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Abstract. We introduce and demonstrate an unsupervised machine learn-
ing method for spectroscopic analysis of quantitative MRI (qMRI) exper-
iments. qMRI data can support estimation of multidimensional correla-
tion (or single-dimensional) spectra, which allow model-free investigation
of tissue properties, but this requires an ill-posed calculation. Moreover,
in the vast majority of applications ground truth knowledge is unobtain-
able, preventing the application of supervised machine learning. Here we
present a new method that addresses these limitations in a data-driven
way. The algorithm simultaneously estimates a canonical basis of spec-
tral components and voxelwise maps of their weightings, thereby pool-
ing information across whole images to regularise the ill-posed problem.
We show that our algorithm substantially outperforms current voxelwise
spectral approaches. We demonstrate the method on combined diffusion-
relaxometry placental MRI scans, revealing anatomically-relevant sub-
structures, and identifying dysfunctional placentas. Our algorithm vastly
reduces the data required to reliably estimate multidimensional correla-
tion (or single-dimensional) spectra, opening up the possibility of spec-
troscopic imaging in a wide range of new applications.
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1 Introduction

Continuum modelling is an attractive method for analysing quantitative MRI
(qMRI) data. The technique assumes that spins have a distribution of values
(e.g. relaxivity, diffusivity), which are quantified by a multidimensional corre-
lation (or single-dimensional) spectrum. This approach is particularly powerful
for experiments that simultaneously measure multiple MR properties, as it can
resolve microstructural compartments that are indistinguishable with single con-
trast data. Imaging studies have recently demonstrated this in the T1-diffusion
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[8, 7, 20], T2-diffusion [25, 12, 17], T1-T2-diffusion [3], T2*-diffusion [24], T1-T2
[15], and T1-T2*-diffusion [11] domains.

A general continuum model gives a Fredholm integral equation on the MR
signal [4], or a Laplace transform in the specific exponenetial decay case. The
spectrum can be estimated using regularised inversion of this integral [9], al-
though this is highly ill-posed. Estimating spectra in each image voxel indepen-
dently therefore requires unrealistically high signal-to-noise (SNR). Moreover, to
derive meaningful image maps from voxelwise spectra typically involves a pro-
cedure known as spectral integration. In spectral integration, the user manually
identifies regions of the spectrum (termed spectral regions of interest, sROI)
that correspond to particular features of spectral components of interest. Scalar
indices are then calculated by numerical integration of each reconstructed spec-
trum over these sROIs [16, 12, 3].

Recently, methods have been proposed for increasing the robustness of vox-
elwise spectral fits, utilising marginal distributions [2] or spatial regularisation
[12]. These methods can improve inversion stability and give more meaningful
derived spatial maps. However, inherent limitations remain. In particular, the
reliance on ad-hoc choices of regularisation terms and manually defined sROIs.
A recent technique automatically identifies these spectral integration regions
[21], but restricts to rectangular and non-overlapping sROIs, depends on a user-
defined threshold value, and still requires voxelwise spectral estimation.

Here we present a method which addresses these limitations in a data-driven
way. It simultaneously estimates a canonical basis of spectral components for
a whole image (or a data set comprising multiple images), and the voxelwise
weighting factors of each component. We build on the discrete InSpect algorithm
previously published by Slator et al. [23], adapting it for the continuous case.
This allows us to capture smooth changes in parameters across the image with
high resolution values, rather than forcing hard categorisation of pixels into
a small set of bins, which discards subtle variation. Unlike standard inversion
approaches, the InSpect method introduced here exploits the huge dependence
among voxels, dramatically reducing the SNR required for stable inversion, hence
enabling spectroscopic imaging in a wide variety of new situations.

2 Methods

Multidimensional Spectrum Estimation. InSpect is based on a continuum
model, which assumes that single voxels contain spins with a spectrum of MR
properties. For a general n-dimensional MRI experiment the voxel signal is

S(ttt) =

∫
. . .

∫
F (ωωω)K(ttt,ωωω) dω1 . . . dωn (1)

where ttt is a vector of experimental parameters which are varied to yield con-
trast in intrinsic MR properties ωωω = (ω1, ..., ωn), via the specific form of the
kernel K(ttt,ωωω). F is the n-dimensional spectrum over ωωω, i.e. the distribution of
these values across all spins. For example, in T2*-diffusivity (or T2-diffusivity)
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imaging, ttt = (b, TE), the b-value and echo time (TE); ωωω = (ADC, T ∗2 ), the ap-
parent diffusion coefficient and T2*; K(ttt,ωωω) = exp(−TE/T ∗2 ) exp(−bADC) is
the kernel; and F is the 2D T2*-ADC spectrum.

The standard approach for estimating the spectrum, following [18, 9, 22], pro-
ceeds as follows. Equation (1) is first discretised onto an n-dimensional grid, with
lengths defined by the user-defined vector Nωωω = (Nω1

, ..., Nωn
). By choosing an

ordering of the grid coordinates, the signal for all MR encodings in the experi-
ment can thus be written in matrix form as

S = KF (2)

where S is a column vector, length Ns, of the signals at each MR encoding, K is
an Ns by

∏n
m=1Nωm

matrix of discretised kernel values, and F is an
∏n

m=1Nωm

length column vector of spectrum values. The spectrum F is then calculated
with regularised non-negative least squares

F = arg min
F≥0

‖KF− S‖22 + α‖F‖22 . (3)

By solving Equation (3) in each voxel, the spectrum can be estimated across
a whole image. Volume fraction maps are then produced by numerically inte-
grating voxelwise spectra over user-defined regions of the spectrum, e.g. [14, 3,
16]. However low SNR can lead to noisy spectrum estimates and hence poor
mappings.

Underlying model. Our algorithm automates spectral mapping, and under-
takes data-driven regularisation of the Fredholm integral (or Laplace transform)
inversion. Rather than naively fitting spectra to each voxel independently, we
learn a low-dimensional representation consistent with the whole image.

The first element of the representation is a pre-specified number,M , of canon-
ical spectral components, {F1, F2, ..., FM} (see first column of Figure 1 for an
example). Each spectral component has corresponding voxelwise weights across
all N image voxels. The weighting of component m in voxel n is denoted znm,
so that the full set of voxelwise weights is

zn = {zn1, zn2, ..., znM}Nn=1, subject to

M∑
m=1

znm = 1. (4)

The second column of Figure 1 shows example voxelwise weights. The signal from
each voxel, Sn, is described by the continuum model of Equation (1) with the
effective spectrum in each voxel n modelled as a weighted sum of the canonical
spectrum components

F (zn) =

M∑
m=1

znmFm (5)

where zn = {znm}Mm=1 are the component weights for voxel n. The discrete model
for a single voxel is therefore given by Sn = KF (zn). We assume Gaussian noise,
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giving the following whole-image log-likelihood

log π({Sn}Nn=1|{Fm}Mm=1, {zn, σ2
n}Nn=1) =

N∑
n=1

logN
(
Sn; KF (zn), σ2

nI
)
. (6)

Note that we assume all observations in a voxel have the same variance, i.e. the
covariance matrix is σ2

nI. For simplicity we denote the log-likelihood log π(D|θ),
where D = {Sn}Nn=1 is the full multi-constrast MR dataset (either a single
image or set of images), and θ =

{
{Fm}Mm=1, {zn}Nn=1, {σ2

n}Nn=1

}
are the model

parameters.
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Fig. 1. The model underlying InSpect consists of a set of M components. Each compo-
nent has an associated canonical spectrum and volume fraction map, which combine
to give the effective voxelwise spectra.

InSpect Inference Algorithm We seek the parameters θ that maximise
log π(D|θ). In practice, we estimate σ2

n directly from the data, e.g. for a T2*-
diffusion experiment we estimate by calculating the empirical variance of the
volumes with b=0 and the lowest TE. To derive maximisation steps for the
canonical spectral components {Fm}Mm=1, and voxelwise weights, {znm}Nn=1 we
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first rearrange the log-likelihood to give

log π(D|θ) =

N∑
n=1

−1

2
log 2πσ2

n −
1

2σ2
n

∥∥Sn −KF (zn)
∥∥2
2
. (7)

We now derive a maximisation step for a canonical spectrum, Fj conditioned
on the voxelwise weights {zn}Nn=1, and the other spectra {Fm}m 6=j . For the
canonical spectral components, F1, ...,FM , we need to solve Fk = arg maxFk≥0 log π(D|θ).
Taking the derivation of the function with respect to Fk (in numerator layout),
setting equal to zero, and rearraging gives

Fk = arg min
Fk≥0

∥∥∥∥∥∥∥
 N∑

n=1

Kznk

Fk −
N∑

n=1

Sn −K

∑
m 6=k

znmFm



∥∥∥∥∥∥∥
2

2

. (8)

We can solve Equation (8) with non-negative least squares as described earlier.

To find the maximum likelihood voxelwise weightings for each of the spec-
tral components, we first note the posterior distribution for the model, up to
proportionality

π(θ|D) ∝ π(D|θ)π(θ) =

N∏
n=1

N
(
Sn; KF (zn), σ2

nI
)

(9)

where we have assumed a uniform prior on all parameters θ. The posterior
distribution for each zn - up to proportionality - is therefore

π(zn|Sn, θ
(t−1)) ∝ N

(
Sn; KF (zn), σ2

nI
)

(10)

We therefore update zn = {znm}Mm=1 by maximising this (in log-scale), subject

to
∑M

m=1 znm = 1, i.e.

zn = arg max∑M
m=1 znm=1

logN
(
Sn; KF (zn), σ2

nI
)

(11)

which we solve sequentially for voxels n = 1, ..., N with the interior-point algo-
rithm. The InSpect algorithm is hence the following iterative optimisation:

1. Initialise the canonical spectral components {F1, F2, ..., FM}, e.g. by assign-
ing component to distinct elements of the whole-image spectrum.

2. Initialise the spectral weights for all voxels {znm}Nn=1, given {F1, F2, ..., FM}
3. Update Fm for some m by solving Equation (8)

4. Update {znm}Nn=1 by solving Equation (11) for all voxels

5. Repeat steps 3 and 4 until convergence.
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Application to Placenta Diffusion-Relaxometry Data We demonstrate
our InSpect algorithm on placental T2*-diffusion data acquired on a 3T clinical
MRI scanner using a 32-channel cardiac coil, previously published by Slator et
al [24]. The protocol has 66 diffusion-weightings (ranging from b = 5 to 1600
s mm−2, including six b = 0 volumes) and 5 TEs (78, 114, 150, 186, 222 ms)
for a total of 330 contrast-encodings. Other acquisition parameters were FOV
= 300×320×84 mm, TR = 7 s, SENSE = 2.5, halfscan = 0.6, resolution =
3mm3. We considered 13 scans from 12 women, of whom 9 were categorised as
healthy controls, two had chronic hypertension in pregnancy, and one had pre-
eclampsia (PE) with additional fetal growth restriction (FGR). One participant
with chronic hypertension was scanned twice, four weeks apart, and developed
superimposed PE by the second scan. The algorithm was run on all scans simul-
taneously, on a manually-segmented ROI comprising the whole placenta and the
adjacent section of uterine wall, with M = 4 components specified.

Application to Simulations We also tested on simulated diffusion-relaxometry
data. Four synthetic canonical spectral components - informed by observed pla-
cental spectra [24] - were first defined (Figure 2, first column). We next defined
ground truth voxelwise weights on a 50-by-50 image (Figure 2, third column).
Given these, we simulated normalised diffusion-relaxometry scans using the same
b-values and TEs as the placental data. We added Rician noise with SNR from
25-200 - this is comparable to the placenta data where we calculated SNRs rang-
ing from 100 to 200. We applied InSpect - specifying M = 4 components - to
these scans. We also fit voxelwise T2*-ADC spectra to all scans by solving Equa-
tion (3), with α set to 0.01 using the L-curve method [10], and hence derived
volume fraction maps with the standard spectral integration approach [16, 12,
3].

3 Results

Figure 2 and Supplementary Material Figures 4-5 demonstrate that our InSpect
algorithm significantly outperforms the voxelwise approach on simulated data.
At all noise levels, our maps more accurately recover the ground truth than
voxelwise maps. We also accurately, and automatically, recover ground truth
spectral components (e.g. Figure 2 first columns) - these have to be manually
identified in the standard voxelwise approach.

Figure 3 presents the joint InSpect fit to all participants’ placental MR im-
ages. The four canonical spectral components (first column in top four rows) have
distinct characteristics which suggests they each reflect a different microstruc-
tural environment. Although the algorithm imposes no direct anatomical ana-
logue for any of the components, the corresponding maps identify clear anatom-
ical structures which are consistent across control placentas, and show clear
differences in dysfunctional placentas. This suggests that the canonical spectral
components consistently identify distinct tissue environments, and that those
tissue environments are salient to placental dysfunction.
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Fig. 2. InSpect algorithm applied to simulated images. The algorithm output is pre-
sented in columns 1-2: inferred spectral components (green-yellow peaks, column 1),
and corresponding voxelwise weights (column 2). Column 3: ground truth voxelwise
weights; ground truth spectral components (red dots in column 1) have fixed T2*-
ADC values of (0.05, 0.0002), (0.06, 0.003), (0.07, 0.05) and (0.08 ms, 0.2 mm2/s).
Column 4: maps obtained by numerical integration (within blue regions of column 1)
of voxelwise spectral fits. Reported mean square error (MSE) values compare each com-
ponent’s map and the corresponding ground truth map. See Supplementary Material
for fits with other SNR values.

4 Discussion and Conclusion

We introduce and demonstrate an unsupervised machine learning method for
spectroscopic imaging. Our algorithm simultaneously estimates a set of canoni-
cal spectral components and their mapping across images. This offers potential
advantages over typical spectrum estimation methods - such as those utilising
marginal distributions [2] or spatial regularisation [12] - which can be unstable
with standard MRI noise levels and require manual spectral labelling to obtain
parametric maps. Our method also has advantages over blind source separation
(BSS) techniques (e.g. [13] and [19]) since we incorporate a well-defined basic
MRI model, allowing us to explicitly reconstruct signal components that we
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Fig. 3. Four-component InSpect model jointly fit to 13 placenta diffusion-relaxometry
scans. The leftmost boxes display the InSpect spectra, which are shared across all 13
participants. The remaining boxes display the corresponding volume fraction maps for
6 of the 13 scans, with rows showing the maps for a single canonical spectral component,
and columns showing the maps for a single scan. See Supplementary Material for maps
from the remaining 7 scans.

can associate with distinct tissue compartments. However, BSS would be more
appropriate when when explicit signal models are unknown or inaccurate.

On simulated data we significantly outperform the standard voxelwise ap-
proach, even when the total number of voxels is relatively small compared to
a typical clinical scan (Figure 2). On placental diffusion-relaxometry MRI data
InSpect maps clearly show anatomical structures (Figure 3). This suggests that
these maps provide insight into microstruture and microcirculation across the
placenta.

Given the observed spatial patterns and corresponding canonical spectral
component characteristics in placental data, we can make initial speculations
about the tissue microenvironments associated with each component. Compo-
nent one maps out lobular structures in the placenta, and consists of a single
spectral peak with ADC close to free water. These observations are consistent
with the characteristics we would expect of maternal blood pools within the
placenta. Component two appears to encircle these lobules, and contains a re-
stricted (i.e. very low ADC) spectral peak. This is consistent with this component
representing tissular structures, including the lobule-enclosing septa. In control
participants, components three and four are prominent in the uterine wall. Both
component-associated spectra contain peaks with higher ADC than free water,
suggesting the presence of perfusing blood. This may be maternal blood in uter-
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ine wall areas and fetal blood within the placenta. Component 4 is considerably
reduced in dysfunctional placentas, likely indicative of pathology.

There are limitations that motivate potential future improvements. The choice
of canonical spectral components is user-defined, in future we will explore how to
select this automatically, e.g. through model selection statistics, cross validation,
and/or prior microstructural knowledge. Whilst the spectral components appear
to show anatomical features, we could constrain the spectra to ensure this link,
or add a Markov random field to make it more likely. Here we fit our InSpect
model to groups of MRI scans simultaneously, which may average over some im-
portant within-individual features. In future we will compare to individual scan
fits, with focus on which approach best differentiates controls from disease.

Our algorithm is widely applicable across qMRI techniques; to facilitate this
our code is freely available at https://github.com/PaddySlator/inspect. Apply-
ing to single-contrast qMRI is particularly attractive, since there are numerous
techniques across tissue types and imaging modalities; our approach could enable
significantly improved mappings compared to standard voxelwise model fitting
methods. For example, the framework is immediately applicable to spectrum-
based analysis of multi-echo T2 relaxometry for myelin water imaging [1]. The
method can also be applied to other multidimensional experiments beyond the
diffusion-relaxometry example in this paper, such as diffusion exchange spec-
troscopy [5, 6]. To conclude, our approach opens up spectral techniques to a
wide range of situations where they are currently impossible. In particular, it
paves the way to turn spectroscopic imaging into a widely used method for
clinical research and practice.
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