) and the interacting

fermions (f̄Γf), where Γ is a product of gamma matrices. We include the right-handed

component νR so that the light neutrinos can be either Dirac or Majorana. The lowest di-

mension operators containing both neutral neutrino and fermion currents are at dimension-

six. In order to compare these with the low-energy Fermi limit of the SM weak interactions,

we normalise the Wilson coefficients with respect to the Fermi constant GF . There are ten

different Lorentz-invariant operators in the resulting effective Lagrangian,

Lν̄νf̄feff =
4GF√

2

[
cLLαβ;ρσ(f̄αLγµfβL)(ν̄ρLγ

µνσL)+cRLαβ;ρσ(f̄αRγµfβR)(ν̄ρLγ
µνσL)

+cLRαβ;ρσ(f̄αLγµfβL)(ν̄ρRγ
µνσR)+cRRαβ;ρσ(f̄αRγµfβR)(ν̄ρRγ

µνσR)

+gLLαβ;ρσ(f̄αRfβL)(ν̄ρRνσL)+gRLαβ;ρσ(f̄αLfβR)(ν̄ρRνσL)

+gLRαβ;ρσ(f̄αRfβL)(ν̄ρLνσR)+gRRαβ;ρσ(f̄αLfβR)(ν̄ρLνσR)

+hLLαβ;ρσ(f̄αRσ
µνfβL)(ν̄ρRσµννσL)+hRRαβ;ρσ(f̄αLσ

µνfβR)(ν̄ρLσµννσR)
]
,

(2.3)

where f = (`, u, d) and the fields are in the flavour eigenstate basis with α, β = e, µ, τ ,

α, β = u, c, t, α, β = d, s, b, respectively. Likewise, ρ, σ label the neutrino flavours,

ρ, σ = e, µ, τ . SM weak interactions induce the operators with coefficients cLL and cRL

in the first line. For charged leptons (f = `) both the charged-current (CC) and NC

weak interactions contribute to cLL (through a Fierz transformation of the CC term),

while only the NC interaction contributes to cRL. For quarks (f = u, d) just the NC

interaction contributes to cLL and cRL. For low energies relevant to long-range neutrino

2In the Dirac case the νR field is neglected in the SMEFT because it would imply a V + A interaction

arising, for example, in a left-right symmetric model.
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exchange, however, quarks are contained within non-relativistic nucleons, themselves con-

tained within nuclei. Quark currents can be matched to non-relativistic nucleon currents

using heavy baryon chiral EFT as detailed in refs. [85–87] and at the end of this subsection.

Finally, all other operators in eq. (2.3) require the presence of νR and must be generated

by new physics. It should be noted that the notation in eq. (2.3) is somewhat similar to the

basis often used for the non-standard neutrino interactions, see e.g., ref. [88]. We clarify

the relevant relations with other commonly used bases in appendix A.

If neutrinos are Majorana fermions, thus νR = νcL in the above, then the following

additional symmetry relations can be found between the coefficients in eq. (2.3) under the

exchange of ρ and σ,

cLLαβ;ρσ = −cLRαβ;σρ ,

gLLαβ;ρσ = gLLαβ;σρ ,

gLRαβ;ρσ = gLRαβ;σρ ,

hLLαβ;ρσ = −hLLαβ;σρ ,

cRLαβ;ρσ = −cRRαβ;σρ ,

gRLαβ;ρσ = gRLαβ;σρ ,

gRRαβ;ρσ = gRRαβ;σρ ,

hRRαβ;ρσ = −hRRαβ;σρ ,

(2.4)

reducing the number of degrees of freedom by effectively eliminating the operators with

coefficients cLR and cRR. Note that, in the Majorana case (νR = νcL) both νL and νR
will be lepton number violating (LNV) and will give rise to a number of LNV observables,

which are subject to strong constraints from experiments searching for neutrinoless double

beta decay, LNV meson decays and LNV collider searches [89–106].

So far we have kept the coefficients cXY , gXY and hXX (X,Y = L,R) in the flavour

basis of neutrino and fermion fields. The relevant coefficients in the mass eigenstate basis

should therefore contain the relevant elements of the Cabibbo-Kobayashi-Maskawa (CKM)

and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrices. We will follow the con-

vention that the down-type quark and lepton Yukawa matrices Yd and Y` are diagonal and

the diagonalisation of the up-type quark and neutrino Yukawa matrices (in the Dirac case)

proceed via the bi-unitary transformations

V · Y ′u · Ṽ † = Yu , U † · Y ′ν · Ũ = Yν , (2.5)

where V , Ṽ , U , Ũ rotate the left and right-handed up-type quark and neutrino fields

according to

u′αL = [V †]αβuβL , u′αR = [Ṽ †]αβuβR , ν ′αL = UαiνiL , ν ′αR = ŨαiνiR , (2.6)

where for clarity the primed and unprimed fields denote flavour and mass eigenstates

respectively — the neutrino mass eigenstates are also labelled with the index i. The

matrices V and U then correspond to the CKM and PMNS matrices appearing in the SM

charged-current,

jµW = 2ν̄LU
†γµ`L + 2ūLγ

µV dL . (2.7)

The matrices Ṽ and Ũ do not appear in any SM interaction — while uR is present in the SM

NC, the form of the current ūRγ
µuR cancels Ṽ , provided it is unitary. νR is not present at

– 6 –
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all in the SM and so Ṽ and Ũ are usually taken to be unphysical. On the other hand, they

will appear for some of the operators in eq. (2.3) by rotating the fields to the mass basis.

One can choose to define the coefficients cXY , gXY and hXX (X,Y = L,R) in the mass

basis by absorbing the CKM and PMNS matrix elements into the coefficients in the flavour

basis. For example, the Wilson coefficient cLL in the mass eigenstate basis is given by

cLLαβ;ij =
∑
γ,δ

∑
ρ,σ

cLLγδ;ρσ(VγαV
∗
δβ)U∗ρiUσj , (2.8)

where the VγαV
∗
δβ factor is only present for f = u. On the other hand the Wilson coefficient

cRR is written in the mass basis as

cRRαβ;ij =
∑
γ,δ

∑
ρ,σ

cRRγδ;ρσ(ṼγαṼ
∗
δβ)Ũ∗ρiŨσj , (2.9)

which contains rotation matrices for the right-handed neutrino fields (and possible right-

handed up-type quark fields). We immediately see a redundancy in eq. (2.9) because there

is more than one unknown parameter on the right-hand side. The unknown mixing angles

and phases in the mixing matrices Ṽ and Ũ can instead be absorbed back into the param-

eters of the matrix cRR in the flavour basis — this is equivalent to setting Ṽ = Ũ = I from

the outset. However, we will see that Ũ may contain information about the presence of

additional sterile states in the model.

In the SM, the values of the coefficients cLL and cRL are given in the mass basis as

cLL``′;ij = U∗αiUαj + g`Lδij ,

cLLuu′;ij = guLδij ,

cLLdd′;ij = gdLδij ,

cRL``′;ij = g`Rδij ,

cRLuu′;ij = guRδij ,

cRLdd′;ij = gdRδij ,

(2.10)

where g`L = −1/2 + s2
W , g`R = s2

W , guL = 1/2− 2s2
W /3, guR = −2s2

W /3, gdL = −1/2 + s2
W /3,

gdR = s2
W /3 for s2

W = sin2 θW and θW is the weak mixing angle. In models such as the

type-I seesaw that can introduce additional mass eigenstates, therefore making the 3 × 3

PMNS mixing matrix non-unitary, it is easy to replace δij → Cij , where

Cij =
∑
α

U∗αiUαj . (2.11)

Here Uαj corresponds to the generalised PMNS mixing matrix.

To go from effective coefficients at the quark level (e.g. cLLuu;ij and cLLdd;ij) to the level of

non-relativistic nucleons one must make use of the heavy baryon chiral EFT — viable when

the relevant momentum exchange is below the cut-off scale of the EFT, ΛChEFT∼O(1 GeV).

At leading order in the EFT, the light pseudoscalar masses are of order mπ ∼ O(q) and

the neutrinos in the loop only interact with a single nucleon. Interactions of neutrinos with

more than one nucleon (for example in deuterium) are suppressed by powers of q/ΛChEFT.

– 7 –
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Following the approach of ref. [87], the coefficients for effective operators containing

nucleon currents can be written in terms of the quark-level coefficients as

cLLNN ;ij =
1

2

∑
q

{
F
q/N
1 (q2)

(
cLLqq;ij + cRLqq;ij

)
+ F

q/N
A (q2)

(
cLLqq;ij − cRLqq;ij

)}
,

cRLNN ;ij =
1

2

∑
q

{
F
q/N
1 (q2)

(
cLLqq;ij + cRLqq;ij

)
− F q/NA (q2)

(
cLLqq;ij − cRLqq;ij

)}
,

(2.12)

where the sum is over q = u, d, s and F
q/N
1 (q2) and F

q/N
A (q2) are the NC vector and axial

vector form factors for the quark q within the nucleon or nucleus N , respectively. For

the proton the following linear combinations at zero-momentum exchange are given in the

SM by

cLLpp;ij + cRLpp;ij ≡ g
p
V δij cLLpp;ij − cRLpp;ij ≡ g

p
Aδij , (2.13)

where gpV ≈ (2guV + gdV ) = (1/2 − 2s2
W ) and gpA ≈ (2guA + gdA)gA = gA/2. Here we have

used F
u/p
1 (0) = 2, F

d/p
1 (0) = 1, F

u/p
A (0) = 2gA and F

d/p
A (0) = gA and neglected the small

contribution from non-valence quarks. Likewise the SM values for the deuteron are

cLLDD;ij + cRLDD;ij ≡ gDV δij , cLLDD;ij − cRLDD;ij ≡ gDA δij , (2.14)

where gDV ≈ (3guV +3gdV ) = −2s2
W and gDA ≈ F

s/D
A (0)gdA. We have used that the vector form

factors for the valence quarks in the deuteron are F
u/D
1 (0) = F

d/D
1 (0) = 3. The equivalent

axial form factors vanish, F
u/D
1 (0) = F

d/D
1 (0) = 0, and the main contribution arises from

strange quarks. The strange quark contribution computed in the chiral EFT is given by

F
s/D
A (0) ≈ 2∆s

(
1−

g2
AmDm

2
π

4πf2
π(mπ + 2γ)

)
− 8γ(µ− γ)2

mDµ2
∼ −0.09 , (2.15)

for γ =
√
mDED [107]. Here ∆s is the strange axial moment of the deuteron, mD is the

deuteron mass, ED is the deuteron binding energy, mπ is the neutral pion mass, and fπ
is the pion decay constant. The renormalisation scale µ is taken to be at the neutral pion

mass mπ.

2.2 Inclusion of sterile neutrinos

We now briefly return to the question of matching the LEFT + νR (νLEFT) operators

with a SM gauge-invariant EFT. As stated before, the commonly-studied SMEFT does not

contain νR and so can only produce a subset of the νLEFT operators containing just νL.

It may not even be possible to match these operators if there are new particles with masses

. O(100) GeV or if EW symmetry breaking is non-linear in the new physics sector [108].

Assuming that the matching is possible, in order to produce all low-energy operators, one

can introduce n number of sterile states NR to the SMEFT. To this end, a complete basis of

lepton number and baryon number conserving and violating operators has been considered

in the literature at dimension-five [109], dimension-six [110] and dimension-seven [111, 112].
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Refs. [88, 113, 114] provide the matching conditions between the νLEFT (in the basis of

appendix A) and the SMEFT + NR.

At dimension-four in the SMEFT + NR there are the terms

LNR = iN ′R /∂N
′
R −

(
1

2
N ′cRMN ′R + h.c.

)
−
(
L̄YνN

′
RH̃ + h.c.

)
, (2.16)

where MR is the Majorana mass for the sterile states and we have the usual Yukawa term.

At dimension-five, in addition to the Weinberg operator of eq. (2.2) we have [109]

L(5)
eff = −1

2
N ′cRζσ

µνN ′RBµν −
1

ΛNP

(
H†H

)
N ′cRξN

′
R + h.c. , (2.17)

where the former is an EW coupling ζ to the U(1)Y field strength operator Bµν and the

latter is a Majorana mass-like coupling χ to Higgs doublets. After EW symmetry breaking

we obtain the following mass terms

Lm = −ν ′LMDN
′
R −

1

2
ν ′cLMLν

′
L −

1

2
N ′cRMRN

′
R + h.c. , (2.18)

where MD = Yνv/
√

2, ML = χ
ΛNP

v2, MR = M + ξ
ΛNP

v2 and v is the SM Higgs VEV.

Various limiting cases can now be obtained depending on the matrices MD, ML and MR.

If MD �ML �MR then we obtain a type-I seesaw-like scenario, whereas if MD �ML,R

we obtain quasi-Dirac neutrinos such as those studied in refs. [115, 116]. In the former case

the mass matrices for the light and heavy neutrinos are approximately

Mν ≈ML −M∗D(M †R)−1M †D ,

MN ≈MR ,
(2.19)

respectively, which are then diagonalised to the mass basis via Mν = UTν · Mν · Uν and

MN = UTN ·MN ·UN . In the mass basis we therefore obtain three light Majorana neutrinos

ν = νc and n relatively heavier Majorana neutrinos N = N c. The weak eigenstates are

given in terms of the mass eigenstates by

ν ′L = PL (Uνν + εUNN + . . .) ≡ PLUn ,

N ′cR = PL

(
−ε†U∗ν ν + U∗NN + . . .

)
≡ PLŨn ,

(2.20)

where n = (ν1, ν2, ν3, N1, N2, . . .). As all the light neutrinos are Majorana in this case, the

relevant operators with coefficients cLL and cRL (the cLR and cRR operators are equivalent

by eq. (2.4)) are naively rotated by the 3× (3 +n) matrix U . However, if any of the N are

above the EW scale then they are integrated out of the EFT, leaving only those below. In

the presence of light sterile states one can have terms such as

4GF√
2

[
c̃LRαβ;ss′(f̄αLγµfβL) + c̃RRαβ;ss′(f̄αRγµfβR)

]
(N ′sRγ

µN ′s′R) , (2.21)

where s, s′ label the weak eigenstates of NR, which are rotated to the mass basis by the

n× (3 + n) matrix Ũ and n is the number of light sterile states N .
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To summarise, in the SMEFT + NR, the fields N ′R in the flavour basis are rotated to

the mass basis by the matrix Ũ . This corresponds to an extended block of the enlarged

mixing matrix diagonalising the full neutrino mass matrix. For three light (mostly active)

Majorana neutrinos, the operator with coefficient cRR appearing in eq. (2.3) is written in

terms of the νL states, νR = Cν̄TL , and so can be related to cRL by the symmetry relations

of eq. (2.4). cRR is thus instead rotated by the block U as in eq. (2.8). Therefore eq. (2.9)

is only strictly true for the coefficients c̃LR and c̃RR appearing in eq. (2.21) for additional

(mostly sterile) Majorana states. On the other hand, if neutrinos are Dirac and there

are right-handed gauge interactions, Ũ corresponds to the right-handed analogue of the

PMNS mixing matrix diagonalising the right-handed charged-current interactions [73, 74].

However, we have already discussed how it multiplies similarly unknown Wilson coefficients

and can thus be subsumed.

In this work, we are mainly concerned with the two extreme limits discussed below

eq. (2.18). The first is the scenario in which lepton number is conserved — ML = MR = 0

and the right-handed states NR ≡ νR form three light Dirac neutrinos with the νL states.

The second is if lepton number is violated and any sterile mass eigenstate fields N are

integrated out, leaving three light Majorana neutrinos. However, we will see that light

sterile fields N (which may or may not be related to the seesaw mechanism generating

light left-handed neutrino masses) can be of relevance in section 6.

2.3 Bounds from other probes

In the SM, the left-handed neutrinos are part of SU(2)L doublet with the charged leptons

as their partners. Therefore, for a given new physics model at a scale higher than the EW

symmetry breaking scale, the SM gauge-invariant operators that mediate the long-range

neutrino interactions can also mediate charged lepton flavour changing processes [117]

which are constrained stringently from experimental non-observation of various cLFV ob-

servables [118–120]. The cLFV radiative decays and µ → e conversion are particularly

relevant in this context as they are subject to intensive searches at various ongoing and

upcoming experiments. The decays of tau into light mesons accompanied by a lepton are

also relevant since the relevant bounds are expected to be improved significantly in Belle

II [121]. To illustrate the relevance of cLFV processes let us consider the contact interaction

of eq. (2.3)
4GF√

2
cLLαβ;ρσ(f̄αLγµfβL)(ν̄ρLγ

µνσL) . (2.22)

For f = e this operator can be generated by the dimension-six SMEFT [79–83] operator

4GF√
2
ερσe (leγµle)(lργ

µlσ) , (2.23)

where l̄ is the SU(2) doublet (νL, `L). It is easy to see that such an operator can also

induce the cLFV interaction (eγµPLe)(`ργ
µPL`σ) (where ρ 6= σ) with the relevant Wilson

coefficient constrained by the experimental limits on cLFV decays, e.g., `σ → `ρe
−e+.

However, such a scenario can be avoided by instead constructing such operators at higher
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dimension, e.g., dimension-eight operator in SMEFT

C
(8)
1f,ρσ

Λ4
NP

(l
p
ρεpQH

Q∗)γµ(HRεRsl
s
σ)(fγµf) (2.24)

where εpQ is the usual antisymmetric SU(2) contraction and ΛNP is the heavy new physics

scale. When the neutral component of Higgs H = (H+, H0) acquires a vacuum expectation

value 〈H0〉 = v, the dimension-eight operator leads to the contact interaction in eq. (2.22).

Assuming a new physics model valid at a scale ΛNP > mW , which at tree level gen-

erates the relevant long-range interactions but avoids inducing cLFV at the tree level, it

is important to note that such long-range interactions can still induce cLFV operators

through Higgs or W loops. The vector operators of dimension-six and eight which can be

added to the SM Lagrangian are of the form

δL =
∑
X,ζ

C
(6)
X,ζ

Λ2
NP

O(6)
X,ζ +

∑
X′,ζ

C
(8)
X′,ζ

Λ4
NP

O(8)
X′,ζ + h.c. , (2.25)

where X (X ′) labels operators with the Lorentz structure γµ × γµ and ζ denotes the

flavour indices. A complete list of all the relevant dimension-six operators in the ‘Warsaw’

basis can be found in [80], while the relevant dimension-eight operators when the external

fermion is a SU(2)L doublet can be found, for example, in [122]. A particularly interesting

basis has also been proposed recently in [120]; following this basis in the case where the

external fermion is a SU(2)L doublet quark or lepton (f = q, lα with α 6= ρ, σ), the relevant

dimension-six SMEFT operators are

O(6)
1f,ρσ ≡ (lργ

µlσ)(fγµf) , O(6)
2f,ρσ ≡ (lργ

µf)(fγµlσ) , (2.26)

where the SU(2)L contractions are understood to be inside the parentheses. At dimension-

eight, the relevant SMEFT operators are given by

O(8)
1f,ρσ ≡ (lρεH

∗)γµ(Hεlσ)(fγµf) , O(8)
2f,ρσ ≡ (lρH)γµ(H†lσ)(fγµf) ,

O(8)
3f,ρσ ≡ (lργ

µf)(fH)γµ(H†lσ) , O(8)†
4f,ρσ ≡ (lρH)γµ(H†f)(fγµlσ) , (2.27)

O(8)
5f+,ρσ ≡ (O(8)

5f,ρσ +O(8)†
5f,ρσ) ≡ (lργ

µf)(fεH∗)γµ(Hεlσ) + (lρεH
∗)γµ(Hεf)(fγµlσ) .

In the case where the external fermion f = lα with α = ρ, the relevant operators reduce to

O(6)
1l,ρσ ≡ (lργ

µlσ)(lργµlρ) ,

O(8)
1l,ρσ ≡ (lρεH

∗)γµ(Hεlσ)(lργµlρ) ,

O(8)
2l,ρσ ≡ (lρH)γµ(H†lσ)(lργµlρ) ,

O(8)
5l+,ρσ ≡ (lργ

µlρ)(lρεH
∗)γµ(Hεlσ) + (lρεH

∗)γµ(Hεlρ)(lργ
µlσ) .

(2.28)

– 11 –



J
H
E
P
0
7
(
2
0
2
0
)
0
1
3

νLEFT Wilson coefficient Relevant cLFV process Current cLFV sensitivity

cLLee;µe BR(µ→ 3e) 7.8× 10−7

cLLdd;µe CR(µ− e,Au) 5.3× 10−8

cLLuu;µe CR(µ− e,Au) 6.0× 10−8

cRLee;µe BR(µ→ 3e) 9.3× 10−7

cRLdd;µe CR(µ− e,Au) 5.4× 10−8

cRLuu;µe CR(µ− e,Au) 6.3× 10−8

cLLee;τe BR(τ → 3e) 2.8× 10−4

cLLee;τµ BR(τ → µeē) 3.2× 10−4

cRLee;τe BR(τ → 3e) 4.0× 10−4

cRLee;τµ BR(τ → µeē) 3.2× 10−4∣∣∣cLL(RL)
dd(uu);τe

∣∣∣ BR(τ → eρ; eη) 7.1× 10−4∣∣∣cLL(RL)
dd(uu);τµ

∣∣∣ BR(τ → µρ;µη) 5.9× 10−4

Table 1. Experimental sensitivities of various relevant νLEFT Wilson coefficients in eq. (2.3) [120]

based on the current best limits from various cLFV experiments. To derive the bottom two con-

straints it has been assumed that LFV is induced either on left-handed or right-handed quarks, but

not both simultaneously.

In the case where the external fermion f is an SU(2)L singlet quark or lepton, the relevant

dimension-six and eight SMEFT operators are given by

O(6)
1sf,ρσ ≡ (lργ

µlσ)(fγµf) ,

O(8)
1sf,ρσ ≡ (lρεH

∗)γµ(Hεlσ)(fγµf) ,

O(8)
2sf,ρσ ≡ (lρHγ

µH†lσ)(fγµf) .

(2.29)

After the EW symmetry breaking, at the Z-pole (µ = mZ) the SM gauge group

invariant operators are matched onto the νLEFT operators given in eq. (2.3). However, it

is important to include the RG running induced mixings via W and Higgs loops exchange

between various SMEFT operators discussed above. This is particularly relevant because

even if the relevant interactions in a given new physics model may not induce cLFV at

the tree level, such operators get induced via the mixings at the one-loop level. A detailed

discussion of the relevant matching and mixing effects is beyond the scope of the current

work and can be found for example in [120]. In table 1, we summarise the phenomenological

limits on the relevant νLEFT Wilson coefficients that can be derived from the negative

search limits from various experimental cLFV searches [120]. From an EFT point of view,

it is important to notice that the relevant limits on the Wilson coefficients can be derived

under varying assumptions about the cancellation among the SMEFT operators of different
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dimensions and with different powers of log(ΛNP/mZ) [118–120] and therefore such limits

are to be interpreted with more care under the given assumptions. On the other hand, for

a given new physics model one can numerically check for any such possible cancellation and

the constraints can be interpreted unambiguously. One important point to note regarding

the existing limits such as from cLFV processes here is that the corresponding processes

occur at energy scales of the decaying muon or tau mass. Therefore, the analysis in the

νLEFT framework is valid at those energy scales and the Wilson coefficients are sensitive

to new physics scales heavier than these mass scales. On the other hand for two neutrino

exchange, the scale of the process corresponds to the Bohr radius scale a−1
0 = αme ≈

O(10) keV in atomic systems and as small as the neutrino mass O(eV) for macroscopic-

scale forces. The νLEFT framework, in this case, is therefore generally applicable for much

lighter new physics scales. This opens up the possibility of exploring a lot of interesting

light new physics scenarios with non-trivial couplings to neutrinos and other SM fermions.

Other than the cLFV processes discussed above, the Wilson coefficients relevant to

first- and second-generation leptons are also subjected to direct bounds from the experi-

mental data on various scattering processes such as νµe scattering in CHARM-II [123, 124]

(which is supposed to be improved by an order of magnitude at the DUNE near detec-

tor [125]), neutrino-nucleon scattering data at CHARM and CDHS [123, 124, 126]. The

Wilson coefficients relevant to tau are constrained from eē → νν̄γ data at LEP [127].

However, these bounds are orders of magnitude weaker as compared to the bounds from

cLFV processes. Some relevant discussion about these bounds can be found for example

in [127–132]. In addition, the observation of coherent elastic neutrino-nucleus scattering at

COHERENT [133, 134] and beta decays [135] are also relevant for deriving bounds on the

relevant Wilson coefficients [88].

3 Long-range potentials and scattering amplitudes

It has long been known that a force acting at a distance can be interpreted as the exchange

of a virtual particle (or multiple particles) between external on-shell states. As depicted

to the left of figure 1, a mediator or mediators are necessary to exchange the momentum

q = pα−p′α = p′β−pβ between the two interacting particles fα and fβ with initial momenta

pα and pβ and final momenta p′α and p′β respectively.

In the Feynman diagrammatic approach it is possible to derive a long-range potential

V (r,v) for an interaction — most generally a function of the relative displacement between

the particles r and the average velocity of the system,

v =
1

2

(
pα
mα

+
pβ
mβ

)
, (3.1)

by taking the Fourier transform of the invariant amplitude of the scattering process [136],

i.e.,

V (r,v) =

∫
d3q

(2π)3
eiq·rM(s, t) , (3.2)
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fα fα

fβ fβ

pα p′α

pβ p′β

q

fα fα
cXYαα;ij

fβ fβ

cXYββ;ij

νi νj

pα p′α

pβ p′β

k + qk

Figure 1. Left: long-range force mediated between particles fα and fβ by virtual particles carrying

the momentum exchange q = pα − p′α = p′β − pβ . Right: diagram depicting the exchange of two

mass-eigenstate neutrinos between fermions fα and fβ . The interaction vertices are four-fermion

interactions with coefficients cXYαα;ij and cXYββ;ij respectively, where the superscripts X,Y = L,R refer

to the chirality of the fermion and neutrino currents.

where the invariant amplitude M(s, t) is an analytic function of the Mandelstam variables

s = P 2 = (pα+pβ)2 = (p′α+p′β)2 and t = q2 = (pα−p′α)2 = (p′β−pβ)2. The potential is time

independent in the static limit of momentum transfer, q ≈ (0,q) and t ≈ −q2, which is an

accurate approximation for particles interacting at a distance. Furthermore, one can also

exploit the analyticity properties of M(s, t) which enable the spectral decomposition [43]

M(s,−q2) = −
∫ ∞

0
dt′

ρ(s, t′)

t′ + q2
, (3.3)

where ρ(s, t′) is the so-called “spectral function” of the process. The spectral function is

related to the imaginary part of the discontinuity on the real t-axis of M(s, t),

ρ(s, t) =
1

π
Im[M(s, t)] =

1

2πi
disc[M(s, t)] , (3.4)

where

disc[M(s, t)] =M(s, t+ iε)−M(s, t− iε) , (3.5)

for ε → 0. One can now insert the decomposition of eq. (3.3) into eq. (3.2) and evaluate

the angular integral dΩ = dθ dφ sin θ contained in d3q. This integration is non-trivial if

M(s, t) and therefore ρ(s, t) depend on θ and φ — for example if there are spin-dependent

terms containing the dot product of q and a particle spin σ. In fact, such terms arise

naturally when taking the non-relativistic limit of the scattering amplitude.

We follow the approach of ref. [137] and divide the spectral function ρ(t) (omitting the

dependence on s) according to a basis of 16 spin operators,

ρ(t) =
16∑
k=1

ρk(t)Ok(q,P) fk(v
2) , (3.6)
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where fk(v
2) are polynomials in powers of v2 corresponding to higher order terms in the

non-relativistic expansion. The operators Ok form a complete basis constructed from the

relevant three-momenta (q and P) and the interacting particle spins (sα = σα/2 and

sβ = σβ/2),

O1 = 1 ,

O3 = (σα ·q)(σβ ·q) ,

O6,7 =
i

2

[
(σα ·P)(σβ ·q)±(α,β)

]
,

O9,10 =
i

2
(σα±σβ)·q ,

O12,13 =
1

2
(σα±σβ)·P ,

O15 =
1

2

[
σα ·(P×q)(σβ ·q)+(α,β)

]
,

O2 =σα ·σβ ,

O4,5 =
i

2
(σα±σβ)(P×q) ,

O8 = (σα ·P)(σβ ·P) ,

O11 = i(σα×σβ)·q ,
O14 = (σα×σβ)·P ,

O16 =
i

2

[
σα ·(P×q)(σβ ·P)+(α,β)

]
,

(3.7)

where (α, β) is a shorthand for (α↔ β).

Combining eqs. (3.2), (3.3) and (3.6), the potential can also be split up as

V (r,v) =

16∑
k=1

Vk(r,v)fk(v
2) , (3.8)

where

Vk(r,v) = −
∫

d3q

(2π)3
eiq·r

∫ ∞
0

dt′
ρk(t

′)Ok(q′,P)

t′ + q2
, (3.9)

and the variable t′ = −(q′)2 is integrated over dt′ while q is integrated over d3q.

The functions Vk(r,v) can be computed by first evaluating the integral without the

factor Ok and multiplying by a single power of r,

V ′k(r) ≡ −r
∫

d3q

(2π)3
eiq·r

∫ ∞
0

dt′
ρk(t

′)

t′ + q2
=

1

4π

∫ ∞
0

dt ρk(t) e
−r
√
t , (3.10)

where for the second equality we have integrated over q, θ and φ and relabelled the dummy

variable t′ as t. As outlined in ref. [137], the functions Vk(r) can be readily computed by

applying derivatives to the V ′k(r) functions. We have for example the following operations

for the operators O1, O2 and O3,

V1(r) =
1

r
V ′1(r) ,

V2(r) =
1

r
(σα · σβ)V ′2(r) ,

V3(r) =
1

r3

[
(σα · σβ)

(
1− r d

dr

)
− 3(σα · q)(σβ · q)

(
1− r d

dr
+
r2

3

d2

dr2

)]
V ′3(r) .

(3.11)

4 Long-range potentials from two-neutrino exchange

In this section we will derive, using eq. (3.2), the potentials Vαβ(r) induced by the exchange

of two neutrinos between fermions fα and fβ , depicted in figure 1 (right). We consider the

– 15 –



J
H
E
P
0
7
(
2
0
2
0
)
0
1
3

neutrinos in the loop and the external fermions to interact via the four-fermion νLEFT

Lagrangian of eq. (2.3), which includes SM CC and NC interactions in the operators with

coefficients cLL and cRL in addition to non-standard operators of vector (cXY ), scalar

(gXY ) and tensor (hXX) type. The external fermions may be charged leptons (f = `) or

up-type and down-type quarks (f = u, d) within a nucleon or nucleus N . The quark-level

coefficients cXY must be matched to nucleon/nucleus-level coefficients using eq. (2.12).

In section 4.1 we derive the potential V LL
αβ (r) when only the SM CC and NC interactions

are present. In section 4.2 we include right-handed vector-type neutrino currents and derive

the potentials V LR
αβ (r) and V RR

αβ (r) when one or both of the neutrino currents are right-

handed. In section 4.3 we introduce scalar interactions and derive the vector-scalar and

scalar-scalar potentials V V S
αβ (r) and V SS

αβ (r). In section 4.4 we consider tensor interactions,

determining the vector-tensor potential V V T
αβ (r). We derive each potential for Dirac and

Majorana neutrinos, examining the dependence on the distance in the short- and long-range

limits and on the spins of the external states. We finally plot and compare the potentials

in figure 4 of section 4.5.

4.1 Standard Model charged and neutral currents

We begin by deriving the potential V LL
αβ (r) arising from the SM diagrams in figure 2.

For simplicity we determine the amplitude Mαβ (and the corresponding spectral function

ραβ) by integrating out the W± and Z boson propagators and using the νLEFT interaction

Lagrangian of eq. (2.3). We see that W± exchange can only occur for charged leptons while

Z exchange is possible for both leptons and quarks within a nucleon/nucleus N . Both W±

and Z exchange contribute to the coefficient cLLαβ;ij while only Z exchange contributes to

cRLαβ;ij — the values for these are given in eq. (2.10). The external fermion currents are

therefore either left- or right-handed while the neutrino currents are strictly left-handed.

Applying the appropriate Feynman rules from the interaction Lagrangian of eq. (2.3),

we can write the invariant amplitude of the scattering process in figure 1 (right) in the

convenient form

−iMαβ =
1

4mαmβ

(
−i4GF√

2

)2 N∑
i,j=1

∑
X,Y=L,R

cXLα;ij c
Y L
β;ij Hαβµν N

µν
ij , (4.1)

where 1/(4mαmβ) is a normalisation factor convenient in the non-relativistic limit [43].

The amplitude firstly contains the sum over the neutrino mass eigenstates, i, j, which we

allow to run from 1 to N = 3+n to allow for the presence of n additional Dirac or Majorana

states. It also contains the sum over the possible chiralities (X,Y = L,R) of the external

fermion currents. As we are focussing on scattering processes in which the flavours of the

interacting fermions do not change, the coefficients cXYαβ;ij will always be diagonal in the

flavour of the external fermions (α = β). We therefore relabel cXYαα;ij ≡ cXYα;ij in eq. (4.1)

and the following discussion.

The amplitude in eq. (4.1) is also split conveniently into two Lorentz tensor factors.

The first is the product of external fermion bilinears

Hαβµν = [ūs′α(p′α) γµ PX usα(pα)][ūs′β (p′β) γν PY usβ (pβ)] ≡ [γµ PX ]α[γν PY ]β , (4.2)
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`β `β

`α `α

W

W

νi

U∗
αi Uαj

νj

Uβi U∗
βj fβ fβ

fα fα

νi νj

Cij

C∗
ij

Z

Z

fβ fβ

`α `α

νi νj
W

U∗
αi Uαj

Z

C∗
ij

fα fα

`β `β

νi νj
W

Uβi U∗
βj

Z

Cij

Figure 2. Diagrams depicting the exchange of two massive neutrinos between fermions fα and fβ
with SM CC and NC interactions at each vertex. For the CC interactions f = `.

where usα(pα) and usβ (pβ) are four-component Dirac spinors for the fermions fα and fβ
(or nucleon N ) and PX and PY are the usual chirality projection operators PL = (1−γ5)/2

and PR = (1 + γ5)/2 for X,Y = L,R. The second factor N µν
ij integrates the product of

massive neutrino propagators over the loop momentum k,

N µν
ij =

∫
d4k

(2π)4

Tr[γµPL(/q + /k +mj)γ
νPL(/k +mi)]

(k2 −m2
i ) ((q + k)2 −m2

j )
. (4.3)

We now use the method from eq. (3.8) onwards to calculate the potential. Using

eq. (3.4) we first determine the spectral function by taking the discontinuity the amplitude.

The discontinuity only needs to be taken for the neutrino loop factor,

disc(N µν
ij ) =

Λ1/2(q2,m2
i ,m

2
j )

12π

{
−

(
1−

m2
ij

q2
−

(∆m2
ij)

2

2q4

)
gµν

+

(
1 +

2m2
ij

q2
−

2(∆m2
ij)

2

q4

)
qµqν

q2

}
Θ
(
q2 − (mi +mj)

2
)
,

(4.4)

where Θ(x) is the Heaviside step function, m2
ij = (m2

i +m2
j )/2 is the average of the squares

of the neutrino masses, ∆m2
ij = m2

i −m2
j is the difference in the squares and Λ(x, y, x) is

the Källén function,

Λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx . (4.5)

To compute the spectral function we contract Hαβµν with disc(N µν
ij ). The Lorentz indices

of Hαβµν either contract with gµν in disc(N µν
ij ) to give [γµ PX ]α[γµ PY ]β or with qµqν to give

[/q PX ]α[/q PY ]β .

An assumption we now make is that the external fermions are non-relativistic. In

this limit it is possible to replace [γµ PX ]α[γµ PY ]β and [/q PX ]α[/q PY ]β with the lowest-

order terms in the non-relativistic expansion — appendix B lists the lowest-order terms

for bilinear products such as [γµ]α[γµ]β , [γµ]α[γµγ5]β and [/qγ5]α[/qγ5]β . The terms that

dominate are proportional to 4mαmβ , cancelling the 1/(4mαmβ) normalisation factor in

the amplitude. Higher-order terms in the expansion are suppressed by powers of q/mα

and can be neglected.

The discussion has so far been valid for Dirac neutrinos. For Majorana neutrinos only

the axial part contributes to the left-handed current and is a factor two larger than the
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Dirac axial vector current. The neutrino loop factor Nµν is instead given by

N µν
ij,M =

1

2
× 4

∫
d4k

(2π)4

Tr[γµγ5(/q + /k +mj)γ
νγ5(/k +mi)]

(k2 −m2
i ) ((q + k)2 −m2

j )
, (4.6)

where an additional factor of 1/2 is required due to the permutation symmetry of the

Majorana states in the loop.

Using eq. (3.4) we can now write the spectral function as

ρLLαβ (t) = −
G2
F

πmαmβ

N∑
i,j=1

∑
X,Y=L,R

cXLα;ij c
Y L
β;ij Hαβµν disc(N µν

ij ) , (4.7)

where we choose the LL superscript to indicate the presence of two left-handed neutrino

currents. Now inserting eqs. (4.4) and (4.2) into eq. (4.7) and taking the non-relativistic

limit, we obtain to lowest-order

ρLLαβ,D(M)(t) =
G2
F

12π2

N∑
i,j=1

Θ
(
t−(mi+mj)

2
)

Λ1/2(t,m2
i ,m

2
j )

×
{[
XLL
αβ;ij−Y LL

αβ;ij (σα ·σβ)
]
F
D(M)
ij (t)−Y LL

αβ;ij (σα ·q)(σβ ·q)F Vij (t)

}
,

(4.8)

which retains one spin-independent and two spin-dependent terms. The factors XLL
αβ;ij and

Y LL
αβ;ij are given by the following combinations of the νLEFT coefficients,

XLL
αβ;ij = (cLL + cRL)α;ij(c

LL + cRL)∗β;ij , (4.9)

Y LL
αβ;ij = (cLL − cRL)α;ij(c

LL − cRL)∗β;ij , (4.10)

where we have used the shorthand notation (cLL ± cRL)α;ij ≡ cLLα;ij ± cRLα;ij . Taking the SM

values of the coefficients in eq. (2.10) and assuming a unitary light neutrino mixing matrix

Uαi such that Cij = δij , these factors for leptons (α, β = e, µ, τ) are for example

XLL
αβ;ij = (U∗αiUαj + g`V δij)(U

∗
βiUβj + g`V δij)

∗ , (4.11)

Y LL
αβ;ij = (U∗αiUαj + g`Aδij)(U

∗
βiUβj + g`Aδij)

∗ . (4.12)

The functions FDij , FMij and F Vij in eq. (4.8) are given by

FDij (t) = 1−
m2
ij

t
−

(∆m2
ij)

2

2t2
,

FMij (t) = 1−
m2
ij + 3mimj

t
−

(∆m2
ij)

2

2t2
,

F Vij (t) =
1

t

(
1 +

2m2
ij

t
−

2(∆m2
ij)

2

t2

)
.

(4.13)

The difference between the Dirac (D) and Majorana (M) cases is reflected in the function

F
D(M)
ij multiplying the term in square brackets in eq. (4.8). In the Majorana case there is
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an additional term equal to −3mimj/t corresponding to the helicity-suppressed process of

two left-handed neutrinos being created and two right-handed ‘anti-neutrinos’ being anni-

hilated. This process is not possible for left-handed Dirac neutrinos without introducing a

right-handed current.

The spectral function of eq. (4.8) contains terms proportional to the spin operators

O1 = 1, O2 = σα ·σβ and O3 = (σα ·q)(σβ ·q). To determine the overall potential V LL
αβ (r)

we evaluate the integral in eq. (3.10) for each of the three parts of the spectral function

multiplying these operators. We then take the appropriate derivatives in eq. (3.11) to

derive the three components of the potential VLLk (r) (k = 1, 2, 3) and add these to obtain

V LL
αβ,D(M)(r) =

G2
F

4π3r5

N∑
i,j=1

{
XLL
αβ;ij I

D(M)
ij (r)

−Y LL
αβ;ij

[
(σα ·σβ)J

D(M)
ij (r)−(σα ·r̂)(σβ ·r̂)JVij (r)

]}
,

(4.14)

where r̂ = r/|r| is the unit displacement between the interacting states and the integral

functions IDij (r), IMij (r), JDij (r), JMij (r) and JVij (r) are given in appendix C. We define these

functions to be dimensionless in order to take the dimensionful factor G2
F /(4π

3r5) out of the

sum. The potential therefore scales naively as 1/r5 though we will see that this behaviour

changes in the long-range limit. The difference between the Dirac and Majorana cases is

now a difference in the functions I
D(M)
ij (r) and J

D(M)
ij (r) in eq. (4.14).

The neutrino-mediated potential in eq. (4.14) simplifies when only a single massive

neutrino is considered. Firstly, the mixing factors in XLL
αβ;ij and Y LL

αβ;ij are replaced as

U∗αiUαj → 1 and δij → 1 and the summation is now over a single state i = j ≡ ν. For

the potential between two charged leptons we have for example XLL
αβ;νν = (1 + g`V )2 and

Y LL
αβ;νν = (1 + g`A)2. Secondly, the functions IDij (r), IMij (r) and IVij (r) take the closed-forms

IDνν(r) = m3
νr

3K3(2mνr) ,

IMνν (r) = 2m2
νr

2K2(2mνr) , (4.15)

IVνν(r) = 2mνrK1(2mνr) +
π2m2

νr
2

2
G2,0

2,4

(
m2
νr

2

∣∣∣∣ 1
2
, 3
2

0,0, 1
2
, 1
2

)
+ 2πm3

νr
3 ,

where Kn(x) are modified Bessel functions of the second kind and Gm,np,q is the Meijer G-

function. Using the relations in appendix C we can also determine the functions JDνν(r),

JMνν (r) and JVνν(r). For interacting leptons the spin-independent parts of the Dirac and

Majorana potentials become

V LL
αβ,D(r) =

G2
Fm

3
ν(1 + g`V )2

4π3r2
K3(2mνr) , V LL

αβ,M (r) =
G2
Fm

2
ν(1 + g`V )2

2π3r3
K2(2mνr) , (4.16)

respectively, in agreement with previous results [53].

The functions in eq. (4.15) depend on the product 2mνr — given the behaviour of

the modified Bessel functions Kn(x) in the limits x � O(1) and x � O(1), the potential

displays contrasting behaviour in the limits r � rν and r � rν where rν = 1/(2mν) is half

the Compton wavelength of the neutrino. In the ‘short-range’ limit (r � rν) the exchanged
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neutrinos are relativistic and their masses can be neglected. The Dirac or Majorana nature

of neutrinos cannot be probed due to the suppression of the term −3mimj/t in FMij (t) and

the converging of the Dirac and Majorana potentials. In the ‘long-range’ limit (r � rν)

they become non-relativistic — the neutrino masses are important and the potential is

exponentially suppressed as V ∝ e−2mνr. A priori the Dirac or Majorana nature can now

be probed given the small difference in behaviour of Dirac and Majorana neutrinos.

To verify this quantitatively we expand the functions in eq. (4.15) and therefore the

single-neutrino potential in the opposing limits. For r � rν we find to lowest-order

V LL
αβ,D(M)(r) ≈

G2
F

4π3r5

{
XLL
αβ;νν − Y LL

αβ;νν

[
3

2
(σα · σβ)− 5

2
(σα · r̂)(σβ · r̂)

]}
, (4.17)

in both the Dirac and Majorana cases, as expected. The potentials therefore decrease with

the distance as 1/r5 up to half the neutrino Compton wavelength. Eq. (4.17) is not just

valid for a single neutrino — it can be obtained for three (or in general, N) neutrinos by

neglecting the neutrino masses mi and mj appearing in the functions IXij (r) and JXij (r) in

eq. (4.14). In this limit the functions tend to the constant values

I
D(M)
ij (r) ≈ 1 , J

D(M)
ij (r) ≈ 3

2
, JVij (r) ≈ 5

2
, (4.18)

as outlined in appendix C. It is now possible to pull these constants out of the sum in

eq. (4.14) and identify XLL
αβ;νν =

N∑
i,j
XLL
αβ;ij and Y LL

αβ;νν =
N∑
i,j
Y LL
αβ;ij .

Expanding in the opposite limit r � rν gives in the Dirac case

V LL
αβ,D(r) ≈

G2
Fm

5/2
ν e−2mνr

8π5/2r5/2

{
XLL
αβ;νν − Y LL

αβ;νν

[
(σα · σβ)− 2(σα · r̂)(σβ · r̂)

]}
, (4.19)

while in the Majorana case

V LL
αβ,M (r)≈

G2
Fm

3/2
ν e−2mνr

4π5/2r7/2

{
XLL
αβ;νν−Y LL

αβ;νν

[
3

2
(σα ·σβ)−mνr(σα ·r̂)(σβ ·r̂)

]}
. (4.20)

In the Dirac case both spin-independent and spin-dependent terms scale as e−2mνr/r5/2,

while in the Majorana case the spin-independent and σα · σβ terms scale as e−2mνr/r7/2.

The term containing (σα·r̂)(σβ ·r̂) however also scales as e−2mνr/r5/2 in the Majorana case.

Finally, we note that the operators with coefficients cLLα;ij and cRLα;ij may include the

effects of new physics, which can be parametrised as small corrections δcLLα;ij and δcRLα;ij to

the SM values of cLLα;ij and cRLα;ij . Deviations from the SM potential V LL
αβ (r) therefore arise

as corrections to the factors XLL
αβ;ij and Y LL

αβ;ij ,

δXLL
αβ;ij = (cLL + cRL)α;ij(δc

LL + δcRL)∗β;ij + (α, β) , (4.21)

δY LL
αβ;ij = (cLL − cRL)α;ij(δc

LL − δcRL)∗β;ij + (α, β) , (4.22)

where the correction can either be at the vertex with fermion fα or fβ .
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fβ fβ

cXYββ;ij

`α `α

νi νj
W

U∗
αi Uαj

fα fα

fβ fβ

cXYββ;ij

νi νj

Z
Cij

Figure 3. Diagrams depicting the exchange of two massive neutrinos between fermions fα and

fβ with SM CC and NC interactions at one vertex and an effective four-fermion interaction at the

other. In our framework the effective interaction may be of vector (cXYαβ;ij), scalar (gXYαβ;ij) or tensor

(hXYαβ;ij) type.

4.2 Right-handed vector non-standard interactions

Motivated by theories such as the Left-Right Symmetric Model (LRSM) we now introduce a

right-handed neutrino current. We will first derive the neutrino-mediated potential V LR
αβ (r)

induced when there is a SM CC or NC interaction at one vertex and a right-handed neutrino

current at the other, depicted in figure 3. In the νLEFT interaction Lagrangian of eq. (2.3)

we now allow the coefficients cLRαβ;ij and cRRαβ;ij to be non-zero along with cLLαβ;ij and cRLαβ;ij .

The spectral function ρLRαβ (t) in this scenario is the same as eq. (4.8) but with one co-

efficient replaced as cXLα;ij → cXRα;ij and one chirality projection operator replaced as PL→PR
in the neutrino loop factor N µν

ij . We also add an identical contribution with (α ↔ β) to

account for the right-handed current being either at the vertex with the external fermion fα
or fβ . If the external fermions are identical (α = β) we must multiply the spectral function

by an additional factor of 1/2 to avoid double counting — this gives a factor 1/(1 + δαβ).

The discontinuity of the neutrino loop factor N µν
ij for Dirac neutrinos is

disc(N µν
ij ) = −

Λ1/2(t,m2
i ,m

2
j )

4π

mimj

q2
gµν Θ

(
q2 − (mi +mj)

2
)
, (4.23)

which is suppressed by the factor mimj/q
2 because the process is helicity-suppressed. A

negative helicity neutrino νi created by the left-handed current will be annihilated by the

right-handed current with an associated factor mi/q — for both neutrinos this results in

the mimj/q
2 factor. The physics is identical to the helicity-suppressed contribution to

Majorana neutrino exchange in the previous subsection.

Contracting the gµν factor in eq. (4.23) with the product of external fermion bilinears

Hαβµν we obtain [γµ PX ]α[γµ PY ]β . The non-relativistic limit can now be taken to obtain the

spectral function — in the Dirac case

ρLRαβ,D(t) =
1

1 + δαβ

G2
F

4π2

3∑
i,j=1

Θ
(
t− (mi +mj)

2
)

Λ1/2(t,m2
i ,m

2
j )

× mimj

t

{
XLR
αβ;ij − Y LR

αβ;ij (σα · σβ)
}
,

(4.24)
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where the pre-factors XLR
αβ;ij and Y LR

αβ;ij are

XLR
αβ;ij = (cLL + cRL)α;ij(c

LR + cRR)∗β;ij + (α, β) , (4.25)

Y LR
αβ;ij = (cLL − cRL)α;ij(c

LR − cRR)∗β;ij + (α, β) . (4.26)

Using the same method as the previous section to derive the potential from the spectral

function, we find in the Dirac case

V LR
αβ,D(r) =

1

1 + δαβ

G2
F

8π3r3

3∑
i,j=1

mimj

{
XLR
αβ;ij − Y LR

αβ;ij (σα · σβ)
}
ILRij (r) , (4.27)

where the dimensionless function ILRij (r) is given in appendix C

The Majorana case is different due to the symmetry relations of eq. (2.4) — the right-

handed current operator with coefficient cLRαβ;ij is equivalent to the left-handed current

operator with coefficient cLLαβ;ij and thus the coefficients are related by cLLαβ;ij = −cLRαβ;ji.

This is equivalent to the vector current vanishing for Majorana neutrinos. The potential

we derive from the right-handed current operator is therefore identical to eq. (4.14) and

the coefficient cLRαβ;ij gets the same contributions from the SM CC and NC interactions as

cLLαβ;ij . If on the other hand we were to introduce additional light sterile Majorana states

NR with right-handed interactions as in eq. (2.21), the coefficients c̃LRαβ;ij = −c̃LLαβ;ji get no

SM contribution.

For the three light active neutrinos it therefore makes more sense to consider the

corrections δcLLα;ij = −δcLRα;ji to the SM-valued coefficients cLLα;ij = −cLRα;ji from new physics.

The correction to the spectral function is

ρLRαβ,M (t) =− 1

1+δαβ

G2
F

12π2

3∑
i,j=1

Θ
(
t−(mi+mj)

2
)

Λ1/2(t,m2
i ,m

2
j )

×
{[
δXLR

αβ;ij−δY LR
αβ;ij (σα ·σβ)

]
FMij (t)−δY LR

αβ;ij (σα ·q)(σβ ·q)F Vij (t)

}
,

(4.28)

where δXLR
αβ;ij = −δXLL

αβ;ji and δY LR
αβ;ij = −δY LL

αβ;ji are given in eq. (4.21). This gives the

correction to the SM potential

V LR
αβ,M (r) =− 1

1+δαβ

G2
F

4π3r5

3∑
i,j=1

{
δXLR

αβ;ij I
M
ij (r)

−δY LR
αβ;ij

[
(σα ·σβ)JMij (r)−(σα ·r̂)(σβ ·r̂)JVij (r)

]}
.

(4.29)

We again us the single neutrino simplification to study the properties of the potentials

in eqs. (4.27) and (4.29) — the function ILRij (r) takes the closed form

ILRνν (r) = 2mνrK1(2mνr) . (4.30)

In the short-range limit, or r � rν , we expand the Dirac potential eq. (4.27) as

V LR
αβ,D(r) =

1

1 + δαβ

G2
Fm

2
ν

8π3r3

{
XLR
αβ;νν − Y LR

αβ;νν (σα · σβ)
}
. (4.31)
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This potential is also valid in the three (or N) neutrino picture by using that ILRij (r) ≈ 1

in the limit mi ≈ 0 and identifying XLR
αβ;νν =

3∑
i,j
XLR
αβ;ij and Y LR

αβ;νν =
3∑
i,j
Y LR
αβ;ij . In the

long-range limit, r � rν , we obtain

V LR
αβ,D(r) =

1

1 + δαβ

G2
Fm

5/2
ν e−2mνr

8π5/2r5/2

{
XLR
αβ;νν − Y LR

αβ;νν (σα · σβ)
}
. (4.32)

In the single neutrino simplification for the correction in eq. (4.29) to the SM Majorana

potential takes the same form as eqs. (4.17) and (4.20) in the short- and long-range limits

respectively.

We finish this subsection by considering the case where there are two right-handed

neutrino currents at the interaction vertices. Now the potential takes the same form as

eq. (4.14),

V RR
αβ (r) =

G2
F

4π3r5

N∑
i,j=1

{
XRR
αβ;ij I

D(M)
ij (r)

− Y RR
αβ;ij

[
(σα · σβ) J

D(M)
ij (r)− (σα · r̂)(σβ · r̂) JVij (r)

]}
,

(4.33)

where

XRR
αβ;ij = (cLR + cRR)α;ij(c

LR + cRR)∗β;ij , (4.34)

Y RR
αβ;ij = (cLR − cRR)α;ij(c

LR − cRR)∗β;ij . (4.35)

Consequently, the short- and long-range potentials are given by eqs. (4.17) and (4.20)

respectively with the replacements XLL
αβ;ij → XRR

αβ;ij and Y LL
αβ;ij → Y RR

αβ;ij .

4.3 Scalar non-standard interactions

We now derive the neutrino-mediated potential in the presence of a scalar non-standard

interaction. In our framework these are the operators in eq. (2.3) with the coefficients gLL,

gRL, gLR and gRR normalised to the Fermi constant GF . We first focus on the case of a

scalar interaction at one vertex and a SM CC or NC interaction at the other, as shown

figure 3.

The spectral function can be determined in this scenario according to

ρV Sαβ (t) = −
G2
F

πmαmβ

N∑
i,j=1

∑
X,Y,Z=L,R

{
cXLαα;ij g

Y Z
ββ;ij Hαβµ disc(N µ

ij) + (α, β)

}
, (4.36)

where the sum is over the possible chiralities of the external fermion currents (X and Y )

and the neutrino current of the scalar operator (Z). We have taken into account that

the scalar interaction may be at either vertex by adding an identical contribution with

(α↔ β). The Majorana case is treated in the same way by retaining only twice the axial

vector current and dividing by a factor of two due to the permutation symmetry of the

neutrinos in the loop.
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The discontinuity of N µ
ij in the Dirac case for example is

disc(N µ
ij) = ∓

Λ1/2(q2,m2
i ,m

2
j )

8π

miq
µ

q2

(
1−

m2
i −m2

j

q2

)
Θ
(
q2 − (mi +mj)

2
)
, (4.37)

where the minus (positive) sign is for a left-handed (right-handed) neutrino current at the

scalar interaction and the product of external fermion bilinears is

Hαβµ = [γµ PX ]α[PY ]β . (4.38)

Contracting Hαβµ with disc(N µ
ij) and making use of the non-relativistic limits of the fermion

bilinear products given in appendix B, we obtain in the Dirac case

ρV Sαβ,D(t) =
1

1 + δαβ

G2
F

8π2

3∑
i,j=1

Θ
(
t− (mi +mj)

2
)
mi Λ1/2(t,m2

i ,m
2
j )

×
{
XV S
αβ;ij (σα · q) + (α, β)

}
F∆
ij (t) ,

(4.39)

while in the Majorana case we obtain

ρV Sαβ,M (t) =
1

1 + δαβ

G2
F

8π2

N∑
i,j=1

Θ
(
t− (mi +mj)

2
)

(mi +mj) Λ1/2(t,m2
i ,m

2
j )

×
{
XV S
αβ;ij (σα · q) + (α, β)

}
FSij (t) .

(4.40)

The factor XV S
αβ;ij containing the scalar coefficients is

XV S
αβ;ij = (cLL − cRL)α;ij(g

LL + gRL − gLR − gRR)∗β;ij , (4.41)

and the functions F∆
ij and FSij are given by

F∆
ij (t) =

1

t

(
1−

∆m2
ij

t

)
,

FSij (t) =
1

t

(
1− (mi −mj)

2

t

)
.

(4.42)

These spectral functions only contain terms proportional to the parity-violating spin

operators O′9 = σα ·q and O′10 = σβ ·q proportional to linear combinations of the operators

O9 and O10 in eq. (3.7). Taking the components of the spectral function multiplying these

operators we compute the functions V ′9(r) and V ′10(r) in eq. (3.10) and from these the

components of the overall potential using

V9(r) =
i

r2
(σα · r̂)

(
1− r d

dr

)
V ′9(r) ,

V10(r) =
i

r2
(σβ · r̂)

(
1− r d

dr

)
V ′10(r) ,

(4.43)

from ref. [137].
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Thus we derive the following vector-scalar potentials for the Dirac and Majorana cases

V V S
αβ,D(r) =

1

1 + δαβ

iG2
F

16π3r4

3∑
i,j=1

mi

{
XV S
αβ;ij (σα · r̂) + (α, β)

}
J∆
ij (r) , (4.44)

V V S
αβ,M (r) =

1

1 + δαβ

iG2
F

16π3r4

3∑
i,j=1

(mi +mj)
{
XV S
αβ;ij (σα · r̂) + (α, β)

}
JSij(r) , (4.45)

respectively, where the dimensionless functions J∆
ij (r) and JSij(r) are given in appendix C.

The first thing to note about these potentials is that they depend on the distance as

1/r4 and contain a single power of the neutrino mass mν in the numerator. This is more

suppressed than the SM-SM potential in eq. (4.14) which scales as 1/r5 but less suppressed

than the right-handed current potential for Dirac neutrinos in eq. (4.27) which scales as

1/r3 but is suppressed by m2
ν . The second point to note is that the potentials written in

eqs. (4.44) and (4.45) retain a factor of i — this can simply be absorbed into the factor

XV S
αβ;ij after a suitable redefinition of the scalar coefficients gXYα;ij .

We now consider the case where both interactions are scalar. We now obtain the

potential via the spectral function

ρSSαβ (t) = −
G2
F

πmαmβ

N∑
i,j=1

∑
W,X,Y,Z=L,R

{
gWX
α;ij g

Y Z
β;ij Hαβ disc(Nij) + (α, β)

}
, (4.46)

where the discontinuity of the neutrino loop factor Nij is given for example in the Dirac

case by

disc(Nij) = −
Λ1/2(q2,m2

i ,m
2
j )

4π

mimj

q2
Θ
(
q2 − (mi +mj)

2
)
, (4.47)

if the chirality of the neutrino currents are the same (X = Z = L,R) and

disc(Nij) =
Λ1/2(q2,m2

i ,m
2
j )

8π

(
1−

2m2
ij

q2

)
Θ
(
q2 − (mi +mj)

2
)
, (4.48)

if the chiralities of the neutrino currents are opposite (X 6= Z). The external fermion

bilinear product is now Hαβ = [PW ]α[PY ]β and we obtain the following potential in the

Dirac case

V SS
αβ,D(r) =

G2
F

8π3r3

N∑
i,j

mimjX
SS
αβ;ijI

LR
ij (r)−

3G2
F

8π3r5

N∑
i,j

Y SS
αβ;ijI

SD
ij (r) , (4.49)

where the combination of scalar coefficients are given by

XSS
αβ;ij = (gLL + gRL)α;ij(g

LL + gRL)β;ij + (gLR + gRR)α;ij(g
LR + gRR)β;ij , (4.50)

Y SS
αβ;ij = (gLL + gRL)α;ij(g

LR + gRR)β;ij + (gLR + gRR)α;ij(g
LL + gRL)β;ij , (4.51)
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and the dimensionless functions ISDij (r) and ILRij (r) are given in appendix C. For Majorana

neutrinos we instead obtain

V SS
αβ,M (r) =

3G2
F

8π3r5

N∑
i,j

ZSSαβ;ijI
SM
ij (r) , (4.52)

where the combination of scalar coefficients is

ZSSαβ;ij = (gLL + gRL − gLR − gRR)α;ij(g
LL + gRL − gLR − gRR)β;ij , (4.53)

and the function ISMij (r) is also given in appendix C.

We see that the Dirac potential depends on the distance as 1/r5 only when the neutrino

currents are of opposite chirality — when they are the both left- or right-handed the

potential becomes suppressed as m2
ν/r

3. This suppression does not occur for Majorana

neutrinos — the potential scales as 1/r5 for any combination of the coefficients gXYα;ij .

4.4 Tensor non-standard interactions

We now derive the neutrino-mediated potential in the presence of a tensor non-standard

interaction. In our framework these are the operators in eq. (2.3) with the coefficients hLL

and hRR normalised to the Fermi constant GF . We first focus on the case of a tensor

interaction at one vertex and a SM CC or NC interaction at the other, as shown figure 3.

The spectral function can be determined in this scenario according to

ρV Tαβ (t) = −
G2
F

πmαmβ

N∑
i,j=1

∑
X,Y,Z=L,R

{
cXLα;ij h

Y Z
β;ij Hαβµνρ disc(N µνρ

ij ) + (α, β)

}
, (4.54)

where the sum is over the possible chiralities of the external fermion currents (X and Y )

and the neutrino current of the tensor operator (Z). We have again taken into account

that the tensor interaction may be at either vertex by adding an identical contribution

with (α↔ β). The Majorana case is treated in the same way as previous subsections.

The discontinuity of N µνρ
ij in the Dirac case is

disc(N µνρ
ij ) =

Λ1/2(q2,m2
i ,m

2
j )

8π

imi

q2

(
gµνqρ − gµρqν ∓ iεµνρσqσ

)
×
(

1−
m2
i −m2

j

q2

)
Θ
(
q2 − (mi +mj)

2
)
,

(4.55)

and the external fermion bilinear product is Hαβµνρ = [γµ PX ]α[σνρ PY ]β .

Contracting these factors and using the non-relativistic limits in appendix B, we obtain

the spectral function in the Dirac case

ρV Tαβ,D(t) =− 1

1+δαβ

G2
F

2π2

3∑
i,j=1

Θ
(
t−(mi+mj)

2
)
miΛ

1/2(t,m2
i ,m

2
j )

×
{
XV T
αβ;ij (σβ ·q)+iY V T

αβ;ij(σα×σβ)·q+(α,β)

}
F∆
ij (t) ,

(4.56)
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while in the Majorana case we obtain

ρV Tαβ,M (t) =− 1

1+δαβ

G2
F

2π2

N∑
i,j=1

Θ
(
t−(mi+mj)

2
)

(mi−mj)Λ1/2(t,m2
i ,m

2
j )

×
{
XV T
αβ;ij (σβ ·q)+iY V T

αβ;ij (σα×σβ)·q+(α,β)

}
F Tij (t) .

(4.57)

The coefficients XV T
αβ;ij and Y V T

αβ;ij containing the dependence on the tensor coefficients are

XV T
αβ;ij = (cLL + cRL)α;ij(h

LL − hRR)∗β;ij , (4.58)

Y V T
αβ;ij = (cLL − cRL)α;ij(h

LL + hRR)∗β;ij . (4.59)

The function F∆
ij is the same as eq. (4.42) and F Tij is given by

F Tij (t) =
1

t

(
1− (mi +mj)

2

t

)
. (4.60)

The spectral functions above contain terms proportional to the parity-violating spin

operators O′9 = σα · q, O′10 = σβ · q and O11 = (σα × σβ) · q. We can again take the

components of the spectral functions multiplying these operators and evaluate the functions

V ′9(r), V ′10(r) and V ′11(r) of eq. (3.10). From these we use eq. (4.43) and

V11(r) =
i

r2
(σα × σβ) · r̂

(
1− r d

dr

)
V ′11(r) , (4.61)

to derive the full vector-tensor potential in the Dirac case

V V T
αβ,D(r) = − 1

1 + δαβ

G2
F

4π3r4

3∑
i,j=1

mi

{
iXV T

αβ;ij (σβ · r̂)

− Y V T
αβ;ij (σα × σβ) · r̂ + (α, β)

}
J∆
ij (r) ,

(4.62)

and in the Majorana case

V V T
αβ,M (r) =− 1

1+δαβ

G2
F

4π3r4

N∑
i,j=1

(mi−mj)

{
iXV T

αβ;ij (σβ ·r̂)

−Y V T
αβ;ij (σα×σβ)·r̂+(α,β)

}
JTij (r) ,

(4.63)

where the dimensionless functions J∆
ij (r) and JTij (r) are given in appendix C.

We note that these potentials, like the vector-scalar potentials of the previous section,

scale as mν/r
4. They are similarly contain only parity-violating spin operators. The

difference between the potentials for Dirac and Majorana neutrinos arises from the different

r-dependence of the functions J∆
ij (r) and JTij (r). Finally, we see that the diagonal elements

in the i, j sum vanish for Majorana neutrinos.
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Figure 4. Left : spin-independent parts of the potentials V LLαβ (r), V LRαβ (r) and V RRαβ (r) plotted for

positronium (e−e+) and for the exchange of either three light active Dirac (D) or Majorana (M)

neutrinos with m1 = 0.1 eV and NO mixing parameters. V LLee (r) is calculated with SM CC and NC

interactions at each vertex, while V LRee (r) and V RRee (r) assume non-zero non-standard coefficients

cLRee;ij ≡ cLRe δij = 10−2δij . The solid (dashed) lines indicate a positive (negative) potentials. Right :

spin-independent parts of the potentials V SSee (r) in the Dirac and Majorana cases compared to

V LLee (r), using gXYee;ij ≡ gXYe δij = 10−2δij and for a single combination of X,Y = L,R. In both plots

the neutrino-mediated potentials are compared with the gravitational potential V gravee (r) between

the electron and positron.

4.5 Comparison of potentials

In figure 4 we compare a selection the potentials derived in the previous subsections.

To the left of figure 4 we plot the spin-independent parts of the vector-vector potentials

V LL
αβ (r), V LR

αβ (r) and V RR
αβ (r) for positronium (e−e+) and for either three Dirac or Majorana

neutrinos. The potential V LL
ee (r) is calculated using SM values for the factors XLL

ee;ij and

Y LL
ee;ij in eq. (4.11). The potential V LR

ee (r) has a single SM vertex and is interpreted as a

correction to V LL
ee (r) in the Majorana case, though we plot it separately. The potential

V RR
ee (r) is derived from two non-standard right-handed neutrino currents. We set m1 =

0.1 eV and take normal-ordered (NO) values of the mixing angles θ12 = 33.8◦, θ23 = 48.6◦

and θ13 = 8.6◦, the CP phase δ = 221◦ and the mass splittings ∆m2
21 = 7.55 ·10−5 eV2 and

∆m2
31 = 2.5 ·10−3 eV2. We set the non-standard coefficients to be cLRee;ij ≡ cLRe δij = 10−2δij ,

i.e. only non-zero for diagonal i, j.

We first note the small difference between Dirac and Majorana potentials V LL
ee,D(r) and

V LL
ee,M (r). In the short-range limit r � 1/2m1 the potentials are identical while in the

long-range limit r � 1/2m1 the Majorana potential is slightly smaller the Dirac potential,

in agreement with the results of ref. [59]. The potentials are generally seen to fall off as

1/r5 until the neutrinos become non-relativistic around r ∼ 1/2m1 and the potentials are

exponentially suppressed. We see that the potentials are many orders of magnitude smaller

than the gravitational potential V grav
ee (r) between the electron and positron. We also note
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the large difference between the Dirac and Majorana potentials V LR
ee,D(r) and V LR

ee,M (r) —

while the Dirac potential is slightly larger than the Majorana potential in the long-range

limit, in the short-range limit the former scales as 1/r3 and is suppressed by two powers

of the neutrino masses while the latter scales as 1/r5 and is unsuppressed. This is because

the Majorana potential is interpreted as a correction to the SM potential V LL
ee,M (r) and

thus scales in the same way. V LR
ee,M (r) is around two orders of magnitude smaller than

V LL
ee,D(r) ≈ V LL

ee,M (r) due to the suppression from cLRe = 10−2. The potential V RR
ee (r) is

shown just for the Dirac case — because it contains two factors of cRLe = 10−2 it is seen

to be below V LR
ee (r). To the right of figure 4 we plot the scalar-scalar potentials for Dirac

and Majorana neutrinos V SS
ee,D(r) and V SS

ee,M (r) and compare them to the spin-independent

part of V LL
ee (r) and the gravitational potential V grav

ee (r). We choose a scalar coefficient

gXYee;ij ≡ gXYe δij = 10−2δij to be non-zero for a single choice of the chiralities X,Y —

looking at eqs. (4.49) and (4.52) we see that the surviving terms of the Dirac potential

scale in the short-range limit as 1/r3 while for the Majorana potential as 1/r5, as can be

seen in the diagram.

5 Atomic spectroscopy

There are a number of ways to probe exotic long-range forces over a range of distances.

Starting at the macroscopic scale, precision torsion balance experiments adopt the method

originally used by Cavendish to measure the gravitational constant G. Theories looking to

resolve the discrepancy between the observed dark energy density ρd ≈ 3.8 keV/cm3 and

the theoretical prediction from quantum field theory (a factor of ∼ 10120 larger) predict

Yukawa violations or power-law modifications of the gravitational force at length-scales of

r ∼ 1µm–1 mm [138]. These and other theories involve extra time [139] and space [140]

dimensions and new scalar and vector mediators such the axion [141], dilaton [142], dark

photon and Z ′ [143], all of which can alter the typical 1/r scaling of the gravitational poten-

tial and break the weak equivalence principle. Torsion balance experiments have excluded

a region in the |α| − λ parameter space of the Yukawa-type parametrisation of devia-

tions from the 1/r potential [144–152]. Other experiments probing macroscopic distances

have used optical levitation [153, 154] and atom interferometry [155]. Finally, experiments

using polarised electrons have been able to constrain macroscopic spin-dependent poten-

tials [156, 157].

As can be seen in figure 2, the neutrino-mediated potentials fall off exponentially for

r & 1µm, roughly corresponding to the Compton wavelength of the lightest neutrino with

m1 = 0.1 eV. For point sources such as an electron and positron the associated forces

are many orders of magnitude smaller than their gravitational attraction. In theory this

can be overcome by using neutral aggregate matter with a coherent weak charge, boosting

the strength of the neutrino-mediated force with respect to the gravitational force [59].

It remains to be seen if torsion balance experiments can overcome the strong effect of

the Earth’s gravity to measure this. Another method is to measure the pressure exerted

on two parallel plates by the Casimir-like force induced by the neutrino potential [61].

Current experiments are however ∼ 20 orders of magnitude below the required sensitivity

to measure the neutrino contribution.
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To attain a greater sensitivity to the neutrino-mediated potentials one must therefore

go to smaller distances where the potentials can be seen to exceed the gravitational potential

in figure 4. The most stringent measurements come from nuclear and atomic spectroscopy

probing r ∼ 1 fm and r ∼ 1 Å, respectively. We outline some of the methods explored in

the literature.

Atomic spectroscopy of heavy atomic species (Z � 1) might appear to be the most

suitable method for probing the spin-independent part of the neutrino-mediated potential

thanks to the coherent scaling of the nucleus — going up roughly with the number of

neutrons N � 1. The spin-dependent part on the other hand acts incoherently because

nuclear pairing interactions leave the ground state nucleus with at most two unpaired

nucleon spins. However, the complexity of many-electron interactions in heavy atoms

makes the theoretical predictions for transitional frequencies inadequate for the current

experimental precision. One can instead measure the isotope shift — the difference in

atomic splittings for different isotopes — in systems such as Ca+ by observing a non-

linearity in the King plot [158]. This has been used to constrain models with Z ′ bosons,

exotic Higgs bosons and chameleon particles [159–162] and more recently the neutrino-

mediated potential [56].

A relevant probe at nuclear length scales is the binding energy of the deuteron D+, a

bound state of a proton and a neutron. One can model the binding energy with a spherical

potential well with an infinitely repulsive inner hard core in order to find the radial wave-

function of the system. This in turn can be used to calculate the expectation value of

the neutrino-mediated potential and the shift to the binding energy. The difference in the

measured [163] and predicted [164, 165] binding energies has been used to constrain the

neutrino-mediated potential [56].

The sensitivity of simple atomic-like systems such as positronium (e−e+) and muonium

(e−µ+) to the neutrino-mediated potential may be more promising than the deuteron and

other nuclear probes. As we will see, for these leptonic systems the characteristic cut-off

scale (below which the r-dependence of the potential no longer holds) is provided by the

cut-off of validity of the EFT, not the charge-radius of the nucleon or nucleus in semi-

leptonic systems like hydrogen (e−p), deuterium (e−D+) or their muonic counterparts

(µ−p and µ−D+). At present the best measured splittings of these systems are the 1S−2S

and ground state hyperfine splittings. These splittings have also been predicted to high

accuracy and used as precision tests of QED. For example, the dominating Dirac, radiative,

recoil and radiative-recoil QED corrections to the Fermi expression of the ground state

hyperfine splitting EF have been calculated up to orders α2(Zα)2EF [166–168]. Smaller

weak [54, 169] and hadronic corrections [170] have also been calculated. The EW corrections

have been calculated for the muonium hyperfine splitting to next-to-leading-order [54].

We will follow the same approach as ref. [56] which derives the shifts to energy level

splittings using the expectation value of the position-space potential V (r). Using the ex-

perimental and SM-predicted values for the 1S−2S and hyperfine splittings of positronium

and muonium, we will use the predicted shifts from the exotic neutrino-mediated potentials

to put upper bounds on the non-standard coefficients cXY , gXY and hXY .
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5.1 Shifts to atomic energy levels

The small shift to an atomic energy level due an exotic force can be calculated to first order

in perturbation theory by taking the expectation value of the associated potential V (r),

δE = −
〈
V (r)

〉
= −

〈
n 2S+1LJ |V (r)|n 2S+1LJ

〉
, (5.1)

where n 2S+1LJ labels the unperturbed atomic state with n the principal quantum number

n, S the total spin, L = {S, P,D, . . .} the total orbital angular momentum and J the total

angular momentum. Shifts to the 1S − nS and n-hyperfine splittings are respectively

δE1S−nS = δE(n 3S1)− δE(1 3S1) ,

δEn-hfs = δE(n 3S1)− δE(n 1S0) .
(5.2)

The average of the potential over the atomic quantum numbers is the position-space

integral 〈
V (r)

〉
n,`,m

=

∫
d3 rΨ∗n,`,m(r)V (r) Ψn,`,m(r) (5.3)

where Ψn,`,m(r) is the atomic wave-function. For the two-body systems we are considering,

Ψn,`,m(r) = Rn,`(r)Y`,m(θ, φ) is the separable solution of the Schrödinger equation with the

Coulomb potential VC(r) = −Zα/r.
We will be comparing the shifts induced by exotic potentials depending differently on

r. For example, the SM CC and NC induced potential V LL
αβ (r) in eq. (4.14) scales as 1/r5

in the short-range limit, while the right-handed current induced potential V LR
αβ (r) for Dirac

neutrinos scales as 1/r3. Assuming that V (r) is only a function of r (and not θ and φ) the

integration over the spherical harmonic component Y`,m(θ, φ) is unity and the average over

the hydrogen-like radial wave-function Rn,`(r) for general r-dependence is,〈 1

rd

〉
n,`

=

∫ ∞
rc

dr r2−d (Rn,`(r))2 , (5.4)

where rc is a lower cut-off on the distance corresponding to an upper cut-off scale of

validity for the four-fermion EFT. For SM CC and NC interactions this distance is around

the inverse Z boson mass and we define rc = 1/mZ = 1.097 × 10−11 eV−1. We can write

the Fermi coupling in terms of this length scale using

GF =
πα√

2s2
W c

2
Wm

2
Z

≡ A2r2
c , A =

(
πα√

2s2
W c

2
W

)1/2

. (5.5)

This distance scale could be different for a non-standard effective interaction mediated

by a particle with a mass above or below the EW scale — a Z ′ for example. In this case

the distance cut-off is r′c = 1/mZ′ . This mediator may also interact with the SM via a

coupling g′. Comparing this to the normalisation of the effective interaction to the Fermi

coupling,

GF c
XY =

g′2

m2
Z′
≡ g′2r′2c . (5.6)
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Depending on whether the new physics is above or below the EW scale, or strongly or

weakly coupled, the lower distance scale of validity r′c compares to the SM Fermi cut-off rc as

r′2c =
A2

g′2
cXY r2

c =
M2
Z

M2
Z′
r2
c . (5.7)

While this discussion is valid for an EFT with point-like particles, for a semi-leptonic sys-

tem the cut-off rc must take into account the finite size of the nucleon or nucleus — e.g.

for a proton rc = r0A
1/3 with r0 ≈ 1.2 fm.

We can now integrate eq. (5.4) using the hydrogen-like radial wave-function,

Rn,l(r) =

√
(n− l − 1)!

2n(n+ l)!

(
2Z

nã0

)3

e
− 2Zr
nã0

(
2Zr

nã0

)l
L2l+1
n−l−1

(
2Zr

nã0

)
, (5.8)

where Ljk(x) is the associated Laguerre function and ã0 is the reduced Bohr radius of the

system with reduced mass mr,

ã0 =
1

mrα
=

(
mfα +mfβ

mfαmfβ

)
1

α
. (5.9)

For hydrogen this is the standard Bohr radius ã0 ≈ a0 = 1/(meα). For different values of

d in eq. (5.4) and expanding in rc we obtain〈 1

r3

〉
n,`=0

=
4Z3

n3ã3
0

[
An − γE − ln

(
2Zrc
na0

)]
+O

(
rc
ã4

0

)
,〈 1

r4

〉
n,`=0

=
4Z3

n3rcã3
0

+O
(

1

ã4
0

)
,〈 1

r5

〉
n,`=0

=
2Z3

n3r2
c ã

3
0

+O
(

1

rcã4
0

)
.

(5.10)

Here the parameter An is given by

An =

n−1∑
j=1

Cnjj (2j − 1)! +

n−1∑
k>j=0

Cnjk (j + k − 1)! , (5.11)

with

Cnjk =
1

j!k!

(−1)j+k[(n− 1)!]2

(n− 1− j)!(1 + j)!(n− 1− k)!(1 + k)!
. (5.12)

To compute the average in eq. (5.3) we must also take the angular average of the spin-

dependent terms in V (r) — for example the factors σα ·σβ and (σα · r̂) (σβ · r̂) in V LL
αβ (r)

and V LR
αβ (r). Firstly, as we will be only considering n 2S+1SJ states for the 1S − nS and

n-hyperfine splittings, the following equality holds for ` = 0〈
(σα · r̂) (σβ · r̂)

〉
`=0

=
1

3

〈
σα · σβ

〉
`=0

. (5.13)
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In order to determine the hyperfine splitting between singlet and triplet configurations of

external particle spins we must also evaluate the spin dot-product
〈
σα ·σβ

〉
s

in these cases.

These are
〈
σα · σβ

〉
s=0

= −3 (singlet) and
〈
σα · σβ

〉
s=1

= 1 (triplet).

The averages of the parity-odd potentials V V S
αβ (r) and V V T

αβ (r) — which depend on the

spin operators σα · r̂, σβ · r̂ and (σα×σβ) · r̂ — vanish. However, the potentials can induce

transitions between different ` states similar to an electric dipole moment. While not the

focus of this section, atomic and molecular EDM experiments have been used to constrain

spin-dependent, P - and T -violating potentials induced by axion exchange in ref. [33]. In

the context of the neutrino-mediated force, ref. [58] has suggested probing atomic parity

violation by measuring the optical rotation of light as it passes through vaporised atoms.

The expectation value of the SM-induced potential V LL
αβ (r) can now be written as

〈
V LL
αβ (r)

〉
=
G2
F

4π3

N∑
i,j=1

{
XLL
αβ;ij

〈
I
D(M)
ij (r)

r5

〉

−Y LL
αβ;ij

[〈
(σα ·σβ)J

D(M)
ij (r)

r5

〉
−

〈
(σα ·r̂)(σβ ·r̂)JVij (r)

r5

〉]}
. (5.14)

Recall that the functions I
D(M)
ij (r), J

D(M)
ij (r) and JVij (r) are exponentially suppressed

for distances greater than the Compton wavelength of the neutrinos r � 1/(2mi). For

r � 1/(2mi) on the other hand the neutrino masses can be neglected mi ≈ mj ≈ 0 and the

functions take constant values. For atomic spectroscopy measurements the relevant dis-

tance scale (the reduced Bohr radius ã0) is safely in this regime. In this limit the averages

in eq. (5.14) become 〈
I
D(M)
ij (r)

r5

〉
n,`=0

≈ 2Z3

n3r2
c ã

3
0

, (5.15)〈
(σα · σβ) J

D(M)
ij (r)

r5

〉
n,`=0

≈ 3

2

2Z3

n3r2
c ã

3
0

〈
σα · σβ

〉
, (5.16)〈

(σα · r̂)(σβ · r̂) JVij (r)

r5

〉
n,`=0

≈ 5

6

2Z3

n3r2
c ã

3
0

〈
σα · σβ

〉
, (5.17)

giving the average for the potential〈
V LL
αβ (r)

〉
n,`=0

≈
G2
F

2π3

Z3

n3r2
c ã

3
0

{
XLL
αβ;νν −

2

3
Y LL
αβ;νν

〈
σα · σβ

〉}
, (5.18)

where XLL
αβ;νν ≡

N∑
i,j
XLL
αβ;ij and Y LL

αβ;νν ≡
N∑
i,j
Y LL
αβ;ij . The same expression would be obtained

in the single neutrino simplification.

Computing the average of the potential V LR
αβ (r) for Dirac neutrinos in eq. (4.27) re-

quires evaluating the average of the factor mimjI
LR
ij (r)/r3. For distances r � 1/(2mi),〈

mimjI
LR
ij (r)

r3

〉
n,`=0

�
〈
I
D(M)
ij (r)

r5

〉
n,`=0

, (5.19)
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which illustrates that the potential is too suppressed to be a useful probe of the non-

standard coefficients cLR and cRR. In the Majorana case the potential V LR
αβ (r) has the

same r-dependence as V LL
αβ (r) and so

〈
V LR
αβ (r)

〉
n,`=0

≈ −
G2
F

2π3

Z3

n3r2
c ã

3
0

{
XLR
αβ;νν −

2

3
Y LR
αβ;νν

〈
σα · σβ

〉}
, (5.20)

where XLR
αβ;νν ≡

N∑
i,j
XLR
αβ;ij and Y LR

αβ;νν ≡
N∑
i,j
Y LR
αβ;ij . We remind the reader that XLR

αβ;ij =

−XLL
αβ;ij and Y LR

αβ;ij = −Y LL
αβ;ij for Majorana neutrinos, so any new physics contribution to

cLRαβ;ij = −cLLαβ;ji is added on top of the SM contribution as in eq. (4.21).

Computing the shifts to the 1S − 2S and n-hfs splittings in eq. (5.2) due to V LL
αβ (r)

gives

δE1S−nS
αβ = −

G2
F

2π3

Z3

r2
c ã

3
0

(
1

n3
− 1

){
XLL
αβ;νν −

2

3
Y LL
αβ;νν

〈
σα · σβ

〉
s=1

}
, (5.21)

δEn-hfs
αβ =

G2
F

3π3

Z3

n3r2
c ã

3
0

Y LL
αβ;νν

{〈
σα · σβ

〉
s=1
−
〈
σα · σβ

〉
s=0

}
, (5.22)

which can be written as

δE1S−nS
αβ = − αGF

2
√

2π2c2
W s

2
W

Z3

ã3
0

(
1

n3
− 1

){
XLL
αβ;νν −

2

3
Y LL
αβ;νν

}
, (5.23)

δEn-hfs
αβ =

2
√

2αGF
3π2c2

W s
2
W

Z3

n3ã3
0

Y LL
αβ;νν , (5.24)

where we have made use of eq. (5.5) and rc = 1/mZ . Recalling that ã0 = 1/(mrα) we can

see that the shifts to the splittings are of order α4GFm
3
r . As a specific example, the shift

to the hyperfine splitting between two charged leptons `α and `β is predicted to be

δE1-hfs
`α`β

=
2
√

2α4GFm
3
r

3π2c2
W s

2
W

3∑
i,j

(U∗αiUαj + g`Aδij)(UβiU
∗
βj + g`Aδij) , (5.25)

while the hyperfine splitting between a charged lepton `α and nucleon or nucleus N is

δE1-hfs
`αN =

2
√

2α4GFm
3
r

3π2c2
W s

2
W

3∑
i

(
|Uαi|2 + g`A

)
gNA . (5.26)

Using eqs. (5.25) and (5.26) we list in table 2 the predicted shifts to the 1S − 2S and

n-hyperfine splittings due to the SM-induced potential V LL
αβ (r) for a range of leptonic and

semi-leptonic two-body systems. For both the 1S−2S and n-hyperfine splitting we compare

the predicted shift in units of mHz to the differences between experimentally measured and

theoretically predicted values (from QED, hadronic and first-order weak contributions).

We see in each case that the expected shift from V LL
αβ (r) is much smaller than the

experiment-theory discrepancy. We see that the leptonic systems provide larger shifts in

relation to the experiment-theory difference compared to the semi-leptonic systems. This is
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δE1S−2S
αβ [mHz] δEn-hfs

αβ [mHz]

System (fα,fβ) V LL
αβ (SM-SM) exp−theory V LL

αβ (SM-SM) exp−theory

Positronium (e,e) 10 −5.8(3.3)·109 (1) 57 2.2(1.9)·109 (a)

Muonium (e,µ) 13 5.2(9.9)·109 (2) −150 −1.1(5.2)·105 (b)

Hydrogen (e,p)
−4.1·10−4 −1.4(0.5)·107 (3)

−1.2·10−3 −1.1(0.1)·107 (c)

Deuterium (e,D+) −1.7·10−6 1.4(0.1)·106 (d)

Muonic hydrogen (µ,p) 2.2·103 – −1.0·103 −9.4(1.5)·1012 (e)

Muonic deuterium (µ,D+) −550 – −13 −1.1(2.1)·1012 (f)

(1)[171], [172] , (2)[173], [174], (3)[175] (Deuterium−Hydrogen 1S−2S Isotope Shift)

(a)[176], [172] (1S-hfs), (b)[177], [166] (1S-hfs), (c)[178], [179] (1S-hfs), (d)[180, 181], [182–184] (2S-hfs)

(e)[185], [184, 186] (2S-hfs), (f)[187], [188] (2S-hfs)

Table 2. Predicted shifts to the 1S−2S and hyperfine splittings of two-body systems (fα, fβ)

due to the SM-induced neutrino-mediated potential V LLαβ (r). The potential is mediated by three

light active neutrinos with m1 = 0.1 eV and the other masses and mixings determined in the NO

case. Where possible we compare these to the differences between the experimentally-measured and

theoretically-predicted values for these splittings. Uncertainties in these values are calculated by

adding the experimental and theoretical uncertainties in quadrature. References for experimental

and theoretical values are given in the footnotes below the table respectively.

mainly due to the cut-off rc = 1/mZ being two orders of magnitude smaller than the charge

radii of the proton and deuteron. Of the leptonic systems we see that the experimental

measurements of the muonium splittings are the most precise — the predicted shift due to

neutrino-exchange δEn−hfs
αβ ≈ −150 mHz is around three orders of magnitude smaller than

the experiment-theory difference. The hyperfine splitting of muonium is therefore the most

stringent probe.

The shift to the hyperfine splitting from the potential V LR
αβ (r) in the Majorana case

can be found from eq. (5.20) to be

δE1-hfs
`α`β

=
1

1 + δαβ

4G2
F

3π3r2
c ã

3
0

3∑
i,j

{
(U∗αiUαj + g`Aδij) c

LR
β;ij + (α, β)

}
, (5.27)

which depends linearly on the coefficient cLRββ . This potential relies on two effective in-

teractions — one from SM CC and NC interactions and the other from a non-standard

interaction — which may possess different cut-offs rc and r′c. The cut-off appearing in

eq. (5.27) must therefore be the larger of these two scales. For simplicity we assume that

the new physics arises around the EW scale mZ and therefore r′c ≈ rc regardless of the

exotic coupling strength g′. This allows us to rewrite eq. (5.27) as

δE1-hfs
`α`β

=
1

1 + δαβ

2
√

2α4GFm
3
r

3π2c2
W s

2
W

3∑
i,j

{
(U∗αiUαj + g`Aδij) c

LR
β;ij + (α, β)

}
. (5.28)

We now use eq. (5.28) to compute the predicted shift as a function of the non-standard

coefficient cLR. To simplify the sum over mass eigenstates (i, j) we take the coefficients to
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System (fα, fβ) cLR(RR) [V LR
αβ,M (r)] gXY [V SS

αβ,M (r)]

Positronium (e, e) cLRe < 5.7 ·107 gXYe < 7.2 ·103

Muonium (e,µ) cLRe , cLRµ < 3.6 ·102 gXYe ·gXYµ < 5.9 ·106

H (e,p) / D (e,D+) cLRe < 1.5 ·109, cLRp < 5.5 ·109 gXYe · (gXYD −6.48gXYp )< 1.6 ·1010

Table 3. Upper limits on the non-standard coefficients cRL and cRR probed by the right-handed

current potential V LRαβ (r) and coefficients gXY (for X,Y = L,R) probed by the scalar-scalar po-

tential V SSαβ (r). cLR and cRR are constrained from the hyperfine splittings of the systems (fα, fβ),

while the gXY are constrained from the 1S − 2S splittings. To avoid a helicity-suppression we

assume three light active Majorana neutrinos with m1 = 0.1 eV and NO masses and mixings. For

simplification we take c
LR(RR)
α;ij ≡ cLR(RR)

α δij and gXYα;ij ≡ gXYα δij .

be diagonal in the mass basis, i.e. cLRα;ij = cLRα δij . We now write the inequality relating this

predicted shift to the difference between experimental and theoretical values,

|δE1-hfs
`α`β
| < |δE1-hfs, exp

`α`β
− δE1-hfs, theory

`α`β
| (5.29)

and rearrange to put an upper bound on the value of cLRα . We note that cLRα;ij gets a contri-

bution from the SM for Majorana neutrinos — however, even if we include this contribution

it is too small to affect the upper bound derived for the non-standard coefficient. In table 3

we give the constraints from positronium (on cLRe ), muonium (cLRe and cLRµ ) and hydrogen

(cLRe and cLRp ). Muonium gives the most stringent upper bounds while the constraints from

positronium and hydrogen are five orders of magnitude worse.

We now consider the scalar-scalar potential V SS
αβ (r) in eq. (4.40) which does not depend

on the external particle spins — we must instead use the 1S− 2S splitting to derive upper

bounds on the coefficients gXY . For this potential this splitting is found to be

δE1S−2S
`α`β

=
21α4GFm

2
r

32
√

2π2s2
W c

2
W

3∑
i,j

gXYα;ijg
XY
β;ij . (5.30)

Taking again the differences in the experimental and theoretical values for the splittings, we

derive the upper bounds on the coefficients in table 3. While positronium can put an upper

bound on gXYe , muonium can only constrain the product of coefficients gXYe ·gXYµ . Moreover,

we use the experimentally measured difference between the deuterium and hydrogen 1S−2S

splittings and therefore compare δE1S−2S, d
`α`β

−δE1S−2S, p
`α`β

. This can only constrain the linear

combination gXYe · (gXYD − 6.48gXYp ). We now see that the constraints from positronium

and muonium are roughly comparable while those from hydrogen/deuterium remain less

stringent.

6 Neutrino electromagnetic properties

In this final section we will derive long-range potentials induced by possible non-standard

electromagnetic properties of the neutrinos. The long-range potential induced by a neutrino

magnetic dipole moment has been studied before, for example in ref. [52].
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Interactions between the neutrino mass-eigenstate fields and the electromagnetic field

can be written generically as

Lννγ(x) = −jµeff(x)Aµ(x) = −
[
ν̄i(x) Λµij νj(x)

]
Aµ(x) , (6.1)

where Λµij is a 4× 4 matrix in spinor space which may contain space-time derivatives. To

calculate an amplitude for the ννγ vertex one must take the matrix element of the neutrino

current jµeff(x) between initial and final neutrino states,

〈νi(pi)| jµeff(x) |νj(pj)〉 = ei(pj−pi)·x 〈νi(pi)| jµeff(0) |νj(pj)〉

= ei(pi−pj)·x ū(pi) Γµij(q)u(pj) , (6.2)

where the vertex function Γµij depends only on the momentum-transfer q. It is parametrised

as

Γµij(q) = −iσµνqν
(
fMij (q2) + ifEij (q2)γ5

)
+

(
γµ −

qµ/q

q2

)(
fQij (q2) + fAij (q

2)q2γ5

)
. (6.3)

The functions fQij (q2), fAij (q
2), fMij (q2) and fEij (q2) are the real charge, anapole moment,

magnetic and electric dipole moment form factors, respectively. When coupling to a real

photon with q2 = 0, fQij (0) = qij , f
A
ij (0) = aij , f

M
ij (0) = µij and fEij (0) = εij are the

neutrino millicharge, anapole moment, magnetic and electric dipole moments, respectively.

The above discussion is valid for Dirac neutrinos — for Dirac antineutrinos the form factors

become f̄Qij = −fQji , f̄Aij = fAji , f̄
M
ij = −fMji , f̄Eij = −fEji . For Majorana neutrinos we remem-

ber that the same electromagnetic process is described by two terms in the Lagrangian,

Lννγ(x) = −jµeff(x)Aµ(x) = −
[
ν̄i(x) Λµij νj(x) + ν̄cj (x) Λµji ν

c
i (x)

]
Aµ(x) , (6.4)

and therefore the matrix element becomes

〈ν(pj)| jµeff(x) |ν(pi)〉 = ei(pj−pi)·xū(pj)
{

Γµij(q) + C[Γµji(q)]
TC†
}
u(pi) . (6.5)

This enforces the constraints on the form factors: fQij = −fQji , fAij = fAji , f
M
ij = −fMji and

fEij = −fEji . The diagonal elements of the real charge, magnetic and electric dipole form

factors therefore vanish for Majorana neutrinos — only the anapole moment form factor

retains non-zero diagonal elements. All off-diagonal elements, or transition moments, can

be non-zero depending on the relative CP phases ηi of the neutrino mass eigenstates. If

ηi = ηj then the off-diagonal elements of the real charge and magnetic dipole moment

vanish, whereas if ηi = −ηj the off-diagonal elements of the anapole moment and electric

dipole moment vanish.

In the low-energy effective field theory discussed in section 2 one can generate elec-

tromagnetic properties for both Dirac and Majorana neutrinos. For Dirac neutrinos the

following operator arises at dimension-six,

Lννγeff = −µρσ
2

(ν ′ρRσ
µνν ′σL)Fµν + h.c. , (6.6)
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which is written in the flavour-basis and where Fµν is the electromagnetic field strength

tensor. If they are instead Majorana, ν ′ρR = ν ′cρL and eq. (6.6) must instead arise at

dimension-seven, because the two νL contained within SU(2)L doublets must contract with

Higgs doublets.

It is nonetheless possible for a magnetic moment term to arise at lower dimension

when introducing the right-handed Majorana states NR to the SMEFT. This is the LNV

operator at dimension-five in eq. (2.17),

Lζ = −ζss
′

2
(N ′csRσ

µνN ′s′R)Bµν + h.c. , (6.7)

which is written in the EW basis, where ζ is an n× n matrix with n the number of sterile

states. We can rotate eqs. (6.6) and (6.7) to the mass basis in a similar way to eq. (2.3),

Lννγeff = −
µ
D(M)
ij

2
ν̄iσ

µνPLνjFµν + h.c. , (6.8)

Lζ = −1

2
n̄iσ

µν(ζijPR + ζ∗ijPL)nj(cWFµν − sWZµν) , (6.9)

where we re-iterate that ν = (ν1, ν2, ν3) and n = (ν1, ν2, ν3, N1, N2, . . .). In the mass basis,

µD and µM are 3× 3 matrices given by

µDij =

3∑
ρ,σ

µρσŨ
∗
ρiUσj , µMij =

3∑
ρ,σ

µρσU
∗
ρiUσj , (6.10)

and ζ is a (3 + n)× (3 + n) matrix given by

ζij =
n∑
s,s′

ζss′ŨsiŨs′j . (6.11)

Splitting these in general complex dipole moments into real and imaginary parts as

µ
D(M)
ij = µ̂

D(M)
ij − iε̂D(M)

ij , ζij = µ̂Mij + iε̂Mij , (6.12)

we obtain

Lννγeff = −1

2
ν̄iσ

µν
(
µ̂
D(M)
ij + iε̂

D(M)
ij γ5

)
νjFµν + h.c. , (6.13)

Lζ = −1

2
ν̄iσ

µν(µ̂Mij + iε̂Mij γ5)νj(cWFµν − sWZµν) , (6.14)

and we now see that µ̂D(M) and ε̂D(M) correspond to the magnetic and electric dipole

moments for Dirac (Majorana) neutrinos. For simplicity we will re-label the magnetic

and electric dipole moments as µD(M) and εD(M). Considering the Fermi statistics in the

Majorana case — whether it be eq. (6.8) or (6.9) — it is clear that the matrices µM and

εM are antisymmetric and have zero diagonal elements. If for eqs. (6.7) and (6.9) we are

again considering the type-I seesaw with N = 3 + n massive neutrinos, we can split for

example the magnetic dipole moment into

µM =

(
µMν µMνN

−(µMνN )T µMN

)
, (6.15)
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fβ fβ

fα fα

µij

νi νjW

U∗
αi Uαj

γ

fα fα

fβ fβ

µij

νi νj

Z Cij

γ

fα fα

µij

fβ fβ

µij
νi νj

γ

γ

Figure 5. Left and centre: diagrams depicting the exchange of two massive neutrinos between

fermions fα and fβ with SM CC and NC interactions at one vertex and the exchange of a photon

via a neutrino magnetic moment µij at the other, leading to the vector-dipole potential V V γαβ (r).

Right : diagram when a magnetic dipole moment is present at both vertices, resulting in the dipole-

dipole potential V γγαβ (r).

where the antisymmetric matrices µMν and µMN contain the transition dipole moments for the

light and heavy neutrino mass eigenstates respectively, while µMνN contains the transition

dipole moments between active and sterile states. From the form of the mixing matrix Ũ

in eq. (2.20) in the seesaw limit we can write Lζ explicitly in the mass basis as

Lζ =
(
N̄UTN − ν̄UTν ε

)
σµν (ζPR + ζ∗PL)

(
UNN − εTUνν

)
(cWFµν − sWZµν) . (6.16)

It is clear from this that µMν and µMνN are suppressed by the factors ε2 and ε compared to

µMN , respectively.

We now move on to consider the long-range potential for the processes shown in the left

two Feynman diagrams of figure 5. In these diagrams a pair of mass eigenstate neutrinos in-

teracts via a SM CC and NC process at one vertex and via a photon at the other, coupled to

the neutrino magnetic or electric dipole moment. The amplitude for this process is given by

−iMαβ =
(−ie)

4mαmβ

(
−i4GF√

2

) N∑
i,j=1

∑
X=L,R

{
cXLαα;ij Hαβµν N

µν
ij + (α, β)

}
, (6.17)

where the neutrino loop factor N µν
ij is given by

N µν
ij =

1

q2

∫
d4k

(2π)4

Tr
[(
−iσµρqρµD(M)

ij +σµρqρε
D(M)
ij

)
(/q+/k+mj)γ

νPL(/k+mi)
]

(k2−m2
i )((q+k)2−m2

j )
, (6.18)

and the product of external fermion bilinears is Hαβµν = [γµ PX ]α[γν ]β , where the X = L,R

depends on the presence of a SM CC or NC interaction.

Taking the discontinuity of eq. (6.17) and using eq. (3.8), we obtain

V V γ
αβ,D(r) =

αGF

8
√

2π2r3

1

meµB

3∑
i,j=1

{
(mi+mj)X

V γ
αβ;ijI

S
ij(r)−i(mi−mj)Y

V γ
αβ;ijI

T
ij(r)

}
, (6.19)

in the Dirac case, where we have normalised by the Bohr magneton µB = e/2me. Here,

XV γ
αβ;ij =

1

1 + δαβ

{
(cLL + cRL)α + (cLL + cRL)β

}
µDij , (6.20)

Y V γ
αβ;ij =

1

1 + δαβ

{
(cLL + cRL)α + (cLL + cRL)β

}
εDij , (6.21)
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which take into account that the SM current can be at the interaction vertex of fermion fα
and magnetic (or electric) dipole moment the interaction vertex of fβ , or vice versa. The

1/(1 + δαβ) factor again takes into account double counting if α = β.

In the Majorana case we have

V V γ
αβ,M (r) = − iαGF

8
√

2π2r3

1

meµB

N∑
i,j=1

(mi −mj)Z
V γ
αβ;ij I

T
ij(r) , (6.22)

where

ZV γαβ;ij =
1

1 + δαβ

{
(cLL + cRL)α;ij + (cLL + cRL)β;ij

}
εMij . (6.23)

It can be seen that the magnetic moment does not contribute to the potential in the

Majorana case — this is simply a case of the whole amplitude vanishing when only the

magnetic moment and axial part of PL contribute. The first thing to observe in these

potentials is that the r-dependence, 1/r3, is the same as for the right-handed current

potential V LR
αβ (r) in the Dirac case. However, there is now a factor of αGF instead of G2

F

and the potential is now proportional to one power of the neutrino masses instead of two.

For µij ∼ µB and noting that G2
Fm

2
ν � αGFmν/me for mν ∼ 0.1 eV, we see that the

potential is far less suppressed than V LR
αβ (r) in the Dirac case.

We can instead consider the process depicted by the Feynman diagram to the right of

figure 5, where the two mediated neutrinos are coupled to both the external fermions by

their magnetic or electric dipole moment. The dipole-dipole potential obtained in this case

(valid for both Dirac and Majorana neutrinos) is

V γγ
αβ (r) =

α2

12πr3

1

m2
eµ

2
B

3∑
i,j=1

{
Xγγ
ij I

Mγ
ij (r)− Y γγ

ij I
Eγ
ij (r)

}
, (6.24)

where Xγγ
ij = µ

D(M)
ij µ

D(M)∗
ij and Y γγ

ij = ε
D(M)
ij ε

D(M)∗
ij . We see that there are two terms —

one for the presence of two magnetic dipole moments and the other for two electric dipole

moments. The cross-term for a magnetic and electric dipole moment vanishes.

In figure 6 we compare (for positronium) the spin-independent potentials V V γ
αβ (r) and

V γγ
αβ (r) to the spin-independent part of SM potential V LL

αβ (r). We take a non-zero value

of the magnetic moment, µij = µν = 10−12 µB, and let the electric dipole moment vanish.

We see, as expected, that the potentials scale as 1/r3 in the short-range limit r � 1/(2mi).

However, unlike the potentials V LR
αβ (r) and V SS

αβ (r) they dominate over the SM potential

for a wide range of distances.

Because the vector-dipole potential V V γ
αβ (r) is proportional to the neutrino masses and

therefore is suppressed in the short-range limit, we focus instead on the shifts induced by

the dipole-dipole potential V γγ
αβ (r). Using the same procedure outlined as in section 5 to

calculate the expectation value of the potential, we find

〈
V γγ
αβ

〉
n, `=0

≈ − α2

12π

1

m2
eµ

2
B

4Z3

n3ã3
0

[
An − γE − ln

(
2Zrc
na0

)]{
Xγγ
αβ;νν − Y

γγ
αβ;νν

}
, (6.25)
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Figure 6. Neutrino-mediated potentials V V γee (r) and V γγee (r) compared to the SM potential V LLee (r),

plotted for positronium (e−e+) with the exchange of either three light active Dirac neutrinos with

m1 = 0.1 eV and NO mixing parameters and using µij ≡ µν = 10−12 µB . These potentials are

compared with the gravitational potential V gravee (r) between the electron and positron.

System (fα, fβ) µν/µB [V γγ
αβ,D(r)/V γγ

αβ,M (r)] µN/µB [V γγ
αβ,M (r), two N ]

Positronium (e, e) 3.6 · 10−2 (4.4 · 10−2) 7.6 · 10−2

Muonium (e, µ) 1.3 · 10−2 (1.5 · 10−2) 2.6 · 10−2

H (e, p) / D (e,D+) 2.7 · 10−3 (3.3 · 10−3) 5.7 · 10−3

Table 4. Upper limits on the magnetic moment µν in units of the Bohr magneton probed by

the dipole-dipole potential V γγαβ (r), derived from the 1S − 2S splittings of the systems (fα, fβ).

Equivalent limits apply for the electric dipole moment εν . We assume three light active neutrinos

with m1 = 0.1 eV and NO masses and mixings. For Dirac neutrinos we take µij ≡ µν , εij ≡ εν ,

while for Majorana neutrinos µij ≡ µν(1 − δij), εij ≡ εν(1 − δij). We also derive upper limits on

the heavy sterile neutrino magnetic moments µij = µN (1− δij) for i, j = 4, 5, i.e. introducing two

heavy Majorana neutrinos in the type-I seesaw. Active neutrino magnetic moments µν ∝ ε2 and

active-sterile transition magnetic moments µνN ∝ ε are neglected.

whereXγγ
νν =

3∑
i,j
µ
D(M)
ij µ

D(M)∗
ij and Y γγ

νν =
3∑
i,j
ε
D(M)
ij ε

D(M)∗
ij . The potential is spin-independent

so we must therefore use the 1S − 2S splitting to put an upper bound on the neutrino

magnetic and electric dipole moments — this is found from eq. (6.25) as δE1S−2S
αβ =〈

V γγ
αβ

〉
n=1, `=0

−
〈
V γγ
αβ

〉
n=2, `=0

.

In the second column of table 4 we show the upper bounds on the magnetic moments

when we assume µij = µν such that Xγγ
νν = 9µ2

ν (for three light Dirac neutrinos) derived

from the positronium, muonium and difference in the deuterium and hydrogen 1S − 2S

splittings. In brackets is the upper bound when we assume there to be three light Majorana
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neutrinos, for which µij = µν(1−δij) andXγγ
νν = 6µ2

ν . These limits also apply for the electric

dipole moments. In the third column of table 4 we consider the scenario where two heavy

sterile Majorana neutrinos are introduced in the type-I seesaw. Here the magnetic moments

for the light active neutrinos and the active-sterile transition magnetic dipole moments are

suppressed as ε2 and ε respectively. We therefore take µij ≈ 0 for all i, j = 1 . . . 5 apart

from µij = µN (1− δij), where µN is the transition dipole moment between the two sterile

states. We again use the 1S− 2S splittings of the different systems to put an upper bound

on this parameter, shown in table 4.

7 Conclusions

The exchange of force carriers are the basis of our understanding how structures are formed

in nature. On scales larger than nuclei, the SM of particle physics incorporates the pho-

ton being largely responsible at the scales of atoms and larger. Beyond the SM, searches

for massless or very light exotic mediators are being carried out in a large number of

experiments and at different length scales, ranging from nuclear and atomic precision spec-

troscopy to the effects of fifths forces in astrophysics. Still within the SM, we already

have more light particles, neutrinos, that are already known to be lighter than 0.1 eV but

as fermions they cannot act as single exchange particles between matter particles. It is

nevertheless possible that two neutrinos are simultaneously exchanged between two matter

particles. In a Feynman diagram representation, this corresponds to a contribution at the

first-loop order, see e.g. figure 2 for those arising in the SM. Due to the weakness of neu-

trino interactions and the loop suppression, the effect is small but nevertheless it may be

possible to probe the effect of such a SM neutrino exchange in (exotic) atoms, especially

muonium [56].

We have here considered an EFT approach parametrising the effect of potential New

Physics to analyse the long-range potential induced by the exchange of two neutrinos. This

includes all possibilities for the relevant four-fermion contact interactions between two neu-

trinos and two charged leptons or quarks. We have calculated both the spin-independent

and spin-dependent long-range potentials as well as for a neutrino magnetic moment. Us-

ing our results, we discuss the potential of probing the exchange potentials and the under-

lying effective operator couplings using state-of-the-art atomic and nuclear spectroscopy

experiments high precision QED calculations. Normalising the operator coefficients Geff

of the relevant four-fermion contact interactions relative to the standard Fermi constant

Geff = GF c
XY , we have found that the current precision in atomic spectroscopy is sensitive

to coefficients as low as cXY = O(102) for muonium. If the exchange is accompanied by

a neutrino magnetic or electric dipole moment µν , values of order µν = O(10−2) µB are

being probed.

We have worked in the low energy effective field theory approach to model both the

exchange of SM EW bosons as well as any exotic contributions. In ref. [54], the importance

of the second order EW effects have been discussed which is usually ignored in the effective

(Fermi theory) approach. Therein, the 1S hyperfine splitting energy shift of muonium

was calculated in momentum space and in a gauge invariant fashion, including all relevant

– 42 –



J
H
E
P
0
7
(
2
0
2
0
)
0
1
3

EW loop contributions, also those arising from electrons in the loop. For the SM case,

they determine the same overall energy shift as in the present work as well as in [56],

and we therefore do not consider any other ultraviolet-complete scenarios. The limits on

effective neutrino operators extracted from atomic spectroscopy can be used to constrain

new physics scales. For example, the muonium 1S hyperfine splitting energy shift in the

SM is of the order

|δE1-hfs| ≈ 0.14α4m3
eGF ≈ 6× 10−16 eV ≈ 150 mHz, (7.1)

see eq. (5.25). This compares with the current sensitivity of |δE1-hfs|.7×10−14 eV [166, 177].

On the other hand, new physics at a scale ΛNP, generating the relevant operators would

induce a shift of order

|δE1-hfs| ≈ α4m3
e

Λ2
NP

≈ 10−13

(
60 GeV

ΛNP

)2

eV, (7.2)

and new physics scales close to the EW scale are currently being probed. Future advance-

ments in experimental muonium spectroscopy [54] and QED precision calculations [189, 190]

are expected to improve the sensitivity to |δE1-hfs| ≈ 10 Hz ≈ 5 × 10−15 eV.3 While this

will not improve on the existing limits from other processes as discussed in section 2.3,

atomic scale probes have the advantage that the effective operator treatment is valid down

to very low energy scales corresponding to the Bohr radius, ΛNP & αme ≈ 3 keV.
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A Comparison to other parametrisations

In the low-energy effective field theory (LEFT) of the SM a parametrisation for general

neutrino interactions similar to this work is given in ref. [88]. The effective Lagrangian for

NC-like operators is written as

Lν̄νf̄feff = −GF√
2

10∑
j=1

(∼)
εαβγδ
j (ν̄αOjνβ)

(
f̄γO′jfδ

)
, (A.1)

where f = `, u, d, the fields are given in the flavour basis and j runs over the ten possible

Lorentz-invariant combinations of Dirac matrices in Oj and O′j for chiral fermions —

analogous to the ten terms in eq. (2.3). The Oj and O′j are given in table II of ref. [88].

3The sensitivity in atomic systems involving nuclei is expected to be much weaker as the lower distance

cut-off r & 1 fm means that the dependence on the new physics scale becomes ∝ 1/Λ4
NP for ΛNP & 100 MeV.

– 43 –



J
H
E
P
0
7
(
2
0
2
0
)
0
1
3

An alternative basis, frequently used in the literature, is also discussed in ref. [88]. The

effective Lagrangian in this parametrisation is

Lν̄νf̄feff = −GF√
2

∑
a=S,P,V,A,T

(να Γaνβ)
(
f iγΓa(Caαβγδ +D

a
αβγδiγ

5)f jδ

)
, (A.2)

where the five possible independent combinations of Dirac matrices are defined as

Γa ∈
{
I, iγ5, γµ, γµγ5, σµν

}
for a = S, P, V,A, T and the associated coefficients are denoted

by Ca and

Da ≡

{
D̄a (a = S, P, T )

iD̄a (a = V,A) .
(A.3)

The coefficients cXY , gXY and hXX (X,Y = L,R) used in this work are simply linear

combinations of the
(∼)
ε j , Ca and Da coefficients,

cLL = εL =
1

4

(
CV −DV + CA −DA

)
,

cRL = εR =
1

4

(
CV +DV − CA −DA

)
,

cLR = ε̃L =
1

4

(
CV −DV − CA +DA

)
,

cRR = ε̃R =
1

4

(
CV +DV + CA +DA

)
,

gLL = εS + εP =
1

2

(
CS − iDS − CP + iDP

)
,

gRL = εS − εP =
1

2

(
CS + iDS + CP + iDP

)
,

gLR = ε̃S + ε̃P =
1

2

(
CS − iDS + CP − iDP

)
,

gRR = ε̃S − ε̃P =
1

2

(
CS + iDS − CP − iDP

)
,

hLL = εT =
1

4

(
CT − iDT

)
,

hRR = ε̃T =
1

4

(
CT + iDT

)
,

(A.4)

where flavour indices have been suppressed. We note that the flavour indices for fermions

and neutrinos are swapped in our convention, i.e. εLαβγδ = cLLγδ;αβ .

B Spinor identities and non-relativistic limit

A crucial step to take in deriving the spectral functions or absorptive parts of the in-

variant scattering amplitudes M(α,β) is taking the non-relativistic limit of the external

interacting fermion bilinears. This can be done by expanding the bilinears to first order

in both the 3-momentum transfer q = pα − p′α = p′β − pβ and the sum of 3-momenta

P = pα + pβ = p′α + p′β ,

[ūs′α
(
p′α
)

Γausα(pα)] ≡ [Γa]α ≈ ξ†s′α

(
2mfαΓa − Pj

2
{Γa, γj} −

qj
2

[Γa, γj ]

)
ξsα , (B.1)
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where Γa = {I, γ5, γµ, γµγ5, σµν} is one of the 16 irreducible products of γ matrices and

usα(pα) and ξsα are respectively the 4-component Dirac spinor and 2-component Weyl

spinor for a fermion fα with mass mfα , 3-momentum pα and spin sα.

This expansion must be made for the external fermion bilinear at each of the interaction

vertices. Hence the bilinears only appear as the products [Γa]α[Γb]β . We retain the higher

orders terms in P and q arising from this product for comparison with the basis of 16

operators in ref. [137], a complete set of scalar operators constructed from two spins and

two momenta.

The products of scalar-like fermion bilinears are

[I]α[I]β ≈ 4mαmβ ,

[I]α[γ5]β ≈ −2mα(σβ · q) ,

[γ5]α[γ5]β ≈ (σα · q)(σβ · q) ,

(B.2)

which are proportional to the O1, O3 and O9 ± O10 operators in ref. [137] respectively.

Throughout this work however we consider a SM weak vector interaction at one vertex

and an arbitrary scalar, vector or tensor-like interaction at the other. These fermion

bilinears are therefore not used in this work, but are relevant for axion-mediated long-

range potentials [33, 38, 191].

The products of vector-like fermion bilinears are

[γµ]α[γµ]β ≈ (4mαmβ −P2) + (σα · σβ) q2 − (σα · q)(σβ · q) ,

− i(σα + σβ) · (P× q) ,

[γµ]α[γµγ5]β ≈ 2imβ(σα × σβ) · q− 2(mα −mβ)(σβ ·P) ,

[γµγ5]α[γµγ5]β ≈ −(4mαmβ −P2)(σα · σβ) ,

[/qγ5]α[/qγ5]α ≈ 4mαmβ(σα · q)(σβ · q) .

(B.3)

The first of these products contains terms proportional to O1, O2, O3 and O4, the second to

O11 and O12±O13, the third to O2 and finally the fourth to O3. These products are relevant

in the case of a vector-like current at both interaction vertices. We have not included

products containing the bilinear [/q]α which vanishes according to the equations of motion.

The relevant products of scalar-like and vector-like (which must be contracted with

the momentum exchange qµ) fermion bilinears are

[I]α[/qγ5]β ≈ 4mαmβ(σβ · q) ,

[γ5]α[/qγ5]β ≈ −2mβ(σα · q)(σβ · q) ,
(B.4)

proportional to O2 and O3 respectively. These are used for the case of a scalar interaction

at one vertex and a CC or NC interaction at the other.

Finally, we list the relevant products of vector-like and tensor-like (where again the

free Lorentz index must be contracted with the momentum exchange qµ) fermion bilinears,

[γµ]α[σµνqν ]β ≈ 2imαq2 − 2imβ

[
(σα · σβ) q2 − (σα · q)(σβ · q)

]
+ 2(mα −mβ)[σβ · (P× q)] ,

[γµ]α[σµνqνγ5]β ≈ i(4mαmβ −P2)(σβ · q) + [σα · (P× q)](σβ · q) ,

[γµγ5]α[σµνqν ]β ≈ −4mαmβ(σα × σβ) · q− (σα ·P)
[
iq2 + σβ · (P× q)

]
,

[γµγ5]α[σµνqνγ5]β ≈ 2i(mα −mβ)(σα ·P)(σβ · q)− 2imα(σα · σβ)(P · q) .

(B.5)
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The first product contains terms proportional to O1, O2, O3 and O4 ± O5, the second to

O9 ±O10 and O15, the third to O11, O12 ±O13 and O16 and finally the fourth to O6 ±O7

and O2. These are needed when evaluating the potential for a tensor interaction at one

vertex and a CC or NC interaction at the other.

C Integrals

The generic form for the dimensionless integrals appearing frequently in this work — func-

tions of the distance r between the interacting fermions and labelled by the superscript X

— is

IXij (r) =

∞∫
(mi+mj)r

dy Λ1/2(y2,m2
i r

2,m2
jr

2) GXij (y, r) e−y , (C.1)

where the dimensionless variable y = r
√
t, the indices (i, j) run over either the N massive

Majorana states or 3 massive Dirac states, and Λ(x, y, z) is the Källén function. The

functions GXij (y, r) are given by

GLRij (y, r) =
1

y
,

GDij (y, r) =
y

6

{
1−

m2
ijr

2

y2
−

(∆m2
ij)

2r4

2y4

}
,

GMij (y, r) =
y

6

{
1−

(m2
ij + 3mimj)r

2

y2
−

(∆m2
ij)

2r4

2y4

}
,

GVij(y, r) =
1

y

{
1 +

2m2
ijr

2

y2
−

2(∆m2
ij)

2r4

y4

}
,

G∆
ij(y, r) =

1

y

{
1−

∆m2
ij r

2

y2

}
,

GSij(y, r) =
1

y

{
1− (mi −mj)

2 r2

y2

}
,

GSDij (y, r) =
y

6

{
1−

2m2
ij r

2

y2

}
,

GSMij (y, r) =
y

6

{
1− (mi −mj)

2 r2

y2

}
,

GTij(y, r) =
1

y

{
1− (mi +mj)

2 r2

y2

}
,

GMγ
ij (y, r) =

1

y

{
1− (mi −mj)

2 r2

y2

}{
1 +

2(mi +mj)
2 r2

y2

}
,

GEγij (y, r) =
1

y

{
1− (mi +mj)

2 r2

y2

}{
1 +

2(mi −mj)
2 r2

y2

}
,

(C.2)

where m2
ij = (m2

i +m2
j )/2 and ∆m2

ij = m2
i −m2

j .
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X D M V ∆ S T

JXij (r) 3
2

3
2

5
2 3 3 3

Table 5. Exact values of the dimensionless integrals JXij (r) for N = {D, M , V , ∆, S, T} derived

from the potentials IXij (r) ≈ 1 in the limit of vanishing neutrino masses, mi ≈ 0. These appear in

the potentials V LLαβ , V LRαβ , V RRαβ , V V Sαβ and V V Tαβ in this work.

A second set of dimensionless integrals JNij (r) is derived from the above by performing

the derivative operations

JD,Mij (r) = ID,Mij (r) +

(
1

2
− r

6

d

dr

)
IVij (r) ,

JVij (r) =

(
5

2
− 7r

6

d

dr
+
r2

6

d2

dr2

)
IVij (r) ,

J∆,S,T
ij (r) =

(
3− r d

dr

)
I∆,S,T
ij (r) .

(C.3)

The first set of integrals are normalised such that IXij (r) ≈ 1 for vanishing neutrino

masses mi ≈ 0 — applicable in the short-range limit of the potentials in which they appear.

The values of the second set JXij (r) in this limit are given in table 5.
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