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1. Introduction and main results

1.1. Introduction. We are interested here in the three-state antiferromagnetic
Potts model on a class of infinite plane quadrangulations. Recall that a graph
embedded in the plane is called a quadrangulation if all its faces are quadrilat-
erals (i.e., have four vertices and four edges).1 Some examples of infinite plane
quadrangulations are drawn in Figure 1: these include the square lattice Z2 (with
nearest-neighbor edges) and the so-called diced lattice.

On the square lattice, the three-state Potts antiferromagnet at zero temperature
can be mapped into a special case of the six-vertex model that admits an exact (but
nonrigorous) solution [5, section 8.13]. This model is therefore believed to be critical
at zero temperature but disordered for any positive temperature.2

On the diced lattice, by contrast, a proof was outlined in [47] showing that the
three-state Potts antiferromagnet has a phase transition at nonzero temperature
and has long-range order at all sufficiently low temperatures (including zero tem-
perature). In the present paper, we present the details of this proof and we extend
the result to a large class of quasi-transitive quadrangulations, including some hy-
perbolic lattices.

To explain the class of lattices that we can cover, let us start by observing that
a quadrangulation is a connected bipartite graph G = (V,E), so that the vertex
set has a canonical bipartition V = V0 ∪ V1. We may view the two sublattices V0

and V1 as graphs in their own right by connecting vertices along the diagonals of

1 In this paper we restrict attention to nondegenerate quadrangulations, i.e. each face has four
distinct vertices and four distinct edges. Some discussion of degenerate plane quadrangulations
(in the case of finite graphs) can be found in [39].

2 See e.g. the discussion below formula (2.8) in [58]. See also [24, 65] for Monte Carlo data
supporting these beliefs.
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(a) (b)

(c) (d)

Figure 1. Four quasi-transitive quadrangulations with their sub-
lattices G0 (open circles joined by dashed red edges) and G1 (filled
circles joined by solid green edges). In these examples, the sublat-
tice G0 is (a) the square lattice, (b) the triangular lattice, (c) the
union-jack lattice, and (d) the hyperbolic lattice with Schläfli symbol
{3, 7}. Note that in (b)–(d), G0 is a triangulation. In (a) and (b), the
quadrangulations G are, respectively, the square lattice and the diced
lattice.

the quadrilateral faces of the original lattice: this yields graphs G0 = (V0, E0) and
G1 = (V1, E1) as shown in Figure 1. Note that G0 and G1 are duals of each other,
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(a) (b)

(c) (d)

Figure 2. The two sublatticesG0 andG1 for each of the four lattices
from Figure 1. The graph G0 (red open circles and dashed edges) is
dual to the graph G1 (green filled circles and solid edges).

i.e. each face of G0 contains a unique vertex of G1, and vice versa; and each edge of
G0 crosses a unique edge of G1, and vice versa (see Figure 2). Conversely, given any
dual pair of (finite or infinite) graphs G0 = (V0, E0) and G1 = (V1, E1) embedded in
the plane, we can form a plane quadrangulation G = (V,E) by setting V = V0 ∪ V1

and placing an edge between each pair of vertices v ∈ V0 and w ∈ V1 where w
lies in a face of G0 that has v on its boundary (or equivalently vice versa). The
main assumption that we will make in this paper is that one sublattice (say, G0)
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is a triangulation. In particular, our proofs cover the lattices shown in (b)–(d) of
Figure 1, but not the square lattice (a).

To explain the nature of the phase transition, note that ground states of the
three-state Potts antiferromagnet are simply proper three-colorings of the lattice.
On any bipartite lattice, we may construct special ground states by coloring one
sublattice (say, V0) in one color and using the other two colors to color the other
sublattice in any possible way. Note that in this way, the second sublattice carries
all the entropy. Of course, the special ground states in which the first sublattice
uses only one color are atypical of the Gibbs measure, even at zero temperature.
Nevertheless, the underlying idea applies more generally: there may be a preference
for the first sublattice to be colored mostly in one color because this increases the
freedom of choice of colors on the other sublattice. Otherwise put, integrating out
the colors on the second sublattice may induce an effective ferromagnetic interaction
on the first sublattice. If this effective interaction is strong enough, it may result
in long-range order on the first sublattice. We call this an entropy-driven phase
transition.3 In [47] a proof was sketched along these lines that an entropy-driven
transition indeed occurs on the diced lattice. Here we will present the details of
this proof and extend it to a large class of plane quadrangulations in which one
sublattice is a triangulation. The extension uses a variant of the Peierls argument
that works whenever the Peierls sum is finite (even if it is not small), followed by a
random-cluster argument.

In all the cases handled in this paper, there is a strong asymmetry between the
two sublattices, so that it is entropically favorable to ferromagnetically order the
triangulation (G0) and place the entropy on the other sublattice (G1). By contrast,
in the square lattice, where no finite-temperature phase transition is believed to
occur, the two sublattices are isomorphic. It is therefore natural to ask whether
asymmetry is a necessary and/or sufficient condition for the existence of a finite-
temperature phase transition. This is a subtle question, and we discuss it further in
Section 1.3 below.

1.2. Statement of the results. Let us now formulate our results precisely. We
first need to define more precisely the class of graphs we will be considering. We
quickly review here the essential definitions; a more thorough summary of the needed
theory of infinite graphs can be found in the Appendix.

A graph G = (V,E) is called locally finite if every vertex has finitely many neigh-
bors; in this paper we will consider only locally finite graphs. If G has at least k+ 1
vertices, then G is called k-connected if one needs to remove at least k vertices to
disconnect it. A graph G is said to have one end if after the removal of finitely many
edges, there is exactly one infinite connected component; note that this implies in
particular that G is infinite.

3 The method for encoding such entropy costs in terms of certain Peierls contours was suggested
already in [46], but in that paper it led to a proof of the transition only for some toy models including
the three-state Potts antiferromagnet on the “decorated cubic lattice”.
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A graph is said to be planar if it can be drawn in the plane R2 with vertices
represented by distinct points and edges represented by closed continuous arcs join-
ing their endvertices, mutually disjoint except possibly at their endpoints. A plane
graph is a planar graph with a given embedding in the plane. An embedding of a
connected graph in the plane is called edge-accumulation-point-free (or EAP-free for
short) if there are no points in the plane with the property that each neighborhood
of the point intersects infinitely many edges.4 An EAP-free embedding divides the
plane into connected open sets called faces . The boundary of a face is either a finite
cycle or a two-way-infinite path.5

Consider an EAP-free embedding of a 3-connected graph G. Then one may define
a dual graph G∗ = (V ∗, E∗) whose vertex set V ∗ is the set of faces of G and with
edge set E∗ ' E, where by definition two faces of G (or equivalently two vertices of
G∗) are linked by an edge e∗ ∈ E∗ if and only if the corresponding edge e ∈ E lies
in the border of both faces. Clearly G∗ is locally finite if and only if every face of G
is bounded by a finite cycle. In this case we can embed G∗ in an EAP-free way in
the plane such that each face of G contains exactly one vertex of G∗ and each edge
of G is crossed by exactly one edge of G∗, and vice versa; in particular, G is also the
dual of G∗. We say that G is a triangulation (resp. quadrangulation) if every face
of G is bounded by a triangle (resp. quadrilateral), or equivalently if each vertex of
G∗ has degree 3 (resp. 4). It turns out that triangulations and quadrangulations,
defined in this way, are always graphs with at most one end.6

The final set of definitions we need concerns some form of “translation invariance”
of our lattices. An automorphism of a graph G = (V,E) is a bijection g : V → V
that preserves the graph structure. Two vertices u, v ∈ V are of the same type
if there exists an automorphism that maps u into v. This relation partitions the
vertex set V into equivalence classes called types. The graph G is called vertex-
transitive if there is just one equivalence class, and vertex-quasi-transitive if there
are finitely many equivalence classes. Edge-transitivity and (for plane graphs) face-
transitivity are defined similarly. The corresponding forms of quasi-transitivity are

4 The “one-way-infinite ladder” plane graph with vertices at points (0, 1/n) and (1, 1/n) [n =
1, 2, . . . ] and straight-line edges joining the pairs {(0, 1/n), (1, 1/n)}, {(0, 1/n), (0, 1/(n+ 1))} and
{(1, 1/n), (1, 1/(n+ 1))} is an example of a locally finite plane graph that is not EAP-free. Indeed,
each point (t, 0) with t ∈ [0, 1] is an edge accumulation point.

5 By “two-way-infinite path” (or “double ray”) we mean simply a graph that is isomorphic
to Z with nearest-neighbor edges. In an EAP-free embedding, a two-way-infinite path has no
accumulation points in the finite plane R2, but both of its outgoing rays tend to infinity. Therefore,
in the sphere S = R2 ∪{∞}, the closure of a two-way infinite path is homeomorphic to a circle S1.
See Appendix A.3 for more details concerning plane graphs and their faces.

6 A more general definition, which allows for multiple ends, is discussed in Section A.2 of the
Appendix. Briefly, we say that a locally finite 3-connected graph G is a triangulation (resp. quad-
rangulation) if G has an abstract dual in which each vertex has degree 3 (resp. 4); see Section A.2
for the definition of abstract duals. With this more general definition, it can be shown that a
triangulation (resp. quadrangulation) has an EAP-free embedding in the plane if and only if it is
finite or has one end: see Proposition A.13 in Section A.3.
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all equivalent (see Lemma A.1 in the Appendix), which is why we simply talk about
quasi-transitivity without specifying whether in the vertex-, edge- or face-sense.

We will study the three-state antiferromagnetic Potts model on plane quadran-
gulations G, constructed from mutually dual sublattices G0 and G1, such that G0 is
a locally finite 3-connected quasi-transitive triangulation with one end.7 Note that
quasi-transitivity refers only to the structure of G0 (or G1 or G) as an abstract graph
(i.e., without reference to any embedding). It turns out [3, Theorem 4.2] (see also
[67, Theorem 1]) that any locally finite 3-connected quasi-transitive planar graph
with one end can be periodically embedded in either the Euclidean or hyperbolic
plane, i.e., so that the automorphisms of G correspond to a discrete subgroup of the
group of isometries of the embedding space. But we do not use this fact anywhere
in this paper.

Let us now define the q-state Potts antiferromagnet on an arbitrary infinite graph
G = (V,E), for an arbitrary positive integer q. The state space is the set

(1.1) S := [q]V =
{
σ = (σv)v∈V : σv ∈ [q] ∀v ∈ V

}
,

where we have used the shorthand notation [q] = {1, 2, . . . , q}. We also let

(1.2) Sg :=
{
σ ∈ S : σu 6= σv ∀{u, v} ∈ E

}
denote the set of proper q-colorings of G. We sometimes use the terms “spin con-
figuration” for σ ∈ S and “ground-state configuration” for σ ∈ Sg. For each finite
subset Λ ⊂ V we let

(1.3) ∂Λ :=
{
v ∈ V \Λ: {v, u} ∈ E for some u ∈ Λ

}
denote the external boundary of Λ. For any boundary condition τ : V → [q] and
any spin configuration σ : Λ→ [q] on Λ, we define the Hamiltonian of σ under the
boundary condition τ by

(1.4) HΛ(σ | τ) :=
∑
u,v∈Λ
{u,v}∈E

δσu,σv +
∑

u∈Λ, v∈∂Λ
{u,v}∈E

δσu,τv

where δσu,σv is the Kronecker delta, i.e.

(1.5) δab = δ(a, b) =

{
1 if a = b

0 if a 6= b

For β ∈ [0,∞), we define the Gibbs measure in volume Λ with boundary condition
τ at inverse temperature β:

(1.6) µτΛ,β(σ) :=
1

Zτ
Λ,β

exp[−βHΛ(σ | τ)] .

7 The quasi-transitivity of G0 implies that also G1 is quasi-transitive: see Theorem A.3(v) in
the Appendix. It is not hard to see that now also G must be quasi-transitive.
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For β =∞, we define

(1.7) µτΛ,∞(σ) := lim
β→∞

µτΛ,β(σ) .

That is, µτΛ,∞ is the uniform distribution on configurations σ that minimizeHΛ(σ | τ).
[Note that for some τ this minimum energy might be strictly positive, i.e. there
might not exist proper colorings of Λ ∪ ∂Λ that agree with τ on ∂Λ.] Of course,
these definitions actually depend on τ only via the restriction τ∂Λ := (τu)u∈∂Λ of τ
to ∂Λ.

We then define infinite-volume Gibbs measures in the usual way through the
Dobrushin–Lanford–Ruelle (DLR) conditions [30], i.e., we say that a probability
measure µ on S is an infinite-volume Gibbs measure for the q-state antiferromagnetic
Potts model at inverse temperature β ∈ [0,∞] if for each finite Λ ⊂ V its conditional
probabilities satisfy

(1.8) µ(σΛ|σV \Λ = τV \Λ) = µτΛ,β(σΛ) for µ-a.e. τ .

For the remainder of this paper we specialize to q = 3. Here is our main result:

Theorem 1.1. (Gibbs state multiplicity and positive magnetization) Let
G = (V,E) be a quadrangulation of the plane, and let G0 = (V0, E0) and G1 =
(V1, E1) be its sublattices, with edges drawn along the diagonals of quadrilaterals.
Assume that G0 is a locally finite 3-connected quasi-transitive triangulation with one
end. Then there exist β0, C < ∞ and ε > 0 such that for each inverse temperature
β ∈ [β0,∞] and each k ∈ {1, 2, 3}, there exists an infinite-volume Gibbs measure
µk,β for the 3-state Potts antiferromagnet on G satisfying:

(a) For all v0 ∈ V0, we have µk,β(σv0 = k) ≥ 1
3

+ ε.

(b) For all v1 ∈ V1, we have µk,β(σv1 = k) ≤ 1
3
− ε.

(c) For all {u, v} ∈ E, we have µk,β(σu = σv) ≤ Ce−β.

In particular, for each inverse temperature β ∈ [β0,∞], the 3-state Potts antiferro-
magnet on G has at least three distinct extremal infinite-volume Gibbs measures.

Remarks. 1. The bound (c) shows in particular that the zero-temperature Gibbs
measure µk,∞ is supported on ground states.

2. Any subsequential limit as β →∞ of the measures µk,β with β <∞ also satisfies
the bounds (a)–(c). Therefore, there exist zero-temperature Gibbs measures with
these properties that are limits of finite-temperature Gibbs measures with these
properties.

To see that this is a nontrivial property, consider on the square lattice Z2 the
configuration τ ∈ S of the 3-state Potts antiferromagnet defined by τ(i,j) = 1 + (i+
j mod 3). Then τ ∈ Sg is a ground-state configuration such that its restriction to
any row and any column, suitably shifted, is the sequence (. . . , 1, 2, 3, 1, 2, 3, . . . ).
Since for any finite Λ ⊂ Z2 there is precisely one ground-state configuration that
agrees with τ on Z2\Λ, namely τ itself, we see that the Dirac measure δτ is a
zero-temperature infinite-volume Gibbs measure. But this measure is not a limit of
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positive-temperature Gibbs measures: the reason can be traced to the fact that at
β < ∞ with boundary condition τ in a sufficiently large volume Λ, there exists a
configuration τ̄ [namely, τ̄(i,j) = 1 + (i+ j mod 2)] such that we can replace τ on the
internal boundary of Λ by τ̄ at an energetic cost of order |∂Λ|, while gaining a bulk
entropic advantage (with the boundary condition τ̄ , one can color Λ with 1 on one
sublattice and arbitrarily 2 or 3 on the other sublattice).

3. We construct the infinite-volume Gibbs measures µβ,k as subsequential limits
of finite-volume Gibbs measures. We expect that there is no need to go to a subse-
quence and that our approximation procedure yields extremal infinite-volume Gibbs
measures, but we have not proven either of these assertions.

In the special case where G is the diced lattice, we have a good explicit bound on
the probabilities in Theorem 1.1(a,b):

Theorem 1.2. (Quantitative bound for the diced lattice) Let G = (V,E)
be the diced lattice and let G0 = (V0, E0) and G1 = (V1, E1) be its triangular and
hexagonal sublattices, respectively. Then there exists C < ∞ such that for each
inverse temperature β ∈ [0,∞] and each k ∈ {1, 2, 3}, there exists an infinite-volume
Gibbs measure µk,β for the 3-state Potts antiferromagnet on G satisfying:

(a) For all v0 ∈ V0, we have µk,β(σv0 = k) ≥ 0.90301− Ce−β.
(b) For all v1 ∈ V1, we have µk,β(σv1 = k) ≤ 0.14549 + Ce−β.
(c) For all {u, v} ∈ E, we have µk,β(σu = σv) ≤ Ce−β.

The lower bound 0.90301 should be compared with the estimated zero-temperature
value 0.957597± 0.000004 from Monte Carlo simulations [47].8

1.3. Discussion. The phase diagram of non-attractive (i.e., non-ferromagnetic)
spin sytems is generally harder to predict than for attractive (ferromagnetic) spin
sytems, and may sometimes depend subtly on the microscopic details of the model.
In particular, this is true for the two-dimensional 3-state Potts antiferromagnet, for
which we have shown that it has a phase transition at positive temperature on the
diced lattice, while no such phase transition is believed to occur on the square lattice
— even though both lattices are bipartite and are in fact plane quadrangulations.

The existence of a positive-temperature transition in the diced-lattice model was
a surprise when it was first discovered [47], for the following reason: Some two-
dimensional antiferromagnetic models at zero temperature have the property that
they can be mapped exactly onto a “height” model (in general vector-valued) [65, 38].
In such cases one can argue heuristically that the height model must always be in
either a “smooth” (ordered) or a “rough” (massless) phase; correspondingly, the
underlying zero-temperature spin model should either be ordered or critical, never
disordered. Experience teaches us (or at least seemed to teach us) that the most

8 The value M0 = 0.936395± 0.000006 reported in [47] is the spontaneous magnetization in the
hypertetrahedral representation, i.e. M0 = µ1,∞(σv = 1)− 1

2µ1,∞(σv 6= 1).
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common case is criticality.9 In particular, when the q-state zero-temperature Potts
antiferromagnet on a two-dimensional periodic lattice admits a height representa-
tion, one ordinarily expects that model to have a zero-temperature critical point.
This prediction is confirmed (at least non-rigorously) in most heretofore-studied
cases: 2-state (Ising) triangular [7, 57], 3-state square-lattice [58, 43, 11, 65], 3-state
kagome [36, 45], 4-state triangular [55], and 4-state on the line graph of the square
lattice [44, 45]. Indeed, before the work of [47], no exceptions were known.

It was furthermore observed in [47] that the height mapping employed for the
3-state Potts antiferromagnet on the square lattice [65] carries over unchanged to
any plane quadrangulation. One would therefore have expected the 3-state Potts
antiferromagnet to have a zero-temperature critical point on every periodic plane
quadrangulation. The example of the diced lattice showed that this is not the case;
and the results of the present paper provide further counterexamples. Clearly, the
mere existence of a height representation does not guarantee that the model will be
critical. Indeed, criticality may well be an exception — corresponding to cases with
an unusual degree of symmetry — rather than the generic case.

The mechanism behind all these transitions is what we have called an “entropy-
driven phase transition”: namely, ordering on one sublattice increases the entropy
available to the other sublattice; or said in a different way, integrating out the spins
on the second sublattice induces an effective ferromagnetic interaction on the first
sublattice. If this effective interaction is strong enough, it may result in long-range
order. Such a phase transition can therefore occur in principle in any antiferromag-
netic model on any bipartite lattice10; whether it actually does occur is a quantitative
question concerning the strength of the induced ferromagnetic interaction. Thus,
such an entropy-driven phase transition is believed not to occur in the 3-state Potts
antiferromagnet on the square lattice Z2; but Monte Carlo evidence [71, 31, 32]
suggests that it does occur in this same model on the simple-cubic lattice Z3 and
presumably also on Zd for all d ≥ 3; moreover, Peled [62] and Galvin et al. [27] have
recently proven this for all sufficiently large d and also for a “thickened” version of
Z2 [62].

From the point of view of the Peierls argument, the relevant issue is the strength of
the entropic penalty for domain walls between differently-ordered regions, compared
to the entropy associated to those domain walls. In order to successfully carry out
the Peierls argument, one must consider all the relevant ordered phases, find an
appropriate definition of Peierls contours separating spatial regions resembling those

9 Some exceptions discussed in the physics literature prior to [47] were the constrained square-
lattice 4-state antiferromagnetic Potts model [11] and the triangular-lattice antiferromagnetic spin-
s Ising model for large enough s [73], both of which appear to lie in a non-critical ordered phase
at zero temperature.

10 It can also occur in antiferromagnetic models on non-bipartite lattices: for instance, in the
4-state Potts antiferromagnets on the union-jack and bisected-hexagonal lattices [14], which are
tripartite, and for which ordering on one sublattice increases the entropy available to the other two
sublattices. However, we are concerned here for simplicity with the bipartite case.
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ordered phases, and prove that long Peierls contours γ are suppressed like e−c|γ| with
a sufficiently large constant c.

The simplest situation arises when there is an asymmetry between the two sub-
lattices, so that it is entropically more favorable for one of them (say, V0) to be
ferromagnetically ordered and for the other (V1) to carry all the entropy. This sit-
uation is expected to occur, for instance, if V1 has a higher density of points than
V0. The case treated in this paper, in which G0 is a triangulation, achieves this in
the strongest possible way: namely, for the Euclidean lattices in our class, it is easy
to see using Euler’s formula that the spatial densities11 of the sublattices V0 and V1

are in the proportion 1:2, which is the most extreme ratio achievable for two dual
periodic Euclidean lattices.

In this asymmetric situation, one knows in advance which sublattice (V0) is going
to be ferromagnetically ordered (if the entropic effect is strong enough to produce
any long-range order at all); therefore, for the 3-state Potts antiferromagnet on G,
one expects at low temperature to have (at least) three distinct ordered phases,
corresponding to the three possible choices for the color that dominates on V0. One
may therefore define Peierls contours just as one would for a ferromagnetic Potts
model on G0 (see Section 2.1 below for details), and then try to show that long
Peierls contours are sufficiently suppressed, i.e. that it is sufficiently costly to create
an interface between regions where one and another color are used on V0. This
is a quantitative problem, which is made difficult by the fact that (unlike in a
ferromagnetic model) one does not have any parameter that can be varied to make
the suppression of long contours as large as one wishes.

The situation is even more delicate for lattices, such as Zd, where the two sub-
lattices play a symmetric role (in the sense that there exists an automorphism of G
carrying one sublattice onto the other). Indeed, for models with symmetry between
the sublattices, for every Gibbs measure where one sublattice is ordered (in the sense
of being colored more often with one preferred color), there must obviously exist a
corresponding Gibbs measure where the other sublattice is ordered. Therefore, the
system has two “choices” to make: first, of the sublattice to be ordered, and then
of the color in which it is ordered — which leads to a total of (at least) six distinct
ordered phases for the 3-state model. For this sort of long-range order to occur, it
must be sufficiently costly to create an interface between any pair of distinct ordered
phases; in particular, it must be costly to create an interface between regions where
one and the other sublattice are ordered (in whatever colors). To prove such a re-
sult will almost certainly require a different (and more subtle) definition of Peierls
contour than is used in the asymmetric case.

The example of Zd for d large [62, 27] shows that asymmetry is not necessary for
the existence of a finite-temperature phase transition. But one can nevertheless say

11 We say that a subset W ⊆ V has spatial density λ if, for any sequence of finite sets V(n)
increasing to V such that proportion of vertices in V(n) that are adjacent to V \ V(n) tends to zero

(i.e., van Hove–Følner convergence), the fraction |V(n) ∩W |/|V(n)| tends to λ.
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heuristically that asymmetry enhances the effect driving the transition, by increas-
ing the strength of the effective ferromagnetic interaction on the favored sublattice
(while of course decreasing it on the disfavored sublattice).

Everything said so far holds for an arbitrary bipartite lattice. But the case in
which G is a plane quadrangulation is special, because G0 and G1 are not merely
the two sublattices: they are a dual pair of plane graphs.12 In particular, there is
a symmetry between G0 and G1 if and only if G0 is self-dual ; and there may be
special reasons, connected with the topology of the plane, that make this self-dual
case special (e.g. critical at zero temperature). Now, it is well known that the square
lattice is self-dual; what seems to be less well known13 is that there exist many other
examples of self-dual periodic plane graphs [2, 60, 61, 67, 72, 66, 74], including
the “hextri” lattice [60, Fig. 1] [67, Fig. 16] [72, Fig. 1b], the “house” lattice [60,
Fig. 2], and the martini-B lattice [66, Fig. 8]. Preliminary results [13] of Monte
Carlo simulations on a variety of plane quadrangulations suggest that

(a) If G0 is self-dual, then the 3-state Potts antiferromagnet on the
associated quadrangulation G has a zero-temperature critical
point; and

(b) If G0 is not self-dual, then the 3-state Potts antiferromagnet on
G has (always? usually?) a finite-temperature phase transition.

In other words, it seems that for plane quadrangulations — unlike for general bipar-
tite lattices — asymmetry may be both necessary and sufficient for the existence of
a finite-temperature phase transition. It would be very interesting to find a deeper
theoretical explanation, and ultimately a proof, of this apparent fact. We conjecture
that there is an exact duality mapping that explains why (a) is true. As for (b), one
could argue for it heuristically as follows: Because the model at zero temperature
has a height representation, it should be either critical or ordered. If the self-dual
cases are critical, then the non-self-dual cases should be ordered, since asymmetry
enhances the phase transition; and if the self-dual cases are ordered, then the non-
self-dual cases should be even more strongly ordered. It goes without saying that
this heuristic argument is extremely vague — no criterion for comparing lattices is
given — and hence very far from suggesting a strategy of proof.

Entropy-driven phase transitions are also possible in the q-state Potts antiferro-
magnet for q > 3, but now one must consider the possibility of Gibbs measures
associated to other partitions [q] = Q0 ∪ Q1, in which the vertices in V0 (resp. V1)
take predominantly colors from Q0 (resp. Q1). Depending on the size and shape of
V0 and V1 and the value of q, such measures might be entropically favored. For in-
stance, such ordering with |Q0| = |Q1| = 2 has been claimed to occur in the 4-state

12 For any connected bipartite graph G = (V,E) with vertex bipartition V = V0 ∪ V1, one can
define graphs G0 = (V0, E0) and G1 = (V1, E1) by setting E0 =

{
{u, v} : u, v ∈ V0 and dG(u, v) =

2
}

and likewise for E1. But if G is non-planar, or is planar but not a quadrangulation, it is not

clear whether these definitions will be useful.
13 Including to the authors until very recently.
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Potts antiferromagnet on the simple-cubic lattice Z3 [4, 37]. Naive entropic consid-
erations suggest that if the densities of the sublattices V0 and V1 are in the ratio
α:1−α, then the dominant ordering would have |Q0| ≈ αq. In general, one would
expect to have

(
q
|Q0|

)
ordered phases in the asymmetric case, and 2

(
q
|Q0|

)
= 2
(

q
bq/2c

)
in the symmetric case. The cases with |Q0| > 1 will require a different (and more
subtle) definition of Peierls contour than the one used here for |Q0| = 1.

The foregoing considerations are purely entropic; a more complicated phase dia-
gram, involving tradeoffs between entropy and energy, can presumably be obtained
by adding additional couplings into the Hamiltonian (1.4). Suppose, for instance,
that in the 3-state Potts antiferromagnet on a plane quadrangulation G where G0 is
a triangulation, we add an explicit ferromagnetic interaction, of strength λ, between
adjacent vertices in the sublattice G1. Then for small λ we expect that the favored
ordering at low temperature will be the same as for λ = 0, namely monocolor on
V0 and bicolor on V1; but for large positive λ the favored ordering will instead be
monocolor on V1 and bicolor on V0. It is then natural to guess that for large β there
is either a switchover between the two orderings at some particular value λt(β), or
else a pair of phase transitions λt1(β) < λt2(β) with a disordered phase in-between
[and possibly λt1(∞) = λt2(∞)]. It is an interesting open question to determine
the correct qualitative phase diagram in the (λ, β)-plane and the order of the phase
transition(s).

1.4. Some further open problems. Here are some further open problems sug-
gested by our work:

1) Prove (or disprove) that

(a) the finite-volume measures µkΛ,β used in the proof of
Theorem 1.1 (see Section 2.3 below) converge as Λ ↑ V
(i.e., there is no need to take a subsequence);

(b) the resulting infinite-volume Gibbs measures µβ,k are
extremal Gibbs measures; and

(c) µβ,k are invariant with respect to the automorphism
of the graph G.

2) Prove (or disprove) that for our lattices there are no more than three extremal
translation-invariant Gibbs measures at small but strictly positive temperature. For
this, one would need to control more general boundary conditions than the uniform
colorings on V0 that we have used here.

Please note that at zero temperature, there are in fact more than three extremal
infinite-volume Gibbs measures on the diced lattice, since there exist ground-state
configurations τ , similar to the example on Z2 sketched in Remark 2 after Theo-
rem 1.1, such that for any finite Λ ⊂ V there exists only one ground state that
agrees with τ on V \Λ (namely, τ itself). The delta measure on such a ground state
is therefore a zero-temperature Gibbs measure; but by the argument sketched at
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the end of that Remark, this Gibbs measure is not a limit of positive-temperature
Gibbs measures.

It is worth pointing out, however, that this latter argument makes essential use
of the fact that the lattice is Euclidean (in particular, its isoperimetric constant is
zero). This raises the question whether on hyperbolic lattices there might exist delta-
measure zero-temperature Gibbs measures that are limits of positive-temperature
Gibbs measures.

3) Extend these techniques to the q-state Potts antiferromagnet with q > 3 on
suitable lattices. For instance, one might hope to prove the existence of an entropy-
driven phase transition in the q-state Potts antiferromagnet on Zd for suitable pairs
(q, d), i.e., for q < some qc(Zd). In this case it is not completely clear, even heuris-
tically, how qc(Zd) should behave as d→∞. The example of the infinite ∆-regular
tree, which has multiple Gibbs measures when q ≤ ∆ [8] and a unique Gibbs measure
when q ≥ ∆ + 1 [42], suggests that we might have qc(Zd) ≈ 2d.

1.5. Plan of this paper. The remainder of this paper is organized as follows: In
Section 2 we introduce the Peierls-contour representation of our model and sketch
the main ideas underlying our proofs. In particular, we formulate the key steps in
our proof as precise lemmas (Lemmas 2.1–2.5) that will be proven later, and we show
how they together imply Theorems 1.1 and 1.2. In Section 3 we prove Lemmas 2.1
and 2.5 in the zero-temperature case β =∞, using a Peierls argument. In Section 4
we extend these proofs to the low-temperature case β ≥ β0, and we also prove the
technical Lemmas 2.2 and 2.4. In Section 5 we use a random-cluster argument to
deduce positive magnetization (Lemma 2.3). In the Appendix we review the needed
theory of infinite graphs.

2. Main structure of the proofs

2.1. Contour model. Our proofs of Theorems 1.1 and 1.2 are based on suitable
bounds for finite-volume Gibbs measures, uniform in the system size and in the in-
verse temperature above a certain value. We will concentrate on finite-volume Gibbs
measures with uniform 1 boundary conditions on the sublattice V0; by symmetry,
all statements immediately imply analogous results for boundary conditions 2 or 3.
We will always employ finite sets Λ ⊂ V whose external boundary lies entirely in
the sublattice V0, i.e. ∂Λ ⊂ V0. We will also assume that Λ ⊂ V is simply connected,
by which we mean that both Λ and V \Λ are connected in G. Thus, let us fix any
configuration τ that equals 1 on V0, and let µ1

Λ,β denote the finite-volume Gibbs
measure in Λ with boundary condition τ and inverse temperature β ∈ [0,∞]. (Since
∂Λ ⊂ V0, this measure is the same for all configurations τ that equal 1 on V0.)

Our proofs are based on a version of Peierls argument relying on a contour refor-
mulation of the measure µ1

Λ,β. Our goal is to prove that the sublattice V0 exhibits
ferromagnetic order of a suitable kind. Therefore we will define Peierls contours
just as one would for studying the ferromagnetic Potts model on G0. Thus, for any
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configuration σ, we look only at the restriction of σ to V0, and we define E0(σ) to
be the set of “unsatisfied edges”, i.e.

(2.1) E0(σ) :=
{
{u, v} ∈ E0 : u, v ∈ V0 ∩ (Λ ∪ ∂Λ) and σu 6= σv

}
.

Letting

(2.2) E1(σ) := {e ∈ E1 : e crosses some f ∈ E0(σ)}
denote the edges in the dual graph G1 that cross an edge in E0(σ), we see that
edges in E1(σ) correspond to boundaries separating areas where the vertices of G0

are uniformly colored in one of the colors 1, 2, 3. Note that since ∂Λ ⊂ V0 and ∂Λ is
uniformly colored, every edge of E1(σ) has both of its endpoints in Λ.

Since G0 is a triangulation, each vertex of G1 is of degree 3. If the three vertices
of G0 surrounding a vertex v ∈ V1 are colored with three different colors, then one
of these vertices must have the same color as v. This is clearly not possible for a
ground state σ (i.e., a proper coloring), so at β = ∞ at most two different colors
can surround any vertex v ∈ V1. It follows that at zero temperature, either zero or
two edges of E1(σ) emanate from the vertex v. Hence E1(σ) consists of a collection
Γ(σ) of disjoint simple circuits that we call contours.

At positive temperature, we define contours to be connected components of E1(σ),
which can be much more complicated than a circuit. Nevertheless, we will show that
at low temperatures, contours that are not simple circuits are rare.

2.2. The basic lemmas. Let us now sketch in broad lines the main ideas of our
proofs, and formulate a number of precise lemmas, to be proven later, that together
will imply our main results. We have seen that uniformly colored areas in the sub-
lattice G0 are separated by contours in the sublattice G1, which at zero temperature
are simple circuits. The number of different simple circuits of a given length L sur-
rounding a given point is roughly of order αL, where α is the connective constant
of the lattice G1. Since each vertex in G1 has degree 3, a contour entering a vertex
has two possible directions in which to continue. In view of this, it is easy to see
that α ≤ 2. With a bit more work using quasi-transitivity, this can be improved to
α < 2. On the other hand, each vertex v in G1 that lies on a contour is surrounded
by vertices in G0 of two different colors. At zero temperature, this means that there
is only one color available for v, compared to two for a vertex in G1 that does not lie
on a contour. As a result, for each contour of length L we have to pay an entropic
price 2−L. In view of this, we will prove in Section 3 below that the expected number
of contours surrounding a given site is of order

∑
L α

L2−L, which is finite.
Note that this reasoning tells us that the Peierls sum is finite, but not necessarily

that it is small . In a traditional Peierls argument (such as, for example, the proof
of [51, Theorem IV.3.14]), one argues that if the Peierls contour sum is smaller than
a certain model-dependent threshold (typically a number somewhat less than 1),
then the model has spontaneous magnetization. This is indeed how we will prove
Theorem 1.2 for the diced lattice. But for the general class of lattices in Theorem 1.1,
all one can hope to prove is that the Peierls sum is finite; it need not be small. To
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handle this situation, we use a trick that we learned from [22, section 6a], where it
is used for percolation. We observe that if ∆0 ⊂ V0 is connected in G0, then ∆0 is
uniformly colored in one color if and only if no contours cut through ∆0. On the
other hand, if ∆0 is sufficiently large, then by the finiteness of the Peierls sum, ∆0

is unlikely to be surrounded by a contour. It follows that, conditional on ∆0 being
uniformly colored (which is of course a rare event), it is much more likely for ∆0 to
be uniformly colored in the color 1 than in either of the other two colors.

More precisely, for each k ∈ {1, 2, 3} and each finite set ∆0 ⊂ V0, let Jk,∆0 denote

the event that all sites in ∆0 have the color k, and let J∆0 =
⋃3
k=1 Jk,∆0 denote

the event that all sites in ∆0 are colored with the same color. By the arguments
sketched above for the case of zero temperature, together with a careful estimate
of non-simple contours at small positive temperatures, we are able to prove the
following lemma:

Lemma 2.1. (Long-range dependence) There exists β0 <∞ such that for each
ε > 0, there exists Mε <∞ such that for every finite set ∆0 ⊂ V0 that is connected
in G0 and satisfies |∆0| ≥Mε, one has

(2.3) µ1
Λ,β(J1,∆0 | J∆0) ≥ 1− ε

uniformly for all β ∈ [β0,∞] and all simply connected finite sets Λ ⊇ ∆0 such that
∂Λ ⊂ V0.

In order for Lemma 2.1 to be of any use, we need to show that the event on which
we are conditioning in (2.3) has positive probability, uniformly in the system size:

Lemma 2.2. (Uniformly colored sets) Let ∆0 ⊂ V0 be finite and connected in
G0. Then there exists a constant δ > 0 such that

(2.4) µ1
Λ,β(J∆0) ≥ δ

uniformly for all 0 ≤ β ≤ ∞ and all finite and simply connected Λ ⊇ ∆0 such that
∂Λ ⊂ V0.

Of course δ gets very small as ∆0 gets large, but we do not care, as we will take ∆0

to be large but fixed .
Let us note that Lemmas 2.1 and 2.2 are sufficient, by themselves, to prove the ex-

istence of at least three distinct infinite-volume Gibbs measures at all β ∈ [β0,∞].14

These infinite-volume Gibbs measures may or may not have spontaneous magneti-
zation, but they do at least have long-range order of a special kind: namely, they
assign unequal probabilities to the (rare) events Jk,∆0 (k = 1, 2, 3) for some large
but finite set ∆0. This part of the argument is quite general and applies to other

14 To see this, just follow the proof of Theorem 1.1 given in Section 2.3 below and disregard
all references to Lemma 2.3. The bound (2.10) and its analogues for k = 2, 3 survive to the
(subsequential) infinite-volume limit and hence show that the Gibbs measures µk,β for k = 1, 2, 3
are distinct.
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models as well, as long as it can be shown that the Peierls sum is finite, even if it is
not necessarily small.15

But for our particular model, we can actually do better and prove that there is
spontaneous magnetization, thanks to the following lemma, which says that if a
sufficiently “thick” block is more likely to be uniformly colored in one color than
in the other two colors, then the same must be true for single sites within that
block. Let us say that a set ∆ ⊂ V is thick 16 if there exists a nonempty finite subset
∆1 ⊂ V1 that is connected in G1 and such that ∆ = {v ∈ V : dG(v,∆1) ≤ 1}. Then
∆ is connected in G, and we have ∆1 = ∆ ∩ V1; we write ∆0 := ∆ ∩ V0.

Lemma 2.3. (Positive magnetization) Fix β0 > 0 and let ∆ ⊂ V be thick. Then
there exists ε > 0 such that for each v0 ∈ ∆0,

(2.5) µ1
Λ,β(σv0 = 1)− µ1

Λ,β(σv0 = 2) ≥ ε
[
µ1

Λ,β(J1,∆0)− µ1
Λ,β(J2,∆0)

]
,

and similarly, for each v1 ∈ ∆1,

(2.6) µ1
Λ,β(σv1 = 2)− µ1

Λ,β(σv1 = 1) ≥ ε
[
µ1

Λ,β(J1,∆0)− µ1
Λ,β(J2,∆0)

]
,

uniformly for all β ∈ [β0,∞] and all simply connected finite sets Λ ⊇ ∆ such that
∂Λ ⊂ V0.

The proof of Lemma 2.3 is not very complicated but is very much dependent
on the specific properties of our Potts model. Inspired by the cluster algorithm
introduced in [70, 71], we condition on the position of the 3’s and use the random-
cluster representation for the Ising model of 1’s and 2’s on the remaining diluted
lattice. We show that the difference of probabilities that ∆0 is uniformly colored
in the color 1 or in the color 2 equals the probability that ∆0 is uniformly colored
and there is a 1-2 random-cluster connection between ∆0 and the boundary of Λ.
Using this latter quantity, it is then easy to produce (by a finite-energy argument)
a lower bound on the probability that there is a 1-2 random-cluster connection
between a fixed lattice site v0 and the boundary of Λ; and this, in turn, equals the
magnetization.

The last main missing ingredient of Theorem 1.1 is the following lemma, which
shows that improperly colored edges are rare when β is large; in particular it shows
that any limit as β → ∞ of the finite-temperature infinite-volume Gibbs measures
that we will construct is concentrated on the set Sg of ground states.

15 For example, consider the Ising model on Z2, with the contours constructed as in [30,
Lemma 6.14] by taking a circuit on the dual lattice that is the external boundary of the con-
nected (by nearest-neighbor edges in Z2) region of constant spin containing origin. Then this
argument gives the existence of at least two distinct infinite-volume Gibbs measures whenever
e−2βαSQ < 1 (i.e. β > 1

2 logαSQ), where αSQ is the connective constant for self-avoiding polygons
(or equivalently, self-avoiding walks [53, Corollary 3.2.5]) on the square lattice, and β is the inverse
temperature in the standard Ising normalization. (It is known that αSQ < 2.679192495 [63]; the
current best numerical estimate is αSQ ≈ 2.63815853031(3) [40].

16 Notice that the sublattices V0 and V1 enter the definition of thickness in an asymmetric way.
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Lemma 2.4. (Rarity of improperly colored edges) There exists C < ∞ such
that

(2.7) µ1
Λ,β

(
σu = σv

)
≤ Ce−β

for all β ∈ [0,∞], all {u, v} ∈ E, and all finite and simply connected Λ 3 u, v such
that ∂Λ ⊂ V0.

Finally, to prove Theorem 1.2 for the diced lattice, we need the following quanti-
tative bound:

Lemma 2.5. (Explicit Peierls bound for the diced lattice) If G is the diced
lattice, then there exists C <∞ such that

(2.8) µ1
Λ,β(σv0 = 1) ≥ 0.90301− Ce−β

uniformly for all β ∈ [0,∞], all v0 ∈ V0, and all simply connected finite sets Λ 3 v0

such that ∂Λ ⊂ V0.

2.3. Proof of the main theorems, given the basic lemmas. Let us now show
how to prove Theorems 1.1 and 1.2, given Lemmas 2.1–2.5.

Proof of Theorem 1.1. Fix ε > 0, let β0,Mε and ∆0 be as in Lemma 2.1, and
let δ be as in Lemma 2.2. Since the colors 2 and 3 play a symmetric role under the
measure µ1

Λ,β, we have

(2.9) µ1
Λ,β(J2,∆0 | J∆0) = 1

2

[
1− µ1

Λ,β(J1,∆0 | J∆0)
]

and hence

µ1
Λ,β(J1,∆0) − µ1

Λ,β(J2,∆0) = 1
2

[
3µ1

Λ,β(J1,∆0 | J∆0)− 1
]
µ1

Λ,β(J∆0)

≥ 1
2
[3(1− ε)− 1]δ = 1

2
(2− 3ε)δ ,(2.10)

which is positive for ε < 2/3 (which we henceforth assume). Then, for any v0 ∈ V0,
we may choose a thick set ∆ ⊂ V such that |∆0| ≥ Mε and v0 ∈ ∆0 (with ∆0 :=
∆∩V0 as defined earlier). By (2.10) together with Lemma 2.3, there exists ε(v0) > 0
such that

(2.11) µ1
Λ,β(σv0 = 1) − µ1

Λ,β(σv0 = 2) ≥ ε(v0)

uniformly for all β ∈ [β0,∞] and all finite and simply connected Λ ⊃ ∆0 such that
∂Λ ⊂ V0. Since the measure µ1

Λ,β treats the colors 2 and 3 symmetrically, it follows
that

(2.12) µ1
Λ,β(σv0 = 1) − 1

2

[
1− µ1

Λ,β(σv0 = 1)
]
≥ ε(v0)

and hence

(2.13) µ1
Λ,β(σv0 = 1) ≥ 1

3
+ 2

3
ε(v0) .
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Similarly, for any v1 ∈ V1, we may choose a thick set ∆ such that |∆0| ≥ Mε and
v1 ∈ ∆1. An analogous argument then shows that

(2.14) µ1
Λ,β(σv1 = 1) ≤ 1

3
− 2

3
ε(v1),

again uniformly in Λ.
In this argument ε depends on v0 or v1. But since all the quantities under study

are invariant under graph automorphisms, ε actually depends only on the type of
v0 or v1. And since by quasi-transitivity there are only finitely many types, we may
choose ε such that (2.13) and (2.14) hold uniformly for all v0 ∈ V0 and v1 ∈ V1.

To construct the desired infinite-volume Gibbs measures, we use a compactness
argument. For any β ∈ [0,∞] and finite Λ ⊂ V , let µΛ,β := µ1

Λ,β ⊗ δτV \Λ , i.e., if

σ ∈ {1, 2, 3}V is distributed according to µΛ,β, then (σv)v∈Λ is distributed according
to µ1

Λ,β and σv = τv for all v ∈ V \Λ. Choose finite and simply connected Λn ↑ V
such that ∂Λn ⊂ V0. Since S = {1, 2, 3}V is a compact space, the set of measures
{µΛn,β} is automatically tight. It follows from [30, Theorem 4.17] that each weak
subsequential limit µβ as Λn ↑ Λ is an infinite-volume Gibbs measure at inverse
temperature β. Taking the limit Λn ↑ V in (2.13)/(2.14), we see that

µβ(σv0 = 1) ≥ 1
3

+ ε for v0 ∈ V0(2.15)

µβ(σv1 = 1) ≤ 1
3
− ε for v1 ∈ V1(2.16)

Taking the limit Λn ↑ V in Lemma 2.4, we obtain

(2.17) µβ
(
σu = σv

)
≤ Ce−β for {u, v} ∈ E .

�

Proof of Theorem 1.2. (a) and (c) follow from the same arguments as in the
proof of Theorem 1.1, but with the inequality (2.13) replaced by (2.8).

To prove (b), consider any v1 ∈ V1 ∩ Λ and let w1, w2, w3 ∈ V0 ∩ (Λ ∪ ∂Λ) be its
neighbors in G. Then the DLR equations for the volume {v1} imply that

µ1
Λ,β(σv1 = 1|σw1 = σw2 = σw3 = 1) =

e−3β

2 + e−3β
(2.18a)

µ1
Λ,β(σv1 = 1|σw1 = σw2 = 1, σw3 6= 1) =

e−2β

1 + e−β + e−2β
(2.18b)

(we call these the “good” cases). In the “bad” cases (i.e., those with two or three
spins σwi 6= 1) we will use only that the conditional probability is ≤ 1. On the other
hand, using (a) we can bound the probability of the “bad” cases by

µ1
Λ,β(two or three spins σwi 6= 1) ≤ 1

2
Eµ1

Λ,β
(# spins σwi 6= 1)

≤ 1
2
× 3 × (1− 0.90301 + Ce−β)

≤ 0.14549 + C ′e−β ,(2.19)
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and we bound the probability of the “good” cases trivially by 1. Putting together
(2.18a,b) and (2.19), we conclude that µ1

Λ,β(σv1 = 1) ≤ 0.14549 + C ′e−β + e−2β. �

3. The zero-temperature case

In the present section, we will prove Lemmas 2.1 and 2.5 in the zero-temperature
case β =∞. Then, in Section 4, we will show how our arguments can be adapted to
cover the (more complicated) case of low positive temperatures; there we will also
prove the technical Lemmas 2.2 and 2.4. The proof of Lemma 2.3 is postponed to
Section 5.

3.1. Contour model for zero temperature. Let Λ ⊂ V be finite and simply
connected in G and such that ∂Λ ⊂ V0. Recall that µ1

Λ,∞ is the uniform distribution

on the set (Sg)1
Λ of all proper 3-colorings of Λ ∪ ∂Λ that take the color 1 on ∂Λ,

i.e. all configurations σ ∈ {1, 2, 3}Λ∪∂Λ such that σu 6= σv for all u, v ∈ Λ ∪ ∂Λ with
{u, v} ∈ E and σv = 1 for all v ∈ ∂Λ. Since ∂Λ ⊂ V0, the set (Sg)1

Λ is nonempty:
for instance, it includes all configurations in which all sites of V0 are colored 1 and
all sites of V1 are colored 2 or 3.

As explained in Section 2.1, for any σ ∈ (Sg)1
Λ, we let E1(σ) be the collection of

edges in G1 that separate areas where the vertices of G0 are uniformly colored in one
of the colors 1, 2, 3. And since at zero temperature at most two different colors on V0

can meet at any vertex in V1, the set E1(σ) consists of a collection Γ(σ) of disjoint
simple circuits that we call contours. [This is what makes the zero-temperature case
so easy to handle. At positive temperature, a connected component of E1(σ) can
be much more complicated than a circuit: see Section 4 below.]

In the zero-temperature case, therefore, we use the term contour to denote any
simple circuit in G1. We write |γ| to denote the length of a contour γ, defined as
the number of its edges (or equivalently the number of its vertices). For a collection
Γ of disjoint contours, we write |Γ| :=

∑
γ∈Γ |γ| for the total length of the contours

in Γ, and #Γ for the number of contours in Γ. Each contour γ divides V0 into two
connected (in the sense of G0) components, of which one is infinite and the other is
finite and simply connected. We call these the exterior Ext(γ) and interior Int(γ)
of γ, respectively. We will say that a contour γ surrounds ∆0 if ∆0 ⊆ Int(γ). We
say that a contour lies in Λ if all its vertices are in V1 ∩ Λ. Note that if γ lies in Λ,
then by our assumption that Λ is simply connected, we have Int(γ) ⊆ Λ.

To each configuration σ ∈ (Sg)1
Λ, there thus corresponds a unique collection Γ(σ)

of disjoint contours in Λ. Conversely, to each collection Γ of disjoint contours,
there are 2#Γ2|V1∩Λ|−|Γ| distinct configurations σ ∈ (Sg)1

Λ that yield the collection
Γ(σ) = Γ. Here the first and second factor are the number of restrictions σV0∩Λ and
σV1∩Λ, respectively, that are consistent with the specified collection of contours and
the fixed boundary condition σv = 1 for v ∈ ∂Λ. To understand the first factor,
observe that in passing through any contour (from outside to inside) we have 2
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(= q − 1) independent alternatives for the choice of the color on V0 just inside the
contour. The second factor comes from the fact that there are either one (= q − 2)
or two (= q−1) colors available for a vertex in G1, depending on whether this vertex
lies on a contour or not. Notice that, given Γ, this latter number is independent of
the configuration σV0∩Λ.

Let us therefore introduce the probability measure

(3.1) νΛ(Γ) =
1

ZΛ

2#Γ 2−|Γ|

on the set of all collections Γ of disjoint contours in Λ, where ZΛ =
∑

Γ 2#Γ 2−|Γ| is
the normalizing constant. We have just shown that, under the probability measure
µ1

Λ,∞, the contour configuration Γ(σ) is distributed according to νΛ.
The first step in any Peierls argument is to obtain an upper bound on the prob-

ability that Γ contains a given contour γ:

Lemma 3.1. (Bound on probability of a contour) Let Λ ⊂ V be a simply
connected finite set such that ∂Λ ⊂ V0. Then, for any contour γ in Λ,

(3.2) νΛ({Γ: γ ∈ Γ}) ≤ 21−|γ|

1 + 21−|γ| .

Proof. We have

νΛ({Γ: γ ∈ Γ}) =
∑
Γ3γ

νΛ(Γ) = 21−|γ|
∑
Γ3γ

νΛ(Γ\{γ})

≤ 21−|γ|
∑
Γ 63γ

νΛ(Γ) = 21−|γ|[1− νΛ({Γ: γ ∈ Γ})
]
,(3.3)

which proves (3.2). �

Now let ∆0 ⊆ Λ∩ V0 be connected in G0. Let us say that a contour γ cuts ∆0 if
γ contains an edge that separates some pair of vertices v, w ∈ ∆0 that are adjacent
in G0. Then, obviously, the event that ∆0 is uniformly colored corresponds to the
event that no contour γ ∈ Γ cuts ∆0. Let νΛ|∆0 denote the measure νΛ from (3.1)
conditioned on this event. Let S∆0(Γ) denote the number of contours in a contour
configuration Γ that surround ∆0. We obtain a lower bound for the conditional
probability in (2.3) by writing

(3.4)

µ1
Λ,∞
(
J1,∆0

∣∣J∆0) ≥ νΛ|∆0({Γ: S∆0(Γ) = 0})

≥ 1−
∑

Γ

νΛ|∆0(Γ)S∆0(Γ) = 1−
∑

γ : Int(γ)⊇∆0

νΛ|∆0({Γ: γ ∈ Γ}) .

Then the probability that Γ contains a given contour γ is bounded under νΛ|∆0 in
exactly the same way as it was bounded under νΛ [cf. (3.3)], yielding

(3.5) νΛ|∆0({Γ: γ ∈ Γ}) ≤ 21−|γ|

1 + 21−|γ|
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for every γ that surrounds ∆0. Inserting this into (3.4) yields:

Lemma 3.2. (Peierls bound for zero temperature) Let Λ ⊂ V be a simply
connected finite set such that ∂Λ ⊂ V0, and let ∆0 ⊆ Λ ∩ V0 be connected in G0.
Then

(3.6) 1− µ1
Λ,∞
(
J1,∆0

∣∣J∆0) ≤
∑

γ : Int(γ)⊇∆0

21−|γ|

1 + 21−|γ| =
∞∑
L=3

N∆0(L)
21−L

1 + 21−L ,

where N∆0(L) denotes the number of contours of length L surrounding ∆0.

Our proofs of Lemmas 2.1 and 2.5 in the zero-temperature case will be based on
the estimate (3.6) and suitable bounds on the numbers N∆0(L).

Remarks. 1. In the special case that ∆0 is a singleton, the event J∆0 is triv-
ially fulfilled and the conditional probability in (3.6) reduces to an unconditional
probability.

2. The simpler but slightly weaker bound

(3.7) 1− µ1
Λ,∞
(
J1,∆0

∣∣J∆0) ≤
∞∑
L=3

N∆0(L) 21−L

is sufficient for nearly all purposes. Indeed, even for quantitative bounds the differ-
ence between (3.6) and (3.7) is very small: for instance, when G is the diced lattice
and G1 is the hexagonal lattice, we have L ≥ 6, so one sees immediately that the
difference between (3.6) and (3.7) cannot be more than about 3%. See also the proof
of Lemma 2.5 for β =∞ in Section 3.4 below.

3.2. Bounds on contours for zero temperature. The main ingredient in the
proof of Lemma 2.1 will be a bound on the number of simple circuits in G1 of a
given length surrounding a given vertex in G0. We start by bounding the number of
self-avoiding paths in G1, or more generally in quasi-transitive graphs of bounded
degree. We then use this bound to obtain a bound on self-avoiding polygons, i.e.
simple circuits.

Let H = (V,E) be any graph. It will be convenient to view H as a directed graph,
by introducing a pair of directed edges (one in each direction) corresponding to each
edge of the undirected graph H. So let A be the set of directed edges of H, i.e., A
is the set of all ordered pairs (v, w) of vertices such that {v, w} ∈ E. By definition,
a self-avoiding path in G of length n is a finite sequence of vertices v0, . . . , vn ∈ V ,
all different from each other, such that (vk−1, vk) ∈ A for all k = 1, . . . , n. We call
(v0, v1) the starting edge and (vn−1, vn) the final edge of the path. For n ≥ 1 and
a, b ∈ A, we denote by Cn(a, b) the number of self-avoiding paths in G of length n
with starting edge a and final edge b. We then set

(3.8) Cn(a) :=
∑
b∈A

Cn(a, b) and C∗n := sup
a∈A

Cn(a) .
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Lemma 3.3. (Exponential bound on self-avoiding paths) Let H = (V,E) be
an infinite connected graph in which each vertex has degree at most k. Then the
limit

(3.9) α(H) := lim
n→∞

(C∗n)1/n

exists and equals inf
n≥1

(C∗n+1)1/n; it satisfies 1 ≤ α(H) ≤ k − 1. Furthermore, if H is

quasi-transitive and is anything other than a tree in which every vertex has degree k,
then α(H) < k − 1.

Proof. For m,n ≥ 1 and a, c ∈ A we have

(3.10) Cm+n−1(a, c) ≤
∑
b∈A

Cm(a, b)Cn(b, c)

because any self-avoiding path of length m+n−1 can be decomposed uniquely into
its first m steps and its last n steps, each of which is a self-avoiding path, which
overlap in a single directed edge (here called b). This implies the submultiplicativity

(3.11) C∗m+n−1 ≤ C∗mC
∗
n .

We see that n 7→ logC∗n+1 (n ≥ 0) is subadditive, which implies (see, e.g., [52,
Theorem B.22]) that the limit

(3.12) α(H) := lim
n→∞

(C∗n+1)1/n = inf
n≥1

(C∗n+1)1/n

exists, with 0 ≤ α(H) <∞.
By Lemma A.2(a), there exists an infinite self-avoiding path (v0, v1, v2, . . .); so

taking a = (v0, v1) we see that Cn(a) ≥ 1 for all n ≥ 1. Hence α(H) ≥ 1.
Since each v ∈ V is of degree at most k, self-avoidance trivially implies that

(3.13) C∗n+1 ≤ (k − 1)n ,

so that α(H) ≤ k − 1.
If H is anything other than a k-regular tree, then since H is connected, for each

a ∈ A there exists an integer m (depending only on the equivalence class of a under
the automorphism group of H) such that Cm+1(a) < (k − 1)m: it suffices to walk
to a vertex of degree < k and then one step more, or else walk into and around
a circuit. Using the submultiplicativity (3.11) together with (3.13), it follows that
Cn+1(a) < (k − 1)n for all n ≥ m. If now H is (vertex-)quasi-transitive, then it is
not hard to see that it is also directed-edge-quasi-transitive (see Lemma A.1 for a
proof), i.e. there are finitely many equivalence classes of directed edges, so we can
choose an m that works for all a ∈ A. It follows that C∗n+1 < (k−1)n for some n (in
fact for all sufficiently large n), which shows that the infimum in (3.12) is strictly
less than k − 1. �

Remark. Most of this proof can alternatively be carried out in terms of the more
familiar vertex-to-vertex counts cn(u, v) for n ≥ 0 and the corresponding quantities
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c∗n = supu∈V
∑

v∈V cn(u, v). (Since C∗n ≤ c∗n ≤ kC∗n, the two counts have identical
asymptotic growth.) Indeed for m,n ≥ 0 we have

(3.14) cm+n(u,w) ≤
∑
v∈V

cm(u, v) cn(v, w)

and hence c∗m+n ≤ c∗m c
∗
n, from which it follows that

(3.15) α(H) = lim
n→∞

(c∗n)1/n = inf
n≥1

(c∗n)1/n

exists. But it is more difficult in this framework to prove that α(H) < k − 1, since
the bound c∗n ≤ k(k − 1)n−1 has an extra factor k/(k − 1) that we must somehow
overcome. It is for this reason that we found it convenient to work with directed
edges instead of vertices.

It follows from (3.9) that for each ε > 0 there exists Kε <∞ such that

(3.16) C∗n ≤ Kε [α(H) + ε]n for all n ≥ 0 .

Now let G = (V,E) be as in Theorem 1.1 and let G0 = (V0, E0) and G1 = (V1, E1)
be its sublattices. Recall from Section 3.1 that N∆0(L) denotes the number of simple
circuits of length L in G1 surrounding a set ∆0 ⊂ V0. Lemma 3.3 applied to H = G1

implies the following bound on N∆0(L):

Lemma 3.4. (Exponential bound on circuits surrounding a point) We have
α(G1) < 2. Moreover, for every ε > 0, there exists a constant Cε <∞ such that

(3.17) N{v}(L) ≤ Cε [α(G1) + ε]L

for all v ∈ V0 and all L ≥ 1.

Proof. Since every vertex in G1 has degree 3 and G1 is not a tree (indeed, each
vertex in G0 is surrounded by a circuit in G1), it follows from Lemma 3.3 that
α(G1) < 2.

Since G is infinite, connected and locally finite, it is not hard to show [see
Lemma A.2(a) in the Appendix] that for each v ∈ V0 we can find an infinite self-
avoiding path π = (v0, v1, . . .) in G0 starting at v0 = v such that the graph distance
(in G0) of vn to v is n. It is not hard to see that any simple circuit surrounding v
must cross some edge of π. With a bit more work, we can get a quantitative bound
on how far this edge can be from the starting point of π. Indeed, it follows from
Proposition A.5 that there exists a constant K < ∞, depending only on the graph
G0, such that any simple circuit of length L surrounding v must cross one of the
first N edges of π, where

(3.18) N := 1 +K + 1
2
(3

2
− 1)L = 1 +K + L/4 .

So let γ be a simple circuit of length L surrounding v. Let (vk−1, vk) be the first
edge of π that is crossed by γ, and let a be the corresponding (dual) edge in γ. We
can view a as a directed edge by agreeing that we turn (vk−1, vk) anticlockwise to get
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a. Then we can specify γ completely by specifying the first edge of π to be crossed
by γ and by specifying the self-avoiding path formed by the first L − 1 edges of γ,
starting with a. By (3.18), this yields the bound

(3.19) N{v}(L) ≤ (1 +K + L/4)C∗L−1 .

By (3.16), the claim follows: it suffices to absorb the factor (1 + K + L/4) into a
change of the base of the exponential term. �

3.3. Long-range dependence for zero temperature. We are now ready to prove
Lemma 2.1 for zero temperature.

Proof of Lemma 2.1 for β =∞. It follows from Proposition A.5 that for each
L0 <∞, there exists M <∞ such that each finite, G0-connected set ∆0 ⊂ V0 with
|∆0| ≥ M has the property that any simple circuit in G1 surrounding ∆0 must be
of length at least L0.

Then the weak Peierls bound (3.7) and Lemma 3.4 imply that for any ε > 0 there
exists Cε <∞ such that for every finite and simply connected Λ ⊃ ∆0 with ∂Λ ⊂ V0,
we have

(3.20) µ1
Λ,∞
(
J1,∆0

∣∣J∆0

)
≥ 1− Cε

∞∑
L=L0

21−L[α(G1) + ε]L.

Since α(G1) < 2, by choosing first ε small enough and then L0 large enough (and
M appropriately), we can make the conditional probability in (3.20) as close to 1 as
we wish, uniformly in Λ. �

3.4. Quantitative bound for the diced lattice. Let pL denote the number of
simple circuits (i.e., self-avoiding polygons) of length L in the hexagonal lattice,
modulo translation. And let qL denote the number of simple circuits of length L
in the hexagonal lattice that surround a given vertex of the triangular lattice. We
have the following bounds:

Lemma 3.5. (Supermultiplicativity of hexagonal-lattice polygons) The
number pL of hexagonal-lattice self-avoiding polygons of length L, modulo transla-
tion, satisfies

(3.21) pL+M−2 ≥ pL pM .

Corollary 3.6. (Bound on hexagonal-lattice circuits surrounding a point)
The number of simple circuits in the hexagonal lattice G1 surrounding a given vertex
in G0 is bounded as

(3.22) qL ≤ (L2/36) (2 +
√

2)(L−2)/2.
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Proof of Lemma 3.5. We use concatenation: Consider two polygons γ1 and
γ2 contributing to pL and pM , respectively. Let (x, x + e2) be the highest vertical
edge of γ1 in its rightmost column, and let (y, y + e2) be the lowest vertical edge
of γ2 in its leftmost column, where e1 := (1, 0) and e2 := (0, 1) denote the natural
basisvectors of R2. Uniting the polygon γ2 with γ1 shifted by y − x and erasing
the edges (y, y + e2), we get a contour γ = Ty−x(γ1) ∪ γ2 \ (y, y + e2) contributing
to pL+M−2. To complete the argument, we must show that different choices of γ1

and/or γ2 lead to a different γ (modulo translation), i.e., we can reconstruct γ1 and
γ2 (modulo translation) from γ. To this aim, we observe that (y, y + e2) is the only
vertical edge in its column that cuts the interior of γ. Also, if another column cuts
the interior of γ in a single edge, then the contours γ′1 and γ′2 obtained by cutting
γ at this edge into a left and right piece will have lengths different from L and M .
Thus, for fixed L and M , each different (modulo translations) ordered pair (γ1, γ2)
of polygons of lengths L and M yields a different (modulo translations) polygon of
length L+M − 2. �

Proof of Corollary 3.6. The proof combines three ingredients. The first is
the fact, conjectured in [56] and proven in [21], that the connective constant of the

hexagonal lattice is exactly α =
√

2 +
√

2 ≈ 1.847759. The second ingredient is the
isoperimetric inequality for the hexagonal lattice: the number of faces surrounded
by a circuit of length L is at most L2/36. The third ingredient is a bound on the
number pL of L-step hexagonal-lattice self-avoiding polygons modulo translation in
terms of the connective constant α for self-avoiding walks on the hexagonal lattice,
namely [47]

(3.23) pL ≤ αL−2 .

Indeed, the supermultiplicativity pL+M−2 ≥ pLpM implies, by standard arguments,
that αSAP = limL→∞(pL)1/L exists and that pL ≤ (αSAP)L−2. On the other hand,
since pL ≤ cL−1/(2L) where cn is the number of n-step self-avoiding paths starting
at a given vertex, we manifestly have αSAP ≤ α. �

Remarks. 1. The supermultiplicativity pL+M−2 ≥ pLpM for the hexagonal lattice
is stronger than the inequality pL+M ≥ pLpM that holds for the square lattice [53,
Theorem 3.2.3]. As a consequence, we are able to prove pL ≤ αL−2 rather than just
pL ≤ αL.

2. For self-avoiding paths and polygons on Zd it is known [53, Corollary 3.2.5]
that αSAP = α. The same presumably holds also for the hexagonal lattice and for
other lattices periodically embedded in Euclidean space, but we are not aware of
any proof. Since we need only an upper bound on αSAP, we have refrained from
addressing this question. Note also that αSAP < α on hyperbolic lattices (with the
possible exception of eight such lattices) [54], so the equality αSAP = α is a somewhat
delicate matter.
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Proof of Lemma 2.5 for β = ∞. We use the explicit values of qL for L =
6, 8, . . . , 140 obtained by Jensen’s computer-assisted enumerations [41]17 together
with the bound (3.22) for even L ≥ 142. From [41] we get
(3.24)

140∑
L=6

qL 2−L =
22074233899340881133583692519761872405249

2139
< 0.03168 .

On the other hand, we have
(3.25)∑

evenL≥142

(L2/36) (2 +
√

2)(L−2)/2 2−L =
(2 +

√
2)70 (2907 + 1531

√
2)

9 · 2139
< 0.01731 .

Putting these together, we have

(3.26)
∞∑
L=6

qL 2−L < 0.04899 .

Inserting this into the weak Peierls bound (3.7) specialized to ∆0 = {v}, we obtain

(3.27) µ1
Λ,∞(σv = 1) > 1 − 2(0.04899) = 0.90202 .

A slight improvement of (3.27) can be obtained by using (3.6) in place of (3.7):
we have

(3.28)
140∑
L=6

qL
2−L

1 + 21−L < 0.03119 .

(The improvement in the tail sum L ≥ 142 is of course utterly negligible.) The final
result (3.27) is then improved from 0.90202 to 0.90301. �

Remarks. 1. Jensen [41] conjectured, based on his enumerations for L ≤ 140,
that the large-L asymptotic asymptotic behavior of qL is

(3.29) qL =
1

4π
(2 +

√
2)L/2 L−1

[
1 + o(1)

]
.

(At L = 140 the exact value for qL is already within 0.4% of this asymptotic form.)
Using this formula in place of the bound (3.22), we find for the tail

(3.30)
∑

evenL≥142

qL 2−L ≈ 4.7× 10−8 (� 0.01731) .

It follows that if we could know qL exactly for all L, then our Peierls argument using
(3.6) would be capable of proving a lower bound 0.93762 in (3.27). This should be
compared with the actual zero-temperature value 0.957597± 0.000004 obtained by
Monte Carlo simulations [47].18

17 The relevant series is called there the “first area-weighted moment” for honeycomb-lattice
polygons and is contained in the file hcsapmom1.ser.

18 See footnote 8 above.
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2. When [47] was written, the exact result α =
√

2 +
√

2 ≈ 1.847759 was not
yet a rigorous theorem, so we used instead the bound α < 1.868832 due to Alm
and Parviainen [1]. Then, to get a sufficient final estimate, the additional factor
α−2 from the improved bound (3.23) implied by stronger supermultiplicativity (see
Remark 1 after the proof of Corollary 3.6) was crucial.

4. The positive-temperature case

In this section we extend the Peierls argument to positive temperature, allowing
us to complete the proof of Lemmas 2.1 and 2.5. We also prove the technical
Lemmas 2.2 and 2.4.

4.1. Contour model for positive temperature. As before, we consider a graph
G = (V,E) satisfying the conditions of Theorem 1.1 and take a finite and simply
connected set Λ ⊂ V such that ∂Λ ⊂ V0. Our aim is to derive bounds on the
probabilities of certain events under the finite-volume Gibbs measures µ1

Λ,β which
correspond to uniform color-1 boundary conditions on ∂Λ.

We recall from Section 2.1 that every color configuration σ on Λ (2.1)/(2.2) a col-
lection E1(σ) of edges in the sublattice G1 that separate differently colored vertices
in G0 (or equivalently faces in G1). Since ∂Λ ⊂ V0 and ∂Λ is uniformly colored (in
color 1), each edge of E1(σ) has both its endvertices in V1 ∩Λ. In general, we define
contours to be connected components of E1(σ). [More precisely, we define contours
to be the connected components of the graph (V1 ∩ Λ, E1(σ)) other than isolated
vertices.] If σ is a ground state, then at each v ∈ V1 ∩ Λ, either zero or two edges
of E1(σ) are incident, hence the connected components of E1(σ) are simple circuits
in G1. But for general color configurations σ, the connected components of E1(σ)
may be more complicated. In particular, it is possible that three edges of E1(σ) are
incident to a vertex v ∈ V1∩Λ. Recall that a connected graph is called bridgeless (or
2-edge-connected) if it contains no bridges (i.e., single edges the removal of which
disconnects the graph). We observe that for any color configuration σ, the connected
components of E1(σ) must be bridgeless, since otherwise there would be a uniformly
colored region of G0 that bounds such a bridge on both sides, contradicting the
definition of E1(σ).

In view of this, in the positive-temperature model let us define a contour to be
a finite connected bridgeless subgraph γ of G1 containing at least one edge. Note
that each vertex of such a contour has degree 2 or 3. It is easy to see that the
number of vertices of degree 3 must be even (just notice that twice the number of
vertices of degree two plus three times the number of vertices of degree three equals
twice the number of edges). We let |γ| denote the number of edges of γ, to which
we will refer as the length of γ. We let t(γ) be the number such that γ has 2t(γ)
vertices of degree 3. Then γ has |γ|−3t(γ) vertices of degree 2. Moreover, γ divides
V0 into 2 + t(γ) connected components, of which one is infinite and the others are
finite and simply connected. We say that a contour γ surrounds a set ∆0 ⊂ V0,
denoted as γ � ∆0, if ∆0 is contained in one of the finite components. We call
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Figure 3. A contour γ with χ(γ) = 0.

the infinite component the exterior Ext(γ) of γ, and we refer to the union of all
the finite components as the interior Int(γ) of γ. [Please note that saying that γ
surrounds a set ∆0 is stronger than saying that ∆0 ⊆ Int(γ), since “surrounding”
is defined as ∆0 being entirely contained in one of the finite components.] Given
that the exterior of γ is colored in one particular color, we let χ(γ) denote the
number of possible three-colorings of the connected components of Int(γ) in such a
way that along each edge of γ, two different colors meet.19 Please note that it is
possible to have χ(γ) = 0: see Figure 3. Obviously, such contours are “not allowed”,
and we shall soon see that their probability is zero.20 Finally, let us observe that
χ(γ) ≤ 2t(γ)+1.

We now claim that if σ is distributed according to µ1
Λ,β, and Γ(σ) is the collection

of connected components of (V1 ∩ Λ, E1(σ)) other than isolated vertices, then Γ(σ)
is distributed according to the law

(4.1) νΛ,β(Γ) =
1

ZΛ,β

∏
γ∈Γ

χ(γ) p
|γ|
β q

t(γ)
β ,

19 Otherwise put, χ(γ) is 1
3 times the number of proper 3-colorings of the dual graph γ∗.

20 We could, if we wanted, redefine the term “contour” to include only those having χ(γ) > 0.
But there is little to be gained from complicating the definition in this way, since our counting of
contours (Lemma 4.2 below) is too crude to distinguish between those having χ(γ) > 0 or χ(γ) = 0.
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where ZΛ,β is a normalizing constant and

pβ :=
1 + e−β + e−2β

2 + e−3β
(4.2a)

qβ :=
9e−2β(2 + e−3β)

(1 + e−β + e−2β)3
(4.2b)

To see this, note that there are
∏

γ∈Γ χ(γ) ways of coloring the sites in V0 ∩ Λ in a
way that is consistent with Γ. Given a coloring of V0∩Λ, summing the probabilities
of all possible colorings of V1 ∩ Λ yields for each site in V1 ∩ Λ a factor

(4.3) 1 + 1 + e−3β, 1 + e−β + e−2β or e−β + e−β + e−β

depending on whether the site has neighbors with one, two or three different colors,
respectively. These cases correspond, respectively, to sites not on a contour, sites
of degree 2 on a contour, and sites of degree 3 on a contour. Absorbing the factor
1+1+e−3β into the normalization contant ZΛ,β, we get a factor (1+e−β+e−2β)/(2+
e−3β) for each of the |γ| − 3t(γ) sites of degree 2, and a factor 3e−β/(2 + e−3β) for
each of the 2t(γ) sites of degree 3. Putting this all together, we arrive at (4.1)/(4.2).

In the limit β →∞, we have pβ → 1
2

and qβ → 0; in particular, the only countours
that get nonzero weight in this limit are simple circuits, for which χ(γ) = 2. Then
the contour law (4.1) reduces to (3.1), as expected.

More generally, it can be easily verified that pβ decreases monotonically from 1
to 1

2
as β runs from 0 to ∞, and behaves for large β as 1

2
+ O(e−β); and that qβ

decreases monotonically from 1 to 0 as β runs from 0 to ∞, and behaves for large
β as O(e−2β).

By the same arguments as in (3.4)–(3.5), and using χ(γ) ≤ 2t(γ)+1, we find:

Lemma 4.1. (Peierls bound for positive temperature) Let Λ ⊂ V be a simply
connected finite set such that ∂Λ ⊂ V0, and let ∆0 ⊆ Λ ∩ V0 be connected in G0.
Then

(4.4) 1− µ1
Λ,β

(
J1,∆0

∣∣J∆0) ≤
∞∑
T=0

∞∑
L=3

N∆0(L, T )
2T+1 pLβ q

T
β

1 + 2T+1 pLβ q
T
β

,

where N∆0(L, T ) denotes the number of contours γ surrounding ∆0 satisfying |γ| = L
and t(γ) = T .

4.2. Bounds on contours for positive temperature. In this section, we prove
Lemmas 2.1 and 2.5. We first need to generalize Lemma 3.4 to contours that are not
simple circuits. Recall that N∆0(L, T ) denotes the number of contours γ surrounding
∆0 satisfying |γ| = L and t(γ) = T . Recall also from Lemma 3.3 that α(H) denotes
the connective constant of a graph H as defined in (3.9), and from Lemma 3.4 that
α(G1) < 2.
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Figure 4. A contour γ in the case when G is the diced lattice
and G1 is the hexagonal lattice. This contour γ contains 8 vertices of
degree 3, hence t(γ) = 4. It is not hard to check that χ(γ) = 2.

Lemma 4.2. (Bound on number of contours) For every ε > 0 there exists a
constant C ′ε <∞ such that

(4.5) N{v}(L, T ) ≤ (LT/T !)2 (C ′ε)
T+1 [α(G1) + ε]L

for all v ∈ V0 and all L, T ≥ 0.

Proof. Let γ be a contour surrounding {v} such that |γ| = L and t(γ) = T . We
need a suitable way to encode γ. We begin, as in the proof of Lemma 3.4, by letting
π = (v0, v1, . . .) be an infinite self-avoiding path in G0 starting at v0 = v such that
the graph distance (in G0) of vn to v is n. According to Proposition A.5 and formula
(3.18), the contour γ intersects an edge (vb−1, vb) of π with b ≤ N := 1 +K + L/4,
where K is a constant depending only on the graph G0. Thus, we can find some
directed simple circuit γ∗ = (u1, . . . , un1 , u1) contained in γ, such that (u1, u2) crosses
the edge (vb−1, vb) in the anticlockwise direction (see Figure 4).

Let us write γ1 = (u1, . . . , un1), which is a self-avoiding path. If T = 0, then γ = γ∗

and our encoding is complete. Otherwise, let s1 := min{i ≥ 1: ui is of degree 3
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in γ}. Then we can find a self-avoiding path

(4.6) γ2 = (us1 , un1+1, . . . , un2 , us′1)

in γ such that only the starting and ending points us1 and us′1 are in γ1. If T =

1, then γ = γ∗ ∪ γ2 and we are done. Otherwise, let s2 := min{i > s1 : i 6=
s′1 and ui is of degree 3 in γ}. Then we can find another self-avoiding path

(4.7) γ3 = (us2 , un2+1, . . . , un3 , us′2)

in γ such that only the starting and ending points us2 and us′2 are in γ1 ∪ γ2.
Continuing in this way, we see that we can code all the information needed to
construct γ by specifying numbers
(4.8)
b ≤ N, 2 = n0 < n1 < · · · < nT+1 = L− T and 0 < s1 < · · · < sT < L− T

and self-avoiding paths γ1, . . . , γT+1 of lengths n1−n0+1, n2−n1+1, . . . , nT+1−nT+1
whose starting edges are uniquely determined by the information previously coded.
By Lemma 3.3 and its consequence (3.16), for each ε > 0 there exists Kε <∞ such
that the number of self-avoiding paths of length n with a specified starting edge is
bounded from above by Kε[α(G1) + ε]n.

Therefore, there are at most

(4.9)
T+1∏
i=1

Kε[α(G1) + ε]ni−ni−1+1 = (Kε)
T+1 [α(G1) + ε]L−1

different contours γ associated with given data b, n1, . . . , nT , s1, . . . , sT . Since there

are

(
L− T − 3

T

)
and

(
L− T − 1

T

)
ways of choosing numbers 2 < n1 < · · · < nT <

L−T and 0 < s1 < · · · < sT < L−T , respectively, and since b ≤ N = 1 +K+L/4,
summing over all ways to choose the numbers b, n1, . . . , nT , s1, . . . , sT shows that
the total number of contours γ surrounding v with given |γ| = L and t(γ) = T is
bounded by
(4.10)(

1 +K + L/4
)(L− T − 3

T

)(
L− T − 1

T

)
(Kε)

T+1
[
α(G1) + ε

]L−1

≤ (C ′ε)
T+1

(
L− T
T

)2[
α(G1) + 2ε

]L−1 ≤ (C ′ε)
T+1
(
LT/T !

)2[
α(G1) + 2ε

]L
,

where the factor 1 +K +L/4 was absorbed into a change of base of the exponential
term followed by the change of constant into C ′ε. �
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4.3. Long-range dependence for positive temperature.

Proof of Lemmas 2.1 and 2.5 in the positive-temperature case. In the
zero-temperature case, both lemmas have already been proven in Sections 3.3 and
3.4, respectively, by showing that for some sufficiently large ∆0 (respectively for
∆0 = {v}) the right-hand side of (3.6) can be made sufficiently small. To generalize
the two lemmas to small positive temperatures, it therefore suffices to show that
the right-hand side of (4.4) converges to the right-hand side of (3.6) as β → ∞
[for Lemma 2.5 we should also show that the error is O(e−β)]. In view of this,
Lemmas 2.1 and 2.5 are consequences of the following lemma. �

Lemma 4.3. (Large-β behavior of the Peierls bound) There exist β0, C <∞
such that

(4.11) 0 ≤
∞∑
T=0

∞∑
L=3

N∆0(L, T )
2T+1 pLβ q

T
β

1 + 2T+1 pLβ q
T
β

−
∞∑
L=3

N∆0(L)
21−L

1 + 21−L ≤ Ce−β

and
(4.12)

∞∑
T=1

∞∑
L=3

N∆0(L, T )
2T+1 pLβ q

T
β

1 + 2T+1 pLβ q
T
β

≤
∞∑
T=1

∞∑
L=3

N∆0(L, T ) 2T+1 pLβ q
T
β ≤ Ce−2β

uniformly for β ∈ [β0,∞] and for nonempty finite G0-connected sets ∆0 ⊂ V0.

Proof. The lower bound in (4.11) is a trivial consequence of pβ ≥ 1
2

and qβ ≥ 0.
To prove the upper bounds, we split the double sum in (4.11) into its contributions
T = 0 and T ≥ 1 and bound them separately, using pβ = 1

2
+ O(e−β) and qβ =

O(e−2β).
T = 0. By Lemma 3.4, there exist C <∞ and α < 2 such that N∆0(L) ≤ CαL.

The term T = 0 can therefore be bounded (using pβ ≥ 1
2
) as

(4.13)
∞∑
L=3

N∆0(L)
2pLβ

1 + 2pLβ
≤

∞∑
L=3

N∆0(L)
21−L

1 + 21−L + 2C
∞∑
L=3

αL
pLβ − (1

2
)L

1 + 21−L .

Choosing β0 large enough so that α pβ0 < 1, it is easy to see, using pβ = 1
2

+O(e−β),

that the last term in (4.13) is O(e−β).
T ≥ 1. By Lemmas 3.4 and 4.2, there exist C < ∞ and α < 2 such that

N∆0(L, T ) ≤ (LT/T !)2CT+1αL. Therefore the terms T ≥ 1 in (4.11) can be bounded
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as
∞∑
T=1

∞∑
L=3

N∆0(L, T )
2T+1 pLβ q

T
β

1 + 2T+1 pLβ q
T
β

≤
∞∑
T=1

∞∑
L=3

N∆0(L, T ) 2T+1 pLβ q
T
β

≤ 2C
∞∑
L=3

(αpβ)L
∞∑
T=1

(2Cqβ)T

(T !)2
L2T

≤ 2C
∞∑
L=3

(αpβ)L
∞∑
T=1

(8Cqβ)T

(2T )!
L2T

= 16C2qβ

∞∑
L=3

L2 (αpβ)L
∞∑
T=0

(8Cqβ)T

(2T + 2)!
L2T

≤ 16C2qβ

∞∑
L=3

L2
(
αpβ e

√
8Cqβ

)L
(4.14)

where we used
(2T )!

(T !)2
=

(
2T

T

)
≤ 22T . Choosing β0 large enough so that one has

α pβ0 e
√

8Cqβ0 < 1, we see that (4.14) is O(qβ) = O(e−2β), which proves (4.12) and
completes the proof of (4.11). �

The bound (4.12) from Lemma 4.3 has a useful corollary. Let us say that a contour
γ is simple if it is a simple circuit, i.e. t(γ) = 0. For any contour configuration Γ and
any v ∈ V0, let St

v(Γ) denote the number of non-simple contours in Γ that surround
{v}. We then have the following bound showing that non-simple contours are rare
at low temperature:

Corollary 4.4. (Rarity of non-simple contours) Let νΛ,β be the contour measure
from (4.1). Then there exist β0, C <∞ such that

(4.15)
∑

Γ

νΛ,β(Γ)St
v(Γ) ≤ Ce−2β

uniformly for β ∈ [β0,∞], for finite simply connected Λ ⊂ V such that ∂Λ ⊂ V0,
and for v ∈ Λ ∩ V0.

Proof. This is an immediate consequence of (4.12) together with the positive-
temperature analogue of Lemma 3.1. �

4.4. Proof of the technical lemmas. In this section we prove Lemmas 2.2 and
2.4.

Proof of Lemma 2.2. It is easy to show that for each β0 < ∞ there exists an
ε > 0 such that µ1

Λ,β(J∆0) ≥ ε, uniformly for all 0 ≤ β ≤ β0 and all finite and simply
connected Λ ⊃ ∆0 such that ∂Λ ⊂ V0. Indeed, this follows from a “finite energy”
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argument: given any configuration σ ∈ {1, 2, 3}Λ, we can recolor the sites in ∆0 in
any color of our choice at an energetic cost of at worst e−β|∂∆0| and an entropic cost
of at worst 3−|∆0|. Note that here ∆0 is fixed and finite, so the precise dependence
of the costs on ∆0 is irrelevant. The only difficulty is that the bound one obtains in
this way is not uniform in β as β →∞. Therefore, to complete the proof, it suffices
to show that there exists some β0 <∞ such that µ1

Λ,β(J∆0) can be estimated from
below uniformly in β0 ≤ β ≤ ∞ and Λ.

In order to prove this, let ∆0 ⊂ V0 be finite and G0-connected, and let ∆0 de-
note the union of ∆0 with its boundary in G0, i.e., ∆0 := ∆0 ∪ {v ∈ V0 : ∃u ∈
∆0 s.t. {u, v} ∈ E0}. By Corollary 4.4, the probability that a non-simple contour
intersects ∆0 tends to zero as β →∞, uniformly in Λ. Thus, we may choose β0 <∞
such that

(4.16) νΛ,β

(
{Γ: @γ ∈ Γ s.t. t(γ) ≥ 1, γ intersects ∆0}

)
≥ 1/2,

uniformly in Λ and β0 ≤ β ≤ ∞. If all contours intersecting ∆0 are simple, then
we claim that we can change our contour configuration at a finite energetic cost
uniformly in β0 ≤ β ≤ ∞, so that no contour intersects ∆0. To describe the
algorithm of changing a contour configuration Γ into a configuration Γ′ with no
contour intersecting ∆0, we first observe that relying on the fact that all contours
intersecting ∆0 are simple, we can color the vertices in Λ∩V0 in three colors in such
a way that boundaries between different colors correspond to contours and only two
different colors occur in ∆0. (Note that this part of the argument uses that the
contours intersecting ∆0 are simple everywhere and not just that there are no triple
points inside ∆0.) Now we change our coloring by painting ∆0 uniformly in one
of these two colors, defining thus the new contour configuration Γ′ (see Figure 5).
Since in the construction of Γ′ a two-color configuration in ∆0 was changed using
the same two colors no new triple points are introduced. This, together with (4.1)
and a standard finite-energy argument proves our claim.

For completeness, we write down this finite-energy argument in detail. Let Γ and
Γ′= ψ(Γ) denote the old and new contour configuration obtained by the procedure
described above. We need to estimate the relative probability of Γ′ with respect to
Γ and the number of different configurations Γ that can be mapped onto the same
Γ′, |Ψ−1(Γ′)|. Let |∆0| be the number of sites in ∆0, let M∆0 be the number of edges
in E1 that separate sites in ∆0 from each other and let M∂∆0 be the number of edges
in E1 that separate sites in ∆0 from sites in ∆0\∆0. Further, let

(4.17) χ(Γ) :=
∏
γ∈Γ

χ(γ), |Γ| :=
∑
γ∈Γ

|γ| and t(Γ) :=
∑
γ∈Γ

t(γ).

Since all contours we remove or alter are simple contours with χ(γ) = 2 and we
remove or alter no more than M∆0 contours from our configuration and add no
more than M∂∆0 edges, we have

(4.18) χ(Γ′) ≥ 2−M∆0χ(Γ) and |Γ′| ≤ |Γ|+M∂∆0 ,
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Figure 5. Simple contours intersecting the square ∆0 colored with
two colors: 1 (white) and 2 (gray). After flipping all sites in ∆0 to the
color 1, no contour is intersecting ∆0 and no triple point was created.
The same would be true when flipping all sites in ∆0 to the color 2.

while t(Γ′) = t(Γ), which by (4.1) implies that

(4.19) νΛ,β(Γ′) ≥ 2−M∆0p
M∂∆0
β νΛ,β(Γ).

Moreover, since there are 2|∆0| ways of coloring the vertices in ∆0 using only two
colors, we see that there are at most 2|∆0| different contour configurations Γ in
Ψ−1(Γ′). Recall that J∆0 = {Γ: no contour in Γ intersects ∆0} corresponds to
the event that ∆0 is uniformly colored in one color. Let S∆0

be the event that all

contours intersecting ∆0 are simple. Then

(4.20)

νΛ,β(J∆0) =
∑

Γ′∈J∆0

νΛ,β(Γ′) ≥ 2−|∆0|
∑

Γ∈S∆0

νΛ,β(Ψ(Γ))

≥ 2−|∆0|−M∆0p
M∂∆0
β

∑
Γ∈S∆0

νΛ,β(Γ) ≥ 2−1−|∆0|−M∆0p
M∂∆0
β ,

where we have used (4.16) in the last step. �
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Proof of Lemma 2.4. Consider any v ∈ V1 ∩ Λ and let w1, w2, w3 ∈ V0 be its
neighbors in G. Then the DLR equations for the volume {v} imply that

(4.21)

µ1
Λ,β(∃i with σv = σwi |σw1 , σw2 , σw3)

=



e−3β

2 + e−3β
if σw1 = σw2 = σw3

e−β + e−2β

1 + e−β + e−2β
if |{σw1 , σw2 , σw3}| = 2

1 if |{σw1 , σw2 , σw3}| = 3

Let B := {σ : |{σw1 , σw2 , σw3}| = 3} be the (“bad”) event that w1, w2, w3 are colored
in three different colors. It follows from Corollary 4.4 that

(4.22) µ1
Λ,β(B) ≤ Ce−2β

uniformly for β ∈ [β0,∞] and for finite and simply connected Λ 3 v such that
∂Λ ⊂ V0; and by increasing C we can make this hold uniformly for β ∈ [0,∞]. It
then follows from (4.21) and (4.22) that

(4.23) µ1
Λ,β(∃i with σv = σwi) ≤ C ′e−β

uniformly for β ∈ [0,∞] and for finite and simply connected Λ 3 v such that
∂Λ ⊂ V0. �

5. Positive magnetization

In this section we prove Lemma 2.3: by using this lemma we can improve the
statement that sufficiently large blocks are more likely to be uniformly colored in
the color 1 than in any other color, to the “positive magnetization” statements
in Theorem 1.1(a,b), which say that single vertices in the sublattices V0 and V1

are colored with the color 1 with a probability that is strictly larger (resp. strictly
smaller) than 1/3.

We fix an arbitrary β0 > 0 throughout this section; our estimates will be uniform
in β ∈ [β0,∞]. We will later also fix a finite G0-connected set ∆0 ⊂ V0. As in all
our proofs, we work with the finite-volume Gibbs measures µ1

Λ,β, where Λ ⊂ V is
finite and simply connected in G and satisfies ∂Λ ⊂ V0. We aim to derive bounds
that are uniform in such Λ with Λ ⊇ ∆0.

Unlike what was done in the preceding subsections, we will not make use of the
contour description of µ1

Λ,β, nor will we integrate out one sublattice. Rather, we
will work directly with the Potts antiferromagnet on our original quadrangulation
G = (V,E).

Note first that the measures µ1
Λ,β are invariant under global interchange of the

colors 2 and 3. In particular, we have µ1
Λ,β(σv = 2) = µ1

Λ,β(σv = 3) for all v ∈ Λ.

Thus, to show that µ1
Λ,β(σv = 1) > 1/3 (resp. < 1/3), we may equivalently show
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that µ1
Λ,β(σv = 1)− µ1

Λ,β(σv = 2) > 0 (resp. < 0). Because of the antiferromagnetic
nature of our model, it is in fact already nontrivial to show that these quantities
are nonnegative (resp. nonpositive) for v ∈ V0 (resp. v ∈ V1). This problem has
been solved, however, in [24, Appendix A], where a first Griffiths inequality for
antiferromagnetic Potts models on bipartite graphs is proven using ideas based on
the cluster algorithm from [70, 71].

We will elaborate on these ideas. The main step will be to give a random-cluster
representation for the law of the 1’s and 2’s conditional on the 3’s. In this represen-
tation, we will see that for v0 ∈ V0, the difference between the probabilities that v0 is
colored 1 or colored 2 equals the probability that v0 percolates, i.e., that v0 is in the
same random cluster of 1’s and 2’s as the boundary ∂Λ. Moreover, a similar state-
ment holds for the probability that ∆0 is uniformly colored in the color 1 minus the
probability that it is uniformly colored in the color 2. Thus, by showing that both
of these quantities are related to percolation of the 1’s and 2’s, we can prove that if
one of them is strictly positive, then so must be the other. Note that conditioning
on the positions of the 3’s would not in general be a very useful thing to do when
trying to prove statements about our model, since we have no a priori knowledge of
the distribution of the 3’s. Nevertheless, as we see here, it can be used to show that
a certain statement that has already been proved is equivalent to another statement
for which we have no direct control.

So let G = (V,E) be our original quadrangulation, and let EΛ be the set of
edges in E that have at least one endvertex in Λ. We define the measure ρ1

Λ,β on

{1, 2, 3}Λ×{0, 1}EΛ so that the marginal distribution of ρ1
Λ,β(σ, η) on σ is the Gibbs

measure µ1
Λ,β and so that, conditional on σ, independently for each e ∈ EΛ, one has

ηe = 1 with probability p := 1− e−β if σu, σv ∈ {1, 2} and σu 6= σv, and ηe = 0 in all
other cases. That is,
(5.1)

ρ1
Λ,β(σ, η) :=

1

Z1
Λ,β

exp
[
− βHΛ(σ | τ)

]
×

∏
{u,v}∈EΛ

(
1Au,v

[
p1{η{u,v}=1} + (1− p)1{ηu,v=0}

]
+ 1Ac

u,v
1{ηu,v=0}

)
where Au,v is the event

(5.2) Au,v :=
{
σu, σv ∈ {1, 2} and σu 6= σv

}
,

Ac
u,v is its complement, τ is any spin configuration that assumes the value 1 on ∂Λ,

HΛ(σ|τ) is defined in (1.4), and Z1
Λ,β is the same normalizing constant as in (1.6).

Now let

Λ12 :=
{
v ∈ Λ ∪ ∂Λ: σv ∈ {1, 2}

}
(5.3a)

Λ3 :=
{
v ∈ Λ: σv = 3

}
(5.3b)



LOW-TEMPERATURE POTTS ANTIFERROMAGNETS 39

be the sets of vertices in Λ∪∂Λ where σ assumes the values 1 or 2 (resp. 3), and set

(5.4) E12 := {e ∈ EΛ : ηe = 1} .
Conditionally on Λ3, the spins (σv)v∈Λ12 are distributed as an antiferromagnetic
Ising model, with 1 boundary conditions, on the diluted lattice Λ12. Since Λ12 is
bipartite and the boundary conditions lie entirely on the sublattice V0, we may flip
the spins on the other sublattice (i.e., on Λ12 ∩ V1) to obtain a ferromagnetic Ising
model (σ′v)v∈Λ12 on Λ12. After this flipping, the conditional joint law of (σ′v)v∈Λ12 and
η given Λ3 is just the standard coupling of this ferromagnetic Ising model and its
corresponding random-cluster model on Λ12 (see [23] and [33, Section 1.4]). (Notice
that for all edges {u, v} such that {u, v} ∩ Λ3 6= ∅, we have η{u,v} = 0.) Returning
to the original (unflipped) spins (σv)v∈Λ12 , we see from [33, Theorem 1.13] that, con-
ditional on Λ3 and η, the connected components of the graph G12 = (Λ12, E12) are
independently given proper 2-colorings (with colors 1 and 2) as follows: for any com-
ponent not connected to the boundary ∂Λ, each of the two proper 2-colorings arises
with probability 1/2; and any component connected to the boundary is given the
unique proper 2-coloring that is compatible with the boundary conditions (namely,
color 1 on V0 and color 2 on V1). In particular, for points v0 ∈ V0 ∩ Λ one has

ρ1
Λ,β

(
σv0 = 1

∣∣Λ3, η
)

=


1 if v0 ↔η ∂Λ
1
2

if v0 ∈ Λ12 and v0 6↔η ∂Λ

0 if v0 ∈ Λ3

(5.5)

ρ1
Λ,β

(
σv0 = 2

∣∣Λ3, η
)

=


0 if v0 ↔η ∂Λ
1
2

if v0 ∈ Λ12 and v0 6↔η ∂Λ

0 if v0 ∈ Λ3

(5.6)

where v ↔η ∂Λ denotes the event that v is connected to ∂Λ through a path of edges
with ηe = 1 [note that v0 ∈ Λ3 implies v0 6↔η ∂Λ]. For the unconditional law, it
follows that

(5.7) ρ1
Λ,β(σv0 = 1)− ρ1

Λ,β(σv0 = 2) = ρ1
Λ,β

(
v0 ↔η ∂Λ

)
.

For v1 ∈ V1 ∩ Λ, one has similar equations with the roles of colors 1 and 2 inter-
changed, so that

(5.8) ρ1
Λ,β(σv1 = 2)− ρ1

Λ,β(σv1 = 1) = ρ1
Λ,β

(
v1 ↔η ∂Λ

)
.

Now consider a finite set ∆0 ⊂ V0, and recall that Jk,∆0 denotes the event that

∆0 is uniformly colored in the color k, and that J∆0 =
⋃3
k=1 Jk,∆0 denotes the event

that all sites in ∆0 are uniformly colored in some color. Let ∆0 ↔η ∂Λ denote the
event that there is at least one site in ∆0 that is connected to ∂Λ through a path of
edges with ηe = 1. Since

(5.9) ρ1
Λ,β

(
J1,∆0

∣∣Λ3, η
)

= ρ1
Λ,β

(
J2,∆0

∣∣Λ3, η
)

a.s. on ∆0 6↔η ∂Λ
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and

(5.10) ρ1
Λ,β

(
J2,∆0

∣∣Λ3, η
)

= 0 a.s. on ∆0 ↔η ∂Λ,

we see that

(5.11) ρ1
Λ,β(J1,∆0)− ρ1

Λ,β(J2,∆0) = ρ1
Λ,β

(
J∆0 ∩ {∆0 ↔η ∂Λ}

)
.

Now, recall that a finite set ∆ ⊂ V is termed thick if there exists a nonempty finite
subset ∆1 ⊂ V1 that is connected in G1 and such that ∆ = {v ∈ V : dG(v,∆1) ≤ 1}.
We therefore fix some thick set ∆ ⊂ V and define ∆0 := ∆∩V0 (since G is bipartite
we have ∆1 = ∆ ∩ V1). Comparing (5.7)/(5.8)/(5.11) and noting that ρ1

Λ,β can be

replaced by µ1
Λ,β on the left-hand sides, we see that Lemma 2.3 is implied by the

following claim:

Lemma 5.1. (Comparison lemma) Fix β0 > 0 and let ∆ ⊂ V be thick. Then
there exists an ε > 0 such that

(5.12) ρ1
Λ,β

(
v ↔η ∂Λ for all v ∈ ∆

)
≥ ε ρ1

Λ,β

(
J∆0 ∩ {∆0 ↔η ∂Λ}

)
uniformly for all β ∈ [β0,∞] and all simply connected finite sets Λ ⊇ ∆ such that
∂Λ ⊂ V0. In fact, we can choose ε = 3−|∆1| (1 − e−β0)|E∆| where E∆ =

{
{u, v} ∈

E : u, v ∈ ∆
}

.

Proof. The proof is by a finite-energy argument: that is, to each (σ, η) ∈ J∆0 ∩
{∆0 ↔η ∂Λ} we associate a (σ′′, η′′) ∈ {v ↔η ∂Λ for all v ∈ ∆}; we then compute a
lower bound on the ratio of ρ1

Λ,β(σ′′, η′′) to the total ρ1
Λ,β-weight of the configurations

(σ, η) that map onto it. The construction is in two steps (σ, η) 7→ (σ′, η′) 7→ (σ′′, η′′).
In the first step we recolor all spins (σv)v∈∆1 to σ′v = 2 (leaving all other variables
as is). In the second step we set all bond variables (ηe)e∈E∆

to η′′e = 1 (again leaving
all other variables as is). Let us now compute a lower bound on the ratio of weights,
as follows:

Since (σ, η) ∈ J∆0 ∩ {∆0 ↔η ∂Λ} and ∂Λ is colored 1, it follows that σv = 1
for all v ∈ ∆0. Since ∆ is thick, every vertex in ∆1 has all its neighbors in ∆0.
Therefore we can recolor all sites in ∆1 with the color 2 without increase in energy,
i.e. ρ1

Λ,β(σ′, η′) ≥ ρ1
Λ,β(σ, η).21 We lose a factor 3|∆1| because 3|∆1| configurations

(σ, η) map onto the same configuration (σ′, η′).
We now have σ′u 6= σ′v for all {u, v} ∈ E∆. Therefore ρ1

Λ,β(σ′′, η′′) is precisely pE∆

times the total ρ1
Λ,β-weight of the configurations (σ′, η′) that map onto it, where

p = 1− e−β ≥ 1− e−β0 . �

Remark. The ideas in this section — in particular, formulas (5.7), (5.8) and
(5.11) — have an obvious generalization to the q-state Potts antiferromagnet for
any q ≥ 2 on any bipartite graph (not necessarily a plane quadrangulation), where

21 In fact, (5.12) would still hold (with a worse ε) even if there were an energy cost associated
to this operation, provided that this energy cost is uniformly bounded.
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we condition on q − 2 colors and use the random-cluster representation for the
remaining 2 colors. Indeed, as in [24, Appendix A], we may consider an even more
general situation: Suppose that the vertex set V is partitioned as V = V0 ∪ V1;
then we can consider a Potts model with antiferromagnetic interactions on edges
connecting V0 to V1 and ferromagnetic interactions on edges V0–V0 and V1–V1.

Appendix A. Some facts about infinite planar graphs

The purpose of this appendix is to collect some facts about infinite graphs, and in
particular about infinite graphs embedded in the plane, that will be needed in the
main part of the paper. An excellent general introduction to the theory of infinite
graphs can be found in [16, Chapter 8]; but we shall require here some further facts
that are scattered throughout the recent research literature, plus a few that appear
to be new.

A.1. Basic facts and definitions. Recall that a graph is a pair G = (V,E) con-
sisting of a (not necessarily finite) vertex set V and edge set E. Unless mentioned
otherwise, when we say “graph” we will always mean a simple graph, i.e., an undi-
rected graph that has no loops or multiple edges. Thus, the elements of E (the
edges) are unordered sets {v, w} containing two distinct elements of V . Two ver-
tices v, w ∈ V are called adjacent if {v, w} ∈ E. An edge e containing a vertex v
is said to be incident to v. The degree of a vertex v ∈ V is the number of edges
incident to it. We say that G is finite (resp. countable) if both V and E are finite
(resp. countable). We say that G is locally finite (resp. locally countable) if every
vertex has finite (resp. countable) degree.

A graph G′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E is called a subgraph of
G = (V,E); we also say that G contains G′. If E ′ contains all edges {v, w} ∈ E
with v, w ∈ V ′, then G′ is called the subgraph of G induced by V ′. Likewise, if
V ′ = {v ∈ V : ∃w ∈ V s.t. {v, w} ∈ E ′}, then we call G′ the subgraph induced by
E ′.

We will say that a graph G is connected if for every proper subset W ⊂ V
(the word “proper” means that W 6= ∅, V ) there is an edge {v, w} ∈ E with
v ∈ V \W , w ∈ W . Let us note that every locally countable, connected graph
is countable.22 A connected graph in which each vertex has degree ≤ 2 will be
called a generalized path. The length of a generalized path is the number of its
edges. Vertices of degree 2 are called internal vertices of the generalized path, while
vertices of degree one or zero are called endvertices .23 An infinite generalized path
with one endvertex is called a one-way-infinite path or ray ; an infinite generalized
path without endvertices is called a two-way-infinite path or double ray ; a finite
generalized path without endvertices is called a cycle; and a finite generalized path

22 Indeed, if G = (V,E) is connected and W is the set of all vertices at finite graph distance
from a given vertex, then connectedness implies W = V .

23 Note that a vertex of degree zero can occur in a connected graph (and more particularly in
a path) only if the graph has precisely one vertex.
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with one or two endvertices is called a path. In particular, a graph consisting of a
single vertex and no edges is a path of length zero.

Two vertices v, w in a graph G are linked by a path if G contains a path that has
v and w as its endpoints. Then it is easy to see that a graph is connected (according
to our definition above) if and only if every pair of vertices in G is linked by a path.
The graph distance d(v, w) between two vertices v, w ∈ V is the length of a shortest
path linking v and w if such a path exists, and ∞ otherwise. An edge {v, w} in
a path P is said to be a final edge of P if either v or w (or both) has degree one.
The graph distance d(e, f) between two edges e, f ∈ E is defined as the minimal
length minus one of a path that has e and f as final edges. Note, in particular, that
d(e, f) = 0 iff e = f , and that d(e, f) = 1 iff e 6= f but e and f share a vertex. It
is easy to check that, whenever G is connected, the graph distance between vertices
(resp. edges) defines a metric on V (resp. E).

Let G = (V,E) be a connected graph. A set B ⊆ E is called separating if G\B is
not connected. A set C ⊆ E is called a cutset if there exists a partition {V1, V2} of V
into two nonempty sets such that C = E(V1, V2) := {{v1, v2} ∈ E : v1 ∈ V1, v2 ∈ V2}.
(Since G is assumed connected, ∅ is not a cutset.) A separating set (resp. cutset)
is called minimal if it contains no proper subset that is a separating set (resp. a
cutset). In fact, the two concepts are the same: each minimal separating set is also
a minimal cutset and vice versa. Moreover, a set C ⊆ E is a minimal cutset if and
only if (V,E\C) has exactly two connected components.24

Two rays in an infinite graph G are said to be end-equivalent (or equivalent for
short) if one (hence all) of the following equivalent conditions holds:

1) there exists a third ray whose intersection with both of them is
infinite;
2) there are infinitely many disjoint paths in G joining the two rays;
3) for every finite set S ⊂ V , the two rays are eventually contained
in the same connected component of G\S.

It is easy to see that end-equivalence is an equivalence relation. The corresponding
equivalence classes are termed the ends of the graph G.25 It is not hard to see that a
connected, locally finite graph G = (V,E) has one end if and only if for every finite
E ′⊆E, the subgraph (V,E\E ′) has exactly one infinite component; or equivalently,
if every finite minimal cutset divides V into two connected components, of which
exactly one is of infinite size.

24 In the graph-theory literature, minimal cutsets are sometimes called bonds. Alas, in the
statistical-mechanics literature, “bond” is often used as a synonym for “edge”. To forestall confu-
sion, we prefer to avoid the term “bond” altogether.

25 This definition of the ends of a graph is due to Halin [34] in 1964 (see also Freudenthal [26]
for the locally finite case). The notion of “end” of a topological space was introduced much earlier
by Freudenthal [25], in 1931. If one identifies G with the “topological realization” defined below
(at the beginning of Section A.3), then the two notions coincide for locally finite graphs but are
different in general [18]. See [48] for an elementary introduction to the theory of ends of locally
finite graphs; and see [50] for a survey treating both graphs and topological spaces.
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For k ≥ 1, a graphG = (V,E) is called k-connected if |V | ≥ k+1 and the subgraph
induced by V \W is connected for all W ⊂ V satisfying |W | < k. (Otherwise put,
to disconnect G one must remove at least k vertices.) Two vertices v, w in G are
said to be k-edge-connected if one needs to remove at least k edges to unlink them;
a graph is called k-edge-connected if every pair of vertices in it is k-edge-connected.
It is easy to see that k-edge-connectedness of vertices is an equivalence relation; the
corresponding equivalence classes of vertices (and their induced subgraphs) are called
the k-edge-connected components of the graph. Two paths are called vertex-disjoint
(resp. edge-disjoint) if their sets of internal vertices (resp. edges) are disjoint. By
Menger’s theorem, two vertices are k-edge-connected if and only if they are linked
by k edge-disjoint paths, and a graph is k-connected if and only if every two vertices
are linked by k vertex-disjoint paths.

An automorphism of a graph G = (V,E) is a bijection g : V → V such that
{g(v), g(v′)} ∈ E if and only if {v, v′} ∈ E. We say that two vertices v, w ∈ V
are of the same type, denoted v ∼ w, if there exists an automorphism g of G such
that g(v) = w. Then ∼ is an equivalence relation that divides the vertex set V into
equivalence classes called types. A graph is called vertex-transitive if there is only
one type of vertex, and vertex-quasi-transitive if there are only finitely many types
of vertices. Similarly, we say that two edges {v, v′}, {w,w′} ∈ E are of the same
type if there exists an automorphism g of G such that {g(v), g(v′)} = {w,w′}; and
we say that two directed edges (v, v′), (w,w′) ∈ V × V with {v, v′}, {w,w′} ∈ E
are of the same type if there exists an automorphism g of G such that g(v) = w
and g(v′) = w′. Edge- and directed-edge- transitivity or quasi-transitivity are then
defined in the obvious way. We shall need the following fairly easy result:

Lemma A.1. For a locally finite graph G, the following are equivalent:

(a) G is vertex-quasi-transitive.
(b) G is edge-quasi-transitive.
(c) G is directed-edge-quasi-transitive.

Proof. (b) ⇔ (c): Obviously, if two directed edges (v, v′) and (w,w′) are of the
same type, then the corresponding undirected edges {v, v′} and {w,w′} are also of
the same type. This shows that there are as most as many types of edges as there
are types of directed edges. Conversely, since there are only two ways to order a set
with two elements, there are at most twice as many types of directed edges as there
are types of edges.

(c) ⇒ (a): If two directed edges (v, v′) and (w,w′) are of the same type, then
obviously v and w are of the same type. Since all isolated vertices (i.e., vertices of
degree zero) are of the same type, this shows that the number of types of vertices is
at most the number of types of directed edges plus one.

(a)⇒ (c): Assume that there are m types of vertices and that these have degrees
d1, . . . , dm. Pick representatives v1, . . . , vm of these equivalence classes. For any
directed edge (v, v′), there exists a k ∈ {1, . . . ,m} and a graph automorphism that
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maps v to vk. Since a graph automorphism preserves the graph structure, w′ must be
mapped into one of the dk vertices adjacent to vk. Thus, we have found d1 + · · ·+dm
directed edges such that each directed edge can be mapped into one of these by a
graph automorphism. In particular, the number of types of directed edges is at most
d1 + · · ·+ dm. �

In view of Lemma A.1, we usually talk about quasi-transitive graphs without
specifying whether we mean in the vertex, edge or directed-edge sense.26

A geodesic in a graph G is a generalized path P such that for each pair of vertices
v, w in P , the graph distance from v to w in P coincides with the graph distance
from v to w in G. It is not hard to see that any path of minimal length linking two
vertices v′, w′ is a geodesic. For completeness, we prove the following simple fact.
Part (a) of this lemma can be found, for example, in [59, Prop. 1]; it is a simple
corollary of König’s Infinity Lemma [16, Lemma 8.1.2]. We did not find a reference
for part (b), but it is presumably well known.

Lemma A.2. (Infinite geodesics) Let G = (V,E) be a locally finite connected
graph with infinite vertex set V . Then:

(a) For each v ∈ V , there exists a geodesic ray whose endpoint is v.
(b) If G is moreover quasi-transitive, then G contains a geodesic double ray.

Proof. Since each vertex is of finite degree, the set of vertices at distance k from
v is finite for each k ≥ 0. Therefore, since V is infinite and G is connected, for
each n ≥ 1 we can find a vertex vn ∈ V at distance d(v, vn) = n. Consider a path

(v
(n)
0 = v, v

(n)
1 , . . . , v

(n)
n−1, v

(n)
n = vn) and define the function fn : N → V by taking

fn(k) = v
(n)
k for k ≤ n and fn(k) = vn for all k ≥ n. Since the set of points at

distance k from v is finite for each k ≥ 0, we may select a subsequence fnm that
converges pointwise in the discrete topology. It is easy to see that the limit of such
a subsequence is a geodesic ray starting at v, proving part (a) of the lemma.

To prove also part (b), we use that by quasi-transitivity, the geodesic ray con-
structed in part (a) must pass through at least one type of vertex infinitely often.
It follows that for a vertex v of this type, for each n ≥ 0 we can find a function
fn : Z → V such that fn(0) = v, fn(k) = fn(−n) for all k ≤ −n, the vertices
{fn(k) : k ≥ −n} are all different, and the graph induced by this set is a geodesic
ray. (It suffices to employ the corresponding automorphism to shift the original ge-
odesic ray by identifying a vertex of given type sufficiently far on it with the vertex
v.) Now the statement follows from the same sort of compactness argument as used
in the proof of part (a). �

26 The term “almost transitive” is also used as a synonym for “quasi-transitive”.
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A.2. Duality. In the main part of this paper, we make extensive use of the fact
that the two sublattices G0 and G1 are each other’s dual in the sense of planar graph
duality. Such duals may be defined abstractly, using only basic concepts of graph
theory, without any reference to embeddings of graphs in the plane. In fact, this
abstract notion of duality is sufficient for all our proofs, as we shall show in the
present subsection. Nevertheless, in the next subsection we will complement this
abstract theory by showing that sufficiently “nice” embeddings of a graph in the
plane give rise to abstract duals, and conversely that every locally finite abstract
dual arises in this way.

The basic theory of duals of infinite graphs was developed by Thomassen [68, 69],
which we largely follow here; see also Bruhn and Diestel [9, 17, 10] for a partially
alternative approach.27 Abstract duals can be defined for 2-connected graphs, but
in this case the dual may have multiple edges; we therefore restrict ourselves for
simplicity to the 3-connected case.

If G = (V,E) is a 3-connected graph, then an abstract dual of G is a connected
graph G† = (V †, E†) together with a bijection E 3 e 7→ e† ∈ E† such that a finite
set C ⊆ E is a cycle in G if and only if C† := {e† : e ∈ E} is a minimal cutset in
G†. We stress that in this generality the term “dual” is something of a misnomer,
since G need not be an abstract dual of G†; indeed, G† need not have any abstract
dual at all, even when G is planar and locally finite [68, p. 266]. However, if both
G and G† are locally finite, then the situation becomes particularly nice:

Theorem A.3. (Locally finite abstract duals) Let G = (V,E) be a locally finite
3-connected graph that has a locally finite abstract dual G† = (V †, E†). Then:

(i) G, with the inverse map E† 3 e† 7→ e ∈ E, is an abstract dual of G†.
(ii) G† is 3-connected.

(iii) G† is, up to isomorphism, the only abstract dual of G.
(iv) If G has one end, then so does G†.
(v) If G is quasi-transitive, then so is G†.

Proof. Part (ii) follows from [69, Theorem 4.5]. Then parts (i) and (iii) follow
from [68, Theorem 9.5]. Part (iv) follows from [10, Theorem 1.1], which states that
there is a homeomorphism between the spaces of ends of G and G† (considered as
subspaces of the Freudenthal compactification, to be defined in the next subsection);
so in particular G has one end if and only if G† does. (Alternatively, this can be
deduced from Proposition A.12(iii) below, using Lemma A.7 and Theorem A.10.)

We did not find a reference for part (v), but this is not hard to prove using
some more results from [68]. We will prove the following, stronger statement. Let

27 The approach of Thomassen [68, 69] is based on the study of finite cycles and minimal cutsets,
as explained below. The alternative approach of Bruhn and Diestel [9, 17, 10] introduces (by topo-
logical means) a notion of infinite “cycles”, and shows that this notion allows a somewhat cleaner
duality theory. When G† is locally finite, the two concepts of duality coincide [9, Lemma 4.7]. We
are therefore entitled to use here the theorems from [9, 17, 10] under the added hypothesis that
G† is locally finite.
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g : V → V be a graph automorphism of G and let g({v, w}) := {g(v), g(w)} also
denote the induced map g : E → E on edges. Then there exists an automorphism
g† of G† such that the induced map on edges satisfies g†(e†) = g(e)†. This shows
that two edges in G† are of the same type if the corresponding edges in G are of the
same type. Since by part (i), duality is a symmetric relation, this “if” is an “if and
only if”. In particular, G† is edge-quasi-transitive if and only if G is (with the same
number of types of edges).

To prove the existence of g†, we need some definitions. Let C = (V (C), E(C))
be a cycle in the graph G = (V,E). We say that C is an induced cycle if C is the
subgraph of G induced by V (C); equivalently, this says that C has no diagonals ,
i.e., there are no edges in E\E(C) that have both endvertices in V (C). We say that
C is a separating cycle if there are vertices v1, v2 in V \V (C) that are linked in G
but not in the subgraph of G induced by V \V (C).

Now let G = (V,E) be a locally finite 3-connected graph and let G† = (V †, E†)
be a locally finite abstract dual of G. Then [68, Theorem 9.5] says that there is a
one-to-one correspondence between vertices of G† and induced non-separating cycles
of G. Indeed, for each v† ∈ V †, the set C† of edges in G† that are incident to v† has
the property that C := {e : e† ∈ C†} is an induced non-separating cycle of G, and
conversely, every induced non-separating cycle of G arises in this way.

Now let g be a graph automorphism of G. Since g maps induced non-separating
cycles into induced non-separating cycles, there is a bijection g† : V † → V † that
maps a vertex v† into a vertex w† of G† if and only if g maps the associated induced
non-separating cycles of G into each other. Since two vertices of G† are adjacent if
and only of the associated induced non-separating cycles of G share an edge, we see
that g† is a graph automorphism of G† such that the induced map g : E† → E† on
edges satisfies g†(e†) = g(e)†. �

Let G and G† be as in Theorem A.3, let v† ∈ V † be a vertex in G†, and let E†
v†

:=

{e† ∈ E† : e† is incident to v†}. Then E†
v†

is a minimal cutset in G†, which is finite

by virtue of the local finiteness of G†; hence Ev† := {e ∈ E : e† ∈ E†
v†
} is a cycle in G.

We loosely call v† a face of G and we call Ev† the boundary of this face. Indeed, we
will see in the next subsection that for a suitable embedding of G in the plane R2, v†

corresponds to a connected component of R2\G and Ev† corresponds to its boundary.
In view of this, we abstractly define a triangulation (resp. quadrangulation) to be a
locally finite 3-connected graph G that has an abstract dual G† in which each vertex
has degree 3 (resp. 4).

Now assume that G has one end. Then each finite minimal cutset C of G corre-
sponds to a partition {V1, V2} of V into two connected components, of which exactly
one is infinite. Let V1, V2 denote the finite and infinite component, respectively.
Since by Theorem A.3(i), G is an abstract dual of G†, the set C† := {e† : e ∈ C}
is a cycle in G†, and each cycle in G† arises in this way. We call Int(C†) := V1
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and Ext(C†) := V2 the interior and exterior of C†, respectively. We say that C†

surrounds a vertex v ∈ V if v ∈ Int(C†).
An essential ingredient in our proofs in this paper is an upper bound (Lemma 3.4)

for certain quasi-transitive triangulations G on the number of cycles in G† of a given
length surrounding a given vertex v in G. To derive this bound, we need some simple
graph-theoretic facts.

Lemma A.4. (Distances in a graph and its dual) Let G = (V,E) be a 3-
connected graph. Assume that each vertex in G has degree at most dmax and that G
has a locally finite abstract dual G† = (V †, E†). Then for all e, f ∈ E we have

(A.1) d(e†, f †) ≤ (1
2
dmax − 1)d(e, f) + 1 ,

where d(e†, f †) denotes the distance between e† and f † in the dual graph G†.

Note that dmax ≥ 3 since G is 3-connected.

Proof of Lemma A.4. If e = f (hence e† = f †), the statement is trivial, so
consider the case e 6= f . Let P be a path of minimal length that has e and f as
final edges. For each vertex v of G, let E†v := {e† : e is incident to v} denote the
boundary of the corresponding face of G†. Note that E†v is a cycle whose length
is the degree of v. If some E†v and E†w share an edge e†, then e connects v and
w. For internal vertices v, w of P , by the minimality of P , this is possible only
if v and w are adjacent in P . Let v1, . . . , vn be the internal vertices of P , where
n = d(e, f), and let d1, . . . , dn denote their degrees in G. Then the symmetric
difference D := E†v1

M · · ·ME†vn consists of exactly
∑n

k=1 dk − 2(n − 1) edges which
form a cycle in G† containing e† and f †. It follows that G† contains two paths
P †1 , P

†
2 which have e† and f † as their final edges and are otherwise edge-disjoint,

and whose respective lengths k1, k2 satisfy k1 + k2 − 2 =
∑n

k=1 dk − 2(n − 1). We
conclude from this that min(k1, k2) ≤ (k1 + k2)/2 ≤ 1

2
(ndmax − 2n + 4) and hence

d(e†, f †) ≤ (1
2
dmax − 1)n+ 1. �

Now let G = (V,E) be a locally finite 3-connected quasi-transitive graph that
has a locally finite abstract dual G† = (V †, E†). By Theorem A.3(v), G† is also
quasi-transitive, hence of bounded degree; let d†max denote the maximal degree of a
vertex in G†. By Lemma A.2(b), G contains at least one geodesic double ray; let
V0 be the set of all vertices v ∈ V that lie on some geodesic double ray. Then, by
quasi-transitivity, the maximal distance of any vertex in G to the set V0,

(A.2) K := sup
w∈V

inf
v∈V0

d(v, w) ,

is finite. Note, finally, that by Lemma A.2(a), at each v ∈ V there starts at least
one geodesic ray.

Proposition A.5. (Distance to a surrounding cycle) Let G,G†, d†max and K
be as above. Assume that G has one end. Let v ∈ V , let R be a geodesic ray in G
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starting at v, and let C† be a cycle in G† of length L surrounding v. Then C† must
cross one of the first N edges of R, where

(A.3) N := 1 +K + 1
2
(1

2
d†max − 1)L.

Proof. As discussed above, the cycle C† corresponds to a minimal cutset C of G,
which divides G into two connected components, one of which is finite and the other
of which is infinite; moreover, v is contained by hypothesis in the finite component.
Since R is an infinite ray starting at v, it must use somewhere an edge of C; let f
be the first such edge, and let f † ∈ C† be the corresponding dual edge.

Let w be the point in V0 that is closest to v, let P be a path of minimal length
K ≤ K linking v and w, and let D be a geodesic double ray containing w. Write
D = R1 ∪ R2 where R1, R2 are geodesic rays starting at w, and observe that R′1 :=
P ∪R1 and R′2 := P ∪R2 are rays starting at v. The cycle C† must cross some edge
in R′1 and some edge in R′2. Let e1, e2 be the first edges (counting from v) in R′1, R

′
2

crossed by C†. We distinguish two cases: I. e1 6= e2 and II. e1 = e2.
In case I, e1 and e2 lie on D and are the (K+N1)-th and (K+N2)-th edge of the

rays R′1 and R′2, say. Then C† is the union of two paths P †1 , P
†
2 , each of which has

e†1 and e†2 as their final edges, and which are disjoint except for their overlap at e†1
and e†2. Let L1, L2 denote the lengths of these paths in G†, where L1 + L2 − 2 = L.

Without loss of generality we may assume that f † lies on P †1 and is the M1-th edge

of P †1 starting from e1 and the M2-th edge starting from e2, where M1 +M2−1 = L1.
By Lemma A.4 (applied with the roles of G and G† reversed), we have

(A.4) min(L1, L2) ≥ d(e†1, e
†
2)+1 ≥ 1

c

(
d(e1, e2)−1

)
+1 =

1

c

(
N1 +N2−2

)
+1 ,

where we have abbreviated c := 1
2
d†max − 1. Therefore

(A.5) M1 +M2 = L1 + 1 = L+ 3− L2 ≤ L+ 2− 1

c

(
N1 +N2 − 2

)
.

Using Lemma A.4 again, there exists a path in G of length at most c(M1 − 1) + 1
that has e1 and f as its final edges, and another path of length at most c(M2−1)+1
that has e2 and f as its final edges. Combining these paths with the pieces of R′1
and R′2 leading up to e1 and e2, respectively, we find two paths in G starting at v
and with f as their final edge, with lengths of at most

(A.6) K +N1 + c(M1 − 1) and K +N2 + c(M2 − 1) ,

respectively. By (A.5), it follows that the average length of these two paths is at
most

(A.7)

1
2

(
2K +N1 +N2 + c(M1 +M2 − 2)

)
≤ 1

2

[
2K +N1 +N2 + c

(
L− 1

c
(N1 +N2 − 2)

)]
= 1 +K + 1

2
cL .



LOW-TEMPERATURE POTTS ANTIFERROMAGNETS 49

Taking the shorter of these two paths, we have found a path of length at most
1 +K + 1

2
cL starting at v and having f as its final edge. But since R is a geodesic

ray, the distance from v to f along R must be at most this.
In case II, e := e1 = e2 must lie on P ; it is the first edge of P (counting from v)

that is crossed by some edge in C†. Then C† contains two paths with lengths L1, L2

satisfying L1 + L2 − 2 = L that have e† and f † as their final edges. It follows that
d(e†, f †) ≤ 1

2
L. Therefore, by Lemma A.4, d(e, f) ≤ 1

2
cL+ 1, which means that we

can find a path in G of length at most 1
2
cL + 2 that has e and f as its final edges.

Combining this path with the piece of P leading from v to e, we again find a path
of length at most 1 +K + 1

2
cL starting at v and having f as its final edge. �

A.3. Planar embeddings. In this section we collect some results that show that
sufficiently “nice” embeddings of a graph in the plane give rise to a geometric dual
that is also an abstract dual, and conversely that graphs having a locally finite
abstract dual have “nice” embeddings in the plane such that the geometric dual
coincides with the abstract dual.

Embeddings of finite (planar) graphs in the plane are treated in almost any ele-
mentary book on graph theory, but it is more difficult to find a good reference for
infinite planar graphs. Some articles that we have found useful are [6, 9, 19, 20, 49,
64, 68, 69].

Each graph G gives rise to a topological space — which, by a slight abuse of
notation, we shall continue to call G — that is defined by first assigning a disjoint
copy of [0, 1] to each edge of G and a point to each vertex of G and then identifying
the endpoints of intervals with the endvertices of the corresponding edges.28 We
equip G with the quotient topology arising from this identification: thus, a neigh-
borhood base of an inner point on an edge is formed by the open intervals on the
edge containing that point, while a neighborhood base of a vertex x is formed by the
unions of half-open intervals [x, z) containing x, one interval being taken from every
edge [x, y] incident to x.29 Such a topological realization of the graph G is compact
if and only if G is finite, and locally compact if and only if G is locally finite. It is
metrizable if and only if G is locally finite.30

28 More precisely, given a graph G = (V,E), we start from the set (E × [0, 1]) ∪ (V × {2}), and
then for each edge e = xy we identify (e, 0) with (x, 2) and (e, 1) with (y, 2).

29 With this topology, G is a 1-dimensional CW-complex [35, pp. 5–6 and pp. 519 ff.].
30 Indeed, if x is a vertex of infinite degree, then x does not have a countable neighborhood

basis in the topology we have given G. (It is possible to equip G with a different topology, which is
always metrizable, in such a way that a neighborhood base of a vertex x is formed by the unions of
half-open intervals [x, z) using the same distance ε = d(x, z) for each incident edge [28]. However,
we shall not use this topology.)
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An embedding of a graphG in the plane is a continuous injective map φ : G→ R2.31

A graph G that can be embedded in the plane is called planar . A plane graph is
a pair (G, φ) where G is a graph and φ is an embedding of G in the plane. We
(topologically) identify the sphere S with the one-point compactification R2 ∪ {∞}
of the plane R2. Embeddings of graphs in the sphere are defined analogously to
embeddings in the plane; a graph can be embedded in the sphere if and only if it
can be embedded in the plane.

If G is a finite graph, then φ(G), being the continuous image of a compact set, is
a closed subset of R2. Moreover, φ is necessarily a homeomorphism to its image, i.e.,
the inverse map φ−1 : φ(G)→ G is also continuous. Both statements fail in general
when G is infinite. Mainly for these reasons, not much can be said in general about
embeddings of infinite graphs; one needs extra conditions to proceed.

So let G be a graph with no isolated vertices, and let φ : G→ S be an embedding
of G in the sphere. Following an idea of [49], we say that φ is self-accumulation-free
if no point z ∈ φ(G) is an accumulation point of edges that do not contain z.32 We
say that φ is pointed if the image under φ of each ray in G converges to a point in
S.33 (Clearly, equivalent rays must converge to the same point. Inequivalent rays
may or may not converge to the same point.)

Recall that a compactification F of a topological space F is a compact topological
space F such that F ⊆ F is dense. We will always require that F be Hausdorff. As in
[64], we say that a compactification G of a connected, locally finite (not necessarily
planar) graph G is pointed if each ray in G converges to some point in G\G.34

(Clearly, equivalent rays must converge to the same point. Inequivalent rays may or
may not converge to the same point.) If G is a graph and G is any compactification

31 Traditionally an embedding is defined as a drawing in which the vertices are represented by
distinct points and the edges are represented by closed continuous arcs joining their endvertices,
mutually disjoint except possibly at their endpoints. Given an embedding in this sense, pasting
together the continuous mappings from [0, 1] to R2 corresponding to the individual edges always
yields a continuous map φ : G→ R2 (with the topology we have given G); and the converse is
trivial. Therefore, our definition of embedding is equivalent to the traditional one.

32 More precisely, if x = φ−1(z), we let E(x) ⊆ G be the union of all edges containing x;
we then require that z is not contained in the closure of φ(G \ E(x)). Krön [49] uses the term
“accumulation-free”, but we prefer the term “self-accumulation-free” in order to emphasize that
only accumulation points on the graph itself are forbidden. In this way we clearly distinguish this
concept from the standard concepts “VAP-free” and “EAP-free” to be introduced later, which
forbid accumulation points everywhere in the finite plane R2 = S\{∞}.

33 Observe that a ray R ⊆ G is homeomorphic to [0,∞) with its usual topology; what we are
requiring here is that lim

x→+∞ (x∈R)
φ(x) exists in S. Since S is compact, φ(x) must necessarily have

at least one limit point as x → +∞; what we are requiring here is that it have exactly one limit
point.

34 Note that in any compactification G of G, the limit points of a ray in G cannot lie in G,
because the topology of G extends that of G (and rays have no limit points in G). On the other
hand, since G is compact, each ray in G necessarily has at least one limit point in G. So what we
are requiring here is that each ray should have exactly one limit point in G.
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of G, then an embedding of G in the sphere is a continuous injective map φ : G→ S;
since G is compact, it is necessarily a homeomorphism to its image.

Lemma A.6. (Embeddings of compactifications) Let (G, φ) be a locally finite
plane graph with no isolated vertices. Then the following conditions are equivalent:

(i) φ is self-accumulation-free.
(ii) φ is a homeomorphism to its image.

(iii) φ can be extended to an embedding φ : G→ S in the sphere of some compacti-
fication G of G. [The extension is of course unique, since G is dense in G.]

Moreover, under these conditions, the embedding φ determines the compactification
G uniquely (up to trivial renamings of points in G\G); and G is a pointed compact-
ification if and only if φ is a pointed embedding.

Proof. If φ is not a homeomorphism to its image, then we can find xn, x ∈ G such
that φ(xn) → φ(x) but xn 6→ x. Since φ is continuous and injective, the sequence
(xn) cannot have any accumulation points in G other than x; so by passing to a
subsequence way may assume that it has no accumulation points at all. Since any
finite collection of edges is compact, the sequence (xn) must visit infinitely many
edges. Since G is locally finite, only finitely many of these edges can contain x. It
follows that φ is not self-accumulation-free.

Conversely, if φ is not self-accumulation-free, then there exists z = φ(x) ∈ φ(G)
and a sequence (xn) belonging to edges not containing x, such that φ(xn) → φ(x).
Clearly xn 6→ x, so φ is not a homeomorphism to its image.

If (iii) holds, then φ is a homeomorphism to its image, hence so is its restriction φ
to G. Conversely, if φ is a homeomorphism to its image, then we may topologically
identify G with its image φ(G). Then the closure φ(G) of φ(G) in the sphere S
is a compactification of φ(G) such that the identity map from φ(G) to itself can

be continuously extended to φ(G); moreover, φ(G) is (up to renaming) the only
compactification of φ(G) with this property.

Clearly, if φ(G) is a pointed compactification, then φ is a pointed embedding.
Conversely, if φ is a pointed embedding, then each ray in G converges to some point
z ∈ S; but since φ is self-accumulation-free, we have z /∈ φ(G), hence φ(G) is a
pointed compactification. �

Remark. If G is not locally finite, then φ can never be a homeomorphism of G
(with the topology we have given it) to its image. For if x is a vertex of infinite
degree, then it is easy to choose points xn lying on infinitely many distinct edges
such that φ(xn)→ φ(x); but xn 6→ x.

Let φ : G→ S be any embedding of a graph G in the sphere. Following [68, 69], let
us define a vertex accumulation point (resp. edge accumulation point) of an embed-
ding φ to be a point in S such that each of its open neighborhoods contains infinitely
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many vertices (resp. intersects infinitely many edges). We abbreviate “vertex ac-
cumulation point” and “edge accumulation point” by VAP and EAP, respectively.
Let us also say that a point x ∈ S is an endpoint of (G, φ) if there exists a ray
in G such that its image under φ converges to x. The next lemma says that for
self-accumulation-free pointed embeddings of 2-connected graphs, all these concepts
coincide:

Lemma A.7. (Endpoints of plane graphs) Let G be a locally finite 2-connected
graph, and let φ : G→ S be a self-accumulation-free pointed embedding of G. Then
the following four sets are equal:

(i) The set of vertex accumulation points of (G, φ).
(ii) The set of edge accumulation points of (G, φ).

(iii) The set of endpoints of (G, φ).

(iv) φ(G)\φ(G).

Proof. We will prove the inclusions (iii)⊆(i)⊆(iv)⊆(iii) and the same with (i)
replaced by (ii). Clearly, every endpoint is also a vertex and edge accumulation point.
Since φ is self-accumulation-free and locally finite, each vertex or edge accumulation
point lies in φ(G)\φ(G). For each point x ∈ φ(G)\φ(G), we can find a sequence
of points xn ∈ φ(G), all lying on different edges, such that xn → x. Since G is
2-connected, it can be shown that there exists a ray R in G whose image under φ
passes through infinitely many of these points. 35 Since φ is pointed, it follows that
x is the limit of the φ-image of R. �

Let G be a pointed compactification of a connected locally finite (not necessarily
planar) graph G. Then, by definition, each ray in G converges to some limit in
G\G; and conversely, if G is 2-connected, then the argument proving (iv)⊆(iii) in
Lemma A.7 shows more generally [64, p. 4591] that each point in G\G is the limit
point of some ray in G.

Each connected locally finite graph G has a unique (up to renaming) pointed
compactification G such that each point in G\G is the limit point of some ray in G
and moreover two nonequivalent rays always converge to different limit points: this
is the Freudenthal compactification F(G), see [16, Section 8.5] or [64, Section 7].36

Clearly, F(G)\G is in bijection with the space of ends of G. If G is 2-connected,
then, in a sense, F(G) is the “largest” pointed compactification of G (compare the
remarks on [64, p. 4594]). At the other end of the scale, every connected, locally

35 Given an infinite set B ⊆ E, we can use local finiteness to extract an infinite subset B′ ⊆ B
that is pairwise vertex-disjoint; then by [64, Proposition 8], G has a ray that uses infinitely many
of the edges in B′. Given an infinite subset T ⊆ V , we can obviously choose an infinite set B of
edges containing all the vertices in T , and then proceed as before.

36 The Freudenthal compactification is a general construction of point-set topology: it is defined
for locally compact Hausdorff spaces, or more generally for completely regular rim-compact spaces
(see e.g. [15, 50]). For locally finite graphs — which are the only ones we are concerned with — this
topological definition coincides with the graph-theoretic definition given here or in [16, Section 8.5].
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finite, infinite graph G has a smallest pointed compactification, namely the one-
point compactification G• = G ∪ {∞} in which every infinite sequence of distinct
vertices or edges (hence in particular every ray) converges to the single point ∞.

By Lemma A.6, an embedding φ of a connected locally finite graph G is self-
accumulation-free and pointed if and only if φ extends to an embedding φ of a
pointed compactification G of G. Richter and Thomassen [64, Theorems 1 and 13]
have proven the following key result concerning the existence and uniqueness of such
embeddings:

Theorem A.8. (Embeddings of 3-connected planar graphs) Let G be a 3-
connected locally finite planar graph. Then:

(a) There exists an embedding of the Freudenthal compactification F(G) in the
sphere S.

(b) If G is any pointed compactification of G and φ1, φ2 are embeddings of G
in the sphere S, then there exists a homeomorphism h : S → S such that
φ2 = h ◦ φ1.

The unique (up to homeomorphism) embedding of the Freudenthal compactification
F(G) in the sphere S will be called the Freudenthal embedding .

Henceforth we assume that G is a 2-connected locally finite graph and that
φ : G → S is a self-accumulation-free pointed embedding of G in the sphere. By
Lemma A.6, φ extends uniquely to an embedding φ : G→ S of an essentially unique
pointed compactification G of G, and we have φ(G) = φ(G). The connected com-
ponents of the remaining open set S\φ(G) are called the faces of the plane graph
(G, φ) [and also of (G, φ)]. For any face f , we let ∂f := f\f denote its (topological)
boundary. If X is any topological space, we say that a subset C ⊆ X is a circle if
it is homeomorphic to the unit circle S1. We need the following fundamental facts
about the boundaries of faces:

Theorem A.9. (Boundaries of faces) Let G be a 2-connected locally finite (pla-
nar) graph, and let φ be a self-accumulation-free pointed embedding of G in the
sphere S. Then each face f of (G, φ) is bounded by a circle, and exactly one of the
following three possibilities holds:

(i) ∂f is the φ-image of a (finite37) cycle in G [hence ∂f∩[φ(G)\φ(G)] =
∅].

(ii) ∂f∩φ(G) is the disjoint union of a nonempty countable collection

of double rays, and ∂f ∩ [φ(G)\φ(G)] 6= ∅.

(iii) ∂f ∩ φ(G) = ∅ [hence ∂f ∩ [φ(G)\φ(G)] = ∂f ' S1].

Moreover, when G is the Freudenthal compactification F(G), the set ∂f ∩ φ(G) is
dense in ∂f ; in particular, case (iii) cannot occur.

37 Of course, cycles in the standard graph-theoretic meaning of the word are by definition finite.
We will always use the word in this standard sense; we shall not make explicit use of the “infinite
cycles” introduced (by topological means) by Diestel and collaborators [19, 20, 9, 17, 10].
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Proof. By Lemma A.6, φ extends uniquely to an embedding φ of an (essentially
unique) pointed compactification G of G. Richter and Thomassen [64, Proposition 3
and Theorem 7] have proven the fundamental result that every face of (G, φ) is
bounded by a circle. By Lemma A.6, such a circle is the image of a circle C in G
under the homeomorphism φ. We shall therefore prove the more general result that
circles in G have properties analogous to those stated in the theorem (here G need
not be planar). We first claim that

(a) Whenever C contains an inner point of an edge e ∈ G, it contains
the entire edge e.

(b) Whenever C contains a vertex x ∈ G, it contains precisely two
edges of G that are incident to x.

For the Freudenthal compactification, (a) and (b) are proven in [20, Lemma 2.3].
But since statements (a) and (b) concern only a neighborhood of a point of G, they
hold for any Hausdorff compactification of G (since G is locally compact). For the
Freudenthal compactification, it is moreover proven in [19, Lemma 4.3] that C ∩G
is dense in C.

By (a,b), the union of all edges belonging to C is a 2-regular graph C ∩ G, so
each connected component of C ∩G is either a cycle or a double ray. Since C ∩G is
moreover homeomorphic to a subset of S1, we conclude that it is either empty [case
(iii)], a cycle [case (i)], or a nonempty disjoint union of double rays [case (ii)]. In the
latter case, there can be only countably many double rays (since G is countable),
and C must also contain some points of G\G (in fact, at least as many as there are
double rays) in order to have the topology of a circle. �

Examples. 1. The lattices shown in Figure 1 have one end, which is mapped to∞,
and the boundary of every face is a cycle in G. As we will see in Proposition A.16
below, quasi-transitivity and the fact that there is only one end imply that every
face is bounded by a cycle.

2. Consider N × Z with nearest-neighbor edges, with its usual embedding in the
plane. This graph has one end, which is mapped to∞. It has a face that is bounded
by a double ray together with {∞} = φ(G)\φ(G).

3. The graph in the top left of Figure 6 has uncountably many ends, which are
mapped by the embedding φ onto the unit circle. This embedding has one face that
is bounded by endpoints alone (namely, the exterior face), as well as faces that are
bounded by cycles and faces that are bounded by a double ray together with one
endpoint. This graph is constructed in the following way. Consider a 3-regular tree
with origin ∅. Each vertex of G is labeled by a finite (possibly empty) sequence
`0`1`2 · · · `n where `0 ∈ {0, 1, 2} and `i ∈ {0, 1} for i ≥ 1; and each ray emanating
from ∅ is labeled by an infinite sequence `0`1`2 · · · of the same type. The tree can
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1

Figure 6. Four examples of self-accumulation-free pointed embed-
dings of 3-connected graphs, demonstrating some of the different pos-
sibilities for the set of endpoints and the boundaries of faces.

now be embedded in the unit disk such that the ray `0`1`2 · · · converges to the point

(A.8) 2π · 1

3

(
`0 +

∞∑
i=1

2−i`i

)
on the unit circle. We then make the tree into a 3-connected graph by adding edges.
For each vertex ` 6= ∅, we draw edges between the points `01 and `10 as well as
between `011 and `100. Moreover, around the origin, we draw the edges

(A.9) {01, 10}, {011, 100}, {11, 20}, {111, 200}, {21, 00}, {211, 000} .

This embedding is not a Freudenthal embedding, since two nonequivalent rays (e.g.
0111 · · · and 1000 · · · ) may converge to the same point. However, we can easily
modify this example to obtain a Freudenthal embedding of the same graph, by
replacing the binary expansion 2−i`i in (A.8) by ternary expansion 2 · 3−i`i, as
drawn in the top right of Figure 6. In this latter example, the set of ends is mapped
onto a Cantor subset of the unit circle. There is now a face f of (G, φ) that contains
the exterior of the unit disc but also extends inside the unit disc; its boundary
consists of a countably infinite collection of disjoint double rays together with all of
φ(G)\φ(G). Note that here ∂f ∩ φ(G) is dense in ∂f .

4. The graphs in the bottom row of Figure 6 are examples of Freudenthal embed-
dings of graphs with more than one end, in which each face is bounded by a cycle.
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The left graph has two ends (and can easily be modified to produce any finite or
countable number of ends), while the right graph has uncountably many ends.

Let us now say that faces f1 and f2 border each other in an edge e if e lies in the
boundary of both faces, with f1 on one side of e and f2 on the other. Since G is
2-connected, it is not hard to see that no face borders itself; rather, each edge e lies
in the common boundary of precisely two faces, which border each other in e. If G
is moreover 3-connected, then two faces border each other in at most one edge.38

So let us assume henceforth that G is 3-connected. For each edge e of G, we let
e∗ := {f1, f2} denote the pair of faces of G that border each other in e. We then
define the geometric dual G∗ = (V ∗, E∗) of the plane graph (G, φ) to be the graph
whose vertex set V ∗ is the set of all faces of (G, φ) that have at least one edge in
their boundary [i.e., fall in case (i) or (ii) of Theorem A.9] and whose edge set is
E∗ := {e∗ : e ∈ E}. Note that the edge sets E and E∗ are in bijection under e 7→ e∗;
for any subset B ⊆ E we denote by B∗ = {e∗ : e ∈ B} the corresponding subset of
E∗.

We can now prove that geometric duals, in this generality, are always abstract
duals:

Theorem A.10. (Geometric duals are abstract duals) Let G be a locally finite
3-connected graph, and let φ : G→ S be a self-accumulation-free pointed embedding
of G in the sphere. Let G∗ be the geometric dual associated with this embedding.
Then:

(i) G∗ is connected.
(ii) G∗ is an abstract dual of G.

(iii) G∗ is locally finite if and only if every face of G that has at least one edge in
its boundary is bounded by a cycle.

Proof. For each vertex v of G, let Ev denote the set of edges incident to v. Since
Ev is finite (say, of cardinality n) and φ is self-accumulation-free, basic topological
considerations (based on the Jordan curve theorem) imply that φ(v) is surrounded
by exactly n faces that border each other pairwise (in cyclic order) in the edges of
Ev, and that E∗v is a cycle in G∗ = (V ∗, E∗).

(i) Consider any pair v∗, w∗ ∈ V ∗. By definition, v∗ and w∗ are faces of (G, φ)
that contain at least one edge in their boundary; so let v and w, respectively, be
any endvertex of any such edge. Since G is connected, there exists a path v =
v1, v2, . . . , vk = w in G. Since each cycle E∗vi is connected, and E∗vi ∩ E

∗
vi+1

=

{{vi, vi+1}∗} 6= ∅, the set
⋃k
i=1E

∗
vi

is connected; moreover, v∗ belongs to E∗v1
and

w∗ belongs to E∗vk . So there exists a path in
⋃k
i=1E

∗
vi

from v∗ to w∗.
(ii) Consider any cycle C in G. Then φ(C) is a circle in φ(G) that (by the Jordan

curve theorem) partitions V ∗ into two sets (call them V ∗1 and V ∗2 ) corresponding

38 In fact, it is easy to see that 2-edge-connectedness and 3-edge-connectedness are sufficient,
respectively, for these statements.
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to faces lying in the two components of S\φ(C). Since C consists exactly of those
edges e ∈ E that lie on the boundary of some pair of faces v∗1 ∈ V ∗1 and v∗2 ∈ V ∗2 , it
follows that V ∗1 and V ∗2 are both nonempty, so that the set C∗ is a cutset of G∗.

For each v ∈ C, the set Ev ∩ C consists of precisely two edges (call them e and
f) such that e borders v∗1 ∈ V ∗1 and v∗2 ∈ V ∗2 and f borders w∗1 ∈ V ∗1 and w∗2 ∈ V ∗2 .
Then E∗v\C∗ is the disjoint union of two paths P ∗1 , P

∗
2 in G∗ that link v∗1 and w∗1 in

V ∗1 , and v∗2 and w∗2 in V ∗2 , respectively. Doing this for all v ∈ C, it follows that the
set of all vertices in V ∗1 (resp. V ∗2 ) that are incident to an edge of the cutset C∗ is
connected in V ∗1 (resp. V ∗2 ). Therefore C∗ is a minimal cutset of G∗.

Conversely, if B is a finite subset of E such that B∗ is a cutset of G∗, then for
each v ∈ V , the cutset B∗ must intersect E∗v (which is a cycle in G∗) an even number
of times (that is, B∗ ∩ E∗v has even cardinality). It follows that each vertex of G is
incident to an even number of edges of B, and hence B contains a cycle C. But we
have just proven that C∗ is a cutset in G∗. Therefore, if B∗ is a minimal cutset of
G∗, we necessarily have B = C.

(iii) By Theorem A.9, for every face f of (G, φ) that has at least one edge in its
boundary (i.e., belongs to V ∗), its boundary ∂f must either be a cycle or contain a
double ray. Clearly, f has finite degree in G∗ in case ∂f is a cycle, and has countably
infinite degree in case ∂f contains a double ray. �

In particular, whenever G is a locally finite 3-connected graph and φ : G→ S is a
self-accumulation-free pointed embedding such that every face of G is bounded by
a cycle, the geometric dual G∗ is a locally finite abstract dual of G, so that all the
nice properties stated in Theorem A.3 ensue.

Conversely, let us now show that if a locally finite 3-connected graph G has
a locally finite abstract dual, then G has a unique self-accumulation-free pointed
embedding, and the geometric dual associated with this embedding coincides with
the abstract dual:

Theorem A.11. (Embeddings of graphs with locally finite abstract duals)
Let G = (V,E) be a locally finite 3-connected graph that has a locally finite abstract
dual G† = (V †, E†). Then:

(i) G is planar.
(ii) In the Freudenthal embedding of G, each face is bounded by a cycle, and the

geometric dual G∗ of this embedding coincides with the (unique) abstract dual
G†.

(iii) The Freudenthal embedding is (up to homeomorphism) the only self-accumu-
lation-free pointed embedding of G in the sphere.

Proof. (i) is proven in [68, Theorem 9.3]. As a consequence of (i), Theorem A.8
guarantees the existence and uniqueness (up to homeomorphism) of the Freudenthal
embedding.

As a preliminary to (ii) and (iii), consider any self-accumulation-free pointed
embedding of G in the sphere, and let G∗ be the geometric dual associated with this
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embedding. By Theorem A.10, G∗ is an abstract dual of G. But by Theorem A.3(iii),
G has a unique abstract dual G†. Hence G† = G∗.

(ii) For the Freudenthal embedding, Theorem A.9 guarantees that every face has
at least one edge in its boundary. And since G† = G∗ is locally finite, Theo-
rem A.10(iii) implies that every face is bounded by a cycle.

(iii) Let R1, R2 be inequivalent rays in G. Then there exists a finite set of edges B
in G such that the tails of R1 and R2 lie in different connected components of G\B.
Making B smaller if necessary, we may assume without loss of generality that B is a
minimal set with this property. It is not hard to see that B must then be a minimal
cutset. Since G is an abstract dual of G† [by Theorem A.3(i)], B† is a cycle in G†.
Since G† = G∗, B∗ is a cycle in G∗. By (ii), each of the vertices of the cycle B∗ is a
face of (G, φ) whose boundary is a cycle in G. The sum modulo 2 of all these cycles
forms a pair of disjoint cycles in G, each of which separates the tail of φ(R1) from
the tail of φ(R2). As a result, these tails necessarily converge to different endpoints.
Since this holds for any pair of inequivalent rays, we conclude that G must be the
Freudenthal compactification, and φ the Freudenthal embedding. �

Until now we have defined dual graphs — whether in the abstract or geometric
sense — simply as abstract graphs without a given embedding in the plane. However,
given an embedding of a planar graph, there is a natural way to embed its dual. Let
G be a locally finite 3-connected graph, let φ : G → S be a self-accumulation-free
pointed embedding of G in which each face is bounded by a cycle, and let G∗ be
the geometric dual of (G, φ). If e is an edge of G, we denote by e̊ the interior of the
edge e in the topological realization of G (namely, the edge without its endvertices).
We then say that an embedding φ∗ of G∗ is a dual embedding to (G, φ) if

(i) For each v∗ ∈ V ∗, we have φ∗(v∗) ∈ v∗.
(ii) For each e ∈ E, the arc φ∗(e∗) intersects φ(G) in a single point,

which lies on φ(̊e).

Less formally, (i) says that each vertex of G∗ is represented by a point lying in the
correponding face of (G, φ), and (ii) says that two such points that lie in faces that
border each other in an edge e are linked by a dual edge e∗ that crosses e in a single
interior point and is otherwise disjoint from φ(G). We then have:

Proposition A.12. (Dual embeddings) Let G be a locally finite 3-connected
graph, and let φ : G → S be a self-accumulation-free pointed embedding of G such
that each face of (G, φ) is bounded by a cycle. Let G∗ be the geometric dual associated
with this embedding. Then there exists a dual embedding φ∗ of G∗. Moreover, for
each such φ∗:

(i) φ∗ is self-accumulation-free and pointed, and each face of (G∗, φ∗) is bounded
by a cycle.

(ii) G is a geometric dual of (G∗, φ∗) and φ is a dual embedding of G.

(iii) The sets of endpoints φ(G)\φ(G) and φ∗(G∗)\φ∗(G∗) coincide.
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If (G, φ) and (G∗, φ∗) are as in Proposition A.12, then we say that they form a
geometric dual pair .

Proof of Proposition A.12. To prove the existence of a dual embedding φ∗ of
G∗, we begin by choosing a point φ∗(v∗) ∈ v∗ for each face v∗ of (G, φ), and a point
x on φ(̊e) for each edge e ∈ E(G). Let x1, . . . , xn be the points chosen on the edges
of the cycle that bounds v∗. It follows from basic topological considerations39 that
we can connect φ∗(v∗) to each of the points x1, . . . , xn by continuous arcs that are
disjoint except at their common endpoint φ∗(v∗) and that lie entirely in v∗ except
for their endpoints x1, . . . , xn. Now if e ∈ E(G) lies on the boundary of faces v∗1
and v∗2 and x is the chosen point on φ(̊e), then the concatenation of the arcs from
φ∗(v∗1) to x and from x to φ∗(v∗2) is an arc from φ∗(v∗1) to φ∗(v∗2) that we take as our
definition of φ∗(e∗).

To see that φ∗ is self-accumulation-free, it suffices to show that for each point
x ∈ G∗ we can remove a finite set of edges E∗0 from G∗ such that φ∗(x) 6∈ φ∗(G∗\E∗0).
If x = v∗ is a vertex of G∗, then it suffices to remove the set E∗0 of all edges incident
to v∗. Then φ∗(G∗\E∗0) is contained in the complement of the face v∗ and hence
its closure cannot contain φ∗(x). If x lies on an edge e∗ connecting two vertices v∗1
and v∗2 of G∗, then we remove the set E∗0 of all edges incident to v∗1 or v∗2. Then
φ∗(G∗\E∗0) is contained in the complement of the open set formed by the union of
the faces v∗1 and v∗2 and φ(̊e), while φ∗(x) lies inside this open set.

To see that φ∗ is pointed, let R∗ be a ray in G∗ consisting of consecutive vertices
v∗0, v

∗
1, . . . connected by edges e∗1, e

∗
2, . . . . Then v∗0, v

∗
1, . . . are faces of (G, φ) which by

assumption are bounded by cycles C0, C1, . . . such that Ck−1∩Ck = ek. Adding these
cycles modulo 2 yields a double ray consisting of two rays R1, R2 in φ(G). Moreover,
we can construct a third ray R3 that lies in the union of the cycles C0, C1, . . . , passes
through each of the edges e1, e2, . . . , and has an infinite intersection with both R1

and R2. In particular, the rays R1, R2 and R3 are all equivalent and thus, as φ is
pointed, they all converge to the same point x ∈ S. It follows that for each open ball
around x, there exists an n such that the sum modulo 2 of the cycles Cn, Cn+1, . . .
lies in this ball. But this is a double ray which together with the point x forms a
circle in S that contains the tail of the ray R∗ in its interior. Any open ball around
x thus eventually contains the tail of R∗, which proves that R∗ converges to x.

This proves not only that (G∗, φ∗) is pointed, but also that every point in S that
is the limit of some ray in (G∗, φ∗) is also the limit of some ray in (G, φ). It follows
that the set of endpoints of (G∗, φ∗) is contained in the set of endpoints of (G, φ):

that is, φ∗(G∗)\φ∗(G∗) ⊆ φ(G)\φ(G).

39 Indeed, this can be proven by repeated application of the Jordan curve theorem and the
following basic topological fact: Let C ⊂ S be a circle, which by the Jordan curve theorem divides
S into two connected open sets U, V ; let x, z be two distinct points on C, and let y ∈ U . Then
there exists a continuous arc from x to z that lies, except for its endpoints, entirely in U and passes
through y.
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To complete the proof, it now suffices to show that each face of (G∗, φ∗) is bounded
by a cycle [completing the proof of (i)] and contains a single vertex of (G, φ) [which
implies (ii)]. Then (ii) together with what we already got implies the reverse inclu-

sion φ(G)\φ(G) ⊆ φ∗(G∗)\φ∗(G∗), so we conclude that (iii) holds.

Since every face of (G, φ) is bounded by a cycle, the set φ(G)\φ(G) does not

separate S, so the same is true for φ∗(G∗)\φ∗(G∗) which is contained in it. It follows
that each face f of (G∗, φ∗) has at least one edge in its boundary and hence by
Theorem A.9 is either a cycle C∗ or contains a double ray R∗. For each vertex v∗ in
C∗ or R∗ we have that φ∗(v∗) lies inside a cycle C of G that crosses two consecutive
edges of C∗ or R∗. This cycle C can have only one vertex in f since otherwise there
would be an edge of (G, φ) that lies entirely in f , which contradicts our construction
of φ∗. It follows that all edges in (G, φ) that cross an edge in C∗ or R∗ are incident
to one and the same vertex v of G with φ(v) ∈ f . Since G is locally finite, we can
rule out the double ray so we conclude that f is bounded by a cycle C∗ and contains
a single vertex of (G, φ). �

Now recall the definition of vertex and edge accumulation points (just before
Lemma A.7). Following [68, 69], let us say that an embedding φ : G→ R2∪{∞} ∼= S
is VAP-free (resp. EAP-free) if φ(G) ⊂ R2 and φ has no VAPs (resp. EAPs) in the
finite plane R2. Note that if G has at most finitely many isolated vertices (in
particular, if G is connected), then every VAP is also an EAP. For such graphs,
EAP-free embeddings are automatically self-accumulation-free and pointed.40

An EAP-free embedding φ of an infinite, connected, locally finite graph G can be
extended to an embedding φ of the one-point compactification G• of G by setting
φ(∞) =∞. Conversely, if the one-point compactification G• of G can be embedded
in the sphere S ∼= R2∪{∞}, then without loss of generality we may assume φ(∞) =
∞, yielding an EAP-free embedding of G. We then have:

Proposition A.13. (Graphs with one end) Let G be a locally finite 3-connected
planar graph.

(i) If G has at most one end, then it has an EAP-free embedding, which is unique
up to homeomorphism and coincides with the Freudenthal embedding.

If in addition G has a locally finite abstract dual G†, then:

(ii) G has an EAP-free embedding if and only if it has at most one end; and
in this case G and G† can be represented as a geometric dual pair (G, φ),
(G∗, φ∗) such that both (G, φ) and (G∗, φ∗) are EAP-free.

40 Since φ(G) ⊂ R2 and φ has no EAPs in R2, it must be self-accumulation-free. Since every
ray has at least one accumulation point in R2 ∪ {∞} and no accumulation points in R2, all rays
converge to ∞. It seems to us that the concepts “self-accumulation-free” and “pointed” can now
largely replace the more restricted notion of being EAP-free.
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Proof. (i) If G is finite, then it obviously has an EAP-free embedding. If G is infi-
nite with one end, then it has an EAP-free embedding since its one-point compact-
ification coincides with its Freudenthal compactification, which by Theorem A.8(a)
can be embedded in the sphere. And by Theorem A.8(b) this embedding is unique
up to homeomorphism.

(ii) IfG has a locally finite abstract dualG†, then Theorem A.11(iii) and Lemma A.6
tell us that the Freudenthal compactification is the only pointed compactification of
G that is embeddable in the sphere; therefore, such a graph has an EAP-free embed-
ding if and only if it has at most one end. (This statement can also be found in [69,
Theorem 5.9].) By Proposition A.12, G and G† can be represented as a geometric
dual pair (G, φ), (G∗, φ∗); and Proposition A.12(iii) then implies in particular that
if (G, φ) is EAP-free, then so is (G∗, φ∗). �

A.4. Special embeddings. In this section we discuss embeddings with special
“nice” properties: notably, straight-line embeddings and periodic embeddings.

We begin by citing a result of Thomassen [68] on straight-line embeddings with
convex faces:

Proposition A.14. (Convex embeddings) Let G be a locally finite, 3-connected
graph with one end. Then there exists an EAP-free embedding of G in which every
edge is a straight line segment and every face is convex. If in addition G has a locally
finite abstract dual G†, then there exists an EAP-free embedding of G in which every
face is a convex polygon.

Proof. By Proposition A.13(i), G has an EAP-free embedding in the plane. Then
[68, Theorems 7.4 and 8.6] imply that G has an EAP-free embedding in which every
edge is a straight line segment and every face is convex. If in addition G has a locally
finite abstract dual G†, then Theorem A.11 guarantees that every face is bounded
by a cycle. �

Using Proposition A.14, we can deduce that G and G† can be jointly embedded
as a geometric dual pair such that edges are represented by straight-line segments
in both graphs:

Proposition A.15. (Straight-line embedding of dual pair) Let G be a locally
finite, 3-connected graph with one end. Assume that G has a locally finite abstract
dual G†. Then there exist EAP-free embeddings φ and φ† of G and G† in the (Eu-
clidean) plane such that (G, φ) and (G†, φ†) form a geometric dual pair and each
edge of (G, φ) and (G†, φ†) is a straight line segment.

Proof. By Theorem A.11 and Proposition A.12, we may embed G and G† as a
geometric dual pair. Now we can also draw a graph H in the plane such that the
vertex set of H is the union of the vertex sets of G and G† and two vertices v ∈ G
and w ∈ G† are joined by an edge in H when v and w are the endpoints of an
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edge in G and its dual edge in G†; thus, H is a quadrangulation, with G and G†

being its sublattices whose edges connect opposing vertices of the quadrilaterals of
H. Then obviously H is planar, has an EAP-free embedding in the plane, and has
a locally finite geometric (and hence abstract) dual. Since two faces of H never
have the property that two non-adjacent vertices of H both lie on the boundary
of both faces, we see that H is 3-connected. By Proposition A.13(ii), H has one
end, so applying Proposition A.14 to H we see that H has an EAP-free embedding
such that each face is a convex polygon (with four corners). Connecting opposite
corners of these faces by straight line segments, we obtain the required straight-line
embeddings of (G, φ) and (G†, φ†) as a geometric dual pair. �

Remark. We do not know whether G and G† can be jointly embedded as a
geometric dual pair such that edges are represented by straight line segments in
both graphs and faces are convex in both graphs.

We next turn our attention to embeddings of quasi-transitive graphs. Our main
graphs of interest — namely, the graph G and its sublattices G0 and G1 arising in
Theorem 1.1 — are all locally finite, 3-connected, quasi-transitive, planar graphs
with one end that have a locally finite abstract dual G†. Remarkably, this latter
condition turns out to be superfluous:

Proposition A.16. (Quasi-transitive graphs with one end) Let G be a locally
finite, 3-connected, quasi-transitive, planar graph with one end. Then:

(i) G has a locally finite abstract dual G†.
(ii) The Freudenthal compactification is the only pointed compactification of G.

(iii) The Freudenthal embedding of G is EAP-free (when the endpoint is taken to
map to ∞), and each face is bounded by a cycle.

Proof. (ii) is trivial because G has one end (and is 2-connected). To prove (iii)
and (i), consider the Freudenthal embedding of G. By Proposition A.13(i), it is
EAP-free. By Theorem A.9, no face is bounded by endpoints alone; and since G has
one end, a face boundary containing infinitely many edges must consist of a single
double ray together with the one endpoint. But quasi-transitivity then implies (see
[6, Theorem 2.3] or [49, Theorem 8(1)]) that no such infinite face can exist, i.e.,
every face is bounded by a cycle. From Theorem A.10 we then conclude that G has
a locally finite abstract dual G†. �

Quasi-transitivity is essential here, as the example of N×Z (see Example 2 after
Theorem A.9) shows. The assumption that G has one end is also essential: let H
be the graph with vertex set Z and edges {n, n+ 1} and {2n, 2n+ 2} for all n ∈ Z,
let G be the ladder graph {0, 1}×H, and let φ be the obvious embedding. Then G
is quasi-transitive and 3-connected and has two ends; φ is EAP-free and maps both
ends to the point ∞ (i.e., this is a non-Freudenthal embedding); and (G, φ) has a
pair of faces that are each bounded by a double ray together with the point ∞.
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When planar graphs are quasi-transitive, it is natural to ask if they can be em-
bedded in a periodic way in the plane. This is not true if one restricts oneself to
the Euclidean plane, but remarkably, it turns out to be correct if one also considers
the hyperbolic plane. The following result has been proven in [3, Theorem 4.2] (see
also [67, Theorem 1]):

Theorem A.17. (Periodic embeddings) Every locally finite, 3-connected, quasi-
transitive planar graph G with one end can be embedded in the Euclidean plane R2 or
hyperbolic plane H2 such that every automorphism of G corresponds to an isometry
of R2 or H2, respectively.

We remark that in Theorem A.17, we do not know if the embedding can be chosen
in such a way that, moreover , edges are represented by straight line segments in R2

or H2. Note also that Propositions A.14 and A.15 talk about embeddings such that
edges are straight line segments in the Euclidean geometry. We are not aware of
results about straight-line embeddings in the hyperbolic geometry.

A.5. Some examples. Finally, let us describe a method for creating examples of
graphs satisfying the assumptions of Theorem 1.1 — i.e., locally finite, 3-connected,
quasi-transitive triangulations with one end — and their duals. All our examples
come naturally with a periodic straight-line embedding in the Euclidean or hyper-
bolic plane.

Let p, q ≥ 3 be integers and let ABC be a triangle whose angles (in anticlockwise
order) at the corners A,B,C are π/p, π/q, and π/2, respectively. Such a triangle
can be constructed in either the sphere, the Euclidean plane, or the hyperbolic
plane, depending on whether 1/p + 1/q + 1/2 is larger than, equal to, or less than
1, respectively. By reflecting the triangle ABC in one of its edges and continuing
this process, we can cover the whole space alternately by copies of ABC and its
mirror image [12, Section 2]. This yields a planar graph with vertices of types A,
B and C that are of degree 2p, 2q and 4, respectively. In particular, each vertex of
type C is adjacent to two vertices of types A and B each, in alternating order. We
may view the A and B sublattices as planar graphs in their own right by erasing
the vertices of type C and viewing the four edges emanating from C as two straight
edges crossing each other in C, where one connects two A’s and the other connects
two B’s. This yields two regular tesselations that are geometric duals of each other.
In the tesselation formed by the A vertices, each vertex has degree p and each face
is a regular polygon with q edges. This regular tesselation is denoted by the Schläfli
symbol {q, p} [12]. Likewise, the dual B lattice has the Schläfli symbol {p, q}.

In particular, the tesselations with Schläfli symbol {3, p} (with p ≥ 3) are regular
triangulations of the sphere, the Euclidean plane, or the hyperbolic plane, depending
on whether p is less than, equal to, or larger than 6, respectively. It is easy to see
that {3, p}, as a graph, is 3-connected and vertex-transitive. It is finite for p ≤ 5
and infinite for p ≥ 6. In particular, Theorem 1.1 applies when G0 = {3, p} with
p ≥ 6. The case p = 6, which is the only Euclidean tesselation in this class, yields
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G0 = triangular lattice, G1 = hexagonal lattice, and G = diced lattice. The cases
p > 6 yield hyperbolic tesselations. The graphs {3, 6} and {3, 7} and their duals are
drawn in Figure 2(b,d).

The (dual) tesselations with Schläfli symbol {p, 3} are planar Cayley graphs in
which every vertex has degree three. A full classification of graphs with these prop-
erties can be found in [29]. In particular, [29, Table 1, items 12–19] lists those
that are 3-connected and have at most one end. Note that all these graphs are
vertex-transitive.

More general examples of quasi-transitive triangulations satisfying the assump-
tions of Theorem 1.1 can be contructed by starting with any regular tesselation and
dividing the basic polygon into triangles in some suitable way, so that the resulting
graph is 3-connected. It would go to far to attempt here a full classification of the
class of tesselations covered by Theorem 1.1.
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