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Abstract1

An essential component of seismic hazard analysis is the prediction of ground shaking (and its uncertainty),2

using ground motion prediction equations (GMPEs). This paper proposes a new method to evaluate (i.e.3

rank) the suitability of GMPEs for modelling ground motions in a given region. The method leverages a4

statistical tool from sensitivity analysis to quantitatively compare predictions of a GMPE with underlying5

observations. We demonstrate the performance of the proposed method relative to several other popular6

GMPE ranking procedures and highlight its advantages, which include its intuitive scoring system and its7

ability to account for the hierarchical structure of GMPEs. We use the proposed method to evaluate the8

applicability of several GMPEs for modelling ground motions induced by the commencement of UK shale gas9

exploration, with 195 recordings at distances (R) less than 10 km for 29 events with local magnitude (ML)10

greater than 0 that relate to 2018/2019 hydraulic fracture operations at the Preston New Road shale gas11

site in Lancashire and 192 R < 10 km recordings for 48 ML > 0 events induced - within the same geologic12

formation - by coal mining near New Ollerton, North Nottinghamshire. We examine: (1) the Akkar et al.13

(2014a) equations for European seismicity, (2) the Douglas et al. (2013) equation for geothermal induced14

seismicity, and (3) the Atkinson (2015) equation for eastern North America induced seismicity. We find15

the Douglas et al. (2013) equation to be the most suitable for almost all of the considered ground motion16
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intensity measures. We modify this equation by re-computing its coefficients in line with the observed data,17

to further improve its accuracy for future analyses of the seismic hazard of interest. This study both advances18

the state of the art in ground motion model evaluation and enhances understanding of the seismic hazard19

related to UK shale gas exploration.20

1 Introduction21

Ground motion prediction equations (GMPEs) are an essential component of seismic hazard analysis, used22

to predict ground shaking at a given distance from a particular magnitude event. It is therefore important23

that the GMPEs selected for inclusion in a given seismic hazard assessment are suitable for modelling the24

ground motions in the region of interest. A variety of methods have been proposed in the literature for25

evaluating (or ranking) GMPE suitability (e.g. Stewart et al., 2015). These include: (1) the analysis of26

residuals (i.e. differences between observations and corresponding predictions of the GMPE), which involves27

examining variations of the residuals with magnitude, distance, and site conditions (Scasserra et al., 2009),28

(2) the use of a likelihood-based score (Scherbaum et al., 2004; Stafford et al., 2008), which involves assessing29

the goodness-of-fit of the observations and the GMPE based on a likelihood parameter, and (3) the use of30

information theory (Scherbaum et al., 2009; Mak et al., 2017), which involves calculating log-likelihoods of31

observations for the GMPE. Interested readers are referred to Table 1 of Mak et al. (2017) for an excellent32

summary of the various methods that have been used in an extensive number of previous GMPE evaluation33

studies.34

This paper proposes a new procedure for evaluating GMPEs. The method introduces a statistical tool35

from sensitivity analysis to quantify (score) the comparison between the cumulative distribution function36

(CDF) of residuals from a GMPE and the CDF expected if the equation correctly models the underlying37

observations. The proposed procedure offers a number of advantages over current evaluation methods (dis-38

cussed in detail in a later section of the paper). For example, it correctly accounts for the hierarchical39

structure of GMPEs, i.e. the fact that they include correlation among ground motions from the same earth-40

quake. It uses an intuitive scoring system, in which the optimum value is consistent; it does not depend41

on either the GMPE under evaluation or the observed data of interest. It also involves the calculation of42
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residuals, which can act as a powerful visual tool to provide additional insight on how GMPEs compare with43

observations.44

We use the proposed GMPE evaluation procedure to help improve understanding of the seismic hazard45

associated with shale gas exploration in the UK, where such industrial activity is relatively new; the first46

well to specifically test for UK shale gas was drilled in 2010 (Selley, 2012), and the first recorded instance of47

seismicity induced by hydraulic fracturing in the UK occurred in 2011 (Clarke et al., 2014). We specifically48

focus on the Preston New Road (PNR) shale gas site near Blackpool in Lancashire (Clarke et al., 2019),49

where the British Geological Survey (BGS) surface array detected 57 seismic events in 2018 and 121 seismic50

events in 2019 (up to 27th August), related to hydraulic fracture operations. While the magnitudes of the51

PNR events are significantly lower than those considered in conventional seismic hazard analyses, it is still52

useful to assess whether the associated shaking has the potential to be felt.53

We test a number of pre-existing GMPEs for suitability to modelling the ground motions induced by UK54

shale gas exploration: (1) the Akkar et al. (2014a) equations, developed for European seismicity, (2) the55

Douglas et al. (2013) equation, developed for induced seismicity in geothermal areas, and (3) the Atkinson56

(2015) equation, developed for induced seismicity in eastern North America. Evaluation of the GMPEs is57

specifically carried out for peak ground velocity (PGV ), peak ground acceleration (PGA), and 5% damped58

spectral accelerations at periods of 0.05s, 0.1s, and 0.2s (SA0.05, SA0.1, and SA0.2 respectively). We then59

adjust the coefficients of the most suitable GMPE, to create a model specific to the seismicity of interest so60

that it can be used for future related hazard analyses (see Developing a Modified GMPE for details).61

This paper is structured as follows. In Proposed GMPE Evaluation Procedure, we introduce the62

proposed GMPE evaluation procedure, demonstrate its performance relative to other evaluation methods,63

and describe its advantages as well as its limitations. In Evaluating GMPEs for Modelling UK Shale64

Gas Seismicity, we use the proposed procedure to evaluate the suitability of the aforementioned GMPEs65

for modelling ground shaking related to UK shale gas exploration. In Developing a Modified GMPE,66

we modify the most applicable GMPE to better suit the UK data, and compare the adjusted model to the67

previously examined GMPEs.68
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2 Proposed GMPE Evaluation Procedure69

Ground motion prediction equations typically take the following mathematical form:70

log(imobs,i,j) = log(imGMPE,i,j) + zE,iσE + zA,i,jσA (1)

where - for the jth recording of the ith event - log(imobs,i,j) is the logarithm of the observed ground motion71

measure, log(imGMPE,i,j) is the logarithm of the median estimate of the ground motion measure given72

certain predictor variables (e.g. magnitude and distance) and model parameters, zE,i is the normalised73

inter-event residual (common to all recordings of the ith event), zA,i,j is the normalised intra-event residual,74

and σE and σA are the inter-event and intra-event standard deviations, respectively. zE,i can be estimated75

using (Abrahamson and Youngs, 1992):76

zE,i =
σE ×

∑ni

j=1

[
log(imobs,i,j)− log(imGMPE,i,j)

]
niσ2

E + σ2
A

(2)

where ni is the number of recordings for the ith event. zA,i,j can then be calculated from:77

zA,i,j =
log(imobs,i,j)− log(imGMPE,i,j)− zE,iσE

σA
(3)

The format of equation 1 implies that both zE,i and zA,i,j should follow a standard normal distribution78

(i.e. mean=0, standard deviation =1) if the GMPE correctly models the observed data; this forms the basis79

of our proposed evaluation procedure. We use the Euclidean metric distance (EMD) between the cumulative80

distribution function (CDF) of the standard normal distribution and that of the maximum likelihood normal81

distribution for each type of normalised residual, to score models. This metric has previously been used to82

quantify uncertainty importance for sensitivity analyses (Chun et al., 2000). It may be calculated as follows:83

84

EMDx =
√

(µx − µo)2 + (σx − σo)2 =
√
µ2
x + (σx − 1)2 (4)

where x refers to the normalised inter- or intra- event residuals, µx and σx are the maximum likelihood85
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estimates of the mean and standard deviation, respectively, for the normalised residuals, and µo and σo86

are respectively the mean and standard deviation of the standard normal distribution. Note that equation87

4 assumes the distribution of normalised residuals to be symmetric; the generic equation for the distance88

between any two CDFs is presented in equation 2 of Chun et al. (2000). The assumption of symmetric data89

is reasonable, since it is also the fundamental underlying assumption of a GMPE (from equation 1) and it is90

always valid (for sufficient sample sizes), based on the Central Limit Theorem (Kwak and Kim, 2017).91

A graphical representation of EMDx is provided in Figure 1. The final score for the proposed evaluation92

procedure (EMDtotal) is a combination of the inter- and intra- event Euclidean metric distances, as follows:93

94

EMDtotal =
√
EMD2

inter + EMD2
intra (5)

The smaller the score, the closer the residuals are to the ideal distribution and the better the model. The95

format of equation 5 assumes that the errors from both types of residual are additive, independent, and96

equally important, which is directly consistent with the treatment of inter- and intra-event variabilities97

within GMPEs (e.g. Ornthammarath et al., 2011).98

The proposed EMD scoring method is not to be confused with the Euclidean distance-based ranking99

(EDR) procedure proposed by Kale and Akkar (2013) , which is fundamentally different in its methodology.100

The EDR approach measures the Euclidean distance directly between an observed ground motion amplitude101

and the corresponding probability distribution of predictions from a GMPE, whereas the EMD method first102

calculates normalised residuals based on the median prediction of a GMPE; then measures the Euclidean103

distance between the probability distribution of residuals and the standard distribution expected for a perfect104

prediction by the model (which is independent of the GMPE in question). The proposed EMD score has105

a number of advantages over the EDR score: (1) the EMD score is proper, (2) residuals are a natural106

by-product of calcuating the EMD score, which can provide additional useful insight on the performance107

of a GMPE, and (3) the EMD score accounts for model hierarchy in GMPEs by considering inter- and108

intra-event variability separately. Further discussion on these advantages is left to109

Advantages and Limitations of the Proposed Procedure, where the benefits of the EMD approach110

over other popular GMPE ranking methods are also explained.111
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2.1 Extension to Non-Constant Inter- and Intra-Event Standard Deviations112

It is important to note that equations 2 and 3 are only valid if the inter- and intra-event standard deviations113

of a GMPE are constant (homoskedastic) across all values of the predictor variables (Stafford, 2015), which114

is not always the case (e.g. Ambraseys et al., 2005; Akkar and Bommer, 2007; Chiou and Youngs, 2014).115

The normalised inter-event residual vector for scenario-dependent inter- and intra-event standard deviations116

may be formulated as (Laird, 2004):117

zE,i = D0.5Z′iΣ
−1
i [log(imobs,i)− log(imGMPE,i)] (6)

where, for the ith earthquake, D is the inter-event covariance matrix and Zi describes the linear relation of118

random effects (note that Z′i denotes the transpose of Zi). log(imobs,i) and log(imGMPE,i) are vectors (in119

logarithmic scale) of the observed and median estimates of the ground motion measures, respectively. Σi120

can be calculated as follows:121

Σi = Ri + ZiDZ′i (7)

where Ri is the intra-event covariance matrix for the ith earthquake, and both Zi and D are as described122

for equation 6. The normalised intra-event residual vector for scenario-dependent inter- and intra-event123

standard deviations is then calculated as:124

zA,i = R−0.5i [log(imobs,i)− log(imGMPE,i)−D0.5zE,i] (8)

where all other variables are as defined previously. zE,i and zA,i should follow standard multivariate normal125

distributions if the GMPE is a correct model for the observations. Extension of the EMDtotal metric to126

quantify the distance between the maximum likelihood multivariate normal distribution of the residuals127

and the standard multivariate normal distribution could be achieved using tools from optimal transport128

theory (e.g. Villani, 2008). However, since all the GMPEs to be evaluated in this study have homoskedastic129

standard deviations, further discussion on the ranking of GMPEs with scenario-dependent inter- and intra-130

event variabilities is left for future work.131
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2.2 Advantages and Limitations of the Proposed Procedure132

To demonstrate the relative performance of the proposed procedure, we use the synthetic datasets of Mak133

et al. (2017), i.e. we assume there are four earthquakes with event terms ηi, i ∈ {1, 2, 3, 4} that uniformly134

sample the distribution N (0, σb) and the Ni records for each earthquake uniformly sample the distribution135

N (ηi, σw). Thus, the jth residual for the ith event is calculated as:136

ri,j = Qw(yj) + ηi (9)

where yj = 2j−1
2Ni

, j ∈ {1, 2, ..., Ni}, ηi = Qb(xi) with xi = 2i−1
8 , and Qc(.) is the quantile function for137

N (0, σc). We also make use of Examples 1-3 of Mak et al. (2017), which compare the performance of138

different scores in various scenarios. Example 1 examines the variability of scores for perfect models across139

similar cases: (1) Ni = {20, 5, 5, 20} and (2) Ni = {5, 20, 20, 5} with σb = 0.35 and σw = 0.5. Example 2140

examines the performance of scores using Ni = {10, 10, 10, 50}, σb = 0.35, σw = 0.5, and a biased model.141

Example 3 examines the ability of scores to distinguish between the correct and incorrect model partitioning142

of total uncertainty into inter-event and intra-event uncertainties for Case 1 of Example 1.143

While these examples are useful for highlighting the pros and cons of the proposed procedure, it is144

important to emphasise their hypothetical (unrealistic) nature. Imbalances in the number of recordings145

per earthquake are over-exaggerated, as mentioned in Mak et al. (2017). In addition, sample sizes are146

exceptionally small (for instance, we note that Bommer et al. (2010) recommends at least 10 earthquakes147

per unit of magnitude and at least 100 records per 100 km to adequately constrain a GMPE) and an accurate148

evaluation of GMPEs may not be the only challenge to overcome when analysing such a limited amount of149

data. Actual datasets of this scale have led to difficulties in successfully calculating inter- and intra-event150

residuals (Bourne et al., 2015), for instance.151

2.2.1 Advantages152

The proposed evaluation procedure provides numerous benefits over similar methods previously proposed153

in the literature. The proposed score has three main advantages over both the LLH score proposed by154

7



Scherbaum et al. (2009) and the the EDR score proposed by Kale and Akkar (2013). (1) The proposed155

score is proper (Lindley, 1991), since the best (lowest) score is achieved when the GMPE perfectly fits the156

observed data, i.e. when the CDFs of the residuals exactly match that of the standard normal distribution.157

On the other hand, the LLH score can favour a biased model if the number of recordings is unbalanced158

between earthquakes (Mak et al., 2017) and the EDR score favours a smaller predicted uncertainty value,159

regardless of what the true uncertainty is, when the predicted mean is close to correct (Mak et al., 2014). We160

demonstrate this benefit of the proposed score using the data of Example 2 in Mak et al. (2017). Unlike the161

LLH score, the proposed procedure correctly assigns a better score to the unbiased model (EMDtotal for162

the correct model is 0.25 and EMDtotal for the biased model is 0.48). If we halve both the inter-event (σb)163

and intra-event (σw) standard deviations of the correct model while keeping the observations unchanged,164

the proposed score disimproves from 0.25 to 1.04, whereas the EDR score incorrectly improves from 0.72165

to 0.62. (2) Residuals are also calculated as part of obtaining the EDR score, which can provide additional166

insight on whether a GMPE is high or low relative to the observed data of interest (e.g. Bradley, 2013).167

(3) Through the separate consideration of intra- and inter-event residuals, the proposed procedure correctly168

accounts for the hierarchical nature of ground motion prediction equations, whereas the LLH score and the169

EDR score do not distinguish between these two types of variability.170

The EMD approach has a number of advantages over the ``(p,V,q) score proposed by Mak et al. (2017),171

which (to the best of our knowledge) is the only other score that incorporates model hierarchy. Firstly, the172

proposed score is more intuitive than the ``(p,V,q) score, since its best possible value is always 0 whereas173

the ``(p,V,q) score has a variable optimum value that depends on the length of the given dataset (via the174

‘N log(2π)’ term) and the variance of the model to be evaluated (via the ‘log |V| + (q − p)′V−1(q − p)’175

terms). The variability of the optimum ``(p,V,q) score is highlighted in Example 2 and Example 3 of Mak176

et al. (2017); the score for the correct model in Example 2 (where there are 4 earthquakes and 80 records) is177

61.2, whereas the score for the correct model in Example 3 (where there are 4 earthquakes and 50 records)178

is 38.8. (The EMDtotal score for both models is 0.25). Secondly, the proposed procedure is significantly179

less computationally expensive than that proposed by Mak et al. (2017) (at least when evaluating GMPEs180

with homoskedastic standard deviations); it only requires space for
∑ne

i=1 nri + ne residuals (where ne is181
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the number of earthquakes and nri is the number of records for the ith earthquake) plus the maximum182

likelihood estimates of the residual distributions, whereas the procedure of Mak et al. (2017) necessitates the183

storage of
∑ne

i=1 n
2
ri non-zero elements for the V matrix alone. To demonstrate the practical significance of184

the difference in computational requirements between the two methods, we use a hypothetical dataset with185

100 earthquakes and 100 records per earthquake - which roughly corresponds in record number to half the186

size of the NGA West-2 ground motion database (Ancheta et al., 2014) - and assume that we are evaluating187

a GMPE with homoskedastic standard deviation. For double precision in the MATLAB environment, the188

procedure of Mak et al. (2017) will require 800 MB of storage for the V matrix, whereas the necessary189

data for the proposed procedure can be stored in a vector of less than 0.1 MB in size. The computational190

advantage of the proposed procedure will become even more apparent as future evaluations of models involve191

increasing amounts of recorded data.192

The proposed score also has an advantage over goodness-of-fit measures proposed for evaluating GMPEs193

- such as the Kolmogorov-Smirnov test and the mean test p-value (Scherbaum et al., 2004) - since it does194

not include the use of classical statistical hypothesis testing, which can be limited in ability to measure the195

importance of a result (Wasserstein and Lazar, 2016).196

2.2.2 Sample Size Constraints197

To assess the reliability of the proposed procedure for modest sample sizes, we compute scores for the small198

datasets examined in Examples 1-3 of Mak et al. (2017), which contain 50-80 records across 4 earthquakes.199

It can be observed from Table 1 that the proposed procedure correctly scores the models in Example 2 (as200

discussed in Advantages) but it does not perform as expected for Examples 1 and 3; the scores are not201

equivalent for both (correct) cases in Example 1, and the model with the smallest σb is incorrectly deemed to202

be the best in Example 3. The incorrect scoring in Examples 1 and 3 is due to the inaccurate estimation of203

inter-event residuals by equation 2, which only represents the best predictor of random effects given the set of204

available observations (Jiang, 2007). For instance in Example 1, inter-event residuals for Case 1 are estimated205

to be {−1.04,−0.23, 0.23, 1.04} and for Case 2 are estimated to be {−0.82,−0.29, 0.29, 0.82}, whereas the206

true inter-event residuals for both cases (simulated according to equation 9) are {−1.15,−0.32, 0.32, 1.15}.207
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The incorrect scoring by the proposed procedure can also be minorly attributed to the use of maximum208

likelihood estimation for obtaining the means and standard deviations of the normalised residuals, which is209

well known to have reduced accuracy for small sample sizes (e.g. Lee and Song, 2004). We note that many210

other popular GMPE evaluation scores - such as that of Mak et al. (2017) as well as the Scherbaum et al.211

(2009) LLH score - involve maximum likelihood estimates and are therefore also somewhat impacted by212

small sample sizes (Beauval et al., 2012).213

To understand the sample sizes necessary for the proposed evaluation procedure to perform correctly in214

Examples 1 and 3, we calculate the scores for datasets with an increasing number of events and recordings215

(Figure 2). Increasing ‘Earthquake Number’ involves adding earthquakes to the centre (Case 1 in Example216

1 and Example 3) or outside (Case 2 in Example 1) of a dataset, with the same number of records as the217

nearest events in the set. Increasing ‘Record Number Scaling’ involves multiplying the number of records per218

earthquake by a factor. For example, an ‘Earthquake Number’ of 10 and a ‘Record Number Scaling’ of 2 for219

Case 1 in Example 1 yields the dataset Ni = {40, 10, 10, 10, 10, 10, 10, 10, 10, 40}, and for Case 2 in Example220

1 yields the dataset Ni = {10, 10, 10, 10, 40, 40, 10, 10, 10, 10}. Residuals are still calculated according to221

equation 9, with the denominator of xi replaced by 2× Earthquake Number.222

Figure 2a plots the absolute difference between the EMDtotal values for Case 1 and Case 2 in Example223

1, and Figure 2b plots the difference between the EMDtotal values for the correct model and the model with224

deflated σb. It can be seen in Figure 2a that the absolute difference in EMDtotal values for both cases in225

Example 1 will reduce to 0.01 if the number of records for each earthquake is scaled by 22 (1100 total records226

per case), or if the number of earthquakes is increased to 30 and the number of records per earthquake is227

scaled by 9 (1620 total records per case), for example. The proposed procedure will score the correct model228

better than the model with smallest σb in Example 3 if the number of earthquakes is increased to 10 and229

the number of records per earthquake is scaled by 4 (320 total records), or if the number of earthquakes is230

increased to 30 and the number of records for each earthquake is scaled by 3 (540 total records), for example231

(Figure 2b). It can be concluded that the number of earthquakes and recordings necessary for the proposed232

evaluation procedure to perform reliably for Examples 1 and 3 is notably larger than that examined by233

Mak et al. (2017), however we again emphasise that these examples are far from those expected in real-life234
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applications.235

3 Evaluating GMPEs for Modelling UK Shale Gas Seismicity236

We use the proposed GMPE evaluation procedure to help improve understanding of the seismic hazard237

related to shale gas exploration in the UK, where such industrial activity is relatively new. We focus on238

2018 and 2019 seismic events associated with the PNR shale gas site near Blackpool in Lancashire (Figure239

4a), which are the only well-recorded series of shale gas-related events that have occurred in the UK. We240

also use a high quality dataset of ground motion recordings from events that were induced by coal mining241

near New Ollerton (NO) in North Nottinghamshire (Figure 4b; Verdon et al., 2017), as these earthquakes242

had very similar magnitudes and depths to those of the PNR sequence (Figures 4c and 4d), they occurred243

in the same geological formation (Butcher et al., 2017), and were found to have comparable ground motion244

amplitudes to those of the 2018 PNR events for most of the intensity measures of interest (Cremen et al.,245

2019).246

3.1 GMPEs Examined247

We evaluate the suitability of various GMPEs for modelling the ground motions of interest: (1) Akkar et248

al. (2014a, hereafter ASB14), (2) Douglas et al. (2013, hereafter D13) and (3) Atkinson (2015, hereafter249

A15). ASB14 was chosen because they were used for planning purposes in preliminary shale gas-related PNR250

hazard calculations (Arup, 2014). D13 and A15 were chosen for their application to induced seismicity.251

ASB14 are a series of GMPEs developed for European and Middle East crustal seismicity that were252

derived using a subset of the Reference Database for Seismic Ground-Motion in Europe (RESORCE) (Akkar253

et al., 2014b) . They are applicable for moment magnitudes (Mw) greater than 4 and distances less than 200254

km. The equations use either point-source (i.e. epicentral and hypocentral distance) or finite-fault (surface255

projection of rupture distance) distance metrics. Events are sufficiently small such that rupture distance is256

not important in this study, so we only use the point-source equations (henceforth referred to as ASB14hypo257

and ASB14epi).258

D13 are a series of GMPEs developed for geothermal induced seismicity that were derived using data259
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from induced and natural seismicity in Basel (Switzerland), Campi Flegrei (Italy), Geysers (United States),260

Hengill (Iceland), Roswinkel and Vorendaal (the Netherlands), and Soultz-sous-Forets (France). They are261

applicable for Mw greater than 1 and distances less than 50 km. All equations except one are site corrected262

to a reference rock condition (Vs30 = 1100 m/s). This condition is significantly different to that observed263

at sites in this study (Vs30 = 280 m/s, as explained in Data Used), so we only use the equation that264

represents an unknown site condition in this case. (Note that we could make our data compatible with265

the site corrected condition by obtaining site-specific estimates of amplification and attenuation, but this is266

outside the scope of the current study.)267

A15 is a GMPE developed for induced seismicity in eastern North America that was derived using a268

subset of the Next Generation Attenuation-West 2 (NGA-West 2) database (Ancheta et al., 2014). It is269

applicable for magnitudes between 3 and 6 and distances less than approximately 50 km. The equation is270

site corrected to a reference soft rock condition (Vs30 = 760 m/s). However, it can be conveniently adjusted271

to another site condition by inputting the appropriate Vs30 value to the empirical site correction model of272

Seyhan and Stewart (2014), which was calibrated using the same database. We use this model to site correct273

our data.274

3.2 Data Used275

We only examine data recorded at distances less than 10 km from events with local magnitude (ML) > 0276

in this study, since smaller magnitude events and farther locations (for the magnitude range considered in277

this study) will have extremely low levels of shaking that will not be felt. 29 Preston New Road (PNR)278

events fit the magnitude criterion, for which there are 76 recordings available within 10 km from nine Guralp279

3-ESP broadband seismometers deployed by the BGS near the site. A further 119 recordings are available280

for 2018 events from eight seismic instruments (two Kinemetrics Shallow Borehole Episensor 2 broadband281

accelerometers and six Geospace Technologies SNG 3C GS-ONE LF geophones) used for monitoring by the282

shale gas exploration operator at the site, Cuadrilla Resources Ltd. We retrieve the event phase data and283

the raw waveforms of the BGS instruments from the BGS seismic database, and the raw waveforms of the284

operator’s instruments from the UK Oil and Gas Authority (see Data and Resources). We consider 48 New285
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Ollerton (NO) earthquakes greater than 0 ML, for which there are 192 recordings available within 10 km286

from four Guralp 3-ESP broadband seismometers installed by the BGS. Waveforms and phase data for the287

earthquakes are accessed using the BGS seismic database. A histogram of the complete database is provided288

in Figure 3.289

We convert waveforms from dimensions of digital counts to velocity or acceleration using the procedure290

of Haney et al. (2012) (for broadband seismometers), assuming a causal third-order high-pass Butterworth291

filter with frequency 3 Hz, a causal fifth-order low-pass Butterworth filter with frequency 20 Hz, and an292

oversampling rate of 5. Accelerations are obtained from the derived velocities by numerical differentiation,293

and velocities are obtained from the derived accelerations using numerical integration. Spectral accelerations294

are computed using the algorithm provided in Wang (1996). Ground motion intensities are calculated across a295

time window from p-wave arrival to 5 seconds after the occurrence of the maximum displacement amplitude.296

Signal-to-noise ratios for each seismogram are taken as a ratio of the Fourier amplitude spectrum (FAS)297

evaluated during this time window to the FAS evaluated for a noise window of equivalent duration (Perron298

et al., 2018). We ignore data with signal-to-noise ratios less than or equal to 3, which removes 3 SA0.05299

values, 7 SA0.1 values and 5 SA0.2 values from the PNR dataset, and 1 SA0.05 value from the NO dataset.300

The data considered for both earthquake sequences are summarised in Figure 4. It is important to note that301

the size of the dataset - 77 earthquakes with a median of 4 and a maximum of 12 data points per earthquake-302

is sufficient for the proposed evaluation procedure to perform correctly. We can confirm this by repeating303

Example 3 of Mak et al. (2017), using Ni = {xi, xi+1, ....., xn−1, xn}, where the length (n) of Ni = 77 and304

xi is equal to the number of records available for the ith earthquake. To adequately capture the interaction305

between sample size and event term, the earthquakes are placed within Ni in ascending order of their inter-306

event residual with respect to the ASB14hypo GMPE. We find that the EMDtotal scores accurately indicate307

the correct model; EMDtotal for the correct model is 0.316, which is lower than the value for the model with308

inflated σb (0.332) and the value for the model with deflated σb (0.321).309

The value of a ground motion intensity measure used for a particular event and distance combination310

depends on the requirements of the GMPE of interest. For ASB14hypo, ASB14epi, and D13, it is taken as311

the geometric mean of the values computed for the two horizontal components. For A15, it is taken as the312
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median value for the two horizontal components computed over all nonredundant azimuths, as detailed in313

Boore (2010). ML values are converted to Mw values using the empirical relationship derived by Butcher314

et al. (2019) for coal-mining induced seismicity in the UK:315

Mw = 0.69ML + 0.74 (10)

All sites sit on alluvial soils so we use a Vs30 value of 280 m/s, the median value found for these types of soil316

by Campbell et al. (2016), for site correction factors in ASB14hypo, ASB14epi, and A15. We assume a linear317

site response for A15. We assume strike-slip style-of-faulting for PNR data and reverse faulting for NO data318

in ASB14hypo and ASB14epi, as these are the respective dominant regimes for each type of seismicity (Clarke319

et al., 2019; Verdon et al., 2017).320

3.3 Evaluation Results321

Table 2 provides EMDtotal scores for each GMPE. Also provided for comparison are ``(p,V,q) scores,322

calculated according to the evaluation procedure proposed by Mak et al. (2017). Figures 5 and 6 provide the323

corresponding inter- and intra-event residuals, as well as those expected for a standard normal distribution324

(i.e. a perfectly fitting GMPE). It can be seen from Table 2 that, according to the proposed evaluation325

procedure, D13 is the most suitable GMPE for modelling all ground motion intensities examined except326

SA0.2, for which A15 is the most suitable. It is interesting to note that these findings are consistent327

with those of a similar evaluation study carried out by Cremen et al. (2019) for the same GMPEs, which328

included only 2018 PNR data from the BGS seismometers and used the GMPE ranking scheme of Scherbaum329

et al. (2004). Since both ASB14 equations and A15 were calibrated at much higher magnitudes than those330

examined here (see GMPEs Examined), these results provide further support for previous studies, (e.g.331

Bommer et al., 2007; Douglas and Jousset, 2011; Atkinson and Morrison, 2009) which found that GMPEs332

derived from larger-magnitude events should not be extrapolated to predict ground motions from earthquakes333

with smaller magnitudes.334

The ranking of GMPEs according to the proposed procedure matches that of the Mak et al. (2017)335

procedure except in the case of PGV , for which the proposed procedure favours D13 and the procedure of336
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Mak et al. (2017) favours A15. Figure 5 highlights why the proposed procedure favours D13 for PGV ; while337

the intra-event residuals for A15 compare better overall with the standard normal distribution than those of338

D13 due to the closer fit of their standard deviation (mean of D13 intra-event residuals = -0.03 and mean of339

A15 intra-event residuals = 0.31, while standard deviation of D13 intra-event residuals = 0.41 and standard340

deviation of A15 intra-event residuals = 1.02), the inter-event residuals for D13 perform significantly better341

relative to the standard normal distribution than those of A15 due to their notably lower bias (mean of D13342

inter-event residuals = -0.06 and mean of A15 inter-event residuals = 1.10, while standard deviation of D13343

inter-event residuals = 0.30 and standard deviation of A15 inter-event residuals = 0.50). The Mak et al.344

(2017) procedure’s preference for A15 can be explained by A15’s significantly smaller variance relative to345

that of D13 for PGV ; A15 intra-event variability for PGV (in natural log units) is 0.645, which is over 60%346

less than the equivalent value of 1.811 for D13. Even though the error term (i.e. [q− p]′V−1[q− p]) of the347

``(p,V,q) score is much lower for D13 (73) than A15 (551), the difference in values of the variance term (i.e.348

log |V|) is sufficient to yield an overall lower ``(p,V,q) score for A15 (log |V| is 505 for D13 and is -276 for349

A15).350

4 Developing a Modified GMPE351

We now analyse the suitability of the most promising GMPE, D13, in greater detail. This equation has the352

following functional form:353

lnY = a+ bM + c ln
√
r2hyp + h2 + drhyp +N (0, φ) +N (0, τ) (11)

where Y is the observed ground motion intensity measure of interest for moment magnitude M and hypocen-354

tral distance (in km) rhyp, N (µ,Σ) is a normal distribution with mean µ and standard deviation Σ, φ is355

the intra-event standard deviation, τ is the inter-event standard deviation, and σ =
√
φ2 + τ2 is the total356

standard deviation.357

We examine trends in the residuals with the different predictor variables and update model coefficients358

to better suit the data as required, similar to the referenced empirical method for fitting GMPEs (Atkinson,359
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2008) and in line with the procedure detailed in Scasserra et al. (2009). We first investigate the variation of360

intra-event residuals (εi,j) as a function of hypocentral distance (Figure 7). To highlight trends, we perform361

a linear regression according to:362

εi,j = zA,i,jσA = aR + bRRi,j + (εR)i,j (12)

where zA,i,j and σA are as defined in equation 3, Ri,j is hypocentral distance, aR and bR are regression363

parameters, and (εR)i,j is the residual for the jth recording from the ith event. The p-values plotted in364

Figure 7 test the null hypothesis that the slope parameter bR is equal to zero; since they all have extremely365

low values (i.e. ≤ 0.01), we can conclude that there is a statistically significant relationship between the366

residuals and hypocentral distance for each ground motion intensity measure examined. bR is negative in367

each case, indicating that there is faster distance attenuation of the observed data relative to the D13 GMPE.368

To address the distance attenuation discrepancy, we recalculate coefficients related to near-source saturation369

(i.e. c and h) and the constant term of D13, using non-linear regression of the observed data. (We do not370

attempt to reevaluate the anelastic attenuation term of D13, given the short distances of interest). Note that371

the h coefficient is not found to be statistically significant in the initial regression analyses for any ground372

motion intensity measure examined, so the values for the other two terms are instead computed with h set373

to 0. We obtain the inter- and intra-event standard deviations of the distance-modified D13 by performing374

mixed effects regression on the total log residuals log(Zi,j) (e.g. Scasserra et al., 2009), calculated as follows:375

376

log(Zi,j) = log(imobs,i,j)− log(imGMPE′,i,j) (13)

where log(imGMPE′,i,j) is the logarithm of the median estimate of the ground motion measure for the377

model parameters of the distance-modified D13 and log(imobs,i,j) is as defined in equation 1. There is a378

statistically insignificant relationship between the normalised intra-event residuals of the distance-modified379

D13 and hypocentral distance (Figure 8), indicating that the updated GMPE is adequately capturing the380

distance attenuation of the observed data.381

We assess the magnitude-scaling of the distance-modified D13 by investigating the variation of the inter-382
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event residuals (ηi) as a function of moment magnitude (Figure 9). To illustrate trends, we conduct a linear383

regression according to:384

ηi = zE,iσE = aM + bMMi + (εM )i (14)

where zE,i and σE are as defined in equation 2, Mi is moment magnitude, aM and bM are regression385

parameters, and (εM )i is the residual for the ith event. There is a statistically significant positive trend in386

the residuals with moment magnitude for each ground motion intensity measure of interest besides PGA387

(indicated by the small p-values for bM plotted in Figure 9). This implies that the magnitude-scaling of the388

observed data is larger than that predicted by the GMPE in these cases, which makes sense given that D13389

was calibrated for slightly higher magnitudes (e.g. Chiou et al., 2010). To rectify this, we use linear regression390

to recompute the magnitude-related coefficient and the constant term of the distance-modified D13 (except391

in the case of PGA). Mixed-effects regression is then used to calculate the updated inter- and intra-event392

standard deviations of the distance- and magnitude-modified D13. It is observed in Figure 10 that the393

distance- and magnitude-modified D13 correctly accounts for the magnitude-scaling of the observed data.394

Note that distance-dependent trends in the intra-event residuals of the distance- and magnitude-modified395

D13 are also found to be negligible.396

Coefficients of the distance- and magnitude-modified D13 (henceforth referred to as CWB19) are provided397

in Table 3, for all ground motion intensity measures examined. Figure 11 provides regional median PGV398

predictions of the GMPE related to two hypothetical scenario earthquakes at the PNR shale gas site, which399

are equivalent in size to the two largest events that occurred during operations there in 2019. The applicability400

of CWB19 is limited to hypocentral distances between approximately 2 and 6 km, and (positive) moment401

magnitudes less than 3, given the sparsity of available calibration data for other values. CWB19 nevertheless402

represents a reasonable first attempt at modelling ground motions related to UK shale gas exploration, and403

will be refined in the future as further data are recorded.404

4.1 Comparing CWB19 with existing GMPEs405

We now examine the distance-scaling, the magnitude-scaling, and the standard deviations of CWB19, relative406

to those of the GMPEs previously assessed for suitability to modelling the ground motions of interest. A15407
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is site corrected to a Vs30 value of 280 m/s in all distance- and magnitude-scaling comparisons. It should408

also be noted, as part of interpreting the comparisons, that ground motion amplitudes calculated according409

to A15 are not strictly equivalent to those calculated using the other GMPEs (see Data Used for more410

details).411

Figure 12 compares the distance-scaling of the median predicted amplitudes of CWB19 with those of412

the previously examined GMPEs, for a fixed focal depth of 2 km and a moment magnitude of 1.5. The413

ground motion amplitudes predicted by the GMPEs derived from naturally occurring events (i.e. the ASB14414

equations) are significantly larger than those predicted by the GMPEs designed for induced earthquakes (i.e.415

all other equations examined) across most distances and intensity measures of interest. This is not surprising,416

given that the ASB14 equations have undergone the largest extrapolation from their range of applicability417

(e.g. Baltay and Hanks, 2014). The very near-source predicted amplitudes of CWB19 are significantly larger418

than those of A15 and D13 (and even those of both ASB14 equations for PGV ). The distance attenuation419

of CWB19 is faster than that of all other examined GMPEs, such that its predictions are similar to those of420

either A15 or D13 at the farthest distances considered. We can conclude that, for the ground motion intensity421

measures studied, close-distance intensities predicted by CWB19 are larger than those expected by the two422

GMPEs focused on induced events (as well as those expected by the GMPEs derived from naturally-occuring423

events for PGV ), but its predicted intensities at farther distances are in line with expectations for induced424

earthquakes. This may be explained by the fact that the UK induced earthquakes examined occurred at425

shallower depths than those used to constrain D13 and A15; all PNR and NO earthquakes occurred at depths426

less than 3 km, while the mean focal depth of earthquakes used to fit D13 is approximately 5 km, based on427

visual inspection of Figure 1 in Douglas et al. (2013), and the mean focal depth of earthquakes used to fit428

A15 is 9 km (Atkinson, 2015).429

Figure 13 compares the magnitude-scaling of the median predicted amplitudes of CWB19 with those of430

the previously assessed GMPEs, at a distance of 3 km (which is hypocentral or epicentral, depending on431

the functional form of the GMPE). Across all intensity measures examined except PGV , the ground motion432

amplitudes predicted by the natural GMPEs are notably larger than those predicted by the induced GMPEs433

for magnitudes less than approximately 2.5, but are similar at greater magnitudes. The magnitude-scaling434

18



of CWB19 is comparable to that of D13 for PGA, SA0.05, and SA0.1, and that of A15 for SA0.2; the only435

notable difference is a marginally steeper scaling for CWB19 in the case of SA0.05, SA0.1, and SA0.2, such436

that expected ground motion amplitudes are higher for CWB19 than for either D13 or A15 at the largest437

magnitudes considered. The magnitude-scaling of CWB19 for PGV is significantly different to that of the438

other GMPEs at very small magnitudes, but very similar to those of ASB14epi, A15, and D13 for magnitudes439

greater than 1.5. We conclude that the magnitude scaling of CWB19 is generally in line with that of other440

induced GMPEs, for the ground motion intensity measures examined.441

Figure 14 shows intra- and inter-event standard deviation values (in natural log units) for CWB19 across442

all ground motion intensity measures of interest, compared with equivalent values for the other GMPEs443

examined. Inter-event values for CWB19 are consistently lower than those of A15 and D13, and are signifi-444

cantly less than those for all other GMPEs assessed in the case of PGV and SA0.1. These findings are not445

surprising, given that CWB19 is derived using (essentially) only two sources, i.e. the shale gas site at PNR446

and the coal mine at NO. The intra-event variability values of the developed GMPE are generally slightly447

lower than those of the other GMPEs; this may be explained by the narrow near-source distance range of448

interest for CWB19. Note that the relatively small standard deviation values underline the fact that CWB19449

should not be used outside the seismicity context for which it was created nor the magnitude and distance450

ranges outlined in Developing a Modified GMPE, as underestimating variability in ground motions can451

have a significant impact on the results of seismic hazard analyses (Bommer and Abrahamson, 2006).452

4.1.1 Improvement in GMPE453

We can use the EMDtotal metric developed to quantify the improvement in modelling accuracy offered by454

CWB19 over D13 for the data of interest, given that the scale of the score is consistent across all GMPEs.455

The percentage improvement is calculated as follows:456

% Improvement =
(EMDtotal)D13 − (EMDtotal)CWB19

(EMDtotal)D13
× 100 (15)

where (EMDtotal)z is EMDtotal for the GMPE z. Table 4 contains percentage improvement values for all457

ground motion intensity measures examined in this study. It can be seen that there is a notable improvement458
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for all intensity measures, with an average improvement of 66%. Thus, adjusting the coefficients of D13 has459

significantly enhanced its suitability to modelling ground motions induced by UK shale gas exploration.460

5 Conclusions461

This paper has proposed a new method for evaluating the suitability of GMPEs to modelling the ground462

motions in a given region of interest. The method leverages a statistical tool from sensitivity analysis to463

quantitatively compare the distribution of residuals from a GMPE with the distribution expected for an464

exact fit of the equation to the underlying observations. The proposed method has a number of advantages465

over similar procedures in the literature. For example, it is based on an intuitive scoring system that yields466

consistent score values across all GMPEs and observed datasets. It does not rely on statistical hypothesis467

testing, from which it is difficult to measure the importance of a result. It also correctly accounts for the468

hierarchical structure of GMPEs. The accuracy of the proposed procedure can be hampered by very small469

sample sizes (i.e. on the order of 4 earthquakes), however such limited datasets are far from those expected470

to be used in real-life evaluations of GMPEs.471

The proposed evaluation procedure was used to assess the suitability of a number of different GMPEs472

(ASB14hypo, ASBepi, A15, and D13) for modelling earthquakes induced by shale gas exploration in the473

UK. We specifically focused on events related to the PNR shale gas site near Blackpool in Lancashire,474

and supplemented the dataset with information on a sequence of similar events related to coal-mining that475

occurred within the same geologic formation at New Ollerton, North Nottinghamshire. We found that D13476

was the most applicable GMPE of the four, at least for the considered ground motion intensity measures477

of PGV , PGA, SA0.05, SA0.1, and SA0.2, and the dataset of observed recordings examined. We further478

enhanced the suitability of D13 for modelling ground motions associated with UK shale gas exploration, by479

adjusting its coefficients in line with the observed dataset; details of the modified equation (CWB19) are480

provided in Developing a Modified GMPE.481

This paper provides a useful tool for ranking GMPEs that can be used to select suitable candidate models482

for input to probabilistic seismic hazard analyses (PSHA). Our assessment and development of GMPEs for483

modelling ground motions related to UK shale gas exploration enhances understanding of the strength of484
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ground shaking associated with this type of seismicity, and the findings have many potential applications485

in further related work. For example, the developed GMPE could be used as part of future PSHA studies486

related to UK shale gas seismicity, for accurately modelling ground motion amplitudes at close distances and487

small magnitudes. These studies could ultimately inform engineering seismic risk calculations, which could488

be used to aid decision-making related to UK regulations on shale gas operations.489

6 Data and Resources490

Earthquake catalogs were obtained from the earthquake database of the British Geological Survey (https://491

earthquakes.bgs.ac.uk/earthquakes/dataSearch.html). Seismograms, phase measurements, and data492

used to correct for instrument response were acquired from the British Geological Survey’s seismic database493

and the UK Oil and Gas Authority’s database on 2018 PNR operations (https://www.ogauthority.co.uk/494

onshore/onshore-reports-and-data/preston-new-road-pnr-1z-hydraulic-fracturing-operations-data/).495

All other data used were retrieved from sources listed in the references.496

7 Acknowledgements497

We thank Dr. Julian J. Bommer and an anonymous reviewer for very helpful comments that significantly498

improved the quality of this manuscript. This work has been funded by the Natural Environment Research499

Council (NERC) Grant Number NE/R017956/1 “Evaluation, Quantification and Identification of Pathways500

and Targets for the assessment of Shale Gas RISK (EQUIPT4RISK)”, the Bristol University Microseismic501

Projects (BUMPS), and the British Geological Survey.502

References503

Abrahamson, N. A. and R. Youngs (1992). A stable algorithm for regression analyses using the random504

effects model, Bull. Seismol. Soc. Am. 82(1), 505–510.505

21

https://earthquakes.bgs.ac.uk/earthquakes/dataSearch.html
https://earthquakes.bgs.ac.uk/earthquakes/dataSearch.html
https://earthquakes.bgs.ac.uk/earthquakes/dataSearch.html
https://www.ogauthority.co.uk/onshore/onshore-reports-and-data/preston-new-road-pnr-1z-hydraulic-fracturing-operations-data/
https://www.ogauthority.co.uk/onshore/onshore-reports-and-data/preston-new-road-pnr-1z-hydraulic-fracturing-operations-data/
https://www.ogauthority.co.uk/onshore/onshore-reports-and-data/preston-new-road-pnr-1z-hydraulic-fracturing-operations-data/


Akkar, S. and J. J. Bommer (2007). Empirical prediction equations for peak ground velocity derived from506

strong-motion records from Europe and the Middle East, Bull. Seismol. Soc. Am. 97(2), 511–530.507

Akkar, S., M. Sandıkkaya, and J. Bommer (2014a). Empirical ground-motion models for point-and extended-508

source crustal earthquake scenarios in Europe and the Middle East, Bull. Earthquake Eng. 12(1), 359–387.509
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Tables622

Table 1: Scores calculated using the proposed pro-
cedure, for the cases in Examples 1-3 of Mak et al.
(2017).

Example Case EMDtotal ``(p,V,q)
1 Case 1 0.25 38.8

Case 2 0.39 38.5
2 Correct 0.25 61.2

Biased 0.48 61.5
3 Correct 0.25 38.8

Inflated σb 0.35 39.6
Deflated σb 0.17 39.1

``(p,V,q) scores of the Mak et al. (2017) procedure are
also shown for comparison. Note that the smallest score
for a given procedure (marked in bold) indicates the best
model.

Table 2: Ranking of GMPEs for suitability to modelling ground motions
produced by UK shale gas-related seismicity, using both the proposed pro-
cedure and the procedure of Mak et al. (2017).

Intensity Measure Metric ASB14hypo ASB14epi A15 D13
PGA EMDtotal 4.56 3.47 1.48 0.74

``(p,V,q) 1830 1297 569 505
PGV EMDtotal 1.88 0.95 1.25 0.92

``(p,V,q) 763 605 493 645
SA0.05 EMDtotal 4.64 3.63 1.39 0.62

``(p,V,q) 1912 1428 610 550
SA0.1 EMDtotal 4.82 3.78 1.54 1.17

``(p,V,q) 1912 1404 571 535
SA0.2 EMDtotal 5.31 4.26 1.06 1.81

``(p,V,q) 2178 1579 474 605

Note that the smallest score for a given procedure (marked in bold) indicates
the best model.

Table 3: Coefficients of CWB19 for all ground motion intensity measures (IMs) examined.
Note that the functional form of the GMPE is presented in equation 11.

IM a b c h d φ τ σ
PGA -5.096 2.146 -2.611 constrained to zero -0.023 0.563 0.437 0.712
PGV -10.213 2.913 -2.719 constrained to zero -0.046 0.553 0.158 0.575
SA0.05 -5.027 2.717 -2.890 constrained to zero -0.008 0.696 0.378 0.792
SA0.1 -4.988 2.814 -2.723 constrained to zero -0.039 0.632 0.227 0.672
SA0.2 -7.704 3.639 -2.276 constrained to zero -0.057 0.549 0.430 0.698
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Table 4: Percentage improvement in modelling accuracy offered by
CWB19 over D13 for the data of interest in this study.

IM (EMDtotal)CWB19 (EMDtotal)D13 % Improvement
PGA 0.21 0.74 72
PGV 0.48 0.92 48
SA0.05 0.26 0.62 58
SA0.1 0.40 1.17 66
SA0.2 0.25 1.81 86

Note that IM stands for ground motion intensity measure. Values for
(EMDtotal)D13 are taken from Table 2.
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Figure 1: A graphical representation of the scoring system for our proposed GMPE evaluation procedure,
which quantifies the distance between the CDF of the standard normal distribution (perfect case) and that of
the maximum likelihood normal distribution (observed case) for each type of normalised residual. µx = 0.5
and σx = 0.5 for the observed case, therefore EMDx =

√
0.52 + (0.5− 1)2 = 0.7 in this case.
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Figure 2: Understanding the sample sizes necessary for the proposed evaluation procedure to perform cor-
rectly in Examples 1 and 3 of Mak et al. (2017). (a) Absolute difference between the EMDtotal values for
Case 1 and Case 2 in Example 1, (black dashed line indicates a value of 0.01) and (b) difference between the
EMDtotal values for the correct model and the model with deflated σb, as a function of earthquake number
and the scaling of record number per earthquake. Note that lighter colours in (a) and darker blue colours in
(b) indicate a more correct performance of the score.
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Figure 3: Histogram of the complete observed ground motion record database used in this study.
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Figure 4: A summary of the data examined in this study. (a) Locations of the considered seismicity and
seismic monitoring stations for the Preston New Road (PNR) shale gas site in Lancashire and (b) the
Thoresby Colliery at New Ollerton (NO), North Nottinghamshire (insets highlight locations relative to all
of Great Britain). (c) Magnitude, hypocentral distance, and (d) depth data examined.
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Figure 5: Normalised (a) inter- and (b) intra-event PGV residuals for the four GMPEs evaluated, compared
with those expected from a standard normal distribution (the ‘Perfect Case’). Also plotted are EMD scores
for each type of residual.
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Figure 6: Normalised (a, c, e, g) inter- and (b, d, f, h) intra-event PGA, SA0.05, SA0.1, and SA0.2 residuals
for the four GMPEs evaluated, compared with those expected from a standard normal distribution (the
‘Perfect Case’).

31



0 2 4 6 8

Hypocentral Distance (km)

-2

-1

0

1

2

In
tr

a
-E

v
e
n
t 
R

e
s
id

u
a
l

PGA

p-value = 0.00

(a)

0 2 4 6 8

Hypocentral Distance (km)

-2

-1

0

1

2

In
tr

a
-E

v
e
n
t 
R

e
s
id

u
a
l

PGV

p-value = 0.00

(b)

0 2 4 6 8

Hypocentral Distance (km)

-2

-1

0

1

2

In
tr

a
-E

v
e
n
t 
R

e
s
id

u
a
l

SA
0.05

p-value = 0.00

(c)

0 2 4 6 8

Hypocentral Distance (km)

-2

-1

0

1

2

In
tr

a
-E

v
e
n
t 
R

e
s
id

u
a
l

SA
0.1

p-value = 0.00

(d)

0 2 4 6 8

Hypocentral Distance (km)

-2

-1

0

1

2

In
tr

a
-E

v
e
n
t 
R

e
s
id

u
a
l

SA
0.2

p-value = 0.00

(e)

Figure 7: Variation of the D13 normalised intra-event residuals with hypocentral distance for (a) PGA, (b)
PGV , (c) SA0.5, (d) SA0.1, and (e) SA0.2. Also shown are the lines fit using linear regression (solid black
lines) and their 95% confidence intervals (dashed lines). The p-value for a given plot tests the null hypothesis
that the slope of the fitted line equals zero.
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Figure 8: Variation of the distance-modified D13 normalised intra-event residuals with hypocentral distance
for (a) PGA, (b) PGV , (c) SA0.5, (d) SA0.1, and (e) SA0.2. Also shown are the lines fit using linear
regression (solid black lines) and their 95% confidence intervals (dashed lines). The p-value for a given plot
tests the null hypothesis that the slope of the fitted line equals zero.
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Figure 9: Variation of the distance-modified D13 normalised inter-event residuals with magnitude for (a)
PGA, (b) PGV , (c) SA0.5, (d) SA0.1, and (e) SA0.2. Also shown are the lines fit using linear regression
(solid black lines) and their 95% confidence intervals (dashed lines).The p-value for a given plot tests the
null hypothesis that the slope of the fitted line equals zero.
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Figure 10: Variation of the CWB19 normalised inter-event residuals with magnitude for (a) PGA, (b) PGV ,
(c) SA0.5, (d) SA0.1, and (e) SA0.2. Also shown are the lines fit using linear regression (solid black lines)
and their 95% confidence intervals (dashed lines). The p-value for a given plot tests the null hypothesis that
the slope of the fitted line equals zero.
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(a) (b)

Figure 11: CWB19 median predictions of PGV within the PNR greater region, for two hypothetical scenarios:
(a) an earthquake with Mw = 2.2 and (b) an earthquake with Mw = 2.7, that are co-located with the PNR
shale gas site (blue cross) at a depth of 2 km.
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Figure 12: Distance-scaling of CWB19 for a fixed focal depth of 2 km and a moment magnitude of 1.5,
compared with the equivalent distance-scaling of other GMPEs examined in this study, for (a) PGA, (b)
PGV , (c) SA0.05, (d) SA0.1, and (e) SA0.2.
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Figure 13: Magnitude-scaling of CWB19 at 3 km, compared with the equivalent magnitude-scaling of other
GMPEs examined in this study, for (a) PGA, (b) PGV , (c) SA0.05, (d) SA0.1, and (e) SA0.2.
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Figure 14: (a) Inter- and (b) intra-event standard deviations (in natural log units) for CWB19, compared
with equivalent values for other GMPES examined in this study. Note that ASB14epi data are not included
for clarity, since they are almost identical to those of ASB14hypo (Akkar et al., 2014a).
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