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Abstract 
  

Tumour mutational burden (TMB) predicts immunotherapy outcome in non-small cell lung 

cancer (NSCLC), consistent with immune recognition of tumour neoantigens. However, 

persistent antigen exposure is detrimental for T cell function. How TMB affects CD4 and CD8 T 

cell differentiation in untreated tumours, and whether this affects patient outcomes is unknown. 

Here we paired high-dimensional flow cytometry, exome, single-cell and bulk RNA sequencing 

from patients with resected, untreated NSCLC to examine these relationships. TMB was 

associated with compartment-wide T cell differentiation skewing, characterized by loss of TCF7-

expressing progenitor-like CD4 T cells, and an increased abundance of dysfunctional CD8 and 

CD4 T cell subsets, with significant phenotypic and transcriptional similarity to neoantigen-

reactive CD8 T cells. A gene signature of redistribution from progenitor-like to dysfunctional 

states associated with poor survival in lung and other cancer cohorts. Single-cell 

characterization of these populations informs potential strategies for therapeutic manipulation in 

NSCLC. 

 

Introduction 
  

Tumour neoantigens are a key substrate for T cell-mediated recognition of cancer cells1. 

Neoantigen-specific T cells respond to immune checkpoint-blockade (ICB) and have been 

detected in the blood and tumours of patients with non-small cell lung (NSCLC)2,3 and other 

cancer types4. Although tumour mutational burden (TMB) predicts response to checkpoint 

blockade2,5,6, clinically evident tumours usually progress without therapy, suggesting functional 

impairment of anti-tumour T cell responses7,8.   

 

T cell activation is determined by antigen characteristics including abundance, physiochemical 

properties, MHC affinity and self-similarity9–11. In acute infection and vaccination, optimal T cell 

stimulation results in differentiation from progenitor (e.g. naive, central memory) to effector and 

memory phenotypes, together with acquisition of diverse effector functions12. However, 

persistently high antigen load13–15 in cancer and chronic infections leads to continuous, or 

repetitive T cell receptor (TCR) stimulation, which induces  transcriptional, epigenetic and 

metabolic changes that drive differentiation into dysfunctional states with progressively limited T 

cell effector functions16–18. Two broad states of functional impairment have been described in 

these settings. Firstly, T cell exhaustion (interchangeably referred to as “dysfunction”), which is 

characterized by expression of transcription factors such as TOX, high levels of co-inhibitory 

and co-stimulatory receptors, impaired cytokine production and replicative capacity19. Secondly, 
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terminal differentiation which is characterized by a senescence phenotype including shortened 

telomeres signifying a history of cell division20, heightened sensitivity to apoptosis21, and 

expression of markers including CD57, KLRG1 and Eomes22,23. 

 

Whilst functional impairment is considered one endpoint of intratumour CD8 T cell 

differentiation, recent studies have highlighted the existence of progenitor-like CD8 T cells that 

respond to ICB and are characterized by expression of transcription factors TCF7 and LEF1 

that regulate a gene expression programme conferring high proliferative capacity, self-renewal 

and the ability to repopulate more differentiated subsets following antigen re-exposure24–28. Less 

is known about dysfunctional and progenitor-like CD4 T cell states within the tumour 

microenvironment. In general, CD4 T cells play a central role in orchestrating adaptive immunity 

including initiation29 and maintenance of anti-pathogen CD8 responses30. In tumour models, 

optimal CD8 activity requires CD4 T cell help31 and human studies indicate a role for neoantigen 

specific CD4 responses in tumour control32,33.  

 

The role of antigen exposure on the relative balance and functional characteristics of tumour 

infiltrating CD4 and CD8 subsets is unknown, and potentially relevant to identify critical 

targetable pathways restricting anti-tumour T cell function. To characterize how the T cell 

differentiation landscape in NSCLC is affected by TMB as a surrogate for antigenic load, we 

integrated high-dimensional flow cytometry, RNA and whole exome sequencing (WES) data 

from surgically resected, untreated, NSCLC specimens obtained from patients in the ‘Tracking 

Cancer Evolution through Therapy’ (TRACERx) 100 cohort34, along with bulk and single T cell 

RNA sequencing data from independent cohorts. 

 

Results 
 
Diverse progenitor-like and dysfunctional CD4 and CD8 T cell populations identified by 
high-dimensional phenotyping of NSCLC TILs. 
 
To characterize NSCLC tumour infiltrating lymphocytes (TILs) we performed 19 parameter flow 

cytometry on 41 tumour regions from 15 treatment-naïve patients with stage IA-IIIA disease 

amongst the first 100 enrolled to the TRACERx study34. Thirteen patients had paired non-

tumour adjacent (NTA) tissue (Extended Data Fig. 1A-B, Supplementary Table 1). Samples 

were selected on the basis of available paired WES and sufficient single-cell digest material. 

Clustering of viable CD3+ cells in tumour and NTA samples revealed 26 T cell subpopulations 

(Figures 1A-B). Visualization of the T cell differentiation landscape by UMAP35 dimension 
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reduction revealed CD8 and CD4 T cells located in distinct groups containing populations 

characteristic of each lineage, including heterogeneous CD4+ Foxp3+ regulatory cells (Treg 

clusters 24, 25, 26) and a large subset of CD8+ terminally differentiated effector memory cells 

re-expressing CD45RA (cluster 13, TEMRA), co-defined by high CD57, GZMB and Eomes 

expression and low levels of the co-receptors PD1 and ICOS. We found an abundance of PD1hi 

CD4 (Figure 1C) and CD8 (Figure 1D) T cells, consistent with the phenotype of chronically 

stimulated, tumour reactive and dysfunctional T cells in NSCLC3,16,36. PD1hi CD8 T cells were 

divided into two main subsets distinguished by differential expression of CD57, a characteristic 

marker of extensive replication and terminal effector function in circulating T cells (Figures 1B, 

D). In keeping with this, CD57+ PD1hi CD8 T cells had high expression of GZMB and Eomes and 

were accordingly labeled terminally differentiated dysfunctional T cells37 (TDT; CD8 clusters 10, 

11, 12). Based on their phenotypic similarity to dysfunctional populations reported in mouse and 

human studies36,38,39 CD57- PD1hi CD8 T cells were labeled as Tdys (CD8 clusters 6, 7). Within 

the CD4 compartment, PD1hi cells were similarly divided between CD57+ (TDT clusters 21, 22) 

and CD57- (Tdys cluster 19) populations, with GZMB expression restricted to a subset of TDT 

cells (cluster 22). CD8 and CD4 T compartments also contained early-differentiated (naive or 

central memory-like) subsets that lacked markers of terminal differentiation (CD57-) or chronic 

antigen stimulation (low to intermediate PD1 expression) (Figure 1A).  

 

These included small populations of naive- (cluster 1 CD45RA+CD27+CD57-PD1-) and TCM-

like CD8 T cells (cluster 2, CD45RA-CD27+CD28+) and four heterogeneous populations of 

CD45RA-CD28+ TCM-like early-differentiated CD4 T cells exhibiting variable expression of 

CD27 and low to intermediate levels of ICOS and PD1 (CD4 clusters 15, 16, 17, 18), consistent 

with a memory progenitor state. The remaining pool of CD3+ TILs comprised CD8 (clusters 3-5, 

8-9) and CD4 (cluster 20) T cells with heterogeneous effector memory (TEM) profiles and 

clusters positioned between CD4 and CD8 T cell subsets (Intermediate TEMRA cluster 23, 

double negative [DN] cluster 14) on the UMAP plot.  

 

Tdys and TDT populations were significantly enriched in tumour regions compared to matched 

NTA tissue (cluster 19, Tdys CD4; cluster 21, TDT CD4; cluster 22, TDTGZMB CD4; cluster 6, 

Tdys CD8) or trended towards greater abundance (cluster 10, TDT CD8; cluster 7, TdysCD27-) 

(Figure 1E-F). In contrast, TEMRA, CD57+ TEM and early differentiated CD4 T cells were of 

higher abundance in NTA. 
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Figure 1. The landscape of tumour infiltrating CD4 and CD8 T cells in non-small cell lung cancer. (a) T cell 
clusters identified in high dimensional flow cytometry analysis of n=41 regions from 15 patients with NSCLC are 
visualized by UMAP dimension reduction. (b) Heatmaps show min-max scaled, transformed expression of markers 
expressed by CD8 and CD4 T cells. Each row represents an individual cell from a sample of 10,000 cells from each 
population. UMAP projections show expression intensity of key markers in CD4 (c) and CD8 (d) T cells. (e, f) 
Analysis of differential cluster abundance in tumour (n=41 regions) vs. non-tumour adjacent (NTA; n=18 regions) 
tissue for CD4 (e) and CD8 (f) T cells. FDR adjusted p-values (quasi-likelihood F-test with edgeR) and log2 fold 
change values are represented for each cluster in the volcano plots, the size of points reflects cluster abundance. 
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Taken together, these data suggest a process of T cell antigen recognition in the NSCLC 

tumour environment, driving accumulation of heterogeneous dysfunctional CD4 and CD8 

subsets and the loss of bystander or progenitor populations.  

 

Tumour mutational burden associates with T cell differentiation skewing in NSCLC. 
 

To explore the hypothesis that the intratumour T cell differentiation landscape is patterned by 

neoantigen exposure, we examined samples with paired flow cytometry and WES data (n=15 

patients; 39 tumour regions, Extended Data Fig.1A). Self-organizing map-based clustering was 

repeated 1000 times  on regions with >2000 live CD3+ events (37 tumour regions) to account for 

stochasticity in population identification (see Methods) and the abundance of each cluster was 

evaluated for its relationship with TMB in each iteration (Figure 2A). Clusters that stably 

correlated with TMB displayed a CD45RA-PD1hi phenotype, including three CD4 (Tdys, TDT, 

TDTGZMB) and three CD8 (Tdys, TDT, TDTEomes-) populations, suggesting a positive relationship 

between TMB and the abundance of antigen-engaged T cell subsets (Figure 2B-D). Conversely, 

clusters that negatively correlated with TMB lacked PD1 expression and included progenitor-like 

subsets within both the CD4 (Early, EarlyCD27-) and CD8 (Naive-like) pool, in addition to terminal 

memory cell clusters that exhibited a phenotype consistent with pathogen-specific bystander T 

cells (CD4 Terminal EM, CD8 Terminal EM, CD8 TEMRA)38. Treg clusters with high (activated 

Treg; Treg act.) and low (Treg) co-inhibitory receptor expression also correlated positively and 

negatively with TMB, respectively (Figure 2B-D).  

 

To confirm these relationships, we sampled an independent, second set of tumour regions from 

the TRACERx 100 cohort, using the same criteria as before (n=16 patients, 27 regions of which 

26 had WES data; Extended Data Fig. 1A) and carried out flow cytometry on TILs using an 

overlapping antibody panel. Subsets were manually identified by conventional biaxial gating in 

both cohorts, according to expression profiles found by clustering analysis of cohort 1 

(Extended Data Fig. 2A, C). The abundance of manually-gated Early CD4 T cells was negatively 

associated with TMB in both cohorts, whilst the frequency of CD4 Tdys and TDT populations 

was positively correlated (Figure 2E). In a combined analysis (Figure 2E right column), this 

pattern of CD4 differentiation skewing remained significant after accounting for potential 

confounding effects of histology and multiple tumour regions, in linear mixed effects models 

(see Methods). Similarly, amongst CD8 T cells, the abundance of Tdys and TDT subsets was 

positively correlated with TMB in both cohorts (Figure 2F). In the combined analysis, these 

relationships were significant (TDT) or showed a positive trend (Tdys) when corrected for 

histology and multiple tumour regions. The negative correlation of naive-like CD8 T cells with  
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Figure 2. T cell differentiation skewing occurs in association with tumour mutational burden. (a) Workflow to 
identify clusters of intratumour T cells that vary in abundance in association with TMB. Heatmaps show min-max 
scaled, transformed marker expression of CD4 (b) and CD8 (c) clusters that vary positively (upper region of 
heatmaps) or negatively in abundance with TMB (Spearman’s rank test; n=37 regions from 15 patients). Cluster 
abundance was calculated as a proportion of all CD3+ cells in each region.  (d) The abundance of CD4 and CD8 
clusters identified in (b, c) for all tumour regions is shown. Regional TMB is indicated above the plot. NL, naive-like. 
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(e, f) Populations found to vary in abundance with TMB by unsupervised analysis were manually gated within 
cohort 1 and a second validation set of n=26 regions from 16 patients drawn independently from the first 100 
TRACERx cohort. Scatter plots show the relationship between population abundance and TMB for CD4 (e) and 
CD8 (f) subsets in cohorts 1 (left columns), 2 (middle columns) and a combined analysis (right column). P- and 
correlation coefficient r-values are from Spearman’s rank tests. Two-sided p-values (pc) from linear mixed effects 
regression models to correct for effects of histology and multiple tumour regions are additionally shown. Shaded 
bands represent the 95% confidence interval of a linear regression slope. (g, h) Marker expression profiles of 
manually gated CD4 (G) and CD8 (H) subsets in validation cohort 2 (concatenated data from n=16 patients are 
shown). (i) PD1, CD57 and CD45RA expression profile of neoantigen-multimer reactive (Mult+) CD8 T cells from a 
representative patient (similar results were found amongst four Mult+ populations from n=3 patients). Lower panel 
shows corresponding profile of CD8 Tdys and TDT subsets amongst all CD8 TILs. (j) PD1, ICOS and Ki67 
expression profile of multimer reactive, non-reactive, NTA localized and circulating (PBMC) CD8 T cells. 
 

TMB was not observed in cohort two, but showed an overall negative trend in combined 

analysis, suggesting this small population may not consistently negatively correlate with TMB 

(Figure 2F).  

 

Tumour mutations can be categorized as clonal events shared by all cancer cells or subclonal 

mutations carried by a fraction of the population34. We found the burden of clonal but not 

subclonal mutations correlated with an increased frequency of dysfunctional subsets amongst 

CD4 and CD8 T cells and a decreased abundance of the CD4 Early population (Extended Data 

Fig. 2F), further supporting the notion that T cell differentiation skewing results from antigen 

recognition. Neither the burden of insertion-deletion mutations, nor tumour region subclonal 

diversity measured by the Shannon index (see Methods), correlated with the abundance of 

these subsets (Extended Data Fig. 2F).  

 

The identity of progenitor-like, Tdys and TDT cells was confirmed using the second flow 

cytometry panel in cohort two. CCR7 expression was highest in Early CD4 and Naive-like CD8 

T cells, consistent with TCM or naive identity, respectively (Extended Data Fig. 2G, H). In 

contrast, markers of recent antigen engagement (HLA-DR) and cytotoxic potential (GZMB) were 

enriched amongst dysfunctional CD8 populations and the CD4 TDT subset (Figure 2G, H; 

Extended Data Fig. 2G, H). Consistent with dysfunction, Tdys populations showed the highest 

expression of ICOS and the co-inhibitory receptor CTLA4, whilst TDT populations were 

distinguished by expression of Eomes and low levels of IL-7 receptor (CD127) as previously 

described for T cell terminal differentiation in the context of chronic viral infection (Figure 2G, H; 

Extended Data Fig. 2G, H)22,40. The majority of dysfunctional CD8 T cells expressed the tissue 

resident memory (TRM) marker CD103, which was highest in Tdys, consistent with the 

association between CD8 exhaustion and TRM differentiation in other studies (Figures 2G, 

Extended Data Fig. 2G)36,41,42. Only a minority of CD4 T cells were CD103+, with expression 

predominantly amongst TDT cells (Figures 2H, Extended Data Fig. 2H). Finally, CD8 and CD4 
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dysfunctional subsets showed preferential expression of CD95 (Fas), indicative of late 

differentiation. 

 

The phenotypic characteristics of chronic TCR stimulation amongst Tdys and TDT cells, and the 

correlation between their abundance and TMB, suggested these populations harbored 

neoantigen reactive clones. To validate this in CD8+ T cells, we performed MHC-multimer 

screens of predicted neoepitopes from three patients with untreated NSCLC as previously 

described3 (see Methods) and characterized their expression profile ex vivo by flow cytometry. 

Neoantigen-multimer positive (Mult+) CD8 TILs from patient L011 enrolled in the TRACERx 

lung cancer pilot study (see Methods) expressed high levels of PD1 and ICOS, were 

heterogeneous for CD57 and lacked CD45RA expression, consistent with the phenotype of 

Tdys and TDT subsets of both CD8 and CD4 cells (Figure 2I-J). Characteristic of dysfunctional 

CD8 T cells41, Mult+ cells from L011 contained a proliferating, Ki67+ population (Figure 2J). In 

keeping with PD1 as a marker of dysfunctional36 and neoantigen reactive cells43, we found 

significantly higher levels of PD1 expression on all Mult+ CD8 T cell populations identified 

across three patients, compared to Mult- TILs, matched NTA and PBMC derived CD8 T cells 

(Figure 2J, Extended Data Fig. 2I). These data indicate that the CD4 and CD8 Tdys and TDT 

populations that correlate with TMB have a dysfunctional phenotype resembling neoantigen 

reactive CD8 T cells in NSCLC. 

 

Finally, in chronic viral infection, loss of early differentiated44 and gain in dysfunctional subsets13 

associates with impaired immunity. In the combined flow cytometry cohort, low CD4 Early and 

high frequency of CD4 and CD8 TDT cells (grouped according to the median) correlated with 

worse disease-free survival (DFS), suggesting skewing of the intratumour T cell differentiation 

landscape may mark impaired anti-tumour immunity (Extended Data Fig. 2J).  

Progenitor-like and dysfunctional subsets are clonally related. 
 

Reciprocal, TMB-associated relationships between progenitor-like and dysfunctional T cell 

subsets is suggestive of a differentiation process connecting these states. To test this, we 

carried out T cell receptor (TCR) sequencing on digitally sorted CD4 and CD8 subsets. For all 

patients (n=3 for both CD4 and CD8), we found CDR3 sharing between progenitor-like and 

dysfunctional subsets within both CD4 and CD8 compartments (Figure 3A, B; Extended Data 

Fig. 2K, L), confirming these states are linked by a differentiation pathway. 

Short peptide motifs within the CDR3 are important for defining antigen specificity, and a single 

antigen can be recognized by multiple related TCRs. Consequently, CDR3 sequence clustering 
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is characteristic of an antigen-driven T cell response45. We therefore hypothesized that if CDR3 

sharing between intratumour T cell subsets results from antigen driven differentiation between 

cell states, shared CDR3 sequences (i.e. those belonging to clones that have responded to 

antigen by undergoing differentiation) will have greater evidence of sequence similarity 

compared to unshared CDR3s. Applying our recently described approach to measure sequence 

similarity based on triplet amino acid composition in pairwise comparisons45, we found 

significantly greater similarity amongst shared vs. unshared CDR3 sequences in both CD4 and 

CD8 compartments (Figure 3C-F). These data support the notion that TCR sharing between 

progenitor and dysfunctional T cell states reflects an antigen-driven differentiation process 

within the TME. 

 

 
 
Figure 3. T cell subsets are clonally related. CD4 (a) and CD8 (b) subsets were sorted for TCRseq; left panels 
show sort gates, right panels show Venn diagrams of CDR3 β-sequence sharing between subsets from a 
representative patient (values represent unique CDR3 sequences). Heatmaps show pairwise similarity (measured 
by sharing of triplet amino acids) amongst shared and unshared CD4 (c) and CD8 (d) CDR3 β-sequences from 
patient CRUK0939. Unique CDR3 sequences are arranged across rows and columns, points of intersection are 
colored according to the similarity between CDR3 pairs. The right hand panels show the mean CDR3 similarity 
within shared and unshared sequences for CD4 and CD8 CDR3 sequences respectively (n=3 patients each).  
Network diagrams show shared and unshared CDR3 sequences (points) that have similarity of >0.8 to at least one 
other CDR3 sequence amongst CD4 (e) and CD8 (f) compartments. 
 

Single-cell transcriptomics unveils distinct developmental and regulatory programmes in 
progenitor and dysfunctional T cells.  

We characterized the transcriptional features of CD4 and CD8 populations of interest by 

combined analysis of a publicly available NSCLC TIL single cell RNA sequencing (scRNAseq) 

dataset42, scRNAseq from sorted CD8 neoantigen-multimer reactive and non-reactive TILs from 
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patient L011, and bulk RNAseq of CD8 Tdys and non-Tdys cells sorted from three TRACERx 

cohort patients as previously described45. 

Within the TIL scRNAseq dataset, subsets were identified by a manual gating strategy based on 

phenotypes identified in our flow cytometry analysis (Figure 4A and Extended Data Fig. 3A). 

Concordance between scRNAseq and flow cytometry identified populations was confirmed by 

evaluating expression of genes characterized by flow cytometry and not used for scRNAseq 

gating (including CTLA4, EOMES, FAS and HLA-DRA; Extended Data Fig. 3B, C).  

We confirmed transcriptional features of dysfunction amongst these populations by gene set 

enrichment analysis (GSEA) using T cell signatures from studies of cancer46, chronic 

infection19,47 and autoimmunity48,49. All CD8 signatures were derived from antigen specific cells. 

Since equivalent CD4 RNAseq data were unavailable, we used signatures from mixed antigen 

specific/non-specific dysfunctional CD4 populations. Both CD4 and CD8 scRNAseq identified 

Tdys and TDT subsets had significant transcriptional similarity to T cell populations 

characterized as dysfunctional in relation to persistent antigen exposure (Figure 4B, Extended 

Data Fig. 3D). 

To test whether Tdys and TDT subsets transcriptionally resemble neoantigen-reactive 

populations in NSCLC, we generated gene signatures of neoantigen reactivity composed of top-

ranking genes characterizing CD8 Mult+ and bulk sequenced CD8 Tdys cells. These gene sets 

of tumour-reactive cells were significantly enriched in all dysfunctional populations except CD4 

TDT (Figure 4C, Extended Data Fig. 3E).  

Differential gene expression analysis revealed significant transcriptional differences between 

subsets (Figure 4D, Extended Data Fig. 4A-C), and high similarity between CD8 Tdys and TDT 

despite differences in KLRG1 and IL7R (encoding CD127) expression, revealed by gene 

expression heatmaps (Extended Data Fig. 4D). 

To explore potential mediators of Tdys and TDT tissue accumulation, we analyzed genes 

encoding adhesion molecules and chemokine receptors (Figure 4D). Both scRNAseq identified 

CD4 and CD8 dysfunctional subsets expressed CXCR3, involved in T cell tissue surveillance, 

whereas dysfunctional CD8 subsets had elevated expression of the chemokine receptor 

encoding gene CCR6 that marks autoreactivity50. 

Effector gene analysis suggested functional capacity amongst Tdys and TDT cells of both 

compartments, including shared expression of IFNG. CD40LG expression amongst CD4 Early 

and Tdys cells suggested antigen engagement and helper function. Naïve-like CD8 T cells did 

not express TNFRSF9 (encoding 4-1BB; a marker of CD8 T cell antigen engagement) that was  
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Figure 4. Single cell transcriptomic characterization of CD4 and CD8 subsets reveals distinct regulatory 
mechanisms. (a) CD4 and CD8 subsets were identified by a biaxial gating strategy applied to single cell RNAseq 
data42 (n=14 patients), based on markers identified by flow cytometry. The gating scheme for CD4 Tdys and TDT 
cells is shown (CD3E+CD3G+CD4+CD8- cells were pre-gated, see Figure S3A). Expression values are represented 
as normalized, log10 transformed read counts per million (log10 CPM). (b, c) GSEA to evaluate enrichment of 
published gene sets of T cell dysfunction (b) and sorted CD8 Tdys and multimer reactive cells (c), amongst genes 
ranked by their expression in CD4 Tdys vs. Early (n=272 vs. 175 cells) and CD8 Tdys vs Naive-like populations 
(n=143 vs. 19 cells). For each gene set tested, the top 200 most differentially expressed genes were selected. 
Normalized enrichment scores (NES) and FDR adjusted p-values from permutation tests are shown. (d) Heatmaps 
showing relative expression (z-score) of genes involved in key T cell regulatory pathways. All genes shown are >2-
fold differentially expressed in a comparison between two subsets within with same population (FDR adjusted 
p<0.05).  (e) Venn diagram shows sharing of Gene Ontology (GO) terms enriched in single cell analysis of CD8 
Tdys vs. Naïve-like (n=143 vs. 19 cells), CD4 Tdys vs. Early (n=272 vs. 175 cells) , CD4 TDT vs. Early (n=143 vs. 
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175 cells) and Mult+ vs. Mult- (n=36 vs. 39 cells). Pathways with FDR adjusted two-sided Wilcoxon rank sum test 
p-value <0.05 were considered significant. Pathways shared by all populations were grouped according to the 
legend and exemplary pathways from each group are tabulated. (f, g) Comparison of transcriptional profiles of 
individual cells in subsets of interest with effector, reversibly dysfunctional and irreversibly dysfunctional antigen-
specific CD8 T cells54. Similarity between individual cells in each population (cell numbers as described above) and 
previously published bulk RNAseq data was calculated by Pearson correlation. Violin plots show the difference 
between reversible vs. irreversible scores (f) and effector vs. irreversible scores (g) for each population calculated 
at the single cell level. 

highly expressed in dysfunctional CD8 subsets, suggesting antigen-engagement of CD4 Early 

but not CD8 Naïve-like cells. Both CD8 dysfunctional populations expressed multiple mediators 

of cytotoxicity in common with CD4 TDT cells, as previously described for CD4 terminal 

differentiation22. 

Co-stimulatory and -inhibitory receptor encoding genes were discordantly expressed, 

suggesting differential subset regulation by potential immunotherapy targets (Figure 4D). CD4 

Tdys highly expressed TNFRSF18 and TNFRSF4 (encoding GITR and OX40 respectively), 

whereas CD4 TDT cells preferentially expressed CD27 in keeping with our flow cytometry data. 

Tdys subsets expressed high levels of multiple co-inhibitory receptor encoding genes including 

ENTPD1 (encoding CD39) in CD8 T cells, a further indication of tumour reactivity38. CD39 

protein expression by dysfunctional subsets was confirmed by flow cytometry of TILs from three 

TRACERx patients (Extended Data Fig. 5A, B). 

We found characteristic transcription factor expression profiles including Early/Naïve-like 

expression of TCF7. Notably, an intermediate level of expression was observed amongst the 

CD4 Tdys population but not CD4 TDT, whilst expression was reduced in CD8 Tdys and TDT 

cells, findings we confirmed by flow cytometry (Extended Data Fig. 5A, B). In general, TCF7 

expression was higher amongst CD4 vs. CD8 T cells, both by scRNAseq and flow cytometry 

(Figure 4D, Extended Data Fig. 5C). As TCF7 expression has been associated with sustained T 

cell effector responses in the context of chronic antigen exposure24,25, these data suggest a 

gradient of functionality with relative preservation in the CD4 vs. CD8 compartments. Finally, the 

exhaustion-related transcription factor encoding gene TOX51 was expressed across all 

dysfunctional subsets. 

To find shared and compartment-specific dysfunction-related genes, we identified leading edge 

genes from GSEA analyses carried out as described above. Amongst those in the leading edge 

of 2 or more gene sets, 14 and 197 genes were unique to analysis of CD4 and CD8 subsets 

respectively (Extended Data Fig. 6A). Of 17 genes shared across compartments, 15 were 

expressed by neoantigen-multimer sorted CD8 cells (Extended Data Fig. 6B) with upregulation 

amongst Mult+ cells of genes including the lung residency marker RGS152, CCR5 that is 
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expressed by tissue reactive CD8 cells and CXCL13 that has recently been described to 

characterize CD8 dysfunction in lung cancer53. 

Gene ontology analysis revealed 27 shared pathways enriched by dysfunctional subsets and 

Mult+ cells, relative to their early differentiated or Mult- control populations. These pathways 

formed 6 groups (Figure 4E, Extended Data Fig. 6C, D) revealing a mixed pattern of processes 

downstream of T cell receptor signalling including pathways related to cell cycle, chemotaxis 

and effector function47,54, in keeping with the notion that efficacy of dysfunctional subsets is 

attenuated but not lost. 

TCF7 expression has been associated with the ability to sustain long-term effector responses, 

in agreement with our findings that Early CD4 abundance correlates with survival. However, 

transcriptional evidence suggests that the dysfunctional subsets retain effector capacity. To 

evaluate the functional potential of these populations, we tested their transcriptional similarity to 

RNAseq data from antigen specific T cells with anti-viral effector function (effector), reversibly 

dysfunctional cells after short term tumour residency (reversible) and irreversibly dysfunctional 

cells after long term residency (irreversible)54 to derive reversibility and efficacy scores for each 

cell. We found the CD4 Early population had the most favourable effector (Figure 4F) and 

reversibility (Figure 4G) indices whilst CD8 Tdys had the lowest values. 

CD4 T cells support effective anti-tumour CD8 function, but their cross talk within the human 

tumour microenvironment is not well characterized. To investigate pathways of T cell 

communication in NSCLC, we used the recently described CellphoneDB package that 

comprises both a database of interacting receptor-ligand pairs and a statistical framework to 

test whether such pairs are significantly expressed on single cell populations of interest55. We 

found expression of 259 unique ligand-receptor pairs between populations in the lung TIL 

scRNAseq dataset (Extended Data Fig. 7A). Reciprocal connections between population pairs 

had a low degree of pathway overlap (Extended Data Fig. 7B). The global distribution of 

interactions fell within three groups defined by dysfunctional CD8 participation. The two closely 

related dysfunctional CD8 populations shared the highest number of pathways, whilst an 

intermediate group comprised pairs composed of one dysfunctional CD8 population. 

Interactions not involving dysfunctional CD8 populations were of low intensity (Extended Data 

Fig. 7C). To characterize the activity of each subset, we analyzed the number of pathways 

where each population was the signalling, ligand-bearing partner vs. the signal-receiving, 

receptor-bearing partner. Whilst the dysfunctional CD8 populations were involved in a similar 

number of signal sending/receiving interactions, the CD4 Early population mostly participated as 

a signal-receiver (Extended Data Fig. 7D). Analysis of individual pathways revealed chemokine 
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expression to comprise the bulk of dysfunctional CD8 signalling, whilst interactions between 

CD4 cells and dysfunctional CD8 populations have the potential for inhibition (CD274-PDCD1; 

CD47-SIRPG), anti-apoptotic effects (TNF-TNFRSF1B; GRN-TNFRSF1B) and stimulation 

(CD48-CD244; CD58-CD2). 

A transcriptional signature of mutation associated T cell differentiation skewing 
associates with survival in independent cohorts 

To characterize T cell differentiation skewing in bulk tumour RNAseq, we analyzed TRACERx 

samples with paired flow cytometry and RNA sequencing data (46 regions from 22 patients). T 

cell maturation is accompanied by TCF7 loss. We hypothesized that a gene signature indicating 

loss of this and the related transcription factor LEF1 may reflect intratumour differentiation 

skewing (DS), and generated a TCF7/LEF1 loss signature (TL-DS) using RNAseq from mouse 

T cells lacking these genes56.  

As differentiation skewing was most evident by flow cytometry in the CD4 compartment, we first 

tested the correlation between TL-DS and other signatures of CD4 differentiation state, with the 

ratio of CD4 Early to dysfunctional (defined as the sum of Tdys and TDT) subset abundance 

(Figure 5A). Amongst seven tested, only the signature of TCF7 loss correlated significantly 

(Figure 5B).  

CD4 and CD8 differentiation skewing occur in parallel. We therefore tested whether this 

signature similarly predicts changes in the CD8 compartment. The TL-DS signature was found 

to correlate with loss of individual early differentiated subsets and gain in abundance of Tdys 

and TDT subsets across CD4 and CD8 populations (Figure 5C).  

Finally, we confirmed the signature correlated with TMB in TRACERx samples with paired RNA 

and exome sequencing (n=64 patients, 161 regions), and independent NSCLC TCGA cohorts 

(Figure 5D; lung adenocarcinoma [LUAD], n=511; lung squamous cell carcinoma [LUSC], 

n=482). 

Since differentiation skewing was associated with survival in the TRACERx flow cytometry 

cohort, we tested whether the TL-DS signature performs similarly in the larger TRACERx 

RNAseq and TCGA NSCLC cohorts. In a univariate analysis, this signature associated with 

worse outcomes amongst TRACERx and TCGA LUAD, but not LUSC patients (Figure 5E). In a 

multivariable analysis adjusting for stage, histological subtype, TIL infiltration and mutational 

burden, the progenitor loss signature remained a negative predictor of survival in TRACERx 

(adjusted for TMB in Figure 5F, p=0.021, HR 5.61; adjusted for clonal mutational burden, 

p=0.042, HR 4.53). 
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Figure 5. A gene signature of progenitor T cell loss correlates with flow cytometry measured differentiation 
skewing and predicts lung cancer survival. (a) Workflow of gene signature validation. Using regions with both 
high dimensional flow cytometry and RNAseq data (n=46 regions from 22 patients), CD4 and CD8 subsets were 
gated within the flow cytometry data and expression signatures measured within RNAseq data to identify gene 
signatures that predict subset abundances. (b) Correlation between gene signatures of TCF7/LEF1 loss (TL-DS), 
CD4 early differentiation/exhaustion and the ratio between Early:dysfunctional subset abundance (calculated as the 
sum of Tdys and TDT). Spearman rank correlation r- and two-sided FDR adjusted p-values are shown. (c) 
Relationship between the TL-DS signature and CD4 (upper row) and CD8 subset abundances. Spearman rank 
correlation r- and two-sided p-values are shown. Shaded bands represents the 95% confidence interval of a linear 
regression slope. (d) The TL-DS signature correlates with TMB in TRACERx RNAseq (n=161 regions from 64 
patients) and TCGA NSCLC cohorts (LUAD, n=511, LUSC, n=482). Progenitor loss signature values were z-score 
scaled, TMB values were log10 transformed. Spearman rank correlation r- and two-sided p-values are shown for 
TCGA analyses.  An FDR adjusted, two-sided p-value (pc) is shown for the TRACERx cohort from a mixed effects 
regression model accounting for tumour multiregionality and histology. Shaded bands represents the 95% 
confidence interval of a linear regression slope. (e) Forest plot shows relationship between TL-DS expression and 
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patient outcome in TRACERx RNAseq (DFS; n=64) and TCGA cohorts (OS; n=486 LUAD, n=455 LUSC). P-values 
are from univariable Cox regression analysis. (f) Forest plot shows relationship between TL-DS and patient DFS in 
the TRACERx RNAseq cohort, adjusting for multiple potential confounders. P-values are from a multivariable Cox 
regression analysis. 

T cell differentiation skewing in association with persistent antigen exposure may occur across 

tumour types. To test this, we measured TL-DS signature expression across TCGA cohorts 

(n=5290 patients, 23 cohorts). This significantly associated with survival in 9 tumour types after 

correction for multiple tests (Extended Data Fig. 8A). Amongst these cohorts, the TL-DS 

signature remained a significant indicator of survival in multivariable regression accounting for 

TIL infiltration, TMB and stage in 6 tumour types (LUAD, SKCM, LIHC, SARC, MESO, ACC; 

Extended Data Fig. 8B). 

Discussion 

Here we combined high dimensional flow cytometry, genomic, bulk and single-cell 

transcriptional data to characterize the NSCLC intratumour T cell infiltrate and its relation to 

TMB. Recent studies of T cell function in the context of persistent antigen exposure have 

focused on two themes: firstly, TCF7-expressing early differentiated T cells sustain immunity44,48 

and response to checkpoint immunotherapy27,28, and secondly, hypofunctional intratumour 

effectors are marked by inhibitory co-receptor, TOX51 and CD39 expression38,57. We show that 

these two states share CDR3 sequences indicating an early to dysfunctional differentiation 

pathway and that shared CDR3 sequences have greater similarity than unshared sequences, in 

keeping with an antigen driven process of differentiation. These subsets exist in a balance 

shaped by mutational burden and skewing of this balance towards late differentiation associates 

with worse outcomes amongst treatment naive patients with NCSLC and within multiple TCGA 

cohorts. 

Whilst attention has focused on CD8 progenitor populations, we show that intra-tumoural 

differentiation skewing is most striking amongst CD4 cells, where the majority of TCF7-

expressing T cells reside, including within the PD1/TOX co-expressing Tdys subset that is 

phenotypically and transcriptionally similar to neoantigen-multimer reactive CD8 T cells. 

Conversely, CD8 Tdys cells have a near complete absence of TCF7 gene and protein 

expression and TCF7-expressing CD8 T cells represent a smaller proportion of TILs (Extended 

Data Fig. 5C). 

Heterogeneity amongst tumour infiltrating, dysfunctional CD8 T cells is now well recognized42,58 

but little understood in the CD4 compartment. Here, we identify phenotypically and 

transcriptionally distinct CD4 Tdys and TDT populations with PD1 and TOX expression in 

keeping with a history of antigen encounter, that share CDR3 sequences indicating a clonal 
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relationship. Despite high co-inhibitory receptor expression, the Tdys subset retains features of 

fitness including expression of CD40L, TCF7, IFNγ and Ki67 (Extended Data Fig. 9A), 

suggesting an activated, proliferative phenotype that previously has been noted for 

dysfunctional CD8 T cells36,41. In contrast to Tdys, we found the TDT subset expressed a CD8-

like effector profile consistent with terminal differentiation, but the absence of CD40L, IFNγ and 

Ki67 suggests these cells are not actively engaged in a response. Maintained PD1 expression 

is consistent with an epigenetically determined state of “irreversible dysfunction” that is well 

described amongst anti-tumour CD8 T cells39,54. Whilst we have relied on the marker and 

transcriptional profile of these subsets to infer their functional status, further work is required to 

define this more closely. 

Although the relationship between decline of CD4 Early subset abundance and TMB suggests a 

proportion of these cells undergo antigen-induced differentiation, a limitation of our study is that 

we do not have direct evidence that changes within the TIL differentiation landscape are antigen 

driven. However, along with CDR3 sharing between Early and dysfunctional subsets, several 

additional observations support this notion. Firstly, there is an inverse relationship between TMB 

and flow cytometry measured expression of the early differentiation markers CD27 and CD28 

upon CD4 Early cells (Extended Data Fig. 10A, B). A similar feature was observed in the 

scRNAseq dataset, with an inverse correlation between CD4 Early and dysfunctional subset 

abundance (Extended Data Fig. 10C). Secondly, at the transcriptional level, as the abundance 

of the scRNAseq identified CD4 Early population declined, we found the remaining cells in the 

subset to have increased expression of signatures characteristic of Tdys and TDT populations 

(Extended Data Fig. 10D, E).  

The relationship between differentiation skewing and clonal but not subclonal mutations is 

further evidence in favor of this process being antigen driven and suggests the importance of 

antigen abundance. Whilst CD8 differentiation may be driven by direct interaction with MHC I 

expressing tumour cells, as the majority of NSCLCs do not express MHC II59 required for CD4 

recognition, class II bearing antigen presenting cells are likely key mediators of CD4 anti-tumour 

immune responses. Clonal mutations may preferentially drive differentiation skewing by 

generating neoantigen levels above minimum thresholds for immune activation, compared to 

subclonal mutations60. However, the low range of subclonal mutations in our cohort may limit 

accurate evaluation of a relationship with T cell differentiation skewing and further work is 

warranted to explore this.  

Recent studies suggest mutational burden is positively associated with outcomes amongst 

immunotherapy-treated patients2,5,6. Conversely, we and others have shown differentiation 
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skewing and T cell dysfunction to occur with persistent antigen exposure14,15 and/or associate 

with poor outcome53. These observations suggest opposing effects of mutations on immune 

function, depending on the context of antigen encounter. Opposing effects of TMB may occur if 

mutations generate antigenic targets for tumour recognition and control by early differentiated T 

cells that are driven to dysfunctional states by chronic target exposure or deprived of niche 

within the tumour microenvironment as later differentiated cells accumulate. Additionally, 

checkpoint inhibition may modify the balance between antigen-driven T cell anti-tumour efficacy 

vs. differentiation skewing arising from chronic exposure, by favouring enhanced activity of pre-

existent checkpoint-expression high cells within the tumour. 

Our study suggests multiple potential translational avenues for further exploration. Single cell 

RNAseq analysis revealed divergent and previously undescribed features of the co-stimulatory 

and –inhibitory receptor landscape of Tdys and TDT subsets, including expression of ITIM 

encoding genes with unexplored roles in T cell inhibitory pathways. More broadly, our data 

suggest strategies to enhance the abundance or activity of the progenitor pool may yield a 

therapeutic advantage. 
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Methods 

Patients and samples 

Patients within this study were drawn from the first 100 enrolled to the UK multicentre lung 

TRACERx study as previously described33 (https://clinicaltrials.gov/ct2/show/NCT01888601, 

independent  Research  Ethics  Committee approval reference 13/LO/1546; further information 

on research design is available in the Nature Research Reporting Summary linked to this 

article).  

Informed consent for entry into the TRACERx study was mandatory and obtained from every 

patient. There were 68 male and 32 female patients with NSCLC in the TRACERx study, with a 

median age of 68. The cohort is predominantly early-stage: Ia (26), Ib (36), IIa (13), IIb (11), IIIa 

(13) and IIIb (1). Seventy-two had no adjuvant treatment and 28 had adjuvant therapy. All 

patients were assigned a study identity number that was known to the patient. These were 

subsequently converted to linked study identities such that the patients could not identify 

themselves in study publications. All human samples (tissue and blood) were linked to the study 

identity number and barcoded such that they were anonymized and tracked on a centralized 

database, which was overseen by the study sponsor only. 

TILs of patients from the TRACERx study beyond the first 100 cohort were used in TCRseq and 

additional flow cytometry assays (TCF7 and CD39 stains). The demographics of these patients 

are shown Supplementary Table 2. In addition, samples from the TRACERx lung pilot study 

https://clinicaltrials.gov/ct2/show/NCT01888601
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(UCLHRTB 10/H1306/42) were included (prefixed with L0). Sample collection and data analysis 

was carried out with written consent from all participants. All tumour samples were verified by 

independent pathology review of H&E slides.  

Flow cytometry 

Fresh tumour and NTL surgical resection specimens were minced into 1mm pieces in RPMI-

1640 (Sigma) with Liberase TL (Sigma) and DNAase I (Roche) followed by mechanical 

disaggregation using a gentleMACS  dissociator (Miltenyi Biotec) at 37oC for 1 hour. Single cells 

were obtained by gently passing the suspension through a 70µm cell strainer with 5ml complete 

RPMI-1640 (PBS containing 2% FBS and 2mM EDTA) and lymphocytes isolated by density 

gradient centrifugation (750g for 10minutes) on Ficoll Paque Plus (GE Healthcare). The 

interface was washed twice with complete RPMI-1640, resuspended in 90% FBS with 10% 

DMSO (Sigma) and cryopreserved prior to staining. Blood samples were collected in Vacutainer 

EDTA blood collection tubes (BD), PBMCs isolated by gradient centrifugation of Ficoll Paque 

Plus and stored in liquid nitrogen. 

For staining, cells were thawed and washed in FACS buffer (5% FBS). Cells were stained with 

the antibodies listed in the reporting summary using brilliant staining buffer (Biolegend) and the 

FOXP3 Transcription Factor Staining Buffer set (ThermoFisher scientific) according to 

manufacturer’s instructions. In all samples, eBioscience Fixable Viability Dye eFluor 780 

(ThermoFisher scientific) was used to exclude non-viable cells. Data were acquired on a BD 

Symphony flow cytometer and cells gated for size, granularity, singlets, viability and CD3+CD8- 

T cells in FlowJo v10 (Treestar) for further analysis. 

Tumour sequencing 

Multiregional whole exome sequencing, mutation calling and clonality estimation were carried 

out as described before34. Briefly, raw paired end whole exome sequencing reads from tumour 

and matched germline samples were aligned to the hg19 genomic assembly. Non-synonymous 

mutations were identified and classified as clonal or subclonal using a modified version of 

PyClone61, considering variant allele frequency, copy number and tumour purity. Synonymous 

and non-synonymous mutations from each tumour region were identified by comparing germline 

and tumour DNA. 

As previously described34, RNA was extracted using a modification of the AllPrep kit (Qiagen) 

and ribosome depleted prior to library preparation of samples with an RNA integrity score of 

>=5, measured by TapeStation (Agilent Technologies). Second-strand cDNA synthesis 

incorporated dUTP. The cDNA was end-repaired, A-tailed and adaptor-ligated. Before 
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amplification, samples underwent uridine digestion. The prepared libraries were size-selected, 

multiplexed and underwent quality control before paired-end sequencing. 75bp paired end 

sequencing with an average of 50 million reads per sample was carried out. FASTQ data 

underwent quality control and were aligned to the hg19 genome using STAR. Transcript 

quantification was performed using RSEM with default parameters. 

TIL evaluation 

TIL estimation was carried out according to International Immuno-Oncology Biomarker Working 

Group guidelines62 that have been shown to be reproducible amongst trained pathologists63. 

Using region level H&E slides, the relative proportion of stromal to tumour area was determined 

and percentage TILs reported for the stromal compartment by considering the area of stroma 

occupied by mononuclear inflammatory cells divided by total stromal area. In an intra-personal 

concordance test, high reproducibility was demonstrated. The International Immuno-Oncology 

Biomarker Working Group has developed a freely available training tool to train pathologists for 

optimal TIL-assessment on H&E slides (www.tilsincancer.org).  

TCGA data 

Pancancer TCGA data were downloaded from the GDC website (https://gdc.cancer.gov/about-

data/publications/panimmune)64. This included upper quartile normalized gene transcript count 

estimates, clinical and mutational burden data. Clinical data were used as previously 

published65. To test the relationship between the TL-DS signature and TMB in TCGA lung 

cancer cohorts, non-synonymous mutational burden as an absolute count was calculated using 

data generated by the MC3 project66 for comparison with TRACERx data. For survival and 

linear regression analyses, z-score scaled non-silent mutations per Mb were used as published 

(https://gdc.cancer.gov/about-data/publications/panimmune) and found to give very similar 

results to mutational burden estimated from the MC3 project data. 

 

Analysis of flow cytometry data 

Clustering 

Clustering was carried out using a pipeline modified from Nowicka et al.67, on samples from 

cohort 1 with over 2000 live CD3+ events. FCS files were read in and subjected to automatic 

quality control of signal acquisition and dynamic range carried out with the package flowAI using 

http://www.tilsincancer.org/
https://gdc.cancer.gov/about-data/publications/panimmune
https://gdc.cancer.gov/about-data/publications/panimmune
https://gdc.cancer.gov/about-data/publications/panimmune
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default parameters. Logicle transform was then applied using the estimateLogicle function of the 

flowCore package. Markers with low contribution to intercellular phenotypic variance were 

removed prior to clustering analysis based on low expression above background and calculation 

of the PCA based non-redundancy score (NRS), as previously defined67, resulting in exclusion 

of the markers TIM3, Ki67 and 41BB. 

Data were clustered onto a 12x12 node square self-organising map (SOM) implemented in the 

FlowSOM package68. This was followed by high resolution clustering of nodes into 66 

subpopulations by hierarchical consensus clustering with the ConsensusClusterPlus package, 

to ensure homogeneity of individual groups as described67. To understand the phenotypic 

relationship between individual clusters, we applied the UMAP algorithm for dimension 

reduction of events from all samples acquired35. UMAP was carried out using the package uwot. 

Finally, high resolution clusters were manually grouped into final subsets described in Figure 1. 

Clusters were combined based on similar localisation on the UMAP plot and similar expression 

of key markers previously used to define T cell states (e.g. CD8+CD45RA+CD27-CD57+ cells 

were defined as TEMRA). 

Manual gating 

To ensure validity of the populations identified by clustering, we manually identified early 

differentiated and dysfunctional populations in both cohort 1 and 2 by conventional biaxial 

gating. Tumour regions with >1000 live T helper or CD8 cells were analyzed. All downstream 

analyses were carried out with manually gated populations.  

Liberase treatment has previously been described to cleave the CD4 antigen resulting in 

variable detection of this marker69. We therefore gated CD3+CD8- cells to ensure complete 

capture of the T helper population. We confirmed the CD4 status of Early, Tdys and TDT 

populations gated from amongst CD3+CD8- cells using regions with a clear CD4+ population 

(n=20/61 across both cohorts). Evaluation of the percentage of CD4+ cells amongst these three 

subsets revealed over 85% CD4 expression (mean CD4+ 86.8, 95.2 and 85.7% in early, Tdys 

and TDT subsets respectively; Extended Data Fig. 2B). 

 

Differential abundance analysis 

To determine differential abundance of clusters between tumour and NTL tissue accounting for 

sample multiregionality and pairing, we applied negative binomial generalised linear models 

using the package edgeR as recently described for cytometry data70. 
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Discovery of populations differentially abundant with TMB 

FlowSOM initialises SOM node weights by randomly selecting data points (cells) at the 

beginning of the learning process. As a consequence of random node initialisation, the final 

cluster each cell is assigned to can vary between runs and repeating the clustering process 

multiple times with different random starts has been recommended71. 

To address the issue of clustering stochasticity, we repeated the clustering procedure x1000 

with random starts. Following each clustering run, we tested the relationship between 

abundance of each FlowSOM cluster and sample TMB by Spearman rank tests. Following each 

run, positive and negatively correlating clusters with a Benjamini-Hochberg false discovery rate 

(FDR) of <0.1 were retained. Similar clusters found across multiple iterations were combined 

based on their marker profile to identify subsets that stably change with TMB. The most 

abundant populations (composed of individual clusters observed over 50 times across 1000 

iterations, n=14) were retained for further analysis. As shown in Extended Data Fig. 2D, these 

14 subsets had varying but consistently positive or negative correlation with TMB over 1000 

iterations. To further evaluate clustering stability, we first labelled the population identity of each 

cell in a representative iteration. Then for each cell, we calculated a probability of being 

identified within each of the 14 subsets of interest by dividing its frequency of identification 

within a given subset by the total frequency of identification to generate the Extended Data Fig. 

2E heatmap. 

Tumour clonal diversity 

Tumour clonal diversity was estimated as previously published72. The Shannon entropy was 

calculated for each region, based on the number and prevalence of each clone, implemented 

using the entropy package. A region composed of a single subclone was assigned a value of 0. 

Neoantigen reactive CD8 T cell identification and single cell sequencing 

Identification of neoantigen binders  

Novel 9-11mer peptides that could arise from identified non-silent mutations were determined. 

The predicted IC50 binding affinities and rank percentage scores, representing the rank of the 

predicted affinity compared to a set of 400,000 random natural peptides, were calculated for all 

peptides binding to each of the patient’s HLA alleles using netMHCpan-2.8 and netMHC-4.0. 

Predicted binders were considered those peptides that had a predicted binding affinity <500nM 

or rank percentage score <2% by either tool. Strong predicted binders were those peptides that 

had a predicted binding affinity <50nM or rank percentage score <0.5%. 



 

 30 

Multimer analysis of neoantigen reactive T cells  

Neoantigen-specific CD8 T cells were identified using high throughput MHC multimer screening 

of candidate mutant peptides generated from patient-specific neoantigens of predicted <500nM 

affinity for cognate HLA as previously described3. 288 and 354 candidate mutant peptides (with 

predicted HLA binding affinity <500nM, including multiple potential peptide variations from the 

same missense mutation) were synthesized and used to screen expanded L011 and L012 TILs 

respectively. In patient L011 with lung adenocarcinoma, TILs were found to recognize the HLA-

B*3501 restricted, MTFR2D326Y-derived mutated sequence FAFQEYDSF (netMHC binding 

score: 22), but not the wild type sequence FAFQEDDSF (netMHC binding score: 10). No 

responses were found against overlapping peptides AFQEYDSFEK and KFAFQEYDSF. In 

patient L012 with lung squamous cell carcinoma, TILs were found to recognize the HLA-A*1101 

restricted, CHTF18L769V-derived mutated sequence LLLDIVAPK (netMHC binding score: 37) but 

not the wild type sequence: LLLDILAPK (netMHC binding score: 41). No responses were found 

against overlapping peptides CLLLDIVAPK and IVAPKLRPV. Finally, in patient L012, TILs were 

found to recognize the HLA-B*0702 restricted, MYADMR30W-derived mutated sequence 

SPMIVGSPW (netMHC binding score: 15) as well as the wild type sequence SPMIVGSPR 

(netMHC binding score: 1329). No responses were found against overlapping peptides 

SPMIVGSPWA, SPMIVGSPWAL, SPWALTQPLGL and SPWALTQPL. 

We additionally screened 235 peptides from a library of predicted clonal neoantigens for patient 

L021, a 72-year old male smoker (50 pack years) with stage IIIA LUSC (poorly differentiated, 

51mm right upper lobe primary and 2/6 hilar lymph nodes involved). TIL responses to HLA and 

matched viral peptides were simultaneously assessed. TILs were found to recognize the HLA-

A*3002 restricted, ZNF704L301F-derived mutated sequence YFVHTDAY (netMHC binding score: 

61) as well as the wild type sequence YLVHTDHAY (netMHC binding score: 27).  No response 

to overlapping peptides TLYFVHTDH, TLYFVHTDHAY, LYFVHTDHAY and APTTLYFVH were 

detected. 

Neoantigen-specific CD8 T cells were tracked with peptide-MHC multimers conjugated with 

either streptavidin PE, APC, BV650 or PE-Cy-7 (all from Biolegend) and gated as double (L011, 

L021) or single (L012) positive cells among live, single CD8 T cells.  

 

Single-Cell RNA sequencing of multimer reactive T cells 

We have previously identified neoantigen multimer reactive CD8 T cells targeted against a 

clonal neoantigen (arising from the mutated MTFR2 gene) in NSCLC tumour regions derived 
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from patient L0113. We repeated the staining of multimer reactive T cells based on dual 

fluorescent multimer labelling using a freshly thawed vial of cryopreserved TILs from the same 

patient using antibodies described in the reporting summary. Multimer-reactive and negative 

single cells from tumour regions were sorted directly into the C1 Integrated Fluidic Circuit (IFC; 

Fluidigm). Cell lysing, reverse transcription, and cDNA amplification were performed as 

specified by the manufacturer. Briefly, 1000 single, multimer reactive or negative CD8 T cells 

were flow sorted directly into a 10- to 17-μm-diameter C1 Integrated Fluidic Circuit (IFC; 

Fluidigm). Ahead of sorting, the cell inlet well was preloaded with 3.5ul of PBS 0.5% BSA. Post-

sorting the total well volume was measured and brought to 5ul with PBS 0.5% BSA. 1ul of C1 

Cell Suspension Reagent (Fluidigm) was added and the final solution was mixed by pipetting. 

Each C1 IFC capture site was carefully examined under an EVOS FL Auto Imaging System 

(Thermo Fisher Scientific) in bright field, for empty wells and cell doublets. An automated scan 

of all capture sites was also obtained for reference. Cell lysing, reverse transcription, and cDNA 

amplification were performed on the C1 Single-Cell Auto Prep IFC, as specified by the 

manufacturer. The SMARTer v4 Ultra Low RNA Kit (Takara Clontech) was used for cDNA 

synthesis from the single cells. cDNA was quantified with Qubit dsDNA HS (Molecular Probes) 

and checked on an Agilent Bioanalyser high sensitivity DNA chip. Illumina NGS libraries were 

constructed with Nextera XT DNA Sample Preparation kit (Illumina), according to the Fluidigm 

Single-Cell cDNA Libraries for mRNA sequencing protocol. Sequencing was performed on 

Illumina NextSeq 500 using 150bp paired end kits. 

Sorted T cell bulk sequencing 

Population sorting 

The BD FACSAria II flow cytometer was used to sort tumour-infiltrating lymphocytes. For CD8 

Tdys RNAseq, cells were stained and sorted as previously described45. For CD4 and CD8 

subsets sorted for TCRseq, cells from LUAD patients listed above were sorted with the 

antibodies described in the reporting summary according to gating show in Figure 2J and K. 

1000-50,000 TILs were sorted directly into 800μl Trizol reagent (Invitrogen) and snap frozen in 

dry ice (long term storage at -80C). 

Bulk RNAseq 

At the time of extraction, the samples were thawed at RT and 160ul of chloroform was added to 

each. Following a centrifugation step the RNA was isolated from the aqueous phase and 

precipitated through the addition of equal volumes of isopropanol supplemented with 20μg 

linear polyacrylamide. Samples were washed twice in 80% ethanol (first wash overnight at 4°C, 
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second wash 5 minutes at RT). RNA pellets were resuspended in 3-15μl of 

diethylpyrocarbonate treated water (DEPC). RNA was then quantified by loading of 0.5-1ul on 

an Agilent Bionalyser RNA 6,000 pico chip. Where possible equivalent amounts of total RNA 

(100pg) from all samples were used for first strand synthesis with the SmartERv3 kit (Takara 

Clontech) followed by 15-18 cycles of amplification (according to manufacturers’ instruction). 

cDNA was purified on Agencourt AMPureXP magnetic beads, washed twice with fresh 80% 

ethanol and eluted in 17μl elution buffer. 1μl cDNA was quantified with Qubit dsDNA HS 

(Molecular Probes) and checked on an Agilent Bioanalyser high sensitivity DNA chip. 

Sequencing libraries were produced from 150pg input cDNA using Illumina Nextera XT library 

preparation kit. A 1:4 miniaturized version of the protocol was adopted (see “Fluidigm Single-

Cell cDNA Libraries for mRNA sequencing”, PN_100-7168_L1). Tagmentation time was 5mins, 

followed by 12 cycles of amplification using Illumina XT 24 or 96 index primer kit. Libraries were 

then pooled (1-2ul per sample depending on the total number of samples) and purified with 

equal volumes (1:1) of Agencourt AMPureXP magnetic beads. Final elution was in 66-144ul of 

resuspension buffer (depending on the total number of pooled samples). Libraries were 

checked on an Agilent Bioanalyser high sensitivity DNA chip (size range 1502000bp) and 

quantified by Qubit dsDNA HS (Molecular Probes). Libraries were sequenced on Illumina 

NextSeq 500 using 150bp paired end kits as per manufacturer’s instructions. 

TCR sequencing   

TCR alpha and beta sequencing was performed utilizing whole cDNA extracted from sorted T 

cell subsets as described above, using a quantitative experimental and computational TCR 

sequencing pipeline45. An important feature of this protocol is the incorporation of a unique 

molecular identifier (UMI) attached to each cDNA TCR molecule that enables correction for 

PCR and sequencing errors. The suite of tools used for TCR identification, error correction and 

CDR3 extraction are freely available at https://github.com/innate2adaptive/Decombinator. The 

raw DNA fastq files and the processed TCR sequences will be available on the NCBI Short 

Read Archive and Github respectively, following publication. The number of alpha and beta 

transcripts is highly correlated. We consistently detect more beta chains than alpha chains, 

most likely due to the higher number of beta TCR transcripts. In order to validate the 

sequencing efficiency, we correlated the number of alpha and beta TCR transcripts with 

matched bulk RNA sequencing data for the tumour regions studied, quantifying T cell infiltration 

either by the expression of CDR3 gamma, delta and epsilon chains, or with by RNAseq 

expression of a T cell gene signature. We note that on average, each unique TCR:UMI 

combination is seen more than 10 times in the raw uncorrected data, making it unlikely that 

these singletons arise from sequencing errors.  
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Single cell RNA-sequencing analysis 

Data processing and imputation 

All sequencing data generated in this study was assessed to detect sequencing failures using 

FastQC and lower quality reads were filtered or trimmed using TrimGalore. Outlier samples 

containing low sequencing coverage or high duplication rates were discarded. The multimer 

sorted single cell RNAseq data were mapped to the GRCh38 reference human genome, as 

included in Ensembl version 84, using the STAR algorithm and transcript and gene abundance 

were estimated by RSEM. Count and metadata from the study of Guo et al.42 were downloaded 

from the Gene Expression Omnibus website (accession number GSE99254). 

In both datasets, cells with library size or number of genes with count >0 below three median 

absolute deviations (MADs) from the median of all cells were excluded, as were genes with an 

average count of <1 or those expressed in fewer than 10 cells. For multimer sorted cells, those 

with a mitochondrial gene count of over 3 MADs from the median of all cells were excluded. The 

downloaded Guo et al. dataset was prefiltered for cells with elevated mitochondrial gene 

expression. 

For the Guo dataset, the package scImpute was used to identify and perform imputation on 

dropout expression values73. Imputed values were used for gating and differential expression 

analysis. For calculation of mean expression values across genes and ligand-receptor pair 

analysis, non-imputed values were used. 

Gating 

Subsets of interest were manually gated from the Guo dataset. Both flow cytometry and 

scRNAseq provide continuous measurements of individual markers expressed at a single cell 

level. For samples with matched cytometry and scRNAseq data, cross-platform concordance in 

identification of populations has been reported, supporting flow cytometry-like gating 

approaches to scRNAseq data74. Counts per million (CPM) expression data were normalized by 

the trimmed mean of M-values (TMM) procedure to account for compositionality, followed by 

log10 transformation for manual gating of populations on biaxial plots. B3GAT1 that generates 

the CD57 antigen had a high dropout rate (80.3% and 70.6% of CD4 and CD8 T cells 

respectively). As KLRG1 and CD57 are highly coexpressed upon terminally differentiated T 

cells23 we used the former to identify TDT cells. Of 2469 CD4 T cells from 14 patients, we 

identified 175 Early (FOXP3-CD28+CCR7+PDCD1-KLRG1-ICOSlow), 272 Tdys (FOXP3-

CD28+PDCD1+KLRG1-ICOShigh) and 143 TDT (FOXP3-CD28+PDCD1+KLRG1+) cells. Of 1508 

CD8 T cells, we identified 19 Naïve-like (CD27+PDCD1-KLRG1-CCR7+SELL+IL7R+), 143 Tdys 
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(CD27+PDCD1hiKLRG1-ICOShi) and 44 TDT cells (CD27+PDCD1+KLRG1+IL7R-ICOShi). UMAP 

visualization of the CD4 and CD8 compartments revealed the manually gated populations to 

localize to distinct clusters (Extended Data Fig. 9A, B). 

Differential gene expression analysis 

Genes differentially expressed between subsets were identified using the edgeR 

edgeRQLFDetRate procedure recently described as a top-ranking approach to differential 

expression analysis in single-cell RNA-seq data75. The analyses were conducted with patient as 

a co-factor. Differential analysis was carried out on genes with >1 CPM in over 25% of cells. In 

the Soneson et al. study, this approach resulted in a type I error control rate of slightly above 

the imposed level of p=0.05. To apply a strict control to this, genes identified by edgeR as 

differentially expressed between groups with fold change>2 and FDR<0.05 were retained for 

further analysis if they were additionally identified as differentially expressed (p<0.05) between 

subsets using a Wilcoxon rank-sum test. Heatmaps were generated using log10 CPM 

expression values using the ComplexHeatmap package. 

GSEA 

The package fgea was used for preranked GSEA with 10 000 permutations. Genes were 

ranked according to their log2 fold change (logFC) between groups using edgeR::glmFit with 

prior.count=5. 

GSEA was carried out using published datasets of T cell CD4 dysfunction, and genes 

differentially expressed by sorted CD8 Tdys and multimer reactive cells. Data on CD4 T cell 

dysfunction were from mouse studies of chronic viral infection19, lupus nephritis49 and 

autoimmune colitis48. We constructed signatures by selecting the top 200 differentially 

expressed genes in each study. Data on antigen-specific CD8 dysfunction were from studies of 

human46 and murine76 cancer and murine chronic infection15. Human orthologues were 

identified using Ensembl and NCBI HomoloGene databases. To confirm enrichment of T cell 

progenitor-like signatures amongst the Early subset, we carried out GSEA on C7 gene-sets 

from MSigDB77, filtered to include T central memory signatures only and represent the top four 

pathways in Extended Data Fig. 3F, from the following publications; GSE11057, GSE26928, 

GSE3982. We additionally used previously published signatures of T cell activation and 

differentiation78 to characterize CD4 Tdys and TDT vs. Early cells. 

Gene Ontology pathway analysis 

We evaluated the enrichment of selected GO pathways, limited to the terms “cell cycle”, “cell 



 

 35 

killing”, “immune system process”, “locomotion”, “metabolic process”, “cell death” and “cytokine 

production”. Only pathways with expression of over 4 genes in the Guo and multimer sorted 

scRNAseq dataset were retained. For each pathway, enrichment was calculated as the mean 

expression of corresponding genes by each cell. Overexpressed pathways were identified as 

those with higher mean enrichment amongst CD4 dysfunctional vs. Early, CD8 dysfunctional vs. 

Naïve-like and multimer reactive vs. multimer negative cells. 

Similarity of populations to bulk RNAseq 

We used data from Philip et al. to evaluate the transcriptional similarity of single cell populations 

to antigen-specific CD8 T cells with well characterized functional attributes. For each individual 

cell in the Guo and multimer sorted scRNAseq datasets, we measured the Pearson correlation 

index to bulk RNAseq data from effector, reversible and irreversible populations to define 

similarity indices. For each cell, efficacy score was defined as the effector – irreversible 

similarity. Reversibly score was defined as reversible – irreversible similarity. 

Correlation between CD4 Early population abundance and transcriptomic signatures 

The enrichment of Charoentong et al. signatures78 was calculated for individual cells by 

calculating the mean expression of constituent genes. The relationship between falling CD4 

Early population (1 – number of CD4 Early cells/total CD4 cells) and gene signature enrichment 

amongst cells within each subset was evaluated using linear mixed effects models with patient 

as the grouping variable.  

Dimension reduction and clustering 

UMAP dimension reduction of the Guo dataset was done with the uwot package. High 

resolution SOM clustering of CD4 and CD8 cells was done with the top 2000 most variably 

expressed genes (calculated using the NRS, as described above) on 6x5 and 7x7 grids 

respectively, followed by manual combination of clusters expressing similar levels of T cell 

subset specific genes shown in the Extended Data Fig. 9 heatmaps. 

Ligand-receptor expression analysis 

To analyze cell–cell interactions between populations of interest, we used CellPhoneDB55 to 

identify significant ligand-receptor pair expression within the Guo dataset. Potential receptor-

ligand interactions were identified based on specific expression of a receptor by one cell type 

and the corresponding ligand by another. The interaction score is the log of the mean of the 

individual ligand-receptor partner average expression values in the corresponding interacting 



 

 36 

pairs of cell types. The heatmap in Extended Data Fig. 7 shows pathways with a score greater 

than 1.2 for at least one pair of populations. The “significant_means” output file from 

CellPhoneDB was manually curated to systematically organize pairs as gene 1=ligand encoding 

and gene 2=receptor encoding. For each population, we enumerated its ligand bearing and 

receptor bearing interactions. The direction imbalance score was calculated as the ratio of the 

highest value in the latter counts divided by the lowest value. We then subtracted 1 from this 

ratio to calculate how much a given population deviates from a perfectly balanced number of 

ligand bearing and receptor bearing interactions. Network diagrams were drawn using the 

igraph package. 

Bulk RNA-sequencing data analysis 

Bulk RNAseq analysis 

RNAseq data from sorted CD8 T cell populations were mapped to the GRCh38 reference 

human genome, as included in Ensembl version 84, using the STAR algorithm and transcript 

and gene abundance were estimated by RSEM. Genes with expression lower than 7.5 CPM in 

at least two samples were removed. Differential expression analysis was carried out using 

edgeR::glmFit with patient as a co-factor. 

T cell subset gene signatures 

Gene signature enrichment was evaluated using upper quartile normalized TCGA and 

TRACERx RNA sequencing RSEM count data (see Extended Data Figure 9F for signatures 

used). For patients with matched RNA sequencing and pathologist evaluated TILs (n=56 

patients, 144 regions), we found the Danaher T cell transcriptional signature79 to closely 

correlate and therefore used this to estimate TIL density. For each signature, expression of 

constituent genes was log10 transformed, z-score scaled and the mean value per sample used 

to represent enrichment. Non-protein coding genes and those not represented in both TCGA 

and TRACERx data were excluded. 

TCGA xCell signatures were used as previously calculated80. For TRACERx RNAseq data, 

xCell signature values were generated using the published package 

(https://github.com/dviraran/xCell) and z-score scaled across all samples for which RNA 

sequencing was available. 

TCF7/LEF1 signature 

Xing et al. have previously published RNA sequencing data on genes differentially expressed by 

https://github.com/dviraran/xCell
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mouse Tcf7/Lef1 knockout vs. wildtype CD8 thymocytes56. Genes upregulated in knockout cells 

characterize later differentiated T cells, whilst genes downregulated characterize progenitor-like 

T cells. We selected 141 upregulated and 68 downregulated genes (amongst those with 

FPKM>1; fold change >4, FDR <0.01) to generate late differentiation and stemness gene sets 

respectively. As differentiation skewing involves a loss of early differentiated cells and a gain of 

later differentiated subsets, TL-DS signature was defined as the value of the stemness minus 

late differentiation gene sets. 

Statistics and reproducibility 

All calculations were carried out in the R statistical programming environment version 3.4.3. No 

statistical methods were used to predetermine sample size, experiments were not randomized 

and investigators were not blinded to allocation during experiments and outcome assessment. 

Samples for flow cytometry were selected based on availability of single cell digest material of 

adequate quantity and whole exome sequencing. Regions with fewer than 2000 live CD3+ 

events were excluded from clustering analysis, regions with fewer than 1000 live CD4 or CD8 

events were excluded from manual gating. Individual regions were treated as independent data 

points in exploratory analyses. Correlation analysis was carried out according to the Spearman 

rank test method and the two-tailed Wilcoxon rank-sum test was utilised to evaluate whether 

two samples were derived from the same population. 

Different numbers of regions were obtained from individual patient tumours. To account for 

dependencies within the data due to this and the effects of histology (resulting in within patient 

and within group similarities respectively), we carried out mixed effects linear regression using 

the package nlme. 

Where appropriate, p-values were adjusted by the Benjamini-Hochberg method, to control the 

type 1 error rate in the context of multiple testing. Survival analysis was carried out with Cox 

regression models implemented in the survival package. Kaplan-Meier plots and log-rank p-

values were generated using the package survminer. 

Data availability 

The tumour region RNA sequencing data, bulk RNA sequencing data from sorted T cells, single 

cell RNA sequencing data from sorted neoantigen-reactive T cells, TCR sequencing data from 

sorted T cells, and flow cytometry data (in each case from the TRACERx study) used or 

analyzed during this study are available through the Cancer Research UK & University College 

London Cancer Trials Centre (ctc.tracerx@ucl.ac.uk) for non-commercial research purposes, 

and access will be granted upon review of a project proposal that will be evaluated by a 

mailto:ctc.tracerx@ucl.ac.uk
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TRACERx data access committee and entering into an appropriate data access agreement 

subject to any applicable ethical approvals. 

Code availability 

Scripts to reproduce figures can be obtained from the corresponding authors upon reasonable 

request. 
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Extended Data 

 

Extended Data Fig. 1. Sample data availability. (a) Sample data availability and disposition for TRACERx 100 
flow cytometry and RNA sequencing cohorts, with details of matched data relevant to key analyses. * 41 regions 
had >2000 live CD3+ events; ^ 18 NTA specimens in total, including from two patients without matched tumour 
tissue; # 37 regions had WES data and >2000 live CD3+ events.  (b) Patients and regional data availability for flow 
cytometry cohorts 1 and 2. All patients with at least one tumour region are shown. 
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Extended Data Fig. 2. Progenitor-like and dysfunctional T cell subsets correlate with clonal mutational 
burden and their abundance associates with patient outcomes. (a) Gating strategy to define CD4 Early, Tdys 
and TDT populations. (b) For samples (n=20) with distinct CD4 staining, the percentage of CD4+ cells amongst all 
manually gated (n=61), is shown for each subset. Boxplots represent median and interquartile range. (c) Gating 
strategy to define CD8 Naive-like, Tdys and TDT populations. (d)  Boxplots show the Spearman correlation 
between cluster abundance and TMB (for 39 regions from 15 patients) across all iterations of the clustering 
workflow. Each point represents the result of a single run. (e) Heatmap showing cluster stability across 1000 
clustering iterations. The cluster identity of each cell was determined for one representative iteration (labels are on 
the left of the heatmap). For each cell, the probability of being assigned to each cluster (labelled below the plot) 
across all iterations is represented. (f) Relationship between CD4 population abundance (60 regions from 29 
patients) and tumor genomic features. Two-sided p-values and regression slopes (β coefficients) reflecting the 
direction and magnitude of relationships tested are from linear mixed effects regression models accounting for 
tumor histology and multiregionality. (g, h) Percentage of cells amongst manually gated cohort 2 CD8 (g) and CD4 
(h) populations positive for key markers (26 regions from 16 patients). All comparisons p<0.05 by two-sided 
Wilcoxon rank sum test except for those labelled. Violin plots show median and interquartile range. (i) Neoantigen-
multimer reactive (Mult+) CD8 T cell identification and PD1 expression for two patients in comparison to matched 
multimer non-reactive (Mult-), NTA and circulating (PBMC) CD8 T cells. Line graph shows CD8 T cell PD1 MFI 
(relative to PBMC) in Mult+, Mult- and NTA populations. Data points show mean PD1 MFI from 4 multimer reactive 
populations from 3 patients, error bars show SEM. P-values are from paired 2-Way ANOVA (Fisher’s least 
significant difference test). (j) Disease free survival (DFS) probability of patients with high vs. low abundance of 
CD4 (upper row) and CD8 subsets, categorized according to the median value. The number of patients at risk at 
each time point, log-rank p-value and hazard ratios with 95% confidence intervals are shown. (k) Sort strategy for 
CD4 (top) and CD8 subsets, for TCRseq. (l) Venn diagrams show CDR3 beta chain sharing between CD4 (left two 
diagrams) and CD8 subsets, for two patients each. 
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Extended Data Fig. 3. Identification and single cell transcriptomic characterization of progenitor-like and 
dysfunctional T cell subsets. (a) Full gating strategy to identify the CD4 Early, CD8 Naïve-like, CD8 Tdys and 
CD8 TDT subsets by single T cell RNA expression. (b, c) Confirmation of CD4 (n=590 cells; b) and CD8 (n=206 
cells; c) subset identity by evaluating expression of genes not used in the gating strategy but whose relative 
expression is known based on analysis of flow cytometry data. Each point represents an individual T cell and two-
sided Wilcoxon rank sum test p-values are shown (***p<0.0001). Violin plots show the median and interquartile 
range. (d, e) GSEA to evaluate enrichment of gene sets upregulated in published T cell dysfunction datasets (d) 
and sorted CD8 Tdys and multimer reactive cells (e), amongst genes ranked by their expression in CD4 TDT vs. 
Early (143 vs. 175 cells) and CD8 TDT vs Naive-like populations (143 vs. 19 cells). For each gene set tested, the 
top 200 most differentially expressed genes were selected. Normalized enrichment scores (NES) and FDR 
adjusted p-values from permutation tests are shown. (f) GSEA to confirm the T central memory like transcriptional 
status of CD4 Early vs. Tdys/TDT subsets (175 vs. 415 cells). Normalized enrichment scores (NES) and FDR 
adjusted p-values by permutation test are shown. 
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Extended Data Fig. 4. Expression profile of progenitor-like and dysfunctional T cell subsets. (a) Differentially 
expressed transcription factor encoding genes in CD4 (n=590 cells) and CD8 (n=206 cells) subsets at the single T 
cell RNA expression level. Each gene has >2-fold differential expression in one subset with FDR adjusted p<0.05 
(quasi-likelihood F-test with edgeR). Differentially expressed genes encoding adhesion molecules and chemokine 
receptors (b) and ITIM containing proteins (c); All genes shown are >2-fold differentially expressed between 
subsets within the same compartment, FDR adjusted p<0.05. (d) Expression of the top 500 most variably 
expressed genes between CD4 and CD8 subsets. 
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Extended Data Fig. 5. TCF7 and CD39 protein expression in CD4 and CD8 T cell subsets. (a) Flow cytometry 
of concatenated data from three patients (CRUK0939, CRUK0952 and CRUK1037) in manually-gated subsets of 
tumor infiltrating CD4 (Early; CD45RA-PD1-FOXP3-CD27+CCR7+, Tdys; FOXP3-CD27+PD1hiCD57-, TDT 
FOXP3-CD27+PD1hiCD57+) and CD8 (Naïve-like; CD45RA+PD1-CD27+CD57-, Tdys; CD45RA-
CD27+PD1hiCD57-, TDT CD45RA-CD27+PD1hiCD57+) T cells. (b) Quantification of TCF7 and CD39 expression 
in CD8 (top row) and CD4 subsets identified amongst the three patients in (a). Error bars represent the SEM. (c) 
PD1 vs. TCF7 expression of CD4 and CD8 TILs from the same patients as (a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 47 

 
 
Extended Data Fig. 6. Transcriptional similarity and gene pathway analysis amongst dysfunctional subsets. 
(a) For each gene set tested in enrichment analysis, leading edge genes shared between at least two sets were 
identified and their overlap between CD4 and CD8 dysfunctional population is shown. (b) Of the 19 shared leading 
edge genes common to both CD4 and CD8 populations, 17 were expressed in single cell RNA sequencing data 
from multimer reactive cells. Violin plots show expression in multimer positive (n=36) vs. negative cells (n=39). 
Unadjusted two-sided Wilcoxon rank sum test p-values are shown. Violin plots represent the median and 
interquartile range. (c) Bar chart shows enrichment in multimer reactive vs. non-reactive cells of shared GO terms 
that distinguish dysfunctional T cell populations, identified in Figure 3E. Selected pathways are identified in the 
table and their enrichment within each population vs. control is shown in (d). FDR adjusted two-sided Wilcoxon 
rank sum test p-values are represented. CD8 Tdys vs. Naive-like (143 vs. 19 cells), CD4 Tdys vs. Early (272 vs. 
175 cells) , CD4 TDT vs. Early (143 vs. 175 cells) and Mult+ vs. Mult- (36 vs. 39 cells). 
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Extended Data Fig. 7. Transcriptional evidence of signalling pathways active between T cell subsets. (a) 
Network diagram of ligand–receptor interactions as determined by cellPhoneDB; Solid lines represent pathways 
between two populations, the width of each line is proportional to the number of pathways. For each pair of 
populations, pathways were split depending on which population is ligand-bearing vs. receptor-bearing. Arrows 
indicate communication from ligand-bearing to receptor-bearing populations. (b) Summary of overlap in reciprocal 
pathways between population pairs. The heatmap represents the Jaccard similarity index of overlapping pathways 
for each pair of populations. (c) Summary of directed pathway counts. The heatmap represents the number of 
pathways for each directed pair of populations. (d) Number of pathways where each population is the ligand-
bearing partner (left column) or receptor-bearing partner (right column) and the ratio between the count of each 
group. (e) Summary of ligand–receptor interactions. Log2 means of the average expression level of receptor-ligand 
pair genes are shown. 
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Extended Data Fig. 8. Pan-TCGA association between a signature of T cell differentiation skewing and 
patient outcomes. (a) Forest plot showing the relationship between the TL-DS signature and survival across 
TCGA cohorts (n=6853 patients). HRs and FDR adjusted p-values are from univariable Cox regression analysis. 
(b) Relationship between the TL-DS signature and survival, corrected for T cell infiltration, TMB and stage, in 
cohorts from (b) in which the signature predicted survival (9 cohorts, n=2418 patients). HRs and p-values are from 
multivariable Cox regression analysis. Cohorts in which the relationship was significant are shown. 
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Extended Data Fig. 9. Single T cell RNAseq cluster analysis. (a, b) UMAP dimension reduction plot of NSCLC 
CD4 (a) and CD8 (b) TIL single cell RNA sequencing data (2469 and 1508 cells respectively). Manually identified 
subsets are located in the upper panels of A and B. Clustering analysis reveals 10 CD4 and 10 CD8 subsets (lower 
panels). Relative expression (z-score) of selected genes is shown in the adjacent heatmaps (each column 
represents a single cell). 
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Extended Data Fig. 10. Marker and transcriptional changes within the CD4 Early population in relation to 
TMB and subset abundance. (a) Workflow to determine the relationship between flow cytometry measured 
marker expression intensity and TMB in CD4 Early (n=23,597 cells), Tdys (n=25,271 cells) and TDT (n=11,880 
cells) subsets. Each point represents an individual cell, FDR adjusted two-sided p-values and regression 
coefficients were derived from linear mixed effects models accounting for patient histology and tumor 
multiregionality and plotted in (b). Volcano plots show the relationship between marker intensity and TMB for each 
CD4 subset. (c) Change in CD4 Tdys and TDT with Early abundance (as a percentage of all CD4+ cells, n=12 
patients). Two-sided Pearson p- and r-values are shown. Shaded bands represents the 95% confidence interval of 
a linear regression slope. (d) GSEA of T helper subset signatures enriched in Tdys and TDT vs. Early (n=590 
cells), using modules from Charoentong et al. 201778. Normalized enrichment scores (NES) and FDR adjusted p-
values from permutation tests are shown. (e) Correlation between falling abundance of the CD4 Early population 
(175 cells, n=12 patients) and expression of gene signatures from (d) indicative of CD4 later differentiation state. 
Two-sided p-values and regression coefficients were derived from linear mixed effects models with patient as the 
random effect. Published T cell subset signatures used in the study are summarized in (f). 
 
 
 
 
 
 
 
 
 
 



 

 52 

Patient ID Age Gender Histology Stage Tumour 
regions 

Paired 
normal 

Cohort 

CRUK0099 77 Male Adenosquamous carcinoma 3a 7 + 1 
CRUK0050 55 Male Adenocarcinoma 3a 5 + 1 
CRUK0046 61 Female Adenocarcinoma 2a 4 + 1 
CRUK0079 63 Female Squamous cell carcinoma 2a 4 + 1 
CRUK0029 56 Male Adenocarcinoma 3a 3   1 
CRUK0037 83 Male Adenocarcinoma 2b 3   1 
CRUK0078 58 Male Squamous cell carcinoma 1b 3 + 1 
CRUK0086 79 Male Squamous cell carcinoma 1b 3 + 1 
CRUK0002 81 Male Adenocarcinoma 1b 2 + 1 
CRUK0019 54 Female Adenocarcinoma 1b 2 + 1 
CRUK0036 64 Female Adenocarcinoma 1b 2 + 1 
CRUK0067 63 Male Squamous cell carcinoma 1a 2 + 1 
CRUK0012 65 Male Adenocarcinoma 1a 1 + 1 
CRUK0026 67 Female Adenocarcinoma 1a 1 + 1 
CRUK0081 72 Male Squamous cell carcinoma 2a 1 + 1 
CRUK0096 74 Female Adenosquamous carcinoma 2b 4   2 
CRUK0009 55 Male Adenocarcinoma 2b 3   2 
CRUK0068 68 Female Squamous cell carcinoma 1b 3   2 
CRUK0065 76 Male Squamous cell carcinoma 2b 2   2 
CRUK0087 81 Female Squamous cell carcinoma 3a 2   2 
CRUK0092 76 Male Squamous cell carcinoma 2a 2   2 
CRUK0098 55 Male Carcinosarcoma 1b 2   2 
CRUK0030 75 Male Adenocarcinoma 3a 1   2 
CRUK0033 68 Male Adenocarcinoma 1a 1   2 
CRUK0035 75 Male Adenocarcinoma 3b 1   2 
CRUK0054 76 Female Adenocarcinoma 1a 1   2 
CRUK0058 74 Male Adenocarcinoma 2b 1   2 
CRUK0063 65 Male Squamous cell carcinoma 2a 1   2 
CRUK0071 66 Male Squamous cell carcinoma 2a 1   2 
CRUK0074 80 Male Squamous cell carcinoma 2b 1   2 
CRUK0077 72 Male Squamous cell carcinoma 1b 1   2 
 
 
Supplementary Table 1. Demographic details of TRACERx 100 patients with flow cytometry data. 
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Patient ID Smoking status Histology Sex Age TCRseq TCF7/CD39 
flow 

cytometry 
CRUK0992 Recent ex-

smoker 
Adenocarcinoma Female 58 CD4   

CRUK0939  Ex-smoker Adenocarcinoma Female 58 CD4 and CD8 + 
CRUK0952 Recent ex-

smoker 
Adenocarcinoma Male 63 Not done + 

CRUK1037 Recent ex-
smoker 

Adenocarcinoma Male 55 Not done + 

CRUK1034 Recent ex-
smoker 

Adenocarcinoma Male 53 CD4 and CD8   

CRUK0218 Recent ex-
smoker 

Adenocarcinoma Female 53 CD8   

 
 
Supplementary Table 2. Demographic details and data availability for TRACERx patients beyond the first 100 
cohort 
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