
Probabilistic learning and
computation in brains and

machines

Eszter Vértes

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Gatsby Computational Neuroscience Unit

University College London

2020

2

3

I, Eszter Vértes, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this

has been indicated in the work.

Abstract

Humans and animals are able to solve a wide variety of perceptual, decision

making and motor tasks with great flexibility. Moreover, behavioural evidence

shows that this flexibility extends to situations where accuracy requires the

correct treatment of uncertainty induced by noise and ambiguity in the available

sensory information as well as noise internal to the brain. It has been suggested

that this adequate handling of uncertainty is based on a learned internal model,

e.g. in the case of perception, a generative model of sensory observations.

Learning latent variable models and performing inference in them is a

key challenge for both biological and artificial learning systems. Here, we

introduce a new approach to learning in hierarchical latent variable models

called the Distributed Distributional Code Helmholtz Machine (DDC-HM),

which emphasises flexibility and accuracy in the inferential process. The

approximate posterior over unobserved variables is represented implicitly as

a set of expectations, corresponding to mean parameters of an exponential

family distribution. To train the generative and recognition models we develop

an extended wake-sleep algorithm inspired by the original Helmholtz Machine.

As a result, the DDC-HM is able to learn hierarchical latent models without

having to propagate gradients across different stochastic layers—making our

approach biologically appealing.

In the second part of the thesis, we review existing proposals for neural

representations of uncertainty with a focus on representational and computa-

tional flexibility as well as experimental support. Finally, we consider inference

and learning in dynamical environment models using Distributed Distributional

6 Abstract

Codes to represent both the stochastic latent transition model and the inferred

posterior distributions. We show that this model makes it possible to gener-

alise successor representations to biologically more realistic, partially observed

settings.

Impact Statement

We expect the thesis to have a direct impact on fundamental research in the

fields of machine learning and neuroscience. In particular, the distributed distri-

butional code Helmholtz machine, the algorithm we have introduced in chapter

2, presents a novel perspective on learning hierarchical generative models. Un-

like most earlier methods, it places great emphasis on the inferential process

and on accurately capturing uncertainty about latent variables. Generative

latent variable models have numerous existing and potential applications from

image processing, speech synthesis and recognition to medical diagnostics. In

many of these applications, quantifying uncertainty about unobserved variables

is essential when an algorithm is used in real-world scenarios.

Another area where the thesis should have a significant impact is the-

oretical and systems neuroscience. The work presented here contributes to

our understanding of how we learn to reason about relevant but not directly

observable variables in the world or how we make decisions in the face of

uncertainty. While we have studied these questions from a computational and

algorithmic perspective, generating hypothesis on these levels is key towards a

more mechanistic understanding of how brains carry out these computations.

Furthermore, our discussion on the origins and representations of uncertainty

in the brain, clarifying the relationship between concepts like noise, variability

and uncertainty, should facilitate a more nuanced treatment of the topic in

future publications.

Finally, we hope that this work will also inspire further research at the

intersection of these two fields that have a lot to benefit from one another.

Acknowledgements

I would like to thank my supervisor, Maneesh Sahani, for his continued support

and guidance throughout my PhD. Especially early on, I have benefitted greatly

from his rare skill of understanding my questions before I did. He listened

carefully and showed enthusiasm for all my projects and ideas (even the very

last minute ones) and that gave me freedom and confidence to explore questions

I found the most exciting.

The Gatsby has been a unique, intellectually stimulating and socially

welcoming environment and I learned a great deal from fellow students, postdocs

and faculty. Special thanks to Wittawat and Michael for answering my countless

questions about kernels.

I feel extremely lucky that I have made several close friends during my time

here, had so much fun while travelling, going on hiking or climbing adventures

together or simply sharing stories over a pint. Joana, Sofy, Alex, Kirsty, Lea,

Billy, Bill and many others made these years truly memorable.

I am immensely grateful for Antonin for taking care of me in this past

year (especially after my surgery), and always making sure I had everything I

needed as a chef or personal assistant.

Finally, I’d like to thank my family for their love and support, and for

their patience when I repeatedly tried (and often failed) to explain what my

PhD would be about.

Contents

I Learning and inference in hierarchical generative

models 23

1 Introduction 25

1.1 Variational inference and learning in latent variable models . . . 26

1.2 Deep exponential family models 28

1.3 The classic Helmholtz Machine and the wake-sleep algorithm . . 29

1.4 Reproducing kernel Hilbert spaces 30

1.4.1 Vector valued RKHSs . 31

1.5 Kernel mean embedding of distributions 32

2 The Distributed Distributional Code Helmholtz Machine 35

2.1 Distributed Distributional Codes 35

2.2 The DDC Helmholtz Machine algorithm 37

2.2.1 Sleep phase . 38

2.2.2 Wake phase . 39

2.3 Experiments . 41

2.3.1 Synthetic examples . 41

2.3.2 Natural image patches 44

2.3.3 A generative model of olfactory stimuli 45

2.3.4 Sigmoid Belief Network trained on MNIST 48

2.4 Related work . 49

2.5 Discussion . 49

12 Contents

3 The Kernel Helmholtz Machine 53

3.1 Kernel Helmholtz Machine . 54

3.1.1 Sleep phase . 57

3.1.2 Wake phase . 58

3.2 Approximate convergence of the Kernel Helmholtz machine . . . 59

3.2.1 Properties of the Kernel-HM gradient estimator 60

3.3 Discussion . 63

A Appendix . 65

A.1 Computing and learning gradients for the generative

model parameters . 65

A.2 Bias and variance of the Kernel-HM gradient estimator . 69

II Learning and computing with uncertainty in the

brain 73

4 Neural Representations of Uncertainty 75

1 Behavioural evidence for probabilistic computations 75

2 Uncertainty in neural systems 77

3 Proposals for neural representation of uncertainty 81

3.1 Linear density codes . 81

3.2 Distributional population codes 82

3.3 Probabilistic population codes 86

3.4 Natural parameter codes 89

3.5 Neural sampling . 93

4 Discussion of different proposals 96

D Appendix . 99

D.1 Log-linear codes for uncertainty 99

5 Distributed Distributional Codes in Reinforcement Learning 101

1 Introduction . 102

2 Reinforcement learning – preliminaries 103

Contents 13

2.1 Temporal-difference learning 103

2.2 Partially observable Markov decision processes 104

3 The successor representation . 105

3.1 Successor representation using features 106

4 Distributional successor representation 107

4.1 Learning and inference in a state space model using DDCs108

4.2 Learning distributional successor features 110

4.3 Value computation in a noisy 2D environment 114

5 Discussion and related work . 117

E Appendix . 122

E.1 Wake phase update for distributional SFs 122

E.2 Equivalence of sleep and wake phase TD 123

E.3 Further experimental details 124

III General Conclusions 127

List of Figures

2.1 Learning hierarchical noisy ICA models from synthetic data . . 42

2.2 Example estimated posterior distributions in the learned ICA

models . 44

2.3 Generative model of olfactory receptor neuron (ORN) activity . 46

2.4 Learned distributions of ORN activity for the DDC Helmholtz

machine and the VAE . 47

2.5 Predicted posterior mean of odorant and odour concentrations

by the DDC Helmholtz machine recognition model 48

4.1 Perception as Bayesian inference 79

4.2 Kernel density estimator (KDE) code 83

4.3 Distributed distributional codes 86

4.4 Probabilistic population codes 90

4.5 Bayesian decoding from DDCs 93

4.6 Sampling representation . 96

5.1 Learning and inference in a state-space model parametrised by

a DDC . 111

5.2 Value functions under a random walk policy 115

5.3 Value functions computed using SFs under the learned policy . . 117

List of Algorithms

1 DDC Helmholtz Machine training 37

2 Kernel Helmholtz Machine training 59

3 Wake-sleep algorithm in the DDC state-space model 109

Nomenclature

Abbreviations

DAG directed acyclic graph

DDC distributed distributional code

DDPC doubly distributional population codes

DPC distributional population codes

EM expectation maximisation

GSM Gaussian scale mixture

HM Helmholtz machine

ICA independent component analysis

IWAE importance weighted variational autoencoder

KDE kernel density estimation

KL Kullback–Leibler divergence

MDP Markov decision process

MMD maximum mean discrepancy

ORN olfactory receptor neuron

POMDP partially observable Markov decision process

20 LIST OF ALGORITHMS

PPC probabilistic population code

RKHS reproducing kernel Hilbert space

RL reinforcement learning

SBN sigmoid belief net

SF successor feature

SR successor representation

TD temporal-difference

V1 primary visual cortex

VAE variational autoencoder

VIMCO variational inference for Monte Carlo objectives

Preface

Conscious of the rather broad topics in the title, here we start by describing the

scope of the thesis in more detail. The main theme explored throughout the

thesis is how to learn probabilistic models that serve as a statistical description

of the world and how to invert these models to be able to reason about latent

variables given available observations. This is a pivotal problem in both machine

learning and neuroscience as both biological and artificial intelligent systems

need to operate in a partially observable, uncertain world.

The thesis is structured as follows: in Part I, we introduce the distributed

distributional code Helmholtz machine, an algorithm for learning hierarchical

latent variable models that allows for accurate inference through a flexible

exponential family posterior representation (chapter 2). In chapter 3, we

generalise the algorithm to reproducing kernel Hilbert spaces and we present

an analysis of convergence.

In Part II, we discuss origins of uncertainty in the context of neuroscience

and the Bayesian brain hypothesis; we present a critical review of existing

theoretical proposals for neural representations of uncertainty (chapter 4).

Finally, we show how distributed distributional codes can generalise successor

representations to partially observable environments and discuss a variety of

experimental observations unified under our model.

Most of the results from chapter 2 on the DDC Helmholtz machine were

published in Vértes and Sahani (2018), while chapter 5 on distributional

successor features was published in Vértes and Sahani (2019).

Part I

Learning and inference in

hierarchical generative models

23

Chapter 1

Introduction

There is substantial interest in applying variational methods to learn complex

latent-variable generative models, for which the full likelihood function (after

marginalising over the latent variables) and its gradients are intractable. Un-

supervised learning of such models has two complementary goals: to learn a

good approximation to the distribution of the observations; and also to learn

the underlying structural dependence so that the values of latent variables may

be inferred from new observations.

Variational methods rely on optimising a lower bound to the log-likelihood

(the free energy), which depends on an approximation to the posterior distri-

bution over the latents (Wainwright and Jordan, 2008). The performance of

variational algorithms depends critically on the flexibility of the variational

posterior. In cases where the approximating class does not contain the true

posterior distribution, variational learning may introduce substantial bias to

estimates of model parameters (Turner and Sahani, 2011).

Variational autoencoders (Rezende et al., 2014; Kingma et al., 2014) com-

bine the variational inference framework with the earlier idea of the recognition

network. This approach has made variational inference applicable to a large

class of complex generative models. However, many challenges remain. Most

current algorithms have difficulty learning hierarchical generative models with

multiple layers of stochastic latent variables (Sønderby et al., 2016). Arguably,

this class of models is crucial for modelling data where the underlying physical

26 Chapter 1. Introduction

process is itself hierarchical in nature. Furthermore, the generative models

typically considered in the literature restrict the prior distribution to a simple

form, most often a factorised Gaussian distribution, which makes it difficult to

incorporate additional generative structure such as sparsity into the model.

We introduce a new approach to learning hierarchical generative models,

the Distributed Distributional Code (DDC) Helmholtz Machine, which combines

two ideas that originate in theoretical neuroscience: the Helmholtz Machine with

wake-sleep learning (Dayan et al., 1995); and distributed or population codes

for distributions (Zemel et al., 1998; Sahani and Dayan, 2003). A key element

of our method is that the approximate posterior distribution is represented as

a set of expected sufficient statistics, rather than by directly parametrising the

probability density function. This allows an accurate posterior approximation

without being restricted to a rigid parametric class. At the same time, the DDC

Helmholtz Machine retains some of the simplicity of the original Helmholtz

Machine in that it does not require propagating gradients across different layers

of latent variables. The result is a robust method able to learn the parameters

of each layer of a hierarchical generative model with far greater accuracy than

achieved by current variational methods.

Here, we begin by briefly reviewing variational learning (section 1.1), deep

exponential family models (section 1.2), and the original Helmholtz Machine

and wake-sleep algorithm (section 1.3) relevant for our discussion of the DDC

Helmholtz machine in chapter 2. Then, we introduce reproducing kernel Hilbert

spaces and kernel mean embeddings, concepts that will allow us to generalise

the DDC Helmholtz machine algorithm to infinite dimensional spaces (chapter

3).

1.1 Variational inference and learning in la-

tent variable models

In most latent variable models of interest maximum likelihood learning is

intractable since the objective requires evaluating the following integral:

1.1. Variational inference and learning in latent variable models 27

log pθ(x) = log

∫
pθ(x, z)dz (1.1)

where x and z are the observed and unobserved variables, respectively, and

pθ(x, z) is the joint density parametrised by θ. With a few exceptions, such as

linear Gaussian models, the integral in eq. 1.1 has no analytic solution.

Variational methods (Jordan et al., 1999; Wainwright and Jordan, 2008)

rely on optimising a lower bound F on the log-likelihood by introducing an

approximate posterior distribution q(z|x) over the latent variables:

log pθ(x) ≥ F(q, θ, x) = 〈log pθ(x, z)〉q(z|x) + H[q(z|x)]

= log pθ(x)−DKL[q(z|x)||pθ(z|x)]
(1.2)

where H[q(z|x)] is the entropy of q, DKL is the Kullback-Leibler (KL) divergence

between the approximate and true posterior distributions. F(q, θ, x) is referred

to as the negative variational free energy and can be jointly maximised with

respect to the generative model parameters θ and the approximate posterior

q(z|x).

The cost of computing the posterior approximation for each observation can

be efficiently amortised by using a recognition model (Gershman and Goodman,

2014), an explicit function (with parameters φ, often a neural network) that

for each x returns the parameters (η) of an estimated posterior distribution:

x 7→ η so that qφ(z|x) = q(z; ηφ(x)).

For tractability, the approximate posterior is typically chosen to be a

member of a simple parametric form, for example a factorised Gaussian distri-

bution. The resulting mismatch between the approximate and exact posterior

distributions introduces a bias in variational learning of the parameters θ. The

variational objective penalises this error using the ‘exclusive’ Kullback-Leibler

divergence (between the approximate and true posterior distributions, see

eq. 1.2), which typically results in an approximation that underestimates the

posterior uncertainty (Minka, 2005).

28 Chapter 1. Introduction

Multi-sample objectives (IWAE Burda et al. (2015); VIMCO Mnih and

Rezende (2016)) have been proposed to remedy the disadvantages of a restrictive

posterior approximation. Nonetheless, benefits of these methods are limited

in cases when the proposal distribution is too far from the true posterior (see

section 2.3).

1.2 Deep exponential family models

We consider hierarchical generative models in which each conditional distribu-

tion belongs to an exponential family, also known as deep exponential family

models (Ranganath et al., 2015). Let x ∈ X denote a single (vector) observation.

The distribution of data x is determined by a sequence of L latent variables

z1 ∈ RD1 ,zL ∈ RDL arranged in a conditional hierarchy as follows:

x

z1

z2

...

zL

p(x|z1) = exp
(
g0(z1, θ0)TS0(x)− Φ0(g0(z1, θ0))

)

p(z1|z2) = exp
(
g1(z2, θ1)TS1(z1)− Φ1(g1(z2, θ1))

)

p(z2|z3) = exp
(
g2(z3, θ2)TS2(z2)− Φ2(g2(z3, θ2))

)

p(zL) = exp
(
θTLSL(zL)− ΦL(θL)

)

Each conditional distribution is a member of a tractable exponential family,

so that conditional sampling is possible. Using l ∈ {0, 1, 2, . . . L} to denote

the layer (with l = 0 for the observation, x ∈ RD0), these distributions have

sufficient statistic function Sl, natural parameter given by a known function gl

of both the parent variable and a parameter vector θl, and a log normaliser Φl

that depends on this natural parameter. At the top layer, we lose no generality

by taking gL(θL) = θL.

We will maintain the general notation here, as the method we propose

is very broadly applicable (both to continuous and discrete latent variables),

provided that the family remains tractable in the sense that we can efficiently

sample from the conditional distributions given the natural parameters.

1.3. The classic Helmholtz Machine and the wake-sleep algorithm 29

1.3 The classic Helmholtz Machine and the

wake-sleep algorithm

The Helmholtz Machine (HM; Dayan et al., 1995) comprises a latent-variable

generative model that is to be fit to data, and a recognition network, trained

to perform approximate inference over the latent variables.

The latent variables of an HM generative model are arranged hierarchically

in a directed acyclic graph, with the variables in a given layer conditionally

independent of one another given the variables in the layer above. In the original

HM, all latent and observed variables were binary and formed a sigmoid belief

network (Neal, 1992), which is a special case of deep exponential family models

introduced in the previous section with Sl(zl) = zl and gl(zl+1, θl) = θlzl+1.

p(zL) = Bernoulli(θL)

p(zL−1|zL) = Bernoulli(σ(θL−1zL))

...

p(x|z1) = Bernoulli(σ(θ0z1))

(1.3)

The recognition network is a functional mapping with an analogous hierarchical

architecture that takes each x to an estimate of the posterior probability of

each zl, using a factorised mean-field representation, i.e. q(zl|x) = Πiq(zl,i|x),

where i is indexing the elements of the vector zl.

The training of both generative model and recognition network follows a

two-phase procedure known as wake-sleep (Hinton et al., 1995). In the wake

phase, observations x are fed through the recognition network to obtain the

posterior approximation qφ(zl|x). In each layer the latent variables are sampled

independently conditioned on the samples of the layer below according to the

probabilities determined by the recognition model parameters. These samples

are then used to update the generative parameters to increase the expected

joint likelihood – equivalent to taking gradient steps to increase the variational

free energy. In the sleep phase, the current generative model is used to provide

30 Chapter 1. Introduction

joint samples of the latent variables and fictitious (or “dreamt”) observations

and these are used as supervised training data to adapt the recognition network.

The algorithm allows for straightforward optimisation since parameter updates

at each layer in both the generative and recognition models are based on locally

generated samples of both the input and output of the layer.

Despite the resemblance to the two-phase process of expectation-

maximisation and approximate variational methods, the sleep phase of wake-

sleep does not necessarily increase the free-energy bound on the likelihood

(Dayan, 2000). Even in the limit of infinite samples, the mean field representa-

tion qφ(z|x) is learnt so that it minimises DKL[pθ(z|x)‖qφ(z|x)], rather than

DKL[qφ(z|x)‖pθ(z|x)] as required by variational learning (see eq. 1.2). For this

reason, the mean-field approximation provided by the recognition model is

particularly limiting, since it not only biases the learnt generative model (as in

the variational case) but it may also preclude convergence.

1.4 Reproducing kernel Hilbert spaces

Here, we give a definition of reproducing kernel Hilbert spaces (RKHS) and

universal kernels—concepts that we will use extensively in our discussion of

the Kernel Helmholtz machine in chapter 3.

Definition 1. (RKHS) Consider a non-empty set Z. A reproducing kernel

Hilbert space HZ with kernel kZ : Z × Z → R is a Hilbert space of real-valued

functions f : Z → R. Its dot product 〈., .〉HZ satisfies the reproducing property:

∀z ∈ Z : kZ(z, .) ∈ HZ , (1.4)

∀z ∈ Z and ∀f ∈ HZ : 〈f, kZ(z, .)〉HZ = f(z). (1.5)

That is, the kernel function evaluated at one of its arguments kZ(z, .)

is a function in the RKHS HZ and we can represent the evaluation of a

function at any z ∈ Z as an inner product in HZ . It also follows that

〈k(z, .), k(z′, .)〉H = k(z, z′). The function kZ(z, .) can also be viewed as a

1.4. Reproducing kernel Hilbert spaces 31

feature map φ(z) ∈ HZ where k(z, z′) = 〈φ(z), φ(z′)〉HZ .

Definition 2. (Universal kernel). Consider a compact metric space Z and

continuous kernel kZ : Z × Z → R. kZ is universal (or c-universal) if

its associated RKHS, HZ is dense in the Banach space, C(Z) of real-valued

continuous functions (on Z) w.r.t. the uniform norm, i.e., for any f ? ∈ C(Z),

there exists g ∈ HZ that uniformly approximates f ?.

Note that this definition of universality is limited to functions defined over

compact spaces excluding many interesting spaces like Rd. To address this

limitation, the definition has been generalised to functions over non-compact

spaces that vanish at infinity (Sriperumbudur et al., 2010). Examples of such c0-

universal kernels on Rd include the Gaussian k(z, z′) = exp(−α‖z − z′‖2
2), α > 0

or Laplacian kernels k(z, z′) = exp(−α‖z − z′‖1), α > 0.

1.4.1 Vector valued RKHSs

The definition of scalar-valued RKHS has been extended to the space of vector

valued functions (Micchelli and Pontil, 2005). Here, we give the definition and

review some of the properties of vector valued RKHSs that we will later use to

analyse convergence of the Kernel Helmholtz machine.

Consider a non-empty set X and a Hilbert space (V , 〈., .〉V).

Definition 3. A Hilbert space (HΓ, 〈., .〉Γ) of (vector valued) functions f : X →
V is an RKHS if for all x ∈ X , v ∈ V the linear functional f → 〈v, f(x)〉V is

continuous.

The Riesz representer theorem implies that for each x ∈ X and v ∈ V
there is a linear operator Γx : V → HΓ, such that for all f ∈ HΓ

〈v, f(x)〉V = 〈f,Γxv〉Γ. (1.6)

The corresponding reproducing kernel in HΓ, Γ(x, x′) is a bounded linear

32 Chapter 1. Introduction

operator V → V and defined as:

Γ(x, x′)v = (Γx′v)(x) ∈ V . (1.7)

1.5 Kernel mean embedding of distributions

Kernel mean embeddings define a representation of a probability distribution

P in an RKHS as the expected kernel function, that is:

µP :=

∫

Z
kZ(z, .)dP(z) (1.8)

where kZ(z, .) ∈ HZ and µP ∈ HZ if Ez∼P [kZ(z, z)] < ∞. Importantly,

for characteristic kernels kZ(z, z′), the kernel mean embedding captures all

information about the distribution P .

Definition 4. (Characteristic kernel). Consider a topological space Z, a

measurable, bounded kernel kZ and a Borel probability measure P on Z. The

kernel kZ is characteristic if and only if the embedding P →
∫
Z kZ(z, .)dP(z)

is injective.

The injective property of characteristic kernels implies that different dis-

tributions are mapped to different points in the RKHS: µP = µP ′ if and only if

P = P ′ (Fukumizu et al., 2003). The characteristic property is closely related

to universality of kernels (Sriperumbudur et al., 2010), for an in-depth review

of kernel mean embeddings see Muandet et al. (2017).

The kernel mean embedding µP can be used to compute expectations of

functions h ∈ HZ with respect to P by an inner product in HZ :

Ep(z)[h(z)] = 〈h, µP〉HZ ∀h ∈ HZ (1.9)

Similarly, conditional expectations can also be evaluated as an inner product:

Ep(z|x)[h(z)] = 〈h, µ(x)〉HZ ∀h ∈ HZ , x ∈ X (1.10)

1.5. Kernel mean embedding of distributions 33

where µ(x) ∈ HZ is the conditional mean embedding. Note that µ is a mapping

X → HZ , while µ(x) ∈ HZ , i.e. an RKHS function on Z.

For a general RKHS HZ , the conditional embedding µ can be estimated

by computing the operator Uz|x : HX → HZ for which µ(x) = Uz|xkX (x, .) as

described in Song et al. (2009). The corresponding empirical estimator Ûz|x
converges with rate O(S−1/4) with the number of samples S.

Assuming that HZ is a finite dimensional RKHS, the conditional mean

embedding can be approximated in a vector valued RKHS HΓ with a much

faster convergence rate of O(logS/S) (Grünewälder et al., 2012). Given a real

valued kernel kX (x, x′) on X , the kernel for HΓ can be defined as Γ(x, x′) =

kX (x, x′)IHZ , where IHZ is the identity operator HZ → HZ . This choice

corresponds to a space isomorphic to HX ×HZ .

Chapter 2

The Distributed Distributional

Code Helmholtz Machine

2.1 Distributed Distributional Codes

The key drawback of both the classic Helmholtz machine and most approxi-

mate variational methods is the need for a tractably parametrised posterior

approximation. Our contribution is to instead adopt a flexible and power-

ful representation of uncertainty in terms of expected values of large set of

(possibly random) arbitrary nonlinear functions. We call this representation

a Distributed Distributional Code (DDC) in acknowledgement of its history

in theoretical neuroscience (Zemel et al., 1998; Sahani and Dayan, 2003). In

the DDC-HM, each posterior is represented by approximate expectations of

non-linear encoding functions {ψi(z)}i=1...Kl with respect to the true posterior

pθ(zl|x):

r
(i)
l (x, φ) ≈

〈
ψi(zl)

〉
pθ(zl|x)

, (2.1)

where r
(i)
l (x, φ), i = 1...Kl is the output of the recognition network (parametrised

by φ) at the lth latent layer, and the angle brackets denote expectations.

A finite—albeit large—set of expectations does not itself fully specify the

probability distribution pθ(zl|x). Thus, the recognition outputs {r(i)
l }i=1...Kl

are interpreted as representing an approximate posterior q(zl|x) defined by

the distribution of maximum entropy that agrees with all of the encoded

36 Chapter 2. The Distributed Distributional Code Helmholtz Machine

expectations.

A standard calculation shows that this distribution has a density of the

form (Wainwright and Jordan, 2008, Ch.3):

q(zl|x) =
1

Z(η(x))
exp

(
Kl∑

i=1

ηi(x)ψi(zl)

)
(2.2)

where the ηi are natural parameters (derived as Lagrange multipliers enforcing

the expectation constraints), and Z(η) is a normalising constant. Thus, in this

view, the encoded distribution q is a member of the exponential family whose

sufficient statistic functions correspond to the encoding functions {ψi(zl)},
and the recognition network returns the expected sufficient statistics, or mean

parameters. Results on function approximation with random bases (Rahimi and

Recht, 2008) suggest that given a sufficiently large set of encoding functions, we

can approximate the true posterior distribution arbitrarily well. Throughout

this chapter we will use encoding functions of the following form:

ψi(zl) = σ(w(i)T zl + b(i)), i = 1 . . . Kl , (2.3)

where w(i) is a random linear projection with components sampled from a

standard normal distribution, b(i) is a similarly distributed bias term, and σ is

the logistic sigmoid function. That is, the representation is designed to capture

information about the posterior distribution along K random projections in

z-space. As a special case, we can recover the approximate posterior equivalent

to the original HM if we consider linear encoding functions ψi(zl) = [zl]i

(individual components of the vector zl), corresponding to a factorised mean-

field approximation.

Obtaining the posterior natural parameters {η(i)} (and thus evaluating

the density in Eq. 2.2) from the mean parameters {r(i)} is not straightforward

in the general case since Z(η) is intractable. Thus, it is not immediately clear

how a DDC representation can be used for learning. Our exact scheme will be

developed below, but in essence it depends on the simple observation that most

2.2. The DDC Helmholtz Machine algorithm 37

of the computations necessary for learning (and indeed most computations

involving uncertainty) depend on the evaluation of appropriate expectations.

Given a rich set of encoding functions {ψi}i=1...K sufficient to approximate a

desired function f using linear weights {αi}, such expectations become easy to

evaluate in the DDC representation:

f(z) ≈
∑

i

α(i)ψi(z) (2.4)

⇒ 〈f(z)〉q(z) ≈
∑

i

α(i)〈ψi(z)〉q(z) =
∑

i

α(i)r(i) (2.5)

Thus, the richer the family of DDC encoding functions, the more accurate are

both the approximated posterior distribution, and the approximated expecta-

tions1. We will make extensive use of this property in the following section

where we discuss how this posterior representation is learnt (sleep phase) and

how it can be used to update the generative model (wake phase).

2.2 The DDC Helmholtz Machine algorithm

Algorithm 1 DDC Helmholtz Machine training

Initialise θ
repeat

Sleep phase:
for s = 1 . . . S, sample: z

(s)
L , ..., z

(s)
1 , x(s) ∼ pθ(x, z1, ..., zL)

update recognition parameters {φl} [eq. 2.7]
update function approximators {αl, βl} [appendix]
Wake phase:
x← {minibatch}
evaluate rl(x, φ) [eq. 2.8]

update θ: ∆θ ∝ ∇̂θF(x, r(x, φ), θ) [appendix]

until |∇̂θF| < threshold

Following (Dayan et al., 1995) the generative and recognition models in

the DDC-HM are learnt in two separate phases (see Algorithm 1). The sleep

phase involves learning a recognition network that takes data points x as

1In a suitable limit, an infinite family of encoding functions would correspond to a mean
embedding representation in a reproducing kernel Hilbert space (Gretton et al., 2012)

38 Chapter 2. The Distributed Distributional Code Helmholtz Machine

input and produces expectations of the non-linear encoding functions {ψi} as

given by Eq. (2.1); and learning how to use these expectations to update the

generative model parameters using approximations of the form of Eq. (2.4). The

wake phase updates the generative parameters by computing the approximate

gradient of the free energy, using the posterior expectations learned in the sleep

phase. Below we describe the two phases of the algorithm in more detail.

2.2.1 Sleep phase

One aim of the sleep phase, given a current generative model pθ(x, z), is to

update the recognition network so that the Kullback-Leibler divergence between

the true and the approximate posterior is minimised:

argmin
φ

DKL[pθ(z|x)||qφ(z|x)]. (2.6)

Since the DDC qφ(z|x) is in the exponential family, the KL-divergence in

Eq. (2.6) is minimised if the expectations of the sufficient statistics vector ψ =

[ψ1, . . . , ψK] under the two distributions agree:
〈
ψ(z)

〉
pθ(z|x)

=
〈
ψ(z)

〉
qφ(z|x)

.

Hence the parameters of the recognition model should be updated so that:

rl(x, φl) ≈
〈
ψ(zl)

〉
pθ(zl|x)

. This requirement can be translated into an optimi-

sation problem by sampling z
(s)
L , . . . , z

(s)
1 , x(s) from the generative model and

minimising the error between the output of the recognition model rl(x
(s), φl) and

encoding functions ψ evaluated at the generated sleep samples. For tractability,

we substitute the squared loss in place of Eq. (2.6):

φl = argmin
φl

∑

s

∥∥rl(x(s), φl)−ψ(z
(s)
l)
∥∥2
. (2.7)

In principle, one could use any function approximator (such as a neural network)

for the recognition model rl(x
(s), φl), provided that it is sufficiently flexible

to capture the mapping from the data to the encoded expectations. Here,

we parallel the original HM, and use a recognition model that reflects the

hierarchical structure of the generative model. For a model with 2 layers of

2.2. The DDC Helmholtz Machine algorithm 39

latent variables:

h1(x,W) = [Wx]+ (2.8)

r1(x, φ1) = φ1 · h1(W,x) (2.9)

r2(x, φ2) = φ2 · r1(x, φ1) (2.10)

where W ∈ RM×D0 , φ1 ∈ RK1×M , φ2 ∈ RK2×K1 and [.]+ is a rectifying non-

linearity. Throughout this chapter we use a fixed W sampled from a normal

distribution, and update φ1, φ2 according to Eq. (2.7).

Recognition model learning in the DDC-HM thus parallels that of the

original HM, albeit with a much richer posterior representation. The second

aim of the DDC-HM sleep phase is quite different: a further set of weights must

be learnt to approximate the gradients of the generative model joint likelihood.

This step is derived in the appendix, but summarised in the following section.

2.2.2 Wake phase

The aim in the wake phase is to update the generative parameters to increase

the variational free energy F(q, θ), evaluated on data x, using a gradient step:

∆θ ∝ ∇θF(q, θ) = 〈∇θ log pθ(x, z)〉q(z|x) (2.11)

The update depends on the evaluation of an expectation over q(z|x). As

discussed in Section 2.1, the DDC approximate posterior representation allows

us to evaluate such expectations by approximating the relevant functions using

the non-linear encoding functions ψ.

For deep exponential family generative models, the gradients of the free

energy take the following form (see appendix A.1):

40 Chapter 2. The Distributed Distributional Code Helmholtz Machine

∇θ0F = ∇θ0〈log p(x|z1)〉q = S0(x)T 〈∇g(z1, θ0)〉q(z1|x) − 〈µTx|z1∇g(z1, θ0)〉q(z1|x)

...

∇θlF = ∇θl〈log p(zl|zl+1)〉q = 〈Sl(zl)T∇g(zl+1, θl)〉q(zl,zl+1|x) − 〈µTzl|zl+1
∇g(zl+1, θl)〉q(zl+1|x)

...

∇θLF = ∇θL〈log p(zL)〉q = 〈SL(zL)〉q(zL|x) −∇Φ(θL) ,
(2.12)

where µx|z1 , µzl|zl+1
are expected sufficient statistic vectors of the conditional

distributions from the generative model: µx|z1 = 〈S0(x)〉p(x|z1), µzl|zl+1
=

〈Sl(zl)〉p(zl|zl+1). Now the functions that must be approximated are the functions

of {zl} that appear within the expectations in Eqs. 2.12. As shown in appendix

A.1, the coefficients of these combinations can be learnt by minimising a squared

error on the sleep-phase samples, in parallel with the learning of the recognition

model.

Thus, taking the gradient in the first line of Eq. (2.12) as an example, we

write ∇θg(z1, θ0) ≈
∑

i α
(i)
0 ψ

(i)(z1) = α0 ·ψ(z1) and evaluate the gradients as

follows:

sleep: α0 ← argmin
∑

s

(
∇θg(z

(s)
1 , θ0)− α0 ·ψ(z

(s)
1)
)2

(2.13)

wake: 〈∇θg(z1, θ0)〉q(z1|x) ≈ α0 · 〈ψ(z1)〉q(z1|x) = α0 · r1(x, φ1) (2.14)

with similar expressions providing all the gradients necessary for learning

derived in the appendix.

In summary, in the DDC-HM computing the wake-phase gradients of

the free energy becomes straightforward, since the necessary expectations are

computed using approximations learnt in the sleep phase, rather than by an

explicit construction of the intractable posterior. Furthermore, as shown in the

appendix, using the function approximations trained using the sleep samples and

the posterior representation produced by the recognition network, we can learn

2.3. Experiments 41

the generative model parameters without needing any explicit independence

assumptions (within or across layers) about the posterior distribution.

2.3 Experiments

We first evaluated the performance of the DDC-HM on a directed graphi-

cal model comprising two stochastic latent layers and an observation layer.

The prior on the top layer is a mixture of Gaussians, while the conditional

distributions linking the layers below are Laplace and Gaussian, respectively:

p(z2) = 1/2
(
N (z2|m,σ2) +N (z2|–m,σ2)

)

p(z1|z2) = Laplace(z1|µ = 0, λ = softplus(Bz2))

p(x|z1) = N (x|µ = Λz1,Σx = Ψdiag)

(2.15)

We chose a generative model with a non-Gaussian prior distribution and sparse

latent variables, models typically not considered in the VAE literature. Due

to the sparsity and non-Gaussianity, learning in these models is challenging,

and the use of a flexible posterior approximation is crucial. We show that

the DDC-HM can provide a sufficiently rich posterior representation to learn

accurately in such a model. We begin with low dimensional synthetic data to

evaluate the performance of the approach, before evaluating performance on a

data set of natural image patches (van Hateren and van der Schaaf, 1998).

2.3.1 Synthetic examples

To illustrate that the recognition network of the DDC-HM is powerful enough to

capture dependencies implied by the generative model, we trained it on a data set

generated from the model (N = 10000). The dimensionality of the observation

layer, the first and second latent layers was set to D0 = 2, D1 = 2, D2 = 1,

respectively, for both the true generative model and the fitted models. We

used a recognition model with a hidden layer of size 100, and K1 = K2 = 100

encoding functions for each latent layer, with 200 sleep samples, and learned the

parameters of the conditional distributions p(x|z1) and p(z1|z2) while keeping

42 Chapter 2. The Distributed Distributional Code Helmholtz Machine

5 4 3 2 1
Log MMD

0

2

4

6

8
 DDC HM
VAE
IWAE, k=5
IWAE, k=50

Figure 2.1: Top: Examples of the distributions learned by the Variational Au-
toencoder (VAE), the Importance Weighted Variational Autoencoder
(IWAE) with k = 50 importance samples and the DDC Helmholtz Ma-
chine. Bottom: histogram of log MMD values for different algorithms
trained on synthetic datasets.

2.3. Experiments 43

the prior on z2 fixed (m = 3, σ = 0.1).

As a comparison, we have also fitted both a Variational Autoencoder (VAE)

and an Importance Weighted Autoencoder (IWAE), using 2-layer recognition

networks with 100 hidden units each, producing a factorised Gaussian posterior

approximation (or proposal distribution for the IWAE). To make the comparison

between the algorithms clear (i.e. independent of initial conditions, local optima

of the objective functions) we initialised each model to the true generative

parameters and ran the algorithms until convergence (1000 epochs, learning

rate: 10−4, using the Adam optimiser; (Kingma and Ba, 2014)).

Figure 2.1 shows examples of the training data and data generated by

the VAE, IWAE and DDC-HM models after learning. The solution found

by the DDC-HM matches the training data, suggesting that the posterior

approximation was sufficiently accurate to avoid bias during learning. The

VAE, as expected from its more restrictive posterior approximation, could

capture neither the strong anti-correlation between latent variables nor the

heavy tails of the distribution. Similar qualitative features are seen in the

IWAE samples, suggesting that the importance weighting was unable to recover

from the strongly biased posterior proposal.

We quantified the quality of the fits by computing the maximum mean

discrepancy (MMD) (Gretton et al., 2012) between the training data and the

samples generated by each model (Bounliphone et al., 2015) 2. We used an

exponentiated quadratic kernel with kernel width optimised for maximum test

power (Jitkrittum et al., 2016). We computed the MMD for 25 data sets drawn

using different generative parameters, and found that the MMD estimates were

significantly lower for the DDC-HM than for the VAE or the IWAE (k = 5, 50)

(Figure 2.1).

Beyond capturing the density of the data, correctly identifying the under-

lying latent structure is also an important criterion when evaluating algorithms

for learning generative models. Figure 2.2 shows an example where we have

2Estimating the log-likelihood by importance sampling in this model has proven to be
unreliable due the lack of a good proposal distribution

44 Chapter 2. The Distributed Distributional Code Helmholtz Machine

Figure 2.2: Example posterior distributions corresponding to the learned generative
models. The corner plots show the pairwise and marginal densities
of the three latent variables, for the true model (top left), the model
learned by the VAE, IWAE (k = 50) and DDC-HM.

used Hamiltonian Monte Carlo to generate samples from the true posterior

distribution for one data point under the generative models learnt by each

approach. We found that there was close agreement between the posterior

distributions of the true generative model and the one learned by the DDC-HM.

However, the biased recognition of the VAE and IWAE in turn biases the learnt

generative parameters so that the resulting posteriors (even when computed

without the recognition networks) appear closer to Gaussian.

2.3.2 Natural image patches

We tested the scalability of the DDC-HM by applying it to a natural image data

set (van Hateren and van der Schaaf, 1998). We trained the same generative

model as in section 2.3.1 on image patches with dimensionality D0 = 16× 16

and varying sizes of latent layers. The recognition model had a hidden layer of

2.3. Experiments 45

size 500, K1 = 500, K2 = 100 encoding functions for z1 and z2, respectively, and

used 1000 samples during the sleep phase. We compared the performance of

our model with the IWAE (k=50) using the relative (three sample) MMD test

(Bounliphone et al., 2015) with a exponentiated quadratic kernel (width chosen

by the median heuristic). The test establishes whether the MMD distance

between distributions Px and Py is significantly smaller than the distance

between Px and Pz. We used the image data set as our reference distribution

and the IWAE being closer to the data as null hypothesis. Table 2.1 summarises

the results obtained on models with different latent dimensionality, all of them

strongly preferring the DDC-HM.

Table 2.1: 3-sample MMD results. The table shows the results of the ‘relative’
MMD test between the DDC-HM and the IWAE (k = 50) on the image
patch data set for different generative model architectures. The null
hypothesis tested: MMDIWAE < MMDDDC−HM. Small p values indicate
that the model learned by the DDC HM matches the data significantly
better than the one learned by the IWAE (k = 50). We obtained similar
results when comparing to IWAE k = 1, 5 (not shown).

Latent dimensions IWAE DDC HM p-value

D1 = 10 D2 = 10 0.126 0.0388 � 10−5

D1 = 50 D2 = 2 0.0754 0.0269 � 10−5

D1 = 50 D2 = 10 0.247 0.00313 � 10−5

D1 = 100 D2 = 2 0.076 0.0211 � 10−5

D1 = 100 D2 = 10 0.171 0.00355 � 10−5

2.3.3 A generative model of olfactory stimuli

To further demonstrate that the DDC Helmholtz machine can exploit its

rich posterior representation to accurately learn generative models of sensory

relevance, we used the algorithm to learn a model of olfactory stimuli (see fig.

2.3). Latent variables in the generative model corresponded to concentration of

odours (e.g. scent of a given fruit or flower) and odorants (different compounds

contributing to an odour). Observations in this model can be thought of as the

activity of olfactory receptor neurons (ORN), cells that relay chemical signals

from the outside world to the brain. We chose to model odour and odorant

46 Chapter 2. The Distributed Distributional Code Helmholtz Machine

compute expectations with respect to the represented latent variables in a straightforward way, by
using the encoding functions Ti(z) as basis functions: hf(z)ip(z|x) ⇡

P
i ↵ihTi(z)ip(z|x) =

P
i ↵iri(x).

Thus, expectations can be cast as a linear combination of neural activity corresponding to the DDC.

Learning the recognition and generative model happens in two phases reminiscent of the original
wake-sleep algorithm. The sleep phase uses samples from the generative model to update the parameters
of the recognition model r(x; ⇢), and to learn how the gradients needed for learning depend on the
recognition model output. The wake phase uses observations x and the resulting DDC representation in
each latent layer to update the generative model. This scheme allows us to learn hierarchical recognition
and generative models using information available in each layer, i.e. without backpropagation across
layers.

Experiments We demonstrate that the DDC Helmholtz machine can exploit its rich posterior repre-
sentation to accurately learn generative models of sensory relevance, a prerequisite for accurate inference
about latent causes. We use the example of olfaction (see fig. A-C) and show that the DDC HM learns
the statistics of receptor activations accurately, while variational methods relying on independence as-
sumptions – as used for olfactory inference by Grabska-Barwinska et al. (2017) – fall short of capturing
the distribution in detail (fig B). Furthermore, the recognition model computes posterior means of
odorant and odour concentrations accurately for new observations (fig. C). We have also successfully
applied the DDC HM to a natural image patch dataset and learned a hierarchical ICA model (fig. D).

A-C: Learning and inference in a generative model for olfactory stimuli. A: Generative model with
2 layers of latent variables corresponding to a set of odour and odorant concentrations and receptor
activity as observations. B: Models learned by the DDC Helmholtz machine and the Variational Au-
toencoder (Kingma & Welling 2014; assuming factorized gamma posterior). Synthetic training data
plotted in black, observations generated from the learned models in color for a subset of ORNs (x3�x5).
C: Evaluating the accuracy of the DDC HM recognition model’s prediction of the posterior mean for
latent variables corresponding to odorants and odours. Vertical axis shows means estimated directly
from samples. D: 2-layer ICA model fitted to a dataset of natural image patches (van Hateren & van
der Schaaf 1998). The table summarizes the performance of the DDC HM for different latent dimen-
sions compared with the Importance Weighted Autoencoder (Burda et al., 2016) in capturing the data
distribution. Metric used: maximum mean discrepancy (MMD; Gretton et al. 2012).

Figure 2.3: Generative model with 2 layers of latent variables corresponding to a
set of odour and odorant concentrations and olfactory receptor neuron
(ORN) activity as observations.

concentrations with Gamma distributions and the conditional distribution of

the ORN activity (relative to some baseline) to be Gaussian:

p(z2) = Gamma(z2|α2, β2) (2.16)

p(z1|z2) = Gamma(z1|α1, β1 =
α1

softplus(θ2z2)
) (2.17)

p(x|z1) = N (x|µ = θ1z1,Σ = σ2I) (2.18)

We used a recognition model with hidden layer size of 80, with 40 DDC encoding

functions for each layer of the hidden variables. For training, we used N = 104

observations generated from the true model and 103 samples during each

sleep phase of the algorithm. We learned recognition network and generative

parameters θ1, θ2 (through 3 ∗ 103 epochs, with learning rate 10−3), while the

remaining parameters were fixed at their true values. As a comparison, we also

trained a VAE assuming the same generative model class and a recognition

model producing factorised Gamma distributions as approximate posterior.

The DDC-HM learned the statistics of receptor activations accurately

(fig. 2.4, top), while variational methods relying on independence assumptions

– as used for olfactory inference by Grabska-Barwińska et al. (2017) – fall short

2.3. Experiments 47

DDC HM
True model

MMD=0.002
x1

x2

x3

x4

x5

x1
x2 x3 x4 x5

VAE
True model

MMD=0.02

x1
x2 x3 x4 x5

Figure 2.4: Models learned by the DDC Helmholtz machine (top) and a VAE
(bottom; assuming factorised gamma posterior). Synthetic training
data plotted in black, observations generated from the learned models
in colour.

48 Chapter 2. The Distributed Distributional Code Helmholtz Machine

odorants odours

Figure 2.5: Evaluating the accuracy of the DDC-HM recognition model’s prediction
of the posterior mean for latent variables corresponding to odorants
and odours. Vertical axis shows means estimated directly from samples.

of capturing the distribution in detail (fig. 2.4, bottom). We quantified the

quality of fits by computing the MMD between data from the true generative

model and data generated from the learned models (see fig. 2.4 legends).

We also found that the recognition model accurately predicted the posterior

means of odorant and odour concentrations for new observations (fig. 2.5).

2.3.4 Sigmoid Belief Network trained on MNIST

Finally, we evaluated the capacity of our model to learn hierarchical generative

models with discrete latent variables by training a sigmoid belief network (SBN).

We used the binarised MNIST dataset of 28x28 images of handwritten digits

(Salakhutdinov and Murray, 2008). The generative model had three layers of

binary latent variables, with dimensionality of 200 in each layer. The recognition

model had a sigmoidal hidden layer of size 300 and DDC representations of

size 200 for each latent layer. As a comparison, we have also trained an SBN

with the same architecture using the VIMCO algorithm (as described in Mnih

and Rezende (2016)) with 50 samples from the proposal distribution 3. To

quantify the fits, we have performed the relative MMD test using the test set

(N = 10000) as a reference distribution and two sets of samples of the same

3The model achieved an estimated negative log-likelihood of 90.97 nats, similar to the
one reported by (Mnih and Rezende, 2016) (90.9 nats)

2.4. Related work 49

size generated from the SBN trained by the VIMCO and DDC-HM algorithms.

Again, we used an exponentiated quadratic kernel with width chosen by the

median heuristic. The test strongly favoured the DDC-HM over VIMCO with

p� 10−5 (with MMD values of 6× 10−4 and 2× 10−3, respectively).

2.4 Related work

Following the Variational Autoencoder (VAE; Rezende et al. (2014); Kingma

et al. (2014)), there has been a renewed interest in using recognition models

– originally introduced in the HM – in the context of learning complex gener-

ative models. The Importance Weighted Autoencoder (IWAE; (Burda et al.,

2015)) maximises a tighter lower bound constructed by an importance sam-

pled estimator of the log-likelihood using the recognition model as a proposal

distribution. This approach decreases the variational bias introduced by the

factorised posterior approximation of the standard VAE. VIMCO (Mnih and

Rezende, 2016) extends this approach to discrete latent variables and yields

state-of-the-art generative performance on learning sigmoid belief networks.

We compare our method to the IWAE and VIMCO in section 2.3. Sonderby et

al. (Sønderby et al., 2016) demonstrate that the standard VAE has difficulty

making use of multiple stochastic layers. To overcome this, they propose the

Ladder Variational Autoencoder with a modified parametrisation of the recog-

nition model that includes stochastic top-down pass through the generative

model. The resulting posterior approximation is a factorised Gaussian as for

the VAE. Normalising Flows (Rezende and Mohamed, 2015) relax the fac-

torised Gaussian assumption on the variational posterior. Through a series of

invertible transformations, an arbitrarily complex posterior can be constructed.

However, to our knowledge, they have not yet been successfully applied to deep

hierarchical generative models.

2.5 Discussion

The DDC Helmholtz Machine offers a novel approach to learning hierarchical

generative models, which combines the basic idea of the wake-sleep algorithm

50 Chapter 2. The Distributed Distributional Code Helmholtz Machine

with a flexible posterior representation. The lack of strong parametric assump-

tions in the DDC representation allows the algorithm to learn generative models

with complex posterior distributions accurately.

As in the classical Helmholtz Machine, the approximate posterior is found

by seeking to minimise the “reverse” divergence DKL[p(z|x)‖q(z|x)], albeit

within a much richer class of distributions. Thus, the modified wake-sleep algo-

rithm presented here still does not directly optimise a variational lower bound

on the log-likelihood. Rather, it can be viewed as following an approximation

to the gradient of the log-likelihood, where the quality of the approximation

depends on the richness of the DDC representation used. We expect that when

the approximation is rich enough for the error in the resulting gradient estimate

to be bounded, the algorithm will always reach a region around a local mode in

which the true gradient does not exceed that error bound. We explore precise

conditions for convergence the in next chapter.

The DDC-HM recognition model can be trained layer-by-layer using the

samples from the generative model, with no need to back-propagate gradients

across stochastic layers. In the version discussed here, the recognition network

depended on linear mappings between encoding functions and a fixed non-linear

basis expansion of the input. This restrictive form allowed for closed-form

updates in the sleep phase. However, this assumption could be relaxed by

introducing a neural network between each latent variable layer, along with a

modified learning scheme in the sleep phase. This approach may increase the

accuracy of the posterior expectations computed during the wake phase.

Another future direction involves learning the non-linear encoding functions

or choosing them in accordance with the properties of the generative model

(e.g. requiring sparsity in the random projections). Finally, a natural extension

of the DDC representation with expectations of a finite number of encoding

functions, is to approach mean embedding in a reproducing kernel Hilbert

space, corresponding to infinitely many encoding functions (Smola et al., 2007;

Grünewälder et al., 2012), a direction we discuss in the following chapter.

2.5. Discussion 51

Even without these extensions, however, the DDC-HM offers a novel and

powerful approach to probabilistic learning with complex hierarchical models.

Chapter 3

The Kernel Helmholtz Machine

In the previous chapter, we considered the problem of parameter estimation

in hierarchical latent variable models, where each layer follows an exponential

family distribution conditioned on the one above. While the DDC Helmholtz

machine showed notable empirical results for simple problems, it left unad-

dressed formal questions of convergence and accuracy of learning.

In this chapter, we work towards filling this gap. We first make an

explicit connection between the DDC posterior representation introduced in

section 2.1 and mean embeddings in reproducing kernel Hilbert spaces (Smola

et al., 2007), leading to a “Kernel Helmholtz machine” which provides a more

general framework, albeit with the loss of the neural motivation. In the Kernel

Helmholtz machine, inference and log-likelihood gradients for learning are

approximated by functions within a reproducing kernel Hilbert space.

We then exploit the properties of reproducing kernel Hilbert spaces to

derive a bound on the accuracy of the approximate gradients used for learning,

and so demonstrate approximate convergence of the algorithm to a region

around a local mode of the marginal log-likelihood.

While the feature expectations in the DDC-HM can be seen as representing

a maximum entropy distribution of the form q(zl|x) ∝ exp
(∑

i ηi(x)ψi(zl)
)
,

with the natural parameters η depending on the recognition network outputs

(the mean parameters), the posterior density itself did not need to be evaluated.

Instead, the sleep samples were used to learn a linear expansion of the gradients

54 Chapter 3. The Kernel Helmholtz Machine

of the generative model joint log-likelihood in terms of the functions ψi(zl).

In the wake phase, the same linear combination is applied to the expectations

of ψi(zl) provided by the recognition network. The resulting estimates of

the expected gradients could then be used to update the generative model

parameters. In a sense then, the DDC-HM relies on the amortisation of

learning by a network architecture rather than the amortisation of inference

alone—unlike standard variational approaches.

While this richer form of posterior representation might be expected to

yield results closer to the true variational optimum of EM, it is still trained

to minimise the reverse KL divergence DKL[p(z|x)‖q(z|x)] and so it is not

guaranteed to optimise the variational free energy F(q, θ). Nonetheless, as we

suggested in section 2.5, the critical issue was the accuracy of the gradient

approximation, and if this was small, wake-sleep learning would approach a

region close to a true optimum of the likelihood. Here we use the connection

between the DDC and mean embeddings in a reproducing kernel Hilbert space

to explore this claim further.

3.1 Kernel Helmholtz Machine

We can now introduce the Kernel Helmholtz machine (Kernel-HM), a new

algorithm that can be viewed as a generalisation of the DDC-HM. The formu-

lation of the Kernel-HM allows us to characterise the type of approximations

made by the HM explicitly, and show that under certain conditions we can

guarantee approximate convergence to the region of a stationary point of the

true log-likelihood log p(x; θ).

The Kernel-HM, like the DDC-HM, is an algorithm for learning in general

deep exponential family models (section 1.2). As the likelihood is intractable

for this class of models, it cannot be optimised directly with respect to the

generative model parameters. A common approach used by the family of

variational methods is to replace the log-likelihood by a lower bound that

can be evaluated and its gradients computed using Monte Carlo approxima-

3.1. Kernel Helmholtz Machine 55

tion. Instead, the Kernel-HM constructs an approximation to the gradients

of the marginal log-likelihood directly. Given a generative model with joint

density p(x, z1:L; θ) and (exact) posterior distribution p(z1:L|x) one can write

the gradients of log p(x; θ) in the following form:

∇θ log p(x; θ) = Ep(z|x)[∇θ log p(x, z1:L; θ)]. (3.1)

The above expression can be derived in a few steps:

∇θ log p(x; θ) = ∇θ log

∫
p(x, z1:L; θ)dz1:L (3.2)

=
1

p(x)
∇θ

∫
p(x, z1:L; θ)dz1:L (3.3)

=
1

p(x)

∫
p(x, z1:L; θ)∇θ log p(x, z1:L; θ)dz1:L (3.4)

= Ep(z|x)[∇θ log p(x, z1:L; θ)] (3.5)

When the latent variables z1:L are arranged in a hierarchy, as in the case of

deep exponential family models, the gradients can be split up according to the

factorisation of the joint density:

∇θ0 log p(x; θ) = Ep(z1|x)[∇θ0 log p(x|z1; θ0)] (3.6)

∇θl log p(x; θ) = Ep(zl,zl+1|x)[∇θl log p(zl|zl+1; θl)]

Notice that the gradients of log p(x, z1:L) (eq. 3.1) can be evaluated analytically,

since each of the generative conditional distributions is from a tractable family.

Thus, estimating the gradients of the marginal log-likelihood log p(x; θ) can be

translated into a problem of estimating conditional expectations with respect

to the posterior distribution p(z|x) of functions of the latent variables z1:L.

Before we discuss the algorithm in more detail, we expand on the functional

form of the gradients for the case of deep exponential family models, using the

notation introduced in section 1.2.

56 Chapter 3. The Kernel Helmholtz Machine

Ep(z1|x)[∇θ0 log p(x|z1; θ0)] = (3.7)

= Ep(z1|x)[S0(x)T∇θ0g0(z1, θ0)− Ep(x|z1)[S0(x)]T∇θ0g0(z1, θ0)]

= S0(x)T Ep(z1|x)[∇θ0g0(z1, θ0)]− Ep(z1|x)[m0(z1)T∇θ0g0(z1, θ0)] (3.8)

Where m0(z1) = Ex|z1 [S0(x)], the mean parameters of pθ(x|z1) as a function of

the latent variable z1. Similarly, for higher layers:

Ezl,zl+1|x
[
∇θl log p(zl|zl+1; θl)

]
=Ezl,zl+1|x

[
S(zl)

T∇θlg(zl+1, θl) (3.9)

− Ezl|zl+1
[S(zl)]

T∇θlg(zl+1, θl)
]

=Ezl|x
[
S(zl)

T Ezl+1|zl [∇θlg(zl+1, θl)]
]

(3.10)

− Ezl+1

[
ml(zl+1)T∇θlg(zl+1, θl)

]

with ml(zl+1) = Ezl|zl+1
[S(zl)].

As the expectations above will appear repeatedly, we define functions

fl,i(zl) = S(zl)
T Ezl+1|zl [∇θl,ig(zl+1, θl)] and hl+1,i(zl+1) = ml(zl+1)T∇θl,ig(zl+1, θl)

equal to their arguments, so that we can write the ith element of the gradient

vector for layers l = 0 . . . L− 1 as:

∇0,i = Si(x)Ez1|x[f0,i(z1)] + Ez1|x[h1,i(z1)] (3.11)

∇l,i = Ezl|x[fl,i(zl)] + Ezl+1|x[hl+1,i(zl+1)] (3.12)

where the scalar valued function Si(x) ∈ R refers to the element in the sufficient

statistic vector S(x) for which the corresponding natural parameter depends

on the ith element of θ0 (i.e. has non-zero derivative wrt. θ0,i).

Now the gradient estimation can be performed by estimating the con-

ditional expectations of the functions fl,i and hl,i with respect to marginal

posterior distributions p(zl|x).

Let HZ be an RKHS with kernel kZ(z, z′) and assume that fl,i, hl,i ∈
HZ∀l, i. Under these assumptions, the conditional expectations in Eq 3.11,

3.1. Kernel Helmholtz Machine 57

3.12 can be represented as an inner product in HZ , eg.:

Ezl|x[h(zl)] = 〈h, µl(x)〉HZ (3.13)

where µl(x) ∈ HZ is conditional mean embedding of the posterior p(zl|x).

The DDC representation introduced in section 2.1 can be seen as a mean

embedding in a finite-dimensional RKHS feature vector with a kernel given

by kZ(zl, z
′
l) =

∑
i ψi(zl)ψi(z

′
l), and the vector of expected sufficient statistics

corresponding to the mean embedding: µl = Ep(zl|x)[ψ(zl)].

We can now write the gradients in each layer of the generative model as

follows:

∇0,i = Si(x)〈f0,i, µ1(x)〉HZ + 〈h0,i, µ1(x)〉HZ (3.14)

∇l,i = 〈fl,i, µl(x)〉HZ + 〈hl,i, µl+1(x)〉HZ (3.15)

In practice, while the functions hl,i are available in closed form, fl,i and

the mean embeddings µl need to be estimated from samples, yielding an

approximation (∇̂) to the true gradient of log p(x; θ). However, as we show

in section 3.2, the errors from the finite sample estimators can be used to

consistently bound the bias and variance of the approximate gradient.

Each iteration of the algorithm for the Kernel-HM, similarly to the HM

and DDC-HM, can be broken up into two phases.

3.1.1 Sleep phase

In the sleep phase a set of samples {xs, zs1, . . . zsL}Ss=1 is produced from the

current generative model. Note that this can be done efficiently through

ancestral sampling. These samples are then used to estimate the functions

fl,i ∈ HZ and the conditional mean embedding µl(x).

The functions fl,i can be estimated by kernel ridge regression (Murphy

(2012), ch. 14) using the sleep samples as training data, analogously to the

58 Chapter 3. The Kernel Helmholtz Machine

sleep phase regression in the DDC Helmholtz machine (eq. 2.13).

For estimating the conditional mean embedding µ, we follow Grünewälder

et al. (2012) and consider the operator µ : X → HZ , an element of a vector

valued RKHS HΓ with operator valued kernel Γ(x, x′) = kX (x, x)IHZ with

properties discussed in section 1.4.1.

The empirical estimate of µl minimises the following regularised objective:

Esλ(µl) =
S∑

s=1

‖kZ(zs, .)− µ(xs)‖2
HZ + λ‖µl‖2

HΓ
(3.16)

with the resulting estimate: µsλ = argmin
µ
Esλ(µ). µsλ can be found in closed

form (Song et al., 2009):

µsλ(x) =
S∑

s=1

α(xs)kZ(zsl , .) α(xs) =
S∑

t=1

WstkX (xt, x) (3.17)

where W = (K + λSI)−1 and K =
(
kX (xs, xt)

)S
s,t=1

, with regularisation param-

eter λ.

Song et al. (2010) has shown that the estimator in eq. 3.17 is consistent with

rate O(S−1/4) under strong smoothness assumptions on the true conditional

embedding and assuming that µ ∈ HΓ. Recently, Singh et al. (2019) has

provided guarantees of consistency under weaker smoothness assumptions (but

still requiring that µ ∈ HΓ) with similar convergence rates. In the case of a

finite dimensional RKHS HZ , Grünewälder et al. (2012) showed that estimating

µ can be translated into a vector valued regression problem with much faster

convergence rates O(logS/S).

3.1.2 Wake phase

The wake phase simply evaluates the approximate gradients ∇̂ by computing the

inner products between the estimated functions an mean embeddings according

to Eq. 3.14, 3.15 and updates the generative model parameters θ by a stochastic

gradient step.

The intuition is that as long as the approximate gradient produced on

3.2. Approximate convergence of the Kernel Helmholtz machine 59

average remains close to the true gradient and has finite variance the Kernel-

HM should reach the vicinity of a stationary point of the log-likelihood. We

formalise these intuitions in the next section and give explicit conditions for

approximate convergence of the algorithm.

Algorithm 2 Kernel Helmholtz Machine training

Initialise θ
while not converged do

Sleep phase:
sample: z

(s)
L , ..., z

(s)
1 , x(s) ∼ pθ(x, z1, ..., zL)

update µsl = argminµl∈HΓ

∑
s ‖kZ(z

(s)
l , .)− µl(x(s))‖2

HZ + λ‖µl‖2
HΓ

update functions f sl,i ∈ HZ
Wake phase:
x← {minibatch}
evaluate ∇̂ according to Eq. 3.14-3.15
update θ: θ ← θ + α∇̂

end while

3.2 Approximate convergence of the Kernel

Helmholtz machine

In the following, we establish conditions under which the wake-sleep algorithm

for the Kernel Helmholtz machine converges approximately to the region of

stationary point of the log-likelihood log p(x; θ). We consider a standard

stochastic gradient ascent algorithm with initial condition θinit and updates:

θt+1 = θt + αt∇̂t ,

where t = 1 . . . T − 1 and ∇̂t is the approximation to the true gradient

∇θ log p(x; θt), computed in the Kernel-HM wake phase.

As wake-sleep is a stochastic optimization scheme, approximate conver-

gence can be established by considering the norm of the gradients after a suffi-

ciently large number of iterations. Applying results from non-convex stochastic

programming (Ghadimi and Lan, 2013; Sanjabi et al., 2018), and assuming

appropriate smoothness properties for the gradient function, we can relate the

60 Chapter 3. The Kernel Helmholtz Machine

norm of the true gradients to the quality of the gradient approximation (i.e.,

its bias and variance).

Theorem 3.2.1. Suppose that the gradient of log p(x; θ) wrt. the generative pa-

rameters θ is Lipschitz with constant M . Let ∆ = log p(x; θinit)−supθ log p(x; θ)

and Gt = E[∇̂t|θt]. Further assume that ‖Gt − ∇θ log p(x; θt)‖ ≤ δ and

E[‖∇t −Gt‖2] ≤ σ2, ∀t

1. If T < 2∆M
σ2 then 1

T

∑T
t=1 E[‖∇θ log p(x; θt)‖2] ≤ 2M∆

T
+ δ2 + σ2,

with learning rate αt = 1
M

2. If T ≥ 2∆M
σ2 then 1

T

∑T
t=1 E[‖∇θ log p(x; θt)‖2] ≤ σ

√
8M∆

T
+ δ2 ,

with learning rate αt =
√

2∆
Mσ2T

The proof follows Sanjabi et al. (2018), inspired by Ghadimi and Lan

(2013). If the bias in the gradient estimate at each step t is δt then Theorem

3.2.1 still holds with δ2 = 1
T

∑T
t+1 δ

2
t . Thus, it is sufficient to keep the average

bias of the estimate small enough throughout the optimisation.

Theorem 3.2.1 implies that as T → ∞ the algorithm converges to a

shallow region defined by the bias δ around a local optimum, while the speed of

convergence depends on the variance of the estimator (σ2) and the smoothness

(M) of the gradient function.

3.2.1 Properties of the Kernel-HM gradient estimator

As shown by Theorem 3.2.1, the bias and the variance of the gradient estimator

determine the convergence properties of the Kernel-HM. Below we derive rele-

vant bounds on these quantities and show they depend on the approximations

made in the algorithm.

Following the assumptions from section 3.1, i.e. fl,i, hl,i ∈ HZ and ∃µ ∈
HΓ, µ : X → HZ such that Ez|x[h(z)] = 〈h, µ(x)〉HZ ∀x ∈ X , h ∈ HZ , the

true gradient can be expressed using inner products in HZ :

∇0,i = Si(x)〈f0,i, µ1(x)〉HZ + 〈h0,i, µ1(x)〉HZ (3.18)

3.2. Approximate convergence of the Kernel Helmholtz machine 61

Similarly, the approximate gradient can be written as:

∇̂0,i = Si(x)〈f s0,i, µs1(x)〉HZ + 〈h0,i, µ
s
1(x)〉HZ (3.19)

where f s ∈ HZ and µs ∈ HΓ. Importantly, we are making the assumption that

the true functions approximated are a member of the approximating family

used. This assumption, however, may not be very strict for rich enough RKHSs

HΓ,HZ .

For simplicity, we will first consider the gradients for the lowest layer and

for most derivations we omit the indices l, i for the layer and component of the

gradient. Our results straightforwardly carry through to all gradients of the

generative model.

Bias of the gradient

The bias of the approximate gradient vector ∇̂ at each iteration t can be

decomposed into the bias of the individual components.

‖∇ log p(x; θ)− E[∇̂]‖2 =
∑

i

(E[∇̂i]−
d

dθi
log p(x; θ))2 (3.20)

For the Kernel-HM, the difference in the true and approximate gradients

can be expressed using inner products in HZ . In the case of gradients with

respect to parameters of the likelihood log p(x|z1; θ0), using the notation ∇i :=
d

dθ0,i

log p(x; θ) = Ez1|x
[
d

dθ0,i

log p(x|z1; θ0)

]
, we can write:

∣∣∣∇i − Es ∇̂i

∣∣∣ =
∣∣S(x)〈f, µ(x)〉HZ + 〈h, µ(x)〉HZ

− Es[S(x)〈f s, µs(x)〉HZ + 〈h, µs(x)〉HZ]
∣∣ (3.21)

where Es denotes expectations with respect to the sleep samples generated

from the model.

Next, we will show that we can construct an upper-bound on the bias of

the gradient estimator that depends on the approximation error in µ and f .

62 Chapter 3. The Kernel Helmholtz Machine

By reducing the error in the functions estimated in the sleep phase, the bias

can be made arbitrarily small. Which, in turn, leads to accurate convergence

to the stationary solution of log p(x; θ).

Theorem 3.2.2. Assume that

∃f ∈ HZ : d
dθi
g(z1, θ) = 〈f, kZ(z1, .)〉HZ ,

∃h ∈ HZ : mx|z1(z1)T d
dθi
g(z1, θ) = 〈h, kZ(z1, .)〉HZ ,

and f s, µs ∈ HZ
Further assume that ∃µ ∈ HΓ, µ : X → HZ such that Ez|x[h(z)] =

〈h, µ(x)〉HZ ∀x ∈ X , h ∈ HZ
‖µs‖HΓ

≤ λµ, ‖Γ(x, x)‖op ≤ κ, λµ, κ ∈ R+

Then:

∣∣∣∇i − Es[∇̂i]
∣∣∣ ≤κEs [‖µ− µs‖HΓ

]
(
|S(x)|‖f‖HZ + ‖h‖HZ

)
(3.22)

+ κλµ|S(x)|Es[‖f − f s‖HZ]

Proof. See appendix A.2.

The bound on the bias in theorem 3.2.2 depends on the errors resulting from

the finite sample approximations in the sleep phase and the smoothness of the

true functions. As the estimators µs, f s are consistent, equation 3.22 also implies

that the gradient estimator ∇̂i is consistent as well, i.e. ‖∇ − Es[∇̂]‖2 → 0 as

the number of sleep samples S →∞.

Variance of the gradient

We proceed with showing that the variance of the gradient estimate ∇̂ can

also be bounded and that the bound depends on the norms (smoothness) of

µs ∈ HΓ, f
s, h ∈ HZ . As Thm. 3.2.1 requires the sum of the variances for each

component to be bounded (i.e. E[‖∇t −Gt‖2] ≤ σ2), it is sufficient to bound

the marginal variances individually. Under the assumptions of theorem 3.2.2

3.3. Discussion 63

and further assuming ‖f s‖HZ < λf , ‖h‖HZ < λh, with λf , λh ∈ R+ we have:

Vars[∇̂i] ≤4κ2
(
|S(x)|λµλf + λµλh

)2
(3.23)

See appendix A.2 for a derivation.

So far we focused on the gradients with respect to parameters appearing

in log p(x|z1; θ0). Analogously, the bias and variance can be bounded for

parameters higher up in the generative model θ1, ...θL. The absolute error of

the gradient for parameters θl linking zl and zl+1 in the generative model:

|∇l,i − Es ∇̂l,i| ≤κ
(
Es
[
‖µl − µsl ‖HΓ

]
‖fl‖HZ + Es

[
‖µl+1 − µsl+1‖HΓ

]
‖hl+1‖HZ

+ λµl Es
[
‖fl − f sl ‖HZ

])
(3.24)

And similarly for the variance:

Vars[∇̂l,i] ≤4κ2
(
λµlλfl + λµl+1

λhl+1

)2
(3.25)

Special case

In the case where both RKHSs HK and HL are finite dimensional, the Kernel-

HM admits the DDC-HM as a special case. The mean embedding map µ is a

matrix with dimensions of the corresponding feature spaces on X and Z. The

norm ‖.‖Γ corresponds to the Frobenius norm.

3.3 Discussion

Here, we introduced the Kernel Helmholtz machine, an algorithm for learning

hierarchical generative models that optimises the marginal log-likelihood directly

using approximate gradients. The model can be seen as a generalisation of the

DDC Helmholtz Machine, built on the theory of conditional mean embeddings

of distributions. The formulation of the algorithm allowed us to make formal

statements about convergence; we were able to relate the different sources of

approximation error to the speed of convergence and behaviour around the

64 Chapter 3. The Kernel Helmholtz Machine

stationary point of the log-likelihood. This is in contrast to methods relying on

the variational free energy, where a lower bound is optimised, and in general

there is no relationship between the stationary points of the objective being

optimised and the desired objective.

The only previous work that we are aware of on the convergence of the

Helmholtz Machine and wake-sleep algorithm was applied to an analytically

tractable model (a factor analysis model with a single latent variable; Ikeda

et al. (1999)).

An important assumption we made here is that the estimation problems in

the kernel-HM are well specified, that is, µ ∈ HΓ and fl,i, hl,i ∈ HZ . Showing

consistency of the gradient estimates when this is not the case—as for the

DDC Helmholtz machine corresponding to a finite dimensional RKHS—will be

important future work.

A. Appendix 65

A Appendix

A.1 Computing and learning gradients for the genera-

tive model parameters

The variational free energy for a hierarchical generative model over observations

x with latent variables z1 . . . zL can be written:

F(q, θ) =〈log p(x|z1)〉q(z1) +
L−1∑

l=1

〈log p(zl|zl+1)〉q(zl,zl+1) (3.26)

+ 〈log p(zL)〉q(zL) +H[q(z1 . . . zL)] (3.27)

where the distributions q represent components of the approximate posterior

and H[·] is the Shannon entropy. We take each conditional distribution to have

exponential family form. Thus (for example)

log p(zl|zl+1) = gl(zl+1, θl)
TSl(zl)− Φl(gl(zl+1, θl)) (3.28)

from which it follows that:

∇θl log p(zl|zl+1) = Sl(zl)
T∇θlgl(zl+1, θl)− Φ′l(gl(zl+1, θl))∇θlgl(zl+1, θl)

(3.29)

= Sl(zl)
T∇θlgl(zl+1, θl)− µz1|zl+1

∇θlgl(zl+1, θl) (3.30)

where we have used the standard result that the derivative of the log normaliser

of an exponential family distribution with respect to the natural parameter is

the mean parameter

µzl|zl+1
= 〈Sl(zl)〉pθl (zl|zl+1) . (3.31)

66 Chapter 3. The Kernel Helmholtz Machine

Thus, it follows that:

∇θ0F = ∇θ0〈log p(x|z1)〉q(z1) (3.32)

= S0(x)T 〈∇g(z1, θ0)〉q(z1) − 〈µTx|z1∇g(z1, θ0)〉q(z1) (3.33)

∇θlF = ∇θl〈log p(zl|zl+1)〉q (3.34)

= 〈Sl(zl)T∇g(zl+1, θl)〉q(zl,zl+1) − 〈µTzl|zl+1
∇g(zl+1, θl)〉q(zl+1) (3.35)

(for l = 1 . . . L− 1) and

∇θLF = ∇θL〈log p(zL)〉q = 〈SL(zL)〉 − ∇Φ(θL) (3.36)

These are the gradients that must be computed in the wake phase.

In order to compute these gradients from the DDC posterior representation

we need to express the functions of zl that appear in Eqs. 3.33–3.36 as linear

combinations of the encoding functions ψ(zl). The linear coefficients can be

learnt using samples from the generative model produced during the sleep phase.

The example given in chapter 2, section 2.2.2 is the most straightforward. We

wish to find

∇θ0g(z1, θ0) ≈
∑

i

α
(i)
0 ψi(z1) (3.37)

in which the coefficients α0 can be obtained from samples by evaluating the

gradient of g with respect to θ0 at z
(s)
1 and minimising the squared error:

α0 ← argmin
∑

s

(
∇θg(z

(s)
1 , θ0)− α0 ·ψ(z

(s)
1)
)2
. (3.38)

Once these coefficients have been found in the sleep phase, the wake phase

A. Appendix 67

expectations are found from the DDC recognition model very simply:

〈∇θ0g(z1, θ0)〉q(z1) ≈
∑

i

α
(i)
0 〈ψi(z1)〉q(z1) (3.39)

=
∑

i

α
(i)
0 r

(i)
1 (x, φ1) (3.40)

Some of the gradients (see Eq.3.35) require taking expectations using

the joint posterior distribution q(zl, zl+1|x). However, the recognition network

as we have described it in the main text only contains information about

the marginal posteriors q(zl|x), q(zl+1|x). It turns out that it is nevertheless

possible to estimate these expectations without imposing an assumption that

the approximate posterior factorises across the layers zl, zl+1.

We begin by noticing that due to the structure of the generative model the

posterior distribution q can be factorised into q(zl+1, zl|x) = p(zl+1|zl)q(zl|x)

without any further assumptions (where p(zl+1|zl)) is the conditional implied

by the generative model. Thus, we can rewrite the term in Equation 3.35 as:

〈Sl(zl)T 〈∇θlg(zl+1, θl)〉p(zl+1|zl)〉q(zl)

Now, we can replace the expectation 〈∇θlg(zl+1, θl)〉p(zl+1|zl) by an estimate

using sleep samples, i.e. for each pair of samples {z(s)
l , z

(s)
l+1} from the prior, we

have a single sample from the true posterior distribution z
(s)
l+1 ∼ p(zl+1|zl = z

(s)
l).

Thus, we obtain coefficients αl during the sleep phase so:

αl = argmin
∑

s

(
Sl(z

(s)
l)T∇θlg(z

(s)
l+1, θl)− αl ·ψ(z

(s)
l)
)2

(3.41)

which will converge so that

αl ·ψ(zl) ≈ Sl(zl)
T 〈∇θlg(zl+1, θl)〉p(zl+1|zl) . (3.42)

68 Chapter 3. The Kernel Helmholtz Machine

Now, during the wake phase it follows that

〈
Sl(zl)

T∇θlg(zl+1, θl)
〉
q(zl+1,zl)

= 〈Sl(zl)T 〈∇θlg(zl+1, θl)〉p(zl+1|zl)〉q(zl) (3.43)

≈
〈∑

i

α
(i)
l ψi(zl)

〉

q(zl)

(3.44)

=
∑

i

α
(i)
l r

(i)
l (x, φl) (3.45)

Thus, all the function approximations needed to evaluate the gradients

are carried out by using samples from the generative model (sleep samples) as

training data. The full set of necessary function approximations with (matrix)

parameters describing the linear mappings denoted by {αl}l=0...L, {βl}l=1...L is:

α0 : ψ(z
(s)
1) 7→ ∇θg(z

(s)
1 , θ0) (3.46)

βl : ψ(z
(s)
l) 7→ µT

zl−1|z(s)
l

∇θg(z
(s)
l , θl−1) (3.47)

αl : ψ(z
(s)
l) 7→ Sl(z

(s)
l)∇θg(z

(s)
l+1, θl) (3.48)

αL : ψ(z
(s)
L) 7→ SL(z

(s)
L) (3.49)

where the expressions on the right hand side are easy to compute given the

current parameters of the generative model. Note that µ
zl−1|z(s)

l
appearing in

equation 3.47 are expectations that can be evaluated analytically for tractable

exponential family models, as a consequence of the conditionally independent

structure of the generative model. Alternatively, they can also be estimated

using the sleep samples, by training

βl : ψ(z
(s)
l) 7→ Sl−1(z

(s)
l−1)

T∇θg(z
(s)
l , θl−1) (3.50)

Finally, putting the sleep and the wake phase together, the updates for

A. Appendix 69

the generative parameters during the wake phase are:

∆θ0 ∝ S0(x)Tα0r1(x, φ1)− β1r1(x, φ1)

∆θl ∝ αlrl(x, φl)− βl+1rl+1(x, φl+1)

∆θL ∝ αLrL(x, φL)−∇θLΦ(θL)

(3.51)

A.2 Bias and variance of the Kernel-HM gradient esti-

mator

Theorem A.1. Assume that

∃f ∈ HZ : d
dθi
g(z1, θ) = 〈f, kZ(z1, .)〉HZ ,

∃h ∈ HZ : mx|z1(z1)T d
dθi
g(z1, θ) = 〈h, kZ(z1, .)〉HZ ,

and f s, µs ∈ HZ

Further assume that ∃µ ∈ HΓ, µ : X → HZ such that Ez|x[h(z)] =

〈h, µ(x)〉HZ ∀x ∈ X , h ∈ HZ ,

‖µs‖HΓ
≤ λµ, ‖Γ(x, x)‖op ≤ κ, λµ, κ ∈ R+

Then:

∣∣∣∇i − Es[∇̂i]
∣∣∣ ≤Es [‖µ− µs‖HΓ

]
(
|S(x)| ∗ ‖f‖HZ + ‖h‖HZ

)
(3.52)

+ λµ|S(x)|Es[‖f − f s‖HZ]

Proof.

∣∣∣∇∗i − Es ∇̂i

∣∣∣ =|S(x)〈f, µ(x)〉HZ + 〈h, µ(x)〉HZ

− Es[S(x)〈f s, µs(x)〉HZ + 〈h, µs(x)〉HZ]|

=|Es[S(x)
(
〈f, µ(x)〉HZ − 〈f s, µs(x)〉HZ

)

+ 〈h, µ(x)〉HZ − 〈h, µs(x)〉HZ]|

70 Chapter 3. The Kernel Helmholtz Machine

Using the identity:

〈f, µ(x)〉HZ − 〈f s, µs(x)〉HZ = 〈f − f s, µs(x)〉HZ + 〈f, µ(x)− µs(x)〉HZ
(3.53)

=|Es[S(x)
(
〈f − f s, µs(x)〉HZ + 〈f, µ(x)− µs(x)〉HZ

)

+ 〈h, µ(x)− µs(x)〉HZ]|

As µ ∈ HΓ, we can use 〈f, µ(x)〉HZ = 〈µ,Γxf〉HΓ

=|Es[S(x)
(
〈µs,Γx(f − f s)〉HΓ

+ 〈µ− µs,Γxf〉HΓ

)

+ 〈µ− µs,Γxh〉HΓ
]|

≤Es[|S(x)|
(
|〈µs,Γx(f − f s)〉HΓ

|+ |〈µ− µs,Γxf〉HΓ
|
)

+ |〈µ− µs,Γxh〉HΓ
|]|

≤Es
[
|S(x)|

(
‖µs‖HΓ

‖Γx(f − f s)‖HΓ
+ ‖µ− µs‖HΓ

‖Γxf‖HΓ

)

+ ‖µ− µs‖HΓ
‖Γxh‖HΓ

]

≤κEs
[
|S(x)|

(
‖µs‖HΓ

‖f − f s‖HZ + ‖µ− µs‖HΓ
‖f‖HZ

)

+ ‖µ− µs‖HΓ
‖h‖HZ

]

≤κEs
[
‖µ− µs‖HΓ

](
|S(x)|‖f‖HZ + ‖h‖HZ

)

+ κλµ|S(x)|Es
[
‖f − f s‖HZ

]

Where we have used the assumption that the operator Γ(x, x) has norm

‖Γ(x, x)‖op ≤ κ, κ ∈ R+, therefore:

‖Γxh‖HΓ
=
√
〈Γxh,Γxh〉HΓ

=
√
〈h, (Γxh)(x)〉HZ

≤
√
‖h‖HZ ∗ ‖(Γxh)(x)‖HZ

=
√
‖h‖HZ ∗ ‖Γ(x, x)h‖HZ ≤ κ‖h‖HZ

A. Appendix 71

Vars[∇̂i] =Es
[(
S(x)〈f s, µs(x)〉HZ + 〈h, µs(x)〉HZ (3.54)

− Es[S(x)〈f s, µs(x)〉HZ + 〈h, µs(x)〉HZ]
)2]

(3.55)

=Es
[(
S(x)〈µs,Γxf s〉HΓ

+ 〈µs,Γxh〉HΓ
(3.56)

− Es[S(x)〈µs,Γxf s〉HΓ
+ 〈µs,Γxh〉HΓ

]
)2]

(3.57)

≤Es
[(
|S(x)〈µs,Γxf s〉HΓ

|+ |〈µs,Γxh〉HΓ
| (3.58)

+ Es[|S(x)〈µs,Γxf s〉HΓ
|+ |〈µs,Γxh〉HΓ

|]
)2]

(3.59)

≤κ2 Es
[(
|S(x)|‖µs‖HΓ

‖f s‖HZ + ‖µs‖HΓ
‖h‖HZ (3.60)

+ Es[|S(x)|‖µs‖HΓ
‖f s‖HZ + ‖µs‖Γ‖h‖HZ]

)2]

≤4κ2
(
|S(x)|λµλf + λµλh

)2
(3.61)

Part II

Learning and computing with

uncertainty in the brain

73

Chapter 4

Neural Representations of

Uncertainty

1 Behavioural evidence for probabilistic com-

putations

It was perhaps first put forward by Hermann von Helmholtz that sensory

perception should be viewed as a process of unconscious inference (Helmholtz,

1867). He argued that percepts are influenced not only by the physical properties

of sensory stimuli directly but also by one’s (often unconscious) interpretations

or conclusions derived from them.

A growing body of behavioural evidence supports the hypothesis that

the brain is able to perform probabilistic reasoning, often resulting in near

optimal performance in tasks that require explicit handling of uncertainty.

While Bayesian theories of the brain have been most dominant in the study

of perception (Knill and Richards, 1996; van Beers et al., 1999; Ernst and

Banks, 2002; Knill, 1998; Jacobs, 1999), experimental evidence extends to a

wide range of brain functions from sensorimotor (Wolpert et al., 1995; Körding

and Wolpert, 2004; Todorov, 2004) to cognitive (Tenenbaum and Griffiths,

2002; Chater et al., 2006; Steyvers et al., 2006) domains.

A critical feature of perceptual experiments demonstrating probabilistic

computations and representations is that they require the use of uncertainty

76 Chapter 4. Neural Representations of Uncertainty

information about the sensory evidence available on each trial, rather than just

point estimates. This requirement can be quite subtle, as not all probabilistic

tasks require explicit handling of uncertainty. Yang and Shadlen (2007) designed

a weather-prediction task where monkeys needed to use probabilistic evidence

provided by four different shapes to predict which side will be rewarded in a

given trial. While the neural data was consistent with probabilistic evidence

integration, the optimal solution to the behavioural task did not necessarily

require probabilistic reasoning. As the monkeys received trial-to-trial feedback,

it is in fact possible to solve this task without having to keep track of uncertainty

about the correct decision.

Multisensory cue integration has been a powerful paradigm for characteris-

ing Bayesian perception, allowing for trial-to-trial manipulation of the relative

reliability of the combined modalities. In an early study on this subject, Ernst

and Banks (2002) asked subjects to report the height of a bar (relative to a

reference bar) using visual and haptic information. The reliability of visual evi-

dence was varied across trials and information from the two different modalities

provided slightly conflicting evidence about the height of the bar. They found

that subjects weighted the visual and haptic information according to their

reliability, consistent with Bayesian cue combination. Importantly, subjects

received no feedback throughout the experiment, thus, arguably the task could

probe whether they used existing sensory representations of uncertainty.

Several other human psychophysics studies have demonstrated similar

results including visual-auditory (Battaglia and Schrater, 2007; Alais and Burr,

2004; Shams et al., 2005), visual-proprioceptive (van Beers et al., 1999) and

visual-vestibular (MacNeilage et al., 2007) cue integration experiments (see

Trommershauser et al. (2011) for an extensive review of the subject).

A complementary line of work has studied multimodal sensory integration

and the corresponding neural representations in non-human primates (Gu et al.,

2008; Morgan et al., 2008; Fetsch et al., 2009). In accord with human data,

they found that macaques were able to take into account uncertainty about

2. Uncertainty in neural systems 77

visual information when combining it with vestibular self-motion cues in a

heading direction discrimination task.

Other studies have focused on how prior statistical knowledge influences

decisions when combined with sensory evidence. Körding and Wolpert (2004)

have shown using a sensorimotor task that subjects are able to take into account

both the prior distribution induced by the task and uncertainty about sensory

feedback. It has also been shown that subjects use prior distributions based on

natural statics to estimate passage of time (Ahrens and Sahani, 2011) or speed

of visual stimuli (Stocker and Simoncelli, 2006) in a way that is consistent with

Bayesian inference.

Whiteley and Sahani (2008) used a visual discrimination task with asym-

metric reward contingencies varied across trials and withheld trial-to-trial

feedback. They found that subjects adjusted their decisions to approximately

maximise expected rewards. While the underlying sensory uncertainty was not

explicitly modulated in this experiment, it is required to make decisions that

maximise the expected reward on each trial.

These experiments provide converging evidence about the brain’s ability

to learn about and compute with uncertainty. The high degree of flexibility

with which behaviour is adapted to changes in uncertainty about task-relevant

variables, suggests that neural systems represent distributional information, at

least implicitly.

2 Uncertainty in neural systems

While there is strong behavioural evidence that neural systems learn to perform

probabilistic inference, how uncertainty is represented in population of neurons

remains elusive. In the following, we introduce some relevant concepts and

terminology in this framework that will allow us to discuss specific proposals

for how neural systems might perform probabilistic inference.

Consistent with experimental data, it has been postulated that the brain

acquires an internal model capturing the statistics of its sensory environment.

78 Chapter 4. Neural Representations of Uncertainty

Internal models can be mathematically formalised as latent variable generative

models discussed in Part I of this thesis. Generative models summarise the

organism’s knowledge about latent variables not directly observable and how

they give rise to observed sensory stimuli in the form of a probability distribution.

It is often instructive to write the joint distribution over latent and observed

variables as a product of the likelihood function and the prior distribution:

p(x, z) = p(x|z)︸ ︷︷ ︸
likelihood

p(z)︸︷︷︸
prior

(4.1)

where x, z denote the collection of all observed and latent variables, respectively.

Latent variables in directed acyclic graphical models (DAGs), such as the

deep exponential family models introduced in section 1.2, are also referred to

as latent causes1 or explanatory variables. DAGs can encode structure through

conditional independence relationships, e.g. when the presence of objects in

the scene introduce correlations between some lower level features of the image,

but when conditioned on the identity of the object those features become

independent.

Figure 4.1 illustrates the computational problem using the example of

vision. In this setting, the objective for the generative model is to capture

the distribution of natural images, while learning a prior distribution over the

relevant latent variables (e.g. objects, shapes, textures). Generative models

used to model natural image or sound statistics are often hierarchical, reflecting

the hierarchical composition of the real world.

In machine learning and unsupervised learning it is customary to treat

images (or raw audio signals) as observed variables. However, from the brains

perspective there is an additional step of sensory transduction. So in practice,

peripheral receptor activations should be considered as observations. To il-

lustrate this subtlety, in fig. 4.1 we have introduced an intermediate variable

x̂ (in grey), denoting the transduced stimulus (e.g. retinal activity). The

1Note that the statistical relationships encoded in DAGs do not correspond to causality
in a formal sense.

2. Uncertainty in neural systems 79

q(z2|x̂) ?←→ rz2

q(z1|x̂) ?←→ rz1

x̂ transduced stimulusximage

z1features

z2objects

Generative model Recognition model

Figure 4.1: Perception as Bayesian inference.
Illustration of the generative and recognition models using the example
of vision. Black arrows represent conditional dependences between ran-
dom variables denoted by circles, nodes with grey background represent
observed variables. Orange arrows depict mappings corresponding to
a possible recognition model reflecting the structure of the generative
model. rz1 and rz2 correspond to neural activity (e.g. firing rate)
representing the inferred (approximate) posterior distributions q(z1|x̂)
and q(z2|x̂).

relationship between the image presented on a screen and the retinal image

(dashed arrow in fig. 4.1) is typically stochastic, with noise being introduced

by the variable number of photons reaching the eye and sensory noise, the

variability in receptor responses.

Ultimately, the problem that is most relevant for sensory systems is learn-

ing to invert the generative model, that is, performing inference over the

latent variables given sensory observations. This process requires probabilistic

reasoning as the generative model does not typically specify a deterministic

relationship between latent and observed variables but describes dependencies

using probability distributions. Formally, the result of inference is a posterior

distribution over the possible latent causes that might have generated the

sensory stimulus.

A biologically plausible way to implement inference is through a recognition

model, a function that maps observations to the inferred posterior distribution

(Gershman and Goodman, 2014; Dasgupta et al., 2018). Performing inference

using a recognition or inference network is also referred to as amortised inference.

80 Chapter 4. Neural Representations of Uncertainty

The computational cost of computing the corresponding posterior for individual

observations is amortised by a learned model—typically a neural network—with

parameters shared across observations.

The posterior distributions q(zi|x) returned by the recognition model are

intended to capture uncertainty about latent variables zi. One source of this

uncertainty is variability in the neural responses due to for example noisy

sensory transduction or variability in synaptic release. That is, given retinal or

V1 activity there will be a degree of uncertainty about the physical attributes

of an image (e.g. colour and luminance of each pixel). Neural and sensory

noise can be thought of as a form of measurement noise and can be in some

cases averaged out by longer stimulus presentation time or pooling over a larger

population of neurons.

Perhaps more importantly, uncertainty also arises from ambiguity in the

generative process itself, i.e. multiple settings of the latent variables might

give rise to the same image. A ubiquitous example is when the inference

problem is underdetermined, as in the case of inferring three-dimensional

shapes from images or when the scene contains some form of occlusion. In

these cases, the resulting uncertainty is irreducible, sometimes referred to as

inferential uncertainty, and would be present even with fully deterministic

neural machinery.

Capturing inferential uncertainty correctly can be vital especially when

reasoning about more abstract, behaviourally relevant variables, such as the

presence of a predator. Yet, it is often overlooked in some of the most influential

works on this topic, e.g. from Ma et al. (2006):

It is critical to realize, however, that variability and uncertainty

go hand in hand: if neuronal variability did not exist, that is, if

neurons were to fire in exactly the same way every time you saw

the same object, then you would always know with certainty what

object was presented.

Relatedly, while variability in neural responses introduces an additional

3. Proposals for neural representation of uncertainty 81

source of uncertainty, the neural representation of uncertainty need not rely

on variability per se. Deterministic codes, such as the mean and variance of a

Gaussian, can convey information about uncertainty. We will return to these

points in the following sections when discussing concrete proposals for neural

representations of distributions.

3 Proposals for neural representation of uncer-

tainty

The wealth of behavioural evidence for probabilistic computations motivated a

number of theoretical proposals for how uncertainty (i.e. probability distribu-

tions) may be represented and how the relevant computations are performed

by neural systems. In this section, we review the most significant proposals,

discussing their key properties and potential short-comings.

3.1 Linear density codes

Possibly the earliest work considering population codes for probability

distributions—rather than just point estimates—was Anderson (1994). Ander-

son introduced a coding scheme closely related to kernel density estimation

(KDE, Rosenblatt (1956); Parzen (1962)), a simple non-parametric method

for estimating distributions. The KDE code assigns a basis or kernel function

ψi(s) to each neuron i in the population. Then, the distribution over the

variable s represented by the population can be linearly reconstructed using

the population activity and the basis functions:

p(s) =
∑

i

r̃iψi(s) (4.2)

where r̃i is the normalised firing rate of neuron i, ensuring that the distribution

p(s) integrates to 1. If the basis functions ψi(s) are density functions themselves,

a suitable choice is r̃i = ri/N , where ri is the firing rate of neuron i and N is

the size of the population. Figure 4.2 illustrates the relationship between the

basis functions, neural activity and the resulting distribution.

82 Chapter 4. Neural Representations of Uncertainty

Importantly, the kernel functions ψi are not directly related to tuning

functions typically measured in experiments, and need not be explicitly repre-

sented. When the kernel functions are densities (i.e. non-negative functions)

the range of spatial frequencies that the KDE code can represent is limited by

the width of the kernel functions. The KDE code—or linear density code—is

formulated using a decoding perspective, that is, it provides a recipe for how

the density function p(s) can be decoded from the population. Deriving an

encoding model, that predicts neural activity consistent with the KDE code

for a given distribution p(s), is non-trivial in general.

Given a set of kernel functions and a distribution p?(s), the corresponding

neural activity can be found by minimising a divergence measure (e.g. the

Kullback-Leibler divergence) between the distribution to be encoded and the

distribution implied by firing rates r: r = argmin
r

D[p?(s)||pr(s)]

Anderson (1994) suggested an alternative method of projections, where

the firing rates ri can be found analogously to a linear regression problem:

ri =

∫
p?(s)fi(s)ds (4.3)

with fi(s) =
∑

j

A−1
ij ψj(s) (4.4)

Aij =

∫
ψi(s)ψj(s)ds (4.5)

Intuitively, in equation 4.3 the function fi(s) plays the role of a tuning curve,

and the firing rate of neuron i is equal to the projection of the distribution

p?(s) onto the corresponding tuning curve.

3.2 Distributional population codes

Zemel et al. (1998) started from a simple statistical description of population

responses, often called the Poisson encoding model, that has been widely used

to study coding properties of noisy neural populations (Seung and Sompolinsky,

1993; Salinas and Abbott, 1994; Snippe, 1996). The Poisson model is motivated

by the apparent neural variability observed on repeated presentation of the same

3. Proposals for neural representation of uncertainty 83

−4 −2 0 2 4 6
s

0.0

0.2

0.4

0.6

0.8

a
Basis functions ψ(s)

−4 −2 0 2 4 6
preferred s

0

5

10

15

20

fir
in

g
ra

te

b

0.00

0.05

0.10

0.15

0.20

Represented distribution

p(s)

Figure 4.2: Kernel density estimator (KDE) code. (a) Basis functions corresponding
to individual neurons in the population. (b) Stem plot (in color) shows
firing rates of four neurons corresponding to the basis functions in
(a). The distribution represented can be decoded by a kernel density
estimator, i.e. a sum of the basis functions weighted by the firing rates.

stimulus value. The neural responses thus can be captured as a conditional

distribution given the stimulus s:

p(ri|s) = exp(−fi(s))
fi(s)

ri

ri!
(4.6)

where ri is the firing rate of neuron i in the population and fi is the corresponding

tuning curve describing the mean response.

As the authors argued, the Poisson model has a crucial limitation that it

considers encoding only a single value s rather than a distribution p(s). While

the stochasticity in the neural activity introduces uncertainty about the value

of s when trying to decode it from the responses, the decoded distribution

p(s|r) necessarily collapses to a Dirac-delta function as the number of neurons

or the observed time interval grows.

Motivated by the shortcomings of the Poisson model, Zemel et al. intro-

duced a coding scheme that describes response variability given an explicit

distribution over s: p(r|p(s)), the extended Poisson model or, as it was later

referred to, the distributional population codes (Zemel and Dayan, 1999). Dis-

tributional population codes (DPCs) encode uncertainty in a population of

neurons using a set of expectations of encoding functions with respect to the

84 Chapter 4. Neural Representations of Uncertainty

represented distribution:

E[ri] = Ep(s)[ψi(s)], (4.7)

where E[ri] is the mean firing rate of neuron i and ψi is the corresponding

encoding function. The encoding functions are closely related to classical

tuning curves, with an exact correspondence when the encoded distribution is a

Dirac-delta function (i.e. when only a single value is encoded). The expectation

with respect to a Dirac-delta function centred at s0 amounts to evaluating the

encoding function at that value:

Eδ(s−s0)[ψi(s)] = ψi(s0) (4.8)

DPCs have also been interpreted as convolutional codes (Pouget et al., 2003),

viewing equation 4.7 as a convolution between the density p(s) and kernel

functions ψi(s).

Eq. 4.7 defines an encoding model that describes neural activity as a

function of the encoded distribution. Unlike in the case of KDE codes, recovering

the density function from a DPC is non-trivial in general. Zemel et al. (1998)

proposed a maximum a posteriori decoding scheme assuming Poisson neural

variability with regularisation ensuring smoothness of the density function.

DPCs have been generalised to be able to jointly encode uncertainty and

multiplicity over sensory variables (Sahani and Dayan, 2003). Multiplicity is the

simultaneous presence of multiple distinct stimuli, for example, multiple sound

sources at different azimuth angles. Doubly distributional population codes

(DDPC) represent uncertainty about a function m—capturing multiplicity

of the variable s—rather than simply uncertainty about the variable s itself.

DDPCs follow much the same logic as their DPC cousin, m is first encoded

using a set of features ψi:

φi(m) =

∫
m(s)ψi(s)ds (4.9)

3. Proposals for neural representation of uncertainty 85

Then, neural activity is set to be the expectation of features φi(m) with respect

to the distribution over functions m(s):

E[ri] = Ep(m)[φi(m)] (4.10)

Note that in our own work, we refer to a close variant of DPCs as dis-

tributed distributional code or DDC (see also section 2.1). DDCs differ from the

original formulation of the DPCs in that they specify only the encoding model

(eq. 4.7), providing an implicit representation of the distribution through a set of

expectations. This coding scheme provides a set of constraints on a distribution

in the form of its generalised moments, analogous to the first, second, third

etc. moments in statistics. DDCs can be viewed as specifying an exponential

family distribution—the maximum entropy distribution that satisfies those

constraints— with sufficient statistics vector ψ(s) = [ψ1(s), . . . , ψN(s)]:

p(s) ∝ exp
(
θTψ(s)

)
(4.11)

DDCs correspond to the mean parameters or expected sufficient statistics of the

distribution µ = Ep(s)[ψ(s)]—a parametrisation equivalent to the commonly

used natural parameters θ (Wainwright and Jordan, 2008). Computing the

corresponding natural parameters θ (and thus the density function p(s)) from

the mean parameters is often analytically intractable. However, from the

brain’s perspective, recovering the density function p(s) is rarely necessary.

Most computations involving uncertainty amount to computing expectations

with respect to the represented distribution and can therefore be approximated

as a linear readout from the DDC representation (see eq. 2.4).

Figure 4.3 illustrates the effects of uncertainty on the DDC population

response representing Gaussian distributions with different variances, assuming

Gaussian encoding functions. In this setting, DDCs predict that population

activity (and tuning curves) get wider with higher uncertainty. This is broadly

consistent with some neural data, like the widening of visual heading tuning

86 Chapter 4. Neural Representations of Uncertainty

−4 −2 0 2 4 6
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6
p(
s)

a
Probability distributions

0.5

1.0

3.0

−4 −2 0 2 4 6
s

0.0

2.5

5.0

7.5

10.0

12.5

ψ
(s

)

b
Encoding functions

−4 −2 0 2 4 6
preferred s

0

2

4

6

8

10

fir
in

g
ra

te

c
Population responses

0.5

1.0

3.0

Figure 4.3: Distributed distributional codes. (a) Gaussian densities with differ-
ent variances. (b) Gaussian encoding functions (ψi(s)) with different
preferred values of s. (c) DDC population firing rates with neurons
sorted by their preferred s. Wider population activity corresponds to
distributions with higher variance.

curves observed in macaque MSTd at lower motion coherence (Morgan et al.,

2008).

3.3 Probabilistic population codes

Ma et al. (2006) introduced probabilistic population codes (PPC) starting from

the ubiquitous observation that neurons in sensory areas show trial-to-trial

variability in their responses when repeatedly presented with the same stimulus

(Tolhurst et al., 1983). Due to these variable responses, there are multiple

stimulus values consistent with any given observed neural activity. Ma et al.

argued that this variability implicitly represents uncertainty about the value of

the stimulus. In contrast to earlier proposals of how populations of neurons

might encode probability distributions (Anderson and Essen, 1994; Zemel et al.,

1998), in the case of PPCs, neural variability was presented as an essential part

of the code for uncertainty. In this section, we describe PPCs as presented

by Ma et al., followed by a discussion of some conceptual limitations of the

original framework as well as a closely related proposal that resolves those

shortcomings.

Formally, the variability in the population response given a stimulus s can

be described by a conditional probability distribution p(r|s). When viewed

as a function of the stimulus, this distribution is equivalent to the likelihood

function L(s|r) = p(r|s) which expresses how likely a stimulus value is given

the observed neural response. In a probabilistic population code neural activity

3. Proposals for neural representation of uncertainty 87

r encodes uncertainty about the stimulus s through this likelihood function,

exploiting the relationship given by Bayes’ rule:

p(s|r) ∝ p(r|s)p(s) (4.12)

That is, PPCs are defined using a decoding perspective: if the form of

the likelihood p(r|s) and the prior distribution p(s) are known (or a uniform

prior is assumed), we can read out the posterior distribution over the presented

stimulus from the population activity r.

Spike count variability is often described with a Poisson-like distribution;

for independent Poisson neural variability the likelihood function p(r|s) takes

the following form:

p(r|s) =
∏

i

1

ri!
exp(−fi(s))fi(s)ri (4.13)

where fi(s) is the tuning curve of neuron i, determining the mean spike count.

Assuming a flat prior p(s) ∝ 1, the posterior distribution over the encoded

stimulus s given the neural response r is proportional to the likelihood:

p(s|r) ∝ exp
(∑

ri log fi(s)−
∑

i

fi(s)
)

(4.14)

log p(s|r) =
∑

i

ri log fi(s) + const. (4.15)

One of the key features of PPCs is that the log-posterior over the stimulus

s is linear in the neural activity r (see eq. 4.15). Log-linear codes like PPC

enable implementation of computations that require multiplying distributions

in a particularly simple form. A common example of such a computation

is cue combination, i.e. when sensory evidence about the stimulus coming

from different sources needs to be combined. As in the classic experiment

from Ernst and Banks (2002), the size of an object could be inferred from the

available haptic and visual information. In this case, Bayesian cue combination

88 Chapter 4. Neural Representations of Uncertainty

involves computing the posterior belief about the size of the object given the

bimodal sensory evidence from beliefs constructed based on the visual or haptic

information alone.

Assuming that sensory variability for a given object size is independent in

the two modalities, i.e. p(rv, rh|s) = p(rv|s)p(rh|s), the posterior given both

haptic and visual evidence can be constructed as follows:

p(s|rv, rh) ∝ p(rv|s)p(rh|s)p(s) (4.16)

If the visual and haptic likelihood functions, p(rv|s) and p(rh|s) are represented

in two corresponding populations in the form of a PPC—with two sets of

tuning curves {fi(s)} identical up to proportionality—the bimodal posterior

distribution can be represented as a PPC as well, by simply summing the

population codes: rvh = rv + rh. Following from eq. 4.16:

p(s|rv, rh) ∝ exp
(∑

i

rvi log(gvfi(s)) + rhi log(ghfi(s))
)
p(s) (4.17)

∝ exp
(∑

i

(rvi + rhi) log fi(s)
)
p(s) (4.18)

∝ p(rvh|s)p(s) (4.19)

where gv, gh are the gain parameters of the corresponding visual and haptic

tuning curves. For Gaussian shaped tuning curves fi(s) the likelihood function

represented by a PPC is also an unnormalized Gaussian as a function of s:

p(r|s) ∝ N (s|µ, σ2), with mean and variance determined by the population

activity r:

µ =

∑
i risi∑
i ri

, σ2 =
σ2
f∑
i ri

(4.20)

where si and σ2
f are the mean and variance of the tuning curves fi(s). If the

tuning curves are scaled by a scalar gain parameter g, scaling the population

activity r accordingly; the width of the encoded likelihood function will be

3. Proposals for neural representation of uncertainty 89

inversely proportional to this gain: g ∝ 1/σ2 (see fig. 4.4 c,e).

The assumption of identical tuning in the two populations can be relaxed

if the tuning curves can be linearly constructed from a common basis set. In

that case, the bimodal PPC can be computed as weighted combination of the

unimodal representations instead of simple summation (Ma et al., 2006).

PPCs retain this summation property if generalised to certain types of

non-Poisson variability, where the log-likelihood log p(r|s) is linear in the neural

response:

p(r|s, g) = φ(r, g) exp
(
rTh(s)

)
(4.21)

i.e. the likelihood is of an exponential family with linear sufficient statistics on

r with gain dependent base measure φ(r, g).

3.4 Natural parameter codes

PPCs, as presented by Ma et al. (2006), are inspired by the observation that

neural responses are variable given repeated presentation of the same stimulus

and this variability inevitably introduces uncertainty about the value of the

stimulus. This perspective is equivalent to a noisy encoding of a single value of

the stimulus which then can only be decoded with some uncertainty, rather than

directly encoding a distributional quantity as discussed by Zemel et al. (1998).

Thus, PPCs are designed to capture uncertainty introduced by variability

within the area encoding the stimulus itself (or in upstream areas) and do not

allow for encoding uncertainty arising from partial observability or ambiguity.

While uncertainty is often induced at least partly by neural variability and

in those cases it is naturally reflected in the likelihood p(r|s), in general, the

neural code for uncertainty need not involve variability at all. In particular,

a log–linear encoding scheme that does not rely on the variability in the

population activity to represent uncertainty can be defined. Assuming that

the class of posterior distributions q(s|x) needed to be represented are in the

exponential family with sufficient statistic T (s), the neural activity (firing rates

90 Chapter 4. Neural Representations of Uncertainty

−4 −2 0 2 4 6
s

0

1

2

3

4

5

6

fir
in

g
ra

te
(H

z)

a
Tuning curves

−4 −2 0 2 4 6
preferred s

0.0

2.5

5.0

7.5

10.0

12.5

#
sp

ik
es

b
Polpulation response

−4 −2 0 2 4 6
s

0.00

0.05

0.10

0.15

p(
s|r

)

d
Decoded posteriors

−4 −2 0 2 4 6
preferred s

0.0

2.5

5.0

7.5

10.0

12.5

m
ea

n
ra

te
ccc

Population response with different gains

g1

g2

g3

−4 −2 0 2 4 6
s

0.00

0.05

0.10

0.15

0.20

p(
s|r

)

eee
Decoded posteriors

g1

g2

g3

Figure 4.4: Probabilistic population codes. (a) Tuning curves describing the mean
firing rate of individual neurons in the population. (b) Population
response to a stimulus s = 0 with neurons sorted by their preferred
stimulus, spike counts (orange) and mean rate (blue). (c) Mean popula-
tion responses with three different gains. (d) Decoded posteriors p(s|r)
on single trials. (e) Decoded posteriors from single trial responses with
gains as in (c).

3. Proposals for neural representation of uncertainty 91

r) can be used to set the natural parameters of this distribution:

q(s|x) ∝ exp
(
r(x)TT (s)

)
(4.22)

where the r(x) reflects the dependence of the natural parameters r on the

observations due to conditioning. We will refer to this encoding scheme as

natural parameter codes. The key distinction between PPCs and natural

parameter codes is that neural activity r encodes the distribution q(s|x) using

the parameters of the density function and therefore depends directly on the

observed variable x, rather than defined implicitly through p(r|s). However,

log-linear codes share the property of PPCs that cue combination can be

implemented by summing the population activities.

Importantly, deterministic codes for uncertainty like the above (eq. 4.22) are

also expected to show trial-to-trial variability, as sensory noise (e.g. transduction

noise in the retina) will lead to variability in the transduced sensory observations

(x). Hence, the distribution describing this variability p(r|s) can be computed

for any deterministic encoding scheme: r = ρ(x), with a function ρ that maps

from the observations to some parametric representation of the posterior belief

q(s|x):

p(r|s) =

∫
dxδ(r − ρ(x))p(x|s) (4.23)

where p(x|s) is the likelihood in the true generative model and δ(.) is the Dirac

delta function.

Thus, the structure of the apparent trial-to-trial variability measured when

we condition on an external stimulus feature s depends on a number of factors:

the encoding scheme and the encoded belief q(s|x) through ρ(x) and the form

of the generative likelihood function p(x|s).

In a special case of deterministic log-linear codes (eq. 4.22), the distribution

of neural responses p(r|s) computed based on eq. 4.23 is log-linear in r—just like

in the case of PPCs—when the prior p(s) is flat and the represented belief q(s|x)

92 Chapter 4. Neural Representations of Uncertainty

is in the same exponential family as the true posterior p(s|x) (see appx. D.1):

p(r|s) ∝ exp
(
rTT (s)

)
(4.24)

In general, however, this need not be the case, for example when the

represented belief is from a different (typically more restricted) exponential

family than the true posterior distribution. (This means that the distribution

describing trial-to-trial neural variability (when viewed as a function of the

latent variable) does not necessarily correspond to the represented posterior

belief.)

A related point that is worth discussing here is about the relationship

between how distributions might be encoded in a population of neurons versus

how such distributions can be decoded. Equation 4.23 implies that for an

arbitrary deterministic encoding scheme r = ρ(x) we can construct a Bayesian

decoder p(s|r) and the decoded distribution—under mild conditions on ρ(x)—

will coincide with the posterior p(s|x) implied by the generative model. For

instance, if the encoding function is the identity: r = ρ(x) = x, then the

statement is trivially true as p(s|r) = p(s|x). In general, decoding p(s|r) from

the population activity r will result in the posterior p(s|x) as long as r = ρ(x)

preserves the statistics of x that are sufficient to construct the posterior p(s|x).

Log-linear encoding schemes imply that the decoder p(s|r) will be log-linear

in r, however, the converse is not necessarily true: the fact that the posterior can

be decoded by a log-linear decoder does not imply that the encoding scheme was

a log-linear one. Figure 4.5 illustrates this on an example when the population

activity encodes posterior uncertainty using DDCs: ri(x) = Es|x[ψi(s)]. Neural

responses in this case would show trial-to-trial variability when conditioned on

a given value of the stimulus (fig. 4.5a), and the encoded posterior p(s|x) can

be decoded from the population activity r using a log-linear decoder (fig. 4.5b).

As this toy example illustrates, the decoding perspective adopted by PPCs

(e.g. in Walker et al. (2019)) can not address the question of what encoding

scheme is used in the population, it can merely be used to demonstrate that

3. Proposals for neural representation of uncertainty 93

−4 −2 0 2 4
s

0.0

0.2

0.4

0.6

0.8

b
Decoded posteriors from a single trial

q(s|x)

q(s|rDDC)

q(s|r̃DDC)

p(s|x)

−4 −2 0 2 4 6
preferred s

0

2

4

6

8

10

r(
x

)
=
E
s|x

[ψ
(s

)]

a
Trial to trial variability with DDCs

Figure 4.5: Bayesian decoding from DDCs. (a) Trial-to-trial variability of a popula-
tion encoding posterior uncertainty by a DDC, neurons sorted by their
preferred value of s. On each trial the observations x vary according
to the generative process p(x|s), resulting in a variability of encoded
posteriors r(x) = Es|x[ψ(s)]. (b) Bayesian decoding of s on a single trial
from, the observation x (blue), from the noiseless DDC representation
(orange), from DDC representations embedded in Poisson noise (green).

information about uncertainty is present in the neural activity.

3.5 Neural sampling

The neural sampling hypothesis was first introduced by Hoyer and Hyvärinen

(2003), suggesting that neural variability is directly related to the uncertainty

represented in the population. The idea has been inspired by a family of

approaches in Bayesian statistics called Monte Carlo sampling, originating from

mathematical physics (Metropolis and Ulam, 1949). Monte Carlo methods are

designed to represent and compute with intractable densities using samples

from the distribution rather than an explicit parametric form.

Analogously, Hoyer and Hyvärinen proposed that neural firing rates might

represent samples from posterior distributions over latent variables of interest,

making a direct link between neural variability and uncertainty. The authors

suggested two (not mutually exclusive) possibilities for how sampling might

be implemented in the brain. Uncertainty over a continuous variable could

be reflected in the firing rate variability of a single neuron over time, where

the instantaneous rate at certain points in time represents a sample from the

distribution. Alternatively, variability across different neurons in the population

can instantaneously represent uncertainty. While this approach does not require

94 Chapter 4. Neural Representations of Uncertainty

integrating neural activity thorough time, it assumes a degree of redundancy,

multiple neurons representing samples of the same variable in parallel.

The sampling hypothesis provides a possible account for trial-to-trial neural

variability widely observed in the cortex (Dean, 1981; Tolhurst et al., 1983). It

also makes the prediction that firing rate variability will grow with uncertainty

about the represented variables.

Hoyer and Hyvärinen showed that posterior sampling in a probabilistic

independent component analysis model (ICA; Bell and Sejnowski (1997); Ol-

shausen and Field (1997))—often used to model V1 responses—can reproduce

Poisson-like variability. They also argued that neural sampling can explain the

phenomenon of visual competition observed when subjects view an image with

multiple likely interpretations, such as the Necker cube or Rubin’s vase/face

figure. The reported percept alternates between the different interpretations

and neural correlates of the change in percept have been found in higher visual

areas (Logothetis and Schall, 1989; Blake and Logothetis, 2002). In this setting,

bistable percepts correspond to a bimodal posterior distribution and neural

activity will sample regions around the modes, occasionally switching between

different modes of the distribution.

The idea of neural sampling was taken further by Berkes et al. (2011), who

proposed that spontaneous activity in visual cortex is consistent with sampling

from the prior corresponding to natural statistics, while evoked activity can

be interpreted as samples from a posterior distribution in a generative model

of natural images. They reported that during development the statistics of

spontaneous activity in ferret V1 showed increased similarity to responses

evoked by naturalistic visual stimuli. These observations are consistent with

Bayesian theories of perception where we expect that the brain’s internal model

of its sensory environment (captured as a prior distribution) gradually adapts

to natural statistics.

Predictions of the sampling representation has been analysed by Orbán

et al. (2016) in the context of performing inference in a Gaussian scale mixture

3. Proposals for neural representation of uncertainty 95

model (GSM; Wainwright and Simoncelli 2000). They have shown that sampling

from the posterior distribution over the latent (feature activation) variables

in a GSM model can account for a number of experimental observations in

V1 electrophysiology. The parameters of the model were set (or learned) to

match the distributions of natural image patches (van Hateren and van der

Schaaf, 1998) and the samples of the latent variables were interpreted as the

membrane potential of individual neurons. The resulting model could reproduce

phenomena such as the drop in membrane potential variability with stimulus

onset, stimulus dependent membrane potential variability or the relationship

between spontaneous, signal and noise correlations. Furthermore, Orbán

et al. have replicated findings of earlier related models including non-classical

receptive field effects and contrast invariant orientation tuning (Schwartz and

Simoncelli, 2001; Anderson et al., 2000; Finn et al., 2007).

The contrast invariant property of tuning curves widths in primary visual

cortex has been used to argue in favour of PPCs or natural parameter codes.

Change in contrast is often used as a proxy for change in uncertainty, and it is

reflected in log-linear codes as a multiplicative scaling of neural activities, thus

producing contrast invariant tuning.

Contrast invariant tuning also emerges in the GSM model: the analysis of

Orbán et al. shows that contrast invariance can be derived from properties of

the generative model and is likely not specific to the neural representation of

uncertainty as previously argued (Pouget et al., 2013).

A number of theoretical works have addressed technical challenges related

to the neural circuit implementation of sampling. Hennequin et al. (2014);

Aitchison and Lengyel (2016) studied how sampling can be efficiently imple-

mented in recurrently connected excitatory-inhibitory networks. Buesing et al.

(2011) has shown how sampling from binary variables can be implemented in a

network of spiking neurons.

Kutschireiter et al. (2017) described how sampling could be potentially

implemented by neural dynamics in a simple dynamic model by an approach

96 Chapter 4. Neural Representations of Uncertainty

0 5 10
s1

−2

0

2

4

6

8

10
s 2

a
p(s)

0 5 10 15
time

−2

0

2

4

6

8

10

u
(t

)

b

u1

u2

Figure 4.6: Sampling representation. (a) A 2-dimensional example of a bimodal
distribution represented non-parametrically, as a set of samples (in blue).
(b) According to the proposal of Orbán et al. (2016), the sampling
process is reflected in the temporal fluctuations of the membrane
potentials u1 and u2, coding for variables s1 and s2 of the distribution
shown in (a).

derived from particle filtering.

4 Discussion of different proposals

There is a number of competing theories about how neural systems represent

uncertainty information, however, experimental validation (or rather falsifica-

tion) has remained difficult. One of the challenges in studying representations

of uncertainty experimentally is the lack of single trial characterisation of

neural activity. Trial-averaged data can often not distinguish between different

proposals. For example, if neurons responded according to a tuning curve

with a given width independently of the degree of uncertainty, the resulting

trial-averaged tuning would still appear broader due to the variable (neural)

point estimates of the stimulus value on each trial.

Neuronal variability plays different roles in the representations we have

reviewed in the previous section. In the sampling representation variability

codes directly for uncertainty, while in the case of PPCs, it is coupled to the

mean activity and therefore conveys the same information. Deterministic codes

4. Discussion of different proposals 97

like KDEs, DDCs 2 or natural parameter codes are defined based on mean

activity only, and don’t prescribe any specific role or form of neuronal variability.

Nevertheless, we do expect to see variability even if we assume that the brain is

using a deterministic coding scheme. The representation of the posterior belief

about some latent variable is dependent on the sensory observation received by

the brain. Therefore, it is likely that variability in the sensory observations will

induce variability in the representation as well. Moreover, when uncertainty

captured by the posterior belief is due to variability in the generative model

or sensory noise, the degree of variability in the representation will grow with

uncertainty.

We can think of both PPCs and DDCs as representing exponential family

distributions (by their natural or mean parameters, respectively), however, the

relationship between the neuronal tuning curves and the encoded distributions

is quite different. In the case of PPCs, Gaussian tuning curves would imply

Gaussian distributions, while DDCs with Gaussian encoding functions can

represent a broader family including multimodal distributions.

An aspect of probabilistic reasoning that has received little attention in

the literature so far is how representations of uncertainty could be learned

by neural systems. As we discussed in section 2 of this chapter, we need to

consider how an internal model of the latent variables in the world is acquired

and how a corresponding recognition model can be learned. Many of the

existing works so far are limited by relying on supervised training (Beck et al.,

2011; Orhan and Ma, 2017) or are restricted to models where learning and

inference is analytically tractable (Makin et al., 2013, 2015; Raju and Pitkow,

2016). Learning with PPCs or natural parameter codes is non-trivial, as it is

unclear how to handle distributions which are not from a tractable family (e.g.

Gaussian), and therefore computing normalising constants is difficult.

While sampling is in principle well suited for dealing with intractable dis-

tributions, learning has been only explored in fairly limited settings with linear

2The original formulation of of DPCs and DDPCs did include Poisson variability but had
no functional role in the representation and was treated as nuisance.

98 Chapter 4. Neural Representations of Uncertainty

observation models and in the limit of small observation noise (Kutschireiter

et al., 2017).

The DDC Helmholtz machine presented in chapter 2 provides a proof

of concept that the DDC representation can support accurate learning in

hierarchical generative models. The construction of the algorithm allows for

simple biologically plausible learning rules that don’t require propagating

gradients across the whole hierarchy.

Finally, here we have focused on uncertainty induced by ambiguity in

the generative process itself. This type of uncertainty, also called aleatoric

uncertainty, is irreducible even when perfect knowledge of the generative process

is assumed. Epistemic or model uncertainty, that captures uncertainty due to

limited learning experience, has received much less attention in the neuroscience

literature (see Pouget et al. (2013) for a brief discussion), but is also likely to

be important for biological organisms.

D. Appendix 99

D Appendix

D.1 Log-linear codes for uncertainty

Consider a generative model p(x, z) = p(x|z)p(z), with a flat prior p(z) and

exponential family likelihood p(x|z):

p(x|z) = exp
(
S(x)T θ(z)− A(θ(z))

)
(4.25)

p(z) ∝ 1 (4.26)

One can show that if the posterior belief q(z|x) is represented as a log-linear

code (sec. 3.4) with sufficient statistic θ(z), i.e.

q(z|x) ∝ exp
(
θ(z)T r

)
, r = ρ(x) (4.27)

the distribution describing the conditional variability in the firing rates, p(r|z),

is log-linear in r, just as in the case of PPCs (sec. 3.3).

p(r|z) =

∫
p(r|x)p(x|z)ds (4.28)

=

∫
δ(r − ρ(x))p(x|z)ds (4.29)

= p(x|z)|x=ρ−1(r) (4.30)

= exp
(
S(ρ−1(r))T θ(z)− A(θ(z))

)
(4.31)

If the log-normaliser A(θ(z)) in eq. 4.25 does not depend on z (i.e. A(θ(z)) =

A(θ̃)) the natural parameter of the posterior q(z|x) becomes: ρ(x) = S(x).

Thus, by further assuming that S(x) is invertible we get:

p(r|z) ∝ exp
(
rT θ(z)

)
) (4.32)

That is, in a special case we recover Poisson-like variability of neural responses.

Chapter 5

Distributed Distributional

Codes in Reinforcement

Learning

Animals need to devise strategies to maximise returns while interacting with

their environment based on incoming noisy sensory observations. Task-relevant

states, such as the agent’s location within an environment or the presence of a

predator, are often not directly observable but must be inferred using available

sensory information. Successor representations (SR) have been proposed as

a middle-ground between model-based and model-free reinforcement learning

strategies, allowing for fast value computation and rapid adaptation to changes

in the reward function or goal locations. Indeed, recent studies suggest that

features of neural responses are consistent with the SR framework. However,

it is not clear how such representations might be learned and computed in

partially observed, noisy environments. Here, we introduce a neurally plausible

model using distributional successor features, which builds on the distributed

distributional code for the representation and computation of uncertainty, and

which allows for efficient value function computation in partially observed

environments via the successor representation. We show that distributional

successor features can support reinforcement learning in noisy environments in

which direct learning of successful policies is infeasible.

102 Chapter 5. Distributed Distributional Codes in Reinforcement Learning

1 Introduction

Humans and other animals are able to evaluate long-term consequences of

their actions and adapt their behaviour to maximize reward across different

environments. This behavioural flexibility is often thought to result from the

interaction of two adaptive systems implementing model-based and model-free

reinforcement learning (RL).

Model-based learning allows for flexible goal-directed behaviour, acquiring

an internal model of the environment which is used to evaluate the consequences

of actions. As a result, an agent can rapidly adjust its policy to localized changes

in the environment or in reward function. But this flexibility comes at a high

computational cost, as optimal actions and value functions depend on expensive

simulations in the model. Model-free methods, on the other hand, learn cached

values for states and actions, enabling rapid action selection. However, this

approach is particularly slow to adapt to changes in the task, as adjusting

behaviour even to localized changes, e.g. in the placement of the reward, requires

updating cached values at all states in the environment. It has been suggested

that the brain makes use both of these complementary approaches, and that

they may compete for behavioural control (Daw et al., 2005); indeed, several

behavioural studies suggest that subjects implement a hybrid of model-free

and model-based strategies (Daw et al., 2011; Gläscher et al., 2010).

Successor representations (SR; Dayan, 1993) augment the internal state

used by model-free systems by the expected future occupancy of each world

state. SRs can be viewed as a precompiled representation of the model under a

given policy. Thus, learning based on SRs falls between model-free and model-

based approaches and correspondingly can reproduce a range of behaviours

(Russek et al., 2017). Recent studies have argued for evidence consistent with

SRs in rodent hippocampal and human behavioural data (Stachenfeld et al.,

2017; Momennejad et al., 2017).

Motivated by both theoretical and experimental work arguing that neural

RL systems operate over latent states and need to handle state uncertainty

2. Reinforcement learning – preliminaries 103

(Dayan and Daw, 2008; Gershman, 2018; Starkweather et al., 2017), our work

takes the successor framework further by considering partially observable

environments. Adopting the framework of distributed distributional coding

(Vértes and Sahani, 2018), we show how learnt latent dynamical models of

the environment can be naturally integrated with SRs defined over the latent

space. We begin with short overviews of reinforcement learning, the formalism

of the partially observed setting (section 2) and the successor representation

(section 3). In section 4, we describe how using DDCs in the generative and

recognition models leads to a particularly simple algorithm for learning latent

state dynamics and the associated SR.

2 Reinforcement learning – preliminaries

Generally speaking, the objective of a reinforcement learning agent is to learn

to interact with its environment such that it maximises the long-run average

reward it receives. A key component of most RL algorithms is that of computing

the value function, defined as the expectation of the cumulative discounted

future rewards under a given policy π:

V π(st) = E[
∞∑

k=0

γkrt+k] (5.1)

where γ is the discount factor determining the time horizon of the agent, and

rt is the (scalar) reward received at time t. Estimating the value function for

an arbitrary policy is typically non-trivial, and is the focus of several existing

algorithms ranging from model-free to model-based methods.

2.1 Temporal-difference learning

Temporal-difference learning (TD; Sutton, 1988) is a model-free approach for

policy evaluation; that is, estimating the value function V π(s) while the agent

follows a given policy π. TD learning relies on the recursive property of the

104 Chapter 5. Distributed Distributional Codes in Reinforcement Learning

value function expressed by the Bellman equation:

V π(s) = Eπ(a|s)[Ep(s′,r|s,a)[r + γV π(s′)]] (5.2)

By rearranging eq. 5.2, we can arrive at the following sample-based update

rule which depends on the TD error (δ):

δ = r + γV π(s′)− V π(s) (5.3)

V π(s)← V (s)π + ηδ (5.4)

where r and s′ are the reward and state observed after choosing an action

according to the policy π(a|s) and η is a learning rate.

TD learning is a blend of dynamic programming and Monte Carlo methods,

as it uses the current estimate of the value function at s′ as a target for updating

the value for state s, together with replacing the expectations in eq. 5.2 by a

single sample. Note that the TD update can be computed without explicit

knowledge of the state transition and reward model p(s′, r|s, a) as the sampled

values of s′ and r are available through experience.

2.2 Partially observable Markov decision processes

Markov decision processes (MDP) provide a framework for modelling a wide

range of sequential decision-making tasks relevant for reinforcement learning.

An MDP is defined by a set of states S and actions A, a reward function

R : S × A → R, and a probability distribution T (s′|s, a) that describes the

Markovian dynamics of the states conditioned on actions of the agent. For

notational convenience we will take the reward function to be independent

of action, depending only on state; but the approach we describe is easily

extended to the more general case. A partially observable Markov decision

process (POMDP) is a generalization of an MDP where the Markovian states

s ∈ S are not directly observable to the agent. Instead, the agent receives

observations (o ∈ O) that depend on the current latent state via an observation

3. The successor representation 105

process Z(o|s). Formally, a POMDP is a tuple: (S, A, T , R, O, Z, γ),

comprising the objects defined above and a discount factor γ. POMDPs can

be defined over either discrete or continuous state spaces. Here, we focus on

the more general continuous case, although the model we present is applicable

to discrete state spaces as well.

3 The successor representation

As an agent explores an environment, the states it visits are ordered by the

agent’s policy and the transition structure of the world. State representations

that respect this dynamic ordering are likely to be more efficient for value

estimation and may promote more effective generalization. This may not be

true of the observed state coordinates. For instance, a barrier in a spatial

environment might mean that two states with adjacent physical coordinates

are associated with very different values.

Dayan (1993) argued that a natural state space for model-free value

estimation is one where distances between states reflect the similarity of future

paths given the agent’s policy. The successor representation (Dayan, 1993; SR)

for state si is defined as the expected discounted sum of future occupancies for

each state sj, given the current state si:

Mπ(si, sj) = Eπ
[∞∑

k=0

γkI[st+k = sj] | st = si

]
. (5.5)

That is, in a discrete state space, the SR is a N × N matrix where N is

the number of states in the environment. The SR depends on the current

policy π through the expectation in the right hand side of eq. 5.5, taken with

respect to a (possibly stochastic) policy pπ(at|st) and environmental transitions

T (st+1|st, at). The SR makes it possible to express the value function in a

particularly simple form. Following from eq. 5.5 and the usual definition of the

value function:

V π(si) =
∑

j

Mπ(si, sj)R(sj) , (5.6)

106 Chapter 5. Distributed Distributional Codes in Reinforcement Learning

where R(sj) is the immediate reward in state sj.

The successor matrix Mπ can be learned by temporal difference (TD)

learning (Sutton, 1988), in much the same way as TD is used to update value

functions. In particular, the SR is updated according to a TD error:

δt(sj) = I[st = sj] + γMπ(st+1, sj)−Mπ(st, sj) , (5.7)

which reflects errors in state predictions rather than rewards, a learning signal

typically associated with model based RL.

As shown in eq. 5.6, the value function can be factorized into the SR—i.e.,

information about expected future states under the policy—and instantaneous

reward in each state1. This modularity enables rapid policy evaluation under

changing reward conditions: for a fixed policy only the reward function needs to

be relearned to evaluate V π(s). This contrasts with both model-free and model-

based algorithms, which require extensive experience or rely on computationally

expensive evaluation, respectively, to recompute the value function.

3.1 Successor representation using features

The successor representation can be generalized to continuous states s ∈ S
by using a set of feature functions {ψi(s)} defined over S. In this setting, the

successor representation (also referred to as the successor feature representation

or SF) encodes expected feature values instead of occupancies of individual

states:

Mπ(st, i) = Eπ
[∞∑

k=0

γkψi(st+k) | st
]

(5.8)

Assuming that the reward function can be written (or approximated) as a

linear function of the features: R(s) = wT
rewψ(s) (where the feature values

are collected into a vector ψ(s)), the value function V (st) has a simple form

1Alternatively, for the more general case of action-dependent reward, the expected
instantaneous reward under the policy-dependent action in each state.

4. Distributional successor representation 107

analagous to the discrete case:

V π(st) = wT
rewM

π(st) (5.9)

For consistency, we can use linear function approximation with the same

set of features as in eq. 5.8 to parametrize the successor features Mπ(st, i).

Mπ(st, i) ≈
∑

j

Uijψj(st) (5.10)

The form of the SFs, embodied by the weights Uij, can be found by temporal

difference learning:

δi = ψi(st) + γM(st+1, i)−M(st, i) (5.11)

Uij ← Uij + ηδiψj(st) (5.12)

As we have seen in the discrete case, the TD error here signals prediction

errors about features of state, rather than about reward.

4 Distributional successor representation

As discussed above, the successor representation can support efficient value

computation by incorporating information about the policy and the envi-

ronment into the state representation. However, in more realistic settings,

the states themselves are not directly observable and the agent is limited to

state-dependent noisy sensory information.

In this section, we lay out how the DDC representation for uncertainty

allows for learning and computing with successor representations defined over

latent variables. First, we describe an algorithm for learning and inference in

dynamical latent variable models using DDCs. We then establish a link between

the DDC and successor features (eq. 5.8) and show how they can be combined

to learn what we call the distributional successor features. We discuss different

algorithmic and implementation-related choices for the proposed scheme and

108 Chapter 5. Distributed Distributional Codes in Reinforcement Learning

their implications.

4.1 Learning and inference in a state space model using

DDCs

Here, we consider POMDPs where the state-space transition model is itself

defined by a conditional DDC with means that depend linearly on the preceding

state features. That is, the conditional distribution describing the latent

dynamics implied by following the policy π can be written in the following

form:

pπ(st+1|st)⇔ Est+1|st,π[ψ(st+1)] = T πψ(st) (5.13)

where T π is a matrix parametrizing the functional relationship between st and

the expectation of ψ(st+1) with respect to pπ(st+1|st).

The agent has access only to sensory observations ot at each time step,

and in order to be able to make use of the underlying latent structure, it has

to learn the parameters of generative model p(st+1|st), p(ot|st) as well as learn

to perform inference in that model.

We consider online inference (filtering), i.e. at each time step t the

recognition model produces an estimate q(st|Ot) of the posterior distribution

p(st|Ot) given all observations up to time t: Ot = (o1, o2, . . . ot). As in the

DDC Helmholtz machine (Vértes and Sahani, 2018), these distributions are

represented by a set of expectations—i.e., by a DDC:

µt(Ot) = Eq(st|Ot)[ψ(st)] (5.14)

The filtering posterior µt(Ot) is computed iteratively, using the posterior in

the previous time step µt−1(Ot−1) and the new observation ot. The Markovian

structure of the state space model (see fig. 5.1) ensures that the recognition

model can be written as a recursive function:

µt(Ot) = fW (µt−1(Ot−1), ot) (5.15)

4. Distributional successor representation 109

Algorithm 3 Wake-sleep algorithm in the DDC state-space model

Initialise T,W
while not converged do

Sleep phase:
sample: {ssleep

t , osleep
t }t=0...N ∼ p(SN ,ON)

update W : ∆W ∝∑
t

(
ψ(ssleep

t)− fW (µt−1(Osleep
t−1), osleep

t)
)
∇WfW

Wake phase:
ON ← {collect observations}
infer posterior DDC µt(Ot) = fW (µt−1(Ot−1), ot)
update T : ∆T ∝ (µt+1(Ot+1)− Tµt(Ot))µt(Ot)T
update observation model parameters

end while

with a set of parameters W .

The recognition and generative models are updated using an adapted

version of the wake-sleep algorithm (Hinton et al., 1995; Vértes and Sahani,

2018). In the following, we describe the two phases of the algorithm in more

detail (see Algorithm 3).

Sleep phase

The aim of the sleep phase is to adjust the parameters of the recognition model

given the current generative model. Specifically, the recognition model should

approximate the expectation of the DDC encoding functions ψ(st) under the

filtering posterior p(st|Ot). This can be achieved by moment matching, i.e.,

simulating a sequence of latent and observed states from the current model

and minimizing the Euclidean distance between the output of the recognition

model and the sufficient statistic vector ψ(.) evaluated at the latent state from

the next time step.

W ← argmin
W

∑

t

‖ψ(ssleep
t)− fW (µt−1(Osleep

t−1), osleep
t)‖2 (5.16)

where {ssleep
t , osleep

t }t=0...N ∼ p(s0)p(o0|s0)
N−1∏
t=0

p(st+1|st, T π)p(ot+1|st+1).

This update rule can be implemented online as samples are simulated, and

after a sufficiently long simulated sequence (or multiple sequences) {ssleep
t , osleep

t }t

110 Chapter 5. Distributed Distributional Codes in Reinforcement Learning

the recognition model will learn to approximate expectations of the form:

fW (µt−1(Osleep
t−1), osleep

t) ≈ Ep(st|Ot)[ψ(st)], yielding a DDC representation of the

posterior.

Wake phase

In the wake phase, the parameters of the generative model are adapted such

that it captures the sensory observations better. Here, we focus on learning

the policy-dependent latent dynamics pπ(st+1|st); the observation model can

be learned by the approach of Vértes and Sahani (2018). Given a sequence

of inferred posterior representations {µt(Ot)} computed using wake phase

observations, the parameters of the latent dynamics T can be updated by

minimizing a simple predictive cost function:

T ← argmin
T

∑

t

‖µt+1(Ot+1)− Tµt(Ot)‖2 (5.17)

The intuition behind eq. 5.17 is that for the optimal generative model the latent

dynamics satisfies the following equality: T ∗µt(Ot) = Ep(ot+1|Ot)[µt+1(Ot+1)].

That is, the predictions made by combining the posterior at time t and the

prior will agree with the average posterior at the next time step—making

T ∗ a stationary point of the optimization in eq. 5.17. For further details on

the nature of the approximation implied by the wake phase update and its

relationship to variational learning, see the supplementary material. In practice,

the update can be done online, using gradient steps analogous to prediction

errors:

∆T ∝
(
µt+1(Ot+1)− Tµt(Ot)

)
µt(Ot)T (5.18)

Figure 5.1 shows a state-space model corresponding to a random walk policy

in the latent space with noisy observations, learned using DDCs (Algorithm 3).

For further details of the experiment, see the supplementary material.

4.2 Learning distributional successor features

Next, we show how using a DDC to parametrize the generative model (eq. 5.13)

makes it possible to compute the successor features defined in the latent space

4. Distributional successor representation 111

s1 s2 st−1 st

o1 o2 ot−1 ot

T . . . T . . .

r1 r2 rt−1
rt

Generative model

Recognition model

µ1 µ2 µt−1 µt.

(a) DDC state-space model

Latent dynamics Trajectories

(b) Noisy 2D environment

Figure 5.1: Learning and inference in a state-space model parametrised by a DDC.
(a) The structure of the generative and recognition models. (b) Vi-
sualization of the dynamics T learned by the wake-sleep (algorithm
3). Arrows show the conditional mean Est+1|st [st+1] for each location.
(c) Posterior mean trajectories inferred using the recognition model,
plotted on top of true latent and observed trajectories.

in a tractable form, and how this computation can be combined with inference

based on sensory observations.

Following the definition of the SFs (eq. 5.8), we have:

M(st) = Eπ
[∞∑

k=0

γkψ(st+k)|st
]

(5.19)

=
∞∑

k=0

γkEπ[ψ(st+k)|st] (5.20)

We can compute the conditional expectations of the feature vector ψ in

112 Chapter 5. Distributed Distributional Codes in Reinforcement Learning

eq. 5.19 as a series of nested expectations:

Est+k [ψ(st+k)|st] = Est+k−1
[Est+k [ψ(st+k)|st+k−1]|st] (5.21)

= Est+k−1
[Tψ(st+k−1)|st] (5.22)

= T 2Est+k−2
[ψ(st+k−2)|st] (5.23)

...

Est+k [ψ(st+k)|st] = T kψ(st) (5.24)

Thus, from equations 5.19 and 5.24 we have:

M(st) =
∞∑

k=0

γkT kψ(st) (5.25)

= (I − γT)−1ψ(st) (5.26)

Equation 5.26 is reminiscent of the result for discrete observed state spaces

M(si, sj) = (I−γP)−1
ij (Dayan, 1993), where P is a matrix containing Markovian

transition probabilities between states. In a continuous state space, however,

finding a closed form solution like eq. 5.26 is non-trivial, as it requires eval-

uating a set of typically intractable integrals. The solution presented here

directly exploits the DDC parametrization of the generative model and the

correspondence between the features used in the DDC and the SFs.

In this framework, we can not only compute the successor features in closed

form in the latent space, but also evaluate the distributional successor features,

the posterior expectation of the SFs given a sequence of sensory observations:

Est|Ot [M(st)] = (I − γT)−1Est|Ot [ψ(st)] (5.27)

= (I − γT)−1µt(Ot) (5.28)

The results from this section suggest a number of different ways the distribu-

tional successor features Est|Ot [M(st)] can be learned or computed.

4. Distributional successor representation 113

4.2.1 Learning distributional SFs during sleep phase

The matrix U = (I − γT)−1 needed to compute distributional SFs in eq. 5.28

can be learned from temporal differences in feature predictions based on latent

state sequences simulated in the sleep phase (see eq. 5.10-5.11). That is, given

a sequence of latent states sampled from the dynamics model: s1, s2, . . . , sT ∼
∏

t p(st|st−1)p(s0), U can be updated by TD learning:

δi = ψi(st) + γMπ(st+1, i)−Mπ(st, i) (5.29)

∆Uij ∝ δiψj(st) (5.30)

Following a potential change in the dynamics of the environment, sleep phase

learning allows for updating SFs and therefore cached values offline, without

the need for further experience.

4.2.2 Computing distributional SFs by dynamics

Alternatively, eq. 5.28 can be implemented as a fixed point of a linear dynamical

system, with recurrent connections reflecting the model of the latent dynamics:

τ ẋ = −x+ γTx+ µt(Ot) (5.31)

⇒ x(∞) = (I − γT)−1µt(Ot) (5.32)

In this case, there is no need to learn (I − γT)−1 explicitly but it is

implicitly computed through dynamics. For this to work, there is an underlying

assumption that the dynamical system in eq. 5.31 reaches equilibrium on a

timescale (τ) faster than that on which the observations Ot evolve.

Both of these approaches avoid having to compute the matrix inverse

directly and allow for evaluation of policies given by a corresponding dynamics

matrix T π offline.

4.2.3 Learning distributional SFs during wake phase

Instead of fully relying on the learned latent dynamics to compute the distribu-

tional SFs, we can use posteriors computed by the recognition model during the

114 Chapter 5. Distributed Distributional Codes in Reinforcement Learning

wake phase, that is, using observed data. We can define the distributional SFs di-

rectly on the DDC posteriors: M̃(Ot) = Eπ[
∑

k γ
kµt+k(Ot+k)|µt(Ot)], treating

the posterior representation µt(Ot) as a feature space over sequences of obser-

vations Ot = (o1 . . . ot). Analogously to section 3.1, M̃(Ot) can be acquired by

TD learning and assuming linear function approximation: M̃(Ot) ≈ Uµt(Ot).
The matrix U can be updated online, while executing a given policy and

continuously inferring latent state representations using the recognition model:

δt = µt(Ot) + γM(Ot+1)−M(Ot) (5.33)

∆U ∝ δtµt(Ot)T (5.34)

It can be shown that M̃(Ot), as defined here, is equivalent to Est|Ot [M(st)] if

the learned generative model is optimal–assuming no model mismatch–and

the recognition model correctly infers the corresponding posteriors µt(Ot) (see

supplementary material). In general, however, exchanging the order of TD

learning and inference leads to different SFs. The advantage of learning the

distributional successor features in the wake phase is that even when the model

does not perfectly capture the data (e.g. due to lack of flexibility or early on in

learning) the learned SFs will reflect the structure in the observations through

the posteriors µt(Ot).

4.3 Value computation in a noisy 2D environment

We illustrate the importance of being able to consistently handle uncertainty

in the SFs by learning value functions in a noisy environment. We use a simple

2-dimensional box environment with continuous state space that includes an

internal wall. The agent does not have direct access to its spatial coordinates,

but receives observations corrupted by Gaussian noise. Figure 5.2 shows

the value functions computed using the successor features learned in three

different settings: assuming direct access to latent states, treating observations

as though they were noise-free state measurements, and using latent state

estimates inferred from observations. The value functions computed in the

4. Distributional successor representation 115

Figure 5.2: Value functions under a random walk policy for two different reward
locations. Values were computed using SFs based on the latent, inferred
DDC posterior or observed state variables.

latent space and computed from DDC posterior representations both reflect

the structure of the environment, while the value function relying on SFs over

the observed states fails to learn about the barrier.

To demonstrate that this is not simply due to using the suboptimal random

walk policy, but persists through learning, we have learned successor features

while adjusting the policy to a given reward function (see figure 5.3). The

policy was learned by generalized policy iteration (Sutton and Barto, 1998),

alternating between taking actions following a greedy policy and updating the

successor features to estimate the corresponding value function.

The value of each state and action was computed from the value function

V (s) by a one-step look-ahead, combining the immediate reward with the

expected value function having taken a given action:

Q(st, at) = r(st) + γEst+1|st,at [V (st+1)] (5.35)

In our case, as the value function in the latent space is expressed as a linear

function of the featuresψ(s): V (s) = wT
rewUψ(s) (eq. 5.9-5.10), the expectation

116 Chapter 5. Distributed Distributional Codes in Reinforcement Learning

in 5.35 can be expressed as:

Est+1|st,at [V (st+1)] = wT
rewU · Es′|s,a[ψ(st+1)] (5.36)

≈ wT
rewU · P · (ψ(st)× φ(at)) (5.37)

Where P is a linear mapping, P : Ψ × Φ → Ψ, that contains information

about the distribution p(st+1|st, at). More specifically, P is trained to predict

Est+1|st,at [ψ(st+1)] as a bilinear function of state and action features (ψ(st),

φ(at)). Given the state-action value, we can implement a greedy policy by

choosing actions that maximize Q(s, a):

at ← argmax
a∈A

Q(st, a) (5.38)

= argmax
a∈A

r(st) +wT
rewU · P · (ψ(st)× φ(at))) (5.39)

= argmax
a∈A

r(st) + b(st)
Tφ(a) (5.40)

The argmax operation in eq. 5.40 (possibly over a continuous space of actions)

could be biologically implemented by a ring attractor where the neurons receive

state dependent input b(s) through feedforward weights reflecting the tuning

φ(a) of each neuron in the ring.

Just as in figure 5.2, we compute the value function in the fully observed

case, using inferred states or using only the noisy observations. For the latter

two, we replace ψ(st) in eq. 5.40 with the inferred state representation µ(Ot)
and the observed features ψ(ot), respectively. As the agent follows the greedy

policy and it receives new observations the corresponding SFs are adapted

accordingly. Figure 5.3 shows the learned value functions V π(s), V π(µ) and

V π(o) for a given reward location and the corresponding dynamics T π. The

agent having access to the true latent state as well as the one using distributional

SFs successfully learn policies leading to the rewarded location. As before, the

agent learning SFs purely based on observations remains highly sub-optimal.

5. Discussion and related work 117

Histogram of collected rewards

Figure 5.3: Value functions computed using SFs under the learned policy. Top
row shows reward and value functions learned in the three different
conditions. Bottom row shows histogram of collected rewards from
100 episodes with random initial states, and the learned dynamics T π

visualized as in fig. 5.1.

5 Discussion and related work

We have shown that the DDC represention of uncertainty over latent variables

can be naturally integrated with representations of uncertainty about future

states, and thus offers a natural generalisation of SRs to more realistic environ-

ments with partial observability. The proposed algorithm jointly tackles the

problem of learning the latent variable model and learning to perform online

inference by filtering. Distributional SFs are applicable to POMDPs with

continuous or discrete variables and leverage a flexible posterior approximation,

not restricted to a simple parametric form, that is represented in a population

of neurons in a distributed fashion.

While parametrising the latent dynamics with DDCs is attractive as it

makes computing the SFs in the latent space analytically tractable and allows

for computing distributional SFs by recurrent dynamics (sec. 4.2.2), it is

so far unclear how sampling from such a model might be implemented by

neural circuits. Alternatively, one can consider a standard exponential family

parametrisation which remains compatible with sleep and wake phase TD

learning of distributional SFs.

Earlier work on biological reinforcement learning in POMDPs was restricted

118 Chapter 5. Distributed Distributional Codes in Reinforcement Learning

to the case of binary or categorical latent variables where the posterior beliefs

can be computed analytically (Rao, 2010). Furthermore the transition model of

the POMDP was assumed to be known, rather than learned as in the present

work.

Here, we have defined distributional SFs over states, using single step look-

ahead to compute state-action values (eq. 5.35). Alternatively, SFs could be

defined directly over both states and actions (Kulkarni et al., 2016; Barreto et al.,

2017) whilst retaining the distributional development presented here. Barreto

et al. (2017, 2019) have shown that successor representations corresponding to

previously learned tasks can be used as a basis to construct policies for novel

tasks, enabling generalization. Our framework can be extended in a similar

way, eliminating the need to adapt the SFs as the policy of the agent changes.

In section 4.2, we proposed a number of different schemes for learning

SFs in the latent space that interpolate between model-based and model-free

approaches. These are not mutually exclusive but could be applicable in

different stages of familiarity with an environment. Learning distributional SFs

during the wake phase is advantageous when the model of the environment is

not fully learned yet, as it does not rely on simulating experiences from the

latent dynamics but uses it only indirectly for filtering given actual observations.

Whereas after sufficient exposure to the environment, updating SFs using sleep

phase simulations from the model—analogously to the Dyna algorithm (Sutton,

1990)—allows for evaluating policies offline and makes learning more data

efficient.

The way we presented here, the recognition model produces posterior ex-

pectations of the DDC features ψ(s) and thereby captures uncertainty about the

latent sate s. The SF are then computed based on these posteriors, exploiting

the correspondence between the DDC and successor features. An alternative

is for the recognition model to be trained to update the distributional SFs

directly. As they are linearly related to the DDCs (eq. 5.28), the distributional

SFs capture uncertainty about the latent state s in a similar fashion.

5. Discussion and related work 119

The distributional SFs generalise SFs to handle partially observability,

while preserving the predictions made by the existing framework considering

fully observable environments. In the limiting case of no posterior uncertainty,

i.e. when p(st|Ot) = δ(st−ŝt), the distributional successor features relax back to

the SFs defined over fully observed sates: Eδ(st−ŝt)[M(st)] = (I − γT)−1[ψ(ŝt)].

The neurotransmitter dopamine has long been hypothesised to signal

reward prediction errors (RPE) and thus to play a key role in temporal difference

learning (Schultz et al., 1997). More recently, it has been argued that dopamine

activity is consistent with RPEs computed based on belief states rather than

sensory observations directly (Babayan et al., 2018; Lak et al., 2017; Sarno et al.,

2017). Thus dopamine is well suited to carry the information necessary for

learning value functions under state uncertainty. In another line of experimental

work, dopamine has been found to signal sensory prediction errors even if the

absence of an associated change in value (Takahashi et al., 2017), suggesting

a more general role of dopamine in learning (Gershman, 2018; Gardner et al.,

2018). Gardner et al. have proposed that dopamine—signalling prediction error

over features of state—may provide the neural substrate for the error signals

necessary to learn successor representations. Distributional SFs unify these two

sets of observations and their theoretical implications in a single framework.

They posit that prediction errors are computed over the posterior belief about

latent states (represented as DDCs), and that these predictions are defined

over a set of non-linear features of the hidden state rather than reward.

The framework for learning distributional successor features presented

here also provides a link between various intriguing and seemingly disparate

experimental observations in the hippocampus. The relationship between

hippocampal place cell activity and (non-distributional) SRs has been explored

previously (e.g., Stachenfeld et al., 2014; 2017) providing an interpretation for

phenomena such as “splitter” cells, which show spatial tuning that depends on

the whole trajectory (i.e. policy) traversed by the animal not just on its current

position (Grieves et al., 2016). However, as discussed earlier, relevant states for

120 Chapter 5. Distributed Distributional Codes in Reinforcement Learning

a given reinforcement learning problem (in this case states over which the SR

should be learned) cannot be assumed to be directly available to the agent but

must be inferred from observations. The hypothesis that hippocampal place

cell activity encodes inferred location, with its concomitant uncertainty, has

also been linked to experimental data (Madl et al., 2014). Thus, our approach

connects these two separate threads in the literature and thereby encompasses

both groups of experimental results.

Hollup et al. (2001) observed that place fields distributed asymmetrically

around the rewarded location in an annular water maze. The animals were

trained to swim in a given direction towards a platform hidden under water.

They found that the segment of the maze containing the platform had the

highest density of place fields followed by the segment that preceded the

platform according to the trajectory of the animal. Stachenfeld et al. (2017)

showed in simulations that SRs together with uncertainty about location can

account for this asymmetry in the firing field distribution. To mimic uncertainty,

they convolved the SR by a Gaussian kernel, leading to a shift in the peak

of the firing fields due to the asymmetry in the SR. Importantly, convolving

with a Gaussian kernel is equivalent to taking an expectation with respect

to a corresponding Gaussian distribution, therefore, it is tantamount to the

distributional SFs introduced here—assuming a Gaussian posterior distribution

over the location of the animal.

Lastly, the framework helps to link simulation of an internal model to learn-

ing. Acquisition of the inference model in our framework requires simulating

experience (sleep samples) from the agent’s current model of the environment,

to provide the basis for an update of the recognition model. The sleep samples

reflect the agent’s knowledge of the environmental dynamics but they need not

correspond exactly to a previously experienced trajectory. This is reminiscent

of hippocampal “replay” which does not just recapitulate previous experience,

but often represents novel trajectories not previously experienced by the animal

(Gupta et al., 2010; Ólafsdóttir et al., 2015; Stella et al., 2019). Relatedly, Liu

5. Discussion and related work 121

et al. (2019) recently observed that replay events in humans reflect abstract

structural knowledge of a learned task. Our model suggests a novel functional

interpretation of these replayed trajectories; namely, that they may play an

important role in learning to infer relevant latent states from observations. This

accords with the observation that experimental interference with replay events

impedes learning in contexts where optimal actions depend on history-based

inference (Jadhav et al., 2012).

In sum, distributional SFs provide interpretation for a variety of experimen-

tal observations and a step towards algorithmic solutions for flexible decision

making in realistic and challenging problem settings animals face, i.e. under

state uncertainty.

122 Chapter 5. Distributed Distributional Codes in Reinforcement Learning

E Appendix

E.1 Wake phase update for distributional SFs

Here, we give some additional insights into the nature of the approximation

implied by the wake phase update for the DDC state-space model and discuss

its link to variational methods.

According to the standard M step in variational EM, the model parame-

ters are updated to maximize the expected log-joint of the model under the

approximate posterior distributions:

∆θ ∝ ∇θ

∑

t

Eq(st,st+1|Ot+1)[log pθ(st+1|st)] (5.41)

= ∇θ

∑

t

−
∫
q(st, st+1|Ot+1)(log pθ(st+1|st) + log q(st|Ot+1))d(st, st+1)

(5.42)

= ∇θ

∑

t

−KL[q(st, st+1|Ot+1)‖pθ(st+1|st)q(st|Ot+1)] (5.43)

After projecting the distributions appearing in the KL divergence (eq. 5.43)

into the joint exponential family defined by sufficient statistics [ψ(st), ψ(st+1)],

they can be represented using the corresponding mean parameters:

q(st, st+1|Ot+1)
P

=⇒

 Eq(st,st+1|Ot+1)[ψ(st)]

Eq(st,st+1|Ot+1)[ψ(st+1)]

 =

 µt(Ot+1)

µt+1(Ot+1)

(5.44)

pθ(st+1|st)q(st|Ot+1)
P

=⇒

 Epθ(st+1|st)q(st|Ot+1)[ψ(st)]

Epθ(st+1|st)q(st|Ot+1)[ψ(st+1)]

 =

 µt(Ot+1)

Tµt(Ot+1)

(5.45)

To restrict ourselves to online inference, we can make a further approx-

imation: µt(Ot+1) ≈ µt(Ot). Thus, the wake phase update can be thought

of as replacing the KL divergence in equation 5.43 by the Euclidean distance

E. Appendix 123

between the (projected) mean parameter representations in eq. 5.44-5.45.

∑

t

‖µt+1(Ot+1)− Tµt(Ot)‖2 (5.46)

Note that this cost function is directly related to the maximum mean

discrepancy (Gretton et al. (2012); MMD)–a non-parametric distance metric

between two distributions–with a finite dimensional RKHS.

E.2 Equivalence of sleep and wake phase TD

Here, we show that the posterior expectation of the SFs learned in the latent

space during sleep phase (Ep(st|Ot)[M(st)]) is equivalent to the SFs learned

during wake phase (M̃(µt(Ot))) if the generative model matches the data

distribution and the recognition model produces the exact posterior.

Wake phase TD learns to approximate the following expression:

M̃(µt(Ot)) = Ep(O>t|Ot)[
∞∑

k=0

γkµt+k(Ot+k)] (5.47)

Where

Ep(O>t|Ot)[µt+k(Ot+k)] = Ep(Ot+1:t+k|Ot)[µt+k(Ot+k)] (5.48)

=

∫
dOt+1:t+k p(Ot+1:t+k|Ot)

∫
dst+k p(st+k|Ot+k)ψ(st+k)

=

∫
dOt+1:t+k p(Ot+1:t+k|Ot)

∫
dst+k

p(st+k,Ot+1:t+k|Ot)
p(Ot+1:t+k|Ot)

ψ(st+k)

=

∫
dst+k

∫
dOt+1:t+k p(st+k,Ot+1:t+k|Ot)ψ(st+k)

=

∫
dst+kp(st+k|Ot)ψ(st+k) (5.49)

= T kµt

124 Chapter 5. Distributed Distributional Codes in Reinforcement Learning

Thus, we have:

M̃(µt(Ot)) =
∞∑

k=0

γkT kµt (5.50)

= (I − γT)−1µt

= Ep(st|Ot)[M(st)]

E.3 Further experimental details

Figure 1: Learning and inference in the DDC state-space model

The generative model corresponding to a random walk policy:

p(st+1|st) = [st + η̃]walls, (5.51)

p(ot|st) = st + ξ

Where [.]walls indicates the constraints introduced by the walls in the environ-

ment (outer walls are of unit length). η ∼ N (0, σs = 1.), η̃ = 0.06 ∗ η/‖η‖,
ξ ∼ N (0, σo = 0.1), st, ot ∈ R2

We used K = 100 Gaussian features with width σψ = 0.3 for both the latent

and observed states. A small subset of features were truncated along the internal

wall, to limit the artifacts from the function approximation. Alternatively, a

features with various spatial scales could also be used. The recursive recognition

model was parametrized linearly using the features:

fW (µt−1, ot) = W [Tµt−1;ψ(ot)] (5.52)

As sampling from the DDC parametrized latent dynamics is not tractable in

general, in the sleep phase, we generated approximate samples from a Gaussian

distribution with consistent mean.

The generative and recognition models were trained through 50 wake-sleep

cycles, with 3 · 104 sleep samples, and 5 · 104 wake phase observations.

The latent dynamics in Fig.1b is visualized by approximating the mean

E. Appendix 125

dynamics as a linear readout from the DDC: Est+1|st [st+1] ≈ αTψ(st) where

s ≈ αψ(s).

Figure 2 Values under a random walk policy To compute the value

functions under the random walk policy we computed the SFs based on the

latent (ψ(s)), inferred (µ) or observed (ψ(o)) features, with discount factor

γ = 0.99. In each case, we estimated the reward vector wrew using the available

state information.

Figure 3 Values under a learned policy To construct the state-action value

function, we used 10 features over actions φ(a), von Mises functions (κ = 2.)

arranged evenly on [0, 2π]. The policy iteration was run for 500 cycles, and in

each cycle an episode of 500 steps was collected according to the greedy policy.

The visited latent, inferred of observed state sequences were used to update

the corresponding SFs to re-evaluate the policy. To facilitate faster learning,

only episodes with positive returns were used to update the SFs.

Part III

General Conclusions

127

129

A concept reoccurring throughout this thesis is the idea of encoding

uncertainty about unobservable variables as a set of expectation of non-linear

features, a representation we called distributed distributional codes (DDC). As

we have seen in multiple examples, lot of the computations involving uncertainty

take the form of an expectation with respect to the corresponding distribution.

The computational appeal of DDCs is that they are very well suited to such

computations, and translate the often intractable integrals to learning simple

linear mappings. We have demonstrated that when combined with the wake-

sleep algorithm the resulting DDC Helmholtz machine can learn hierarchical

latent variable models with greater accuracy than variational methods that

employ rigid posterior approximations.

We have also shown how DDCs can lead to a natural generalisation of

successor features to partially observable settings by relying on the conjugacy

of the two representations. In distributional successor features the DDC expec-

tations play a dual role: they serve as belief states and provide a basis set for a

linear decomposition of the reward function. This is not only a computational

convenience but also accords with a number different experimental observations.

Unsupervised learning approaches, like latent variable models, are explicitly

trained to capture structure in the outside world and produce posterior beliefs

over latent variables. The resulting representations, at least in an idealised

case, correctly handle uncertainty about unobserved quantities and facilitate

generalisation or transfer to novel tasks. Such flexibility has been observed in

animal and human behaviour and it is a desideratum for artificial intelligent

systems as well. Supervised training with a range of auxiliary tasks or multi-

task learning can in principle discover similar representations. Furthermore,

in a neural network trained in a supervised multi-task setting, one can expect

representations akin to DDCs to emerge, due to the analogy to sleep phase

learning where the supervision is provided by the generative model. This parallel

also prompts questions relevant for neuroscience: to what extent early sensory

representations are shaped by the tasks performed or by pure unsupervised

130

learning and how these two might interact.

An example of a useful auxiliary task is the distributional objective in

reinforcement learning, that has recently received some empirical support in

neuroscience (Dabney et al., 2020), and that aids representation learning by

separating states that predict the same expected reward but different reward

distributions. It is likely that similar benefits can be ascribed to learning

distributional representations over other task-relevant variables, even in tasks

where information about uncertainty is not directly probed.

There is a consensus in the literature about the idea that the brain is

able to perform some forms of probabilistic computation, largely originating

from behaviour evidence. This also suggests that uncertainty about relevant

variables needs to be represented in neural systems, at least implicitly. However,

how brains learn to perform these computations or how uncertainty is reflected

in neural activity is much less clear. Here, we reviewed a number of theoretical

proposals and attempted to clarify some of the conceptual issues regarding

studying representations of uncertainty experimentally. We hope that our

discussion will facilitate future research on the topic and help gain insights into

how brains learn to reason accurately in the face of uncertainty.

Another open question about Bayesian inference and learning in the brain

is whether there is an explicit representation of the generative model as in

the DDC Helmholtz machine and other probabilistic unsupervised learning

algorithms. Exceptions include a family of methods that rely on a contrastive

loss function, an approach that has received renewed attention in machine

learning (Hyvarinen and Morioka, 2016; Oord et al., 2019; Hénaff et al., 2019).

These methods aim to extract representations by exploiting temporal structure

in the data, looking for representations that are predictive of the future. Related

ideas have been present in neuroscience as well: slow feature analysis (Wiskott

and Sejnowski, 2002) finds components in the data that change slowly over

time, and has been proposed as a model of learning in the early visual cortex.

Temporal consistency of our sensory experience is a powerful prior and could

131

be leveraged in neural systems as well to learn probabilistic models where the

generative process is only implicit.

Colophon

This document was set in the Latin Modern Roman typeface using LATEX

and BibTEX, composed in the editor Texpad. Figures were produced using

matplotlib, seaborn, and tikz packages.

Bibliography

M. B. Ahrens and M. Sahani. Observers exploit stochastic models of sensory

change to help judge the passage of time. Curr. Biol., 21(3):200–206, 2011.

L. Aitchison and M. Lengyel. The Hamiltonian Brain: Efficient Probabilis-

tic Inference with Excitatory-Inhibitory Neural Circuit Dynamics. PLOS

Computational Biology, 12(12):e1005186, 2016.

D. Alais and D. Burr. The ventriloquist effect results from near-optimal bimodal

integration. Curr. Biol., 14(3):257–262, 2004.

C. H. Anderson. Basic elements of biological computional systems. International

Journal of Modern Physics C, 5, 1994.

C. H. Anderson and D. C. V. Essen. Neurobiological Computational Systems.

1994.

J. S. Anderson, I. Lampl, D. C. Gillespie, and D. Ferster. The Contribution of

Noise to Contrast Invariance of Orientation Tuning in Cat Visual Cortex.

Science, 290(5498):1968–1972, 2000.

B. M. Babayan, N. Uchida, and S. J. Gershman. Belief state representation in

the dopamine system. Nat Commun, 9(1):1891, 2018.

A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van Hasselt,

and D. Silver. Successor features for transfer in reinforcement learning. In

Advances in neural information processing systems, pages 4055–4065, 2017.

136 BIBLIOGRAPHY

A. Barreto, D. Borsa, J. Quan, T. Schaul, D. Silver, M. Hessel, D. Mankowitz,

A. Ž́ıdek, and R. Munos. Transfer in Deep Reinforcement Learning Using

Successor Features and Generalised Policy Improvement. arXiv:1901.10964

[cs], 2019.

P. W. Battaglia and P. R. Schrater. Humans trade off viewing time and

movement duration to improve visuomotor accuracy in a fast reaching task.

J. Neurosci., 27(26):6984–6994, 2007.

J. M. Beck, P. E. Latham, and A. Pouget. Marginalization in Neural Circuits

with Divisive Normalization. J. Neurosci., 31(43):15310–15319, 2011.

A. J. Bell and T. J. Sejnowski. The “independent components” of natural

scenes are edge filters. Vision Research, 37(23):3327–3338, 1997.

P. Berkes, G. Orbán, M. Lengyel, and J. Fiser. Spontaneous Cortical Activity

Reveals Hallmarks of an Optimal Internal Model of the Environment. Science,

331(6013):83–87, 2011.

R. Blake and N. K. Logothetis. Visual competition. Nature Reviews Neuro-

science, 3(1):13–21, 2002.

W. Bounliphone, E. Belilovsky, M. B. Blaschko, I. Antonoglou, and A. Gretton.

A Test of Relative Similarity For Model Selection in Generative Models.

arXiv:1511.04581 [cs, stat], 2015.

L. Buesing, J. Bill, B. Nessler, and W. Maass. Neural dynamics as sampling: a

model for stochastic computation in recurrent networks of spiking neurons.

PLoS computational biology, 7(11):e1002211, 2011.

Y. Burda, R. Grosse, and R. Salakhutdinov. Importance Weighted Autoen-

coders. arXiv:1509.00519 [cs, stat], 2015.

N. Chater, J. B. Tenenbaum, and A. Yuille. Probabilistic models of cognition:

conceptual foundations. Trends Cogn. Sci. (Regul. Ed.), 10(7):287–291, 2006.

BIBLIOGRAPHY 137

W. Dabney, Z. Kurth-Nelson, N. Uchida, C. K. Starkweather, D. Hassabis,

R. Munos, and M. Botvinick. A distributional code for value in dopamine-

based reinforcement learning. Nature, 577(7792):671–675, 2020.

I. Dasgupta, E. Schulz, N. D. Goodman, and S. J. Gershman. Remembrance

of inferences past: Amortization in human hypothesis generation. Cognition,

178:67–81, 2018.

N. D. Daw, Y. Niv, and P. Dayan. Uncertainty-based competition between

prefrontal and dorsolateral striatal systems for behavioral control. Nature

Neuroscience, 8(12):1704, 2005.

N. D. Daw, S. J. Gershman, B. Seymour, P. Dayan, and R. J. Dolan. Model-

Based Influences on Humans’ Choices and Striatal Prediction Errors. Neuron,

69(6):1204–1215, 2011.

P. Dayan. Improving Generalization for Temporal Difference Learning: The

Successor Representation. Neural Computation, 5(4):613–624, 1993.

P. Dayan. Helmholtz Machines and Wake-Sleep Learning, Handbook of Brain

Theory and Neural Networks, 2. 2000.

P. Dayan and N. D. Daw. Decision theory, reinforcement learning, and the

brain. Cognitive, Affective, & Behavioral Neuroscience, 8(4):429–453, 2008.

P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel. The helmholtz machine.

Neural computation, 7(5):889–904, 1995.

A. F. Dean. The variability of discharge of simple cells in the cat striate cortex.

Exp Brain Res, 44(4):437–440, 1981.

M. O. Ernst and M. S. Banks. Humans integrate visual and haptic information

in a statistically optimal fashion. Nature, 415(6870):429, 2002.

C. R. Fetsch, A. H. Turner, G. C. DeAngelis, and D. E. Angelaki. Dynamic

reweighting of visual and vestibular cues during self-motion perception. J.

Neurosci., 29(49):15601–15612, 2009.

138 BIBLIOGRAPHY

I. M. Finn, N. J. Priebe, and D. Ferster. The Emergence of Contrast-Invariant

Orientation Tuning in Simple Cells of Cat Visual Cortex. Neuron, 54(1):

137–152, 2007.

K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality Reduction for

Supervised Learning With Reproducing Kernel Hilbert Spaces:. Technical

report, Defense Technical Information Center, Fort Belvoir, VA, 2003.

M. P. H. Gardner, G. Schoenbaum, and S. J. Gershman. Rethinking dopamine

as generalized prediction error. Proc. Biol. Sci., 285(1891), 2018.

S. J. Gershman. The Successor Representation: Its Computational Logic and

Neural Substrates. J. Neurosci., 38(33):7193–7200, 2018.

S. J. Gershman and N. D. Goodman. Amortized Inference in Probabilistic

Reasoning. In CogSci, 2014.

S. Ghadimi and G. Lan. Stochastic First- and Zeroth-order Methods for

Nonconvex Stochastic Programming. arXiv:1309.5549 [cs, math, stat], 2013.

J. Gläscher, N. Daw, P. Dayan, and J. P. O’Doherty. States versus Rewards:

Dissociable Neural Prediction Error Signals Underlying Model-Based and

Model-Free Reinforcement Learning. Neuron, 66(4):585–595, 2010.

A. Grabska-Barwińska, S. Barthelmé, J. Beck, Z. F. Mainen, A. Pouget, and P. E.

Latham. A probabilistic approach to demixing odors. Nature Neuroscience,

20(1):98–106, 2017.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A

Kernel Two-Sample Test. Journal of Machine Learning Research, 13:723–773,

2012.

R. M. Grieves, E. R. Wood, and P. A. Dudchenko. Place cells on a maze encode

routes rather than destinations. eLife, 5:e15986, 2016.

BIBLIOGRAPHY 139

S. Grünewälder, G. Lever, L. Baldassarre, S. Patterson, A. Gretton, and

M. Pontil. Conditional mean embeddings as regressors. Proceedings of

the 29th International Conference on Machine Learning, ICML 2012, 2:

1823–1830, 2012.

Y. Gu, D. E. Angelaki, and G. C. Deangelis. Neural correlates of multisensory

cue integration in macaque MSTd. Nat. Neurosci., 11(10):1201–1210, 2008.

A. S. Gupta, M. A. A. van der Meer, D. S. Touretzky, and A. D. Redish.

Hippocampal replay is not a simple function of experience. Neuron, 65(5):

695–705, 2010.

H. v. Helmholtz. Handbuch der physiologischen Optik. L. Voss, 1867.

O. J. Hénaff, A. Srinivas, J. De Fauw, A. Razavi, C. Doersch, S. M. A. Eslami,

and A. v. d. Oord. Data-Efficient Image Recognition with Contrastive

Predictive Coding. arXiv:1905.09272 [cs], 2019.

G. Hennequin, L. Aitchison, and M. Lengyel. Fast Sampling-Based Inference in

Balanced Neuronal Networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information

Processing Systems 27, pages 2240–2248. Curran Associates, Inc., 2014.

G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The ”wake-sleep” algorithm

for unsupervised neural networks. Science, 268(5214):1158–1161, 1995.

S. A. Hollup, S. Molden, J. G. Donnett, M. B. Moser, and E. I. Moser. Ac-

cumulation of hippocampal place fields at the goal location in an annular

watermaze task. J. Neurosci., 21(5):1635–1644, 2001.

P. O. Hoyer and A. Hyvärinen. Interpreting Neural Response Variability

as Monte Carlo Sampling of the Posterior. In S. Becker, S. Thrun, and

K. Obermayer, editors, Advances in Neural Information Processing Systems

15, pages 293–300. MIT Press, 2003.

140 BIBLIOGRAPHY

A. Hyvarinen and H. Morioka. Unsupervised Feature Extraction by Time-

Contrastive Learning and Nonlinear ICA. arXiv:1605.06336 [cs, stat], 2016.

S. Ikeda, S.-i. Amari, and H. Nakahara. Convergence of the Wake-Sleep

Algorithm. In M. J. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances

in Neural Information Processing Systems 11, pages 239–245. MIT Press,

1999.

R. A. Jacobs. Optimal integration of texture and motion cues to depth. Vision

Research, 39(21):3621–3629, 1999.

S. P. Jadhav, C. Kemere, P. W. German, and L. M. Frank. Awake Hippocampal

Sharp-Wave Ripples Support Spatial Memory. Science, 336(6087):1454–1458,

2012.

W. Jitkrittum, Z. Szabo, K. Chwialkowski, and A. Gretton. Interpretable

Distribution Features with Maximum Testing Power. arXiv:1605.06796 [cs,

stat], 2016.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An Introduction

to Variational Methods for Graphical Models. Machine Learning, 37(2):

183–233, 1999.

D. Kingma, Welling, M., and Amsterdam Machine Learning lab (IVI, FNWI).

Auto-Encoding Variational Bayes. In 2nd International Conference on Learn-

ing Representations (ICLR2014). arXiv.org, 2014.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs], 2014.

D. C. Knill. Surface orientation from texture: ideal observers, generic observers

and the information content of texture cues. Vision Research, 38(11):1655–

1682, 1998.

D. C. Knill and W. Richards. Perception as Bayesian Inference. Cambridge

University Press, 1996.

BIBLIOGRAPHY 141

K. P. Körding and D. M. Wolpert. Bayesian integration in sensorimotor learning.

Nature, 427(6971):244, 2004.

T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J. Gershman. Deep Successor

Reinforcement Learning. arXiv:1606.02396 [cs, stat], 2016.

A. Kutschireiter, S. C. Surace, H. Sprekeler, and J.-P. Pfister. Nonlinear

Bayesian filtering and learning: a neuronal dynamics for perception. Scientific

Reports, 7(1):8722, 2017.

A. Lak, K. Nomoto, M. Keramati, M. Sakagami, and A. Kepecs. Midbrain

Dopamine Neurons Signal Belief in Choice Accuracy during a Perceptual

Decision. Curr. Biol., 27(6):821–832, 2017.

Y. Liu, R. J. Dolan, Z. Kurth-Nelson, and T. E. J. Behrens. Human Replay

Spontaneously Reorganizes Experience. Cell, 178(3):640–652.e14, 2019.

N. K. Logothetis and J. D. Schall. Neuronal correlates of subjective visual

perception. Science, 245(4919):761–763, 1989.

W. J. Ma, J. M. Beck, P. E. Latham, and A. Pouget. Bayesian inference with

probabilistic population codes. Nature Neuroscience, 9(11):1432–1438, 2006.

P. R. MacNeilage, M. S. Banks, D. R. Berger, and H. H. Bülthoff. A Bayesian

model of the disambiguation of gravitoinertial force by visual cues. Exp Brain

Res, 179(2):263–290, 2007.

T. Madl, S. Franklin, K. Chen, D. Montaldi, and R. Trappl. Bayesian integration

of information in hippocampal place cells. PLoS ONE, 9(3):e89762, 2014.

J. G. Makin, M. R. Fellows, and P. N. Sabes. Learning Multisensory In-

tegration and Coordinate Transformation via Density Estimation. PLOS

Computational Biology, 9(4):e1003035, 2013.

J. G. Makin, B. K. Dichter, and P. N. Sabes. Learning to Estimate Dynamical

State with Probabilistic Population Codes. PLOS Computational Biology, 11

(11):e1004554, 2015.

142 BIBLIOGRAPHY

N. Metropolis and S. Ulam. The Monte Carlo Method. Journal of the American

Statistical Association, 44(247):335–341, 1949.

C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural

Comput, 17(1):177–204, 2005.

T. Minka. Divergence Measures and Message Passing. Microsoft Research,

2005.

A. Mnih and D. Rezende. Variational Inference for Monte Carlo Objectives. In

PMLR, pages 2188–2196, 2016.

I. Momennejad, E. M. Russek, J. H. Cheong, M. M. Botvinick, N. D. Daw,

and S. J. Gershman. The successor representation in human reinforcement

learning. Nature Human Behaviour, 1(9):680, 2017.

M. L. Morgan, G. C. Deangelis, and D. E. Angelaki. Multisensory integration

in macaque visual cortex depends on cue reliability. Neuron, 59(4):662–673,

2008.

K. Muandet, K. Fukumizu, B. Sriperumbudur, and B. Schölkopf. Kernel

Mean Embedding of Distributions: A Review and Beyond. FNT in Machine

Learning, 10(1-2):1–141, 2017.

K. P. Murphy. Machine learning: a probabilistic perspective. Cambridge, MA,

2012.

R. M. Neal. Connectionist learning of belief networks. Artificial Intelligence,

56(1):71–113, 1992.

H. F. Ólafsdóttir, C. Barry, A. B. Saleem, D. Hassabis, and H. J. Spiers. Hip-

pocampal place cells construct reward related sequences through unexplored

space. Elife, 4:e06063, 2015.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set:

A strategy employed by V1? Vision Research, 37(23):3311–3325, 1997.

BIBLIOGRAPHY 143

A. v. d. Oord, Y. Li, and O. Vinyals. Representation Learning with Contrastive

Predictive Coding. arXiv:1807.03748 [cs, stat], 2019.

G. Orbán, P. Berkes, J. Fiser, and M. Lengyel. Neural Variability and Sampling-

Based Probabilistic Representations in the Visual Cortex. Neuron, 92(2):

530–543, 2016.

A. E. Orhan and W. J. Ma. Efficient probabilistic inference in generic neural

networks trained with non-probabilistic feedback. Nature Communications,

8(1):138, 2017.

E. Parzen. On Estimation of a Probability Density Function and Mode. Ann.

Math. Statist., 33(3):1065–1076, 1962.

A. Pouget, P. Dayan, and R. S. Zemel. Inference and computation with

population codes. Annual review of neuroscience, 26(1):381–410, 2003.

A. Pouget, J. M. Beck, W. J. Ma, and P. E. Latham. Probabilistic brains:

knowns and unknowns. Nat. Neurosci., 16(9):1170–1178, 2013.

A. Rahimi and B. Recht. Uniform approximation of functions with random

bases. In 2008 46th Annual Allerton Conference on Communication, Control,

and Computing, pages 555–561, 2008.

R. V. Raju and Z. Pitkow. Inference by Reparameterization in Neural Pop-

ulation Codes. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and

R. Garnett, editors, Advances in Neural Information Processing Systems 29,

pages 2029–2037. Curran Associates, Inc., 2016.

R. Ranganath, L. Tang, L. Charlin, and D. Blei. Deep exponential families. In

Artificial Intelligence and Statistics, pages 762–771, 2015.

R. P. N. Rao. Decision Making Under Uncertainty: A Neural Model Based on

Partially Observable Markov Decision Processes. Front. Comput. Neurosci.,

4, 2010.

144 BIBLIOGRAPHY

D. J. Rezende and S. Mohamed. Variational Inference with Normalizing Flows.

arXiv:1505.05770 [cs, stat], 2015.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic Backpropagation

and Approximate Inference in Deep Generative Models. arXiv:1401.4082 [cs,

stat], 2014.

M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density

Function. Ann. Math. Statist., 27(3):832–837, 1956.

E. M. Russek, I. Momennejad, M. M. Botvinick, S. J. Gershman, and N. D.

Daw. Predictive representations can link model-based reinforcement learning

to model-free mechanisms. PLOS Computational Biology, 13(9):e1005768,

2017.

M. Sahani and P. Dayan. Doubly Distributional Population Codes: Simultane-

ous Representation of Uncertainty and Multiplicity. Neural Computation, 15

(10):2255–2279, 2003.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief

networks. In Proceedings of the 25th international conference on Machine

learning, pages 872–879. ACM, 2008.

E. Salinas and L. F. Abbott. Vector reconstruction from firing rates. J Comput

Neurosci, 1(1):89–107, 1994.

M. Sanjabi, J. Ba, M. Razaviyayn, and J. Lee. On the Convergence and

Robustness of Training GANs with Regularized Optimal Transport. 2018.

S. Sarno, V. de Lafuente, R. Romo, and N. Parga. Dopamine reward prediction

error signal codes the temporal evaluation of a perceptual decision report.

Proc. Natl. Acad. Sci. U.S.A., 114(48):E10494–E10503, 2017.

W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction

and reward. Science, 275(5306):1593–1599, 1997.

BIBLIOGRAPHY 145

O. Schwartz and E. P. Simoncelli. Natural signal statistics and sensory gain

control. Nat. Neurosci., 4(8):819–825, 2001.

H. S. Seung and H. Sompolinsky. Simple models for reading neuronal population

codes. PNAS, 90(22):10749–10753, 1993.

L. Shams, W. J. Ma, and U. Beierholm. Sound-induced flash illusion as an

optimal percept. Neuroreport, 16(17):1923–1927, 2005.

R. Singh, M. Sahani, and A. Gretton. Kernel Instrumental Variable Regression.

arXiv:1906.00232 [cs, econ, math, stat], 2019.

A. Smola, A. Gretton, L. Song, and B. Schölkopf. A Hilbert Space Embedding

for Distributions. In M. Hutter, R. A. Servedio, and E. Takimoto, editors,

Algorithmic Learning Theory, Lecture Notes in Computer Science, pages

13–31. Springer Berlin Heidelberg, 2007.

H. P. Snippe. Parameter extraction from population codes: a critical assessment.

Neural Comput, 8(3):511–529, 1996.

C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther. Ladder

Variational Autoencoders. arXiv:1602.02282 [cs, stat], 2016.

L. Song, J. Huang, A. Smola, and K. Fukumizu. Hilbert space embeddings of

conditional distributions with applications to dynamical systems. In Pro-

ceedings of the 26th Annual International Conference on Machine Learning,

pages 961–968, 2009.

L. Song, A. Gretton, and C. Guestrin. Nonparametric tree graphical mod-

els. In Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics, pages 765–772, 2010.

B. Sriperumbudur, K. Fukumizu, and G. Lanckriet. On the relation between

universality, characteristic kernels and RKHS embedding of measures. In Pro-

ceedings of the Thirteenth International Conference on Artificial Intelligence

and Statistics, pages 773–780, 2010.

146 BIBLIOGRAPHY

K. L. Stachenfeld, M. Botvinick, and S. J. Gershman. Design Principles of the

Hippocampal Cognitive Map. In Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information

Processing Systems 27, pages 2528–2536. Curran Associates, Inc., 2014.

K. L. Stachenfeld, M. M. Botvinick, and S. J. Gershman. The hippocampus as

a predictive map. Nature Neuroscience, 20(11):1643–1653, 2017.

C. K. Starkweather, B. M. Babayan, N. Uchida, and S. J. Gershman. Dopamine

reward prediction errors reflect hidden-state inference across time. Nat.

Neurosci., 20(4):581–589, 2017.

F. Stella, P. Baracskay, J. O’Neill, and J. Csicsvari. Hippocampal Reactivation

of Random Trajectories Resembling Brownian Diffusion. Neuron, 2019.

M. Steyvers, T. L. Griffiths, and S. Dennis. Probabilistic inference in human

semantic memory. Trends Cogn. Sci. (Regul. Ed.), 10(7):327–334, 2006.

A. A. Stocker and E. P. Simoncelli. Noise characteristics and prior expectations

in human visual speed perception. Nature Neuroscience, 9(4):578, 2006.

R. S. Sutton. Learning to predict by the methods of temporal differences. Mach

Learn, 3(1):9–44, 1988.

R. S. Sutton. Integrated Architectures for Learning, Planning, and React-

ing Based on Approximating Dynamic Programming. In B. Porter and

R. Mooney, editors, Machine Learning Proceedings 1990, pages 216–224.

Morgan Kaufmann, San Francisco (CA), 1990.

R. S. Sutton and A. G. Barto. Introduction to reinforcement learning, volume

135. MIT press Cambridge, 1998.

Y. K. Takahashi, H. M. Batchelor, B. Liu, A. Khanna, M. Morales, and

G. Schoenbaum. Dopamine Neurons Respond to Errors in the Prediction of

Sensory Features of Expected Rewards. Neuron, 95(6):1395–1405.e3, 2017.

BIBLIOGRAPHY 147

J. B. Tenenbaum and T. L. Griffiths. Theory-based Causal Inference. In

Proceedings of the 15th International Conference on Neural Information

Processing Systems, NIPS’02, pages 43–50, Cambridge, MA, USA, 2002. MIT

Press.

E. Todorov. Optimality principles in sensorimotor control. Nat. Neurosci., 7

(9):907–915, 2004.

D. J. Tolhurst, J. A. Movshon, and A. F. Dean. The statistical reliability of

signals in single neurons in cat and monkey visual cortex. Vision Res., 23

(8):775–785, 1983.

J. Trommershauser, K. Kording, and M. S. Landy, editors. Sensory Cue

Integration. Computational Neuroscience Series. Oxford University Press,

Oxford, New York, 2011.

R. E. Turner and M. Sahani. Two problems with variational expectation

maximisation for time-series models. In Bayesian Time series models, pages

109–130. Cambridge University Press, 2011.

R. J. van Beers, A. C. Sittig, and J. J. D. v. d. Gon. Integration of Propriocep-

tive and Visual Position-Information: An Experimentally Supported Model.

Journal of Neurophysiology, 81(3):1355–1364, 1999.

J. H. van Hateren and A. van der Schaaf. Independent component filters of

natural images compared with simple cells in primary visual cortex. Proc

Biol Sci, 265(1394):359–366, 1998.

E. Vértes and M. Sahani. Flexible and accurate inference and learning for deep

generative models. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information

Processing Systems 31, pages 4166–4175. Curran Associates, Inc., 2018.

E. Vértes and M. Sahani. A neurally plausible model learns successor represen-

tations in partially observable environments. In H. Wallach, H. Larochelle,

148 BIBLIOGRAPHY

A. Beygelzimer, F. d. Alché-Buc, E. Fox, and R. Garnett, editors, Advances

in Neural Information Processing Systems 32, pages 13692–13702. Curran

Associates, Inc., 2019.

M. J. Wainwright and M. I. Jordan. Graphical Models, Exponential Families,

and Variational Inference. Found. Trends Mach. Learn., 1(1-2):1–305, 2008.

M. J. Wainwright and E. P. Simoncelli. Scale Mixtures of Gaussians and the

Statistics of Natural Images. In S. A. Solla, T. K. Leen, and K. Müller, editors,

Advances in Neural Information Processing Systems 12, pages 855–861. MIT

Press, 2000.

E. Y. Walker, R. J. Cotton, W. J. Ma, and A. S. Tolias. A neural basis of

probabilistic computation in visual cortex. bioRxiv, page 365973, 2019.

L. Whiteley and M. Sahani. Implicit knowledge of visual uncertainty guides

decisions with asymmetric outcomes. Journal of vision, 8(3):2–2, 2008.

L. Wiskott and T. J. Sejnowski. Slow Feature Analysis: Unsupervised Learning

of Invariances. Neural Computation, 14(4):715–770, 2002.

D. M. Wolpert, Z. Ghahramani, and M. I. Jordan. An internal model for

sensorimotor integration. Science, 269(5232):1880–1882, 1995.

T. Yang and M. N. Shadlen. Probabilistic reasoning by neurons. Nature, 447

(7148):1075–1080, 2007.

R. S. Zemel and P. Dayan. Distributional Population Codes and Multiple

Motion Models. In M. J. Kearns, S. A. Solla, and D. A. Cohn, editors,

Advances in Neural Information Processing Systems 11, pages 174–182. MIT

Press, 1999.

R. S. Zemel, P. Dayan, and A. Pouget. Probabilistic interpretation of population

codes. Neural computation, 10(2):403–430, 1998.

	I Learning and inference in hierarchical generative models
	Introduction
	Variational inference and learning in latent variable models
	Deep exponential family models
	The classic Helmholtz Machine and the wake-sleep algorithm
	Reproducing kernel Hilbert spaces
	Vector valued RKHSs

	Kernel mean embedding of distributions

	The Distributed Distributional Code Helmholtz Machine
	Distributed Distributional Codes
	The DDC Helmholtz Machine algorithm
	Sleep phase
	Wake phase

	Experiments
	Synthetic examples
	Natural image patches
	A generative model of olfactory stimuli
	Sigmoid Belief Network trained on MNIST

	Related work
	Discussion

	The Kernel Helmholtz Machine
	Kernel Helmholtz Machine
	Sleep phase
	Wake phase

	Approximate convergence of the Kernel Helmholtz machine
	Properties of the Kernel-HM gradient estimator

	Discussion
	Appendix
	Computing and learning gradients for the generative model parameters
	Bias and variance of the Kernel-HM gradient estimator

	II Learning and computing with uncertainty in the brain
	Neural Representations of Uncertainty
	Behavioural evidence for probabilistic computations
	Uncertainty in neural systems
	Proposals for neural representation of uncertainty
	Linear density codes
	Distributional population codes
	Probabilistic population codes
	Natural parameter codes
	Neural sampling

	Discussion of different proposals
	Appendix
	Log-linear codes for uncertainty

	Distributed Distributional Codes in Reinforcement Learning
	Introduction
	Reinforcement learning – preliminaries
	Temporal-difference learning
	Partially observable Markov decision processes

	The successor representation
	Successor representation using features

	Distributional successor representation
	Learning and inference in a state space model using DDCs
	Learning distributional successor features
	Value computation in a noisy 2D environment

	Discussion and related work
	Appendix
	Wake phase update for distributional SFs
	Equivalence of sleep and wake phase TD
	Further experimental details

	III General Conclusions

