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ABSTRACT
Whatever one’s definition of species, it is generally expected that individuals of the same species
should be genetically more similar to each other than they are to individuals of another species.
Here we show that in the presence of cross-species gene flow, this expectation may be incorrect.
We use the multispecies coalescent model with continuous-time migration or episodic
introgression to study the impact of gene flow on genetic differences within and between species
and highlight a surprising but plausible scenario in which different population sizes and
asymmetrical migration rates cause a genetic sequence to be on average more closely related to a
sequence from another species than to a sequence from the same species. Our results highlight
the extraordinary impact that even a small amount of gene flow may have on the genetic history
of the species. We suggest that contrasting long-term migration rate and short-term hybridization
rate, both of which can be estimated using genetic data, may be a powerful approach to detecting
the presence of reproductive barriers and to define species boundaries.

Key words: Gene flow, introgression, migration, species concept, species delimitation,
multispecies coalescent

INTRODUCTION

The concept of species is a controversial one, with a number of definitions proposed in the
literature (Mallet, 2013; Zachos 2016). The biological species concept emphasizes reproductive
isolation, although low levels of cross-species gene flow are tolerated in modern versions of the
concept (Coyne and Orr, 2004). The lineage species concept considers species as independently
evolving lineages (De Queiroz, 2007). Despite the differences in species definitions, it is
generally expected that an individual is genetically more closely related to an individual of the
same species than to an individual of a different species. Here we may measure genetic
relatedness in two ways. First, if we sample two sequences a1 and a2 from species A and one
sequence b from species B, we expect the average sequence distances to satisfy E(taa)< E(tab).
Second, we expect gene tree G1 = ((a1,a2),b) to occur with a higher probability than gene trees
G2 = ((b,a1),a2) or G3 = ((b,a2),a1).

Two approaches to identifying and delimiting species make use of those expectations
explicitly. First, DNA barcoding is a fast approach to species identification and is occasionally
applied to species delimitation as well (Hebert et al., 2003). A genetic-distance threshold or
‘barcoding gap’ based on a universal marker (such as mitochondrial cytochrome oxidase 1 or
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cytochrome b) is used to distinguish within- and between-species divergences. A query specimen
is assigned to an existing species in the database if the sequence distance between the query and
the sequences in the library is smaller than the threshold. Otherwise the specimen is considered a
new species not yet represented in the library. The threshold may be arbitrary (Hebert et al.,
2003) or estimated from a database by minimizing assignment errors (Meyer and Paulay, 2005;
Puillandre et al., 2012). The use of one barcoding threshold for different species in the database
may lead to errors of identification when different species have very different population sizes
and divergence times (e.g., Hudson and Turelli, 2003; Meyer and Paulay, 2005; Dasmahapatra
et al., 2010; Yang and Rannala, 2017). Here we emphasize the fact that barcoding methods rely
on a distance threshold, with the expectation that within-species sequence divergence is smaller
than between-species divergence, E(taa)< E(tab). Second, the recently developed genealogical
divergence index or gdi (Jackson et al., 2017) is a simple method for fast species delimitation,
useful for generating hypotheses of species status for systematic evaluations integrating different
sources of information. The gdi is a linear transform on P(G1). Two populations are considered
distinct species if P(G1)> 0.8 or one single species if P(G1)< 0.47, with the species status
undecided if P(G1) falls between the two limits. It is expected that P(G1)>

1
3 > P(G2) = P(G3).

The two expectations, E(taa)< E(tab) and P(G1)> P(G2), are correct if isolation is
complete and there is no cross-species gene flow (Fig. 1A). When we trace the genealogical
history of sequences a1,a2, and b backwards in time, there is the possibility that sequences a1 and
a2 coalesce before reaching the common ancestor R (Fig. 1A). If this happens, the gene tree will
be G1; otherwise the three possible gene trees will occur with equal probability. Thus P(G1)>
P(G2) = P(G3). Similarly, if sequences a1 and a2 coalesce in species A, they will have a shorter
expected distance than between species; otherwise their distance will be the same as between
species. Thus we expect E(taa)< E(tab).

However, it is not so clear whether the expectations are correct when there is
cross-species gene flow. In this paper we study the impact of gene flow on genetic divergences
within and between species, by using the Markov chain characterization of the process of
coalescent and migration developed in the structured coalescent framework in population
genetics (Notohara, 1990; Wilkinson-Herbots, 2008). We demonstrate that with different
population sizes (and thus coalescent rates) and asymmetrical migration rates, it is possible for a
gene sequence to be on average more distant from another sequence of the same species than
from a sequence randomly sampled from another species. We refer to the region of the parameter
space in which P(G1)< P(G2) or E(taa)> E(tab) as the species-definition anomaly zone, similar
to the species-tree anomaly zone discussed by Degnan and Rosenberg (2006). Our results
highlight the complexity of defining and delimiting species in the presence of gene flow: for
example, in the anomaly zone, application of any barcoding criterion or the gdi index may lead to
incorrect inference of one species when two exist.

We note that in the past decade, analyses of genomic sequence data have detected
cross-species gene flow in a variety of species including Arabidopsis (Arnold et al., 2016), corals
(Mao et al., 2018), mosquitoes (Fontaine et al., 2015; Thawornwattana et al., 2018), butterflies
(Martin et al., 2013), birds (Ellegren et al., 2012), cats (Li et al., 2019), bears (Liu et al., 2014),
cattle (Wu et al., 2018), gibbons (Chan et al., 2013), and hominins (Nielsen et al., 2017).
Empirical studies suggest very high proportions of species that hybridize with at least one other
species (Mallet, 2005, 2008). It is thus of great importance to examine the impact of cross-species
gene flow on the definition and identification of species. Here we formulate our results in the
context of using genomic sequence data to infer the history of species divergences and gene flow
and to delimit species boundaries. We focus on the continuous-time migration model (the IM
model, Hey, 2010) (Fig. 1B), but will show that the same behavior occurs under the episodic
introgression model or the multispecies coalescent with introgression (MSci) model (Yu et al.,
2014; Flouri et al., 2020) (Fig. 1C), which may be more realistic for some biological systems.
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Fig. 1. (A) The multispecies coalescent (MSC) model for two species (A and B) with four parameters shown in the inset (species
divergence time τR = τAB = τ and three population size parameters: θA, θB, and θR). Both θ and τ are measured in the number of
mutations per site. Two gene trees for three sequences (a1 and a2 from A and b from B) are shown inside the species tree. If
sequences a1 and a2 coalesce in species A, the gene tree will be G1 = ((a1,a2),b); otherwise all three sequences will enter species
R and the three gene trees G1, G2 = ((b,a1),a2) and G3 = ((b,a2),a1) will occur with equal probability ( 1

3 each). (B) The MSC
model with migration (the IM model) and (C) the MSC model with introgression (the MSci model), with 5 and 8 parameters,
respectively, shown in the inset. Under the IM model, the migration rate M = MBA = NAmBA is the expected number of B→ A
migrants in species A per generation, with mBA = m to be the proportion of immigrants (from species B) in species A. Under the
MSci model, τH = τS while ϕ is the introgression probability. Under both the IM and MSci models, there are multiple scenarios
under which gene tree G1 may occur. For example, in the red tree, a1 and a2 coalesce in species A, while in the green tree, a1 and
a2 migrate (backwards in time) into species B and then coalesce in species B.

THE IM MODEL FOR TWO SPECIES AND THREE SEQUENCES

Consider two diploid species A and B, which diverged time τ = τR ago and have since been
undergoing migration from species B to species A, at the rate of m = mBA per generation
(Fig. 1B). We formulate our theory in the context of analyzing genomic sequence data, so that
time is scaled by mutations and both θ and τ are measured in the number of mutations per site.
For each species, the population size parameter is defined as θ = 4Nµ , where N is the effective
population size and µ is the mutation rate per site per generation. We define the migration rate
mBA as the proportion of B→ A immigrants in the receiving population A, so that MBA = mBANA
is the expected number of B→ A migrants per generation. The parameters in the IM model (Hey,
2010) include τR, θA, θB, θR, and MBA (Fig. 1B). The IM model of Figure 1B is a special case of
the model of Long and Kubatko (2018, Fig. 1b), which allows migration in both directions.

We consider the genealogical relationships among three sequences: a1 and a2 from A and
b from B. In this setting, the gene trees and coalescent times are random variables, with
distributions specified by the parameters in the model. The backward process of coalescence and
migration during time interval (0,τR) is described by a Markov chain (Notohara, 1990), where
the state of the chain is specified by the number of sequences remaining in the sample, the
populations in which they reside, the population IDs (A and B) and the sequence IDs (a1, a2 and
b) (Zhu and Yang, 2012; Andersen et al., 2014; Tian and Kubatko, 2016; Dalquen et al., 2017).
For example, in the state Aa1Aa2Bb, abbreviated AAB, there are three sequences in the sample, and
sequences a1, a2 and b are in populations A, A and B, respectively. This is the initial state for the
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Markov chain as our sample consists of sequences a1 and a2 from A and b from B. Similarly ABB
is the state reached when sequence a2 migrates (backwards in time) into population B. The state
AaaBb, abbreviated ABb, means that two sequences remain in the sample, with the ancestor of a1
and a2 in population A, and sequence b in population B. This is the state reached when sequences
a1 and a2 coalesce in species A. The generator matrix Q¬ for the Markov chain is

AAB ABB BAB BBB ABb Aa1B Aa2B BBb Ba1B Ba2B B
AAB −2wBA− cA wBA wBA 0 cA 0 0 0 0 0 0
ABB 0 −wBA− cB 0 wBA 0 cB 0 0 0 0 0
BAB 0 0 −wBA− cB wBA 0 0 cB 0 0 0 0
BBB 0 0 0 −3cB 0 0 0 cB cB cB 0
ABb 0 0 0 0 −wBA 0 0 wBA 0 0 0
Aa1B 0 0 0 0 0 −wBA 0 0 wBA 0 0
Aa2B 0 0 0 0 0 0 −wBA 0 0 wBA 0
BBb 0 0 0 0 0 0 0 −cB 0 0 cB
Ba1B 0 0 0 0 0 0 0 0 −cB 0 cB
Ba2B 0 0 0 0 0 0 0 0 0 −cB cB
B 0 0 0 0 0 0 0 0 0 0 0

where wBA = mBA
µ

= 4MBA
θA

is the mutation-scaled migration rate, and cA = 2
θA

and cB = 2
θB

are the
coalescent rates. Here one time unit is the expected time taken to accumulate one mutation per
site. In a species with a scaled population size θ = 4Nµ , each pair of sequences coalesce at the
rate 2

θ
, with the average coalescent time to be θ

2 .

Probabilities of gene trees

We calculate the probabilities for the three gene trees: G1 = ((a1,a2),b); G2 = ((b,a1),a2); and
G3 = ((b,a2),a1), as functions of the parameters in the IM model (Fig. 1B). Note that the gene
tree topology is determined by the first coalescent event, so that there is no need to follow the
Markov chain any further after the first coalescent has occurred. Thus we construct a simplified
Markov chain in which all two-sequence states (such as ABb and Aa1B) are changed into
absorbing states, and state B is unreachable and thus removed from the chain. Similarly as soon
as the chain enters the state BBB, with all three sequences in species B, the three gene trees occur
with equal probabilities. Thus we make BBB an absorbing state as well, with BBb, Ba1B, and Ba2B
unreachable and removed. The modified Markov chain then has 7 states, with the generator Q­

AAB ABB BAB BBB ABb Aa1B Aa2B
(1) AAB −2wBA− cA wBA wBA 0 cA 0 0
(2) ABB 0 −wBA− cB 0 wBA 0 cB 0
(3) BAB 0 0 −wBA− cB wBA 0 0 cB
(4) BBB 0 0 0 0 0 0 0
(5) ABb 0 0 0 0 0 0 0
(6) Aa1B 0 0 0 0 0 0 0
(7) Aa2B 0 0 0 0 0 0 0

Let P­(τ) = exp(Q­τ) be the matrix of transition probabilities over time τ = τR. We
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Fig. 2. (A) Probabilities of gene trees G1 = ((a1,a2),b) and G2 = ((b,a1),a2) as functions of the migration rate M when the other
parameters in the IM model (Fig. 1B) are fixed: τ = 0.02,θA = 0.025, and θB = 0.001. Note that when M > M∗ = 0.521361
immigrants per generation, P(G1)< P(G2). (B) Partition of the parameter space for the IM model (Fig. 1B) according to
probabilities for gene trees. Below the outer tent, P(G1)< P(G2), while below the inner tent P(G1)< 0.2 and P(G2) = P(G3)>
0.4.

have the probability for gene tree G1 to be

P(G1) = P­
15(τ)+ [P­

11(τ)+P­
12(τ)+P­

13(τ)+P­
14(τ)]/3. (1)

The different terms account for different scenarios that lead to gene tree G1. First, sequences a1
and a2 may coalesce in population A, before reaching time τ: this occurs with probability P­

15(τ).
Second if both sequences a1 and a2 enter species B any time during the time interval (0,τ), the
chain will be in state 4 (BBB): each gene tree will then have probability 1

3 when the coalescent
events occur at random in species B or R (Fig. 1B). Finally if no coalescent occurs over the time
interval (0,τ) and if at most one of the A sequences enters species B, the chain will be in states 1,
2, or 3 (for AAB, ABB or BAB) at time τ: then all three sequences will enter the common ancestor
R and each gene tree occurs with probability 1

3 .
The eigenvalues of Q­ are on the diagonal: λ1 =−2+8M

θA
, λ2 = λ3 =−4M

θA
− 2

θB
, and λ4 =

· · ·= λ7 = 0. These are all real, as are the eigenvectors. We derive P­(τ) using Mathematica, but
the expression is tedious and not presented here. Let e1 = eλ1τ and e2 = eλ2τ . Then equation 1 can
be simplified, to give

P(G1) =
[
((2−4M)e1−3)θ 2

A +(3−8M2− (2+8M2)e1 +4M(1+4M)e2)θAθB

+2M(1+2M)(3+4M−2e1)θ
2
B
]/

[3(1+4M)(θA +2MθB)(−θA +θB +2MθB)] .
(2)

Similarly the probability for gene tree G2 is

P(G2) = P­
17(τ)+ [P­

11(τ)+P­
12(τ)+P­

13(τ)+P­
14(τ)]/3. (3)

From equations 1 and 3 we can see that P(G2)> P(G1) if and only if P­
17(τ)> P­

15(τ).
Indeed which of gene trees G1, G2 and G3 is more probable depends on the relative likelihoods of
three scenarios (Fig. 1B):



6 JIAO AND YANG

(i) a1 and a2 coalesce in A, which occurs with probability P­
15(τ) and leads to G1;

(ii) a1 migrates (backwards in time) to B and coalesces with b, with probability P­
17(τ) for G2;

(iii) a2 migrates (backwards in time) to B and coalesces with b, with probability P­
16(τ) for G3.

In all other scenarios, the three gene trees occur with equal probability. When the coalescence
rate is much lower in species A than in B (or when θA� θB) and the migration rate from B to A is
high, case (i) may be less probable than (ii) or (iii).

The anomaly in gene tree probabilities identified here is similar to the species-tree
anomaly analyzed by Long and Kubatko (2018). The assumption of unidirectional migration in
our model allows us to obtain simpler or more expressive analytical results than is possible under
the model of bidirectional migration of Long and Kubatko (2018).

As an example, consider P(G1) as a function of M, with other parameters fixed at
τ = 0.02,θA = 0.025, and θB = 0.001 (Fig. 2B). When M = 0, the IM model of Figure 1B
reduces to the simple MSC model of Figure 1A, and the gene tree probabilities are P(G1) =
1− 2

3e−2τ/θA = 0.865402 and P(G2) = P(G3) = 1
3e−2τ/θA = 0.067299. Here τ/θA

2 is the branch
length of branch A in coalescent units (as the average coalescent time in population A is 1

2θA

mutations per site), and e−2τ/θA is the probability that two sequences (a1 and a2) do not coalesce
along branch A or over the time interval (0,τ). At the threshold value M∗ = 0.521361,
P(G1) = P(G2) =

1
3 . When M = 0.8, the probabilities for the three scenarios described above are

P­
15(τ) = 0.23781 and P­

16(τ) = P­
17(τ) = 0.35753, with P(G1) = 0.25352 < P(G2) = P(G3) =

0.37324. In the limit of M = ∞, sequences a1 and a2 will immediately migrate (backwards in
time) into B and the three sequences will coalesce at random, with P(G1)→ 1

3 .
To verify the analytical results, we used the simulate option of BPP (Flouri et al., 2018) to

generate 107 gene trees at those parameter values. The estimates of P(G1) are 0.865374,
0.333393, and 0.253542, for M = 0, 0.521361, and 0.8, respectively, which differ from the above
analytical calculations by less than 10−4.

Figure S1A&B examines the impact of the divergence time (τR) and the ratio of the
population sizes (θA/θB) on gene tree probabilities, when other parameters are fixed at the values
of Figure 2. Those two parameters similarly partition the parameter space into two zones, with
the anomaly P(G1)< P(G2) occurring for large τR (with τR > 0.00119461) and for very different
population sizes (with θA/θB > 2.66667). Nevertheless, τR and θA/θB appear to have less impact
than the migration rate M (Fig. 2A).

Figure 2B shows a partition of the 3-D parameter space into two zones: when the
parameters are inside the outer tent, we have the anomaly P(G1)< P(G2).

Average coalescent times

Next we consider the average coalescent times or sequence distances within and between species.
One could in principle use the Markov chain Q¬ constructed earlier for the process of
coalescence and migration for the three sequences in the sample (a1, a2, and b). However, it is far
simpler to use a reduced Markov chain with fewer states for two sequences only. To derive the
density of the coalescent time between sequences a1 and a2, i.e., taa, we consider a Markov chain
with 4 states. We abbreviate states like Aa1Aa2 as AA, and merge states A and B (which are states
reached when the two sequences have coalesced with the ancestral sequence in either A or B) into
one absorbing state, A|B (for ‘A or B’) (Andersen et al., 2014). The generator matrix Q® is
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Fig. 3. (A) The expected coalescent times, E(taa) and E(tab), as functions of the migration rate M under the IM model (Fig. 1B).
The two curves cross at M∗ = 0.5254101, and when M > M∗, E(taa)> E(tab). Other parameters are fixed at τ = 0.02,
θA = 0.025,θB = 0.001, and θR = 0.01. (B) Partition of the parameter space defined by θA,θB, and M under the IM model
according to whether E(taa)> E(tab). Inside the outer tent, E(taa)> E(tab). Inside the inner tent E(taa)> E(tab)+0.001. Other
parameters are fixed at τ = 0.02 and θR = 0.01.

AA AB BB A|B
AA −(2wBA + cA) 2wBA 0 cA
AB 0 −wBA wBA 0
BB 0 0 −cB cB
A|B 0 0 0 0

The eigenvalues of Q® are on the diagonal: λ1 =−8M
θA
− 2

θA
, λ2 =−4M

θA
, λ3 =− 2

θB
, and

λ4 = 0. Let the transition probability matrix over time t be P®(t) = exp(Q®t), which is a function
of eλkt , k = 1,2,3. Like τ , time t is measured in the expected number of mutations per site. Thus

f (taa) =

P®
AA,AA(taa) · 2

θA
+P®

AA,BB(taa) · 2
θB
, if 0 < taa < τR,[

1−P®
AA,A|B(τR)

]
2

θR
e−

2
θR

(taa−τR), if taa > τR.
(4)

Note that according to the definition of the probability density function, f (taa)∆t is the
probability that the coalescent time falls in the interval (taa, taa +∆t). When taa < τR, this is the
sum of two terms, as the coalescent event can occur in either species A or B. The first term,
P®

AA,AA(taa) · 2
θA

∆t, is the probability that sequences a1 and a2 are both in species A right before
time taa, multiplied by the probability, 2

θA
∆t, that they coalesce during the time interval

(taa, taa +∆t). The second term, P®
AA,BB(taa) · 2

θB
∆t, is the probability for the coalescent to occur in

species B. Similarly, in the case taa > τR, both a1 and a2 enter R, with probability 1−P®
AA,A|B(τR),

and then coalesce in R in the time interval (taa, taa +∆t), with probability 2
θR

e−
2

θR
(taa−τR)

∆t.
The expectation of taa is given by averaging over the three cases of equation 4 in which a1
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and a2 coalesce in A, B, and R:

E(taa) =
∫

τR

0
tP®

AA,AA(t)dt · 2
θA

+
∫

τR

0
tP®

AA,BB(t)dt · 2
θB

+
[
1−P®

AA,A|B(τR)
](

τR +
θR

2

)
=

[
e1−

4M(e1− e2)

1+2M
− 8e3M2θ 2

B
(θA−θB−4MθB)(2MθB−θA)

− 8e2M2θB

(1+2M)(2MθB−θA)
− 8e1M2θB

(1+2M)(θA−θB−4MθB)

](
τR +

θR

2

)
+

θA [1− e1(1−λ1τR)]

2(1+4M)2 −
θ 2

A [1− e2(1−λ2τR)]

(1+2M)(2MθB−θA)

+
4M2θ 2

A

(1+4M)2(2MθB−θA)

[
1

1+2M
+

θB

θA−θB−4MθB

]
[1− e1(1−λ1τR)]

−
4M2θ 3

B[1− e3(1−λ3τR)]

(2MθB−θA)(θA−θB−4MθB)
, (5)

where ek = eλkτR , k = 1,2,3.
To derive the density of the coalescent time tab between sequences a1 and b, we consider a

Markov chain with three states describing the backward process of coalescence and migration
during time interval (0,τR). We abbreviate states like Aa1Bb as AB here. The generator matrix Q¯

is

AB BB B
AB −wBA wBA 0
BB 0 −cB cB
B 0 0 0

Thus the transition probability matrix is P¯(t) = exp(Q¯t), and

f (tab) =

{
P¯

AB,BB(tab) · 2
θB
, if 0 < tab < τR,[

1−P¯
AB,B(τR)

]
2

θR
e−

2
θR

(tab−τR), if tab > τR.
(6)

The expectation of tab is given by averaging over the two cases:

E(tab) =
∫

τR

0
tP¯

AB,BB(t)dt · 2
θB

+
[
1−P¯

AB,B(τR)
](

τR +
θR

2

)
=

4M2θ 2
B [1− e3(1−λ3τR)]−θ 2

A [1− e2(1−λ2τR)]

4M(2MθB−θA)

+

[
e2−

2MθB(e2− e3)

2MθB−θA

](
τR +

θR

2

)
. (7)

We plot E(taa) and E(tab) against the migration rate M in Figure 3A, with other
parameters in the model fixed at τ = 0.02, θA = 0.025,θB = 0.001, and θR = 0.01. In the extreme
case of M = 0, the IM model becomes a model of complete isolation (or the MSC model,
Fig. 1A), in which case E(tab) = τR +

1
2θR = 0.025 and E(taa) =

1
2θA +PA · 1

2(θR−θA) = 0.01099,
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with PA = exp(− 2
θA

τ) = 0.2019 to be the probability that a1 and a2 do not coalesce in species A.
Here E(taa) is given by the approach of “iterated corrections”, since the coalescent process
between a1 and a2 occurs at different rates (determined by θA and θR) before and after τR
(Burgess and Yang, 2008, eq. 7). If θA and θR were equal, the mean coalescent time would be θA

2 .
Thus applying a correction for different population sizes, which affects a proportion PA of the
coalescent times, leads to E(taa) = 1

2θA +PA · 1
2(θR−θA). In the other extreme case with M→ ∞,

both a1 and a2 will migrate (backwards in time) into B immediately and then coalesce with b at
random, so that E(taa) = E(tab) = 1

2θB +PB · 1
2(θR−θB) = 0.0005, where PB = exp(− 2

θB
τ). When

M is greater than a threshold value, M∗ = 0.5254101, E(taa)> E(tab).
We used BPP to simulate 107 gene trees at the parameter values of Figure 3A to verify the

equations. At M∗ = 0.5254101, the estimates of E(taa) and E(tab) are 0.0110556 and 0.0110550,
in comparison with 0.0110557 and 0.0110557 from equations 5 and 7. At M = 0.8 they are
0.00902285 and 0.00808002, in comparison with 0.00902284 and 0.00808021 from equations 5
and 7.

Figure S1C&D examines the impact of the divergence time τR and the ratio of population
sizes θA/θB on the average coalescent times, with other parameters fixed at the values of Figure
3. The anomaly E(taa)> E(tab) occurs when τR is large and when θA is much greater than θB.

Figure 3B shows a partition of a 3-D parameter space. The anomaly E(taa) > E(tab)
occurs more easily for large M and when θA is much greater than θB.

THE MSCI MODEL FOR TWO SPECIES WITH THREE SEQUENCES

Consider the introgression (MSci) model for two species A and B, with B→ A introgression at
time τH = τS and introgression probability ϕ (Fig. 1C). Again consider a sample of three
sequences, a1 and a2 from A and b from B. We derive the probabilities for the three gene trees:
G1 = ((a1,a2),b), G2 = ((b,a1),a2), and G3 = ((b,a2),a1), as well as the expected
within-species and between-species coalescent times: E(taa) and E(tab).

Probabilities of gene trees

The gene tree topology depends on whether sequences a1 and a2 coalesce in species A (i.e., over
the time interval 0–τH), and, if they do not, on whether they migrate into population S, and so on
(Fig. 1C). Note that in population A, sequences a1 and a2 coalesce according to a Poisson process
at the rate 2

θA
. Thus the probability that a1 and a2 do not coalesce in A before reaching time τH is

PA = e−
2

θA
τH . (8)

Similarly we define

PH = e−
2

θH
(τR−τH) and PS = e−

2
θS
(τR−τH) (9)

to be the probabilities that two sequences entering populations H or S, respectively, do not
coalesce in that population (Fig. 1C). Then the probabilities for the three gene trees are

P(G1) = (1−PA)+PA(1−ϕ)2(1−PH)+
1
3

PA(1−ϕ)2PH

+
2
3

PAϕ(1−ϕ)PS +
1
3

PAϕ
2, (10)

P(G2) = P(G3) =
1
3

PA(1−ϕ)2PH +PAϕ(1−ϕ)

(
1− 1

3
PS

)
+

1
3

PAϕ
2,
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Fig. 4. (A) Probabilities of gene trees G1 and G2 as functions of the introgression probability ϕ in the MSci model (Fig. 1C) when
PA = PH = 0.9 and PS = 0.1 are fixed. (B) Partition of the parameter space according to gene tree probabilities: P(G1)< P(G2) if
and only if the parameter values are inside the tent. The inner and outer tents correspond to PA = 0.90 and 0.95, respectively.

with P(G1)+2P(G2) = 1. Here P(G1) is a sum of five terms, corresponding to different scenarios
in which the first coalescent event is between a1 and a2. The first term, 1−PA, is the probability
that a1 and a2 coalesce in population A. The second term, PA(1−ϕ)2(1−PH), is the probability
that a1 and a2 do not coalesce in population A, they both enter population H (branch RH in the
species tree, Figure 1C) and coalesce in H. The third term, PA(1−ϕ)2PH · 1

3 , is the probability
that a1 and a2 do not coalesce in A, and they both enter H and then R, where the three sequences
coalesce in random order. The fourth term, PA ·2ϕ(1−ϕ)PS · 1

3 , is the probability that a1 and a2
do not coalesce in A and one of them enters S but does not coalesce with b in S, so that all three
sequences enter R and coalesce in random order. The fifth term, PAϕ2 · 1

3 , is the probability that a1
and a2 do not coalesce in A and they both enter S, so that all three sequences enter S and coalesce
at random in S or R.

Similarly P(G2) is a sum of three terms, corresponding to three different scenarios in
which sequences a1 and b coalesce first. The first term, PA(1−ϕ)2PH · 1

3 , is for a1 and a2 not to
coalesce in A but to enter H and then R, and then for a1 and b to coalesce in R. The second term,
PAϕ(1−ϕ) ·

(
PS · 1

3 +(1−PS)+PS · 1
3

)
, is for one of a1 and a2 to enter H and the other to enter S.

If a1 enters H, and a2 enters S and does not coalesce with b in S, then a1 and b can coalesce in R.
If a2 enters H and a1 enters S, then a1 and b may coalesce in S or R. Lastly the third term,
PAϕ2 · 1

3 , is for both a1 and a2 to enter S and then for the three sequences to coalesce at random in
S or R.

We have P(G1)< P(G2) = P(G3) if and only if

PAϕ(1−ϕ)(1−PS)> 1−PA +PA(1−ϕ)2(1−PH) (11)

or
PA(2−PH−PS)ϕ

2−PA(3−2PH−PS)ϕ +1−PAPH < 0. (12)

While the MSci model of Figure 1C has seven parameters (we do not count θB since it is
not needed to simulate sequence data of a1,a2, and b), the gene tree probabilities depend on only
four: the introgression probability ϕ and the three branch lengths in coalescent units for branches
A,H and S (Fig. 1C). Note that PA,PH and PS are simply functions of the respective branch
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lengths (in coalescent units). We plot P(G1) and P(G2) against ϕ in Figure 4A, with
PA = PH = 0.9 and PS = 0.1 fixed. Note that when ϕ = 0 or 1, the MSci model reduces to the
simple MSC model for two species with changing population sizes but without introgression. At
ϕ = 0, we have P(G1) = 1− 2

3PAPH = 0.46 while at ϕ = 1, P(G1) = 1− 2
3PA = 0.4. The anomaly

P(G1)< P(G2) occurs in the zone 0.247694 < ϕ < 0.852306. When ϕ is close to 1 (or >
0.852306), a1 and a2 either coalesce in A or both will very likely enter species S and coalesce
with b at random, so that P(G1)> P(G2). Note that P(G1) is not a monotonic function of ϕ:
when introgression is either very rare or virtually guaranteed there is an increased chance for a1
and a2 to be in the same population and coalesce. Figure S2A, B & C examines the impact of τR,
θH/θS, and τH (Fig. 1C) on gene tree probabilities. The anomaly P(G1)< P(G2) occurs when τR
is in a certain range, when θH is much greater than θS, and when τH is small.

Figure 4B shows the zone of parameters in which P(G1)< P(G2) in a 3-D space. When
PA and PH are large and PS is small (or when θA and θH are large and θS is small), the anomaly
P(G1)< P(G2) may occur even with ϕ < 0.5.

Average coalescent times

The density of the coalescent time between sequences a1 and a2 is

f (taa) =


2

θA
e−

2
θA

taa, if 0 < taa < τH ,

PA

[
(1−ϕ)2 2

θH
e−

2
θH

(taa−τH)+ϕ2 2
θS

e−
2

θS
(taa−τH)

]
, if τH < taa < τR,

PA[(1−ϕ)2PH +ϕ2PS +2ϕ(1−ϕ)] 2
θR

e−
2

θR
(taa−τR), if taa > τR.

(13)

First, the probability, f (taa)∆t, that sequences a1 and a2 coalesce during the time interval

(taa, taa +∆t), with taa < τH , is given by the probability, e−
2

θA
taa , that they do not coalesce before

time taa, multiplied by the probability, 2
θA

∆t, that they coalesce during the time interval (taa,
taa +∆t). Second, for τH < taa < τR, f (taa)∆t is the sum of two terms, as the coalescent event can

occur in either species H or S. The first term, PA(1−ϕ)2 2
θH

e−
2

θH
(taa−τH)

∆t, is the probability that
a1 and a2 do not coalesce in species A, but both enter species H and coalesce there. Similarly, the

second term, PAϕ2 2
θS

e−
2

θS
(taa−τH)

∆t, is the probability that a1 and a2 do not coalesce in species A,
but both enter species S and coalesce there. Finally, in the case taa > τR, both a1 and a2 enter R
with probability PA[(1−ϕ)2PH +ϕ2PS +2ϕ(1−ϕ)], and coalesce in R in the time interval (taa,

taa +∆t) with probability 2
θR

e−
2

θR
(taa−τR)

∆t.
The expectation of taa is given by averaging over the four cases of equation 13 in which

a1 and a2 coalesce in A, H, S, and R.

E(taa) =
θA

2
−PA(τH +

θA

2
)+PA(1−ϕ)2

[
τH +

θH

2
−PH(τR +

θH

2
)

]
+PAϕ

2
[

τH +
θS

2
−PS(τR +

θS

2
)

]
+PA[PH(1−ϕ)2 +PSϕ

2 +2ϕ(1−ϕ)](τR +
θR

2
). (14)
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Fig. 5. (A) The expected coalescent times, E(taa) and E(tab), as functions of the introgression probability ϕ under the MSci
model (Fig.1C). Other parameters are fixed at θA = θH = 0.05, θS = θR = 0.001, τR = 0.01, and τH = 0.0025. (B) Partition of the
parameter space defined by θA,θS, and ϕ under the MSci model (Fig. 1C): inside the tent, E(taa) > E(tab) while outside it the
opposite is true. Other parameters are fixed at θH = 0.05, θR = 0.001, τR = 0.01, and τH = 0.0025.

Similarly the density of the coalescent time between sequences a1 and b is

f (tab) =

ϕ
2
θS

e−
2

θS
(tab−τH), if τH < tab < τR,

[(1−ϕ)+PSϕ] 2
θR

e−
2

θR
(tab−τR), if tab > τR.

(15)

When τH < tab < τR, the coalescent occurs in species S, and f (tab)∆t is given by the probability,

ϕ , that sequence a1 enters species S times the probability, 2
θS

e−
2

θS
(tab−τH)

∆t, that a1 and b coalesce
in S in the time interval (tab, tab +∆t). In the case of tab > τR, the coalescent occurs in species R.
The probability that both a1 and b enter R is (1−ϕ)+ϕPS, and the probability that they coalesce

in R in the time interval (tab, tab +∆t) is 2
θR

e−
2

θR
(tab−τR)

∆t.
The expectation of tab is given by

E(tab) = ϕ

[
τH +

θS

2
+PS

(
θR

2
− θS

2

)]
+(1−ϕ)

(
τR +

θR

2

)
. (16)

This is a weighted average depending on whether sequence a enters S (with probability ϕ) or H
(with probability 1−ϕ). If a enters S, the mean coalescent time is τH + θS

2 +PS

(
θR
2 −

θS
2

)
by the

argument of iterated corrections. Similarly with probability 1−ϕ sequence a enters H and
coalesces with b in R, with the mean coalescent time to be τR +

θR
2 .
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Thus E(taa)> E(tab) if and only if

θA

2
−PA(τH +

θA

2
)+PA(1−ϕ)2

[
τH +

θH

2
−PH(τR +

θH

2
)

]
+(PAϕ

2−ϕ)

[
τH +

θS

2
−PS(τR +

θS

2
)

]
+[PAPH(1−ϕ)2

+PSϕ(PAϕ−1)+(2PAϕ−1)(1−ϕ)](τR +
θR

2
)> 0.

(17)

We plot E(taa) and E(tab) against ϕ in Figure 5A, with other parameters in the MSci
model fixed: θA = θH = 0.05, θS = θR = 0.001, τR = 0.01, and τH = 0.0025. Note that the
coalescent times depend on all seven parameters of the MSci model except θB (Fig. 1C). The
cases ϕ = 0 and 1 correspond to MSC (complete-isolation) models for two species with changing
population sizes. With ϕ = 0, sequences a1 and a2 coalesce at different rates determined by
population sizes θA, θH , and θR, so the approach of iterated corrections gives E(taa) = θA

2 +
PA[(

θH
2 −

θA
2 ) + PH(

θR
2 −

θH
2 )] = 0.00857716. Also at ϕ = 0, sequences a1 and b can coalesce in R

only, with E(tab) = τR +
θR
2 = 0.0105. At ϕ = 1, sequences a1 and a2 can coalesce in A, S, or R, so

that E(taa) = θA
2 + PA[(

θS
2 −

θA
2 ) + PS(

θR
2 −

θS
2 )] = 0.00283148 while sequences a1 and b can

coalesce in S or R, with E(tab) = τH + θS
2 + PS(

θR
2 −

θS
2 ) = 0.003. When ϕ is close to 1, either a1

and a2 coalesce in A or they both enter S and coalesce with b at random, so that E(taa) < E(tab).
When 0.252962 < ϕ < 0.971179, we have the anomaly E(taa)> E(tab). If species A has a much
larger population size than S, it may be more likely for sequence a1 or a2 to migrate into species
S and coalesce with b than for a1 to coalesce with a2, causing E(taa)> E(tab). Such anomaly
may occur even if ϕ is much smaller than 1

2 .
We confirmed our derivations by simulating 107 gene trees using BPP (Flouri et al., 2018).

With ϕ = 0.4 in Figure 5A, the estimates are 0.00815726 for E(taa) and 0.007499884 for E(tab),
compared with 0.008157341 and 0.0075 from equations 14 and 16.

Figure S2D, E & F examines the impact of τR, θH/θS, and τH (Fig. 1C) on the average
coalescent times, when other parameters are fixed at the values of Figure 5. E(taa)> E(tab) when
τR is in a certain range, when θH is much greater than θS, and when τH is small.

Figure 5B shows the anomaly zone with E(taa)> E(tab) in the 3-D space of parameters
θA, θS, and ϕ , with other parameters fixed.

DISCUSSION

The nature of the anomaly

The species-definition anomaly zone, in which the within-species divergence is greater than the
between-species divergence, with divergence measured by either the gene tree probability or the
average genetic distance, is very similar to the species-tree anomaly zone (Degnan and
Rosenberg, 2006). In the species-tree anomaly zone, the use of the most common gene tree
topology as the species tree estimate will be statistically inconsistent, although it should be
emphasized that the problem disappears if one takes a likelihood approach and uses the
likelihood (that is, the probability of the gene trees) to compare different species trees (Xu and
Yang, 2016). The models considered in this paper (Fig. 1B&C) involve only two species with
only one simple species tree: (A,B). However, one may consider the gene tree G1 = ((a1,a2),b)
to match the species tree, and gene trees G2 = ((b,a1),a2) and G3 = ((b,a2),a1) to be the
mismatching trees. Then the anomaly P(G1)< P(G2) means that the matching gene tree has a
smaller probability than either mismatching gene tree, a situation very similar to the anomaly
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zone in species tree estimation. Nevertheless, the anomaly zone for species tree estimation is due
to polymorphism in ancestral species and the resulting deep coalescence, while the anomaly
discussed in this paper is due to cross-species gene flow and different population sizes. In the
context of phylogenetic network (i.e., MSci) models, Zhu et al. (2016) defined an anomalous
gene tree as one that has a higher probability than any gene tree that matches a displayed species
tree — displayed species trees are binary trees that remain when one of the two parental branches
at each hybridization node in the species network is removed (Zhu et al., 2016; Zhu and Degnan,
2017). All such anomalies share the feature that the most probable gene tree under the
data-generating model does not match one’s intuitive expectation. Here we stress that the
“counter-intuitive” results do not imply that genetic sequence data contain misleading
information about the history of species divergences.

The species-definition anomaly does not occur in the MSC model without gene flow
(Fig. 1A). Nor does it occur in simple models of population subdivision in population genetics.
For example, under the islands and stepping-stones models, the expected coalescent time between
sequences sampled from the same population must be smaller than that between sequences
sampled from two different populations (Li, 1976; Strobeck, 1987; Slatkin, 1987, 1991). Those
models assume symmetry in the population size and migration rate: the different populations are
assumed to have the same size and the migration rate is assumed to be the same between any two
populations in the islands model or between any two adjacent populations in the stepping-stones
model. In the IM and MSci models considered here, cross-species gene flow and large differences
in population size are the main causes for the anomaly. We note that the anomaly described in
this paper can occur in more general settings than we considered. For example, we have assumed
unidirectional migration (from B to A only) in the IM model, but the same behavior should occur
in a more general model of bidirectional migration (Long and Kubatko, 2018), as long as there is
sufficient asymmetry in the population size and in the migration rate.

In our analysis we have assumed a simple neutral coalescent model (with and without
gene flow) and have not considered the effects of natural selection or population structure.
Selection may distort the distribution of the gene tree topologies and coalescent times, especially
when the population sizes and thus the efficacy of purifying selection differs between species (He
et al., 2020). Previously coding loci were found to produce highly consistent species-tree and
parameter estimates with the noncoding parts of the genome (Shi and Yang, 2018;
Thawornwattana et al., 2018; Flouri et al., 2020), suggesting that the effects may be minor if
purifying selection operates in similar ways in different species. However, species-specific
selection, as expected for gene loci responsible for ecological adaptation of the species (Turner
et al., 2005; Pardo-Diaz et al., 2012), will likely have major impacts on the gene tree distribution.
Furthermore our analysis has assumed that each species is a population of panmixia. Population
subdivision may lead to an inflated effective population size for the species, and may create a
scenario that is similar to the model studied here. Suppose species A has a wide-ranging
geographical distribution with population subdivision, while species B has a very limited
distribution and is close to one of the geographical populations of species A. Our analysis
suggests that such gene flow can easily create a species-definition anomaly zone, with two
sequences randomly sampled from species A to be on average more distantly related than two
sequences from the two different species.

How common is the species-definition anomaly?

While our theoretical calculations suggest that the species-definition anomaly is possible in large
zones of the parameter space, it is not known how often it occurs in nature. This empirical
question can be addressed by estimating the relevant parameters (in particular the migration rate
M and the introgression probability ϕ) under the IM and MSci models using genomic sequence
data. Currently such estimates are rare and mostly based on small datasets, while it may be
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necessary to use hundreds or thousands of loci to get reliable estimates. Nevertheless, available
estimates (e.g., Pinho and Hey, 2010, table S1) suggest that population sizes can differ by orders
of magnitude even between closely related species, and migration is often asymmetrical,
providing opportunities for the anomaly to occur.

Here we briefly review a few recent studies which generated estimates of migration rates
from genomic data, from fruit flies, mosquitoes, butterflies, and gibbons. Several studies have
found significant evidence for gene flow from Drosophila simulans to D. melanogaster, at the
rate of MS→M = 0.02–0.04 migrant individuals per generation, but no migration in the opposite
direction (MM→S ≈ 0) (Wang and Hey, 2010; Dalquen et al., 2017, tables 9 & 10). Population
sizes were around θS = 0.013 and θM = 0.005, with the divergence time τSM ≈ 0.012–0.014
(Dalquen et al., 2017, tables 9 & 10). In the Anopheles gambiae species complex of African
mosquitoes, hybridization occurs between several pairs of non-sister species. Gene flow from
A. arabiensis to A. gambiae (or A. coluzzii) occurs so frequently for the autosomes that the gene
trees reflect the migration history rather than the history of species divergences (Fontaine et al.,
2015; Thawornwattana et al., 2018). Estimates from the genomic data are in the order of MA→G ≈
0.2 migrants per generation while MG→A = 0 (Thawornwattana et al., 2018, table S3; Flouri et al.,
2020, table 1), in agreement with crossing experiments, which showed that introgressed alleles
from A. arabiensis to A. gambiae persisted over many generations, while it was not possible to
maintain an introgression colony in the opposite G→ A direction (Slotman et al., 2005). Other
parameters were around θA = 0.014, θG = 0.02–0.03, and τAG = 0.007 (Thawornwattana et al.,
2018, table S3). Heliconius butterflies constitute one of the best studied groups for cross-species
hybridization/introgression, involving many sister- and nonsister-species pairs, and involving
both recent and ancient gene flow (Bull et al., 2006; Kronforst et al., 2006; Mallet et al., 2007;
Salazar et al., 2008; Pardo-Diaz et al., 2012; Martin et al., 2013). A recent study (Van Belleghem
et al., 2020) applied coalescent-based simulation to joint site-frequency spectrum data to estimate
the migration rates and population sizes between two incipient species: H. erato and H. himera,
finding strong evidence for highly asymmetrical introgression, predominantly from H. erato
favorinus to H. himera, at the rate of M = 0.5–0.6 migrants per generation, with τ ≈ 0.002,
θE = 0.01, and θH = 0.0008. In an analysis of genomic sequences from five species of gibbons
(which belong to four different genera), gene flow was inferred between two species of the same
genus: Hylobates moloch and H. pileatus, but not between species of different genera. The
migration rates were estimated to be MM→P ≈ 0.008 migrants per generation, while MP→M ≈ 0,
with θM = 0.0014, θP = 0.0005, and τ = 0.0017 (Shi and Yang, 2018, Fig. 1).

The parameter estimates suggest that those species pairs are not in the species-definition
anomaly zone as discussed in this paper. Nevertheless, they do suggest large differences in
population size and in the migration rate in the two directions. They also indicate that the
parameter values used in our example calculations (figs. 2, 3, 4, 5) are representative of real
biological systems. We leave it to future genomic analyses to determine how common the
anomaly is in the real world. As more and more genomes are sequenced, and as analytical
methods are improved to handle large datasets, we see exciting opportunities for using genomic
data to infer the evolutionary history of species divergence and gene flow.

The impact of gene flow on the definition and identification of species

It is noteworthy that the migration rate required for the species-definition anomaly to occur may
be much less than one migrant per generation. For a species like the mosquitoes the population
size may well be larger than a million, which means that a proportion of migrants less than one in
a million is sufficient to change the apparent genetic history of the species. In population genetic
models of population subdivision, migration rates of M� 1 are low enough so that the
populations will be differentiated or isolated (as measured by Fst) (Wright, 1931). However, in
the IM model, such low levels of gene flow can have a dramatic impact on the history of the
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species as represented in gene genealogies or genetic distances. Similarly Jiao et al. (2020) found
that even a small amount of migration per generation can have a huge impact on species tree
estimation under the simple MSC model (see also Long and Kubatko, 2018).

The dramatic impact of gene flow on the genetic history of the species suggests that one
has to consider this effect when defining and identifying species. In the species-definition
anomaly zone, simple application of DNA barcoding or the gdi will lump genuinely distinct
species into the same species. Thus if those methods suggest one species but there is evidence for
asymmetrical gene flow between the populations and drastically different population sizes, the
results from those methods should be re-examined for the impact of gene flow. We suggest that
estimating and contrasting the long-term migration rate and the short-term hybridization rate as
an effective approach to establishing the existence of reproductive barriers and evidence for
species status. Note that genomic sequence data may contain rich information concerning
evolutionary parameters such as species divergence times, population sizes, and migration rates
or introgression probabilities, which may be invaluable for delimiting species boundaries (Fujita
et al., 2012; Leaché et al., 2019). The migration rate estimated from genomic data under the IM
model reflects the long-term impact of gene flow and genetic drift, as well as natural selection
against introgressed alleles (Martin and Jiggins, 2017). Genomic sequence data can also be used
to identify recent hybridization/admixture events (Anderson and Thompson, 2002; Anderson,
2008; Veller et al., 2019). A greatly reduced migration rate relative to the hybridization rate (e.g.,
a migration rate of m = 10−6 per generation relative to a proportion of F1 hybrids of 0.1%) may
be strong evidence that introgressed alleles are deleterious and removed from the receiving
population by natural selection and that reproductive barriers exist between the species. While
genomic data may be currently lacking for many species groups, this approach may become
feasible in the near future with advancements in genome sequencing technologies and
development of reduced-representation datasets (Lemmon et al., 2012; Edwards et al., 2017), as
well as advancements of analytical methods that accommodate both coalescent and gene flow
(Dalquen et al., 2017; Hey et al., 2018; Wen and Nakhleh, 2018; Zhang et al., 2018; Flouri et al.,
2020).
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Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A., and Moritz, C. 2012.
Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol. Evol., 27:
480–488.

He, C., Liang, D., and Zhang, P. 2020. Asymmetric distribution of gene trees can arise under
purifying selection if differences in population size exist. Mol. Biol. Evol., 37(3): 881–892.



18 REFERENCES

Hebert, P. D., Cywinska, A., Ball, S. L., and deWaard, J. R. 2003. Biological identifications
through DNA barcodes. Proc. Biol. Sci., 270: 313–321.

Hey, J. 2010. Isolation with migration models for more than two populations. Mol. Biol. Evol.,
27: 905–920.

Hey, J., Chung, Y., Sethuraman, A., Lachance, J., Tishkoff, S., Sousa, V. C., and Wang, Y. 2018.
Phylogeny estimation by integration over isolation with migration models. Mol. Biol. Evol.,
35(11): 2805–2818.

Hudson, R. R. and Turelli, M. 2003. Stochasticity overrules the ”three-times rule”: genetic drift,
genetic draft, and coalescence times for nuclear loci versus mitochondrial DNA. Evolution, 57:
182–190.

Jackson, N. D., Carstens, B. C., Morales, A. E., and O’Meara, B. C. 2017. Species delimitation
with gene flow. Syst. Biol., 66(5): 799–812.

Jiao, X., Flouri, T., Rannala, B., and Yang, Z. 2020. The impact of cross-species gene flow on
species tree estimation. Syst. Biol., page in press.

Karin, B. R., Gamble, T., and Jackman, T. R. 2020. Optimizing phylogenomics with rapidly
evolving long exons: Comparison with anchored hybrid enrichment and ultraconserved
elements. Mol. Biol. Evol., 37(3): 904–922.

Kronforst, M. R., Young, L. G., Blume, L. M., and Gilbert, L. E. 2006. Multilocus analyses of
admixture and introgression among hybridizing Heliconius butterflies. Evolution, 60(6):
1254–68.
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Figure S1: Characterization of the anomaly zone under the IM model. (A, B) P(G1) (blue) and P(G2) (orange)
plotted against τ = τR and θA/θB (with θB fixed), respectively. The anomaly P(G1) < P(G2) occurs when
τ > 0.00119461 or when θA/θB > 2.66667, respectively. (C, D) E(taa) (blue) and E(tab) (orange) plotted against
τ = τR and θA/θB (with θB fixed), respectively. E(taa) > E(tab) if τ > 0.00123447 or if θA/θB > 2.66667,
respectively. Parameters that are not on the x-axis are fixed, at θA = 0.025, θB = 0.001, θR = 0.01, τR = 0.02
and M = 0.8.
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Figure S2: Characterization of the anomaly zone in the MSci model. (A, B, C) P(G1) (blue) and P(G2)
(orange) plotted against τR, θH/θS (with θS fixed), and τH , respectively. The anomaly P(G1)< P(G2) occurs if
0.00280476 < τR < 0.0142311, if θH/θS > 31.9663, or if τH < 0.00370836. (D, E, F) E(taa) (blue) and E(tab)
(orange) plotted against τR, θH/θS, and τH , respectively. The anomaly E(taa)> E(tab) occurs if 0.00365181 <
τR < 0.0380174, if θH/θS > 14.3751, or if τH < 0.00421649. Parameters that are not on the x-axis are fixed, at
θA = θH = 0.05, θS = θR = 0.001, τR = 0.01, τH = 0.0025 and ϕ = 0.4.
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