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Abstract— This paper investigates the problem of state es-
timation for linear-time-invariant (LTI) discrete-time systems
subject to structured feedback uncertainty and bounded dis-
turbances. The proposed Robust Moving Horizon Estimation
(RMHE) scheme computes at each sample time tight bounds
on the uncertain states by solving a linear matrix inequality
(LMI) optimization problem based on the available noisy input
and output data. In comparison with conventional approaches
that use offline calculation for the estimation, the suggested
scheme achieves an acceptable level of performance with
reduced conservativeness, while the online computational time
is maintained relatively low. The effectiveness of the proposed
estimation method is assessed via a numerical example.
Index Terms— Robust Moving Horizon Estimation, Uncertain
Systems, Semidefinite programming, LMI optimization

I. INTRODUCTION

In most industrial applications the states that characterise
the dynamics of a system are not physically measurable
and only noisy output measurements through sensors are
available. Thus, state estimation plays an important role in
different engineering areas such as feedback control, fault
detection, system monitoring, as well as system optimization.
One of the most popular approaches for state estimation, in
a general context, is the Kalman filtering, which is based
on the minimization of the variance of the estimation error
[1]. However, the main assumptions in the standard Kalman
filter approach are that the state-space model of the linear
system does not include any uncertainty and thus it accurately
represents the real system, and also there are no constraints
on the states. As these premises are not satisfied in many
industrial applications, the standard Kalman filter may not
have robust properties against an uncertain model with
disturbances [2].

Recent studies in the literature, which investigate output-
feedback control schemes, mostly employ a fixed stable linear
observer, such as a Luenberger observer, to compute an
estimate of the linear system-state, which is subsequently
used within the control scheme (see for example [3], [4],
[5], [6]). One of the major advantages of schemes shown
in [3] and [5] is that their online computational complexity
is similar to that of (full-state) nominal model predictive
control (MPC) schemes. The main assumption in [3] and [5]
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is that the observer has to run for a sufficiently long time
before implementing the control scheme, in order to allow
the estimation error to enter an invariant set. It is clear that
the choice of observer gain has an impact on the estimation
error bounds and, therefore, on the overall control algorithm.
However, in most of the aforementioned schemes the observer
is designed offline (to ensure stability). Consequently, all of
the aforementioned offline calculations can potentially add
to the conservatism of the corresponding control algorithm.

A very promising online approach to the estimation
problem is the so called Moving Horizon Estimation (MHE).
Originally proposed by [7] in the early 90s, the estimation
scheme suggests estimating the state of a dynamic system by
using only the input/output information of the system over
the most recent time interval. MHE is a filtering scheme
that can be solved online and it can successfully overcome
the previously mentioned problems introduced by offline
calculations. In the last decade, MHE has become a very
popular topic of investigation and its application to linear and
non-linear systems has achieved significant success [8]–[13].

Despite the plethora of MHE algorithms proposed in the
literature, the contributions when the system is uncertain
are scarce. One such contribution is [14], in which the
minimization of an upper bound on a worst-case quadratic cost
defined over a moving horizon window allows one to construct
a filter for uncertain linear systems. This design method is
based on the solution of min-max regularized least-squares
problems [15]. However, robust least-squares problems are
known to have computational difficulties reaching a solution,
since they are in general NP-hard [16]. Reduction of the
excessive online computational burden can be achieved by
reformulating the optimization problem as an equivalent
semidefinite programming (SDP) problem. SDP is concerned
with optimization problems that have solutions over the cone
of all positive semidefinite matrices. SDP is a well-established
methodology that allows the solution of a class of problems
within a given accuracy in polynomial time using interior-
point methods [17].

In the present work, instead of employing an offline linear
observer, the past input/output data window is used, in a man-
ner similar to Receding Horizon Estimation (RHE) described
in [7], to compute online (tight) bounds on the current state.
The main contribution of the paper is the generalization of
MHE from systems subject to disturbances only (see [8])
to systems subject to structured feedback uncertainty (see
Section II), as well as external disturbances, which is more
realistic for applications. In addition, the proposed estimation
method reduces conservativeness as compared to observer



based methods by solving online an optimization problem
through LMIs, while keeping the computational burden low.
Finally, in the proposed method at every sample time hard
bounds on the estimated state are given rather than only the
estimated state values, which most of the estimation schemes
in the literature compute. Very importantly, hard bounds on
the estimated states can potentially be used in a control
scheme and improve significantly the robust properties of the
controller.

The remainder of this paper is organized as follows. In
Section II the problem description is presented. The proposed
state estimation is explained in Section III. In Section IV the
overall proposed algorithm is given together with simulation
results for an exemplary case study from the literature
involving a paper-making process. Finally, conclusions are
drawn in Section V.

A. Notation

The notation used is fairly standard. R denotes the set of
real numbers, Rn denotes the space of n-dimensional (column)
vectors whose entries are in R, Rn×m denotes the space of
all n×m matrices whose entries are in R, and Dn denotes
the space of diagonal matrices in Rn×n. For A ∈ Rn×m, AT

denotes the transpose of A. If A ∈ Rn×n is symmetric, λ (A)
denotes the smallest eigenvalue of A and we write A� 0 if
λ (A)≥ 0 and A� 0 if λ (A)> 0. Analogous definitions apply
to the largest eigenvalue λ (A), with respect to A � 0 and

A≺ 0. We define the norm of A ∈Rn×m as ‖A‖=
√

λ (AAT ).
For x,y ∈ Rn, the inequality x < y (and similarly ≤, > and
≥) is interpreted element-wise. The notation Iq denotes the
q× q identity matrix with the subscript omitted when it
can be inferred from the context. Let z ∈ Rn and denote
the i-th element of z by zi. Then, diag(z) is the diagonal
matrix whose (i, i) entry is zi. For square matrices A1, . . . ,Am,
diag(A1, . . . ,Am) denotes a block diagonal matrix whose i-th
diagonal block is Ai. The symbol ei denotes the i-th column
of the identity matrix of appropriate dimension. The symbol
⊗ denotes the Kronecker product. If UUU ⊆Rp×q is a subspace,
then operator B is such that BUUU denotes the unit ball of UUU ,
e.g. U ∈BUUU denotes that U ∈UUU , ‖U‖≤ 1.

∆k ∈B∆∆∆, B∆∆∆ = {∆ ∈∆∆∆ : ‖∆‖≤ 1}.

In the proposed formulation (Sections III), we make use of
the Schur complement argument. This refers to the result that

if C�0 then
[

A B
? C

]
� 0 if and only if A−BC−1BT � 0,

where ? denotes a term easily inferred from symmetry.
To deal with norm-bounded structured uncertainties (usu-

ally having repeated and/or full blocks on the diagonal entries),
we use the following lemma based on the results in [18].

Lemma 1.1: Let R = RT , F , E, and H be real matrices
of appropriate dimensions. Let ∆̂̂∆̂∆ be a linear subspace and
define the associated linear subspace:

Ψ̂={(S,G) : S� 0, S∆=∆S, ∆G+GT
∆

T =0, ∀∆∈ ∆̂̂∆̂∆}.

Then, R+F∆(I−H∆)−1E +ET (I−∆T HT )−1∆TFT �0 and
det(I−H∆) 6= 0 for every ∆ ∈B∆̂̂∆̂∆ if there exists (S,G) ∈ Ψ̂

such that: R ET +FGT FS
? S+HGT +GHT HS
? ? S

� 0. (1)

Finally, we refer to the S-procedure in Section III. This is
used to derive simple sufficient (in some cases necessary
and sufficient) LMI conditions for the non-negativity or
non-positivity of a quadratic function on a set described
by quadratic inequality constraints [19].

II. PROBLEM STATEMENT

In this section, the system description including system
dynamics, initial condition, disturbances and uncertain signals,
is first provided. Then the problem of moving horizon
estimation for discrete-time systems subject to bounded
disturbances and structured uncertainties is presented as an
optimization problem.

A. System Description

The following linear discrete-time system, subject to norm-
bounded structured uncertainty and external disturbances, is
considered (see for example [20]): xk+1

qk
yk

=
 A Bu Bw Bp

Cq Dqu 0 0
Cy Dyu Dyw Dyp




xk
uk
wk
pk

, pk =∆kqk,

(2)
where k = 0,1,2, . . . is the time instant, ∆k ∈B∆∆∆ , where ∆∆∆⊆
Rnp×nq is a subspace that captures the uncertainty structure.
Furthermore, xk ∈ Rn, uk ∈ Rnu , yk ∈ Rny , wk ∈ Rnw are the
state, input, output and disturbance signal, respectively, at
time instant k. Here pk ∈ Rnp and qk ∈ Rnq represent the
uncertainty vectors and all other symbols in capital letters
denote the appropriate distribution matrices. Only the input
uk and the noisy output yk are measured and it is assumed
that (A,Cy) is detectable and (A,Bu) is stabilizable.

Furthermore, lower and upper bounds x0 and x0 on the
initial state are given a-priori such that (see also Section III):

x0 ∈X0 :=
{

x ∈ Rn : x0 ≤ x≤ x0
}
. (3)

Finally, the unmeasured additive disturbances wk are bounded
by a given nonnegative vector r so that

wk ∈W :=
{

w ∈ Rnw :−r ≤ w≤ r
}
. (4)

B. Estimation Problem

The objective of the proposed RMHE algorithm is to
compute tight upper/lower bounds on the states using a
moving and fixed-size window of past input and output data.
The information vectors for the inputs and output are defined
as follows:

ũ = [uT
k−Ne

, · · · , uT
k−1]

T ,

ỹ = [yT
k−Ne

, · · · , yT
k ]

T ,
(5)



where Ne > 0 denotes a given estimation horizon. The infor-
mation vectors are updated every sample time by removing the
oldest input/output data while the new output measurement
and the latest control input are added. Then the estimation
problem can be transform into an optimazation problem as
follows:

Problem 2.1: At the time instant k, for given informa-
tion vectors (ũ, ỹ) and pre-computed state bounds values
(xk−Ne

, x̄k−Ne), it is required to find lower and upper bound
(xk, xk) on the current state that solve the min/max and
max/min problems

max
xk≤xk

min
wk∈Wk, ∆k∈B∆∆∆

eT
i xk, (6)

min
xk≤x̄k

max
wk∈Wk, ∆k∈B∆∆∆

eT
i xk. (7)

such that the dynamics in (2) are satisfied.
Such a strategy is developed in this paper as described in

more detail in Section III.
Remark 1: Note that uncertainty is allowed in all the

problem data including the state and the output signal. It is
easy to verify that the state dynamics in (2) can be re-written
in the form: xk+1 = (A+Bp∆kCq)xk +(Bu+Bp∆kDqu)uk +
Bwwk.

Remark 2: For the sake of clarity of exposition, both
the state-disturbance (ηk) and output-disturbance (νk) are
combined into a single vector in (2), namely wk := [ηT

k νT
k ]

T .

III. STATE BOUNDS ESTIMATION

This section formulates an optimization problem which
uses the past Ne inputs and outputs (as well as the current
output yk) to compute upper and lower state bounds (xk and
xk), as briefly presented in Section II-B.

We start by iterating the process dynamics in (2) to obtain: xk
q̃
ỹ

=

 Ã B̃u B̃w B̃p
C̃q D̃qu D̃qw D̃qp
C̃y D̃yu D̃yw D̃yp




xk−Ne

ũ
w̃
p̃

, p̃ = ∆̃q̃,

(8)
where the input/output data vectors ũ and ỹ (defined in (5))
are known, and w̃ = [wT

k−Ne
· · · wT

k ]
T , q̃ = [qT

k−Ne
· · · qT

k−1]
T ,

p̃ = [pT
k−Ne
· · · pT

k−1]
T and ∆̃ = diag(∆k−Ne , · · · ,∆k−1).All the

matrices in (8) are the stacked coefficient matrices, which
can be computed easily through iteration using (2).

By using the definition of q̃ in (8), the vector p̃ (:= ∆̃q̃)
can be rearranged as:

p̃ = ∆̃(I− D̃qp∆̃)−1(C̃qxk−Ne + D̃quũ+ D̃qww̃). (9)

Then, using (9) to eliminate p̃ from (8) gives:[
xk
ỹ

]
=

[
Ad + B̃p∆C̃d B̃u + B̃p∆D̃qu

C̃yd + D̃yp∆C̃d D̃yu + D̃yp∆D̃qu

][
d
ũ

]
,

(10)

where ∆ := ∆̃(I− D̃qp∆̃)−1, Ad := [Ã B̃w], C̃yd := [C̃y D̃yw],
C̃d := [C̃q D̃qw] and d := [xT

k−Ne
w̃T ]T such that[

xk−Ne
−r̃

]
=: d ≤ d ≤ d :=

[
xk−Ne

r̃

]
, (11)

where r̃ = 1⊗ r and where 1 represents the Ne–dimensional
vector of ones.

By using (10) and (11), upper- and lower-bounds on xk
are derived in the following theorem.

Theorem 3.1: Let all variables be as defined above. Then,
an upper-bound on the ith element of xk, i.e. eT

i xk, can be
computed if there exist (S̄i, Ḡi) ∈ Ψ̂, µi ∈ RNeny , 0≺ Di

x ∈ D,
∀i∈Nn := {1, · · · ,n}, by minimizing eT

i xk subject to the LMI


Di

x Π12 C̃T
d GT

i C̃T
d Si

? Π22 µT
i D̃yp− 1

2 eT
i B̃p +(D̃quũ)T Gi (D̃quũ)T Si

? ? Si + D̃T
qpGT

i +GiD̃qp D̃T
qpSi

? ? ? Si

�0, (12)

where Π12 = − 1
2 Di

x(d + d) − 1
2 AT

d ei + C̃T
yd µi and

Π22=eT
i xk +d

T
Di

xd− eT
i B̃uũ−2µT

i yũ .

Similarly, a lower-bound on eT
i xk, if there exist (Si,Gi) ∈ Ψ̂,

µi ∈ RNeny , 0 � Di
x ∈ D, ∀i ∈ Nn := {1, · · · ,n}, can be

obtained by maximizing eT
i xk subject to the LMI

Di
x Λ12 C̃T

d GT
i C̃T

d Si

? Λ22 µT
i D̃yp− 1

2 eT
i B̃p +(D̃quũ)T Gi (D̃quũ)T Si

? ? Si + D̃T
qpGT

i +GiD̃qp D̃T
qpSi

? ? ? Si

�0, (13)

where Λ12=− 1
2 Di

x(d +d)− 1
2 AT

d ei +C̃T
yd µi and Λ22=eT

i xk +

d
T

Di
xd− eT

i B̃uũ−2µT
i yũ .

Proof: In order to take account of the available past
input/output data (ũ, ỹ) in the proposed formulation, the
following equality constraint is considered, based on the
expression for ỹ in (10):

y∆̃−C∆̃
d d = 0, (14)

where y∆̃ := ỹ−(D̃yu+D̃yp∆D̃qu)ũ and C∆̃
d :=(C̃yd +D̃yp∆C̃d).

For convenience, we also define yũ = ỹ− D̃yuũ. Now by
considering xk as an upper-bound on xk in (10), it is required
∀i ∈Nn:

eT
i xk− eT

i xk = eT
i (A

∆̃
d d +B∆̃

ũ ũ)− eT
i xk ≤ 0, (15)

where A∆̃
d := Ad + B̃p∆C̃d and B∆̃

ũ = B̃u + B̃p∆D̃qu.
By incorporating (14), it can then be verified that for any

diagonal Di
x � 0 and µi ∈ RNeny

eT
i xk−eT

i xk =− (d−d)T Di
x(d−d)

−
(

µ
T
i (y

∆̃−C∆̃
d d)+(y∆̃−C∆̃

d d)T
µi

)
− d̂T L i(D

i
x, ∆̃,µi)d̂, ∀i ∈Nn,

(16)



where d̂ := [dT 1]T and L i(D
i
x, ∆̃,µi) is defined as:[

Di
x − 1

2 Di
x(d +d)− 1

2 (A
∆̃
d )

T ei +(C∆̃
d )

T µi

? eT
i xk− eT

i B∆̃
ũ ũ+d

T
Di

xd−2µT
i y∆̃

]
(17)

By using the constraints (11) and (14) in (16), together
with the S-procedure (Farkas’ Theorem) [19], it follows that
L i(D

i
x, ∆̃,µi)� 0, ∀i ∈Nn, is a sufficient condition for (15).

By applying a Schur complement argument followed by a
re-arrangement, shows that, for all i ∈ Nn, this sufficient
condition can be written as:

Ri+Fi∆̃(I−H∆̃)−1E+ET (I−∆̃
T HT )−1

∆̃
TFT

i �0, (18)

where

[
Ri Fi
E H

]
:=


Di

x − 1
2 Di

x(d+d)− 1
2 AT

d ei +C̃T
yd µi 0

? eT
i xk+d

T
Di

xd−eT
i B̃uũ−2µT

i yũ µiD̃T
yp− 1

2 eT
i B̃p

C̃d D̃quũ D̃T
qp

·
Using Lemma 1.1 yields the LMI (12) as a sufficient

condition for (18) for all ∆̃ . A similar procedure can be
used to derive LMI (13) for the lower-bound i.e. −eT

i xk ≤
−eT

i xk, ∀i ∈Nn.
Remark 3: The estimated value of the state x̂k is selected

to be the mid-point of the upper and lower bounds of the
state computed by the LMIs (12) and (13), i.e x̂k =

1
2 (x̄k+xk).

Note that, at the time k = 0 the initial estimated value x̂0 is
arbitrarily selected to be the mid-point of the known a-priori
initial bounds (x0,x0).

Remark 4: Note that the LMIs (12) and (13) always have
feasible solutions since they are are used to evaluate upper
bounds on eT

i xk and lower bounds on eT
i x̄k. The main issue

is the tightness of these bounds. The quality of the bounds
is illustrated in the example below.

IV. ALGORITHM OUTLINE AND SIMULATIONS

In this section the overall proposed strategy is presented and
its effectiveness is demonstrated by a benchmark example.

A. Implementation Strategy

The proposed estimation scheme computes online hard
upper and lower bounds on the state xk based on past
input/output data. However, at sample time k=0 there is no
past data to compute the state bounds and the state estimation
value. Thus, at the time point k=0 the a-priori bounds on x0
are used and x̂0 is computed (see Section II-A). Subsequently,
while more data is collected from the input/output at each
iteration, the estimation horizon Ñe is incremented until it
reaches the pre-specified estimation horizon Ne. During this
period the current state bounds xk, x̄k and the estimated state
x̂k are computed by considering all available past data. By the
time that Ñe is equal to Ne the bounds and the estimated state
are calculated by the moving horizon framework presented
in Section III. The overall approach can therefore be outlined
as follows.

Algorithm 1: Robust Moving Horizon Estimation scheme

Fig. 1. Schematic of Paper Machine Headbox

(1) Initially at k = 0, given a-priori bounds on x0 compute
the estimated state x̂0. Then apply the first control action
u0 onto the system.

(2) Update the vectors ũ, ỹ with the newly available
input/output data from the current and previous step
(uk−1,yk).

(3) If Ñe < Ne, increment Ñe, else fix Ñe = Ne. Then, using
vectors ũ, ỹ and state bounds xk−Ne

, x̄k−Ne solve the
LMI’s problem in Theorem 3.1 to compute bounds and
estimated state x̂k of the current state xk.

(4) Go to step (2).

B. Numerical Example

The benchmark problem of the control of a paper-making
process (see for example [21]–[23]) is considered in this
subsection to investigate the performance of the proposed
estimation scheme. The system, shown in Fig. 1, consists of
process states x = [H1 H2 N1 N2]

T , where H1 and N1 denote
liquid level and composition of the feed tank, respectively,
and H2 and N2 denote liquid level and composition of the
headbox, respectively. The control input vector is given by
u = [Gp Gw]

T , where Gp is the flow rate of stock entering
the feed tank and Gw is the recycled white water flow rate.
All variables are normalized (i.e. they are zero at steady state)
and only noisy measurements of H2 and N2 are available. The
consistency and composition of white water is a source of
uncertainty within the dynamics, particularly in the state N1
and input Gw. Moreover, disturbance ζk affects all four states
and νk denotes the output measurement noise (see Remark 2
to describe the system as shown in (2)).

The discrete-time dynamics (including uncertainty descrip-
tion), sampled at 2 minutes (see [21]), are given by (2) with:

A=


0.0211 0 0 0
0.1062 0.4266 0 0

0 0 0.2837 0
0.1012 −0.6688 0.2893 0.4266





Bu=


0.6462 0.6462
0.2800 0.2800
1.5237 −0.7391
0.9929 0.1507

 , Bw=


1 0
1 0
1 0
1 0

 , Bp=


0
0
1
0

,
Cq =

[
0 0 0.2 0

]
, Dqu =

[
0 0.2

]
Cy =

[
0 1 0 0
0 0 0 1

]
, Dyw =

[
0 1
0 1

]
The process disturbance and output measurement noise are
respectively characterized by the sets:

ζk ∈ Z :=
{

ζ ∈ R :−0.1≤ ζ ≤ 0.1
}

νk ∈V :=
{

ν ∈ R :−0.05≤ ν ≤ 0.05
}
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Fig. 2. Control Input

Finally, the estimation horizon for the above set-up is
set at Ne = 15. For an arbitrary control input sequence u,
the objective of the estimation scheme is to compute tight
bounds on the states of the system, while the estimation error
(errori = xi− x̂i) between the actual states and the estimated
states is computed.

Figures 2 to 5 show the simulation results. For the sake
of comparison with previous works, the classic Luenberger
observer and Receding Horizon Estimation (RHE) method
proposed by Alessandri in [8], are considered. The control
input signal applied to the paper making machine for all
estimation algorithms under consideration in this case study
is presented in Fig. 2. The value of ∆k is set equal to 0.5
for all k. Figure 3 shows the state bounds for the measured
states (x2 and x4), while Fig. 4 illustrates the state bounds for
the unmeasured states (x1 and x3). For comparison purposes,
in these figures the estimated state by utilizing Luenberger
observer (dashed light blue) and RHE (dashed black), as
well as the actual states (solid blue lines) of the process (not
measurable in real time) are also included in these plots. It
is noted that the computed bounds almost touch the actual
states at some points, which demonstrates their tightness and
the effectiveness of the new estimation scheme. It is also
important to observe that for both algorithms considered from
the literature, sometimes the estimated states are outside the
hard bounds provided by the proposed MHE algorithm, which
again demonstrates the superiority of the proposed scheme.

Figures 5 and 6 show the state estimation error for
the measured and unmeasured states, respectively, where
it can be seen that the estimation error using the proposed
RMHE converges faster and into a smaller set around zero
as compared to the other methods under consideration from
the literature.
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Fig. 3. The observed states x2 and x4 for two different estimation schemes
(Luenberger observer, RHE), as well as the actual states evolution with their
respective computed upper and lower bounds by the proposed RMHE.
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Fig. 4. The unobserved states x1 and x3 for two different estimation schemes
(Luenberger observer, RHE), as well as the actual states evolution with their
respective computed upper and lower bounds by the proposed RMHE.

All the simulations are performed using MATLAB R2017b
on a computer with 2.40GHz Intel Xeon(R) CPU and 64.0GB
memory. The average online computation time at each
sampling time (2 minutes) for the MHE estimation problem at
the presented example is 0.8 seconds. Note that the estimation
horizon is directly related with the estimation error and
computational burden. Although selecting a short estimation
horizon results in less online computation time, the estimation
error is larger due to the lack of information considered to the
estimation problem. On the other hand, continuing to increase
the estimation horizon does not improve further the estimation
error due to data overfeeding. Therefore, choosing a suitable
value of estimation horizon depends on the sampling time of
the system (maximum available computation time) and the
estimation error improvement that you get by increasing the
estimation horizon. In the presented example the maximum
estimation horizon is Ne = 45, however it is chosen to be
Ne = 15 since there is no improvement in the estimation error
above this value.
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Fig. 5. Estimation error for the observed states x2 and x4 using the proposed
RMHE method, Luenberger observer and Receding Horizon Estimation [8].
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Fig. 6. Estimation error for the unobserved states x1 and x3 using
the proposed RMHE method, Luenberger observer and Receding Horizon
Estimation [8].

V. CONCLUSION

In this paper an investigation of the estimation problem
based on past input/output data of linear discrete-time systems
subject to model-uncertainties and bounded disturbances is
presented. An online algorithm that computes estimates of
the state alongside with tight bounds is suggested, while
conservativeness is reduced and computation complexity is
maintained low. Importantly, the proposed robust moving
horizon estimation (RMHE) algorithm is formulated in a
convex form and optimality is guaranteed at every sample
time by solving an LMIs optimization problem. Finally, the
effectiveness and superior performance of the proposed MHE
algorithm as compared to state-of-the-art algorithms in the
literature is demonstrated by an industrial process example.

[3] D. Mayne, S. Rakovic, R. Findeisen, and F. Allgower, “Robust output
feedback model predictive control of constrained linear systems,”
Automatica, vol. 42, pp. 1217–1222, 2006.
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