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The classic Cayley identity states that

det(∂)(det X)s = s(s+ 1) · · · (s+ n− 1)(det X)s−1

where X = (xij) is an n × n matrix of indeterminates and ∂ =
(∂/∂xij) is the corresponding matrix of partial derivatives. In this
paper we present straightforward algebraic/combinatorial proofs of
a variety of Cayley-type identities, both old and new. The most
powerful of these proofs employ Grassmann algebra (= exterior
algebra) and Grassmann–Berezin integration. Among the new
identities proven here are a pair of “diagonal-parametrized” Cayley
identities, a pair of “Laplacian-parametrized” Cayley identities, and
the “product-parametrized” and “border-parametrized” rectangular
Cayley identities.
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1. Introduction

Let X = (xij) be an n × n matrix of indeterminates, and let ∂ = (∂/∂xij) be the corresponding
matrix of partial derivatives. The following beautiful identity is conventionally3 attributed to Arthur
Cayley (1821–1895):

det(∂)(det X)s = s(s + 1) · · · (s+ n− 1)(det X)s−1. (1.1)

[When n = 1 this is of course the elementary formula (d/dx)xs = sxs−1.] A generalization of (1.1) to
arbitrary minors also holds, and is sometimes4 attributed to Alfredo Capelli (1855–1910): if I, J ⊆
{1, . . . ,n} with |I| = | J | = k, then

det(∂I J )(det X)s = s(s + 1) · · · (s+ k− 1)(det X)s−1ε(I, J )(det XIc J c ) (1.2)

where ε(I, J ) = (−1)
∑

i∈I i+∑ j∈ J j . Analogous identities for symmetric and antisymmetric matrices
were proved by Gårding [41] in 1948 and Shimura [89] in 1984, respectively.

Although these identities are essentially algebraic or combinatorial in nature, the simplest proofs
currently available in the literature are analytic, exploiting Laplace-type integral representations for
(det X)s [36,89]. Indeed, most of the existing algebraic/combinatorial proofs [14,34,41,46,93,101,114]
are somewhat difficult to follow, partly because of old-fashioned notation.5 In this paper we would
like to give straightforward algebraic/combinatorial proofs of a variety of Cayley-type identities, some
of which are known and others of which are new. The most powerful of these proofs employ Grass-
mann algebra (= exterior algebra) and Grassmann–Berezin integration.6

Nowadays, identities like (1.1) are best understood as calculations of Bernstein–Sato type [9,32,64]
for special polynomials. To see what is at issue, let P (x1, . . . , xn) �≡ 0 be a polynomial in n variables
with coefficients in a field K of characteristic 0. Then Bernstein [7] proved in 1972 that there exist a
polynomial-coefficient partial differential operator Q (s, x, ∂/∂x) and a polynomial b(s) �≡ 0 (both with
coefficients in K ) satisfying

Q (s, x, ∂/∂x)P (x)s = b(s)P (x)s−1. (1.3)

We call any pair (Q ,b) satisfying (1.3) a Bernstein–Sato pair for P .
The set of all b for which there exists a Q satisfying (1.3) is easily seen to be an ideal in the poly-

nomial ring K [s]. By Bernstein’s theorem this ideal is nontrivial, so it is generated by a unique monic
polynomial b(s), called the Bernstein–Sato polynomial (or b-function) of P .7 Cayley-type identities thus
provide Bernstein–Sato pairs for certain polynomials P arising from determinants.

Bernstein–Sato pairs are especially useful in treating the problem of analytically continuing the
distribution P s

Ω , which can be posed as follows [5,7–9,32,42,43,52,64]: Let P (x1, . . . , xn) �≡ 0 be a
polynomial with real coefficients, and let Ω ⊆ Rn be an open set such that P � 0 on Ω and P = 0
on ∂Ω . Then, for any complex number s satisfying Re s > 0, the function P s is well defined on Ω and
polynomially bounded, and thus defines a tempered distribution P s

Ω ∈ S ′(Rn) by the formula

3 But erroneously: see Section 2.6 below.
4 Also erroneously: see again Section 2.6.
5 Among the exceptions are [14, Theorem 1.3 and Lemma 2.12] and [34, Lemma 2.1].
6 We stress that our proofs are not “combinatorial” in the narrow sense of exhibiting bijections or exploiting double-counting.

Rather, our proofs are based on straightforward algebraic manipulation combined with some elementary arguments of enumer-
ative combinatorics (enumeration of permutations by number of cycles, identities involving binomial coefficients, etc.). For this
reason we have opted to describe our methods using the rather awkward adjective “algebraic/combinatorial”.

7 In the literature on Bernstein–Sato equations it is customary to shift our s by 1, i.e. write Q (s, x, ∂/∂x)P (x)s+1 = b(s)P (x)s ,
so that the usual Bernstein–Sato polynomial is our b(s + 1). We choose here the slightly unconventional notation (1.3) because
it seems better adapted to the Cayley identity (1.1).



476 S. Caracciolo et al. / Advances in Applied Mathematics 50 (2013) 474–594
〈
P s

Ω,ϕ
〉= ∫

Ω

P (x)sϕ(x)dx (1.4)

for any test function ϕ ∈ S(Rn). Furthermore, the function s �→ 〈P s
Ω,ϕ〉 is analytic on the half-plane

Re s > 0, with complex derivative given by

d

ds

〈
P s

Ω,ϕ
〉= ∫

Ω

P (x)s(log P (x)
)
ϕ(x)dx. (1.5)

Thus P s
Ω is a distribution-valued analytic function of s on the right half-plane. We want to know

whether P s
Ω can be analytically continued to the whole complex plane as a meromorphic function

of s. This problem was first posed by I.M. Gel’fand [42] at the 1954 International Congress of Mathe-
maticians. It was answered affirmatively in 1969 independently by Bernstein and S.I. Gel’fand [8] and
Atiyah [5], using deep results from algebraic geometry (Hironaka’s resolution of singularities [49]).
A few years later, Bernstein [7] produced a much simpler proof based on using the Bernstein–Sato
equation (1.3) to extend P s

Ω successively to half-planes Re s > −1, Re s > −2, etc. See e.g. [9, Sec-
tions 7.1 and 7.3] or [52, Section 5.3] for details.

The special case in which P is a determinant of a symmetric or hermitian matrix (and Ω is e.g.
the cone of positive–definite matrices) has been studied by several authors [10,11,36,72–74,80,81]; it
plays a central role in the theory of Riesz distributions on Euclidean Jordan algebras (or equivalently
on symmetric cones) [36, Chapter VII]. This case is also useful in quantum field theory in studying
the analytic continuation of Feynman integrals to “complex space–time dimension” [10,35,91]. In an
analogous way, the parametrized symmetric Cayley identity (Theorem 2.11 below) will play a key role
in studying the analytic continuation of integrals over products of spheres S N−1 ⊂ RN to “complex
dimension N” [23], with the aim of giving a rigorous nonperturbative formulation of the correspon-
dence found in [20,21] between spanning forests and the N-vector model in statistical mechanics at
N =−1. This latter application was, in fact, our original motivation for studying Cayley-type identities.
The original Cayley identity (1.1) was also rediscovered by Creutz [33] and used by him to compute
certain invariant integrals over SU(n) that arise in lattice gauge theory.

Many of the polynomials P treated here can also be understood as relative invariants of prehomo-
geneous vector spaces [52,60]. When applicable, this connection allows the immediate identification
of a suitable operator Q (∂/∂x) – namely, the dual of P itself – and provides a general proof that the
corresponding b(s) satisfies deg b = deg P and is indeed (up to a constant factor) the Bernstein–Sato
polynomial of P .8 Furthermore, this approach sometimes allows the explicit calculation of b(s) by
means of microlocal calculus [59,77,78,85,86,97,98,104,107] or other methods [96].9

The purpose of the present paper is to give straightforward (and we hope elegant) alge-
braic/combinatorial proofs of a variety of Cayley-type identities, both old and new. Since our main
aim is to illustrate proof techniques that may be useful in other contexts, we shall give, wherever pos-
sible, several alternate proofs of each result. One purpose of this paper is, in fact, to make propaganda
among mathematicians for the power of Grassmann–Berezin integration as a tool for proving algebraic
or combinatorial identities. Among the new results in this paper are the “diagonal-parametrized” Cay-
ley identities (Theorems 2.10 and 2.11), the “Laplacian-parametrized” Cayley identities (Theorems 2.12
and 2.14), and the “product-parametrized” and “border-parametrized” rectangular Cayley identities
(Theorems 2.16 and 2.17). We also give an elementary (though rather intricate) proof of the multi-
matrix rectangular Cayley identity (Theorem 2.9) that was proven recently by Sugiyama [98].

The plan of this paper is as follows: In Section 2 we state the identities to be proven and briefly
discuss their interpretation. In Section 3 we give elementary algebraic/combinatorial proofs of the

8 See [52, Corollary 6.1.1 and Theorem 6.1.1], [60, Proposition 2.22] for the first two points, and [52, Theorem 6.3.2] for the
third.

9 We are grateful to Nero Budur for explaining to us the connection between our results and the theory of prehomogeneous
vector spaces.
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three basic Cayley-type identities (ordinary, symmetric and antisymmetric). In Section 4 we give very
simple proofs of these same identities, based on representing (det X)s as a fermionic or bosonic
Gaussian integral.10 In Section 5 we give alternate (and arguably even simpler) proofs, based on
representing det(∂) as a fermionic Gaussian integral; this method is very powerful and allows us
to prove also the (considerably more difficult) “rectangular Cayley identities”. In Section 6 we prove
the diagonal-parametrized Cayley identities, in Section 7 we prove the Laplacian-parametrized Cayley
identities, and in Section 8 we prove the product-parametrized and border-parametrized rectangu-
lar Cayley identities. Finally, in Section 9 we formulate some conjectures concerning the minimality
of our Bernstein–Sato pairs. In Appendix A we provide a brief introduction to Grassmann algebra
and Grassmann–Berezin (fermionic) integration; we hope that this appendix will prove useful to
mathematicians seeking a mathematically rigorous (but conceptually elementary) presentation of this
powerful algebraic/combinatorial tool.11 In Appendix B we collect some formulae that will be needed
in the proofs.

We have tried hard to write this paper in a “modular” fashion, so that the reader can skip around
according to his/her interests without having to read the whole thing. Indeed, after a brief perusal of
Section 2, the reader can proceed directly to Section 3, 4 or 5 as desired, consulting Appendices A
and B as needed.

2. Statement of main results

Notation. We write [n] = {1, . . . ,n}. Give a matrix A, we denote its transpose by AT. For an in-
vertible square matrix A, we use the shorthand A−T for (A−1)T (which is also equal to (AT)−1). If
A = (aij)

n
i, j=1 is an n × n matrix and I, J ⊆ [n], we denote by AI J the submatrix of A corresponding

to the rows I and the columns J , all kept in their original order. We write Ic to denote the com-
plement of I in [n]. We define ε(I)= (−1)|I|(|I|−1)/2(−1)

∑
i∈I i ; it is the sign of the permutation that

takes the sequence 1 · · ·n into I Ic when the sets I and Ic are each written in increasing order. We
also define ε(I, J )= ε(I)ε( J ); it is the sign of the permutation that takes I Ic into J J c . In particular,
if |I| = | J |, we have ε(I, J )= (−1)

∑
i∈I i+∑ j∈ J j .

2.1. Ordinary, symmetric, antisymmetric and hermitian Cayley identities

The basic Cayley-type identity is the following:

Theorem 2.1 (Ordinary Cayley identity). Let X = (xij) be an n × n matrix of indeterminates, and let ∂ =
(∂/∂xij) be the corresponding matrix of partial derivatives. Then

det(∂)(det X)s = s(s + 1) · · · (s+ n− 1)(det X)s−1. (2.1)

More generally, if I, J ⊆ [n] with |I| = | J | = k, then

det(∂I J )(det X)s = s(s + 1) · · · (s+ k− 1)(det X)s−1ε(I, J )(det XIc J c ). (2.2)

Remark. Since det(∂) and det(∂I J ) are constant-coefficient differential operators, the matrix X can
everywhere be replaced by X + A for any fixed matrix A, and the identities (2.1)/(2.2) remain valid.

10 The proofs based on representing (det X)s as a bosonic Gaussian integral are closely related to the existing analytic
proofs [36,89]. The proofs using fermionic Gaussian integrals, by contrast, are really algebraic/combinatorial proofs, as fermionic
“integration” is a purely algebraic/combinatorial construction (see Appendix A.4 below).
11 Unfortunately, most of the existing presentations of Grassmann–Berezin integration are aimed at physicists (see e.g. [117,

Chapter 1] for an excellent treatment) and may not meet mathematicians’ standards of precision and rigor, or else are aimed
at applications to differential geometry and hence involve heavier theoretical machinery than is needed for combinatorial ap-
plications. One exception is the brief summary given by Abdesselam [2, Section 2]; our presentation can be viewed as an
enlargement of his.



478 S. Caracciolo et al. / Advances in Applied Mathematics 50 (2013) 474–594
We consider next a version of the Cayley identity for symmetric matrices Xsym = (xij). What this
means is that only the variables (xij)1�i� j�n are taken as independent indeterminates; then xij for
i > j is regarded as a synonym for x ji .

Theorem 2.2 (Symmetric Cayley identity). Let Xsym = (xij) be an n × n symmetric matrix of indeterminates,
and let ∂sym be the matrix whose elements are

(
∂sym)

i j =
1

2
(1+ δi j)

∂

∂xij
=
⎧⎨
⎩

∂/∂xii if i = j,
1
2 ∂/∂xij if i < j,
1
2 ∂/∂x ji if i > j.

(2.3)

Then

det
(
∂sym)(det Xsym)s = s

(
s+ 1

2

)
· · ·

(
s+ n− 1

2

)(
det Xsym)s−1

. (2.4)

More generally, if I, J ⊆ [n] with |I| = | J | = k, then

det
(
∂

sym
I J

)(
det Xsym)s = s

(
s+ 1

2

)
· · ·

(
s+ k− 1

2

)(
det Xsym)s−1

ε(I, J )
(
det Xsym

Ic J c

)
. (2.5)

Remarks. 1. The matrix Xsym can everywhere be replaced by Xsym + A for any fixed symmetric ma-
trix A.

2. If we prefer to work over the integers rather than the rationals, it suffices to multiply ∂sym by 2
and correspondingly multiply the right-hand side of (2.4) [resp. (2.5)] by 2n (resp. 2k).

Next let us state a version of the Cayley identity for antisymmetric matrices Xantisym = (xij).12 Here
only the variables (xij)1�i< j�n are taken as independent indeterminates; then xij for i > j is regarded
as a synonym for −x ji , and xii is regarded as a synonym for 0. As befits antisymmetric matrices, the
corresponding identity involves pfaffians in place of determinants:

Theorem 2.3 (Antisymmetric Cayley identity). Let Xantisym = (xij) be a 2m × 2m antisymmetric matrix of
indeterminates, and let ∂antisym be the corresponding matrix of partial derivatives, i.e.

(
∂antisym)

i j =
⎧⎨
⎩

0 if i = j,
∂/∂xij if i < j,
−∂/∂x ji if i > j.

(2.6)

Then

pf
(
∂antisym)(pf Xantisym)s = s(s + 2) · · · (s+ 2m− 2)

(
pf Xantisym)s−1

. (2.7)

More generally, if I ⊆ [2m] with |I| = 2k, then

pf
(
∂

antisym
I I

)(
pf Xantisym)s = s(s + 2) · · · (s+ 2k− 2)

(
pf Xantisym)s−1

ε(I)
(
pf Xantisym

Ic Ic

)
. (2.8)

12 More precisely, alternating matrices, i.e. matrices satisfying xij =−x ji and xii = 0. The latter identity is a consequence of the
former whenever the underlying ring of coefficients is an integral domain of characteristic �= 2 (so that 2x = 0 implies x = 0),
but not in general otherwise. See e.g. [65, Sections XIII.6 and XV.9]. In this paper we use the term “antisymmetric” to denote
xij =−x ji and xii = 0.
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As an immediate corollary we get a result for antisymmetric determinants:

Corollary 2.4 (Antisymmetric Cayley identity for determinants). Let Xantisym = (xij) be a 2m × 2m antisym-
metric matrix of indeterminates, and let ∂antisym be the corresponding matrix of partial derivatives. Then

det
(
∂antisym)(det Xantisym)s = (2s− 1)(2s) · · · (2s+ 2m− 2)

(
det Xantisym)s−1

. (2.9)

More generally, if I ⊆ [2m] with |I| = 2k, then

det
(
∂

antisym
I I

)(
det Xantisym)s

= (2s− 1)(2s) · · · (2s+ 2k− 2)
(
det Xantisym)s−1(

det Xantisym
Ic Ic

)
. (2.10)

Please note that in the antisymmetric case we are able at present to handle only principal minors,
i.e. we have been unable to find a general formula for det(∂antisym

I J )(det Xantisym)s when I �= J .

Next we state a version of the Cayley identity for “hermitian” matrices Z herm = (zi j).13 By this we
mean the following: We introduce indeterminates (xij)1�i� j�n and (yij)1�i< j�n , and define matrices

Xsym and Y antisym as before; we then set Z herm = Xsym + iY antisym and ∂herm = ∂
sym
X − (i/2)∂

antisym
Y .

In terms of the usual complex derivatives

∂

∂zi j
= 1

2

(
∂

∂xij
− i

∂

∂ yij

)
,

∂

∂ z̄i j
= 1

2

(
∂

∂xij
+ i

∂

∂ yij

)
(2.11)

for i < j, this can be written as

(
∂herm)

i j =
⎧⎨
⎩

∂/∂xii if i = j,
∂/∂zi j if i < j,
∂/∂ z̄ ji if i > j.

(2.12)

We then have:

Theorem 2.5 (“Hermitian” Cayley identity). Let Z herm and ∂herm be defined as above. Then

det
(
∂herm)(det Z herm)s = s(s + 1) · · · (s+ n− 1)

(
det Z herm)s−1

. (2.13)

More generally, if I, J ⊆ [n] with |I| = | J | = k, then

det
(
∂herm

I J

)(
det Z herm)s = s(s + 1) · · · (s+ k− 1)

(
det Z herm)s−1

ε(I, J )
(
det Z herm

Ic J c

)
. (2.14)

The resemblance of this theorem to the ordinary Cayley identity (2.1)/(2.2) is no accident; indeed,
the two identities are immediately interderivable. To see this, it suffices to notice that the action of
derivatives on indeterminates is identical in the two cases:

∂i j Xi′ j′ = δi,i′δ j, j′ , (2.15a)

∂herm
i j Z herm

i′ j′ = δi,i′δ j, j′ , (2.15b)

13 We put “hermitian” in quotation marks because the variables (xij) and (yij) in this identity are neither real nor complex
numbers, but are simply indeterminates.
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and that this relation completely determines the expressions (2.1)/(2.2) and (2.13)/(2.14). For this
reason, we need not consider further the “hermitian” Cayley identity.14

2.2. Rectangular Cayley identities

Let us now formulate some Cayley-type identities for rectangular matrices of size m×n with m � n.
These identities are somewhat more complicated than the preceding ones, because the matrices ap-
pearing in the determinants (or pfaffians) are quadratic (or of higher order) rather than linear in the
indeterminates.

Theorem 2.6 (Two-matrix rectangular Cayley identity). Let X = (xij) and Y = (yij) be m × n matrices of
indeterminates with m � n, and let ∂X = (∂/∂xij) and ∂Y = (∂/∂ yij) be the corresponding matrices of partial
derivatives. Then

det
(
∂X∂T

Y

)
det

(
XY T)s =

(
m−1∏
j=0

(s+ j)(s+ n−m+ j)

)
det

(
XY T)s−1

. (2.16)

More generally, if I, J ⊆ [m] with |I| = | J | = k, then

det
[(

∂X∂T
Y

)
I J

]
det

(
XY T)s =

(
k−1∏
j=0

(s+ j)(s+ n−m+ j)

)
det

(
XY T)s−1

× ε(I, J )det
[(

XY T)
Ic J c

]
. (2.17)

If m = 1, Theorem 2.6 reduces to the easily-derived formula (∇x · ∇y)(x · y)s = s(s+n− 1)(x · y)s−1

for x= (x1, . . . , xn) and y= (y1, . . . , yn). If m = n, Theorem 2.6 can be derived by separate applications
of Theorem 2.1 to X and Y . In other cases it appears to be new.

Theorem 2.7 (One-matrix rectangular symmetric Cayley identity). Let X = (xij) be an m × n matrix of inde-
terminates with m � n, and let ∂ = (∂/∂xij) be the corresponding matrix of partial derivatives. Then

det
(
∂∂T)det

(
X XT)s =

(
m−1∏
j=0

(2s+ j)(2s+ n−m− 1+ j)

)
det

(
X XT)s−1

. (2.18)

More generally, if I, J ⊆ [m] with |I| = | J | = k, then

det
[(

∂∂T)
I J

]
det

(
X XT)s =

(
k−1∏
j=0

(2s+ j)(2s+ n−m− 1+ j)

)
det

(
X XT)s−1

× ε(I, J )det
[(

X XT)
Ic J c

]
. (2.19)

If m = 1, Theorem 2.7 reduces to the well-known formula �(x2)s = 2s(2s + n − 2)(x2)s−1 for
x = (x1, . . . , xn). If m = n, Theorem 2.7 can be derived from two applications of Theorem 2.1. The

14 Let us remark that, by contrast, in the analytic proofs [36,89] it is convenient to consider the hermitian case instead of the
ordinary case, as (det Z)s for a positive–definite complex hermitian matrix Z has a simple Laplace-type integral representation.
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general case has been proven recently by several authors, using analytic methods.15 We call Theo-
rem 2.7 a “symmetric” identity because the matrices X XT and ∂∂T that appear in it are symmetric by
construction.

Finally, here is an analogue of Theorem 2.7 that involves matrices that are antisymmetric rather
than symmetric by construction; in place of the identity matrix we use the standard 2n × 2n sym-
plectic form

J =

⎛
⎜⎜⎜⎜⎜⎝

0 1
−1 0

0 1
−1 0

. . .

⎞
⎟⎟⎟⎟⎟⎠ . (2.20)

Not surprisingly, this formula involves pfaffians rather than determinants:

Theorem 2.8 (One-matrix rectangular antisymmetric Cayley identity). Let X = (xij) be a 2m × 2n matrix of
indeterminates with m � n, and let ∂ = (∂/∂xij) be the corresponding matrix of partial derivatives. Then

pf
(
∂ J∂T)pf

(
X J XT)s =

(
m−1∏
j=0

(s+ 2 j)(s+ 2n− 2m+ 1+ 2 j)

)
pf
(

X J XT)s−1
. (2.21)

More generally, if I ⊆ [2m] with |I| = 2k, then

pf
[(

∂ J∂T)
I I

]
pf
(

X J XT)s

=
(

k−1∏
j=0

(s+ 2 j)(s+ 2n− 2m+ 1+ 2 j)

)
pf
(

X J XT)s−1
ε(I)pf

[(
X J XT)

Ic Ic

]
. (2.22)

If m = n, (2.21) reduces to the ordinary Cayley identity (2.1) of size 2m since pf(A J AT)= det A.
These three rectangular Cayley identities are roughly analogous to the ordinary, symmetric and

antisymmetric Cayley identities, respectively, but their proofs are more intricate.
Finally, here is a generalization of Theorems 2.1 and 2.6 to an arbitrary number � of rectangular

matrices of arbitrary compatible sizes:

Theorem 2.9 (Multi-matrix rectangular Cayley identity). Fix integers � � 1 and n1, . . . ,n� � 0 and write
n�+1 = n1 . For 1 � α � �, let X (α) be an nα×nα+1 matrix of indeterminates, and let ∂(α) be the corresponding
matrix of partial derivatives. Then

det
(
∂(1) · · · ∂(�)

)
det

(
X (1) · · · X (�)

)s

=
(

�∏
α=1

n1−1∏
j=0

(s+ nα − n1 + j)

)
det

(
X (1) · · · X (�)

)s−1
. (2.23)

15 See Faraut and Korányi [36, Section XVI.4], Khékalo [57,58] and Rubin [83].
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More generally, if I, J ⊆ [n1] with |I| = | J | = k, then

det
[(

∂(1) · · · ∂(�)
)

I J

]
det

(
X (1) · · · X (�)

)s

=
(

�∏
α=1

k−1∏
j=0

(s+ nα − n1 + j)

)
det

(
X (1) · · · X (�)

)s−1
ε(I, J )det

[(
X (1) · · · X (�)

)
Ic J c

]
. (2.24)

We expect that there will exist “symmetric” and “antisymmetric” variants of Theorem 2.9,
for matrix products of the form X (1) · · · X (�) X (�)T · · · X (1)T or X (1) · · · X (�) X (�+1) X (�)T · · · X (1)T (with
X (�+1) square and symmetric) for the symmetric case, and X (1) · · · X (�) J X (�)T · · · X (1)T or
X (1) · · · X (�) X (�+1) X (�)T · · · X (1)T (with X (�+1) square and antisymmetric) for the antisymmetric case
(and analogous matrices of differential operators). But all good things must come to an end, and for
lack of time we have chosen not to pursue this direction.

2.3. Diagonal-parametrized Cayley identities

We would now like to formulate analogues of the ordinary and symmetric Cayley identities in
which the diagonal elements of the matrix X are treated as parameters (i.e., not differentiated with
respect to) and only the off-diagonal elements are treated as variables.

Theorem 2.10 (Diagonal-parametrized ordinary Cayley identity). Let X = (xij) be an n× n matrix of indeter-
minates, let α = (α1, . . . ,αn) and β = (β1, . . . , βn) be arbitrary numbers (or symbols), and let Dα,β,s be the
matrix of differential operators defined by

(Dα,β,s)i j =
⎧⎨
⎩

s− αi
∑

k �=i xik
∂

∂xik
− (1− αi)

∑
l �=i xli

∂
∂xli

if i = j,

xβi
ii x

1−β j

j j
∂

∂xi j
if i �= j.

(2.25)

Then

det(Dα,β,s)(det X)s = s(s + 1) · · · (s+ n− 1)

(
n∏

i=1

xii

)
(det X)s−1. (2.26)

More generally, if I, J ⊆ [n] with |I| = | J | = k, we have

det
(
(Dα,β,s)I J

)
(det X)s

= s(s + 1) · · · (s+ k− 1)(det X)s−1
(∏

i∈I

xβi
ii

)(∏
j∈ J

x
1−β j

j j

)
ε(I, J )(det XIc J c ). (2.27)

Please note that although the elements of the matrix Dα,β,s belong to a noncommutative algebra of
differential operators, this matrix has the special property that each of its elements commutes with
all the elements not in its own row or column; therefore, the determinant is well defined without
any special ordering prescriptions.

Remarks. 1. Expressions involving xβi
ii and x

1−β j

j j can be understood as follows: we work in the Weyl
algebra generated by {xij}i �= j and {∂i j}i �= j , augmented by s in the usual way (see Section 2.7) as well

as by the central elements yi = xβi
ii and zi = x1−βi

ii , it being understood that xii is a shorthand for yi zi .
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2. It is easy to see why (2.26) holds with a right-hand side that is independent of the choice of β .
Indeed, the operators Dα,β,s and Dα,β ′,s are related by the similarity transformation

Dα,β ′,s = diag
(
x
β ′i−βi

ii

)
Dα,β,sdiag

(
x
βi−β ′i
ii

)
(2.28)

where the quantities x
±(βi−β ′i )
ii commute with all entries in all matrices, so that det(Dα,β,s) =

det(Dα,β ′,s). Similar reasoning explains why the right-hand side of (2.27) depends on β in the way it
does.

3. It should be stressed that (2.26) provides a non-minimal Bernstein–Sato pair. In fact, a lower-
order Bernstein–Sato pair can be obtained from (2.27) by taking I = J = [n]\{i0} for any fixed i0 ∈ [n]:

det
(
(Dα,β,s){i0}c{i0}c

)
(det X)s = s(s + 1) · · · (s+ n− 2)

(
n∏

i=1

xii

)
(det X)s−1. (2.29)

Theorem 2.11 (Diagonal-parametrized symmetric Cayley identity). Let Xsym = (xij) be an n × n symmetric
matrix of indeterminates, let β = (β1, . . . , βn) be arbitrary numbers (or symbols), and let Dsym

β,s be the matrix
of differential operators defined by

(
Dsym

β,s

)
i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s− 1
2

∑
k>i xik

∂
∂xik

− 1
2

∑
l<i xli

∂
∂xli

if i = j,

1
2 xβi

ii x
1−β j

j j
∂

∂xi j
if i < j,

1
2 xβi

ii x
1−β j

j j
∂

∂x ji
if i > j.

(2.30)

Then

det
(

Dsym
β,s

)(
det Xsym)s = s

(
s+ 1

2

)
· · ·

(
s+ n− 1

2

)( n∏
i=1

xii

)(
det Xsym)s−1

. (2.31)

More generally, if I, J ⊆ [n] with |I| = | J | = k, we have

det
((

Dsym
β,s

)
I J

)(
det Xsym)s

= s

(
s+ 1

2

)
· · ·

(
s+ k− 1

2

)(
det Xsym)s−1

(∏
i∈I

xβi
ii

)(∏
j∈ J

x
1−β j

j j

)
ε(I, J )

(
det Xsym

Ic J c

)
. (2.32)

Please note that in the symmetric case we are forced to take αi = 1
2 for all i. Note also that (2.31)

provides a non-minimal Bernstein–Sato pair, and that a lower-order pair can be obtained from (2.32)
by taking I = J = [n] \ {i0} for any fixed i0 ∈ [n]:

det
((

Dsym
β,s

)
{i0}c{i0}c

)(
det Xsym)s = s

(
s+ 1

2

)
· · ·

(
s+ n− 2

2

)( n∏
i=1

xii

)(
det Xsym)s−1

. (2.33)
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2.4. Laplacian-parametrized Cayley identities

In the preceding subsection we treated the off-diagonal elements {xij}i �= j as indeterminates and
the diagonal elements xii as parameters. Here we again treat the off-diagonal elements as indetermi-
nates, but now we use the row sums ti =∑n

j=1 xij as the parameters. (This way of writing a matrix
arises in the matrix-tree theorem [2,27,69].) In other words, we define the row-Laplacian matrix with
off-diagonal elements {xij}i �= j and row sums 0,

(
X row-Lap)

i j =
{

xij if i �= j,
−∑

k �=i xik if i = j (2.34)

and the diagonal matrix T = diag(ti), and we then study det(T + X row-Lap) where the ti are treated as
parameters. We shall need the matrix of differential operators

(
∂row-Lap)

i j =
{

∂/∂xij if i �= j,
0 if i = j.

(2.35)

Theorem 2.12 (Laplacian-parametrized ordinary Cayley identity). Let X row-Lap , T and ∂row-Lap be n × n ma-
trices defined as above. Let U be the n× n matrix with all entries equal to 1. Then

[
det

(
U + ∂row-Lap)− det

(
∂row-Lap)](det

(
T + X row-Lap))s

=
(∑

i

ti

)
s(s + 1) · · · (s+ n− 2)

(
det

(
T + X row-Lap))s−1

. (2.36)

Let us recall that, by the matrix-tree theorem [2,27,69], det(T + X row-Lap) is the generating poly-
nomial of rooted directed spanning forests on the vertex set [n], with weight

∏
i∈R ti

∏
�i j∈E(F )

(−xij)

for a (rooted directed) forest with roots at the vertices i ∈ R and edges �i j ∈ E(F ), directed towards
the roots. In particular, the term linear in ti – whose coefficient is the principal minor of order n− 1,
det(X row-Lap){i}c{i}c – enumerates the directed spanning trees rooted at i. Taking this limit in (2.36),
we obtain:

Corollary 2.13 (Cayley identity for the directed-spanning-tree polynomial). For each i ∈ [n], we have

[
det

(
U + ∂row-Lap)− det

(
∂row-Lap)](det

(
X row-Lap)

{i}c{i}c
)s

= s(s + 1) · · · (s+ n− 2)
(
det

(
X row-Lap)

{i}c{i}c
)s−1

. (2.37)

We also have an analogous identity for symmetric Laplacian-parametrized matrices. What this
means is that we introduce indeterminates {xij}1�i< j�n and regard xij for i > j as a synonym for x ji ;
we then define the symmetric Laplacian matrix

(
Xsym-Lap)

i j =
⎧⎨
⎩

xij if i < j,
x ji if i > j,
−∑

k �=i xik if i = j
(2.38)

and the corresponding matrix of partial derivatives

(
∂sym-Lap)

i j =
⎧⎨
⎩

∂/∂xij if i < j,
∂/∂x ji if i > j,
0 if i = j.

(2.39)
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We then have:

Theorem 2.14 (Laplacian-parametrized symmetric Cayley identity). Let Xsym-Lap , T and ∂sym-Lap be n × n
matrices defined as above. Let U be the n× n matrix with all entries equal to 1. Then

[
det

(
U + ∂sym-Lap)− det

(
∂sym-Lap)](det

(
T + Xsym-Lap))s

=
(∑

i

ti

)
2s(2s + 1) · · · (2s+ n− 2)

(
det

(
T + Xsym-Lap))s−1

. (2.40)

Similarly, det(T + Xsym-Lap) is the generating polynomial of rooted (undirected) spanning forests
on the vertex set [n], with weight

∏
i∈R ti

∏
i j∈E(F )(−xij) for a (rooted undirected) forest with roots

at the vertices i ∈ R and edges i j ∈ E(F ). In particular, the term linear in ti – whose coefficient is
det(Xsym-Lap){i}c{i}c – is independent of i and enumerates the spanning trees. We thus obtain:

Corollary 2.15 (Cayley identity for the spanning-tree polynomial). For each i ∈ [n], we have

[
det

(
U + ∂sym-Lap)− det

(
∂sym-Lap)](det

(
Xsym-Lap)

{i}c{i}c
)s

= 2s(2s+ 1) · · · (2s+ n− 2)
(
det

(
Xsym-Lap)

{i}c{i}c
)s−1

. (2.41)

See [90] for many interesting additional properties of the spanning-tree polynomial.

2.5. Product-parametrized and border-parametrized rectangular Cayley identities

Here we will present two curious Cayley identities for rectangular matrices that are much simpler
than the identities presented in Section 2.2, because the indeterminates occur linearly rather than
quadratically in the argument of the determinant.

So let X = (xij) be an m × n matrix of indeterminates with m � n, and let ∂ = (∂/∂xij) be the
corresponding matrix of partial derivatives. One easy way to obtain square (m ×m) matrices from X
and ∂ is to right-multiply them by n×m matrices A and B , respectively. We then have the following
Cayley-type identity, in which A and B occur only as parameters:

Theorem 2.16 (Product-parametrized rectangular Cayley identity). Let X = (xij) be an m× n matrix of inde-
terminates with m � n, and let ∂ = (∂/∂xij) be the corresponding matrix of partial derivatives. Let A = (aij)

and B = (bij) be n×m matrices of constants. Then

det(∂ B)(det X A)s = det
(

AT B
)
s(s + 1) · · · (s+m− 1)(det X A)s−1. (2.42)

More generally, if I, J ⊆ [m] with |I| = | J | = k, then

det
(
(∂ B)I J

)
(det X A)s = det(M A)s(s + 1) · · · (s+ k− 1)(det X A)s−1. (2.43)

where M is an m × n matrix defined as follows: if I = {i1, . . . , ik} and J = { j1, . . . , jk} in increasing order,
then

Mαβ =
{

xαβ if α /∈ I,
bβ jh if α = ih.

(2.44)
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Note that if n = m, then (2.42) reduces to the ordinary Cayley identity (2.1) multiplied on both
sides by (det B)(det A)s , while (2.43) specialized to A = B = Im gives the all-minors identity (2.2).
In the general case m � n, (2.43) reduces to (2.42) when I = J = [m] (since we then have M = BT),
while (2.43) reduces to the trivial identity (det X A)s = (det X A)s when I = J =∅ (since we then have
M = X ).

A second easy way to complete X and ∂ to square (n × n) matrices is to adjoin n − m rows of
constants at the bottom:

X̂ =
(

X

A

)
, ∂̂ =

(
∂

B

)
(2.45)

where A and B are (n−m)×n matrices of constants. We can think of X̂ and ∂̂ as “bordered” matrices
obtained by filling out X and ∂ . We then have the following Cayley-type identity, in which A and B
again occur only as parameters:

Theorem 2.17 (Border-parametrized rectangular Cayley identity). Let X = (xij) be an m × n matrix of inde-
terminates with m � n, let ∂ = (∂/∂xij) be the corresponding matrix of partial derivatives, and let A and B be

(n−m)× n matrices of constants. Define X̂ and ∂̂ as in (2.45). Then

det(∂̂)(det X̂)s = det
(

ABT)s(s + 1) · · · (s+m− 1)(det X̂)s−1. (2.46)

When m = n this formula reduces to the ordinary Cayley identity (2.1), if we make the convention
that the determinant of an empty matrix is 1.

Please note that, by Laplace expansion, det X̂ is a linear combination of m ×m minors of X (and
likewise for det ∂̂). Indeed, when n −m = 1 one can obtain all such linear combinations in this way,
by suitable choice of the row vector A; for n −m � 2 one obtains in general a subset of such linear
combinations. It is striking that the form of the identity – and in particular the polynomial b(s)
occurring in it – does not depend on the choice of the matrices A and B .

In Section 8 we will prove the “product-parametrized” and “border-parametrized” identities and
then explain the close relationship between them.

2.6. Historical remarks

As noted in the Introduction, the identity (1.1) is conventionally attributed to Arthur Cayley (1821–
1895); the generalization (1.2) to arbitrary minors is sometimes attributed to Alfredo Capelli (1855–
1910). The trouble is, neither (1.1) nor (1.2) occurs anywhere – as far as we can tell – in the Collected
Papers of Cayley [26]. Nor are we able to find these formulae in any of the relevant works of Capelli
[15–19]. The operator Ω = det(∂) was indeed introduced by Cayley on the second page of his famous
1846 paper on invariants [25]; it became known as Cayley’s Ω-process and went on to play an impor-
tant role in classical invariant theory (see e.g. [34,39,75,88,111]). But we strongly doubt that Cayley
ever knew (1.1).

A detailed history of (1.1) and (1.2) will be presented elsewhere [3]. Suffice it to say that the special
case for 2×2 matrices appears already in the 1872 book of Alfred Clebsch (1833–1872) on the invari-
ant theory of binary forms [29, p. 20]. But even for n = 3, the first unambiguous statement of which
we are aware appears in an 1890 paper of Giulio Vivanti (1859–1949) [106].16 And amazingly, in this

16 This paper is also cited in Muir’s massive annotated bibliography of work on the theory of determinants [70, vol. 4, p. 479].
Indeed, it was thanks to Muir that we discovered Vivanti’s paper. Malek Abdesselam has also drawn our attention to the papers
of Clebsch (1861) [28, pp. 7–14] and Gordan (1872) [45, pp. 107–116], where formulae closely related to (1.1) can be found.
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very first paper, Vivanti proves not only the basic “Cayley” identity (1.1) but also the generalization
(1.2) for minors, for completely general n and k albeit only in the case I = J (i.e., principal minors).
In fact, his inductive method of proof works only because he is handling the “all-principal-minors”
version; it would not work for the “simple” identity (1.1) alone.

Proofs (by direct computation) of the “Cayley” identity (1.1) for n = 3 can be found in the early-
twentieth-century books of Grace and Young (1903) [46], Weitzenbock (1923) [110] and Turnbull
(1928) [101]. Weitzenbock also states (1.1) without proof for general n, saying that it is obtained
“by completely analogous calculation” [110, p. 16]; similarly, Turnbull states both (1.1) and (1.2) for
general n and leaves them as exercises for the reader [101, pp. 114–116]. (Unfortunately, Turnbull’s
old-fashioned notation is very difficult to follow.) We are not convinced that the extension from n = 3
to general n is quite so trivial as these authors imply. We will, in any case, provide an elementary
algebraic/combinatorial proof of (1.1)/(1.2) in Section 3.1 below.

The symmetric analogues (2.4)/(2.5) are due to Gårding in 1948 [41]; see also [36, Proposi-
tion VII.1.4]. The antisymmetric analogue (2.7) is due to Shimura [89] in 1984; see again [36, Proposi-
tion VII.1.4], where the quaternionic hermitian determinant (Moore determinant [4]) is equivalent to
a pfaffian, and see also [61, Corollary 3.13].

Shimura [89] also gives generalizations of all these formulae in which det(∂) is replaced by other
homogeneous differential operators. Similarly, Rubenthaler and Schiffmann [82, especially Section 5]
and Faraut and Korányi [36, Proposition VII.1.6] give generalizations in which both det(∂) and det X
are replaced by suitable products of leading principal minors. All these proofs are analytic in nature.
Elegant algebraic/combinatorial proofs of identities in which det X is replaced by a product of mi-
nors have been given by Canfield, Williamson and Evans [14, Theorem 1.3 and Lemma 2.12], [114,
Theorem 4.1].17

The one-matrix rectangular symmetric Cayley identity (2.18) has been proven recently by Faraut
and Korányi [36, Section XVI.4], Khékalo [57,58] and Rubin [83], using analytic methods.

Many of the polynomials P treated here can also be understood as relative invariants of preho-
mogeneous vector spaces [52,60]; and the corresponding b-functions have been computed in that
context, mostly by means of microlocal calculus [59,85,98]. See [60, Appendix] for a table of all irre-
ducible reduced prehomogeneous vector spaces and their relative invariants and b-functions. All but
one of the “generic” cases in this table (i.e., those involving matrices with one or more arbitrary di-
mensions) correspond to identities treated here: namely, the ordinary, symmetric and antisymmetric
Cayley identities [(2.1), (2.4) and (2.7)] correspond to cases (1), (2) and (3), respectively, while the
one-matrix rectangular symmetric and antisymmetric Cayley identities [(2.18) and (2.21)] correspond
to cases (15) and (13). The b-functions listed in that table of course agree with ours.18 (The final
“generic” case (30) involves matrices X of order 3 × 2n with P (X) = tr(X J XT)2, which falls outside
our methods since it is neither a determinant nor a pfaffian.) Finally, the most difficult result ob-
tained in the present paper – namely, the multi-matrix rectangular Cayley identity (2.23) – has very
recently been proven independently by Sugiyama [98, Theorem 0.1] in the context of prehomogeneous
vector spaces associated to equioriented quivers of type A; his proof uses a decomposition formula
found earlier by himself and F. Sato [86]. Indeed, Sugiyama proved an even more general result [98,
Theorem 3.4], applying to quivers of type A with arbitrary orientation.19

It is worth stressing that the Cayley identity (1.1) – though not, as far as we can tell, the all-
minors version (1.2) – is an immediate consequence of a deeper identity due to Capelli [16–18], in
which the operator H = (det X)(det ∂) is represented as a noncommutative determinant involving the
gl(n) generators XT∂: see e.g. [105, p. 53], [51, pp. 569–570] or [22, Appendix] for the easy deduc-
tion of Cayley from Capelli. Likewise, the symmetric Cayley identity (2.4) follows from a symmetric
Capelli-type identity due to Turnbull [102] (see also [108]), and the antisymmetric Cayley identity

17 See also Turnbull [103] for a similar result, but expressed in difficult-to-follow notation.
18 After making the translation of conventions s → s+ 1: see footnote 7 above. See also F. Sato and Sugiyama [86, Section 3.1

and Lemma 4.2] for an alternate approach to (2.1), (2.7) and (2.18).
19 We are grateful to Nero Budur for explaining to us the connection between our results and the theory of prehomogeneous

vector spaces, and for drawing our attention to the work of Sugiyama [98].
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(2.7) follows from an antisymmetric Capelli-type identity due independently to Kostant and Sahi [63]
and to Howe and Umeda [51] (see also [61]).

The one-matrix rectangular symmetric Cayley identity (2.18) for m = 1 follows from a Capelli-type
identity given in [111, pp. 291–293] and [105, p. 61]. For m = n it of course follows from the ordinary
Capelli identity. For 2 � m � n− 1 we do not know any Capelli-type identity.

Proofs of the Capelli-type identities based on group-representation theory have been given by
Howe and Umeda [50,51]. Combinatorial proofs of the Capelli and Turnbull identities have been given
by Foata and Zeilberger [37]. We have recently given very simple algebraic proofs of these same
identities as well as some generalizations [22]. See also Weyl [111, pp. 39–42] and Fulton–Harris [39,
Appendix F.3] for more traditional proofs. Further information on Capelli-type identities can be found
in [51,105].

2.7. Some algebraic preliminaries

A few words are needed about how the identities (2.1) ff. – or more generally, Bernstein-type
identities of the form

Q (s, x, ∂/∂x)P (x)s = b(s)P (x)s−1 (2.47)

where x = (x1, . . . , xn) – are to be interpreted. On the one hand, they can be interpreted as ana-
lytic identities for functions of real or complex variables x1, . . . , xn , where s is a real or complex
number; here P (x)s denotes any fixed branch on any open subset of Rn or Cn where it is well de-
fined. Alternatively, these formulae can be regarded as purely algebraic identities, in several different
ways:

(1) For integer s � 1, as an identity in the ring R[x1, . . . , xn] of polynomials in the indeterminates
x1, . . . , xn with coefficients in some commutative ring R (for instance, R could be Z, Q, R or
C).20

(2) For any integer s (positive or negative), as an identity in the field K (x1, . . . , xn) of rational frac-
tions in the indeterminates x1, . . . , xn with coefficients in some field K (for instance, K could be
Q, R or C).21

(3) For s interpreted symbolically, as an identity in a module defined as follows [32, pp. 93–94],
[64, p. 96 ff.]: Let K be a field of characteristic 0, let x1, . . . , xn and s be indeterminates, and let
An(K )[s] be the K -algebra generated by x1, . . . , xn, ∂/∂x1, . . . , ∂/∂xn and s with the usual com-
mutation relations. (That is, it is the algebra of differential operators with respect to x1, . . . , xn in
which the coefficients are polynomials in x1, . . . , xn, s with coefficients in K .) Now fix a nonzero
polynomial P ∈ K [x1, . . . , xn], and let K [x, s, P−1] denote the ring of rational fractions in the
indeterminates x1, . . . , xn, s whose denominators are powers of P . (It is a subring of the field
K (x1, . . . , xn, s) of all rational fractions in x1, . . . , xn, s.) Let K [x, s, P−1]P s be the free K [x, s, P−1]-
module consisting of objects of the form f P s where f ∈ K [x, s, P−1]; here P s is treated as a
formal symbol. We can define formal differentiation by

∂

∂xi

(
f P s)= (

∂ f

∂xi
+ sf

∂ P

∂xi
P−1

)
P s (2.48)

20 When b(s) contains fractions [e.g. (2.4)/(2.5) and (2.31)/(2.32)] we should assume that the coefficient ring R contains those

fractions [i.e. in this case 1
2 ].

21 When b(s) contains fractions [e.g. (2.4)/(2.5) and (2.31)/(2.32)] we should assume that the coefficient field K contains those

fractions [i.e. in this case 1
2 ]. Usually we will take K to be a field of characteristic 0, so that K contains the rationals Q as a

subfield.
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where ∂ f /∂xi is the standard formal derivative of a rational fraction. This differentiation is easily
extended to an action of An(K )[s] on K [x, s, P−1]P s , making the latter into a left An(K )[s]-
module.22

Let us now show that all these interpretations are equivalent.
We begin by recalling some elementary facts. Let p(x1, . . . , xn) be a polynomial with coefficients

in some commutative ring R , and let di be the degree of p with respect to the variable xi . Suppose
that there exist sets X1, . . . , Xn ⊆ R with |Xi| > di for all i, such that p(x1, . . . , xn) = 0 whenever
(x1, . . . , xn) ∈ X1 × · · · × Xn . Then p must be the zero polynomial, i.e. all its coefficients are zero. Note
in particular that if the sets X1, . . . , Xn are infinite, then this reasoning applies to polynomials of
arbitrary degree. As a special case of this, if R = R or C and p(x1, . . . , xn)= 0 for all x = (x1, . . . , xn)

lying in some nonempty open set U of Rn or Cn , then p must be the zero polynomial.
Now let K be a field of characteristic 0, and let P (x), Q (s, x, ∂/∂x) and b(s) be polynomials with

coefficients in K [as always we use the shorthand x= (x1, . . . , xn)]. Then elementary algebraic manip-
ulations allow us to write

Q (s, x, ∂/∂x)P (x)s − b(s)P (x)s−1 = R(s, x)P (x)s−m (2.49)

for some polynomial R(s, x) and some integer m � 0. Combining this fact with the preceding obser-
vations, we obtain immediately the following two propositions:

Proposition 2.18 (Equivalence theorem for symbolic s). Let K be a field of characteristic 0, and let P , Q , b and
R be as before. Then the following are equivalent:

(a) (2.47) holds as an algebraic identity in the module K [x, s, P−1]P s, symbolically in s.
(b) R(s, x)= 0 in the polynomial ring K [s, x].

Furthermore, if K is infinite, then (a)–(b) are equivalent to:

(c) For infinitely many s ∈ K , there exist infinite sets X1, . . . , Xn ⊆ K (possibly depending on s), such that
R(s, x1, . . . , xn)= 0 for (x1, . . . , xn) ∈ X1 × · · · × Xn and the given value of s.

Finally, if K =R or C, then (a)–(c) are equivalent to:

(d) For infinitely many s ∈ K , there exist a nonempty open set U ⊆ K n (possibly depending on s) and a branch
of P (x)s defined on U such that (2.47) holds for all x ∈ U .

(e) For every s ∈ K , every nonempty open set U ⊆ K n and every branch of P (x)s defined on U , (2.47) holds
for all x ∈ U .

22 More generally, we can proceed as follows: Let R be an integral domain and let A be an abelian group. We then define

R A to be the commutative ring with identity generated by the symbols xa (x ∈ R,a ∈ A) subject to the relations xaxb = xa+b ,
xa ya = (xy)a and x0 = 1. In particular, if A contains the integers as a subgroup, then we can consider R as a subring of R A by
identifying x ∈ R with x1 ∈ R A .

Now suppose that R is a polynomial ring S[x1, . . . , xn] where S is an integral domain of characteristic 0, and that A is a
subgroup of the additive group of S (where 1 ∈ Z⊆ A is identified with 1 ∈ S). Then we can define an action of the differential
operators ∂/∂xi on R A by

∂

∂xi

(
P a)= a

∂ P

∂xi
P a−1

together with the usual product rule. This makes R A into a left An(S)-module [where An(S) is the Weyl algebra in n variables
over S].

In order to handle Bernstein-type identities, we will introduce an indeterminate s and take A = Z+ sZ and S = K [s] for
some field K . Then we will work within the submodule of R A consisting of elements of the form f P s+a for f ∈ K [x1, . . . , xn, s],
a ∈ Z and some fixed P ∈ K [x1, . . . , xn]. This submodule is isomorphic to K [x, s, P−1]P s .
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Proposition 2.19 (Equivalence theorem for fixed s). Let K be a field of characteristic 0, let P , Q , b and R be as
before, and fix some element s ∈ K . Then the following are equivalent:

(b) R(s, x)= 0 in the polynomial ring K [x] ( for the given value of s).

Furthermore, if K is infinite, then (a)–(b) are equivalent to:

(c) There exist infinite sets X1, . . . , Xn ⊆ K such that R(s, x1, . . . , xn) = 0 for (x1, . . . , xn) ∈ X1 × · · · × Xn
( for the given value of s).

Finally, if K =R or C, then (a)–(c) are equivalent to:

(d) There exist a nonempty open set U ⊆ K n and a branch of P (x)s defined on U such that (2.47) holds for all
x ∈ U ( for the given value of s).

(e) For every nonempty open set U ⊆ K n and every branch of P (x)s defined on U , (2.47) holds for all x ∈ U
( for the given value of s).

In particular, Proposition 2.18 shows that it suffices to prove (2.47) for infinitely many positive or
negative integers s, using the elementary interpretation (1) or (2) above; it then holds automatically
for arbitrary s as an identity in the module K [x, s, P−1]P s and as an analytic identity. Likewise, it
suffices to specialize x1, . . . , xn to real or complex variables and to prove (2.47) for some nonempty
open set in Rn or Cn . In what follows, we shall repeatedly take advantage of these simplifications.
(Many previous authors – especially the earlier ones – have done so as well, but without making
Proposition 2.18 explicit.)

3. Elementary proofs of Cayley-type identities

In this section we give proofs of the three main Cayley-type identities for square matrices (The-
orems 2.1–2.3) that use nothing but elementary properties of determinants (notably, Jacobi’s identity
for cofactors) along with the elementary formulae for the derivative of a product or a power.

The general situation we have to handle in all three cases is as follows: Let Γ be a finite index
set, let (Eγ )γ∈Γ be given n × n matrices with elements in some field K , and let (xγ )γ∈Γ be inde-
terminates. Now define the matrix X =∑

γ∈Γ xγ Eγ . If A = (Aγ )γ∈Γ is a K -valued vector, we write
∂A =∑

γ∈Γ Aγ ∂/∂xγ and E A =∑
γ∈Γ Aγ Eγ , so that ∂A X = E A . We need a formula for successive

derivatives of (det X)s:

Lemma 3.1. Let (Eγ )γ∈Γ be n×n matrices, let (xγ )γ∈Γ be indeterminates, and define X =∑
γ∈Γ xγ Eγ . For

any sequence A1, . . . , Ak of K -valued vectors, we have

(
k∏

i=1

∂Ai

)
(det X)s

= (−1)k(det X)s
∑
τ∈Sk

(−s)#(cycles of τ )
∏

cycles of τ
C=(α1,...α�)

tr
(

X−1 E Aα1
. . . X−1 E Aα�

)
(3.1a)

= (det X)s
∑
τ∈Sk

sgn(τ )s#(cycles of τ )
∏

cycles of τ
C=(α1,...α�)

tr
(

X−1 E Aα1
. . . X−1 E Aα�

)
. (3.1b)

Proof. By induction on k. The case k = 1 follows from Cramer’s rule or alternatively from the relation

(det X)s = exp(s tr log X). (3.2)
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For the inductive step we shall need the identity

∂A
(

X−1)=−X−1(∂A X)X−1, (3.3)

which follows from ∂A(X−1 X)= 0. Assume now that the theorem is valid for k and let us apply ∂Ak+1 .
When this derivative hits (det X)s , it creates a new cycle (k + 1), with prefactor s = (−1)(−s); these
terms correspond to permutations τ ∈ Sk+1 in which the element k + 1 is fixed. Alternatively, the
derivative can hit one of the X−1 factors in one of the traces; by (3.3) this inserts the element k + 1
into one of the existing cycles at an arbitrary position, and produces an extra factor −1; these terms
correspond to permutations τ ∈ Sk+1 in which the element k+ 1 is not fixed. �

For 1 � i, j � n, let Eij be the matrix with a 1 in position i j and zeros elsewhere, i.e.

(
Eij)

i′ j′ = δi,i′δ j, j′ . (3.4)

We will express the matrices Eγ in each of our three cases in terms of the Eij .

3.1. Ordinary Cayley identity

Proof of Theorem 2.1. In this case the index set Γ is simply [n]× [n], and we write X =∑n
i, j=1 xij Ei j .

Now let I = {i1, . . . , ik} with i1 < · · ·< ik and J = { j1, . . . , jk} with j1 < · · ·< jk , so that

det(∂I J )=
∑
σ∈Sk

sgn(σ )

k∏
r=1

∂

∂xir jσ (r)

. (3.5)

For each fixed σ ∈ Sk , we apply Lemma 3.1 with ∂Ar = ∂/∂xir jσ(r) . In the traces we have E Aαr
=

Eiαr jσ(αr ) and hence

tr
(

X−1 Eiα1 jσ (α1) . . . X−1 Eiα�
jσ (α�)

)= X−1
jσ (α�)iα1

X−1
jσ (α1) iα2

. . . X−1
jσ (α�−1)iα�

(3.6a)

=
�∏

r=1

X−T
iτ (αr ) jσ (αr )

, (3.6b)

where X−T ≡ (X−1)T and we have used the fact that, for τ as in Lemma 3.1, τ (αi) = αi+1 for i =
1, . . . , �− 1 and τ (α�)= α1. We can now combine all the different traces into a single product. We
obtain

det(∂I J )(det X)s = (det X)s
∑
σ∈Sk

sgn(σ )
∑
τ∈Sk

sgn(τ )s#(cycles of τ )

k∏
r=1

(
X−T)

iτ (r) jσ (r)
. (3.7)

Let us now define the permutation π = σ ◦ τ−1 and change variables from (σ , τ ) to (τ ,π), using
sgn(σ ) sgn(τ ) = sgn(π). The product over r can be written equivalently as a product over t = τ (r).
We have

∑
π∈S

sgn(π)

k∏
t=1

(
X−T)

it jπ(t)
= det

((
X−T)

I J

)= (det X)−1ε(I, J )(det XIc J c ) (3.8)

k
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by Jacobi’s identity [Lemma A.1(e)], while

∑
τ∈Sk

s#(cycles of τ ) = s(s + 1) · · · (s+ k− 1) (3.9)

(see e.g. [47, p. 263, Eq. (6.11)] or [92, Proposition 1.3.4] for this well-known equality). �
3.2. Symmetric Cayley identity

Proof of Theorem 2.2. In this case the index set Γ consists of ordered pairs (i, j) ∈ [n] × [n] with
i � j, and we write Xsym =∑

i< j xi j(Eij + E ji)+∑
i xii Eii . Then

∂
sym
i j Xsym = 1

2

(
Eij + E ji) (3.10)

in all three cases (i < j, i > j and i = j). Now let us apply det(∂sym
I J ) to (det Xsym)s and compare

to what we had in the previous proof. On the one hand we have a factor 2−k coming from the
k derivatives. On the other hand, each E A is now a sum of two terms Eij and E ji ; in each cycle
(α1, . . . ,αl) of τ , the argument of the trace becomes

X−1(Eiα1 jσ (α1) + E jσ (α1)iα1
)

X−1(Eiα2 jσ (α2) + E jσ (α2)iα2
) · · · (3.11)

(to lighten the notation we have written X instead of Xsym). We therefore need to sum over all the 2l

ways of choosing Eij or E ji in each factor within the given trace (hence 2k choices overall). Performing
the trace, we will obtain terms of the form

X−1
jσ (αr )iαr+1

, X−1
iαr iαr+1

, X−1
jσ (αr ) jσ (αr+1)

, X−1
iαr jσ (αr+1)

. (3.12)

Let us now fix one of the 2k choices and sum over the permutation σ . If one or more of the factors
is of the form X−1

jσ(αr ) jσ(αr+1)
, then the sum over σ will vanish because the exchange between σ(αr)

and σ(αr+1) takes a −1 from sgn(σ ). Therefore, in each cycle of τ there are only two nonvanishing
contributions, corresponding to the two ways of coherently orienting the cycle. One of these has X−T

(as in the previous proof) and the other has X−1, but these are in fact equal since X is symmetric. We
thus have, compared to the previous proof, an extra factor 2#(cycles of τ ) . We now change variables, as
before, in the sum over permutations. The sum over π gives (3.8) exactly as before, while the sum
over τ now gives

2−k
∑
τ∈Sk

(2s)#(cycles of τ ) = s

(
s+ 1

2

)
· · ·

(
s+ k− 1

2

)
(3.13)

by (3.9). �
3.3. Antisymmetric Cayley identity

Let us recall the definition of the pfaffian of a 2n× 2n antisymmetric matrix:

pf A = 1

2nn!
∑

σ∈S
sgn(σ )aσ (1)σ (2) · · ·aσ (2n−1)σ (2n). (3.14)
2n
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Proof of Theorem 2.3. In this case the index set Γ consists of ordered pairs (i, j) ∈ [n] × [n] with
i < j, and we write Xantisym =∑

i< j xi j(Eij − E ji). Then

∂
antisym
i j Xantisym = Eij − E ji . (3.15)

Now let I = {i1, . . . , i2k} with i1 < · · · < i2k , and let us apply pf(∂antisym
I I ) to (pf Xantisym)s =

(det Xantisym)s/2: using the representation (3.14) for pf(∂antisym
I I ), we obtain

pf
(
∂

antisym
I I

)(
pf Xantisym)s = 1

2kk!
∑

σ∈S2k

sgn(σ )

(
k∏

r=1

∂

∂xiσ (2r−1)iσ (2r)

)(
det Xantisym)s/2

. (3.16)

Now apply Lemma 3.1 as before. In each cycle (α1, . . . ,α�) of τ , the argument of the trace becomes

X−1(Eiσ (2α1−1)iσ (2α1) − Eiσ (2α1) iσ (2α1−1)
)

X−1(Eiσ (2α2−1) iσ (2α2) − Eiσ (2α2)iσ (2α2−1)
) · · · . (3.17)

Once again we have 2k choices in the E factors; but here these choices correspond simply to pre-
multiplying σ by one of the 2k permutations that leave fixed the pairs {1,2}, . . . , {2k − 1,2k};
therefore, after summing over σ we simply get a factor 2k . Let us now introduce the permutation
σ τ defined by

στ (2r − 1)= σ
(
2τ (r)− 1

)
, (3.18a)

στ (2r)= σ(2r). (3.18b)

For each τ ∈ Sk , the map σ �→ σ τ is an automorphism of S2k and satisfies sgn(σ τ )= sgn(σ ) sgn(τ ).
We have

pf
(
∂

antisym
I I

)(
pf Xantisym)s

= 2k 1

2kk!
∑

σ∈S2k

sgn(σ )
∑
τ∈Sk

sgn(τ )(s/2)#(cycles of τ )

k∏
r=1

(
X−T)

iσ (2τ (r)−1)iσ (2r)
. (3.19)

We now define π = σ τ and change variables from (σ , τ ) to (τ ,π) as before. The sum over π gives

1

2kk!
∑

π∈S2k

sgn(π)

k∏
r=1

(
X−T)

iπ(2r−1)iπ(2r)
= pf

((
X−T)

I I

)= (pf X)−1ε(I)(pf XIc Ic ) (3.20)

by the pfaffian version of Jacobi’s identity [cf. (A.21)], while the sum over τ gives

2k
∑
τ∈Sk

(s/2)#(cycles of τ ) = s(s + 2) · · · (s+ 2k− 2) (3.21)

by (3.9). �
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4. Proofs of Cayley-type identities by Grassmann/Gaussian representation of (det X)s

Let us now give simple proofs of Theorems 2.1–2.3, based on representing (det X)s as a fermionic
or bosonic Gaussian integral. A brief introduction to fermionic and bosonic Gaussian integration can
be found in Appendix A.

4.1. Ordinary Cayley identity

Proof of Theorem 2.1. Assume that s is a positive integer, and let us introduce Grassmann variables
ψ

(α)
i , ψ̄

(α)
i for i = 1, . . . ,n and α = 1, . . . , s. We can then write

(det X)s =
∫

D(ψ, ψ̄) eψ̄ Xψ, (4.1)

where we have used the shorthand

ψ̄ Xψ ≡
s∑

α=1

n∑
i, j=1

ψ̄
(α)
i xi jψ

(α)
j . (4.2)

Now let I = {i1, . . . , ik} with i1 < · · ·< ik and J = { j1, . . . , jk} with j1 < · · ·< jk , so that

det(∂I J )=
∑
σ∈Sk

sgn(σ )

k∏
r=1

∂

∂xir jσ (r)

. (4.3)

Applying this to (4.1), we obtain

det(∂I J )(det X)s =
∫

D(ψ, ψ̄)
∑
σ∈Sk

sgn(σ )

s∑
α1,...,αk=1

(
k∏

r=1

ψ̄
(αr)
ir

ψ
(αr)
jσ (r)

)
eψ̄ Xψ. (4.4)

When X is an invertible real or complex matrix, Wick’s theorem for “complex” fermions (Theo-
rem A.16) gives

∫
D(ψ, ψ̄)

(
k∏

r=1

ψ̄
(αr)
ir

ψ
(αr)
jσ (r)

)
eψ̄ Xψ = (det X)s

∑
τ∈Sk

sgn(τ )

k∏
r=1

(
X−T)

ir jσ (τ (r))
δαrατ(r) . (4.5)

Let us now define the permutation π = σ ◦ τ and change variables from (σ , τ ) to (τ ,π), using
sgn(σ ) sgn(τ )= sgn(π). We then have

∑
π∈Sk

sgn(π)

k∏
r=1

(
X−T)

ir jπ(r)
= det

((
X−T)

I J

)= (det X)−1ε(I, J )(det XIc J c ) (4.6)

by Jacobi’s identity, while

∑
τ∈S

s∑
α ,...,α =1

k∏
r=1

δαrατ(r) =
∑
τ∈S

s#(cycles of τ ) = s(s + 1) · · · (s+ k− 1) (4.7)

k 1 k k
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by (3.9). This proves (2.2) for integer s � 1, when X is an invertible real or complex matrix. By
Proposition 2.18, this is sufficient to prove the identity. �
Alternate proof of Theorem 2.1. Instead of using “complex” fermions, we can use complex bosons. So
assume that s =−m where m is a positive integer, and that X is a complex matrix whose hermitian
part is positive–definite; and let us introduce bosonic variables ϕ

(α)
i , ϕ̄

(α)
i for i = 1, . . . ,n and α =

1, . . . ,m. We then have

(det X)−m =
∫

D(ϕ, ϕ̄) e−ϕ̄ Xϕ. (4.8)

By the same method as before, we obtain

det(∂I J )(det X)−m = (−1)k
∫

D(ϕ, ϕ̄)
∑
σ∈Sk

sgn(σ )

m∑
α1,...,αk=1

(
k∏

r=1

ϕ̄
(αr)
ir

ϕ
(αr)
jσ (r)

)
e−ϕ̄Xϕ. (4.9)

Wick’s theorem for complex bosons (Theorem A.4) now gives

∫
D(ϕ, ϕ̄)

(
k∏

r=1

ϕ̄
(αr)
ir

ϕ
(αr)
jσ (r)

)
e−ϕ̄Xϕ = (det X)−m

∑
τ∈Sk

k∏
r=1

(
X−T)

ir jσ (τ (r))
δαrατ(r) . (4.10)

Once again we define the permutation π = σ ◦ τ and change variables, using now sgn(σ ) =
sgn(τ ) sgn(π). We again have

∑
π∈Sk

sgn(π)

k∏
r=1

(
X−T)

ir jπ(r)
= det

((
X−T)

I J

)= (det X)−1ε(I, J )(det XIc J c ), (4.11)

while now

∑
τ∈Sk

sgn(τ )

m∑
α1,...,αk=1

k∏
r=1

δαrατ(r) =
∑
τ∈Sk

sgn(τ )m#(cycles of τ )

=
∑
τ∈Sk

(−1)#(odd cycles of τ )(−m)#(cycles of τ )

= (−1)ks(s + 1) · · · (s+ k− 1) (4.12)

by (3.9) since s = −m. This proves (2.2) for integer s � −1, when X is a complex matrix whose
hermitian part is positive–definite; we conclude by Proposition 2.18 as before. �
4.2. Symmetric Cayley identity

Proof of Theorem 2.2. In this case we use real bosons. So assume that s = −m/2 where m is a
positive integer, and that Xsym is a real symmetric positive–definite matrix; and let us introduce
bosonic variables ϕ

(α)
i for i = 1, . . . ,n and α = 1, . . . ,m. We then have

(
det Xsym)−m/2 =

∫
Dϕ e−

1
2 ϕXsymϕ. (4.13)
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The operator ∂
sym
i j = 1

2 (1+ δi j) ∂/∂xij is exactly what is needed to bring down a factor − 1
2 ϕiϕ j when

acting on e− 1
2 ϕXsymϕ . (To lighten the notation, let us henceforth write X instead of Xsym.) We therefore

have

det
(
∂

sym
I J

)
(det X)−m/2

=
(
−1

2

)k ∫
Dϕ

∑
σ∈Sk

sgn(σ )

m∑
α1,...,αk=1

(
k∏

r=1

ϕ
(αr)
ir

ϕ
(αr)
jσ (r)

)
e−

1
2 ϕXϕ. (4.14)

Wick’s theorem for real bosons (Theorem A.3) applied to
∫
Dϕ

∏k
r=1 ϕ

(αr )
ir

ϕ
(αr)
jσ(r)

now gives rise to

two types of contractions: those that only pair i’s with j’s, and those that pair at least one i with
another i (and hence also a j with another j). The pairings of the first class are given by a sum over
permutations τ , and yield

(det X)−m/2
∑
τ∈Sk

k∏
r=1

(
X−1)

ir jσ (τ (r))
δαrατ(r) . (4.15)

Changing variables as in the alternate proof of Theorem 2.1, the sum over π again yields
(det X)−1ε(I, J )(det XIc J c ), while the sum over τ yields

∑
τ∈Sk

(−1)#(odd cycles of τ )(−m)#(cycles of τ ) = (−1)k(2s)(2s + 1) · · · (2s+ k− 1) (4.16)

by (3.9) since s =−m/2. Inserting these results into (4.14), we obtain (2.5).
Let us now show that for each pairing of the second class, the sum over σ yields zero. By hypoth-

esis, at least one j is paired with another j, say jp with jq . Now let πpq ∈ Sk be the permutation that
interchanges p and q while leaving all other elements fixed. Then σ �→ σ ◦ πpq is a sign-reversing
involution for the sum in question.

Once again we argue that because the equality (2.5) holds for infinitely many s and for X in a
nonempty open set, it must hold symbolically in s. �
4.3. Antisymmetric Cayley identity

Proof of Theorem 2.3. In this case we use “real” fermions. So assume that s is a positive integer,
and let us introduce “real” Grassmann variables θ

(α)
i for i = 1, . . . ,2m and α = 1, . . . , s. We can then

write

(
pf Xantisym)s =

∫
Dθ e

1
2 θ Xantisymθ . (4.17)

Now let I = {i1, . . . , i2k} with i1 < · · ·< i2k , so that

pf
(
∂

antisym
I I

)= 1

2kk!
∑

σ∈S
sgn(σ )

k∏
r=1

∂

∂xiσ (2r−1)iσ (2r)

. (4.18)

2k
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Applying this to (4.17), we obtain

pf
(
∂

antisym
I I

)(
pf Xantisym)s

=
∫

Dθ
1

2kk!
∑

σ∈S2k

sgn(σ )

s∑
α1,...,αk=1

(
k∏

r=1

θ
(αr)
iσ (2r−1)

θ
(αr)
iσ (2r)

)
e

1
2 θ Xantisymθ . (4.19)

(To lighten the notation, let us henceforth write X instead of Xantisym.) When X is an invertible real
or complex matrix, Wick’s theorem for “real” fermions (Theorem A.15) gives

∫
Dθ

(
k∏

r=1

θ
(αr)
iσ (2r−1)

θ
(αr)
iσ (2r)

)
e

1
2 θ Xθ

= (pf X)s 1

2kk!
∑

τ∈S2k

sgn(τ )

k∏
r=1

(
X−T)

iσ (τ (2r−1))iσ (τ (2r))
δα�τ (2r−1)�α�τ (2r)� . (4.20)

Once again we define the permutation π = σ ◦ τ and change variables from (σ , τ ) to (τ ,π), using
sgn(σ ) sgn(τ )= sgn(π). The sum over π gives

1

2kk!
∑

π∈S2k

sgn(π)

k∏
r=1

(
X−T)

iπ(2r−1)iπ(2r)
= pf

((
X−T)

I I

)= (pf X)−1ε(I)(pf XIc Ic ) (4.21)

by the pfaffian version of Jacobi’s identity [cf. (A.21)]. The remaining sums give

1

2kk!
∑

τ∈S2k

s∑
α1,...,αk=1

k∏
r=1

δα�τ (2r−1)�α�τ (2r)� =
∑

M∈M2k

s#(cycles of M∪M0), (4.22)

where the latter sum runs over all perfect matchings M of 2k elements, and M0 is some fixed perfect
matching [in our case (12)(34) · · · (2k − 1 2k)]; we observe that if M and M0 are thought of as edge
sets on [2k], then M ∪ M0 is the edge set of a graph in which each vertex has degree 2, and so is
a union of cycles, showing that the right-hand side is well defined. Let us now show that this latter
sum equals s(s+ 2) · · · (s+ 2k− 2):

Let e1, . . . , ek be the edges of M0. Then each matching M ∈ M2k induces a decomposition of
the set {e1, . . . , ek} into cycles, according to how those edges are traversed in M ∪ M0; in other
words, M induces a permutation of [k]. Moreover, for each cycle C in this decomposition, there are
2|C |−1 ways of connecting up the vertices. Thus each permutation π of [k] arises from

∏
C∈π 2|C |−1 =

2k−#(cycles of π) different matchings M . We therefore have

∑
M∈M2k

s#(cycles of M∪M0) = 2k
∑
π∈Sk

(s/2)#(cycles of π) (4.23a)

= s(s + 2) · · · (s+ 2k− 2). (4.23b)

Once again we invoke Proposition 2.18 to conclude.23 �
23 We thank Alex Scott for help in cleaning up our proof of (4.23).
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5. Proofs of Cayley-type identities by Grassmann representation of det(∂)

In this section we give an alternate Grassmann-based approach to proving Cayley-type identities:
now it is the differential operator det(∂) that is represented as a fermionic Gaussian integral. This
technique is in our opinion very powerful: not only does it give the slickest proofs of the three main
Cayley-type identities for square matrices; it also gives the only direct algebraic/combinatorial proofs
(thus far) of the (considerably more difficult) rectangular Cayley identities.

The basic fact we will need is that an operator exp(a ·∂) generates translation by a. More precisely,
let R be a commutative ring containing the rationals; then for any polynomial P (z1, . . . , zn) with
coefficients in R and any constants a1, . . . ,an ∈ R , we have the translation formula

exp

(∑
i

ai
∂

∂zi

)
P (z)= P (z + a). (5.1)

(Here exp is defined by Taylor series; note that all but finitely many terms will annihilate P .) Indeed,
the identity (5.1) is nothing other than Taylor’s theorem for polynomials P . In particular we will
use (5.1) when the commutative ring R consists of the even elements of some Grassmann algebra.
Moreover, in our applications the elements ai will be nilpotent, so that the Taylor series for exp(a · ∂)

is in fact finite.
We will also need a formula for the change of a determinant under a low-rank perturbation: see

Appendix B.2.
Let us begin by explaining the general structure of all these proofs. We introduce a Grassmann

integral representation for the differential operator det(∂) and let it act on (det X)s . After a change of
variables in the Grassmann integral, we obtain the desired quantity (det X)s−1 [or its generalization
for minors I , J ] multiplied by a purely combinatorial factor that is independent of the matrix X . We
then proceed to calculate this combinatorial factor, which turns out to be an explicit polynomial in s.

Unfortunately, the “all-minors” versions of these proofs (i.e. those for |I| = | J | = k < n) are slightly
more complicated than the “basic” versions (i.e. those for I = J = [n]). We have therefore structured
our presentation so as to give the “basic” proof first, and then indicate the modifications needed to
handle the “all-minors” case.

5.1. Ordinary Cayley identity

Proof of Theorem 2.1. We introduce Grassmann variables ηi , η̄i (1 � i � n) and use the representation

det(∂)=
∫

Dn(η, η̄) eη̄T∂η, (5.2)

where the subscript on D serves to remind us of the length of the vectors in question, and we have
employed the shorthand notation

η̄T∂η≡
n∑

i, j=1

η̄i
∂

∂xij
η j =

n∑
i, j=1

η̄iη j
∂

∂xij
. (5.3)

[Indeed, (5.2) is simply a special case of the fermionic Gaussian integral (A.74) where the coefficient
ring R is the ring Q[∂] of polynomials in the differential operators ∂/∂xij .] Applying (5.2) to (det X)s

where s is a positive integer and using the translation formula (5.1), we obtain24

24 We have assumed here that s is a positive integer, because we have proven (5.1) only for polynomials P . Alternatively, we
could avoid this assumption by proving (5.1) also for more general functions (e.g. powers of polynomials) when all the ai are
nilpotent.
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det(∂)(det X)s =
∫

Dn(η, η̄)det
(

X + η̄ηT)s
(5.4a)

= (det X)s
∫

Dn(η, η̄)det
(

I + X−1η̄ηT)s
. (5.4b)

(We assume here that X is an invertible real or complex matrix.) Let us now change variables from
(η, η̄) to (η′, η̄′)≡ (η, X−1η̄); we pick up a Jacobian det(X−1)= (det X)−1 and thus have

det(∂)(det X)s = (det X)s−1
∫

Dn
(
η′, η̄′

)
det

(
I + η̄′η′T

)s
. (5.5)

Formula (5.5) expresses det(∂)(det X)s as the desired quantity (det X)s−1 times a purely combinatorial
factor

P (s,n)≡
∫

Dn(η, η̄)det
(

I + η̄ηT)s
, (5.6)

which we now proceed to calculate. The matrix I+ η̄ηT is a rank-1 perturbation of the identity matrix;
by Lemma B.11 we have

det
(

I + η̄ηT)s = (
1− η̄Tη

)−s
(5.7a)

=
∞∑

�=0

(−1)�
(−s

�

)(
η̄Tη

)�
(5.7b)

where

η̄Tη≡
n∑

i=1

η̄iηi . (5.8)

Since ∫
Dn(η, η̄)

(
η̄Tη

)� = n! δ�,n, (5.9)

it follows that

P (s,n)= (−1)n
(−s

n

)
n! (5.10a)

= s(s + 1) · · · (s+ n− 1). (5.10b)

This proves (2.1) when X is an invertible real or complex matrix and s is a positive integer; the
general validity of the identity then follows from Proposition 2.18.25

25 Alternatively, one can observe (see the Remark after Theorem 2.1) that the Cayley identity (2.1) is equivalent to

det(∂)det(X + A)s = s(s+ 1) · · · (s+ n− 1) det(X + A)s−1

for any fixed matrix A. This latter identity can be proven exactly as above, with X−1 replaced by (X + A)−1, and it works
whenever X + A is invertible. Taking, for instance, A = −cI , we prove the identity for all real or complex matrices X whose
spectrum does not contain the point c. Putting together these identities for all c ∈C, we cover all matrices X .
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Let us now indicate the modifications needed to prove (2.2) for a minor I, J , where I, J ⊆ [n] with
|I| = | J | = k. We begin by introducing a Grassmann representation for det(∂I J ):

det(∂I J )= ε(I, J )

∫
Dn(η, η̄)

(∏
η̄η

)
Ic , J c

eη̄T∂η (5.11)

where

(∏
η̄η

)
Ic , J c

≡ η̄i1η j1 · · · η̄in−kη jn−k (5.12)

and i1, . . . , in−k (resp. j1, . . . , jn−k) are the elements of Ic (resp. J c) in increasing order. Applying the
translation formula (5.1) as before, we obtain

det(∂I J )(det X)s = ε(I, J )

∫
Dn(η, η̄)

(∏
η̄η

)
Ic , J c

det
(

X + η̄ηT)s
(5.13a)

= ε(I, J )(det X)s
∫

Dn(η, η̄)
(∏

η̄η
)

Ic , J c
det

(
I + X−1η̄ηT)s

. (5.13b)

Once again we change variables from (η, η̄) to (η′, η̄′)≡ (η, X−1η̄), picking up a Jacobian det(X−1)=
(det X)−1; and we use the identity (5.7), obtaining

(det ∂I J )(det X)s = ε(I, J )(det X)s−1
∫

Dn(η, η̄)
(∏

(X η̄)η
)

Ic , J c

∞∑
�=0

(−1)�
(−s

�

)(
η̄Tη

)�
(5.14a)

= ε(I, J )(det X)s−1
∑

r1,...,rn−k∈[n]

(
n−k∏
p=1

Xip ,rp

) ∞∑
�=0

(−1)�
(−s

�

)

×
∫

Dn(η, η̄)

(
n−k∏
p=1

η̄rp η jp

)(
η̄Tη

)�
. (5.14b)

The rules of Grassmann integration constrain the integral to be zero unless �= k and (r1, . . . , rn−k)=
( jσ(1), . . . , jσ(n−k)) for some permutation σ ∈ Sn−k . We therefore have

(det ∂I J )(det X)s = ε(I, J )(det X)s−1
∑

σ∈Sn−k

sgn(σ )

(
n−k∏
p=1

Xip , jσ (p)

)
(−1)k

(−s

k

)

×
∫

Dn(η, η̄)

(
n−k∏
p=1

η̄ jp η jp

)
k!
(∏

i∈ J

η̄iηi

)
(5.15a)

= ε(I, J )(det X)s−1s(s + 1) · · · (s+ k− 1)
∑

σ∈Sn−k

sgn(σ )

n−k∏
p=1

Xip , jσ (p)
(5.15b)

= ε(I, J )(det X)s−1s(s + 1) · · · (s+ k− 1)det(XIc J c ). (5.15c)

This proves (2.2). �
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5.2. Two useful lemmas for the all-minors case

Let us now pause to abstract the type of reasoning that was just used in proving the all-minors
identity (2.2), as similar reasoning will be needed to prove the all-minors versions of the symmetric
and rectangular Cayley identities and the all-principal-minors versions of the antisymmetric identi-
ties. The reader who is interested mainly in the case I = J = [n] can skip this subsection on a first
reading.

The key results of this subsection will be a pair of general formulae: Lemma 5.1 for “complex”
fermions and Lemma 5.3 for “real” fermions. Important special cases of these formulae (which also
have easier direct proofs) will be stated in Corollaries 5.2 and 5.4, respectively. These corollaries are,
in fact, all we need to handle the all-minors symmetric Cayley identity (Section 5.3) and the all-
principal-minors antisymmetric Cayley identity (Section 5.4). However, the rectangular Cayley iden-
tities (Sections 5.5–5.9) will need the full strength of Lemmas 5.1 and 5.3 to handle the all-minors
case.

Let I, J ⊆ [n] with |I| = | J | = k, and let Ic , J c be the complementary subsets. We denote by
i1, . . . , in−k (resp. j1, . . . , jn−k) the elements of Ic (resp. J c) in increasing order. Let ηi , η̄i (1 � i � n)
be Grassmann variables as before. Then, for any n× n matrices A, B , we define

(∏
(Aη̄)(Bη)

)
Ic , J c

= (Aη̄)i1(Bη) j1 · · · (Aη̄)in−k (Bη) jn−k . (5.16)

In particular, ((Aη̄)(Bη))∅,∅ = 1.

Now suppose that we have N further sets of (real) Grassmann variables θ
(α)
i (1 � i � n, 1 �

α � N) – the case N = 0 is also allowed – and suppose that f (η, η̄, θ) is a polynomial in the scalar
products η̄Tη, η̄Tθ(α) , ηTθ(α) and θ(α)Tθ(β) . Then a Grassmann integral of the form

∫
Dn(η, η̄, θ)

(∏
i∈L

η̄iηi

)
f (η, η̄, θ) (5.17)

obviously takes the same value for all sets L ⊆ [n] of the same cardinality.
Let us now show how a Grassmann integral involving (

∏
(Aη̄)(Bη))Ic , J c and f (η, η̄, θ) can be

written as a determinant containing A and B multiplied by a purely combinatorial factor:

Lemma 5.1. Let I, J ⊆ [n] with |I| = | J | = k, let A, B be n × n matrices, and let f (η, η̄, θ) be a polynomial
in the scalar products as specified above. Suppose further that the number N of additional fermion species is
even. Then

∫
Dn(η, η̄, θ)

(∏
(Aη̄)(Bη)

)
Ic , J c

f (η, η̄, θ)

= det
[(

ABT)
Ic J c

] ∫
Dn(η, η̄, θ)

(∏
i∈L

η̄iηi

)
f (η, η̄, θ) (5.18)

where L ⊆ [n] is any set of cardinality n− k.

Proof. The expansion of the product (5.16) produces

(∏
(Aη̄)(Bη)

)
Ic , J c

=
∑

r1,...,rn−k∈[n]
s ,...,s ∈[n]

n−k∏
p=1

Aip ,rp B jp ,sp η̄rp ηsp . (5.19)
1 n−k
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Note that, by nilpotency of Grassmann variables, the product on the right-hand side of (5.19) is nonva-
nishing only if the indices r1, . . . , rn−k are all distinct and the indices s1, . . . , sn−k are also all distinct.
Let us now integrate (5.19) against one of the monomials arising in the expansion of f (η, η̄, θ). For
each “site” i ∈ [n], this monomial contains an even number of factors ηi , η̄i or θ

(α)
i ; and it must

contain each one of the factors θ
(α)
i (1 � α � N) precisely once if the Grassmann integral over θ

is to be nonvanishing. Since N is even, this means that at each site i we must either have both
of the factors ηi and η̄i , or neither. In order to have a nonvanishing Grassmann integral over η
and η̄, the former situation must occur at k sites and the latter at n − k sites; moreover, the lat-
ter n−k sites must correspond precisely to the factors η̄rp ηsp in (5.19). We can therefore assume that
(r1, . . . , rn−k) = (sσ(1), . . . , sσ(n−k)) for some permutation σ ∈ Sn−k; the contributing terms in (5.19)
are then

∑
r1,...,rn−k∈[n]

all distinct

∑
σ∈Sn−k

n−k∏
p=1

Aip,rp B jp ,r
σ−1(p)

η̄rp ηr
σ−1(p)

. (5.20)

The factors B jp ,r
σ−1(p)

can be reordered freely; reordering of the Grassmann factors ηr
σ−1(p)

yields a

prefactor sgn(σ ). We therefore obtain

∑
r1,...,rn−k∈[n]

all distinct

∑
σ∈Sn−k

sgn(σ )

n−k∏
p=1

Aip,rp B jσ (p),rp η̄rp ηrp . (5.21)

By the remarks around (5.17), the integral

∫
Dn(η, η̄, θ)

(
n−k∏
p=1

η̄rp ηrp

)
f (η, η̄, θ) (5.22)

is independent of the choice of r1, . . . , rn−k (provided that they are all distinct) and hence can be
pulled out. We are left with the factor

∑
r1,...,rn−k∈[n]

all distinct

∑
σ∈Sn−k

sgn(σ )

n−k∏
p=1

Aip ,rp B jσ (p),rp . (5.23)

We can now remove the restriction that the r1, . . . , rn−k be all distinct, because the terms with two or
more ri equal cancel out when we sum over permutations with the factor sgn(σ ). So (5.23) equals

∑
r1,...,rn−k∈[n]

∑
σ∈Sn−k

sgn(σ )

n−k∏
p=1

Aip ,rp B jσ (p),rp =
∑

σ∈Sn−k

sgn(σ )

n−k∏
p=1

(
ABT)

ip , jσ (p)
(5.24a)

= det
[(

ABT)
Ic J c

]
. � (5.24b)

Remark. If N is odd, the situation is different: at each site i the monomial coming from f must now
provide exactly one of the factors ηi and η̄i . This means that we can get a nonzero contribution only
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when n is even and k = n/2. For instance, suppose that N = 1, n = 2, Ic = {i} and J c = { j}, and that
f (η, η̄, θ)= (ηTθ)(η̄Tθ). Then

∫
D2(η, η̄, θ)

(∏
(Aη̄)(Bη)

)
Ic , J c

(
ηTθ

)(
η̄Tθ

)=−Ai1 B j2 + Ai2 B j1. (5.25)

We shall not consider this situation further, as we shall not need it in the sequel.

The following identity is what was used in the proof of the all-minors ordinary Cayley identity
(2.2) and will also be used in the proof of the all-minors symmetric Cayley identity (2.5):

Corollary 5.2. Let I, J ⊆ [n] with |I| = | J | = k, let A, B be n×n matrices, let M be an invertible n×n matrix,
and let � be a nonnegative integer. Then

∫
Dn(η, η̄)

(∏
(Aη̄)(Bη)

)
Ic , J c

(
η̄TMη

)� = k! δ�,k(det M)det
[(

AM−T BT)
Ic J c

]
. (5.26)

First proof. The case M = I is an easy consequence of Lemma 5.1. The case of a general invertible
matrix M can be reduced to the case M = I by the change of variables (η′, η̄′)≡ (Mη, η̄), which picks
up a Jacobian det M and replaces B by BM−1. �

Here is a simple direct proof of Corollary 5.2 that avoids the combinatorial complexity of the full
Lemma 5.1 and instead relies on standard facts from the theory of Grassmann–Berezin integration
(Appendix A)26:

Second proof. It is easy to see that the Grassmann integral is nonvanishing only when � = k. So in
this case we can replace (η̄TMη)k in the integrand by k!exp(η̄TMη). The claim is then an immediate
consequence of Wick’s theorem for “complex” fermions (Theorem A.16). �

In order to handle the all-principal-minors versions of the antisymmetric identities, we shall need
formulae analogous to Lemma 5.1 and Corollary 5.2, but for “real” rather than “complex” fermions.
So let I ⊆ [2m] with |I| = 2k, and let Ic be the complementary subset. We denote by i1, . . . , i2m−2k
the elements of Ic in increasing order. Let θ1, . . . , θ2m be “real” Grassmann variables. Then, for any
2m× 2m matrix C , we define

(∏
(Cθ)

)
Ic
≡ (Cθ)i1 · · · (Cθ)i2m−2k (5.27)

(note that the order of factors θ is crucial here because they anticommute). In particular,
(
∏

(Cθ))∅ = 1.
Now suppose that we have N further sets of (real) Grassmann variables χ

(α)
i (1 � i � 2m, 1 �

α � N) – the case N = 0 is also allowed – and suppose that f (θ,χ) is a polynomial in the symplectic
products 1

2 θ Jθ , θ Jχ(α) , 1
2 χ(α) Jχ(α) and χ(α) Jχ(β) , where the 2m× 2m matrix J is defined by

26 Said another way: The proof of Wick’s theorem for “complex” fermions (Theorem A.16) requires combinatorial work similar
in difficulty to that occurring in the proof of Lemma 5.1. But since Wick’s theorem is a “standard” result, we can employ it
without reproving it ab initio.
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J =

⎛
⎜⎜⎜⎜⎜⎝

0 1
−1 0

0 1
−1 0

. . .

⎞
⎟⎟⎟⎟⎟⎠ . (5.28)

Now consider a Grassmann integral of the form

∫
D2m(θ,χ)

(∏
i∈L

θi

)
f (θ,χ) (5.29)

for some set L ⊆ [2m], where the product
∏

i∈L θi is understood to be written from left to right in
increasing order of the indices. Clearly |L| must be even for the integral (5.29) to be nonvanishing.
But more is true: L must in fact be a union of pairs {2 j − 1,2 j}, otherwise (5.29) will again vanish.27

To see this, it suffices to observe that all the variables θ or χ(α) with index 2 j − 1 or 2 j appear in
pairs in f (θ,χ); therefore, in order to have an integrand that is even in these variables, the set L
must contain either both of 2 j − 1 and 2 j or neither. Let us call a set L ⊆ [2m] well-paired if it is a
union of pairs {2 j − 1,2 j}. Obviously the integral (5.29) takes the same value for all well-paired sets
L ⊆ [2m] of the same cardinality.

Let us now show how a Grassmann integral involving (
∏

(Cθ))Ic and f (θ,χ) can be written as a
pfaffian containing C multiplied by a purely combinatorial factor:

Lemma 5.3. Let I ⊆ [2m] with |I| = 2k, let C be a 2m × 2m matrix, and let f (θ,χ) be a polynomial in the
symplectic products as specified above. Then

∫
D2m(θ,χ)

(∏
(Cθ)

)
Ic

f (θ,χ)

= pf
[(

C J CT)
Ic Ic

] ∫
D2m(θ,χ)

(∏
i∈L

θi

)
f (θ,χ) (5.30)

where L ⊆ [2m] is any well-paired set of cardinality 2m− 2k.

Proof. The expansion of the product (5.27) produces

(∏
(Cθ)

)
Ic
=

∑
r1,...,r2m−2k∈[2m]

(
2m−2k∏

p=1

Cip ,rp

)
θr1 · · · θr2m−2k . (5.31)

By nilpotency of Grassmann variables, the product on the right-hand side of (5.31) is nonvanishing
only if the indices r1, . . . , r2m−2k are all distinct. Moreover, as noted above, the set R = {r1, . . . , r2m−2k}
must be well-paired if the integral is to be nonvanishing. Let us denote by r′1, . . . , r′2m−2k the elements

27 This statement of course pertains to our specific choice of J , and would be modified in the obvious way if we had chosen
a different convention for J .
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of R in increasing order. Then we can write (r1, . . . , r2m−2k)= (r′σ(1), . . . , r′σ(2m−2k)
) for some permu-

tation σ ∈ S2m−2k . The contributing terms in (5.31) are then

∑
R⊆[2m]

|R|=2m−2k
R well-paired

∑
σ∈S2m−2k

(
2m−2k∏

p=1

Cip ,r′σ (p)

)
θr′σ (1)

· · · θr′σ (2m−2k)
. (5.32)

We can now reorder the factors θ into increasing order, yielding a factor sgn(σ ), so that (5.32) be-
comes

∑
R⊆[2m]

|R|=2m−2k
R well-paired

∑
σ∈S2m−2k

sgn(σ )

(
2m−2k∏

p=1

Cip ,r′σ (p)

)(∏
i∈R

θi

)
. (5.33)

We now multiply by f (θ,χ) and integrate D2m(θ,χ). As noted previously, the integral

∫
D2m(θ,χ)

(∏
i∈R

θi

)
f (θ,χ) (5.34)

is independent of the choice of R (provided that it is well-paired and of cardinality 2m − 2k) and
hence can be pulled out. In order to calculate the prefactor, let us substitute the defining structure
of well-paired sets R by writing r′2h−1 = 2 jh − 1 and r′2h = 2 jh for suitable indices j1 < · · · < jm−k
in [m]. We are left with

∑
1� j1<···< jm−k�m

r′2h−1≡2 jh−1, r′2h≡2 jh

∑
σ∈S2m−2k

sgn(σ )

2m−2k∏
p=1

Cip ,r′σ (p)
. (5.35)

Alternatively, we can sum over all distinct j1, . . . jm−k ∈ [m] by inserting a factor 1/(m − k)!.28 Re-
markably, we can now remove the restriction that the j1, . . . , jm−k be all distinct, because the terms
with two or more jα equal cancel out when we sum over permutations with the factor sgn(σ ).29 We
can also reorder the factors C freely. Therefore (5.35) equals

1

(m− k)!
∑

j1,..., jm−k∈[m]
r′2h−1≡2 jh−1, r′2h≡2 jh

∑
σ∈S2m−2k

sgn(σ )

2m−2k∏
p=1

Ci
σ−1(p)

,r′p

= 1

(m− k)!
∑

j1,..., jm−k∈[m]
r′2h−1≡2 jh−1, r′2h≡2 jh

∑
σ∈S2m−2k

sgn(σ )

m−k∏
q=1

Ci
σ−1(2q−1)

,r′2q−1
Ci

σ−1(2q)
,r′2q

28 Such a factor might not exist in a general commutative ring R . But we can argue as follows: First we prove the identity
when R = R; then we observe that since both sides of the identity are polynomials with integer coefficients in the matrix
elements of C , the identity must hold as polynomials; therefore the identity holds when the matrix elements of C are specialized
to arbitrary values in an arbitrary commutative ring R .
29 If jα = jβ with α �= β , it suffices to use the involution exchanging r′2α−1 with r′2β−1 (or alternatively the involution ex-

changing r′2α with r′2β ).
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= 1

2m−k(m− k)!
∑

s1,...,sm−k∈[2m]
t1,...,tm−k∈[2m]

∑
σ∈S2m−2k

sgn(σ )

m−k∏
q=1

Ci
σ−1(2q−1)

,sq Ci
σ−1(2q)

,tq J sqtq

= pf
[(

C J CT)
Ic Ic

]
. � (5.36)

The following identity is what will be used in the proof of the all-principal-minors antisymmetric
Cayley identity (2.8):

Corollary 5.4. Let I ⊆ [2m] with |I| = 2k, let C be a 2m × 2m matrix, let M be an invertible antisymmetric
2m× 2m matrix, and let � be a nonnegative integer. Then

∫
D2m(θ)

(∏
(Cθ)

)
Ic

(
1

2
θTMθ

)�

= k! δ�,k(pf M)pf
[(

C M−TCT)
Ic ,Ic

]
. (5.37)

First proof. The case M = J is an easy consequence of Lemma 5.3. For a general real antisymmetric
matrix M , we can use the decomposition M = A J AT (Lemma B.17) and the change of variables θ ′ =
ATθ (which picks up a Jacobian det A = pf M) to reduce to the case M = J .

Finally, if M is an antisymmetric matrix with coefficients in an arbitrary commutative ring R , we
argue that both sides of (5.37) are polynomials with integer coefficients in the matrix elements of M;
since they agree for all real values of those matrix elements (or even for real values in a nonempty
open set), they must agree as polynomials; and this implies that they agree for arbitrary values of the
matrix elements in an arbitrary commutative ring R . �

Here is a simple direct proof of Corollary 5.4 that avoids the combinatorial complexity of the full
Lemma 5.3 and instead relies on standard facts from the theory of Grassmann–Berezin integration:

Second proof. It is easy to see that the Grassmann integral is nonvanishing only for �= k. So in this
case we can replace ( 1

2 θTMθ)k in the integrand by k!exp( 1
2 θTMθ). The claim is then an immediate

consequence of Wick’s theorem for “real” fermions (Theorem A.15). �
5.3. Symmetric Cayley identity

With Corollary 5.2 in hand, we can this time proceed directly to the proof of the all-minors iden-
tity.

Proof of Theorem 2.2. Recall that the matrix ∂sym is given by

(
∂sym)

i j =
⎧⎨
⎩

∂/∂xii if i = j,
1
2 ∂/∂xij if i < j,
1
2 ∂/∂x ji if i > j.

(5.38)

As before, we introduce Grassmann variables ηi , η̄i (1 � i � n) and use the representation

det
(
∂

sym
I J

)= ε(I, J )

∫
Dn(η, η̄)

(∏
η̄η

)
Ic , J c

exp

[∑
i� j

1

2
(η̄iη j + η̄ jηi)

∂

∂xij

]
. (5.39)

By the translation formula (5.1), we have

det
(
∂

sym
I J

)
f
({xij}i� j

)= ε(I, J )

∫
Dn(η, η̄)

(∏
η̄η

)
Ic , J c

f

({
xij + 1

2
(η̄iη j − ηi η̄ j)

} )
(5.40)
i� j
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for an arbitrary polynomial f . We shall use this formula in the case f ({xij}i� j)= det(Xsym)s where s
is a positive integer, so that

det
(
∂

sym
I J

)
det

(
Xsym)s = ε(I, J )

∫
Dn(η, η̄)

(∏
η̄η

)
Ic , J c

det

[
Xsym + 1

2

(
η̄ηT − ηη̄T)]s

. (5.41)

It is convenient to introduce the shorthand

(
Xsym)trans ≡ Xsym + 1

2

(
η̄ηT − ηη̄T) (5.42)

for the argument of det.
Let us now change variables from (η, η̄) to (η′, η̄′) ≡ (η, (Xsym)−1η̄), with Jacobian (det Xsym)−1.

Dropping primes from the new variables, we observe that the expression for the translated matrix
can be written as

(
Xsym)trans = Xsym

[
I + 1

2

(
η̄ηT − (

Xsym)−1
ηη̄T Xsym)], (5.43)

so that

det
(

Xsym)trans = (
det Xsym)det

[
I + 1

2

(
η̄ηT − (

Xsym)−1
ηη̄T Xsym)]. (5.44)

Applying Corollary B.12 to the rightmost determinant yields

det

[
I + 1

2

(
η̄ηT − (

Xsym)−1
ηη̄T Xsym)]= (

1− 1

2
η̄Tη

)−2

(5.45)

so that we are left with the Grassmann-integral expression

det
(
∂

sym
I J

)(
det Xsym)s

= (
det Xsym)s−1

ε(I, J )

∫
Dn(η, η̄)

(∏(
Xsymη̄

)
(η)

)
Ic , J c

(
1− 1

2
η̄Tη

)−2s

. (5.46)

Now insert the expansion

(
1− 1

2
η̄Tη

)−2s

=
∞∑

�=0

(
−1

2

)�(−2s

�

)(
η̄Tη

)�
(5.47)

into (5.46) and use Corollary 5.2: we obtain

det
(
∂

sym
I J

)(
det Xsym)s = (

det Xsym)s−1
ε(I, J )

(
det Xsym

Ic J c

)
k!
(
−1

2

)k(−2s

k

)
. (5.48)

This proves (2.5) when Xsym is an invertible real or complex symmetric n × n matrix and s is a
positive integer; the general validity of the identity then follows from Proposition 2.18. �
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Remark. A slight variant of this proof employs the factorization Xsym = A AT when Xsym is a
real symmetric positive–definite n × n matrix (Lemma B.16); we then use the change of variables
(η′, η̄′) ≡ (A−1η, A−1η̄), with Jacobian (det A)−2 = (det Xsym)−1. This slightly shortens the calcula-
tions, but has the disadvantage that the proof is no longer purely algebraic/combinatorial, because it
invokes a decomposition that is valid for real symmetric positive–definite matrices in order to define
the needed change of variables (which involves A and not just Xsym). We therefore prefer to avoid
matrix decompositions wherever we can (which is unfortunately not always). See also the Remark at
the end of Section 5.4, and the discussion in Appendix B.3.

5.4. Antisymmetric Cayley identity

With Corollary 5.4 in hand, we can again proceed directly to the proof of the all-(principal-)minors
identity.

Proof of Theorem 2.3. The 2m× 2m matrix ∂antisym is given by

(
∂antisym)

i j =
⎧⎨
⎩

0 if i = j,
∂/∂xij if i < j,
−∂/∂x ji if i > j.

(5.49)

We introduce “real” Grassmann variables θi (1 � i � 2m) and use the representation

pf
(
∂

antisym
I I

)= ε(I)

∫
D2m(θ)

(∏
θ
)

Ic
exp

[∑
i< j

θiθ j
∂

∂xij

]
. (5.50)

By the translation formula (5.1),

pf
(
∂

antisym
I I

)
f
({xij}i< j

)= ε(I)

∫
D2m(θ)

(∏
θ
)

Ic
f
({xij + θiθ j}i< j

)
(5.51)

for an arbitrary polynomial f . We shall use this formula in the case f ({xij}i< j)= (pf Xantisym)s where
s is a positive even integer. It is convenient to introduce the shorthand

(
Xantisym)trans = Xantisym + θθT (5.52)

for the argument of pf.
Suppose now that Xantisym is a 2m× 2m real antisymmetric matrix of rank 2m. Then Lemma B.17

guarantees that we can find a matrix A ∈ GL(2m) such that Xantisym = A J AT, where

J =

⎛
⎜⎜⎜⎜⎜⎝

0 1
−1 0

0 1
−1 0

. . .

⎞
⎟⎟⎟⎟⎟⎠ (5.53)

is the standard 2m × 2m symplectic form (note that with this convention pf J =+1 for any m). We
have

(
Xantisym)trans = A

(
J + A−1θθT A−T)AT (5.54)



S. Caracciolo et al. / Advances in Applied Mathematics 50 (2013) 474–594 509
and

pf
(

Xantisym)trans = (
pf Xantisym)pf

(
J + A−1θθT A−T). (5.55)

Now change variables from θ to θ ′ ≡ A−1θ , with Jacobian (det A)−1 = (pf X)−1. Dropping primes, we
are left with

pf
(
∂

antisym
I I

)(
pf Xantisym)s = ε(I)

(
pf Xantisym)s−1

∫
D2m(θ)

(∏
(Aθ)

)
Ic

pf
(

J + θθT)s
. (5.56)

We can now write

pf
(

J + θθT)s = det
(

J + θθT)s/2 = det
(

I − JθθT)s/2
(5.57)

since pf J = det J =+1 and J−1 =− J .30 The matrix I − JθθT is a rank-1 perturbation of the identity
matrix; applying Lemma B.11 with vectors u =− Jθ and v = θ , we obtain

det
(

I − JθθT)= (
1− θT Jθ

)−1
. (5.58)

Using Corollary 5.4, we have

∫
D2m(θ)

(∏
(Aθ)

)
Ic

pf
(

J + θθT)s

=
∫

D2m(θ)
(∏

(Aθ)
)

Ic

(
1− θT Jθ

)−s/2
(5.59a)

= (−2)kk!
(−s/2

k

)
(pf J )pf

[(
A J−T AT)

Ic Ic

]
= s(s + 2) · · · (s+ 2m− 2)pf

(
Xantisym

Ic Ic

)
(5.59b)

since pf J =+1 and J−T = J . This proves (2.8) when Xantisym is a real antisymmetric matrix of rank
2m and s is a positive even integer; the general validity of the identity then follows from Proposi-
tion 2.18. �
Remark. Although the statement of Theorem 2.3 is purely algebraic/combinatorial, the foregoing proof
is unfortunately not purely algebraic/combinatorial, as it invokes the decomposition Xantisym = A J AT

that is valid for real full-rank antisymmetric matrices in order to define the needed change of variables
(which involves A and not just Xantisym). A similar decomposition will be invoked in the proofs of
the rectangular Cayley identities (Sections 5.5, 5.6, 5.7 and 5.9). This contrasts with the proofs of
the ordinary and symmetric Cayley identities (Sections 5.1 and 5.3), where we were able to define
the needed change of variables in terms of the original matrix X or Xsym. The matrix factorization
lemmas needed for the former proofs are collected and proven in Appendix B.3.

30 The equality pf( J + θθT)= det( J + θθT)1/2 follows from the general fact (pf M)2 = det M together with the observation that
both pf( J + θθT) and det( J + θθT) are elements of the Grassmann algebra with constant term 1, and that an element of the
Grassmann algebra with constant term 1 has a unique square root in the Grassmann algebra with this property.
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5.5. Two-matrix rectangular Cayley identity

In the remaining subsections of this section we shall prove the various rectangular Cayley identities
that were stated in Section 2.2. It is convenient to begin with the two-matrix rectangular Cayley iden-
tity (Theorem 2.6), whose proof is somewhat less intricate than that of the corresponding one-matrix
identities (Theorems 2.7 and 2.8). Indeed, the one-matrix rectangular symmetric and antisymmetric
Cayley identities are related to the two-matrix identity in roughly the same way as the symmetric
and antisymmetric Cayley identities are related to the ordinary one.

Here we will need the full strength of Lemma 5.1 to handle the all-minors case.

Proof of Theorem 2.6. We begin once again by representing the differential operator as a Grassmann
integral: exploiting Corollary B.6, we have

det
(
∂X∂T

Y

)= det

(
0m ∂X

−∂T
Y In

)
=
∫

Dm(ψ, ψ̄)Dn(η, η̄) eη̄Tη+ψ̄T∂X η+ψT∂Y η̄. (5.60)

Here ψi , ψ̄i (1 � i � m) and η j , η̄ j (1 � j � n) are Grassmann variables, and the subscripts on D
serve to remind us of the length of each vector; shorthand notations for index summations are un-
derstood, e.g. ψ̄T ∂Xη ≡∑m

i=1
∑n

j=1 ψ̄iη j ∂/∂xij . For a general minor I, J ⊆ [m] with |I| = | J | = k, we
have (writing L = {m+ 1, . . . ,m+ n})

det
[(

∂X∂T
Y

)
I J

]= det

[(
0m ∂X

−∂T
Y In

)
I∪L, J∪L

]
(5.61a)

= ε(I, J )

∫
Dm(ψ, ψ̄)Dn(η, η̄)

(∏
ψ̄ψ

)
Ic , J c

eη̄Tη+ψ̄T∂X η+ψT∂Y η̄. (5.61b)

Applying the translation formula (5.1) to the whole set of variables {xij, yij} produces

det
[(

∂X∂T
Y

)
I J

]
f (X, Y )

= ε(I, J )

∫
Dm(ψ, ψ̄)Dn(η, η̄)

(∏
ψ̄ψ

)
Ic , J c

eη̄Tη f
(

X + ψ̄ηT, Y +ψη̄T) (5.62)

for an arbitrary polynomial f . We shall use this formula in the case f (X, Y )= det(XY T)s where s is
a positive integer. It is convenient to introduce the shorthands

X trans ≡ X + ψ̄ηT, (5.63a)

Y trans ≡ Y +ψη̄T (5.63b)

for the arguments of f .
Suppose now that X and Y are real m × n matrices of rank m that are sufficiently close to the

matrix Îmn defined by

( Îmn)i j =
{

1 if i = j,
0 if i �= j.

(5.64)

[Note that Îmn ≡ (Im,0m×(n−m)) when m � n, and Îmn = ÎT
nm otherwise. Henceforth we shall drop the

subscripts mn on Îmn to lighten the notation.] Then by Lemma B.18 we can find matrices P , P ′ ∈ GL(m)
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and Q ∈ GL(n) such that X = P Î Q and Y = P ′ Î Q −T. We have

det
(

XY T)= det
(

P Î Q Q −1 ÎT P ′T
)= det

(
P P ′T

)= det(P )det
(

P ′
)

(5.65)

and

X trans(Y trans)T ≡ (
X + ψ̄ηT)(Y T − η̄ψT)

= P
[
Î + P−1(ψ̄ηT)Q −1]Q Q −1[ ÎT − Q

(
η̄ψT)P ′−T]P ′T. (5.66)

Let us now change variables from (ψ, ψ̄,η, η̄) to (ψ ′, ψ̄ ′, η′, η̄′) ≡ (P ′−1ψ, P−1ψ̄, Q −Tη, Q η̄), with
Jacobian (det P )−1(det P ′)−1 = det(XY T)−1. In the new variables we have (dropping now the primes
from the notation)

X trans(Y trans)T = P
(

Î + ψ̄ηT)( ÎT − η̄ψT)P ′T, (5.67)

and the translated determinant is given by

det
[(

X trans)(Y trans)T]= det
(

XY T)det
[(

Î + ψ̄ηT)( ÎT − η̄ψT)], (5.68)

so that

det
[(

∂X∂T
Y

)
I J

]
det

(
XY T)s

= ε(I, J )det
(

XY T)s−1
∫

Dm(ψ, ψ̄)Dn(η, η̄)
(∏

(P ψ̄)
(

P ′ψ
))

Ic , J c

× eη̄Tη det
[(

Î + ψ̄ηT)( ÎT − η̄ψT)]s
. (5.69)

Let us now split the vectors η and η̄ as

(η1, . . . , ηn)= (λ1, . . . , λm,χ1, . . . ,χn−m), (5.70a)

(η̄1, . . . , η̄n)= (λ̄1, . . . , λ̄m, χ̄1, . . . , χ̄n−m) (5.70b)

so that

(
Î + ψ̄ηT)( ÎT − η̄ψT)= Im + ψ̄λT − λ̄ψT + cψ̄ψT (5.71)

with c = λ̄Tλ + χ̄Tχ . This matrix has the form of a low-rank perturbation Im +∑2
α=1 uα vT

α , with
vectors {uα}, {vα} given by:

α uα vα

1 ψ̄ λ+ cψ
2 λ̄ −ψ

(5.72)
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By Lemma B.11 we can write the needed determinant as the determinant of a 2× 2 matrix:

det
[(

Î + ψ̄ηT)( ÎT − η̄ψT)]
= det−1

(
1+ (λ+ cψ)Tψ̄ (λ+ cψ)Tλ̄

−ψTψ̄ 1−ψTλ̄

)
(5.73a)

= det−1
(

1+ λTψ̄ c + λTλ̄

−ψTψ̄ 1−ψTλ̄

)
(5.73b)

= [(
1− ψ̄Tλ

)(
1+ λ̄Tψ

)− (
χ̄Tχ

)(
ψ̄Tψ

)]−1
, (5.73c)

where the second equality is a row operation (row 1→ row 1+ c row 2). We therefore have

det
[(

∂X∂T
Y

)
I J

]
det

(
XY T)s = ε(I, J )det

(
XY T)s−1

∫
Dn−m(χ, χ̄ ) eχ̄Tχ

×
∫

Dm(ψ, ψ̄)Dm(λ, λ̄)eλ̄Tλ
(∏

(P ψ̄)
(

P ′ψ
))

Ic , J c

× [(
1− ψ̄Tλ

)(
1+ λ̄Tψ

)− (
χ̄Tχ

)(
ψ̄Tψ

)]−s
. (5.74)

Note in particular that the integrand depends on ψ , ψ̄ , λ, λ̄ only via scalar products. This allows us
to apply Lemma 5.1 to the integral over ψ , ψ̄ , λ, λ̄; using also the fact that P (P ′)T = XY T, we obtain

det
[(

∂X∂T
Y

)
I J

]
det

(
XY T)s = ε(I, J )det

(
XY T)s−1

det
[(

XY T)
Ic J c

]

×
∫

Dn−m(χ, χ̄) eχ̄Tχ

∫
Dm(ψ, ψ̄)Dm(λ, λ̄) eλ̄Tλ

(
m∏

a=k+1

ψ̄aψa

)

× [(
1− ψ̄Tλ

)(
1+ λ̄Tψ

)− (
χ̄Tχ

)(
ψ̄Tψ

)]−s
. (5.75)

This formula expresses det[(∂X∂T
Y )I J ]det(XY T)s as the desired quantity det(XY T)s−1ε(I, J )det[(X ×

Y T)Ic J c ] multiplied by the purely combinatorial factor

P tmrect(s,m,n,k)≡
∫

Dm(ψ, ψ̄)Dm(λ, λ̄)Dn−m(χ, χ̄)

× eλ̄Tλ+χ̄Tχ

(
m∏

a=k+1

ψ̄aψa

)

× [(
1− ψ̄Tλ

)(
1+ λ̄Tψ

)− (
χ̄Tχ

)(
ψ̄Tψ

)]−s
, (5.76)

which we now proceed to calculate.
First note that the factor

∏m
a=k+1 ψ̄aψa forces the Taylor expansion of the square bracket to contain

no variables ψa , ψ̄a with k + 1 � a � m. We can therefore drop the factor
∏m

a=k+1 ψ̄aψa , forget about
the variables ψa , ψ̄a with k + 1 � a � m, and consider ψ , ψ̄ henceforth as vectors of length k. Let us
also rename the vectors λ, λ̄ as

(λ1, . . . , λm)= (λ1, . . . , λk,μ1, . . . ,μm−k), (5.77a)

(λ̄1, . . . , λ̄m)= (λ̄1, . . . , λ̄k, μ̄1, . . . , μ̄m−k). (5.77b)
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Then the quantity (5.76) is equivalent to

P tmrect(s,m,n,k)=
∫

Dk(ψ, ψ̄)Dk(λ, λ̄)Dm−k(μ, μ̄)Dn−m(χ, χ̄ )

× eλ̄Tλ+μ̄Tμ+χ̄Tχ
[(

1− ψ̄Tλ
)(

1+ λ̄Tψ
)− (

χ̄Tχ
)(

ψ̄Tψ
)]−s

(5.78)

where scalar products involving ψ , ψ̄ , λ, λ̄ are understood as referring only to the first k variables.
Integration over the variables μ, μ̄ is trivial and produces just a factor 1. So we are left with

P tmrect(s,m,n,k)=
∫

Dk(ψ, ψ̄)Dk(λ, λ̄)Dn−m(χ, χ̄)

× eλ̄Tλ+χ̄Tχ
[(

1− ψ̄Tλ
)(

1+ λ̄Tψ
)− (

χ̄Tχ
)(

ψ̄Tψ
)]−s

. (5.79)

Note that P tmrect(s,m,n,k) depends on n and m only via the combination n−m.
The binomial expansion of the integrand in (5.79) yields

[(
1− ψ̄Tλ

)(
1+ λ̄Tψ

)− (
χ̄Tχ

)(
ψ̄Tψ

)]−s

=
∞∑

h=0

(−s

h

)[(
1− ψ̄Tλ

)(
1+ λ̄Tψ

)]−s−h[−(χ̄Tχ
)(

ψ̄Tψ
)]h

. (5.80)

For each fixed value of h, integration over variables χ , χ̄ gives

∫
Dn−m(χ, χ̄ ) eχ̄Tχ

(−χ̄Tχ
)h = (−1)h

(
n−m

h

)
h!. (5.81)

Now the factor (ψ̄Tψ)h will contain h pairs of variables, which can be chosen in
(k

h

)
h! ways (counting

reorderings); then in the term f (ψ, ψ̄, λ, λ̄)= [(1− ψ̄Tλ)(1+ λ̄Tψ)]−s−h we will have to use only the
other k − h pairs of variables for both ψ , ψ̄ and λ, λ̄, and with a reasoning as in Lemma 5.1 we can
choose them to be the first k− h indices, so that

∫
Dk(ψ, ψ̄)Dk(λ, λ̄) eλ̄Tλ

(
ψ̄Tψ

)h
f (ψ, ψ̄, λ, λ̄)

=
(

k

h

)
h!
∫

Dk−h(ψ, ψ̄)Dk−h(λ, λ̄) eλ̄Tλ f (ψ, ψ̄, λ, λ̄), (5.82)

and hence

P tmrect(s,m,n,k)=
∞∑

h=0

(−1)h
(

n−m

h

)(
k

h

)
(h!)2

(−s

h

)

×
∫

Dk−h(ψ, ψ̄)Dk−h(λ, λ̄) eλ̄Tλ
[(

1− ψ̄Tλ
)(

1+ λ̄Tψ
)]−s−h

. (5.83)

Let us now make the change of variables ψi → λi , λi →−ψi (whose Jacobian is cancelled by the
reordering in the measure of integration); we have
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∫
Dk−h(ψ, ψ̄)Dk−h(λ, λ̄) eλ̄Tλ

[(
1− ψ̄Tλ

)(
1+ λ̄Tψ

)]−s−h
(5.84a)

=
∫

Dk−h(ψ, ψ̄)Dk−h(λ, λ̄) e−λ̄Tψ
[(

1+ ψ̄Tψ
)(

1+ λ̄Tλ
)]−s−h

(5.84b)

=
∫

Dk−h(ψ, ψ̄)Dk−h(λ, λ̄)
[(

1+ ψ̄Tψ
)(

1+ λ̄Tλ
)]−s−h

(5.84c)

=
[∫

Dk−h(ψ, ψ̄)
(
1+ ψ̄Tψ

)−s−h
]2

(5.84d)

=
[(−s− h

k− h

)
(k− h)!

]2

. (5.84e)

Collecting all the factors, we have

P tmrect(s,m,n,k)=
∞∑

h=0

(−1)h
(

n−m

h

)(
k

h

)
(h!)2

(−s

h

)[(−s− h

k− h

)
(k− h)!

]2

(5.85a)

=
∞∑

h=0

(−1)h
(

n−m

h

)
(k!)2

(−s− h

k− h

)(−s

k

)
(5.85b)

=
∞∑

h=0

(−1)h
(

n−m

h

)
(k!)2(−1)k−h

(
s+ k− 1

k− h

)
(−1)k

(
s+ k− 1

k

)
(5.85c)

= (k!)2
(

s+ k− 1

k

) ∞∑
h=0

(
n−m

h

)(
s+ k− 1

k− h

)
(5.85d)

= (k!)2
(

s+ k− 1

k

)(
s+ k+ n−m− 1

k

)
(5.85e)

=
k−1∏
j=0

(s+ j)(s+ n−m+ j), (5.85f)

where the sum over h was performed using the Chu–Vandermonde convolution (Lemma B.2).
This proves Theorem 2.6 when X and Y are real m × n matrices of rank m lying in a sufficiently

small neighborhood of Îmn , and s is a positive integer. The general validity of the identity then follows
from Proposition 2.18. �
5.6. One-matrix rectangular symmetric Cayley identity

The proof of the one-matrix rectangular symmetric Cayley identity is extremely similar to that of
the two-matrix identity, but is slightly more complicated because it involves a perturbation of rank 4
rather than rank 2 [compare (5.97) with (5.72)]. Luckily, the resulting 4× 4 determinant turns out to
be the square of a quantity involving only a 2×2 determinant [cf. (5.98b)/(5.99)]. Once again, we will
need the full strength of Lemma 5.1 to handle the all-minors case.

Proof of Theorem 2.7. We begin once again by representing the differential operator as a Grassmann
integral: exploiting Corollary B.6, we have

det
(
∂∂T)= det

(
0m ∂

−∂T I

)
=
∫

Dm(ψ, ψ̄)Dn(η, η̄) eη̄Tη+ψT∂η̄+ψ̄T∂η. (5.86)

n
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Here ψi , ψ̄i (1 � i � m) and η j , η̄ j (1 � j � n) are Grassmann variables, and we use the same con-
ventions as in the preceding subsection. For a general minor I, J ⊆ [m] with |I| = | J | = k, we have
(writing L = {m+ 1, . . . ,m+ n})

det
[(

∂∂T)
I J

]= det

[(
0m ∂

−∂T In

)
I∪L, J∪L

]
(5.87a)

= ε(I, J )

∫
Dm(ψ, ψ̄)Dn(η, η̄)

(∏
ψ̄ψ

)
Ic , J c

eη̄Tη+ψT∂η̄+ψ̄T∂η. (5.87b)

Applying the translation formula (5.1) to the whole set of variables {xij} produces

det
[(

∂∂T)
I J

]
f (X)

= ε(I, J )

∫
Dm(ψ, ψ̄)Dn(η, η̄)

(∏
ψ̄ψ

)
Ic , J c

eη̄Tη f
(

X + ψ̄ηT +ψη̄T) (5.88)

for an arbitrary polynomial f . We shall use this formula in the case f (X)= det(X XT)s where s is a
positive integer. It is convenient to introduce the shorthand

X trans ≡ X + ψ̄ηT +ψη̄T (5.89)

for the argument of f .
Suppose now that X is a real m × n matrix of rank m that is sufficiently close to the matrix Îmn

defined in (5.64). Then by Lemma B.19 we can find matrices P ∈ GL(m) and Q ∈ O (n) such that
X = P Î Q [we drop the subscripts mn on Îmn to lighten the notation]. We have

det
(

X XT)= det
(

P Î Q Q T ÎT P T)= det
(

P P T)= det(P )2 (5.90)

and

X trans ≡ X + ψ̄ηT +ψη̄T = P
[
Î + P−1(ψ̄ηT +ψη̄T)Q T]Q . (5.91)

Let us now change variables from (ψ, ψ̄,η, η̄) to (ψ ′, ψ̄ ′, η′, η̄′) ≡ (P−1ψ, P−1ψ̄, Q η, Q η̄), with Ja-
cobian (det P )−2 = det(X XT)−1. In the new variables we have (dropping now the primes from the
notation)

X trans = P
(

Î + ψ̄ηT +ψη̄T)Q , (5.92)

and the translated determinant is given by

det
[(

X trans)(X trans)T]= det
(

X XT)det
[(

Î + ψ̄ηT +ψη̄T)( ÎT − ηψ̄T − η̄ψT)], (5.93)

so that

det
[(

∂∂T)
I J

]
det

(
X XT)s

= ε(I, J )det
(

X XT)s−1
∫

Dm(ψ, ψ̄)Dn(η, η̄)
(∏

(P ψ̄)(Pψ)
)

Ic , J c

× eη̄Tη det
[(

Î + ψ̄ηT +ψη̄T)( ÎT − ηψ̄T − η̄ψT)]s
. (5.94)
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Let us now split the vectors η and η̄ as

(η1, . . . , ηn)= (λ1, . . . , λm,χ1, . . . ,χn−m), (5.95a)

(η̄1, . . . , η̄n)= (λ̄1, . . . , λ̄m, χ̄1, . . . , χ̄n−m) (5.95b)

so that

(
Î + ψ̄ηT +ψη̄T)( ÎT − ηψ̄T − η̄ψT)
= Im + ψ̄λT +ψλ̄T − λψ̄T − λ̄ψT + cψ̄ψT − cψψ̄T (5.96)

with c = λ̄Tλ + χ̄Tχ . This matrix has the form of a low-rank perturbation Im +∑4
α=1 uα vT

α , with
vectors {uα}, {vα} given by:

α uα vα

1 ψ̄ λ+ cψ
2 ψ λ̄− cψ̄
3 λ̄ −ψ

4 λ −ψ̄

(5.97)

By Lemma B.11 we can write the needed determinant as the determinant of a 4 × 4 matrix; after a
few row and column manipulations we can write

det
[(

Î + ψ̄ηT +ψη̄T)( ÎT − ηψ̄T − η̄ψT)]

= det−1

⎛
⎜⎜⎝

A
0 χ̄Tχ

−χ̄Tχ 0

0 −ψ̄Tψ

ψ̄Tψ 0
AT

⎞
⎟⎟⎠ (5.98a)

= [
det A − (

ψ̄Tψ
)(

χ̄Tχ
)]−2

(5.98b)

where

A =
(

1+ λTψ̄ λTψ

λ̄Tψ̄ 1+ λ̄Tψ

)
(5.99)

and hence

det A = 1+ λTψ̄ + λ̄Tψ + (
λTψ̄

)(
λ̄Tψ

)+ (
λ̄Tψ̄

)(
ψTλ

)
. (5.100)

We therefore have

det
[(

∂∂T)
I J

]
det

(
X XT)s = ε(I, J )det

(
X XT)s−1

∫
Dn−m(χ, χ̄ ) eχ̄Tχ

×
∫

Dm(ψ, ψ̄)Dm(λ, λ̄) eλ̄Tλ
(∏

(P ψ̄)(Pψ)
)

Ic , J c

× [
det A − (

ψ̄Tψ
)(

χ̄Tχ
)]−2s

. (5.101)
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Note in particular that eλ̄Tλ and det A − (ψ̄Tψ)(χ̄Tχ) depend on ψ , ψ̄ , λ, λ̄ only via scalar products.
This allows us to apply Lemma 5.1 to the integral over ψ , ψ̄ , λ, λ̄; using also the fact that P P T = X XT,
we obtain

det
[(

∂∂T)
I J

]
det

(
X XT)s = ε(I, J )det

(
X XT)s−1

det
[(

X XT)
Ic J c

]
×
∫

Dn−m(χ, χ̄ ) eχ̄Tχ

∫
Dm(ψ, ψ̄)Dm(λ, λ̄) eλ̄Tλ

×
(

m∏
a=k+1

ψ̄aψa

)[
det A − (

ψ̄Tψ
)(

χ̄Tχ
)]−2s

. (5.102)

This formula expresses det[(∂∂T)I J ]det(X XT)s as the desired quantity det(X XT)s−1ε(I, J )det[(X ×
XT)Ic J c ] multiplied by the purely combinatorial factor

P symrect(s,m,n,k)≡
∫

Dm(ψ, ψ̄)Dm(λ, λ̄)Dn−m(χ, χ̄)

× eλ̄Tλ+χ̄Tχ

(
m∏

a=k+1

ψ̄aψa

)[
det A − (

ψ̄Tψ
)(

χ̄Tχ
)]−2s

, (5.103)

which we now proceed to calculate.
First note that the factor

∏m
a=k+1 ψ̄aψa forces the Taylor expansion of [det A − (ψ̄ψ)(χ̄χ)]−2s to

contain no variables ψa , ψ̄a with k+1 � a � m. We can therefore drop the factor
∏m

a=k+1 ψ̄aψa , forget
about the variables ψa , ψ̄a with k + 1 � a � m, and consider ψ , ψ̄ henceforth as vectors of length k.
Let us also rename the vectors λ, λ̄ as

(λ1, . . . , λm)= (λ1, . . . , λk,μ1, . . . ,μm−k), (5.104a)

(λ̄1, . . . , λ̄m)= (λ̄1, . . . , λ̄k, μ̄1, . . . , μ̄m−k). (5.104b)

Then the quantity (5.103) is equivalent to

P symrect(s,m,n,k)=
∫

Dk(ψ, ψ̄)Dk(λ, λ̄)Dm−k(μ, μ̄)Dn−m(χ, χ̄)

× eλ̄Tλ+μ̄Tμ+χ̄Tχ
[
det A − (

ψ̄Tψ
)(

χ̄Tχ
)]−2s

(5.105)

where det A has the same expression as in (5.100) but scalar products involving ψ , ψ̄ , λ, λ̄ are un-
derstood as referring only to the first k variables. Integration over the variables μ, μ̄ is trivial and
produces just a factor 1. So we are left with

P symrect(s,m,n,k)

=
∫

Dk(ψ, ψ̄)Dk(λ, λ̄)Dn−m(χ, χ̄ ) eλ̄Tλ+χ̄Tχ
[
det A − (

ψ̄Tψ
)(

χ̄Tχ
)]−2s

. (5.106)

Note that P symrect(s,m,n,k) depends on n and m only via the combination n−m.
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The multinomial expansion of the integrand in (5.106) (except for eχ̄Tχ ) is

∑
r�0

t1,...,t5�0

( −2s

t1 + · · · + t5

)(
t1 + · · · + t5

t1, . . . , t5

)
eχ̄Tχ (−1)t5

r!

× (
λ̄Tλ

)r(
χ̄Tχ

)t5
(
λTψ̄

)t1+t3
(
λ̄Tψ

)t2+t3
[(

λ̄Tψ̄
)(

ψTλ
)]t4

(
ψ̄Tψ

)t5
. (5.107)

The integration

∫
Dn−m(χ, χ̄ ) eχ̄Tχ

(
χ̄Tχ

)� = (n−m)!
(n−m− �)! (5.108)

is trivial. So we are left with two integrations over complex Grassmann vectors of length k. This is
performed through a lemma that we shall prove at the end of this subsection:

Lemma 5.5. For all integers a,a′,b,b′, c, c′ � 0, we have

∫
Dn(ψ, ψ̄)Dn(λ, λ̄)

(
λ̄Tλ

)a(
ψ̄Tψ

)a′(
λ̄Tψ

)b(
λTψ̄

)b′(
λ̄Tψ̄

)c(
ψTλ

)c′

= δaa′δbb′δcc′δa+b+c,n

(
n

a,b, c

)
(a!b! c!)2. (5.109)

Combining formula (5.107) (after integration of χ̄ , χ ) and the statement of the lemma, we are left
with three independent summations; we choose the summation indices to be t1, t3 and t5, which we
relabel as h, l and j, respectively. The remaining indices are given by r = j, t2 = h, t4 =m− j − h − l.
The resulting expression is

P symrect(s,m,n,k)= (k!)2
(−2s

k

) ∑
j,h,l�0

j+h+l�k

(−1) j
(−2s− k

h

)(
n−m

j

)(
h + l

h

)
. (5.110)

Renaming −2s − k ≡ a and n −m ≡ b highlights the fact that there is no direct dependence of the
summands on k. From Lemma B.4 we have

∑
j,h,l�0

j+h+l�k

(−1) j
(

a

h

)(
b

j

)(
h + l

h

)
=
(

a− b + k+ 1

k

)
, (5.111)

which finally gives

P symrect(s,m,n,k)= (k!)2
(−2s

k

)(−(2s+ n−m− 1)

k

)
(5.112a)

=
k−1∏
j=0

(2s+ j)(2s+ n−m− 1+ j). (5.112b)

This proves (2.19) when X is a real m×n matrix of rank m lying in a sufficiently small neighborhood
of Îmn , and s is a positive integer; the general validity of the identity then follows from Proposi-
tion 2.18. �
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Proof of Lemma 5.5. Let us rewrite (5.109) by forming an exponential generating function: that is, we
multiply both sides by αa(α′)a′βb(β ′)b′γ c(γ ′)c′/[a!a′!b!b′! c! c′!] and sum over a,a′,b,b′, c, c′ � 0. So
(5.109) is equivalent to∫

Dn(ψ, ψ̄)Dn(λ, λ̄) eαλ̄Tλ+α′ψ̄Tψ+βλ̄Tψ+β ′λTψ̄+γ λ̄Tψ̄+γ ′ψTλ = (
αα′ + ββ ′ + γ γ ′)n

, (5.113)

and this is the formula that we shall prove. Note first that the measure can be rewritten as

Dn(ψ, ψ̄)Dn(λ, λ̄)= dψn dψ̄n dλn dλ̄n · · ·dψ1 dψ̄1 dλ1 dλ̄1 (5.114)

with no minus signs. So let us assemble ψ , ψ̄ , λ, λ̄ into a single Grassmann vector θ of length 4n,
with ψk = θ4k , ψ̄k = θ4k−1, λk = θ4k−2 and λ̄k = θ4k−3; then the measure becomes D4n(θ). In the
exponential we have an antisymmetric bilinear form 1

2 θ Q θ , in which Q is block-diagonal with n
identical 4× 4 blocks that we call Q ′:

Q ′ =
⎛
⎜⎝

0 α γ β

−α 0 β ′ −γ ′
−γ −β ′ 0 α′
−β γ ′ −α′ 0

⎞
⎟⎠ . (5.115)

So the result of the integration is pf Q = (pf Q ′)n . And indeed, pf Q ′ = αα′ + ββ ′ + γ γ ′ , as was to be
proven. �
5.7. One-matrix rectangular antisymmetric Cayley identity

Let us now prove the one-matrix rectangular antisymmetric Cayley identity (Theorem 2.8). Again,
this proof is extremely similar to that of the two-matrix and the symmetric one-matrix rectangular
identities. As always with pfaffians, we will deal only with principal minors, for which we will need
the full strength of Lemma 5.3.

Proof of Theorem 2.8. We begin once again by representing the differential operator as a Grassmann
integral: exploiting Corollary B.9, we have

pf
(
∂ J∂T)= (−1)m pf

(
02m ∂

−∂T J2n

)
(5.116a)

= (−1)m
∫

D2m(ψ)D2n(η) e
1
2 ηT Jη+ψT∂η, (5.116b)

where ψi (1 � i � 2m) and η j (1 � j � 2n) are “real” Grassmann variables, and we use the same
conventions as in the preceding subsection. For a general even-dimensional principal minor I ⊆ [2m]
with |I| = 2k, we similarly have (writing L = {m+ 1, . . . ,m+ n})

pf
[(

∂ J∂T)
I I

]= (−1)k pf

[(
02m ∂

−∂T J2n

)
I∪L,I∪L

]
(5.117a)

= (−1)kε(I)

∫
D2m(ψ)D2n(η)

(∏
ψ
)

Ic
e

1
2 ηT Jη+ψT∂η. (5.117b)

Applying the translation formula (5.1) to the whole set of variables {xij} produces

pf
[(

∂ J∂T)
I I

]
f (X)= (−1)kε(I)

∫
D2m(ψ)D2n(η)

(∏
ψ
)

c
e

1
2 ηT Jη f

(
X +ψηT) (5.118)
I
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for an arbitrary polynomial f . We shall use this formula in the case f (X)= pf(X J XT)s where s is a
positive integer. It is convenient to introduce the shorthand

X trans ≡ X +ψηT (5.119)

for the argument of f .
Suppose now that X is a real 2m × 2n matrix of rank 2m that is sufficiently close to the matrix

Î2m,2n defined in (5.64). Then by Lemma B.20 we can find matrices P ∈ GL(2m) and Q ∈ Sp(2n) such
that X = P Î2m,2n Q . We recall the defining property of Sp(2n), namely that Q J2n Q T = J2n . We have

X J2n XT = P Î2m,2n Q J2n Q T ÎT
2m,2n P T = P J2m P T, (5.120)

so that

pf
(

X J2n XT)= pf
(

P J2m P T)= det P (5.121)

and

X trans ≡ X +ψηT = P
[
Î + P−1ψηT Q −1]Q (5.122)

(we drop the subscripts on Î2m,2n to lighten the notation). Let us now change variables from (ψ,η)

to (ψ ′, η′) ≡ (P−1ψ, Q −Tη), with Jacobian (det P )−1 = pf(X J XT)−1. In the new variables we have
(dropping now the primes from the notation)

X trans = P
(

Î +ψηT)Q , (5.123)

and the translated pfaffian is given by

pf
[(

X trans) J
(

X trans)T]= pf
[

P
(

Î +ψηT) J
(

ÎT − ηψT)P T]
= det(P )pf

[(
Î +ψηT) J

(
ÎT − ηψT)]

= pf
(

X J XT)pf
[(

Î +ψηT) J
(

ÎT − ηψT)], (5.124)

so that

pf
[(

∂ J∂T)
I I

]
pf
(

X J XT)s

= pf
(

X J XT)s−1
(−1)kε(I)

∫
D2m(ψ)D2n(η)

(∏
(Pψ)

)
Ic

× e
1
2 ηT Jη pf

[(
Î +ψηT) J

(
ÎT − ηψT)]s

. (5.125)

Let us now split the vector η as

(η1, . . . , η2n)= (λ1, . . . , λ2m,χ1, . . . ,χ2(n−m)), (5.126)

so that

(
Î +ψηT) J2n

(
ÎT − ηψT)= J2m −ψλT J T

2m − J2mλψT − cψψT (5.127)
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with c = ηT J2nη= λT J2mλ+χT J2(n−m)χ . The matrix (5.127) is manifestly antisymmetric, and has the
form of a low-rank perturbation of J2m . Since pf J2m = 1 and the perturbation is purely Grassmannian,
we can write

pf
(

J −ψλT J T − JλψT − cψψT)= det1/2(I + JψλT J T − λψT + c JψψT). (5.128)

Here the argument of det is a matrix of the form I2m +∑2
α=1 uα vT

α , with vectors {uα}, {vα} given by:

α uα vα

1 Jψ Jλ+ cψ
2 −λ ψ

(5.129)

By Lemma B.11 we can write the needed determinant as the determinant of a 2 × 2 matrix, which,
after a slight row manipulation, can be written as

det
(

I + JψλT J T − λψT + c JψψT)= det−1
(

1−ψTλ −χT Jχ
ψT Jψ 1−ψTλ

)
. (5.130)

We therefore have

pf
[(

∂ J∂T)
I I

]
pf
(

X J XT)s = pf
(

X J XT)s−1
(−1)kε(I)

∫
D2(n−m)(χ) e

1
2 χT Jχ

×
∫

D2m(ψ)D2m(λ) e
1
2 λT Jλ

(∏
(Pψ)

)
Ic

× [(
1−ψTλ

)2 + (
ψT Jψ

)(
χT Jχ

)]−s/2
. (5.131)

In this expression we have both an ordinary scalar product (ψTλ) and symplectic scalar products
(λT Jλ, ψT Jψ and χT Jχ ). By a further change of variables λ→ λ′ = − Jλ, we can reduce to symplectic
products only (the Jacobian is 1). Dropping the primes, we have (also using J T J J = J )

pf
[(

∂ J∂T)
I I

]
pf
(

X J XT)s = pf
(

X J XT)s−1
(−1)kε(I)

∫
D2(n−m)(χ) e

1
2 χT Jχ

×
∫

D2m(ψ)D2m(λ) e
1
2 λT Jλ

(∏
(Pψ)

)
Ic

× [(
1−ψT Jλ

)2 + (
ψT Jψ

)(
χT Jχ

)]−s/2
. (5.132)

Now the integral on the ψ and λ fields is of the form described in Lemma 5.3. Applying this lemma,
and making use of (5.120), we have

pf
[(

∂ J∂T)
I I

]
pf
(

X J XT)s = ε(I)pf
(

X J XT)s−1
pf
[(

X J XT)
Ic Ic

]
× (−1)k

∫
D2(n−m)(χ) e

1
2 χT Jχ

∫
D2m(ψ)D2m(λ) e

1
2 λT Jλ

×
(∏

ψ
)
{2k+1,...,2m}

[(
1−ψT Jλ

)2 + (
ψT Jψ

)(
χT Jχ

)]−s/2
. (5.133)

This formula expresses pf[(∂ J∂T)I I ]pf(X J XT)s as the desired quantity pf(X J XT)s−1ε(I)pf[(X J XT)Ic Ic ]
multiplied by the purely combinatorial factor
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P asrect(s,m,n,k)≡ (−1)k
∫

D2(n−m)(χ) e
1
2 χT Jχ

∫
D2m(ψ)D2m(λ) e

1
2 λT Jλ

×
(∏

ψ
)
{2k+1,...,2m}

[(
1−ψT Jλ

)2 + (
ψT Jψ

)(
χT Jχ

)]−s/2
, (5.134)

which we now proceed to calculate.
Note, first of all, that the factor

∏2m
a=2k+1 ψa forces the Taylor expansion of [(1 − ψT Jλ)2 +

(ψT Jψ)(χT Jχ)]−s/2 to contain no variables ψa with 2k + 1 � a � 2m, and thus also no variables λa

with 2k+1 � a � 2m. The latter must all come from the trivial diagonal exponential e
1
2 λT Jλ , and their

integration can then be performed easily (it gives 1). We can therefore drop the factor
∏2m

a=2k+1 ψa ,
forget about the variables ψa and λa with 2k + 1 � a � 2m, and consider ψ and λ henceforth as
vectors of length 2k. We have

P asrect(s,m,n,k)≡ (−1)k
∫

D2(n−m)(χ) e
1
2 χT Jχ

∫
D2k(ψ)D2k(λ)

× e
1
2 λT Jλ[(1−ψT Jλ

)2 + (
ψT Jψ

)(
χT Jχ

)]−s/2
. (5.135)

We see that P asrect(s,m,n,k) depends on n and m only via the combination n−m.
In the expression (5.135) we have symplectic scalar products of “real” Grassmann fields. How-

ever, our summation lemmas (such as Lemma 5.5) have heretofore been developed only for ordinary
scalar products of “complex” Grassmann fields. However, through a relabeling of the fields, we can
rewrite (5.135) in terms of ordinary scalar products of “complex” fields of half the dimensions.
More precisely, we relabel (ψ1, . . . ,ψ2k) → (ψ̄1,ψ1, . . . , ψ̄k,ψk), (λ1, . . . , λ2k) → (λ̄1, λ1, . . . , λ̄k, λk)

and (χ1, . . . ,χ2(n−m))→ (χ̄1,χ1, . . . , χ̄n−m,χn−m). No signs arise in the measure of integration, and
we have the correspondences

1

2
ψT Jψ → ψ̄Tψ, (5.136a)

1

2
λT Jλ→ λ̄Tλ, (5.136b)

ψT Jλ→ ψ̄Tλ+ λ̄Tψ, (5.136c)

1

2
χT Jχ → χ̄Tχ, (5.136d)

which rewrites (5.135) as

P asrect(s,m,n,k)= (−1)k
∫

Dk(ψ, ψ̄)Dk(λ, λ̄)Dn−m(χ, χ̄)

× eλ̄Tλ+χ̄Tχ
[(

1− ψ̄Tλ− λ̄Tψ
)2 + 4

(
ψ̄Tψ

)(
χ̄Tχ

)]−s/2
. (5.137)

We begin by getting rid of variables χ and χ̄ , writing

∫
Dn−m(χ, χ̄) eχ̄Tχ

[(
1− ψ̄Tλ− λ̄Tψ

)2 + 4
(
ψ̄Tψ

)(
χ̄Tχ

)]−s/2

=
∑
a�0

(− s
2

a

)(
4ψ̄Tψ

)a(
1− ψ̄Tλ− λ̄Tψ

)−s−2a
(

n−m

a

)
a!. (5.138)
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So we have

P asrect(s,m,n,k)= (−1)k
∫

Dk(ψ, ψ̄)Dk(λ, λ̄) eλ̄Tλ

×
∑
a�0

(− s
2

a

)(
4ψ̄Tψ

)a(
1− ψ̄Tλ− λ̄Tψ

)−s−2a
(

n−m

a

)
a!. (5.139)

Next we expand fully the integrand in (5.139), yielding

P asrect(s,m,n,k)=
∑

a,a′�0
b,b′�0

4a(−1)k−b
(− s

2
a

)(
n−m

a

)
a!
(−s− 2a

b + b′

)(
b + b′

b

)
1

a′!

×
∫

Dk(ψ, ψ̄)Dk(λ, λ̄)
(
ψ̄Tψ

)a(
λ̄Tλ

)a′(
ψ̄Tλ

)b(
ψTλ̄

)b′
. (5.140)

The fermionic integration here is a special case of Lemma 5.5, which thus gives

P asrect(s,m,n,k)=
∑

a,a′�0
b,b′�0

4a(−1)k−b
(− s

2
a

)(
n−m

a

)
a!
(−s− 2a

b + b′

)(
b + b′

b

)
1

a′!

× δaa′δbb′δa+b,k

(
k

a

)
(a!b!)2

=
k∑

a=0

(−4)a
(
− s

2

)a

(−s − 2a)2k−2a
(

n−m

a

)(
k

a

)
a! (5.141)

where xk = x(x− 1) · · · (x− k+ 1). Notice now that

(
− s

2

)a

(−s− 2a)2k−2a

=
(
−1

2

)a

s(s + 2) · · · (s+ 2k− 2)(s+ 2a+ 1)(s+ 2a+ 3) · · · (s+ 2k− 1). (5.142)

The factors of the form s + 2 j, namely s(s + 2) · · · (s + 2k − 2), are independent of the summation
variable a. What remains is

k∑
a=0

2a(s+ 2a+ 1)(s+ 2a+ 3) · · · (s+ 2k− 1)

(
n−m

a

)(
k

a

)
a!

=
k∑

a=0

2k
( s−1

2 + k

k− a

)
(k− a)!

(
n−m

a

)(
k

a

)
a!

= 2kk!
k∑

a=0

( s−1
2 + k

k− a

)(
n−m

a

)

= 2kk!
( s−1

2 + n−m+ k

k

)
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=
k−1∏
j=0

(s+ 1+ 2n− 2m+ 2 j) (5.143)

where the sum over a was a Chu–Vandermonde convolution (Lemma B.2). Restoring the factors of the
form s+ 2 j, we conclude that

P asrect(s,m,n,k)=
k−1∏
j=0

(s+ 2 j)(s+ 1+ 2n− 2m+ 2 j). (5.144)

This proves (2.22) when X is a real 2m× 2n matrix of rank 2m lying in a sufficiently small neigh-
borhood of Î2m,2n , and s is a positive integer; the general validity of the identity then follows from
Proposition 2.18. �
5.8. A lemma on Grassmann integrals of scalar products

In the preceding proofs we have frequently had to evaluate Grassmann integrals over one or more
sets of Grassmann variables, in which the integrand depends only on scalar products among those
sets. A simple version of such a formula occurred already in (5.9), while more complicated versions
arose in (5.79) ff. and (5.109). [Also, a version for real fermions arose in (5.59).] So far we have simply
treated such integrals “by hand”. But since a much more complicated such integral will arise in the
proof of the multi-matrix rectangular Cayley identity (Theorem 2.9) in the next subsection, it is worth
stating now a general lemma that allows us to systematize such calculations. Indeed, we think that
this lemma (Proposition 5.6 below) is of some independent interest.

Let us start by rephrasing the simplest case (5.9) in a suggestive way. Let n be a positive integer,
and introduce Grassmann variables ψi , ψ̄i (1 � i � n). Let f (x)=∑∞

k=0 akxk be a formal power series
in one indeterminate. We then have by (5.9)

∫
Dn(ψ, ψ̄) f

(
ψ̄Tψ

)= n!an. (5.145)

On the other hand, we also have trivially

dn

dxn
f (x)

∣∣∣∣
x=0

= n!an (5.146)

and

f

(
d

dx

)
xn

∣∣∣∣
x=0

= n!an. (5.147)

Hence

∫
Dn(ψ, ψ̄) f

(
ψ̄Tψ

)= dn

dxn
f (x)

∣∣∣∣
x=0

= f

(
d

dx

)
xn

∣∣∣∣
x=0

. (5.148)

Surprisingly enough, a similar formula exists for Grassmann integrals involving multiple sets of
fermionic variables:
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Proposition 5.6. Let � and n be positive integers, and introduce Grassmann variables ψα
i , ψ̄α

i (1 � α � �,
1 � i � n). Let f (X) be a formal power series in commuting indeterminates X = (xαβ)�α,β=1 , and write ∂ =
(∂/∂xαβ). We then have

∫
Dn

(
ψ1, ψ̄1) · · ·Dn

(
ψ�, ψ̄�

)
f
({

ψ̄αTψβ
})= det(∂)n f (X)|X=0 (5.149a)

= f (∂)(det X)n
∣∣

X=0. (5.149b)

Proof. We write

f (X)=
∑

N∈N�×�

f N

�∏
α,β=1

x
nαβ

αβ (5.150)

where the sum runs over matrices N = (nαβ)�α,β=1 of nonnegative integers. Note first that it suffices
to prove (5.149) for polynomials f , since all three expressions in (5.149) have the property that only
finitely many coefficients N contribute (namely, those matrices N with all row and column sums
equal to n). So it suffices to prove (5.149) for all monomials X N :=∏�

α,β=1 x
nαβ

αβ . But then it suffices to
prove (5.149) for the exponential generating function

φΩ(X)= exp tr
(
ΩT X

)= ∑
N∈N�×�

�∏
α,β=1

(ωαβ xαβ)nαβ

nαβ ! (5.151)

where Ω = (ωαβ)�α,β=1 are indeterminates, since the value at the monomial X N can be obtained

by extracting the coefficient [ΩN ]. Our goal is to prove that all the three expressions in (5.149),
specialized to f (X)= φΩ(X), equal (det Ω)n .

For the Grassmann-integral expression we have

∫
Dn

(
ψ1, ψ̄1) · · ·Dn

(
ψ�, ψ̄�

)
φΩ

({
ψ̄αTψβ

})

=
∫

Dn
(
ψ1, ψ̄1) · · ·Dn

(
ψ�, ψ̄�

)
exp

(
n∑

i=1

�∑
α,β=1

ψ̄α
i ωαβψ

β

i

)
(5.152a)

= (det Ω)n. (5.152b)

For the power series in derivative operators applied to a power of a determinant, a simple application
of the translation formula (5.1) yields

φΩ(∂)(det X)n
∣∣

X=0 = exp

(
�∑

α,β=1

ωαβ

∂

∂xαβ

)
(det X)n

∣∣∣∣∣
X=0

(5.153a)

= (
det(X +Ω)

)n∣∣
X=0 (5.153b)

= (detΩ)n. (5.153c)

For the power of a determinant in derivative operators applied to a power series, it suffices to cite
the proof (5.153) and invoke transposition duality X ↔ ∂ in the Weyl algebra; but for completeness
let us give a direct proof. Use a fermionic representation of the differential operator
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det(∂)=
∫

D�(η, η̄)exp

(
�∑

α,β=1

η̄α
∂

∂xαβ

ηβ

)
(5.154)

and apply again the translation formula (5.1):

det(∂)
[
exp tr

(
ΩT X

)]= ∫
D�(η, η̄)exp

(
�∑

α,β=1

η̄α
∂

∂xαβ

ηβ

)[
exp tr

(
ΩT X

)]
(5.155a)

=
∫

D�(η, η̄)exp tr
(
ΩT(X + η̄ηT)) (5.155b)

= [
exp tr

(
ΩT X

)]∫
D�(η, η̄)exp

(
�∑

α,β=1

η̄αωαβηβ

)
(5.155c)

= (det Ω)exp tr
(
ΩT X

)
. (5.155d)

Iterating n times, we get

det(∂)nφΩ(X)|X=0 = (det Ω)n exp tr
(
ΩT X

)∣∣
X=0 = (detΩ)n. � (5.156)

5.9. Multi-matrix rectangular Cayley identity

In this subsection we shall prove the multi-matrix rectangular Cayley identity (Theorem 2.9), which
is the most difficult of the identities proven in this paper. The difficulty arises principally from the fact
that the number of matrices appearing in the identity (which we call �) can be arbitrarily large, and
we are required to provide a proof valid for all �. The proof nevertheless follows the basic pattern of
the proofs of the other identities (notably the two-matrix rectangular identity), and divides naturally
into two parts:

(i) We represent the differential operator as a Grassmann integral, and after several manipu-
lations we are able to express det[(∂(1) · · · ∂(�))I J ]det(X (1) · · · X (�))s as the desired quantity
det(X (1) · · · X (�))s−1ε(I, J )det[(X (1) · · · X (�))Ic J c ] multiplied by a purely combinatorial factor b(s)
that is given as a Grassmann integral.

(ii) We evaluate this Grassmann integral and prove that b(s)=∏�
α=1

∏k
j=1(s+ nα − j).

The major new complications, as compared to the preceding proofs, come from the fact that our
Grassmann integral involves � sets of fermionic fields, while in the preceding proofs we only had
one or two, and the matrix arising from the application of the “low-rank perturbation lemma”
(Lemma B.11) is of size � × �, while in the preceding proofs we never had a matrix larger than
4 × 4. Despite these complications, step (i) follows closely the model established in the preceding
proofs and is not much more difficult than them: the main novelty is that we need to use a variant
of the low-rank perturbation lemma (Corollary B.13) that is specially adapted to perturbations of the
product form (5.170) encountered here. The big trouble arises in step (ii): to evaluate the Grassmann
integral involving scalar products among � sets of fermionic fields, we shall first rewrite it as a dif-
ferential operator acting on a determinant (using Proposition 5.6) and then exploit the fact that the
matrix arising in this differential operator is upper Hessenberg (i.e. has zero entries below the first
subdiagonal); the latter leads to some special combinatorial/algebraic computations (Theorem 5.7 and
Corollary 5.8).

It is convenient to formally divide the statement of Theorem 2.9 into two parts, corresponding to
steps (i) and (ii) above:
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Theorem 2.9, part (i). Fix integers � � 1 and n1, . . . ,n� � 0 and write n�+1 = n1 . For 1 � α � �, let X (α)

be an nα × nα+1 matrix of indeterminates, and let ∂(α) be the corresponding matrix of partial derivatives. If
I, J ⊆ [n1] with |I| = | J | = k, then

det
[(

∂(1) · · · ∂(�)
)

I J

]
det

(
X (1) · · · X (�)

)s

= bn1,...,n�;k(s)det
(

X (1) · · · X (�)
)s−1

ε(I, J )det
[(

X (1) · · · X (�)
)

Ic J c

]
(5.157)

where

bn1,...,n�;k(s)= (−1)k�

∫
Dk

(
ψ1, ψ̄1) · · ·Dk

(
ψ�, ψ̄�

)
Dn2−n1

(
η2, η̄2) · · ·Dn�−n1

(
η�, η̄�

)

× exp

[
�∑

α=2

(
ψ̄αTψα−1 + η̄αTηα

)]
det(I� + M)−s (5.158)

and

Mαβ =
⎧⎨
⎩

ψ̄αTψβ if α � β,

−η̄αTηα if α = β + 1,

0 otherwise.

(5.159)

Theorem 2.9, part (ii). We have

bn1,...,n�;k(s)=
�∏

α=1

k∏
j=1

(s+ nα − j). (5.160)

Let us now begin the proof of part (i) of Theorem 2.9. As before, we will need the full strength of
Lemma 5.1 to handle the all-minors case.

Proof of Theorem 2.9, part (i). We can assume that nα � n1 for 2 � α � �, since otherwise
det(X (1) · · · X (�)) is the zero polynomial.

We begin, as usual, by representing the differential operator as a Grassmann integral, this time
exploiting Lemma B.14 (rather than just Corollary B.6). We have

det
(
∂(1) · · · ∂(�)

)= ∫
Dn1

(
ψ1, ψ̄1) · · ·Dn�

(
ψ�, ψ̄�

)

× exp

[
�∑

α=2

(
ψ̄αTψα − ψ̄α−1T∂(α−1)ψα

)+ ψ̄�T∂(�)ψ1

]
. (5.161)

Here ψα
i , ψ̄α

i (1 � α � �, 1 � i � nα ) are Grassmann variables, and the subscripts on D serve
to remind us of the length of each vector; shorthand notations for index summations are under-
stood, e.g. ψ̄aT ∂(a)ψa+1 ≡ ∑na

i=1

∑na+1
j=1 ψ̄a

i ψa+1
j ∂/∂x(a)

i j . For a general minor I, J ⊆ [n1] with |I| =
| J | = k, the quantity det[(∂(1) · · ·∂(�))I J ] has a representation like (5.161) but with an extra factor
ε(I, J )(

∏
ψ̄1ψ1)Ic , J c in the integrand.

It is convenient to make the change of variables ψ1 →−ψ1, as this makes the summand ψ̄�∂(�)ψ1

analogous to the ψ̄α−1∂(α−1)ψα arising for 2 � α � �. We shall exploit this structure by writing ψ�+1

as a synonym for ψ1. This change of variables introduces an overall factor (−1)n1 (−1)n1−k = (−1)k .
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Applying the translation formula (5.1) to the whole set of variables {x(α)
i j } produces

det
[(

∂(1) · · · ∂(�)
)

I J

]
f
(

X (1), . . . , X (�)
)

= ε(I, J )

∫
Dn1

(
ψ1, ψ̄1) · · ·Dn�

(
ψ�, ψ̄�

)

× (−1)k exp

[
�∑

α=2

ψ̄αψα

](∏
ψ̄1ψ1

)
Ic , J c

f
(

X (1)
trans, . . . , X (�)

trans

)
(5.162)

for an arbitrary polynomial f , where we have introduced the shorthand

X (α)
trans = X (α) − ψ̄α

(
ψα+1)T

(5.163)

for the arguments of f . We shall use the formula (5.162) in the case f (X (1), . . . , X (�)) =
det(X (1) · · · X (�))s where s is a positive integer.

Suppose now that the X (α) are real matrices of rank min(nα,nα+1) that are sufficiently close to the
matrix Înαnα+1 defined in (5.64). Then by Lemma B.21 we can find matrices Pα ∈ GL(nα) for 1 � α �
�+ 1 such that X (α) = Pα Înαnα+1 P−1

α+1. We have X (1) · · · X (�) = P1 P−1
�+1 since În1n2 În2n3 · · · În�n1 = In1

as a consequence of the fact that nα � n1 for 2 � α � �. Therefore

det
(

X (1) · · · X (�)
)= det(P1)det(P�+1)

−1. (5.164)

We also have

X (1)
trans · · · X (�)

trans =
�∏

α=1

Pα

[
Înαnα+1 − P−1

α ψ̄α
(
ψα+1)T

Pα+1
]

P−1
α+1 (5.165)

where the product is taken from left (α = 1) to right (α = �).
Let us now change variables from (ψα, ψ̄α) to (ψ ′α, ψ̄ ′α) defined by

ψ ′α =
{

P T
αψα for 2 � α � �,

P T
�+1ψ

1 for α = 1,
(5.166)

ψ̄ ′α = P−1
α ψ̄α. (5.167)

The Jacobian is (det P−1
1 )(det P�+1)= det(X (1) · · · X (�))−1 [using (5.164)]. In the new variables we have

(dropping now the primes from the notation)

X (1)
trans · · · X (�)

trans = P1

(
�∏

α=1

[
Înαnα+1 − ψ̄α

(
ψα+1)T])

P−1
�+1, (5.168)

so again using (5.164) we see that the translated determinant is given by

det
(

X (1)
trans · · · X (�)

trans

)= det
(

X (1) · · · X (�)
)
(det Mn1,...,n�

) (5.169)
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where the matrix Mn1,...,n�
depends only on the Grassmann variables:

Mn1,...,n�
=

�∏
α=1

[
Înαnα+1 − ψ̄α

(
ψα+1)T]

. (5.170)

Therefore

det
[(

∂(1) · · · ∂(�)
)

I J

]
det

(
X (1) · · · X (�)

)s

= ε(I, J )det
(

X (1) · · · X (�)
)s−1

(−1)k
∫

Dn1

(
ψ1, ψ̄1) · · ·Dn�

(
ψ�, ψ̄�

)

×
(∏(

P1ψ̄
1)(P−T

�+1ψ
1))

Ic , J c
exp

[
�∑

α=2

ψ̄αψα

]
det(Mn1,...,n�

)s. (5.171)

To evaluate det(Mn1,...,n�
), we shall use Corollary B.13, which is a variant of the low-rank perturba-

tion lemma that is specially adapted to matrices of the form (5.170). Before doing so, it is convenient
to split the vectors ψα and ψ̄α as

(
ψα

1 , . . . ,ψα
nα

)= (
λα

1 , . . . , λα
n1

, ζ α
1 , . . . , ζ α

mα

)
, (5.172a)(

ψ̄α
1 , . . . , ψ̄α

nα

)= (
λ̄α

1 , . . . , λ̄α
n1

, ζ̄ α
1 , . . . , ζ̄ α

mα

)
, (5.172b)

where mα := nα − n1 (note in particular that ψ1 = λ1 and ψ̄1 = λ̄1). We now apply Corollary B.13
with xα = ψ̄α , yα =ψα+1 and ε =−1 to obtain

det(Mn1,...,n�
)= (det N)−1 (5.173)

where the �× � matrix N is defined by

Nαβ =
{∑mα+1,β

i=1 ζα+1
i ζ̄

β

i if α < β,

δαβ − λα+1Tλ̄β if α � β
(5.174)

and mα,β := minα�γ�β mγ . We now fall into the conditions for the application of Lemma 5.1 with
η = ψ1 = λ1, η̄ = ψ̄1 = λ̄1 and θ = {λ2, . . . , λ�, λ̄2, . . . , λ̄�} (here the variables ζ and ζ̄ just go for the
ride), yielding

det
[(

∂(1) · · · ∂(�)
)

I J

]
det

[
X (1) · · · X (�)

]s

= ε(I, J )det
[

X (1) · · · X (�)
]s−1

det
[(

X (1) · · · X (�)
)

Ic , J c

]
(−1)k

×
∫

Dn1

(
λ1, λ̄1) · · ·Dn1

(
λ�, λ̄�

)
Dm2

(
ζ 2, ζ̄ 2) · · ·Dm�

(
ζ �, ζ̄ �

)

×
( n1∏

j=k+1

λ̄1
j λ

1
j

)
exp

[
�∑

α=2

(
λ̄αTλα + ζ̄ αTζα

)]
det(N)−s. (5.175)

We have thus represented det[(∂(1) · · ·∂(�))I J ]det(X (1) · · · X (�))s as the desired quantity det(X (1) · · ·
X (�))s−1ε(I, J )det[(X (1) · · · X (�))Ic J c ] multiplied by a purely combinatorial factor bn1,...,n�;k(s) that is
given as a Grassmann integral:
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bn1,...,n�;k(s) := (−1)k
∫

Dn1

(
λ1, λ̄1) · · ·Dn1

(
λ�, λ̄�

)
Dm2

(
ζ 2, ζ̄ 2) · · ·Dm�

(
ζ �, ζ̄ �

)

×
( n1∏

j=k+1

λ̄1
j λ

1
j

)
exp

[
�∑

α=2

(
λ̄αTλα + ζ̄ αTζα

)]
det(N)−s. (5.176)

In order to handle the factor
∏n1

j=k+1 λ̄1
j λ

1
j , it is convenient to further split the fields λ and λ̄ as

(
λα

1 , . . . , λα
n1

)= (
λα

1 , . . . , λα
k ,χα

1 , . . . ,χα
n1−k

)
, (5.177a)(

λ̄α
1 , . . . , λ̄α

n1

)= (
λ̄α

1 , . . . , λ̄α
k , χ̄α

1 , . . . , χ̄α
n1−k

)
. (5.177b)

Notice now that the overall factor
∏n1

j=k+1 λ̄1
j λ

1
j =

∏n1−k
i=1 χ̄1

i χ1
i in the integrand kills all monomials in

the expansion of the rest of the integrand that contain any field χ1 or χ̄1. Now, the factor (det N)−s

in (5.176) depends on the fields λ, λ̄, χ , χ̄ , ζ , ζ̄ only through products of the forms {λα
i λ̄

β

i }1�β<α�� ,

{λ1
i λ̄

β

i }1�β�� , {χα
i χ̄

β

i }1�β<α�� , {χ1
i χ̄

β

i }1�β�� and {ζα
i ζ̄

β

i }2�α�β�� , while the exponential depends
only on combinations λ̄αλα , χ̄αχα and ζ̄ αζα that are “charge-neutral” in each field separately. There-
fore, the only monomials in the expansion of (det N)−s that can contribute to the integral must also
be charge-neutral in each field separately. But since no monomial containing any χ1 can arise, it is
impossible to make such a charge-neutral combination using any other χ or χ̄ since all such terms
are of the form χαχ̄β with β < α. In a similar way, the terms ζαζ̄ β with 2 � α < β � � cannot
contribute. (The combinations ζαζ̄ α do survive.) The integral (5.176) will therefore be unchanged if
we replace N by a new matrix N ′ in which all these “forbidden combinations” are set to zero:

N ′
αβ =

⎧⎨
⎩

ζ βTζ̄ β if α = β − 1,

0 if α < β − 1,

δαβ − λα+1Tλ̄β if α � β.

(5.178)

Note that the matrix N ′ is lower Hessenberg (i.e. has zero entries above the first superdiagonal).
Summarizing, we have

bn1,...,n�;k(s)= (−1)k
∫

Dk
(
λ1, λ̄1) · · ·Dk

(
λ�, λ̄�

)
×Dn1−k

(
χ1, χ̄1) · · ·Dn1−k

(
χ�, χ̄ �

)
Dm2

(
ζ 2, ζ̄ 2) · · ·Dm�

(
ζ �, ζ̄ �

)

×
( n1−k∏

i=1

χ̄1
i χ1

i

)
exp

[
�∑

α=2

(
λ̄αTλα + χ̄αTχα + ζ̄ αTζα

)]
det

(
N ′)−s

. (5.179)

Since N ′ does not contain χ or χ̄ , we can immediately perform the integrations over these fields,
yielding 1.

To make the indices in the matrix N ′ look nicer, we perform the change of variables from λ to λ′
defined by (λ′)α = λα+1 for 1 � α � � (and recalling that λ�+1 is a shorthand for λ1); the variables λ̄

are left as is. The Jacobian is (−1)k(�−1) . So, dropping primes, we have

bn1,...,n�;k(s)= (−1)k
∫

Dk
(
λ1, λ̄1) · · ·Dk

(
λ�, λ̄�

)
Dm2

(
ζ 2, ζ̄ 2) · · ·Dm�

(
ζ �, ζ̄ �

)

× exp

[
�∑(

λ̄αTλα−1 + ζ̄ αTζα
)]

det
(
N ′′)−s

(5.180)

α=2
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where

N ′′
αβ =

⎧⎨
⎩

ζ βTζ̄ β if α = β − 1,

0 if α < β − 1,

δαβ − λαTλ̄β if α � β.

(5.181)

Finally, in order to put our scalar products of complex fermions in the standard forms ζ̄ Tζ and
λ̄Tλ, we anticommute all the bilinears (obtaining a minus sign); and in order to keep the indices in
a natural notation, we replace N ′′ by its transpose. After a renaming λ→ ψ and ζ → η, the result is
(5.158)/(5.159), where (N ′′)T = I� + M .

This proves part (i) of Theorem 2.9 when the X (α) are real matrices of rank min(nα,nα+1) lying
in a sufficiently small neighborhood of Înαnα+1 , and s is a positive integer; the general validity of the
identity then follows from Proposition 2.18. �

We now turn to the evaluation of the Grassmann integral (5.158)/(5.159) for bn1,...,n�;k(s). The in-
tegrand depends on the fields only through the scalar products {ψ̄αTψβ}�α,β=1 and {η̄αTηα}�α=2. We

can therefore apply Proposition 5.6 once to the entire set of variables ψ , ψ̄ and separately to the
variables ηα , η̄α for each α (2 � α � �). We therefore introduce indeterminates X = (xαβ)�α,β=1 and

y = (yα)�α=2, along with the corresponding differential operators ∂/∂xαβ and ∂/∂ yα . Using Proposi-
tion 5.6 in the form (5.149b), we obtain (after renaming y2, . . . , y� as y1, . . . , y�−1)

bn1,...,n�;k(s)= (−1)k�(det M̂)−s

× exp

[
�−1∑
α=1

(
∂

∂xα+1,α
+ ∂

∂ yα

)]
det(X)k

�−1∏
α=1

ymα
α

∣∣∣∣∣
X=y=0

, (5.182)

where now M̂ reads

M̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1+ ∂
∂x11

∂
∂x12

∂
∂x13

· · · ∂
∂x1�

− ∂
∂ y1

1+ ∂
∂x22

∂
∂x23

· · · ∂
∂x2�

0 − ∂
∂ y2

1+ ∂
∂x33

· · · ∂
∂x3�

...
. . .

. . .
. . .

0 · · · 0 − ∂
∂ y�−1

1+ ∂
∂x��

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.183)

We can now apply the translation formula (5.1) to the exponential of the differential operator: this
transforms

∏�−1
α=1 ymα

α into
∏�−1

α=1(1+ yα)mα and xαβ into x′αβ = xαβ + δα,β+1. Thus

bn1,...,n�;k(s)= (−1)k�(det M̂)−s det
(

X ′
)k

�−1∏
α=1

(1+ yα)mα

∣∣∣∣∣
X=y=0

. (5.184)

Finally, we observe that M̂ does not contain the differential operators ∂/∂xαβ with α > β , so in X ′
we can set those variables xαβ to zero immediately. We thus have (5.184) where now

X ′ =

⎛
⎜⎜⎜⎜⎝

x11 x12 x13 · · · x1�

1 x22 x23 · · · x2�

0 1 x33 · · · x3�

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠ . (5.185)
0 · · · 0 1 x��
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Since the evaluation of (5.184) will involve a recursion in �, it is convenient to introduce an infinite
set of indeterminates {xαβ}1�α�β<∞ , along with the corresponding set of differential operators ∂αβ =
∂/∂xαβ , as well as another infinite set of indeterminates {aα}1�α�n−1 (only finitely many of these will
play any role at any given stage). Then define, for each � � 1, the quantities

D�(a)= det

⎛
⎜⎜⎜⎜⎝

1+ ∂11 ∂12 ∂13 · · · ∂1�

a1 1+ ∂22 ∂23 · · · ∂2�

0 a2 1+ ∂33 · · · ∂3�

...
. . .

. . .
. . .

0 · · · 0 a�−1 1+ ∂��

⎞
⎟⎟⎟⎟⎠ (5.186)

and

X� = det

⎛
⎜⎜⎜⎜⎝

x11 x12 x13 · · · x1�

1 x22 x23 · · · x2�

0 1 x33 · · · x3�

...
. . .

. . .
. . .

0 · · · 0 1 x��

⎞
⎟⎟⎟⎟⎠ (5.187)

where we also set D0(a) = 1 and X0 = 1. Note also that D�(a) [resp. X�] involves only those ∂αβ

[resp. xαβ ] with α � β � �.
Given a formal indeterminate s and a nonnegative integer k, our goal in the remainder of this

subsection is to compute the expression

D�(a)−s Xk
�

∣∣
X=0, (5.188)

which abstracts the relevant features of (5.184) [as s is a formal variable, the choice between s and
−s has no special role and is made here just for convenience]. Since D�(a) is a polynomial in the
quantities {∂αβ} and {aα} with constant term 1, D�(a)−s is here to be understood as the series

D�(a)−s =
∞∑

h=0

(−s

h

)[
D�(a)− 1

]h
(5.189)

which, when applied to Xk
� as in (5.188), can be truncated to h � k�. We shall prove the following:

Theorem 5.7. With the definitions above, we have

D�(a)−s Xk
�

∣∣
X=0 = k!

(−s

k

) �−1∏
α=1

k∑
b=0

k!
(−s− b

k− b

)
ab
α

b! . (5.190)

We remark that

k∑
b=0

(−s− b

k− b

)
zb

b! =
(−s

k

)
1F1(−k; s; z) (5.191)

although we will not use this.
What we shall actually need is a specific corollary of Theorem 5.7. Let us introduce the variables

{yα}1�α<∞ and the associated derivatives ∂̂α = ∂/∂ yα , as well as the further indeterminates (or non-
negative integers) {mα}1�α<∞ .
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Corollary 5.8. With the definitions above, we have

D�(−∂̂)−s Xk
�

�−1∏
α=1

(1+ yα)mα

∣∣∣∣∣
X=y=0

= (−1)k�
�−1∏
α=0

k−1∏
i=0

(s+mα + i) (5.192)

with the convention m0 = 0.

Given Corollary 5.8, the proof of Theorem 2.9, part (ii) is a triviality:

Proof of Theorem 2.9, part (ii), given Corollary 5.8. It suffices to recognize det[M̂] and det(X ′) as
the operators D�(−∂̂) and X� in Corollary 5.8. The sign (−1)k� in (5.184) combines with the one in
(5.192), leaving exactly the prefactor claimed in Theorem 2.9. �

Let us next show how to deduce Corollary 5.8 from Theorem 5.7:

Proof of Corollary 5.8, given Theorem 5.7. We evaluate the left-hand side of (5.192) by using (5.190)
with aα replaced by −∂̂α . Since

(−∂̂α)b(1+ yα)mα
∣∣

yα=0 = (−1)bb!
(

mα

b

)
(5.193)

and everything is factorized over α, we obtain

D�(−∂̂)−s Xk
�

�−1∏
α=1

(1+ yα)mα

∣∣∣∣∣
X=y=0

= k!
(−s

k

) �−1∏
α=1

k∑
b=0

k!
(−s− b

k− b

)
(−1)b

(
mα

b

)
. (5.194)

Then for each α we have

k!
k∑

b=0

(−s− b

k− b

)
(−1)b

(
mα

b

)
= k!

k∑
b=0

(−1)k−b
(

s+ k− 1

k− b

)
(−1)b

(
mα

b

)

= (−1)kk!
k∑

b=0

(
s+ k− 1

k− b

)(
mα

b

)

= (−1)kk!
(

s+ k+mα − 1

k

)

= (−1)k
k−1∏
i=0

(s+mα + i) (5.195)

where we used the Chu–Vandermonde convolution (Lemma B.2) in going from the second to the third
line. The prefactor k!(−s

k

)
gives an analogous contribution with m0 = 0. �

Finally, we turn to the proof of Theorem 5.7. We shall need two main lemmas: one that essen-
tially provides an inductive step, and another dealing with a special sum of multinomial coefficients.
Henceforth we shall write D� as a shorthand for D�(a).

We start with a pair of easy recursive formulae, obtained by expansion of the determinant on the
last column:
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Lemma 5.9.

D� = D�−1 +
�∑

α=1

(−1)�−αaα · · ·a�−1 Dα−1∂α� (5.196)

(the empty product aα · · ·a�−1 for α = � should be understood as 1) and

X� =
�∑

α=1

(−1)�−α Xα−1xα�. (5.197)

Related formulae for the determinant of a Hessenberg matrix can be found in [99,100].
The induction lemma is the following:

Lemma 5.10. Let m � 1 and c1, . . . , cm � 0 be integers, and let t be an indeterminate. Then

Dt
m

m∏
α=1

Dcα
α

m∏
α=1

Xcα
α

∣∣∣∣∣
xαm=0

=
∑

b1,...,bm�0
b1+···+bm=cm

(
t + cm

cm

)
cm!

(
cm

b1, . . . ,bm

)m−1∏
α=1

a
∑α

β=1 bβ

α

× Dt
m−1

m−1∏
α=1

D
cα+bα+1
α

m−1∏
α=1

X
cα+bα+1
α . (5.198)

Proof. Notice, first of all, that the factors Dα and Xα for α < m do not play any role, i.e. we can
rewrite the left-hand side of (5.198) as

(
m−1∏
α=1

Dcα
α

)(
Dcm+t

m Xcm
m

∣∣
xαm=0

)(m−1∏
α=1

Xcα
α

)
(5.199)

and concentrate on the central factor alone. To compute Dcm+t
m Xcm

m |xαm=0, we expand Dcm+t
m and Xcm

m
using Lemma 5.9:

Dt+cm
m =

∑
b1,...,bm�0

(
t + cm

b1 + · · · + bm

)(
b1 + · · · + bm

b1, . . . ,bm

)
Dt+cm−(b1+···+bm)

m−1

×
m∏

α=1

[
(−1)m−α(aα · · ·am−1)Dα−1∂αm

]bα
, (5.200)

Xcm
m =

∑
b1,...,bm�0

b1+···+bm=cm

(
cm

b1, . . . ,bm

) m∏
α=1

[
(−1)m−αxαm Xα−1

]bα
. (5.201)

Since ∂b
αmxb′

αm|xαm=0 = δb,b′b!, the two sets of summation indices, when combined inside
Dcm+t

m Xcm
m |xαm=0, must coincide, and we get
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Dcm+t
m Xcm

m

∣∣
xαm=0 =

∑
b1,...,bm�0

b1+···+bm=cm

(
t + cm

cm

)
cm!

(
cm

b1, . . . ,bm

)
Dt

m−1

×
m∏

α=1

[
(aα · · ·am−1)Dα−1

]bα

m∏
α=1

(Xα−1)
bα . (5.202)

In the two final products, we can drop the factors Db1
0 and Xb1

0 since D0 = X0 = 1. Reintroducing the
missing factors from (5.199), we obtain (5.198). �

We will now apply Lemma 5.10 for � “rounds”, starting with the initial conditions m = �, t =
−s−k, c1 = · · · = c�−1 = 0 and c� = k. At round i we have m = �+1− i. Let us denote by ci

1, . . . , ci
�+1−i

the parameters {c j} immediately before entering round i, and let us denote by bi
1, . . . ,bi

�+1−i the
summation indices in round i. We therefore have the initial conditions

c1
1 = · · · = c1

�−1 = 0, c1
� = k (5.203)

and the recursion

ci+1
j = ci

j + bi
j+1 for 1 � j � �− i (5.204)

[cf. (5.198)]. The summation indices bi
1, . . . ,bi

�+1−i obey the constraint

�+1−i∑
j=1

bi
j = ci

�+1−i . (5.205)

Using (5.203) and (5.204) we prove by induction that

ci
�+1−i =

i−1∑
h=1

bh
�+2−i for 2 � i � �. (5.206)

It is convenient to arrange the summation indices {bi
j}i+ j��+1 into a matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1
1 b1

2 b1
3 · · · b1

�

b2
1 b2

2 · · · b2
�−1

b3
1

... . .
.

... b�−1
2

b�
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5.207)

in which the first row sums to k and, for 2 � i � �, row i and column �+ 2− i have the same sum.
Such matrices can be characterized as follows:

Lemma 5.11. Fix integers �� 1 and k � 0. For a matrix B = (bi
j)i+ j��+1 of nonnegative integers as in (5.207),

the following conditions are equivalent:
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(a) The first row sums to k and, for 2 � i � �, row i and column �+ 2− i have the same sum.
(b) For 1 � h � � we have

∑
1�i�h

1� j��+1−h

bi
j = k.

(c) There exist nonnegative integers b2
�,b3

�−1, . . . ,b�
2 completing the matrix B to one in which all the row and

column sums are equal to k. (Such numbers are obviously unique if they exist, and must lie in the interval
[0,k].)

Note in particular that statement (b) with h = � tells us that the first column sums to k.

Proof of Lemma 5.11. (a) �⇒ (b): By induction on h. By hypothesis the equality holds for h = 1. Then
for h � 2 we have

∑
1�i�h

1� j��+1−h

bi
j −

∑
1�i�h−1

1� j��+2−h

bi
j =

∑
1� j��−h

bh
j −

∑
1�i�h−1

bi
�+2−h = 0 (5.208)

by hypothesis.
(b) �⇒ (c): It is easily checked that the definition

bh
�+2−h =

∑
1�i�h−1

1� j��+1−h

bi
j for 2 � h � � (5.209)

does what is required.
(c) �⇒ (a) is obvious. �

Remark. An analogous equivalence holds, with the same proof (mutatis mutandis), for matrices B of
nonnegative real numbers where k is a fixed nonnegative real number.

The �-fold application of Lemma 5.10 with the initial conditions (5.203) gives rise to a sum over
matrices B satisfying the equivalent conditions (a)–(c) of Lemma 5.11. To each such matrix there
corresponds an �-tuple c̄ = (c̄1, . . . , c̄�) of integers in the range [0,k], where c̄i =∑�+1−i

j=1 bi
j is the

sum of row i (it also equals ci
�+1−i ) and of course c̄1 = k. It will be convenient to partition the sum

over matrices B according to the vector c̄, so let us denote by B(c̄) be the set of matrices satisfying
the given conditions with the row sums c̄:

B(c̄)=
{

B = (
bi

j

)
i+ j��+1 ∈N�(�+1)/2:

�+1−i∑
j=1

bi
j = c̄i for 1 � i � �

and
i−1∑
h=1

bh
�+2−i = c̄i for 2 � i � �

}
. (5.210)

The summand is then

(
�∏(

t + c̄i

c̄i

)
c̄i !
(

c̄i

bi
1, . . . ,bi

�+1−i

))( �−1∏
a
∑�−α

i=1

∑α
j=1 bi

j
α

)
. (5.211)
i=1 α=1
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Furthermore, it follows from Lemma 5.11(b) that

�−α∑
i=1

α∑
j=1

bi
j = k− c̄�+1−α. (5.212)

Let us now show how to perform the sum over matrices B with a given vector c̄:

Lemma 5.12. Let �� 1, k � 0 and c̄1, . . . , c̄� � 0 be integers, with c̄1 = k. Then

∑
B=(bi

j)i+ j��+1∈B(c̄)

�∏
i=1

(
c̄i

bi
1, . . . ,bi

�+1−i

)
=

�∏
i=1

(
k

c̄i

)
. (5.213)

Before proving Lemma 5.12, let us show how it can be used to complete the proof of Theorem 5.7.

Proof of Theorem 5.7, given Lemma 5.12. Summing (5.211) over B ∈ B(c̄) and using (5.212) and
(5.213) along with t =−s− k and c̄1 = k, we obtain

(
�∏

i=1

(−s− k+ c̄i

c̄i

)
c̄i !
(

k

c̄i

))( �−1∏
α=1

ak−c̄�+1−α

α

)
= k!

(−s

k

) �−1∏
α=1

(−s− ĉα

k− ĉα

)
k!a

ĉα

α

ĉα ! (5.214)

where ĉα = k − c̄�+1−α . The sum over c̄2, . . . , c̄� – or equivalently over ĉ1, . . . , ĉ�−1 – now factorizes
and gives precisely (5.190). �
Proof of Lemma 5.12. The sum on the left-hand side of (5.213) is nontrivial because the “row” and
“column” constraints (5.210) are entangled. We shall replace one of the two sets of constraints (say,
the “column” one) by a generating function: that is, we introduce indeterminates ξ j (1 � j � �) and
consider

Φ�,k,c̄(ξ)=
∑

{bi
j}i+ j��+1∑�+1−i

j=1 bi
j=c̄i

�∏
j=1

ξ

∑�+1− j
i=1 bi

j

j

�∏
i=1

(
c̄i

bi
1, . . . ,bi

�+1−i

)
. (5.215)

The sum now factorizes over rows: we have

Φ�,k,c̄(ξ)=
�∏

i=1

∑
bi

1,...,bi
�+1−i�0

bi
1+···+bi

�+1−i=c̄i

(
�+1−i∏

j=1

ξ
bi

j

j

)(
c̄i

bi
1, . . . ,bi

�+1−i

)
(5.216a)

=
�∏

i=1

(
�+1−i∑

j=1

ξ j

)c̄i

(5.216b)

= (ξ1 + · · · + ξ�)
k(ξ1 + · · · + ξ�−1)

c̄2
(ξ1 + · · · + ξ�−2)

c̄3 · · · ξ c̄�

1 . (5.216c)
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We must now extract the coefficient of the monomial

ξk
1

�∏
j=2

ξ c̄�+2− j

j = ξk
1ξ c̄�

2 ξ c̄�−1

3 · · · ξ c̄2

� (5.217)

in Φ�,k,c̄(ξ). We first extract [ξ c̄2

� ] from (5.216c): here ξ� occurs only in the first factor, so we get( k
c̄2

)
(ξ1 + · · · + ξ�−1)

k−c̄2
times the remaining factors, i.e.

(
k

c̄2

)
(ξ1 + · · · + ξ�−1)

k(ξ1 + · · · + ξ�−2)
c̄3 · · · ξ c̄�

1 . (5.218)

We can then extract [ξ c̄3

�−1] in the same way, and so forth until the end, yielding right-hand side of
(5.213). �

Let us conclude by apologizing for the combinatorial complexity involved in the proof of Theo-
rem 5.7. The simplicity of the final formula (5.190), together with the simplicity of (5.213) and the
miraculous simplifications observed in its proof, suggest to us that there ought to exist a much sim-
pler and shorter proof of Theorem 5.7. But we have thus far been unable to find one.

6. Proofs of diagonal-parametrized Cayley identities

In this section we prove the diagonal-parametrized Cayley identities (Theorems 2.10 and 2.11). We
give two proofs of each result: the first deduces the diagonal-parametrized Cayley identity from the
corresponding Cayley identity by a change of variables; the second is a direct proof using a Grassmann
representation of the differential operator.

6.1. Diagonal-parametrized ordinary Cayley identity

Proof of Theorem 2.10. We change variables from (xij)
n
i, j=1 to new variables (ti)

n
i=1 and (yij)1�i �= j�n

defined by

ti = xii, (6.1a)

yij = x−αi
ii x

−(1−α j)

j j xi j . (6.1b)

We also set yii = 1 for all i and define the matrices Tα = diag(tαi
i ), T1−α = diag(t1−αi

i ) and Y = (yij),
so that

X = TαY T1−α (6.2)

and hence

(det X)s =
(

n∏
i=1

ts
i

)
(det Y )s. (6.3)

A straightforward computation shows that the differential operators (vector fields) ∂/∂xij can be
rewritten in the new variables as
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∂

∂xij
=
⎧⎨
⎩

t−1
i [ti

∂
∂ti
− αi

∑
k �=i yik

∂
∂ yik

− (1− αi)
∑

l �=i yli
∂

∂ yli
] if i = j,

t−αi
i t

−(1−α j)

j
∂

∂ yi j
if i �= j.

(6.4)

Let us denote by �α the matrix of differential operators whose elements are given by the right-hand
side of (6.4); please note that each element commutes with each other element not in the same row
or column [that is, (�α)i j commutes with (�α)i′ j′ whenever i �= i′ and j �= j′].

Now (6.3), considered as a function of t = (ti), is of the form const ×∏
i ts

i ; therefore, acting on
(6.3), each operator ti ∂/∂ti is equivalent to multiplication by s. It follows that the action of �α on
(6.3) is identical to that of �α,s defined by

(�α,s)i j =
⎧⎨
⎩

t−1
i [s− αi

∑
k �=i yik

∂
∂ yik

− (1− αi)
∑

l �=i yli
∂

∂ yli
] if i = j,

t−αi
i t

−(1−α j)

j
∂

∂ yi j
if i �= j.

(6.5)

Furthermore, (�α)i j and (�α,s)i j both commute with (�α,s)i′ j′ whenever i �= i′ and j �= j′ .
Now suppose we have a product (�α)i1 j1 · · · (�α)i� j� acting on (6.3), in which i1, . . . , i� are all

distinct and also j1, . . . , j� are all distinct (this is the case that will arise when we take the de-
terminant of any submatrix). Then the rightmost factor (�α)i� j� can be replaced by (�α,s)i� j� ; and
the same can be done for the other factors by commuting them to the right, changing them from
�α to �α,s , and commuting them back. It follows that, under the given condition on the indices,
(�α)i1 j1 · · · (�α)i� j� (det X)s = (�α,s)i1 j1 · · · (�α,s)i� j� (det X)s .

Translating back to the original variables (xij)
n
i, j=1, �α,s equals Dα,s defined by

(Dα,s)i j =
{

x−1
ii [s− αi

∑
k �=i xik

∂
∂xik

− (1− αi)
∑

l �=i xli
∂

∂xli
] if i = j,

∂
∂xi j

if i �= j,
(6.6)

and the Cayley formula (2.2) tells us that

det
(
(Dα,s)I J

)
(det X)s = s(s + 1) · · · (s+ k− 1)(det X)s−1ε(I, J )(det XIc J c ). (6.7)

On the other hand, Dα,β,s = X̂β Dα,s X̂1−β where X̂β = diag(xβi
ii ) and X̂1−β = diag(x1−βi

ii ), so that

det
(
(Dα,β,s)I J

)= (∏
i∈I

xβi
ii

)(∏
j∈ J

x
1−β j

j j

)
det

(
(Dα,s)I J

)
. (6.8)

Combining (6.7) and (6.8), we obtain (2.27). �
Now let us show an ab initio proof based on Grassmann representation of the differential operator

det((Dα,s)I J ). Since Dα,s contains not only terms ∂/∂xij but also terms xij ∂/∂xij , the role played in
Section 5 by the translation formula (5.1) will here be played by the dilation–translation formula
(B.60): see Appendix B.4 for discussion.

Alternate proof of Theorem 2.10. For notational simplicity let us assume that the diagonal elements
xii are all equal to 1; the general case can be recovered by a simple scaling.

Consider the matrix of differential operators Dα,s defined by (6.6). In terms of the matrices Eij

defined by (3.4), we can write

Dα,s = sI +
∑
i �= j

(
Eij − xij

[
αi Eii + (1− α j)E jj]) ∂

∂xij
. (6.9)
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As before, we introduce Grassmann variables ηi , η̄i (1 � i � n) and use the representation

det
(
(Dα,s)I J

)= ε(I, J )

∫
Dn(η, η̄)

(∏
η̄η

)
Ic , J c

× exp

[
s
∑

i

η̄iηi +
∑
i �= j

[
η̄iη j − xij

(
αiη̄iηi + (1− α j)η̄ jη j

)] ∂

∂xij

]
. (6.10)

Let us now apply this operator to a generic polynomial f (X): using the dilation–translation formula
(B.60) on all the variables xij (i �= j), we obtain

det
(
(Dα,s)I J

)
f (X)= ε(I, J )

∫
Dn(η, η̄)

(∏
η̄η

)
Ic , J c

exp

[
s
∑

i

η̄iηi

]

× f
({

(1− αiη̄iηi)xij
(
1− (1− α j)η̄ jη j

)+ η̄iη j
}

i �= j

)
. (6.11)

Note that the diagonal terms remain unchanged at their original value xii = 1. Defining the diagonal
matrices Mα = diag(1− αi η̄iηi) and M1−α = diag[1− (1− αi)η̄iηi], we see that the argument of f is

X ′ = Mα X M1−α + η̄ηT (6.12)

(note that also the diagonal elements i = j come out right). We are interested in f (X)= det(X)s , and
we have

det X ′ = (det Mα)(det M1−α)det
(

X + M−1
α η̄ηTM−1

1−α

)
(6.13a)

= (det Mα)(det M1−α)det
(

X + η̄ηT) (6.13b)

where M−1
α η̄ = η̄ and ηTM−1

1−α = ηT by nilpotency. The factor (det Mα)s(det M1−α)s exactly cancels
the factor exp[s∑i η̄iηi] in the integrand, and we are left with

det
(
(Dα,s)I J

)
det(X)s = ε(I, J )

∫
Dn(η, η̄)

(∏
η̄η

)
Ic , J c

det
(

X + η̄ηT)s
, (6.14)

which coincides with (5.13a). Arguing exactly as in (5.13)–(5.15), we therefore obtain

det
(
(Dα,s)I J

)
(det X)s = s(s + 1) · · · (s+ k− 1)(det X)s−1ε(I, J )(det XIc J c ). � (6.15)

6.2. Diagonal-parametrized symmetric Cayley identity

An analogous proof gives the symmetric analogue:

Proof of Theorem 2.11. We change variables from (xij)1�i� j�n to new variables (ti)
n
i=1 and

(yij)1�i< j�n defined by

ti = xii, (6.16a)

yij = x
− 1

2
ii x

− 1
2

j j xi j . (6.16b)
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We also set yii = 1 for all i, use the synonymous y ji = yij for j > i, and define the matrices T =
diag(t

1
2
i ) and Y = (yij), so that

X = T Y T (6.17)

and hence

(det X)s =
(

n∏
i=1

ts
i

)
(det Y )s. (6.18)

A straightforward computation shows that the differential operators (vector fields) ∂/∂xij can be
rewritten in the new variables as

∂

∂xij
=
⎧⎨
⎩

t−1
i [ti

∂
∂ti
− 1

2

∑
k �=i yik

∂
∂ yik

− 1
2

∑
l �=i yli

∂
∂ yli

] if i = j,

t
− 1

2
i t

− 1
2

j
∂

∂ yi j
if i �= j.

(6.19)

Let us denote by � the matrix of differential operators whose elements are given by the right-hand
side of (6.19); please note that each element commutes with each other element not in the same row
or column [that is, �i j commutes with �i′ j′ whenever i �= i′ and j �= j′].

Now (6.18), considered as a function of t = (ti), is of the form const ×∏
i ts

i ; therefore, acting on
(6.18), each operator ti ∂/∂ti is equivalent to multiplication by s. It follows that the action of � is
identical to that of �s defined by

(�s)i j =
⎧⎨
⎩

t−1
i [s− 1

2

∑
k �=i yik

∂
∂ yik

− 1
2

∑
l �=i yli

∂
∂ yli

] if i = j,

t
− 1

2
i t

− 1
2

j
∂

∂ yi j
if i �= j.

(6.20)

Furthermore, �i j and (�s)i j both commute with (�s)i′ j′ whenever i �= i′ and j �= j′ .
Now suppose we have a product �i1 j1 · · ·�i� j� acting on (6.18), in which i1, . . . , i� are all dis-

tinct and also j1, . . . , j� are all distinct. Then the rightmost factor �i� j� can be replaced by (�s)i� j� ;
and the same can be done for the other factors by commuting them to the right, changing them
from � to �s , and commuting them back. It follows that, under the given condition on the indices,
�i1 j1 · · ·�i� j� (det X)s = (�s)i1 j1 · · · (�s)i� j� (det X)s .

Translating back to the original variables (xij)1�i� j�n , �s equals Dsym
s defined by

(
Dsym

s
)

i j =
{

x−1
ii [s− 1

2

∑
k �=i xik

∂
∂xik

− 1
2

∑
l �=i xli

∂
∂xli

] if i = j,
∂

∂xi j
if i �= j,

(6.21)

and the Cayley formula (2.2) tells us that

det
((

Dsym
s

)
I J

)(
det Xsym)s = s

(
s+ 1

2

)
· · ·

(
s+ k− 1

2

)(
det Xsym)s−1

ε(I, J )
(
det Xsym

Ic J c

)
. (6.22)

On the other hand, Dsym
β,s = X̂β Dsym

s X̂1−β where X̂β = diag(xβi
ii ) and X̂1−β = diag(x1−βi

ii ), so that

det
((

Dsym
β,s

)
I J

)= (∏
i∈I

xβi
ii

)(∏
j∈ J

x
1−β j

j j

)
det

((
Dsym

s
)

I J

)
. (6.23)

Combining (6.22) and (6.23), we obtain (2.32). �
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Now let us show the proof based on Grassmann representation of the differential operator:

Alternate proof of Theorem 2.11. For notational simplicity let us assume that the diagonal elements
xii are all equal to 1; the general case can be recovered by a simple scaling. We are therefore using
the matrix Xsym defined by

(
Xsym)

i j =
⎧⎨
⎩

1 for i = j,
xij for i < j,
x ji for i > j.

(6.24)

Consider the matrix of differential operators Dsym
β,s defined by (2.30). In terms of the matrices Eij

defined by (3.4), we can write

Dsym
β,s = sI + 1

2

∑
i< j

[
Eij + E ji − xij

(
Eii + E jj)] ∂

∂xij
. (6.25)

We introduce Grassmann variables ηi , η̄i (1 � i � n) and use the representation

det
((

Dsym
β,s

)
I J

)= ε(I, J )

∫
Dn(η, η̄)

(∏
η̄η

)
Ic , J c

× exp

[
s
∑

i

η̄iηi + 1

2

∑
i< j

[
η̄iη j − ηi η̄ j − xij(η̄iηi + η̄ jη j)

] ∂

∂xij

]
. (6.26)

Applying the dilation–translation formula (B.60) on all the variables xij (i < j), we obtain

det
((

Dsym
β,s

)
I J

)
f
({xij}i< j

)
= ε(I, J )

∫
Dn(η, η̄)

(∏
η̄η

)
Ic , J c

exp

[
s
∑

i

η̄iηi

]

× f

({(
1− 1

2
η̄iηi

)
xij

(
1− 1

2
η̄ jη j

)
+ 1

2
(η̄iη j − ηiη̄ j)

}
i< j

)
. (6.27)

Note that the diagonal terms remain unchanged at their original value xii = 1. Defining the diagonal
matrix M = diag(1− 1

2 η̄iηi), we see that the argument of f is

Xsym′ = M XsymM + 1

2

(
η̄ηT − ηη̄T) (6.28)

(note that also the diagonal elements i = j come out right). We are interested in f (Xsym) =
det(Xsym)s , and we have

det Xsym′ = (det M)2 det

[
X + 1

2
M−1(η̄ηT − ηη̄T)M−1

]
(6.29a)

= (det M)2 det

[
X + 1

2

(
η̄ηT − ηη̄T)] (6.29b)

where the last equality again follows by nilpotency. The factor (det M)2s exactly cancels the factor
exp[s∑i η̄iηi] in the integrand, and we are left with
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det
((

Dsym
β,s

)
I J

)
det

(
Xsym)s

= ε(I, J )

∫
Dn(η, η̄)

(∏
η̄η

)
Ic , J c

det

[
Xsym + 1

2

(
η̄ηT − ηη̄T)]s

, (6.30)

which coincides with (5.41). The remainder of the proof is as in (5.41)–(5.48). �
7. Proofs of Laplacian-parametrized Cayley identities

In this section we prove Theorems 2.12 and 2.14. The proofs use a Grassmann representation of
the differential operator, and are closely patterned after the proofs of the ordinary and symmetric
Cayley identities in Sections 5.1 and 5.3, respectively.

7.1. Laplacian-parametrized ordinary Cayley identity

Let us begin by recalling the definitions of the matrices arising in Theorem 2.12:

(
X row-Lap)

i j =
{

xij if i �= j,
−∑

k �=i xik if i = j, (7.1a)

(
∂row-Lap)

i j =
{

∂/∂xij if i �= j,
0 if i = j,

(7.1b)

and of course T = diag(ti). In order to maximize the correspondences with the proof in Section 5.1, it
is convenient to prove instead the dual (and of course equivalent) result for column-Laplacian matri-
ces:

(
Xcol-Lap)

i j =
{

xij if i �= j,
−∑

k �=i xki if i = j, (7.2a)

(
∂col-Lap)

i j =
{

∂/∂xij if i �= j,
0 if i = j

(7.2b)

(note that ∂col-Lap = ∂row-Lap). In what follows we shall drop the superscripts “col-Lap” in order to
lighten the notation, but it is important to remember the definitions (7.2).

Proof of Theorem 2.12. We introduce Grassmann variables ηi , η̄i (1 � i � n) and use the representa-
tion

det(U + ∂)− det(∂)=
∫

Dn(η, η̄)
(
eη̄TUη − 1

)
eη̄T∂η. (7.3)

It is convenient to introduce the Grassmann quantities Θ =∑
� η� and Θ̄ =∑

� η̄� , so that η̄TUη =
Θ̄TΘ . Since Θ2 = Θ̄2 = 0, the first exponential in (7.3) is easily expanded, and we have

det(U + ∂)− det(∂)=
∫

Dn(η, η̄)
(
Θ̄TΘ

)
eη̄T∂η. (7.4)

Let us now apply (7.4) to det(T + X)s where s is a positive integer, using the translation formula (5.1):
by (7.2b) we get xij → xij + η̄iη j for i �= j, and by (7.2a) this induces X → X + η̄ηT − diag(Θ̄ηi). We
therefore obtain
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[
det(U + ∂)− det(∂)

]
det(T + X)s

=
∫

Dn(η, η̄)
(
Θ̄TΘ

)
det

(
T + X + η̄ηT − diag(Θ̄ηi)

)s
. (7.5)

But now comes an amazing simplification: because of the prefactor Θ̄TΘ and the nilpotency Θ2 = 0,
all terms in the expansion of the determinant arising from the term diag(Θ̄ηi) simply vanish, so we
can drop diag(Θ̄ηi):

[
det(U + ∂)− det(∂)

]
det(T + X)s =

∫
Dn(η, η̄)

(
Θ̄TΘ

)
det

(
T + X + η̄ηT). (7.6)

Assuming that T + X is an invertible real or complex matrix, we can write this as

[
det(U + ∂)− det(∂)

]
det(T + X)s (7.7)

= det(T + X)s
∫

Dn(η, η̄)
(
η̄TUη

)
det

[
I + (T + X)−1η̄ηT]s

.

Let us now change variables from (η, η̄) to (η′, η̄′) ≡ (η, (T + X)−1η̄): we pick up a Jacobian
det(T + X)−1, and dropping primes we have

[
det(U + ∂)− det(∂)

]
det(T + X)s (7.8)

= det(T + X)s−1
∫

Dn(η, η̄)
(
η̄T(T + XT)Uη

)
det

(
I + η̄ηT)s

.

But since X is column-Laplacian, we have U X = 0 and hence XTU = 0, so that η̄T(T + XT)Uη reduces
to η̄TT Uη.31 This expresses the left-hand side of the identity as the desired quantity det(T + X)s−1

times a factor

P (s,n, T )≡
∫

Dn(η, η̄)
(
η̄TT Uη

)
det

(
I + η̄ηT)s

, (7.9)

which we now proceed to calculate. The matrix I+ η̄ηT is a rank-1 perturbation of the identity matrix;
by Lemma B.11 we have

det
(

I + η̄ηT)s = (
1− η̄Tη

)−s
(7.10a)

=
∞∑

�=0

(−1)�
(−s

�

)(
η̄Tη

)�
. (7.10b)

Now

η̄TT Uη=
∑

i

tiη̄iηi +
∑

i

∑
j �=i

tiη̄iη j, (7.11)

31 For a row-Laplacian matrix we would have instead chosen to multiply η̄ηT by (T + X)−1 on the right, and then made the
change of variables from (η, η̄) to (η′, η̄′) ≡ ((T + XT)−1η, η̄), picking up a Jacobian (det(T + XT))−1 = (det(T + X))−1 and
obtaining a prefactor η̄TU (T + XT)η; then U XT = 0 because X is row-Laplacian.
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but the terms η̄iη j with i �= j cannot contribute to an integral in which the rest of the integrand
depends on η̄ and η only through products η̄iηi ; so in the integrand we can replace η̄TT Uη with
η̄TTη. Since

∫
Dn(η, η̄) η̄iηi

(
η̄Tη

)� = (n− 1)!δ�,n−1 (7.12)

for each index i, it follows that

P (s,n, T )=
(∑

i

ti

)
(−1)n−1

( −s

n− 1

)
(n− 1)! (7.13a)

=
(∑

i

ti

)
s(s + 1) · · · (s+ n− 2). (7.13b)

This proves (2.36) when X is a real or complex matrix, t = (ti) are real or complex values such that
T + X is invertible, and s is a positive integer; the general validity of the identity then follows from
Proposition 2.18. �
7.2. Laplacian-parametrized symmetric Cayley identity

Now we prove the corresponding result for symmetric Laplacian matrices. Let us recall the defini-
tions:

(
Xsym-Lap)

i j =
⎧⎨
⎩

xij if i < j,
x ji if i > j,
−∑

k �=i xik if i = j,
(7.14a)

(
∂sym-Lap)

i j =
⎧⎨
⎩

∂/∂xij if i < j,
∂/∂x ji if i > j,
0 if i = j.

(7.14b)

Once again we drop the superscripts “sym-Lap” to lighten the notation.

Proof of Theorem 2.14. Again we introduce Grassmann variables ηi , η̄i (1 � i � n) and apply the
representation (7.4) to det(T + X)s where s is a positive integer. Using the translation formula (5.1)
and defining Θ and Θ̄ as before, we obtain

[
det(U + ∂)− det(∂)

]
det(T + X)s

=
∫

Dn(η, η̄) (Θ̄Θ)det
(
T + X + η̄ηT − ηη̄T − diag(η̄iΘ)− diag(Θ̄ηi)

)s
. (7.15)

We again argue that because of the prefactor Θ̄TΘ and the nilpotencies Θ2 = Θ̄2 = 0, all terms in
the expansion of the determinant arising from the terms diag(η̄iΘ) and diag(Θ̄ηi) simply vanish, so
we can drop these two terms:

[
det(U + ∂)− det(∂)

]
det(T + X)s

=
∫

Dn(η, η̄) (Θ̄Θ)det
(
T + X + η̄ηT − ηη̄T)s

. (7.16)
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Assuming that T + X is an invertible real or complex matrix, we can write this as

[
det(U + ∂)− det(∂)

]
det(T + X)s

= det(T + X)s
∫

Dn(η, η̄)
(
η̄TUη

)
det

[
I + (T + X)−1(η̄ηT − ηη̄T)]s

. (7.17)

Let us now change variables from (η, η̄) to (η′, η̄′)≡ (η, (T + X)−1η̄); we pick up a Jacobian (det(T +
X))−1, and dropping primes we have

[
det(U + ∂)− det(∂)

]
det(T + X)s

= det(T + X)s−1
∫

Dn(η, η̄)
(
η̄T(T + XT)Uη

)
× det

[
I + η̄ηT − (T + X)−1ηη̄T(T + X)T]s

. (7.18)

But since X is symmetric Laplacian (hence column-Laplacian), we have XTU = 0, and the prefactor
reduces to η̄TT Uη. Now we apply Corollary B.12 to the determinant expression, and obtain

[
det(U + ∂)− det(∂)

]
det(T + X)s

= det(T + X)s−1
∫

Dn(η, η̄)
(
η̄TT Uη

)(
1− η̄Tη

)−2s
. (7.19)

This expresses the left-hand side of the identity as the desired quantity det(T + X)s−1 times a factor

P (s,n, T )≡
∫

Dn(η, η̄)
(
η̄TT Uη

)(
1− η̄Tη

)−2s
, (7.20)

which we now proceed to calculate. As in the row-Laplacian case, the terms in η̄T(T U )η of the form
η̄iη j with i �= j cannot contribute to the integral, as the rest of the integrand depends on η and η̄

only through products η̄iηi , so we can replace η̄T(T U )η with η̄TTη. Since

∫
Dn(η, η̄) η̄iηi

(
η̄Tη

)� = (n− 1)!δ�,n−1 (7.21)

for each i, it follows that

P (s,n, T )=
(∑

i

ti

)
(−1)n−1

( −2s

n− 1

)
(n− 1)! (7.22a)

=
(∑

i

ti

)
2s(2s + 1) · · · (2s+ n− 2). (7.22b)

This proves (2.40) when X is a symmetric real or complex matrix, t = (ti) are real or complex values
such that T + X is invertible, and s is a positive integer; the general validity of the identity then
follows from Proposition 2.18. �
8. Proofs of product-parametrized and border-parametrized rectangular Cayley identities

In this section we prove the product-parametrized and border-parametrized rectangular Cayley
identities (Theorems 2.16 and 2.17) and then discuss the close relationship between them.
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8.1. Product-parametrized rectangular Cayley identity

Before beginning the proof of Theorem 2.16, let us observe that the quantity det(M A) appearing
in the statement of the theorem [cf. (2.44) for the definition of the matrix M in terms of X and B]
has an alternate expression as follows:

Lemma 8.1. Let A, B, X and M be as in Theorem 2.16. Then

det(M A)=
∑

L⊆[m]
|L|=k

ε(I, L)
(
det

(
BT A

)
J L

)(
det(X A)Ic Lc

)
. (8.1)

Proof. The definition (2.44) of M can be rewritten as

MIc� = XIc�, (8.2a)

MI� = (BT) J�. (8.2b)

Therefore

(M A)Ic� = (X A)Ic�, (8.3a)

(M A)I� = (BT A) J� (8.3b)

for any matrix A. We now apply multi-row Laplace expansion (A.8) with row set I and summation
variable L; this yields (8.1). �

We are now ready to prove Theorem 2.16. In order to bring out the ideas behind the proof as
clearly as possible, we will first fully develop the reasoning proving the “basic” identity (2.42) –
which is actually quite simple – and then describe the modifications needed to handle the all-minors
case.

Proof of Theorem 2.16. Let us apply Corollary B.6 to the determinant det(∂ B) and then introduce a
Grassmann representation for the resulting block determinant: we obtain

det(∂ B)= det

(
0m ∂

−B In

)
=
∫

Dm(ψ, ψ̄)Dn(η, η̄)exp
[
ψ̄T∂η− η̄T Bψ + η̄Tη

]
(8.4)

where ψi , ψ̄i (1 � i � m) and ηi , η̄i (1 � i � n) are Grassmann variables. By the translation formula
(5.1), we have

det(∂ B) f (X)=
∫

Dm(ψ, ψ̄)Dn(η, η̄)exp
[
η̄T(−Bψ + η)

]
f
(

X + ψ̄ηT) (8.5)

for an arbitrary polynomial f . We shall use this formula in the case f (X) = det(X A)s where s is a
positive integer, so that

det(∂ B)det(X A)s =
∫

Dm(ψ, ψ̄)Dn(η, η̄)exp
[
η̄T(−Bψ + η)

]
det

[(
X + ψ̄ηT)A

]s
. (8.6)
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It is convenient to introduce the shorthand

X trans ≡ X + ψ̄ηT. (8.7)

Suppose now that X A is an invertible real or complex matrix. Then we have

X trans A ≡ (
X + ψ̄ηT)A = (X A)

[
Im + (

(X A)−1ψ̄
)(

ηT A
)]

. (8.8)

Let us now change variables from (ψ, ψ̄,η, η̄) to (ψ ′, ψ̄ ′, η′, η̄′) ≡ (ψ, (X A)−1ψ̄, η, η̄), with Jacobian
det(X A)−1 = (det X A)−1. In the new variables we have (dropping now the primes from the notation)

X trans A = (X A)
(

Im + ψ̄ηT A
)
, (8.9)

and the translated determinant is given by

det
(

X trans A
)= det(X A)det

(
Im + ψ̄ηT A

)
, (8.10)

so that

det(∂ B)det(X A)s = det(X A)s−1
∫

Dm(ψ, ψ̄)Dn(η, η̄) e−η̄T Bψ+η̄Tη det
(

I + ψ̄ηT A
)s

. (8.11)

Applying Lemma B.11 to the rightmost determinant yields

det
(

I + ψ̄ηT A
)= (

1− ψ̄T ATη
)−1

, (8.12)

so that we are left with the Grassmann-integral expression

det(∂ B)det(X A)s = det(X A)s−1
∫

Dm(ψ, ψ̄)Dn(η, η̄) e−η̄T Bψ+η̄Tη
(
1− ψ̄T ATη

)−s
. (8.13)

We have therefore proven that det(∂ B)det(X A)s equals the desired quantity det(X A)s−1 multiplied
by a factor

b(s, A, B)=
∫

Dm(ψ, ψ̄)Dn(η, η̄) e−η̄T Bψ+η̄Tη
(
1− ψ̄T ATη

)−s
(8.14)

that does not involve the variables X (but still involves the parameters A and B). Now, in the expan-
sion of

(
1− ψ̄T ATη

)−s =
∞∑

k=0

(−1)k
(−s

k

)(
ψ̄T ATη

)k
, (8.15)

only the term k =m survives the integration over the variables ψ̄ , so we can replace (1− ψ̄T ATη)−s

in the integrand of (8.14) by (−1)m
(−s

m

)
(ψ̄T ATη)m . Moreover, the same reasoning shows that we can

replace (ψ̄T ATη)m by m!exp(ψ̄T ATη). We are therefore left with a combinatorial prefactor

(−1)m
(−s

m

)
m! = s(s + 1) · · · (s+m− 1) (8.16)
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multiplying the Grassmann integral

∫
Dm(ψ, ψ̄)Dn(η, η̄)exp

[(
ψ̄

η̄

)T(
0m AT

−B In

)(
ψ

η

)]
= det

(
0m AT

−B In

)
, (8.17)

which equals det(AT B) by Corollary B.6.
This proves the “basic” identity (2.42) whenever X A is an invertible real or complex matrix and s

is a positive integer. Now, if A has rank < m, then both sides of (2.42) are identically zero; while if A
has rank m, then X A is invertible for a nonempty open set of matrices X . The general validity of the
identity (2.42) therefore follows from Proposition 2.18.

Now let us consider the modifications needed to prove the all-minors identity (2.43). For a while
these modifications will run along the same lines as those used in the proof of the two-matrix
rectangular Cayley identity (Section 5.5). Thus, a factor ε(I, J )(

∏
ψ̄ψ)Ic , J c gets inserted into the

Grassmann integral (8.4)–(8.6); after the change of variables (and dropping of primes) it becomes
ε(I, J )(

∏
(X Aψ̄)ψ)Ic , J c . So we have, in place of Eq. (8.13), the modified expression

det
[
(∂ B)I J

]
det(X A)s = ε(I, J )det(X A)s−1

∫
Dm(ψ, ψ̄)Dn(η, η̄)

(∏
(X Aψ̄)ψ

)
Ic , J c

× exp
[
η̄Tη− η̄T Bψ

](
1− ψ̄T ATη

)−s
. (8.18)

Once again we argue that the integration over variables ψ̄ allows to replace

(
1− ψ̄T ATη

)−s → (−1)k
(−s

k

)
k!exp

[
ψ̄T ATη

]
(8.19)

since, in both cases, only the k-th term of the expansion survives. We therefore have

det
[
(∂ B)I J

]
det(X A)s

= ε(I, J )det(X A)s−1s(s + 1) · · · (s+ k− 1)

×
∫

Dm(ψ, ψ̄)Dn(η, η̄)
(∏(

ψ̄ AT XT)ψ)
Ic , J c

exp
[
ηTη− ηT Bψ + ψ̄T ATη

]
. (8.20)

Now we perform the integration over η and η̄ using Wick’s theorem for “complex” fermions in the
“source” form [cf. (A.94)], yielding

det
[
(∂ B)I J

]
det(X A)s = ε(I, J )det(X A)s−1s(s + 1) · · · (s+ k− 1)

×
∫

Dm(ψ, ψ̄)
(∏(

ψ̄ AT XT)ψ)
Ic , J c

exp
[
ψ̄T AT Bψ

]
. (8.21)

Next we perform the integration over ψ and ψ̄ using Wick’s theorem for “complex” fermions in the
“correlation function” form (A.97), yielding32

32 Here we have made in (A.97) the substitutions A → AT B , B → (I) J c� , C → (AT XT)�Ic , I → K , J → L.
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∫
Dm(ψ, ψ̄)

(∏(
ψ̄ AT XT)ψ)

Ic , J c
exp

[
ψ̄T AT Bψ

]
=

∑
|K |=|L|=n−k

ε(K , L)(det I J c L)
(
det

(
AT B

)
K c Lc

)(
det

(
AT XT)

K Ic

)

=
∑

|K |=n−k

ε
(

K , J c)(det
(

AT B
)

K c J

)(
det

(
AT XT)

K Ic

)

=
∑
|K |=k

ε
(

K c, J c)(det
(

AT B
)

K J

)(
det

(
AT XT)

K c Ic

)
. (8.22)

We now use ε(K c, J c) = ε( J , K ) and ε(I, J )ε( J , K ) = ε(I, K ); it follows that ε(I, J ) times (8.22)
equals (8.1). �
Remark. The s = 1 special case of the all-minors identity (2.43) has an easy elementary proof, which
actually proves a stronger result. Note first that by the multilinearity of the determinant det(X A) in
the variables {xij}, we have

det(M A)=
(∏

p

(∂ B)ip jp

)
det(X A). (8.23)

Moreover, because permuting the indices j1, . . . , jk amounts to permuting the rows of BT and hence
permuting a subset of the rows of M , we have

det(M A)= sgn(σ )

(∏
p

(∂ B)ip jσ (p)

)
det(X A) (8.24)

for any permutation σ ∈ Sk . Summing this over σ ∈ Sk , we obtain

k!det(M A)= [
det(∂ B)I J

]
det(X A), (8.25)

which is nothing other than the s = 1 case of (2.43). But it is amusing to note that (8.24) holds for
each σ ∈ Sk , not just when summed over σ ∈ Sk .

8.2. Border-parametrized rectangular Cayley identity

Proof of Theorem 2.17. We introduce Grassmann variables ψi , ψ̄i (1 � i � m) and ηi , η̄i (1 � i �
n−m). We use the representation

det(∂̂)=
∫

Dm(ψ, ψ̄)Dn−m(η, η̄)exp

[
ψ̄T∂

(
ψ

η

)
+ η̄T B

(
ψ

η

)]
. (8.26)

By the translation formula (5.1), we have

det(∂̂) f (X)=
∫

Dm(ψ, ψ̄)Dn−m(η, η̄)exp

[
η̄T B

(
ψ

η

)]
f

(
X + ψ̄

(
ψ

η

)T)
(8.27)
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for an arbitrary polynomial f . We shall use this formula in the case f (X) = det( X̂)s where s is a
positive integer, so that

det(∂̂)det( X̂)s =
∫

Dm(ψ, ψ̄)Dn−m(η, η̄)exp

[
η̄T B

(
ψ

η

)]
det

[
X̂ +

(
ψ̄

0

)(
ψ

η

)T]s

. (8.28)

It is convenient to introduce the shorthand

( X̂)trans ≡ X̂ +
(

ψ̄

0

)(
ψ

η

)T

(8.29)

for the argument of det.
Let us now assume that X̂ is an invertible real or complex matrix, and change variables from

(
ψ
η

)
to

(
ψ ′
η′
)= X̂−T

(
ψ
η

)
with Jacobian (det X̂)−1. Dropping primes from the new variables, we observe that

the expression for the translated matrix can be written as

( X̂)trans = X̂

[
I +

(
ψ̄

0

)(
ψ

η

)T]
, (8.30)

so that

det( X̂)trans = (det X̂)det

[
I +

(
ψ̄

0

)(
ψ

η

)T]
. (8.31)

Applying Lemma B.11 to the rightmost determinant yields

det

[
I +

(
ψ̄

0

)(
ψ

η

)T]
= (

1− ψ̄Tψ
)−1

, (8.32)

so that we are left with the Grassmann-integral expression

det(∂̂)det( X̂)s = det( X̂)s−1
∫

Dm(ψ, ψ̄)Dn−m(η, η̄)

× exp

[
η̄T B X̂T

(
ψ

η

)](
1− ψ̄Tψ

)−s
(8.33a)

= det( X̂)s−1
∫

Dm(ψ, ψ̄)Dn−m(η, η̄)

× exp
[
η̄T B XTψ + η̄T B ATη

](
1− ψ̄Tψ

)−s
. (8.33b)

As the integrand depends on the Grassmann variables only through combinations of the form ψ̄iψ j ,
η̄iη j and η̄iψ j (i.e. there is no ψ̄iη j ), we can drop all the terms η̄iψ j , as these terms would certainly
remain unpaired in the expansion. This removes all the dependence on X in the integrand, and proves
that det(∂̂) is a Bernstein–Sato operator for det( X̂). We are left with the determination of the prefactor
b(s), which is given by

b(s)=
∫

Dm(ψ, ψ̄)Dn−m(η, η̄)exp
[
η̄T B ATη

](
1− ψ̄Tψ

)−s
. (8.34)
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Integration over η and η̄ gives a factor det(B AT) = det(ABT), while the integration over ψ and ψ̄

is identical to the one performed in the case of the ordinary Cayley identity [cf. (5.7)–(5.10)] and
gives s(s + 1) · · · (s +m − 1). This proves (2.46) whenever X̂ is an invertible real or complex matrix,
B is an arbitrary real or complex matrix, and s is a positive integer. Now, if A has rank < n − m,
then both sides of (2.46) are identically zero; while if A has rank n −m, then X̂ = (X

A

)
is invertible

for a nonempty open set of matrices X . The general validity of the identity therefore follows from
Proposition 2.18. �
8.3. Relation between product-parametrized and border-parametrized identities

Let us begin by recalling the product-parametrized Cayley identity (2.42) and the border-
parametrized Cayley identity (2.46), writing the matrices A and B occurring in them as A(0) , B(0)

in the former identity and A(1) , B(1) in the latter:

(2.42): det
(
∂ B(0)

)[
det

(
X A(0)

)]s = b(s)det
(

A(0)T B(0)
)[

det
(

X A(0)
)]s−1

, (8.35)

(2.46): det

(
∂

B(1)

)
det

(
X

A(1)

)s

= b(s)det
(

A(1)B(1)T)det

(
X

A(1)

)s−1

(8.36)

where b(s)= s(s+1) · · · (s+m−1). Here X is an m×n matrix, while A(0) and B(0) are n×m matrices,
and A(1) and B(1) are (n−m)× n matrices. Note that A(0) and B(0) must have full rank m, otherwise
(8.35) is identically zero; likewise, A(1) and B(1) must have full rank n−m.

We will construct the matrices A(0) and A(1) out of a larger (n×n) matrix A, as follows: Let A be
an invertible n× n matrix, and define

A(0) = A�,[m] = first m columns of A, (8.37a)

A(1) = (
A−1)

[m]c,� = last n−m rows of A−1. (8.37b)

Likewise, let B be an invertible n × n matrix, and define B(0) and B(1) by the same procedure. We
then have the following facts:

Lemma 8.2. Let X and Y be m× n matrices, with m � n; let A and B be invertible n× n matrices; and define
matrices A(0) , A(1) , B(0) , B(1) as above. Then:

(a) det(X A(0))= (det A)det
( X

A(1)

)
.

(b) det(Y B(0))= (det B)det
( Y

B(1)

)
.

(c) det(A(0)T B(0))= (det A)(det B)det(A(1)B(1)T).

Proof. (a) First we expand the left-hand side using the Cauchy–Binet identity (A.3):

det
(

X A(0)
)= ∑

|L|=m

(det X�L)
(
det A(0)

L�

)= ∑
|L|=m

(det X�L)(det AL,[m]). (8.38)

Next we expand the right-hand side using multi-row Laplace expansion (A.8) with row set [m], fol-
lowed by the Jacobi identity (A.7):
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det

(
X

A(1)

)
=

∑
|L|=m

ε(L)(det X�L)
(
det A(1)

�Lc

)

=
∑
|L|=m

ε(L)(det X�L)
(
det A−T

Lc ,[m]c
)

=
∑
|L|=m

ε(L)(det X�L)ε(L)(det A)−1(det AL,[m]). (8.39)

Comparing (8.38) and (8.39) proves (a); and (b) is of course identical.
(c) First we expand the left-hand side using Cauchy–Binet:

det
(

A(0)T B(0)
)= ∑

|L|=m

(
det

(
A(0)T)

�L

)(
det B(0)

L�

)= ∑
|L|=m

(det AL,[m])(det BL,[m]). (8.40)

Next we expand the right-hand side using Cauchy–Binet and then using the Jacobi identity twice:

det
(

A(1)B(1)T)= ∑
|K |=n−m

(
det A(1)

�K

)(
det

(
B(1)T)

K�

)

=
∑

|K |=n−m

(
det

(
A−T)

K ,[m]c
)(

det
(

B−T)
K ,[m]c

)

=
∑

|K |=n−m

ε(K )(det A)−1(det AK c,[m])ε(K )(det B)−1(det B K c ,[m])

= (det A)−1(det B)−1
∑
|L|=m

(det AL,[m])(det BL,[m]). (8.41)

Comparing (8.40) and (8.41) proves (c). �
Using Lemma 8.2, we see immediately the equivalence of (8.35) and (8.36) whenever A(0) and A(1)

are related by (8.37) and likewise for B(0) and B(1) .
On the other hand, given any n×m matrix A(0) of rank m, it can be obviously completed to yield

a nonsingular matrix A (which is invertible at least when the matrix elements take values in a field).
Likewise, an (n −m)× n matrix A(1) of rank n −m can be completed to yield a nonsingular matrix
A−1. So to each A(0) there corresponds a nonempty set of matrices A(1) , and vice versa.

Remark. It is not in general true that every pair (A(0), A(1)) arises from a matrix A. Consider, for
instance, m = 1 and n = 2: an easy calculation shows that for arbitrary A we must have A(1) A(0) = 0.

9. Conjectures on minimality

Let us recall that any pair Q (s, x, ∂/∂x) and b(s) �≡ 0 satisfying

Q (s, x, ∂/∂x)P (x)s = b(s)P (x)s−1 (9.1)

is called a Bernstein–Sato pair for the polynomial P (x). The minimal (with respect to factorization)
monic polynomial b(s) for which there exists such a Q is called the Bernstein–Sato polynomial (or
b-function) of P . Our Cayley-type identities thus provide Bernstein–Sato pairs for certain polynomials
arising from determinants. But are our polynomials b(s) minimal?
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For the ordinary Cayley identities (Theorems 2.1–2.9), it follows from the general theory of preho-
mogeneous vector spaces [52,60] that the polynomials b(s) found here are indeed minimal, i.e. that
the correct b-functions are

b(s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(s + 1) · · · (s+ n− 1)

for an n× n matrix,

s(s + 1
2 ) · · · (s+ n−1

2 )

for an n× n symmetric matrix,

s(s + 2) · · · (s+ 2m− 2)

for a 2m× 2m antisymmetric matrix (pfaffian),
(s− 1

2 )s(s + 1
2 ) · · · (s+m− 1)

for a 2m× 2m antisymmetric matrix (determinant),
s(s + 1) · · · (s+m− 1)(s+ n−m) · · · (s+ n− 1)

for a pair of m× n rectangular matrices,
s(s + 1

2 ) · · · (s+ m−1
2 )(s+ n−m−1

2 ) · · · (s+ n−2
2 )

for an m× n rectangular matrix (symmetric),
s(s + 2) · · · (s+ 2m− 2)(s+ 2n− 2m+ 1) · · · (s+ 2n− 1)

for an m× n rectangular matrix (antisymmetric),∏�
α=1

∏n1−1
j=0 (s+ nα − n1 + j)

for � matrices of sizes nα × nα+1.

(9.2)

Indeed, the polynomials P occurring in these identities all correspond to relative invariants of pre-
homogeneous vector spaces: the ordinary, symmetric and antisymmetric Cayley identities [(2.1), (2.4)
and (2.7)] correspond to cases (1), (2) and (3), respectively, in Kimura’s [60, Appendix] table of the
irreducible reduced prehomogeneous vector spaces; the one-matrix rectangular symmetric and anti-
symmetric Cayley identities [(2.18) and (2.21)] correspond to cases (15) and (13) in the same table;
while the two-matrix and multi-matrix rectangular Cayley identities [(2.16) and (2.23)] correspond
to prehomogeneous vector spaces associated to equioriented quivers of type A [98]. Whenever P is
a relative invariant of a prehomogeneous vector space, the general theory [52,60] allows the imme-
diate identification of a suitable operator Q (∂/∂x) – namely, the dual of P itself – and provides a
proof that the corresponding b(s) satisfies deg b = deg P and is indeed (up to a constant factor) the
Bernstein–Sato polynomial of P .33

For the Laplacian-parametrized identities (Theorems 2.12 and 2.14), we conjecture that the poly-
nomials b(s) found here are also minimal, i.e. that the correct b-functions are

b(s)=
{

s(s + 1) · · · (s+ n− 2) for a Laplacian-parametrized n× n matrix,

s(s + 1
2 ) · · · (s+ n−2

2 ) for a Laplacian-parametrized n× n symmetric matrix.
(9.3)

Perhaps these identities can also be interpreted within the framework of prehomogeneous vector
spaces; or perhaps an alternate proof of minimality can be found.

It is even conceivable that the following general fact about Bernstein–Sato polynomials is true:

Conjecture 9.1. Let P (x1, . . . , xn) �≡ 0 be a homogeneous polynomial in n variables with coefficients in a field
K of characteristic 0, and let b(s) be its Bernstein–Sato polynomial. Then deg b � deg P .

Simple examples show that we need not have deg b � deg P if P is not homogeneous: for in-
stance, P (x) = 1 − x2 has b(s) = s. Moreover, slightly more complicated examples show that one

33 See [52, Corollary 6.1.1 and Theorem 6.1.1], [60, Proposition 2.22] for the first two points, and [52, Theorem 6.3.2] for the
third. We are grateful to Nero Budur for explaining to us the connection between our results and the theory of prehomogeneous
vector spaces, and in particular for pointing out that this connection provides a general proof of minimality.



S. Caracciolo et al. / Advances in Applied Mathematics 50 (2013) 474–594 555
can have deg b > deg P even when P is homogeneous: for instance, the Bernstein–Sato polynomial
of P (x1, x2) = x1x2(x1 + ax2) with a �= 0 is (in our “shifted” notation) s2(s − 1

3 )(s + 1
3 ) [109, Corol-

lary 4.14 and Remark 4.15], [84, 5.4].34 However, no one that we have consulted seems to have any
counterexample to Conjecture 9.1.

Let us remark that a necessary condition for a polynomial b(s) to be a Bernstein–Sato polynomial
is that its roots should be rational numbers < 1: this is the content of a famous theorem of Kashiwara
[56], [9, Chapter 6], [66, Proposition 2.11].35 Our polynomials (9.2) and (9.3) satisfy this condition.

For the diagonal-parametrized Cayley identities (Theorems 2.10 and 2.11), a slightly more compli-
cated situation arises. The polynomials b(s) arising from the basic case I = J = [n] of those theorems,
namely

b(s)=
{

s(s + 1) · · · (s+ n− 1) for an n× n matrix,

s(s + 1
2 ) · · · (s+ n−1

2 ) for an n× n symmetric matrix
(9.4)

are definitely not minimal. Indeed, as remarked already in Section 2.3, a lower-order Bernstein–Sato
pair can be obtained by taking I = J = [n] \ {i0} for any fixed i0 ∈ [n]:

b(s)=
{

s(s + 1) · · · (s+ n− 2) for an n× n matrix,

s(s + 1
2 ) · · · (s+ n−2

2 ) for an n× n symmetric matrix.
(9.5)

We conjecture that these latter polynomials are indeed minimal, but we have no proof for general n.
It is curious that these polynomials are the same as we get for the Laplacian-parametrized Cayley

identities. Furthermore, also the Q operators corresponding to these (conjecturally minimal) polyno-
mials b(s) of degree n−1 are somewhat similar in one respect: namely, for the diagonal-parametrized
case the Q operator is given by any principal minor of size n − 1 (i.e. I = J = [n] \ {i0}) of the rele-
vant matrix Dα,β,s of differential operators, while for the Laplacian-parametrized case the Q operator
is a polynomial det(U + ∂)− det(∂) that is a sum over all minors (not necessarily principal) of size
n − 1. We do not know whether this resemblance is indicative of any deeper connection between
these identities.

10. Note added

After this paper appeared in preprint form, Nero Budur (private communication, July 2011) in-
formed us that he has a proof of our minimality conjectures for the Laplacian-parametrized and
diagonal-parametrized Cayley identities.
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Appendix A. Grassmann algebra and Gaussian integration

In this appendix we collect some needed information on Grassmann algebra (= exterior algebra)
and Gaussian integration (both bosonic and fermionic). We begin by recalling the main properties
of determinants, permanents, pfaffians and hafnians (Appendix A.1). We then recall the well-known
properties of “bosonic” Gaussian integration, i.e. Gaussian integration over Rn or Cn (Appendix A.2).
Next we define Grassmann algebra (Appendix A.3) and Grassmann–Berezin (“fermionic”) integration
(Appendix A.4). Finally, we explain the formulae for fermionic Gaussian integration (Appendix A.5),
which will play a central role in this paper. Our presentation in these latter three subsections is
strongly indebted to Abdesselam [2, Section 2]; see also Zinn-Justin [117, Chapter 1] for a treatment
aimed at physicists.

A.1. Determinants, permanents, pfaffians and hafnians

Notation. If A is an m × n matrix, then for subsets of indices I ⊆ [m] and J ⊆ [n] we denote by AI J

the matrix A restricted to rows in I and columns in J , all kept in their original order. We also use the
shorthand notation A� J = A[m] J when all the rows are kept, and AI� = AI[n] when all the columns are
kept. Finally, if A is invertible, we denote by A−T the matrix (A−1)T = (AT)−1.

A.1.1. Permanent and determinant
Let R be a commutative ring with identity; we shall consider matrices with entries in R . In par-

ticular, if A = (aij)
n
i, j=1 is an n× n matrix with entries in R , we define its permanent

per A =
∑
σ∈Sn

a1,σ (1) · · ·an,σ (n) (A.1)

and its determinant

det A =
∑
σ∈Sn

sgn(σ )a1,σ (1) · · ·an,σ (n). (A.2)

Here the sums range over all permutations σ of [n] ≡ {1, . . . ,n}, and sgn(σ )= (−1)#(even cycles of σ) is
the sign of the permutation σ . See [68] and [79] for basic information on permanents and determi-
nants, respectively.

In this paper we shall need only a few of the most elementary properties of determinants:

Lemma A.1 (Properties of the determinant).

(a) det I = 1.
(b) det(AB)= (det A)(det B).
(c) (Cauchy–Binet formula) More generally, let A be an m× n matrix, and let B be an n×m matrix. Then

det(AB)=
∑
I⊆[n]
|I|=m

(det A�I )(det B I�). (A.3)
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(d) Let A be an n× n matrix, and define the adjugate matrix adj A by

(adj A)i j = (−1)i+ j det A{ j}c{i}c (A.4)

(note the transpose between the left-hand and right-hand sides). Then

(adj A)A = A(adj A)= (det A)I. (A.5)

In particular, A is invertible in the ring Rn×n if and only if det A is invertible in the ring R (when R is a
field, this means simply that det A �= 0); and in this case

A−1 = (det A)−1(adj A) (A.6)

(Cramer’s rule).
(e) (Jacobi’s identity) More generally, if I, J ⊆ [n] with |I| = | J | = k, then

det
((

A−T)
I J

)= (det A)−1ε(I, J )(det AIc J c ) (A.7)

where ε(I, J )= (−1)
∑

i∈I i+∑ j∈ J j .
(f) (Multi-row Laplace expansion) For any fixed set of rows I ⊆ [n] with |I| = k, we have

det A =
∑
J⊆[n]
| J |=k

ε(I, J )(det AI J )(det AIc J c ). (A.8)

A.1.2. Hafnian
Let A = (aij)

2m
i, j=1 be a 2m×2m symmetric matrix with entries in R . We then define the hafnian [13]

hf A =
∑

M∈M2m

∏
i j∈M

aij, (A.9)

where the sum runs over all perfect matchings of the set [2m], i.e. all partitions of the set [2m] into m
disjoint pairs. There are (2m− 1)!! = (2m)!/(2mm!) terms in this sum. We have, for example,

hf

(
a11 a12
a12 a22

)
= a12, (A.10a)

hf

⎛
⎜⎝

a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

⎞
⎟⎠= a12a34 + a13a24 + a14a23. (A.10b)

Note that the diagonal elements of A play no role in the hafnian.
Equivalently, we can identify matchings with a subclass of permutations by writing each pair

i j ∈ M in the order i < j and then writing these pairs in increasing order of their first elements:
we therefore have
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hf A =
∑

σ∈S�
2m

aσ (1)σ (2) · · ·aσ (2m−1)σ (2m), (A.11)

where the sum runs over all permutations σ of [2m] satisfying σ(1) < σ(3) < · · · < σ(2m − 1) and
σ(2k− 1) < σ(2k) for k = 1, . . . ,m.

Note that if we were to sum over all permutations, we would obtain each term in hf A exactly
2mm! times. Therefore, if the ring R contains the rationals, we can alternatively write

hf A = 1

2mm!
∑

σ∈S2m

aσ (1)σ (2) · · ·aσ (2m−1)σ (2m). (A.12)

A.1.3. Pfaffian
Finally, let A = (aij)

2m
i, j=1 be a 2m × 2m antisymmetric matrix (i.e. aij = −a ji and aii = 0) with

entries in R .36 We then define the pfaffian by

pf A =
∑

M∈M2m

ε( �M, �M0)
∏

(i, j)∈ �M
i< j

ai j . (A.13)

Here the sum runs once again over all perfect matchings M of the set [2m], and �M is an (arbi-
trarily chosen) oriented version of M , i.e. for each unordered pair i j ∈ M one chooses an order-
ing (i, j) of the two elements. The value of the summand in (A.13) will be independent of the
choice of �M because ε( �M, �M0) will be odd under reorderings of pairs (see below), while A is an-
tisymmetric. Here �M0 is some fixed oriented perfect matching of [2m] (we call it the “reference
matching”). The sign ε( �M1, �M2) is defined as follows: If �M1 = {(i1, i2), (i3, i4), . . . , (i2m−1, i2m)} and
�M2 = {( j1, j2), ( j3, j4), . . . , ( j2m−1, j2m)}, then ε( �M1, �M2) is the sign of the permutation that takes
i1 · · · i2m into j1 · · · j2m . (This is well defined, i.e. independent of the order in which the ordered pairs
of �M1 and �M2 are written, because interchanging two pairs is an even permutation.) This quantity is
clearly odd under reorderings of pairs in �M1 or �M2, and has the following properties:

(a) ε( �M1, �M2)= ε( �M2, �M1);
(b) ε( �M, �M)=+1;
(c) ε( �M1, �M2)ε( �M2, �M3)= ε( �M1, �M3);
(d) ε( �M1, �M2)=−1 whenever �M1 and �M2 differ by reversal of the orientation of a single edge;
(e) ε( �M1, �M2) = −1 whenever �M1 and �M2 differ by changing directed edges (a,b), (c,d) in �M1 to

(b, c), (d,a) in �M2.

Indeed, it is not hard to show that ε( �M1, �M2) is the unique map from pairs of oriented perfect
matchings into {±1} that has these five properties.37 It follows from (a)–(c) that the oriented per-
fect matchings fall into two classes (call them A and B) such that ε( �M1, �M2) equals +1 if �M1 and �M2
belong to the same class and −1 if they belong to different classes. The choice of reference matching
�M0 really amounts, therefore, to choosing one of the two equivalence classes of matchings as the

reference class, and thereby fixing the sign of the pfaffian.

36 Such matrices are sometimes called alternating matrices, in order to emphasize that the condition aii = 0 is imposed. This
latter condition is a consequence of aij =−a ji whenever R is an integral domain of characteristic �= 2 (so that 2x = 0 implies
x = 0), but not in general otherwise. See e.g. [65, Section XV.9]. In this paper we use the term “antisymmetric” to denote
aij =−a ji and aii = 0.
37 This also implies that ε( �M1, �M2) can be given an equivalent (more graph-theoretic) definition as follows: Form the union
�M1 ∪ �M2. Ignoring orientations, it is a disjoint union of even-length cycles. Looking now at the orientations, let us call a cycle

even (resp. odd) if it has an even (resp. odd) number of edges pointing in each of the two directions around the cycle. We then
have ε( �M1, �M2)= (−1)#(even cycles) .
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The choice of �M0 can be encoded in an antisymmetric matrix J defined by

J i j =
{

1 if (i, j) ∈ �M0,

−1 if ( j, i) ∈ �M0,

0 otherwise

(A.14)

and satisfying pf( J )= 1. The two most common conventions for the reference matching are

�M0 =
{
(1,2), (3,4), . . . , (2m−1,2m)

}
, J =

⎛
⎜⎜⎜⎜⎜⎝

0 1
−1 0

0 1
−1 0

. . .

⎞
⎟⎟⎟⎟⎟⎠ (A.15)

and

�M0 =
{
(1,m+ 1), (2,m+ 2), . . . , (m,2m)

}
, J =

(
0 Im

−Im 0

)
. (A.16)

In this paper we shall adopt the convention (A.15). We thus have

pf

(
0 a12

−a12 0

)
= a12, (A.17a)

pf

⎛
⎜⎝

0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

⎞
⎟⎠= a12a34 − a13a24 + a14a23. (A.17b)

By identifying matchings M ∈M2m with permutations σ ∈ S�
2m as was done for the hafnian, we

can equivalently write

pf A = sgn(σ0)
∑

σ∈S�
2m

sgn(σ )aσ (1)σ (2) · · ·aσ (2m−1)σ (2m) (A.18)

where σ0 ∈ S�
2m is the permutation corresponding to the reference matching M0. [For our choice

(A.15), σ0 is the identity permutation.] If the ring R contains the rationals, we can alternatively write

pf A = 1

2mm! sgn(σ0)
∑

σ∈S2m

sgn(σ )aσ (1)σ (2) · · ·aσ (2m−1)σ (2m). (A.19)

Let us now recall the following basic properties of pfaffians:

Lemma A.2 (Properties of the pfaffian). Let A be an antisymmetric 2m × 2m matrix with elements in a com-
mutative ring R. Then:

(a) pf J = 1.
(b) (pf A)2 = det A.
(c) pf(X A XT)= (det X)(pf A) for any 2m× 2m matrix X.
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(d) (Minor summation formula for pfaffians [53,54]) More generally, we have

pf
(

X A XT)= ∑
I⊆[2m]
|I|=2�

(det X�I )(pf AI I ) (A.20)

for any 2�× 2m matrix X (�� m). Here X�I denotes the submatrix of X with columns I (and all its rows).
(e) (Jacobi’s identity for pfaffians) If A is invertible, then pf(A−T)= (pf A)−1 and more generally

pf
((

A−T)
I I

)= ε(I)(pf A)−1(pf AIc Ic ) (A.21)

for any I ⊆ [2m], where ε(I)= (−1)|I|(|I|−1)/2(−1)
∑

i∈I i .

See [38,40,48,54,62,65,94] for further information on pfaffians.

Remark. In this paper we will not in fact use the minor summation formula for pfaffians; but we will
rederive it using Grassmann–Berezin integration. See Theorem A.15 and the comments following it.

A.2. Bosonic Gaussian integration

We shall use the following notation: If A = (aij) is an m × n matrix, and I = (i1, . . . , ik) and J =
( j1, . . . , j�) are sequences of indices (not necessarily distinct or ordered) in [m] and [n], respectively,
then we denote by AI J the k× � matrix defined by

(AI J )αβ = aiα jβ . (A.22)

This generalizes our notation AI J for subsets I ⊆ [m] and J ⊆ [n], where a subset is identified with the
sequence of its elements written in increasing order. We shall also use the corresponding notation for
vectors: namely, if λ= (λi) is an n-vector and I = (i1, . . . , ik) is a sequence of indices (not necessarily
distinct or ordered) in [n], then we denote by λI the k-vector defined by (λI )α = λiα .

Let ϕ = (ϕi)
n
i=1 be real variables; we shall write

Dϕ =
n∏

i=1

dϕi√
2π

(A.23)

for Lebesgue measure on Rn with a slightly unconventional normalization. Let A = (aij)
n
i, j=1 be a

real symmetric positive–definite n × n matrix. We then have the following fundamental facts about
Gaussian integration on Rn:

Theorem A.3 (Wick’s theorem for real bosons). Let A = (aij)
n
i, j=1 be a real symmetric positive–definite n× n

matrix. Then:

(a) For any vector c = (ci)
n
i=1 in Rn (or Cn), we have

∫
Dϕ exp

(
−1

2
ϕT Aϕ + cTϕ

)
= (det A)−1/2 exp

(
1

2
cT A−1c

)
. (A.24)

(b) For any sequence of indices I = (i1, . . . , ir) in [n], we have

∫
Dϕ ϕi1 · · ·ϕir exp

(
−1

2
ϕT Aϕ

)
=
{

0 if r is odd,

(det A)−1/2 hf((A−1)I I ) if r is even.
(A.25)
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(c) More generally, for any real or complex r × n matrix C , we have

∫
Dϕ

(
r∏

α=1

(Cϕ)α

)
exp

(
−1

2
ϕT Aϕ

)
=
{

0 if r is odd,

(det A)−1/2 hf(C A−1CT) if r is even.
(A.26)

Historical remarks. Physicists call these formulae “Wick’s theorem” because Gian-Carlo Wick [113]
proved the analogue of (A.25) for the correlation functions of a free quantum field (see e.g. [95]).
These formulae are called “bosonic” because the functional-integral formulation for bosonic quantum
fields (see e.g. [117]) leads to ordinary integrals over Rn or Cn (or infinite-dimensional generalizations
thereof). By contrast, functional integrals for fermionic quantum fields lead to Grassmann–Berezin
integrals, to be discussed in Appendices A.3–A.5.

The formula (A.25) for the moments of a mean-zero Gaussian measure goes back at least to Isserlis
[55] in 1918. We thank Malek Abdesselam for drawing our attention to this reference.

Now let ϕ = (ϕi)
n
i=1 be complex variables; we denote complex conjugation by and shall write

D(ϕ, ϕ̄)=
n∏

i=1

(d Reϕi)(d Imϕi)

π
(A.27)

for Lebesgue measure on Cn with a slightly unconventional normalization. Let A = (aij)
n
i, j=1 be an

n × n complex matrix (not necessarily symmetric or hermitian) whose hermitian part 1
2 (A + A∗) is

positive–definite. We then have the following fundamental facts about Gaussian integration on Cn:

Theorem A.4 (Wick’s theorem for complex bosons). Let A = (aij)
n
i, j=1 be an n × n complex matrix whose

hermitian part 1
2 (A + A∗) is positive–definite. Then:

(a) For any vectors b = (bi)
n
i=1 and c = (ci)

n
i=1 in Cn, we have

∫
D(ϕ, ϕ̄)exp

(−ϕ̄T Aϕ + b̄Tϕ + ϕ̄Tc
)= (det A)−1 exp

(
b̄T A−1c

)
. (A.28)

(b) For any sequences of indices I = (i1, . . . , ir) and J = ( j1, . . . , js) in [n], we have

∫
D(ϕ, ϕ̄)ϕi1 · · ·ϕir ϕ̄ j1 · · · ϕ̄ js exp

(−ϕ̄T Aϕ
)= {

0 if r �= s,
(det A)−1 per((A−1)I J ) if r = s.

(A.29)

(c) More generally, for any complex r × n matrix B and any complex n× s matrix C , we have

∫
D(ϕ, ϕ̄)

(
r∏

α=1

(Bϕ)α

)(
s∏

β=1

(
ϕ̄TC

)
β

)
exp

(−ϕ̄T Aϕ
)

=
{

0 if r �= s,
(det A)−1 per(B A−1C) if r = s.

(A.30)

Some final remarks. 1. In this article we shall use mainly the “source” versions of Wick’s theorem,
i.e. part (a) of Theorems A.3 and A.4 and the corresponding theorems for fermions. The “correlation
function” versions, i.e. parts (b) and (c), will be used only in Sections 4 and 8.1 and in the second
proofs of Corollaries 5.2 and 5.4 (Section 5.2).

2. We have here presented bosonic Gaussian integration in an analytic context, i.e. integration on
Rn or Cn . A combinatorial abstraction of bosonic Gaussian integration can be found in [1].
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A.3. Grassmann algebra

Let R be a commutative ring. Every textbook on elementary abstract algebra defines the ring
R[x1, . . . , xn] of polynomials in commuting indeterminates x1, . . . , xn with coefficients in R , and stud-
ies its properties. Here we would like briefly to do the same for the ring R[χ1, . . . ,χn]Grass of
polynomials in anticommuting indeterminates χ1, . . . ,χn: we call this ring the Grassmann algebra over
R in generators χ1, . . . ,χn . (Of course, readers familiar with exterior algebra will recognize this as
nothing other than the exterior algebra Λ(Rn) built from the free R-module of dimension n.38) To
lighten the notation, we shall henceforth omit the subscripts Grass, since it will always be clear by
context whether we are referring to the Grassmann algebra or to the ordinary polynomial ring.

Here is the precise definition:

Definition A.5 (Grassmann algebra). Let R be a commutative ring with identity element,39 and let
χ1, . . . ,χn be a collection of letters. The Grassmann algebra R[χ1, . . . ,χn] (or R[χ ] for short) is the
quotient of the ring R〈χ1, . . . ,χn〉 of noncommutative polynomials in the letters χ1, . . . ,χn by the
two-sided ideal generated by the expressions χiχ j + χ jχi (1 � i < j � n) and χ2

i (1 � i � n). We can
consider R[χ ] as a ring and also as an R-algebra.

In other words, the generators χi of R[χ ] satisfy the anticommutation relations

χiχ j + χ jχi = 0 for all i, j ∈ [n] (A.31)

as well as the relations

χ2
i = 0 for all i ∈ [n]. (A.32)

Please note that the anticommutation relation (A.31) for i = j states that 2χ2
i = 0; but this need

not imply χ2
i = 0 if the coefficient ring R does not contain an element 1

2 . For this reason we have
explicitly adjoined the relations χ2

i = 0. Of course, if the coefficient ring R contains an element 1
2

(e.g. if it contains the rationals), then this extra relation could be replaced by the cases i = j of
χiχ j + χ jχi = 0.

The first important property of R[χ ] is the following:

Proposition A.6. R[χ ] is a free R-module with basis given by the 2n monomials χ I = χi1 · · ·χip where
I = {i1, . . . , ip} ⊆ [n] with i1 < · · ·< ip .

It follows that each element f ∈ R[χ ] can be written uniquely in the form

f =
∑
I⊆[n]

f Iχ
I (A.33)

with f I ∈ R . The term f∅ that contains no factors χi is sometimes termed the body of f , and the rest∑
I �=∅ f Iχ

I is sometimes termed the soul of f .

38 See e.g. [30, Section 6.4] or [65, Section XIX.1].
39 Much of the elementary theory works also for coefficient rings without identity element. The main change is that polyno-

mials and formal power series Φ must have constant term c0 in R (and not in Z) in order to be applied to elements f ∈ R[χ ]+:
see the paragraphs immediately after Proposition A.9. But this means that we can consider the most important case, namely
Φ = exp, only when R has an identity element. For this reason it is convenient simply to make this assumption from the
beginning.
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Multiplication in the Grassmann algebra is of course R-bilinear, i.e.

( ∑
I⊆[n]

f Iχ
I
)( ∑

J⊆[n]
g J χ

J
)
=

∑
I, J⊆[n]

f I g J χ
Iχ J (A.34)

where

χ Iχ J =
{

σ(I, J )χ I∪ J if I ∩ J =∅,

0 if I ∩ J �=∅,
(A.35)

and σ(I, J ) is the sign of the permutation that rearranges the sequence I J into increasing order when
I and J are each written in increasing order.

We define the degree of a monomial χ I in the obvious way, namely, deg(χ I )= |I|. The Grassmann
algebra R[χ ] then possesses a natural N-grading

R[χ ] =
n⊕

p=0

R[χ ]p (A.36)

where R[χ ]p is generated, as an R-module, by the monomials of degree p. A coarser grading is the
Z2-grading

R[χ ] = R[χ ]even ⊕ R[χ ]odd (A.37)

where

R[χ ]even
def=

⊕
p even

R[χ ]p, (A.38)

R[χ ]odd
def=

⊕
p odd

R[χ ]p . (A.39)

Note that R[χ ]even is a subalgebra of R[χ ] (but R[χ ]odd is not). The parity operator P, defined by

P

(∑
I⊆[n]

f Iχ
I
)
=

∑
I⊆[n]

(−1)|I| f Iχ
I , (A.40)

is an involutive automorphism of R[χ ]: it acts as the identity on R[χ ]even and as minus the identity
on R[χ ]odd. A nonzero element f that belongs to either R[χ ]even or R[χ ]odd is said to be Z2-

homogeneous, and its parity is p( f )
def= 0 in the first case and p( f )

def= 1 in the second. It is easy
to see that Z2-homogeneous elements f , g satisfy the commutation/anticommutation relations

f g = (−1)p( f )p(g)g f . (A.41)

In other words, odd elements anticommute with other odd elements, while even elements commute
with homogeneous elements of both types. One easily deduces the following two consequences:

Proposition A.7. An even element f ∈ R[χ ]even commutes with the entire Grassmann algebra. (In particular,
R[χ ]even is a commutative ring.)
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Proposition A.8. An odd element f ∈ R[χ ]odd is nilpotent of order 2, i.e. f 2 = 0.40

A further consequence of the relations (A.31)/(A.32) and the finiteness of the number n of genera-
tors is that every element of

R[χ ]+ def=
n⊕

p=1

R[χ ]p (A.42)

(the set of elements with no term of degree 0) is nilpotent:

Proposition A.9. A “pure soul” element f ∈ R[χ ]+ is nilpotent of order at most M = �n/2� + 2, i.e. f M = 0.

Proof. Write f = f0 + f1 with f0 ∈ R[χ ]even ∩ R[χ ]+ and f1 ∈ R[χ ]odd. Then f0 and f1 commute [by
(A.41)] and f n

1 = 0 for n � 2 [by Proposition A.8], so we have f k = f k
0 + kf k−1

0 f1 for all k. And it is
easy to see, using (A.31)/(A.32), that f k

0 = 0 for k > n/2. �

If I = {i1, . . . , ip} is a subset of [n], the Grassmann algebra R[χI ] def= R[χi1 , . . . ,χip ] is naturally
isomorphic to the subalgebra of R[χ ] = R[χ1, . . . ,χn] generated by {χi}i∈I ; we shall identify these
two algebras and use the same notation R[χI ] for both. In particular, the degree-zero subalgebra
R[χ ]0 is identified with the coefficient ring R .

If Φ(x) =∑N
k=0 ckxk is any polynomial in a single indeterminate x with coefficients in either R

or Z, we can of course apply it to any f ∈ R[χ ] to obtain Φ( f ) =∑N
k=0 ck f k ∈ R[χ ]. Moreover,

if Φ(x) =∑∞
k=0 ckxk is a formal power series with coefficients in R or Z, we can apply it to any

f ∈ R[χ ]+ because f is nilpotent and the sum is therefore finite.
But more is true: suppose we have a formal power series Φ(x)=∑∞

k=0(ck/k!)xk with coefficients
in R or Z (note the factorial denominators!). If the coefficient ring R contains the rationals as a
subring (as it is usually convenient to assume), then of course Φ( f ) is well defined for any f ∈ R[χ ]+ .
But we claim that this expression has an unambiguous meaning for f ∈ R[χ ]+ even if R does not
contain the rationals. Indeed, let f =∑

I �=∅ f Iχ
I and consider the expansion of

f k =
(∑

I �=∅
f Iχ

I
)k

=
∑

I1,...,Ik �=∅
f I1 · · · f Ikχ

I1 · · ·χ Ik . (A.43)

Whenever two or more of the sets I1, . . . , Ik are equal (or indeed have any elements in common), we
have χ I1 · · ·χ Ik = 0 by (A.31)/(A.32). When, by contrast, the sets I1, . . . , Ik are all distinct, then there
are k! terms with the same coefficient f I1 · · · f Ik corresponding to the k! different permutations of the
factors χ I1 , . . . ,χ Ik , and these terms are either all equal (if at most one of the sets Iα is odd) or else
add to zero (if two or more of them are odd). It follows that

40 Proof of Proposition A.8. Write f =∑
Iodd f Iχ

I ; then

f 2 =
∑
I odd

f 2
I

(
χ I )2 +

∑
I, J odd

I≺ J

f I f J
(
χ Iχ J + χ J χ I )

where I ≺ J denotes that the distinct sets I and J are written in increasing lexicographic order. But (χ I )2 = 0 and χ Iχ J +
χ J χ I = 0 by (A.31)/(A.32) and (A.41). �
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f k = k!
∑

I1≺···≺Ik
at most one |Iα | odd

f I1 · · · f Ikχ
I1 · · ·χ Ik (A.44)

where I1 ≺ · · · ≺ Ik denotes that the distinct sets I1, . . . , Ik are written in increasing lexicographic
order. So we can define

Φ( f )=
n∑

k=0

ck

∑
I1≺···≺Ik

at most one |Iα | odd

f I1 · · · f Ikχ
I1 · · ·χ Ik (A.45)

even if the coefficient ring R does not contain the rationals.
The most important case is Φ = exp. Note that exp( f + g) = exp( f )exp(g) whenever f , g ∈

R[χ ]+ ∩ R[χ ]even, but not in general otherwise. In this paper we will apply the exponential only
to even elements.

We also need to define one other type of composition. Suppose first that f ∈ R〈χ1, . . . ,χn〉 is
a noncommutative polynomial in the letters χ1, . . . ,χn with coefficients in R , and let ξ1, . . . , ξn be
elements of some ring R ′ (not necessarily commutative) that contains R within its center. Then the
composition f (ξ1, . . . , ξn), obtained by substituting each χi by the corresponding ξi , is a well-defined
element of R ′; furthermore, this composition satisfies the obvious laws

( f + g)(ξ1, . . . , ξn)= f (ξ1, . . . , ξn)+ g(ξ1, . . . , ξn), (A.46a)

( f g)(ξ1, . . . , ξn)= f (ξ1, . . . , ξn)g(ξ1, . . . , ξn). (A.46b)

Now suppose, instead, that f belongs to the Grassmann algebra R[χ1, . . . ,χn] = R〈χ1, . . . ,χn〉/
{χiχ j + χ jχi,χ

2
i } and that ξ1, . . . , ξn are elements of R ′ that satisfy

ξiξ j + ξ jξi = 0, (A.47a)

ξ2
i = 0 (A.47b)

for all i, j. Then the composition f (ξ1, . . . , ξn) is again a well-defined element of R ′ , because the
relations (A.47) guarantee that any representative of f in R〈χ1, . . . ,χn〉 will give, after substituting
each χi by ξi , the same element of R ′; moreover, the laws (A.46) continue to hold. In particular,
we can take R ′ to be another Grassmann algebra over R (which may or may not contain some of
the χi as generators, and which may or may not contain additional generators) and ξ1, . . . , ξn to be
arbitrary odd elements of this Grassmann algebra; the relations (A.47) hold by virtue of (A.41) and
Proposition A.8, respectively. We shall exploit this type of composition in Propositions A.10 and A.12
below.

A.4. Grassmann–Berezin (fermionic) integration

Thus far we have simply been recalling standard facts about exterior algebra. But now we go
on to introduce a process called Grassmann–Berezin integration, which has become a standard tool
of theoretical physicists over the last 40 years but is still surprisingly little known among mathe-
maticians. As we shall see, the term “integration” is a misnomer, because the construction is purely
algebraic/combinatorial. But the term is nevertheless felicitous, because Grassmann–Berezin integra-
tion behaves in many ways analogously to ordinary integration over Rn or Cn , and this analogy is
heuristically very fruitful.

We start by defining, for each i ∈ [n], the derivation ∂i = ∂
∂χi

(acting to the right) as the R-linear
map ∂i : R[χ ]→ R[χ ] defined by the following action on monomials χi1 · · ·χip with i1 < · · ·< ip :
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∂iχi1 · · ·χip

def=
{

(−1)α−1χi1 · · ·χiα−1χiα+1 · · ·χip if i = iα,

0 if i /∈ {i1, . . . , ip}. (A.48)

(Of course, in the former instance there is a unique index α ∈ [p] for which i = iα , so this defini-
tion is unambiguous.) It is then easy to see that (A.48) holds also when the indices i1, . . . , ip are
not necessarily ordered, provided that they are all distinct. Clearly ∂i is a map of degree −1, i.e.
∂i : R[χ ]p → R[χ ]p−1; moreover, it takes values in R[χ{i}c ], i.e. the subalgebra generated by {χ j} j �=i .
Furthermore, the maps ∂i satisfy

∂2
i = 0, (A.49)

∂i∂ j + ∂ j∂i = 0 (A.50)

as well as the modified Leibniz rule

∂i( f g)= (∂i f )g + (P f )(∂i g) (A.51)

where P is the parity operator (A.40).
We now make a surprising definition: integration is the same as differentiation. That is, we define

∫
dχi f = ∂i f . (A.52)

We always write the operator of integration to the left of the integrand, just as we do for the (com-
pletely equivalent) operator of differentiation. To lighten the notation we refrain from repeating the∫

sign in iterated integrals, so that
∫

dχi1 · · ·dχik f is a shorthand for
∫

dχi1 · · ·
∫

dχik f and hence we
have ∫

dχi1 · · ·dχik f = ∂i1 · · · ∂ik f . (A.53)

Note by (A.50) that changing the order of integration changes the sign:

∫
dχiσ (1)

· · ·dχiσ (k)
f = sgn(σ )

∫
dχi1 · · ·dχik f (A.54)

for any permutation σ ∈ Sk . For instance, reversing the order of integrations gives

∫
dχik · · ·dχi1 f = (−1)k(k−1)/2

∫
dχi1 · · ·dχik f . (A.55)

In particular, when we integrate f =∑
I⊆[n] f Iχ

I with respect to all the generators, we have

∫
dχn · · ·dχ1 f = f[n]. (A.56)

That is, integration with respect to all the generators simply picks out the coefficient of the “top”
monomial I = [n], provided that we write these integrations in reverse order.41 We adopt the shorthand

41 Of course, since the integrations are performed from right to left, this actually corresponds to performing
∫

dχ1 first and∫
dχn last.
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Dχ
def= dχn · · ·dχ1, (A.57)

and we sometimes write Dn(χ) if we wish to stress the number of generators.
An important special case arises when n is even, say n = 2m, and the generators χ1, . . . ,χn are

divided into two sets ψ1, . . . ,ψm and ψ̄1, . . . , ψ̄m , where we think of each ψi as paired with its
corresponding ψ̄i . In this case we adopt the shorthand notation

D(ψ, ψ̄)
def= dψ1 dψ̄1 · · ·dψm dψ̄m (A.58)

and we sometimes write Dm(ψ, ψ̄) if we wish to stress the number of pairs of generators. Please
note that since each pair dψi dψ̄i is Grassmann-even, we can also write

D(ψ, ψ̄)
def=

m∏
i=1

dψi dψ̄i (A.59)

where the terms in the product can be taken in any order. Note also that

D(ψ, ψ̄)= (−1)m(m−1)/2 Dψ Dψ̄. (A.60)

The notation ¯ is intended to be suggestive of complex conjugation, but we stress that it has nothing
to do with complex numbers: it merely denotes the extra combinatorial structure on the index set
[2m] that arises from the splitting of [2m] into two sets of cardinality m and the fixing of a bijection
between the two sets.42 In particular, the coefficient ring R is still completely arbitrary. The general
case (χ ) and special case (ψ, ψ̄ ) are nevertheless known in the physics literature as “real fermions”
and “complex fermions”, respectively. We shall retain this terminology but shall always put the ad-
jectives “real” and “complex” in quotation marks in order to warn the reader that they are potentially
misleading.

Now let A = (Aij)
n
i, j=1 be an n×n matrix, and define new Grassmann variables by ξi =∑n

j=1 Aijχ j .
We then have

∫
dχn · · ·dχ1 ξ1 · · · ξn =

∫
dχn · · ·dχ1

n∑
j1=1

A1 j1χ j1 · · ·
n∑

jn=1

Anjnχ jn

=
∑
σ

ε(σ )A1σ (1) · · · Anσ (n)

= det A. (A.61)

This result can be reformulated as follows:

Proposition A.10 (Linear change of variables in Grassmann–Berezin integration). Let f ∈ R[ξ1, . . . , ξn], and
define F ∈ R[χ1, . . . ,χn] by

F (χ1, . . . ,χn)= f (ξ1, . . . , ξn)|ξi=
∑n

j=1 Aijχ j
(A.62)

42 We can view this as dividing the 2m individuals into m males and m females and then pairing those individuals into m
heterosexual couples.
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[note that this substitution is well defined by virtue of the discussion in the last paragraph of Appendix A.3].
Then ∫

dχn · · ·dχ1 F = (det A)

∫
dξn · · ·dξ1 f . (A.63)

Please note that this is the reverse of the change-of-variables formula for ordinary multivariate
integrals, i.e. in an ordinary integral the factor det(A) would appear on the other side.

We will also need:

Proposition A.11 (Fubini theorem for Grassmann–Berezin integration). Let I = {i1, . . . , ip} with i1 < · · ·< ip
be a subset of [n], and let Ic = { j1, . . . , jn−p} with j1 < · · · < jn−p . Then for any elements f ∈ R[χI ] and
g ∈ R[χIc ] we have

∫
DχI DχIc f g = (−1)p(n−p)

(∫
DχI f

)(∫
DχIc g

)
(A.64)

where DχI (resp. DχIc ) is shorthand for dχip · · ·dχi1 (resp. dχ jn−p · · ·dχ j1 ).

Proof. Expanding f and g in monomials, we see that the only terms contributing to the integrals
on either side are the “top” monomials χ I and χ Ic

in f and g , respectively; so we can assume
without loss of generality that f = χ I and g = χ Ic

. Now use the fact that integration is the same as
differentiation, and successively apply the operators ∂i for i ∈ Ic to the product f g using the Leibniz
rule (A.51). The differentiations hit only g , and we have P f = (−1)p f . It follows that

∫
DχIc f g = (−1)p(n−p) f

(∫
DχIc g

)
. (A.65)

The result then follows by integrating both sides with DχI . �
Let us remark that the same formula (A.64) would hold for any choice of the orderings in defining

DχI and DχIc , provided only that we use the same orderings on both sides of the equation. We
have chosen to write DχI = dχip · · ·dχi1 for compatibility with our convention (A.57) that Dχ =
dχn · · ·dχ1.

Finally, the following proposition shows that a Grassmann–Berezin integral over dχi is invariant
under translation by an arbitrary odd element of the Grassmann algebra that does not involve the vari-
able χi . More generally, one can consider integration over a set I ⊆ [n] of generators:

Proposition A.12 (Invariance under translation). Let I = {i1, . . . , ip} ⊆ [n] and let ξ1, . . . , ξn ∈ R[χIc ]odd
satisfy ξ j = 0 whenever j /∈ I . Then

∫
dχip · · ·dχi1 f (χ + ξ)=

∫
dχip · · ·dχi1 f (χ) (A.66)

where f (χ + ξ) denotes the substitution defined at the end of Appendix A.3. [Recall that the oddness of the ξi
is required for this substitution to make sense.]

Proof. The formula (A.66) can be rewritten as

∂ip · · · ∂i1 f (χ + ξ)= ∂ip · · · ∂i1 f (χ). (A.67)

To prove this relation, it suffices to consider the cases in which f (χ)= χ J for some J ⊆ [n]. Now for
any i ∈ I and j ∈ [n] we have
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∂i(χ j + ξ j)= ∂iχ j = δi j (A.68)

because ξ j ∈ R[χIc ]. Using this relation together with the Leibniz rule, we see that ∂i(χ + ξ) J equals
the same object in which ξi has been replaced by zero. Doing this successively for ∂i1 , . . . , ∂ip , we set
ξi to zero for all i ∈ I . But by hypothesis these are the only nonzero ξi . �
A.5. Fermionic Gaussian integration

We are now ready to state the fundamental formulae (“Wick’s theorem”) for fermionic Gaus-
sian integration, which are analogues of Theorems A.3 and A.4 for bosonic Gaussian integration.
The main difference is that fermionic integration is a purely algebraic/combinatorial construction, so
that it works over an arbitrary (commutative) coefficient ring R and does not require any positive–
definiteness condition on the matrix A.

We begin with the formula for a pure Gaussian integral, i.e. the integral of the exponential of a
quadratic form. So let R be a commutative ring with identity element, let χ1, . . . ,χn be the generators
of a Grassmann algebra, and let A = (aij)

n
i, j=1 be an n × n antisymmetric matrix (i.e. aij = −a ji and

aii = 0) with entries in R .43 We use the notation

1

2
χT Aχ

def=
∑

1�i< j�n

χiai jχ j (A.69)

and observe that the right-hand side makes sense even if the coefficient ring R does not contain
an element 1

2 . We then have the following formula, which shows that a Gaussian fermionic integral
equals a pfaffian:

Proposition A.13 (Gaussian integral for “real” fermions). Let A be an n× n antisymmetric matrix with coeffi-
cients in R. Then

∫
dχn · · ·dχ1 e

1
2 χT Aχ =

∫
dχ1 · · ·dχn e−

1
2 χT Aχ =

{
pf A if n is even,

0 if n is odd.
(A.70)

Proof. We expand the exponential using (A.45) with Φ = exp and then integrate
∫

dχn · · ·dχ1. When
n is odd the integral vanishes, and when n is even (say, n = 2m) the only contribution comes from
k =m in (A.45), yielding

∫
dχn · · ·dχ1 e

1
2 χT Aχ

=
∫

dχn · · ·dχ1

∑
I1≺···≺Im

Ik={ik, jk} with ik< jk

ai1 j1 · · ·aim jmχ I1 · · ·χ Im (A.71a)

=
∑

σ : σ (2i−1)<σ (2i) and
σ (1)<σ (3)<···<σ(2m−1)

ε(σ )aσ (1)σ (2) · · ·aσ (2m−1)σ (2m) (A.71b)

= pf A. (A.71c)

(Note that this holds whether or not the coefficient ring R contains the rational numbers.)

43 See footnote 36 above concerning our use of the term “antisymmetric”.
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For the variant in which A is replaced by −A and the order of integration is reversed, it suffices
to observe that

pf(−A)= (−1)n/2 pf(A) (A.72)

[this is an immediate consequence of the definition (A.18)] and use (A.55) to get

∫
dχ1 · · ·dχn e−

1
2 χT Aχ = (−1)n(n−1)/2 pf(−A)= (−1)n2/2 pf(A)= pf(A) (A.73)

because n is even. �
Remark. Eq. (A.70) shows that there exist two equally natural conventions for Gaussian integrals with

“real” fermions: either we write our quadratic forms as e
1
2 χT Aχ and our integrals as

∫
dχn · · ·dχ1, or

alternatively we write our quadratic forms as e− 1
2 χT Aχ and our integrals as

∫
dχ1 · · ·dχn . In this paper

we have adopted the first convention [cf. (A.57)].

In the special case in which n = 2m and the generators χ1, . . . ,χn are divided into two sets
ψ1, . . . ,ψm and ψ̄1, . . . , ψ̄m , we have

Proposition A.14 (Gaussian integral for “complex” fermions). Let A be an m×m matrix with coefficients in R.
Then ∫

dψ1 dψ̄1 · · ·dψm dψ̄m eψ̄T Aψ = det A. (A.74)

Please note that here A is an arbitrary matrix; no condition of symmetry or antisymmetry need
be imposed on it.

Proof of Proposition A.14. By the change of variables (ψ ′, ψ̄ ′) = (Aψ, ψ̄), we have from Proposi-
tion A.10 ∫

D(ψ, ψ̄) eψ̄T Aψ = (det A)

∫
D(ψ, ψ̄) eψ̄Tψ (A.75a)

= (det A)

∫
D(ψ, ψ̄)

m∏
i=1

(1+ ψ̄iψi). (A.75b)

When we expand the product, only the term ψ̄1ψ1 · · · ψ̄mψm has a nonzero integral, and the integral
of this term is 1. �

Here is an alternate proof, which treats “complex” fermions as a special case of “real” fermions
and invokes Proposition A.13:

Alternate proof of Proposition A.14. Let us write (χ1, . . . ,χ2m) = (ψ1, . . . ,ψm, ψ̄1, . . . , ψ̄m). Then by
(A.59) we have

D(ψ, ψ̄)= (−1)m dψ̄m dψm · · ·dψ̄1 dψ1 (A.76a)

= (−1)m(m+1)/2 dψ̄m · · ·dψ̄1 dψm · · ·dψ1 (A.76b)

= (−1)m(m+1)/2 dχ2m · · ·dχ1 (A.76c)
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and

ψ̄T Aψ = 1

2
χT Kχ, (A.77)

where K is the 2m× 2m matrix

K =
(

0 −AT

A 0

)
=
(

0 I
A 0

)(
0 I
−I 0

)(
0 AT

I 0

)
. (A.78)

Then by Lemma A.2(c) we have

pf K = det

(
0 I
A 0

)
· pf

(
0 I
−I 0

)
= (−1)m(det A) · (−1)m(m−1)/2, (A.79)

so that

∫
D(ψ, ψ̄) eψ̄T Aψ = (−1)m(m+1)/2 pf K = det A. � (A.80)

Let us make one further observation concerning Gaussian integrals (both “real” and “complex”),
which will be useful in proving certain aspects of Wick’s theorem. If I = (i1, . . . , ik) is an arbitrary
sequence of indices in [n] – not necessarily distinct or ordered – then the “real” Gaussian integral
(A.70) can be generalized to

∫
dχik · · ·dχi1 e

1
2 χT

I A I IχI =
{

pf AI I if k is even,

0 if k is odd.
(A.81)

To prove this, it suffices to observe, first of all, that if the indices i1, . . . , ik are distinct, then this
formula is merely (A.70) after a relabeling of indices: the point is that by our definition (A.22), the
variables arise in the same order in the integration measure and in the matrix AI I . On the other
hand, if the sequence i1, . . . , ik contains any repeated index, then the left-hand side vanishes because
dχi dχi = 0 by (A.49), while pf AI I = 0 in such a case because the pfaffian changes sign under simul-
taneous permutations of rows and columns [this is a special case of Lemma A.2(c)]. In a similar way,
the “complex” Gaussian integral (A.74) can be generalized to

∫
dψi1 dψ̄ j1 · · ·dψik dψ̄ jk eψ̄T

J A J I ψI = det A J I (A.82)

for arbitrary sequences I = (i1, . . . , ik) and J = ( j1, . . . , jk).
We are now ready to state the full Wick’s theorem for fermions. Since the “source” version of

Wick’s theorem for fermions will involve a fermionic source λ [cf. (A.83)], this means that we will
be working (at least when discussing this equation) in an extended Grassmann algebra R[χ,θ] with
generators χ1, . . . ,χn and θ1, . . . , θN for some N � 1, and the sources λi will belong to the odd part
of the Grassmann subalgebra R[θ].

We assume without further ado that n is even, i.e. n = 2m. Recall also from (A.22) the notation AI J

for arbitrary sequences of indices I and J .

Theorem A.15 (Wick’s theorem for “real” fermions). Let R be a commutative ring with identity element, and
let A = (aij)

2m
i, j=1 be a 2m× 2m antisymmetric matrix with elements in R. Then:
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(a) If the matrix A is invertible, we have

∫
Dχ exp

(
1

2
χT Aχ + λTχ

)
= (pf A)exp

(
1

2
λT A−1λ

)
(A.83)

whenever λ= (λi)
2m
i=1 are odd elements of the Grassmann algebra that do not involve χ , i.e. λi ∈ R[θ]odd .

(b) For any subset I = {i1, . . . , ir} ⊆ [2m] with i1 < · · ·< ir , we have

∫
Dχ χi1 · · ·χir exp

(
1

2
χT Aχ

)
=
{

0 if r is odd,

ε(I)pf AIc Ic if r is even.
(A.84)

(c) For any sequence of indices I = (i1, . . . , ir) in [2m], if the matrix A is invertible we have

∫
Dχ χi1 · · ·χir exp

(
1

2
χT Aχ

)
=
{

0 if r is odd,

(pf A)pf((A−T)I I ) if r is even.
(A.85)

(d) More generally, for any r × 2m matrix C with entries in R, we have

∫
Dχ(Cχ)1 · · · (Cχ)r exp

(
1

2
χT Aχ

)
=
{

0 if r is odd,∑
|I|=r(det C�I )ε(I)pf(AIc Ic ) if r is even,

(A.86)

where C�I denotes the submatrix of C with columns in I; and if the matrix A is invertible,

∫
Dχ(Cχ)1 · · · (Cχ)r exp

(
1

2
χT Aχ

)
=
{

0 if r is odd,

(pf A)pf(C A−TCT) if r is even.
(A.87)

Note that (A.84) and (A.85) are equivalent by virtue of Jacobi’s identity for pfaffians [cf. (A.21)],
and that (A.86) and (A.87) are equivalent by virtue of Jacobi’s identity and the minor summation
formula for pfaffians [cf. (A.20)]. However, we shall give independent proofs of all these formulae;
as a consequence, our argument provides ab initio proofs of these pfaffian identities by means of
Grassmann–Berezin integration.

Proof of Theorem A.15. To prove (a), we perform the translation χ ′ = χ + A−1λ and use Proposi-
tion A.12. We have

1

2
χ ′T Aχ ′ + λTχ ′ = 1

2

(
χT + λT A−T)A

(
χ + A−1λ

)+ λT(χ + A−1λ
)

= 1

2
χT Aχ + 1

2
λT A−1λ (A.88)

since A−T = −A−1 and χTλ = −λTχ . Therefore (A.83) is an immediate consequence of Proposi-
tion A.13.

For (b)–(d), let us first remark that if r is odd, then the integral must vanish, because the expansion
of the exponential can only give an even number of factors of χ , so the “top” monomial in χ cannot
be generated (recall that the total number of generators is even, i.e. n = 2m).
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To prove (b), we compute

∫
Dχ χ I exp

(
1

2
χT Aχ

)
=
∫

Dχ χ I exp

(
1

2
χT

Ic A Ic Ic χIc

)

= ε(I)

∫
DχI DχIc χ I exp

(
1

2
χT

Ic A Ic Ic χIc

)

= ε(I)(−1)r(2m−r)
(∫

DχI χ
I
)(∫

DχIc exp

(
1

2
χT

Ic A Ic Ic χIc

))
= ε(I)pf(AIc Ic ). (A.89)

The first equality holds because any factor ξi with i ∈ I arising from the expansion of the exponential
would be annihilated by the prefactor χ I ; the second equality is simply a reordering of the integration
variables; the third equality is Fubini’s theorem (Proposition A.11); and the last equality is simply the
evaluation of the two integrals (using Proposition A.13 for the second) together with the fact that r is
even.

(c) We specialize result (a) to the case where the “sources” λi are generators of an extended Grass-
mann algebra, then differentiate (or equivalently integrate!) with respect to the sources λi1 , . . . , λir ,
and finally replace all the λi by zero44:

∫
Dχ χi1 · · ·χir exp

(
1

2
χT Aχ

)
= (pf A)

∂

∂λi1

· · · ∂

∂λir

exp

(
1

2
λT A−1λ

)∣∣∣∣
λ=0

= (pf A)

∫
dλi1 · · ·dλir exp

(
1

2
λT

I

(
A−1)

I IλI

)

= (pf A)(−1)r(r−1)/2
∫

DλI exp

(
1

2
λT

I

(
A−1)

I IλI

)

= (pf A)(−1)r(r−1)/2 pf
((

A−1)
I I

)
= (pf A)(−1)r(r−1)/2(−1)r/2 pf

((−A−1)
I I

)
= (pf A)pf

((
A−T)

I I

)
. (A.90)

Here the third equality involved reordering the integration variables from increasing to decreasing
order; the fourth equality performed the Gaussian integral using (A.81); the fifth equality used (A.72);
and the final equality used −A−1 = A−T and (−1)r2/2 = 1 (which holds since r is even).

(d) We have

∫
Dχ (Cχ)1 · · · (Cχ)r exp

(
1

2
χT Aχ

)

=
∑

i1,...,ir

C1i1 · · ·Crir

∫
Dχ χi1 · · ·χir exp

(
1

2
χT Aχ

)
, (A.91)

but the only nonvanishing contributions in the sum come when i1, . . . , ir are all distinct; so we can
first require i1 < · · ·< ir and then sum over permutations, yielding

44 Setting λ→ 0 can be interpreted as extracting the monomials that do not involve λ, or alternatively as a special case of the
substitution discussed at the end of Appendix A.3 (since 0 is odd).
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∑
|I|=r

∑
σ∈Sr

C1iσ (1)
· · ·Criσ (r) sgn(σ )

∫
Dχχ I exp

(
1

2
χT Aχ

)
=

∑
|I|=r

(det C�I )ε(I)pf(AIc Ic ) (A.92)

by part (b). If A is invertible, we can write

∫
Dχ(Cχ)1 · · · (Cχ)r exp

(
1

2
χT Aχ

)
= ∂

∂λi1

· · · ∂

∂λir

∫
Dχ exp

(
1

2
χT Aχ + λTCχ

)∣∣∣∣
λ=0

= ∂

∂λi1

· · · ∂

∂λir

(pf A)exp

(
1

2
λTC A−1CTλ

)∣∣∣∣
λ=0

(A.93)

by using (a). By the same reasoning as in (A.90) we can see that this equals (pf A)pf(C A−TCT). �
Next we state Wick’s theorem for “complex” fermions. Once again, when discussing the “source”

version of this theorem [cf. (A.94)], we will work in an extended Grassmann algebra R[ψ, ψ̄, θ] in
which the sources λi , λ̄i belong to the odd part of the Grassmann subalgebra R[θ].

Theorem A.16 (Wick’s theorem for “complex” fermions). Let R be a commutative ring with identity element,
and let A = (aij)

n
i, j=1 be an n× n matrix with elements in R. Then:

(a) If the matrix A is invertible, we have

∫
D(ψ, ψ̄)exp

(
ψ̄T Aψ + λ̄Tψ + ψ̄Tλ

)= (det A)exp
(−λ̄T A−1λ

)
(A.94)

whenever λ= (λi)
n
i=1 and λ̄= (λ̄i)

n
i=1 are odd elements of the Grassmann algebra that do not involve ψ

and ψ̄ , i.e. λi, λ̄i ∈ R[θ]odd .
(b) For any subsets I = {i1, . . . , ir} and J = { j1, . . . , jr} of [n] having the same cardinality r, with i1 < · · ·<

ir and j1 < · · ·< jr , we have

∫
D(ψ, ψ̄)

(
r∏

α=1

ψ̄iαψ jα

)
exp

(
ψ̄T Aψ

)= ε(I, J )(det AIc J c ). (A.95)

[If there is an unequal number of factors ψ and ψ̄ , then the integral is zero.]
(c) For any sequences of indices I = (i1, . . . , ir) and J = ( j1, . . . , jr) in [n] of the same length r, if the matrix

A is invertible we have

∫
D(ψ, ψ̄)

(
r∏

α=1

ψ̄iαψ jα

)
exp

(
ψ̄T Aψ

)= (det A)det
((

A−T)
I J

)
. (A.96)

[Again, if there is an unequal number of factors ψ and ψ̄ , then the integral is zero.]
(d) More generally, for any r × n matrix B and n× r matrix C with entries in R, we have

∫
D(ψ, ψ̄)

(
r∏

α=1

(ψ̄C)α(Bψ)α

)
exp

(
ψ̄T Aψ

)

=
∑

|I|=| J |=r

ε(I, J )(det B� J )(det AIc J c )(det C I�), (A.97)
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and if the matrix A is invertible,

∫
D(ψ, ψ̄)

(
r∏

α=1

(ψ̄C)α(Bψ)α

)
exp

(
ψ̄T Aψ

)= (det A)det
(

B A−1C
)
. (A.98)

Note that (A.95) and (A.96) are equivalent by virtue of Jacobi’s identity (A.7), and that (A.97)
and (A.98) are equivalent by virtue of Jacobi’s identity together with the Cauchy–Binet identity (A.3).
However, we shall give independent proofs of all these formulae; as a consequence, our argument
provides an ab initio proof of Jacobi’s identity by means of Grassmann–Berezin integration.

The proof of Theorem A.16 follows closely the pattern used in the proof of Theorem A.15, but with
slightly different combinatorics.

Proof of Theorem A.16. To prove (a), we perform the translations ψ ′ =ψ − A−1λ and ψ̄ ′ = ψ̄ − A−Tλ̄

and use Proposition A.12. We have

ψ̄ ′T Aψ ′ + λ̄Tψ ′ + ψ̄ ′Tλ

= (
ψ̄T − λ̄T A−1)A

(
ψ − A−1λ

)+ λ̄T(ψ − A−1λ
)+ (

ψ̄T − λ̄T A−1)λ
= ψ̄T Aψ − λ̄T A−1λ. (A.99)

Therefore (A.94) is an immediate consequence of Proposition A.14.
To prove (b), we begin by observing as before that

∫
D(ψ, ψ̄)

(
r∏

α=1

ψ̄iαψ jα

)
exp

(
ψ̄T Aψ

)

=
∫

D(ψ, ψ̄)

(
r∏

α=1

ψ̄iαψ jα

)
exp

(
ψ̄T

Ic A Ic J c ψ J c
)
. (A.100)

We now proceed to reorder the integration measure. We have I = {i1, . . . , ir} with i1 < · · · < ir , and
let us write Ic = {i′1, . . . , i′n−r} with i′1 < · · ·< i′n−r ; and likewise for J . Then D(ψ, ψ̄) is the product
of factors dψi dψ̄i taken in arbitrary order; we choose the order to be I Ic (i.e., i1 · · · ir i′1 · · · i′n−r ). We
now leave the factors ψ̄ in place, but reorder the factors ψ to be in order J J c rather than I Ic : this
produces a sign ε(I, J ). Using the notation

D(ψ J , ψ̄I )= dψ j1 dψ̄i1 · · ·dψ jr dψ̄ir (A.101)

and likewise for the complementary sets, we have proven that

D(ψ, ψ̄)= ε(I, J )D(ψ J , ψ̄I )D(ψ J c , ψ̄Ic ). (A.102)

This in turn can be trivially rewritten as ε(I, J )D(ψ J c , ψ̄Ic )D(ψ J , ψ̄I ) since the two factors D are
Grassmann-even. We can now apply this measure to the integrand in (A.100); integrating the mono-
mial against D(ψ J , ψ̄I ) gives 1, and integrating the exponential against D(ψ J c , ψ̄Ic ) gives det AIc J c by
Proposition A.14.

(c) As in the case of “real” fermions, we specialize result (a) to the case where the “sources” λi , λ̄i
are generators of an extended Grassmann algebra, and then differentiate with respect to them:
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∫
D(ψ, ψ̄)

(
r∏

α=1

ψ̄iαψ jα

)
exp

(
ψ̄T Aψ

)

= (det A)

(
r∏

α=1

− ∂

∂λiα

∂

∂λ̄ jα

)
exp

(−λ̄T A−1λ
)∣∣∣∣

λ̄=λ=0

= (det A)(−1)r
∫

D(λI , λ̄ J )exp
(−λ̄T

J

(
A−1)

J IλI
)

= (det A) (−1)r det
((−A−1)

J I

)
= (det A)det

((
A−T)

I J

)
. (A.103)

Here the minus sign in the first equality comes from the fact that differentiation of the source term
ψ̄Tλ with respect to λi yields −ψ̄i according to (A.51); the second equality says that differentiation is
the same as integration; and the third equality uses (A.82).

(d) We have

∫
D(ψ, ψ̄)

(
r∏

α=1

(ψ̄C)α(Bψ)α

)
exp

(
ψ̄T Aψ

)

=
∑

i1,...,ir

∑
j1,..., jr

(
r∏

α=1

Ciα,α Bα, jα

)∫
D(ψ, ψ̄)

(
r∏

α=1

ψ̄iαψ jα

)
exp

(
ψ̄T Aψ

)
, (A.104)

but the only nonvanishing contributions in the sum come when i1, . . . , ir , and also j1, . . . , jr , are
all distinct; so we can first require i1 < · · · < ir , and j1 < · · · < jr and then sum over permutations,
yielding

∑
|I|=r

∑
| J |=r

∑
σ ,τ∈Sr

Ciσ (1),1 · · ·Ciσ (r),r B1, jτ (1)
· · · Br, jτ (r)

× sgn(σ ) sgn(τ )

∫
D(ψ, ψ̄)

(
r∏

α=1

ψ̄iαψ jα

)
exp

(
ψ̄T Aψ

)

=
∑
|I|=r

∑
| J |=r

(det B� J )ε(I, J )(det AIc J c )(det C I�) (A.105)

by part (b). If A is invertible, we can write

∫
D(ψ, ψ̄)

(
r∏

α=1

(ψ̄C)α(Bψ)α

)
exp

(
ψ̄T Aψ

)

=
(

r∏
i=1

− ∂

∂λi

∂

∂λ̄i

) ∫
D(ψ, ψ̄)exp

(
ψ̄T Aψ + λ̄T Bψ + ψ̄TCλ

)∣∣∣∣
λ̄=λ=0

=
(

r∏
i=1

− ∂

∂λi

∂

∂λ̄i

)
(det A)exp

(−λ̄T B A−1Cλ
)∣∣

λ̄=λ=0 (A.106)

by using (a). Then by the same reasoning as in (A.103) we see that this equals (det A)det(B A−1C). �
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Table 1
Summary of the four types of Gaussian integration. Here A is the matrix appearing in the quadratic form in the exponential.
See text for details.

Type of Combinatorial Analytic Value of Contractions in
variables conditions conditions Gaussian int. 2k-point correlation

Real bosons A symmetric A pos.–def. (det A)−1/2 2k× 2k hafnian
Complex bosons none A + A∗ pos.–def. (det A)−1 k× k permanent
“Real” fermions A antisymm. none pf A 2k× 2k pfaffian
“Complex” fermions none none det A k× k determinant

A.6. Summary of bosonic and fermionic Gaussian integration

The four types of Gaussian integration and their basic characteristics are summarized in Table 1.
Let us stress the following facts:

• Fermionic integration is a purely algebraic/combinatorial operation: no analytic conditions on the
matrix A (such as positive–definiteness) are needed, and in fact fermionic integration makes sense
over an arbitrary (commutative) coefficient ring R . Bosonic integration, by contrast, is an analytic
operation (at least as we have defined it here) and requires positive–definiteness of A or its
hermitian part.

• For complex bosons and “complex” fermions, no symmetry or antisymmetry conditions are im-
posed on the matrix A. By contrast, for real bosons and “real” fermions, the matrix A must be
symmetric or antisymmetric, respectively.

Appendix B. Some useful identities

In this appendix we collect some auxiliary results that will be used at various places in this pa-
per: identities for sums of products of binomial coefficients (Appendix B.1) and for determinants and
pfaffians (Appendix B.2), lemmas on matrix factorization (Appendix B.3), and an identity that we call
the “dilation–translation formula” (Appendix B.4).

B.1. Binomial identities

We collect here a few identities for sums of products of binomial coefficients that will be needed in
the proof of the rectangular Cayley identities (Sections 5.5 and 5.6). We use the standard convention
[47] for the definition of binomial coefficients:

(
r

k

)
=
{ r(r − 1) · · · (r − k+ 1)/k! for integer k > 0,

1 for k = 0,

0 for integerk < 0,

(B.1)

where r is an indeterminate and k is always an integer. Multinomial coefficients

(
a1 + · · · + ak

a1, . . . ,ak

)
= (a1 + · · · + ak)!

a1! · · ·ak! (B.2)

will, by contrast, be used only when all the ai are nonnegative integers.
We now state some easy combinatorial lemmas involving binomial coefficients. They are all either

contained in the textbook of Graham, Knuth and Patashnik [47, Chapter 5] or derived in the same
fashion.
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Lemma B.1 (Parallel summation).

∑
k�m

(
r + k

k

)
=
(

r +m+ 1

m

)
for m integer. (B.3)

Lemma B.2 (Chu–Vandermonde convolution).

∑
k

(
w

k

)(
m

p − k

)
=
(

w +m

p

)
. (B.4)

Proof. For positive integers w and m, this is the number of ways of selecting p people out of a group
of w women and m men. Since, for any fixed integer p, both sides are polynomials in w and m, the
identity holds as a polynomial identity. �
Lemma B.3.

∑
k,h,l�0

k+h+l=m

(−1)k
(

a

h

)(
b

k

)(
h + l

h

)
=
(

a− b +m

m

)
. (B.5)

Proof. The left-hand side equals

m∑
k=0

m−k∑
h=0

(−1)k
(

a

h

)(
b

k

)(
m− k

m− k− h

)
=

m∑
k=0

(−1)k
(

a+m− k

m− k

)(
b

k

)
(B.6a)

=
m∑

k=0

(−1)m
(−a− 1

m− k

)(
b

k

)
(B.6b)

= (−1)m
(

b − a− 1

m

)
(B.6c)

=
(

a− b +m

m

)
(B.6d)

where the first and third equalities use the Chu–Vandermonde convolution. �
Lemma B.4.

∑
k,h,l�0

k+h+l�m

(−1)k
(

a

h

)(
b

k

)(
h + l

h

)
=
(

a− b +m+ 1

m

)
. (B.7)

Proof. Sum (B.5) and use (B.3). �
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B.2. Determinant and pfaffian identities

We collect here some identities for determinants and pfaffians that will be needed in Section 5:
these concern the determinant or pfaffian of a partitioned matrix and the change of determinant
under low-rank perturbation. These identities are well known, but for completeness we will give
compact proofs using Grassmann–Berezin integration. We will also give a (possibly new) “fermionic”
analogue of the low-rank perturbation formula, which will play a crucial role throughout Section 5.

Let us begin with the formula for the determinant of a partitioned matrix, due to Schur [87,
Hilfssatz, pp. 216–217]:

Proposition B.5 (Schur’s formula for the determinant of a partitioned matrix). Consider a partitioned matrix
of the form

M =
(

A B

C D

)
(B.8)

where A, B, C , D are matrices of sizes m × m, m × n, n × m and n × n, respectively, with elements in a
commutative ring with identity.

(a) If A is invertible, then det M = (det A)det(D − C A−1 B).
(b) If D is invertible, then det M = (det D)det(A − B D−1C).

The matrix D − C A−1 B is called the Schur complement of A in the partitioned matrix M; see [24,
31,76,116] for reviews. One well-known proof of Schur’s formula is based on the identity

(
A B

C D

)
=
(

A 0

C In

)(
Im A−1 B

0 D − C A−1 B

)
. (B.9)

Let us give a quick proof of Schur’s formula using Grassmann–Berezin integration:

Proof of Proposition B.5. Let R be the commutative ring with identity in which the elements of A,
B , C , D take values. We introduce Grassmann variables ψi , ψ̄i (1 � i � m) and η j , η̄ j (1 � j � n) and
work in the Grassmann algebra R[ψ, ψ̄,η, η̄]. We have

det

(
A B

C D

)
=
∫

Dm(ψ, ψ̄)Dn(η, η̄)exp

[(
ψ̄T, η̄T)( A B

C D

)(
ψ

η

)]

=
∫

Dm(ψ, ψ̄)Dn(η, η̄)exp
[
ψ̄T Aψ + ψ̄T Bη+ η̄TCψ + η̄T Dη

]
. (B.10)

If A is invertible, we can perform the integration over ψ , ψ̄ using Wick’s theorem for “complex”
fermions (Theorem A.16), yielding

(det A)

∫
Dn(η, η̄)exp

(
η̄T Dη− η̄TC A−1 Bη

)
. (B.11)

Then performing the integration over η, η̄ yields (det A)det(D − C A−1 B). This proves (a); and the
proof of (b) is identical. �

Here are some important special cases of Proposition B.5:
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Corollary B.6. Let U , V be m× n matrices with elements in a commutative ring with identity. Then

det
(
U V T)= det

(
0m U

−V T In

)
, (B.12)

where 0m is the m×m zero matrix and In is the n× n identity matrix.

Corollary B.7 (Matrix determinant lemma). Let A be an invertible m×m matrix, let W be an invertible n×n
matrix, and let U , V be m× n matrices, all with elements in a commutative ring with identity. Then

det
(

A + U W V T)= (det A)(det W )det
(
W−1 + V T A−1U

)
. (B.13)

In particular, if we take W = In, then

det
(

A + U V T)= (det A)det
(

In + V T A−1U
)
. (B.14)

If in addition we take A = Im, then

det
(

Im + U V T)= det
(

In + V TU
)
. (B.15)

Corollary B.7 is sometimes known as the “matrix determinant lemma”, and the special case (B.15)
is sometimes known as “Sylvester’s theorem for determinants”. When n �m, we can interpret (B.13)–
(B.15) as formulae for the change of determinant under a low-rank perturbation: see Lemma B.11
below for an explicit statement.

Analogues of Proposition B.5 and Corollary B.6 exist also for pfaffians:

Proposition B.8 (Pfaffian of a partitioned matrix). Consider a partitioned matrix of the form

M =
(

A B

−BT D

)
(B.16)

where A, B, D are matrices of sizes 2m× 2m, 2m× 2n and 2n× 2n, respectively, with elements in a commu-
tative ring with identity, and A and D are antisymmetric.

(a) If A is invertible, then pf M = (pf A)pf(D + BT A−1 B).
(b) If D is invertible, then pf M = (pf D)pf(A + B D−1 BT).

Note that the matrices D + BT A−1 B and A + B D−1 BT appearing here are just the usual Schur
complements D − C A−1 B and A − B D−1C specialized to C =−BT.

Corollary B.9. Let U be a 2m× 2n matrix with elements in a commutative ring with identity. Then

pf
(
U J2nU T)= (−1)m pf

(−U J2nU T)= (−1)m pf

(
02m U

−U T J2n

)
(B.17)

where J2n is the standard 2n× 2n symplectic form (A.15).
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Proof of Proposition B.8. This time we introduce “real” Grassmann variables θi (1 � i � 2m) and λi
(1 � i � 2n). We have

pf M =
∫

D2m(θ)D2n(λ)exp

[
1

2
θT Aθ + θT Bλ+ 1

2
λT Dλ

]
. (B.18)

If A is invertible, we can perform the integration over θ using Wick’s theorem for “real” fermions
(Theorem A.15), yielding

(pf A)

∫
D2n(λ)exp

(
1

2
λT Dλ+ 1

2
λT BT A−1 Bλ

)
. (B.19)

Then performing the integration over λ yields (pf A)pf(D + BT A−1 B). This proves (a); and the proof
of (b) is identical. �

We next wish to prove an analogue of Corollary B.7 when the entries in the various matrices
belong, not to a commutative ring, but to a Grassmann algebra. More precisely, the entries in A and
W will be even elements of the Grassmann algebra, while the entries in U and V will be odd elements
of the Grassmann algebra.

Proposition B.10 (Fermionic matrix determinant lemma). Let G be a Grassmann algebra over a commutative
ring with identity; let A be an invertible m × m matrix and W an invertible n × n matrix, whose elements
belong to Geven; and let U , V be m× n matrices whose elements belong to Godd . Then45

det
(

A + U W V T)= (det A)(det W )−1 det
(
W−1 + V T A−1U

)−1
. (B.20)

In particular, if we take W = In, then

det
(

A + U V T)= (det A)det
(

In + V T A−1U
)−1

. (B.21)

If in addition we take A = Im, then

det
(

Im + U V T)= det
(

In + V TU
)−1

. (B.22)

Note that (B.20)–(B.22) differ from (B.13)–(B.15) by replacing some determinants with their inverse.

Proof of Proposition B.10. Let us first observe that since A and W are invertible, we can rewrite
(B.20) as

det
(

Im + A−1U W V T)= det
(

In + W V T A−1U
)−1

, (B.23)

which is equivalent to

det
(

Im + Ũ Ṽ T)= det
(

In + Ṽ TŨ
)−1

(B.24)

under the (invertible) change of variables Ũ = A−1U , Ṽ = V W T. So it suffices to prove (B.22).

45 Note that all the matrix elements in all these determinants belong to the commutative ring Geven; therefore, these determi-
nants are unambiguously defined.
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Let us first prove (B.22) when the ring R is R. We augment the Grassmann algebra by introducing
generators η j , η̄ j (1 � j � n), and we also introduce bosonic variables ϕi , ϕ̄i (1 � i � m). We wish to
consider the mixed bosonic–fermionic integral

∫
Dm(ϕ, ϕ̄)Dn(η, η̄)exp

[−ϕ̄Tϕ + ϕ̄TUη+ η̄T V Tϕ + η̄Tη
]
. (B.25)

Please note that the quantities Uη, η̄T V T and η̄Tη all belong to the even “pure soul” part of the aug-
mented Grassmann algebra, and in particular are nilpotent; therefore the integrand can be interpreted
as

exp
(−ϕ̄Tϕ

) ∞∑
k=0

1

k!
(
ϕ̄TUη+ η̄T V Tϕ + η̄Tη

)k
(B.26)

where the sum over k is in fact finite. The Gaussian integration over ϕ , ϕ̄ can thus be interpreted
as separate Gaussian integrations for the coefficients (which belong to R) of each monomial in the
augmented Grassmann algebra; this makes perfect analytic sense. Let us now evaluate (B.25) in two
ways: Integrating first over ϕ , ϕ̄ and then over η, η̄, we get

∫
Dn(η, η̄)exp

[
η̄Tη+ η̄T V TUη

]= det
(

In + V TU
)
. (B.27)

On the other hand, integrating first over η, η̄ and then over ϕ , ϕ̄ , we get

∫
Dm(ϕ, ϕ̄)exp

[−ϕ̄Tϕ − ϕ̄TU V Tϕ
]= det

(
Im + U V T)−1

. (B.28)

This proves (B.22) when the ring R is R.
Let us finally give an abstract argument showing that (B.22) holds for arbitrary commutative

rings R . The point is that the matrix elements of U and V belong to a Grassmann algebra over
some finite set of generators χ1, . . . ,χN , and hence can be written as

Uij =
∑

K odd

αi j;K χ K , (B.29a)

V ij =
∑

K odd

βi j;K χ K (B.29b)

for some coefficients αi j;K , βi j;K ∈ R . Now, both sides of (B.22) are of the form
∑

L even γLχ
L where

the coefficients γL are polynomials in {αi j;K , βi j;K } with integer coefficients.46 But we have just shown
that these two polynomials coincide whenever {αi j;K , βi j;K } are replaced by any set of specific values
in R. Therefore, they must coincide as polynomials in the indeterminates {αi j;K , βi j;K }. But this implies
that they are equal when {αi j;K , βi j;K } are replaced by specific values in any commutative ring R . �

It is convenient, for our applications, to rephrase (B.15) and (B.22) as explicit formulae for the
change of determinant under a low-rank perturbation. So let u1, . . . , un and v1, . . . , vn be vectors of
length m whose entries are elements of a Grassmann algebra and are either all Grassmann-even or

46 The determinant on the right-hand side is an element of the Grassmann algebra whose “body” term is 1; therefore, it is
invertible in the Grassmann algebra and the coefficients of its inverse are polynomials (with integer coefficients) in its own
coefficients.
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all Grassmann-odd. We call these cases ε =+1 and ε =−1, respectively. We then have the following
formula for the determinant of a rank-n perturbation of the identity matrix:

Lemma B.11 (Low-rank perturbation lemma). Let u1, . . . , un and v1, . . . , vn be as above, and define the n×n
matrix M by

Mαβ = vα · uβ ≡
m∑

i=1

(vα)i(uβ)i . (B.30)

Then we have

det

(
Im +

n∑
α=1

uα vT
α

)
= det(In + M)ε (B.31)

where ε =±1 is as above.

Here is one special case of the low-rank perturbation lemma that will be useful in Sections 5.3
and 7.2 in treating symmetric Cayley identities:

Corollary B.12. Let η= (η1, . . . , ηm) and η̄= (η̄1, . . . , η̄m) be Grassmann variables, and let A be an invertible
m×m symmetric matrix whose elements are Grassmann-even (hence commute with everything). Then

det
(

Im + η̄ηT − A−1ηη̄T A
)= (

1− η̄Tη
)−2

. (B.32)

Proof. Applying Lemma B.11 with u1 = η̄, v1 = η, u2 = A−1η and v2 =−ATη̄=−Aη̄ gives

det
(

Im + η̄ηT − A−1ηη̄T A
)= det−1

(
1+ ηTη̄ ηT A−1η

−η̄T Aη̄ 1− η̄Tη

)
. (B.33)

Since A and A−1 are symmetric, the off-diagonal elements vanish, which gives the result. �
Another special case of the low-rank perturbation lemma will arise in Section 5.9: here the m×m

matrix Im + U V T occurring on the left-hand side on (B.31) will be written as a product of rectangular
matrices, each of which is a rank-1 perturbation of the corresponding rectangular pseudo-identity
matrix. (The m × n pseudo-identity matrix Îmn has matrix elements ( Îmn)i j = δi j .) Direct application
of the low-rank perturbation lemma to such a product matrix yields a rather messy result, but after
some row operations we can obtain a fairly neat alternative formula:

Corollary B.13. Fix integers � � 1 and n1, . . . ,n� � 1 with nα � n1 for 2 � α � �, and write n�+1 = n1 . Let
x1, . . . , x� and y1, . . . , y� be vectors, where xα is of length nα and yα is of length nα+1 , whose entries are
elements of a Grassmann algebra and are either all commuting (ε =+1) or else all anticommuting (ε =−1).
Then we have

det

(
�∏

α=1

(
Înαnα+1 − xα yT

α

))= (det N)ε (B.34)

where the product is read from left (α = 1) to right (α = �), and the �× � matrix N is defined by
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Nαβ =
{∑nα+1,β

i=n1+1 yα
i xβ

i if α < β,

δαβ −∑n1
i=1 yα

i xβ

i if α � β,
(B.35)

where nα,β =minα�γ�β nγ .

Proof. Note first that Înαnα+1 Înα+1nα+2 · · · Înβ−1nβ is an nα × nβ matrix whose i j element is 1 if i =
j � nα,β and 0 otherwise. In particular, În1n2 În2n3 · · · Înα−1nα = În1nα . For v a vector of length m � n1,
define v̄ as the vector restricted to the first n1 components. So we can expand the matrix on the
left-hand side of (B.34) as

�∏
α=1

(
Înαnα+1 − xα yT

α

)

= In1 −
�∑

α=1

În1n2 În2n3 · · · Înα−1nα xα yT
α

(
Înα+1nα+2 − xα+1 yT

α+1

) · · · ( În�n�+1 − x� yT
�

)

= In1 −
�∑

α=1

x̄α yT
α

(
Înα+1nα+2 − xα+1 yT

α+1

) · · · ( În�n�+1 − x� yT
�

)
. (B.36)

In this form, we are ready to apply Lemma B.11 with vectors uα = −x̄α and vT
α = yT

α( Înα+1nα+2 −
xα+1 yT

α+1) · · · ( În�n�+1 − x� yT
�) for α = 1, . . . , �. This gives

det

(
�∏

α=1

(
Înαnα+1 − xα yT

α

))= (
det N(0)

)ε
(B.37)

with N(0)
αβ = δαβ + vT

αuβ . Now observe that

vT
α = ȳT

α −
∑
β>α

(
yT
α Înα+1nα+2 · · · Înβ−1nβ xβ

)
vT

β (B.38)

and call cαβ = yT
α Înα+1nα+2 · · · Înβ−1nβ xβ =∑nα+1,β

i=1 yα
i xβ

i . Thus, defining the �× � upper-triangular ma-

trix Ĉ as

Ĉαβ =
{ cαβ if α < β,

δαβ if α = β,

0 if α > β,

(B.39)

we have

∑
β

Ĉαβ vT
β = ȳT

α. (B.40)

Clearly det Ĉ = 1, so if we define N = C N(0) we have det N = det N(0) . It is easy to see, using (B.40),
that N is exactly the matrix given in (B.35). �
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Please note that all the entries of the matrix N are polynomials of degree at most two in the vari-
ables x and y – unlike the matrix N(0) coming from the bare application of the low-rank perturbation
lemma, which contains terms of degree as high as 2�.

Corollary B.6 is in fact the case �= 2 of a more general lemma that holds for � � 2, and will be
needed in Section 5.9:

Lemma B.14. Fix integers � � 2 and n1, . . . ,n� � 1, and write n�+1 = n1 . Let U1, . . . , U� be matrices with
elements in a commutative ring with identity, Uα being of dimension nα × nα+1 . Define

M�(U1, . . . , U�) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0n1 −U1 0 · · · 0
0 In2 −U2 0

0 0 In3

. . .
...

...
. . . −U�−1

U� 0 · · · 0 In�

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B.41)

where 0n is the n× n zero matrix and In is the n× n identity matrix. Then

det M�(U1, . . . , U�)= det(U1 · · ·U�). (B.42)

Proof. We prove this by induction on �. The case �= 2 is already proven by Corollary B.6. For � � 2
we use the Grassmann representation of det(M�):

det M�(U1, . . . , U�)=
∫

Dn1

(
ψ1, ψ̄1) · · ·Dn�

(
ψ�, ψ̄�

)

× exp

[
�∑

α=2

(
ψ̄αψα − ψ̄α−1Uα−1ψ

α
)+ ψ̄�U�ψ

1

]
. (B.43)

Now perform the integration over (ψ�, ψ̄�): highlighting the factors in the integrand that involve
these fields, we see that

∫
Dn�

(
ψ�, ψ̄�

)
exp

[
ψ̄�ψ� − ψ̄�−1U�−1ψ

� + ψ̄�U�ψ
1]= exp

(
ψ̄�−1U�−1U�ψ

1). (B.44)

Comparing this with (B.43), we see that

det M�(U1, . . . , U�)= det M�−1(U1, . . . , U�−2, U�−1U�), (B.45)

which provides the required inductive step. �
Remark. Just as Corollary B.6 is a specialization of the more general Proposition B.5, so Lemma B.14
has a similar generalization, proven through an identical procedure (of which the details are left to
the reader), namely:

Lemma B.15. Fix integers � � 2 and n1, . . . ,n� � 1, and write n�+1 = n1 . Let B1, . . . , B� be matrices with
elements in a commutative ring with identity, Bα being of dimension nα × nα+1 . Let A1, . . . , A� be square
matrices with elements in the same commutative ring, Aα being of dimension nα×nα . Assume that A2, . . . , A�

are invertible. Define
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M(A1, . . . , A�; B1, . . . , B�) :=

⎛
⎜⎜⎜⎜⎜⎝

A1 −B1 0 · · · 0
0 A2 −B2 0

0 0 A3
. . .

...
...

. . . −B�−1
B� 0 · · · 0 A�

⎞
⎟⎟⎟⎟⎟⎠ . (B.46)

Then

det M(A1, . . . , A�; B1, . . . , B�)= det
(

A1 + B1 A−1
2 B2 · · · A−1

� B�

) �∏
j=2

det A j. (B.47)

If also A1 is invertible, then we can obtain an expression with a form of cyclic symmetry:

det M(A1, . . . , A�; B1, . . . , B�)= det
(

In1 + A−1
1 B1 A−1

2 B2 · · · A−1
� B�

) �∏
j=1

det A j . (B.48)

B.3. Matrix factorization lemmas

In Sections 5.4, 5.5, 5.6, 5.7 and 5.9 we shall need some matrix factorization lemmas having the
general form:

For any matrix X of the form ..... there exists a matrix A of the form ..... such that Φ(X, A)= 0
[where Φ denotes a specified collection of polynomial or rational functions];

or the multi-matrix generalization thereof:

For any matrices X, Y , . . . of the form ..... there exist matrices A, B, . . . of the form ..... such that
Φ(X, Y , . . . , A, B, . . .)= 0.

The prototype for such matrix decomposition lemmas is the well-known Cholesky factorization [44,
Theorem 4.2.5]:

Lemma B.16 (Cholesky factorization). Let X be a real symmetric positive–definite n × n matrix. Then there
exists a unique lower-triangular real matrix A with strictly positive diagonal entries, such that X = A AT .

A similar but less well-known result is the following factorization for antisymmetric matrices
[6,12,71,112,115]:

Lemma B.17 (A J AT factorization of an antisymmetric matrix). Let X be a (real or complex) antisymmetric
2m × 2m matrix. Then there exists a (real or complex, respectively) 2m × 2m matrix A such that X = A J AT ,
where J is defined in (A.15). In particular, if X is nonsingular, then A ∈ GL(2m). [The form of A can be further
restricted in various ways, but we shall not need this.]

In our applications we shall not need the uniqueness of A, but merely its existence. Nor shall we
need any particular structure of A (e.g. triangularity) beyond lying in GL(n) or O (n) or Sp(2n) as the
case may be. Finally, and most importantly, we shall not need the existence of A for all matrices X of
a given type, but only for those in some nonempty open set (for instance, a small neighborhood of the
identity matrix). We shall therefore give easy existence proofs using the implicit function theorem. It
is an interesting open question whether our decompositions actually extend to arbitrary matrices X
in the given classes.
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More precisely, we shall need the following decomposition lemmas in addition to Lemma B.17. The
matrices Îmn are defined in (5.64).

Lemma B.18. Let X and Y be a (real or complex) m × n matrices (m � n) of rank m that are sufficiently
close to the matrix Îmn. Then there exist matrices P , R ∈ GL(m) and Q ∈ GL(n) such that X = P Îmn Q and
Y = R Îmn Q −T .

Lemma B.19. Let X be a (real or complex) m × n matrix (m � n) of rank m that is sufficiently close to the
matrix Îmn. Then there exist matrices P ∈ GL(m) and Q ∈ O (n) such that X = P Îmn Q .

Lemma B.20. Let X be a (real or complex) 2m× 2n matrix (m � n) of rank 2m that is sufficiently close to the
matrix Î2m,2n. Then there exist matrices P ∈ GL(2m) and Q ∈ Sp(2n) such that X = P Î2m,2n Q .

Lemma B.21. Let �� 1 and n1, . . . ,n�+1 � 1; and let {Xα}1�α�� be (real or complex) nα ×nα+1 matrices of

rank min(nα,nα+1) that are sufficiently close to the matrix Înαnα+1 . Then there exist matrices {Pα}1�α��+1

with Pα ∈ GL(nα) such that Xα = Pα Înαnα+1 P−1
α+1 .

Lemmas B.17–B.21 will be needed in Sections 5.4, 5.5, 5.6, 5.7 and 5.9, respectively. In addition,
Cholesky factorization could be used in Section 5.3 but we were able to avoid it; see the Remark at
the end of that section.

The proofs of these lemmas will all follow the same pattern. First we find an explicit pair X0, A0
(or the multi-matrix generalization) with the needed properties. Then we linearize the functions Φ

in a neighborhood of (X0, A0), and we show that the tangent space for A at A0 is mapped onto
the full tangent space for X at X0. The required existence of A for X in a neighborhood of X0 then
follows from the implicit function theorem.47 For completeness we will also show how Lemmas B.16
and B.17, which are known to hold globally, have simple proofs in this “infinitesimal” setting. Nearly
all these proofs will be easy; only the last (Lemma B.21) turns out to be slightly tricky.

Proof of Lemma B.16 for X near I . Linearizing X = A AT in a neighborhood of (X0, A0) = (I, I) by
writing X = I + X ′ and A = I + A′ , we have X ′ = A′ + (A′)T (plus higher-order corrections that we
always drop). Then an explicit solution is given by the lower-triangular matrix

A′i j =
⎧⎨
⎩

X ′i j/2 if i = j,

X ′i j if i > j,

0 if i < j.

(B.49)

The rest follows from the implicit function theorem.48 �
47 We will use the implicit function theorem in the following form: Let U ⊆RN and V ⊆Rp be open sets, and let f : U × V →
RN be a Ck function (k � 1). Let u0 ∈ U and v0 ∈ V satisfy f (u0, v0)= 0, with (∂ f /∂u)(u0, v0) nonsingular. Then there exist
neighborhoods U ′  u0 and V ′  v0 such that for all v ∈ V ′ there exists a unique u ∈ U ′ satisfying f (u, v)= 0; moreover, the
map v �→ u is Ck .
48 For completeness let us make explicit how the implicit function theorem is used in this case; the analogous reasoning for

the remaining lemmas can be supplied by the reader.
If M = (mij)

n
i, j=1 is an n×n matrix, let us write [M]LT = (mij)1�i� j�n to denote its lower-triangular part. We then use the

implicit function theorem (see the preceding footnote) as follows: Let u = A = a generic lower-triangular matrix (aij)1�i� j�n ,
v = [X]LT, u0 = v0 = [I]LT , f (u, v)= [A AT − X]LT. (Since A AT − X is manifestly symmetric, it vanishes if and only if its lower-
triangular part does.) Then (∂ f /∂u)(u0, v0) is the linear map A′ �→ A′ + (A′)T; in other words, we have

∂ f i j

∂ukl
(u0, v0)= δ(i j),(kl)(1+ δkl),

which is a diagonal matrix with nonzero entries (namely, 1 and 2), hence nonsingular.
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Proof of Lemma B.17 for X near J . Linearizing X = A J AT in a neighborhood of (X0, A0) = ( J , I) by
writing X = J + X ′ and A = I − A′ J , we have X ′ = A′ − (A′)T. Then one explicit solution is given by
the strictly lower-triangular matrix

A′i j =
{

X ′i j if i > j,
0 if i � j.

(B.50)

Another explicit solution is given by the antisymmetric matrix A′ = X ′/2. �
Proof of Lemma B.18. Linearizing X = P Îmn Q and Y = R Îmn Q −T in a neighborhood of (X0, Y0, P0,

R0, Q 0) = ( Îmn, Îmn, Im, Im, In) by writing X = Îmn + X ′ and so forth, we obtain X ′ = P ′ Îmn + Îmn Q ′
and Y ′ = R ′ Îmn − Îmn(Q ′)T. In terms of the block decompositions Îmn ≡ (Im,0m×(n−m)), X ′ = (X ′1, X ′2),

Y ′ = (Y ′
1, Y ′

2) and Q ′ = ( Q ′
11 Q ′

12

Q ′
21 Q ′

22

)
, we have

X ′1 = P ′ + Q ′
11, (B.51a)

X ′2 = Q ′
12, (B.51b)

Y ′
1 = R ′ − (

Q ′
11

)T
, (B.51c)

Y ′
2 =−(Q ′

21

)T
. (B.51d)

We can choose Q ′
11 and Q ′

22 arbitrarily; then the remaining unknowns P ′ , R ′ , Q ′
12, Q ′

21 are uniquely
determined. �

We shall actually prove the following generalization of Lemma B.19:

Lemma B.19′ . Let X be a (real or complex) m × n matrix (m � n) of rank m that is sufficiently close to the
matrix Îmn, and let Y be a (real or complex) n × n symmetric matrix that is sufficiently close to the identity
matrix In. Then there exist matrices P ∈ GL(m) and Q ∈ GL(n) such that X = P Îmn Q and Y = Q T Q .

When Y = In this reduces to Lemma B.19.

Proof of Lemma B.19′ . Linearizing X = P Îmn Q and Y = Q T Q in a neighborhood of (X0, Y0, P0, Q 0)=
( Îmn, In, Im, In) by writing X = Îmn + X ′ and so forth, we obtain X ′ = P ′ Îmn + Îmn Q ′ and Y ′ = Q ′ +
(Q ′)T. In terms of the block decompositions Îmn ≡ (Im,0m×(n−m)), X ′ = (X ′1, X ′2), Y ′ = ( Y ′11 Y ′12

(Y ′12)T Y ′22

)
with

Y ′
11 and Y ′

22 symmetric, and Q ′ = ( Q ′
11 Q ′

12

Q ′
21 Q ′

22

)
, we have

X ′1 = P ′ + Q ′
11, (B.52a)

X ′2 = Q ′
12, (B.52b)

Y ′
11 = Q ′

11 +
(

Q ′
11

)T
, (B.52c)

Y ′
22 = Q ′

22 +
(

Q ′
22

)T
, (B.52d)

Y ′
12 = Q ′

12 +
(

Q ′
21

)T
. (B.52e)

We can choose arbitrarily the antisymmetric parts of Q ′
11 and Q ′

22 (e.g. by taking Q ′
11 and Q ′

22
lower-triangular, or alternatively by taking Q ′

11 and Q ′
22 symmetric); then the remaining unknowns

are uniquely determined. �
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Similarly, let us prove the following generalization of Lemma B.20:

Lemma B.20′ . Let X be a (real or complex) 2m× 2n matrix (m � n) of rank 2m that is sufficiently close to the
matrix Î2m,2n, and let Y be a (real or complex) 2n × 2n antisymmetric matrix that is sufficiently close to J2n.
Then there exist matrices P ∈ GL(2m) and Q ∈ GL(2n) such that X = P Î2m,2n Q and Y = Q T J Q .

When Y = J2n this reduces to Lemma B.20.

Proof of Lemma B.20′ . Linearizing X = P Î2m,2n Q and Y = Q T J Q in a neighborhood of (X0, Y0, P0,

Q 0) = ( Î2m,2n, J2n, I2m, I2n) by writing X = Î2m,2n + X ′ , Y = J2n + Y ′ , P = I2m + P ′ and Q = I2n −
J2n Q ′ , we obtain X ′ = P ′ Î2m,2n − Î2m,2n J2n Q ′ and Y = Q ′ − (Q ′)T. In terms of the block decompo-

sitions Îmn ≡ (Im,0m×(n−m)), X ′ = (X ′1, X ′2), Y ′ = ( Y ′11 Y ′12

−(Y ′12)T Y ′22

)
with Y ′

11 and Y ′
22 antisymmetric, and

Q ′ = ( Q ′
11 Q ′

12

Q ′
21 Q ′

22

)
, we have

X ′1 = P ′ − J2m Q ′
11, (B.53a)

X ′2 =− J2m Q ′
12, (B.53b)

Y ′
11 = Q ′

11 −
(

Q ′
11

)T
, (B.53c)

Y ′
22 = Q ′

22 −
(

Q ′
22

)T
, (B.53d)

Y ′
12 = Q ′

12 −
(

Q ′
21

)T
. (B.53e)

We can choose arbitrarily the symmetric parts of Q ′
11 and Q ′

22; then the remaining unknowns are
uniquely determined. �

In preparation for the proof of Lemma B.21, it is convenient to introduce some simple notation for
decomposing rectangular matrices. Given an m × n matrix Y , we define the strictly lower-triangular
m×m matrix L(Y ) by taking the strictly lower-triangular part of Y and either deleting the last n−m
columns (if m < n) or appending m − n columns of zeros (if m > n). Likewise, we define the upper-
triangular n × n matrix U(Y ) by taking the upper-triangular part of Y and either deleting the last
m−n rows (if m > n) or appending n−m rows of zeros (if m < n). It follows immediately from these
definitions that

Y = L(Y ) Îmn + ÎmnU(Y ). (B.54)

Proof of Lemma B.21. Linearizing Xα = Pα Înαnα+1 P−1
α+1 in a neighborhood of Xα = Înαnα+1 and Pα =

Inα by writing Xα = Înαnα+1 + X ′α and Pα = Inα + P ′α , we obtain X ′α = P ′α Înαnα+1 − Înαnα+1 P ′α+1.
Let us decompose each P ′α as a sum of its strictly lower-triangular part Lα and its upper-triangular

part Uα . We therefore need to solve the equations

X ′α = (Lα + Uα) Înαnα+1 − Înαnα+1(Lα+1 + Uα+1), (B.55)

where X1, . . . , X� are considered as parameters and L1, . . . , L�+1, U1, . . . , U�+1 are considered as un-
knowns. But let us prove a bit more, namely that the matrices U1 and L�+1 can be considered as
parameters (i.e. can be chosen arbitrarily). Note first that the system (B.55) can be solved by

Lα = L
(

X ′α − Uα Înαnα+1 + Înαnα+1 Lα+1
)
, (B.56a)

Uα+1 = U
(

X ′α − Uα Înαnα+1 + Înαnα+1 Lα+1
)

(B.56b)
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in the sense that any solution of (B.56) provides a solution of (B.55). Eqs. (B.56) appear at first glance
to be entangled, i.e. Lα depends on Uα and vice versa. But this is only an appearance, because the
operators L and U “see”, respectively, only the strictly-lower-triangular and upper-triangular parts of
the matrix on which they act. Therefore, the system (B.56) can be rewritten as

Lα = L
(

X ′α + Înαnα+1 Lα+1
)
, (B.57a)

Uα+1 = U
(

X ′α − Uα Înαnα+1

)
. (B.57b)

But these latter equations can manifestly be solved sequentially for L�, . . . , L1 (given L�+1) and for
U2, . . . , U�+1 (given U1). �
Remark. It is instructive to count parameters and variables in Lemma B.21. The parameters are
X1, . . . , X� , and their number is N p =∑�

α=1 nαnα+1. (The matrices U1 and L�+1, which can be chosen
arbitrarily, do not count as extra parameters because they merely redefine the matrices X1 and X� ,
respectively.) The variables are L1, . . . , L� and U2, . . . , U�+1, and their number is

Nv = n1(n1 − 1)

2
+ n2

2 + · · · + n2
� +

n�+1(n�+1 + 1)

2
. (B.58)

Therefore

Nv − Np =
�∑

α=1

(nα − nα+1)(nα − nα+1 − 1)

2
� 0. (B.59)

The Nv −N p extra variables were fixed by our choice of the operators L and U : we decided to append
m − n columns of zeros to L when m > n, and n −m rows of zeros to U when m < n, but we could
equally well have inserted an arbitrary strictly-lower-triangular matrix of size m − n into L and an
arbitrary upper-triangular matrix of size n − m into U . This gives (m − n)(m − n − 1)/2 additional
variables in both cases, which precisely accounts for Nv − N p .

B.4. Dilation–translation formula

In Sections 6.1 and 6.2 we will need the following well-known generalization of the translation
formula (5.1):

Lemma B.22 (Dilation–translation formula). Let P (z) be a polynomial in a single indeterminate z, with coef-
ficients in a commutative ring R containing the rationals, and let a and b be indeterminates. Then

exp

(
(a+ bz)

∂

∂z

)
P (z)= P

(
eb z + eb − 1

b
a

)
(B.60)

as an identity in the ring R[z,a][[b]] of formal power series in b whose coefficients are polynomials in z and a.
[Here the exponential is defined by its Taylor series, as are eb and (eb − 1)/b.]

In particular, this identity can be evaluated at any nilpotent element b ∈ R, as both sides then reduce to
finite sums.

Remark. If b is nilpotent of order 2 (i.e. b2 = 0), then the formula simplifies further to

exp

(
(a+ bz)

∂

∂z

)
P (z)= P

(
(1+ b)z+

(
1+ b

2

)
a

)
. (B.61)
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In our applications in Sections 6.1 and 6.2 we will have b2 = 0 and also ba = 0, in which case the
identity holds even when the ring R does not contain the rationals.

Proof of Lemma B.22. When a = 0, the formula (B.60) states the well-known fact that the opera-
tor z ∂/∂z generates dilations; it is easily checked by applying both sides to zn . The general case is
handled by the change of variables w = z + a/b. �
Remark. The formula (B.60) is a special case of a more general formula for operators of the form
exp[tg(z) ∂/∂z]:

exp

(
tg(z)

∂

∂z

)
P (z)= P

(
z̃(t; z)

)
(B.62)

where z̃(t; z) is the solution of the differential equation dz̃(t; z)/dt = g(z̃(t; z)) with initial condition
z̃(0; z)= z.
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